WO1994015001A2 - Procede de dissolution d'oxydes deposes sur un substrat metallique - Google Patents

Procede de dissolution d'oxydes deposes sur un substrat metallique Download PDF

Info

Publication number
WO1994015001A2
WO1994015001A2 PCT/FR1993/001298 FR9301298W WO9415001A2 WO 1994015001 A2 WO1994015001 A2 WO 1994015001A2 FR 9301298 W FR9301298 W FR 9301298W WO 9415001 A2 WO9415001 A2 WO 9415001A2
Authority
WO
WIPO (PCT)
Prior art keywords
reducing
oxides according
dissolving oxides
oxidizing
dissolving
Prior art date
Application number
PCT/FR1993/001298
Other languages
English (en)
Other versions
WO1994015001A3 (fr
Inventor
Henri Spychala
Didier Noel
Jacques Gregoire
Original Assignee
Electricite De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France filed Critical Electricite De France
Priority to EP94902858A priority Critical patent/EP0675973B1/fr
Priority to KR1019950702622A priority patent/KR100313971B1/ko
Priority to DE69312966T priority patent/DE69312966T2/de
Publication of WO1994015001A2 publication Critical patent/WO1994015001A2/fr
Publication of WO1994015001A3 publication Critical patent/WO1994015001A3/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/088Iron or steel solutions containing organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Definitions

  • the present invention relates to a method for dissolving oxides deposited on a metal substrate, this method being intended more particularly for the decontamination of metal parts, contaminated during their exposure in a hot zone.
  • radioactivity in the primary circuit is due to corrosion productsc which are activated in the reactor core, then which are precipitated and incorporated into the oxide, deposited in the form of successive layers, on the walls of the circuit.
  • the radioactive materials are mainly 60 Co, 58 Co, 51 Cr, 54 Mn, 59 Fe, 121 Sb, 124 Sb, 110 mAg.
  • the deposition process is cumulative and in a few years, the parts of the primary circuit have a very high radioactivity.
  • the problem is particularly acute at the level of the water box of the steam generator, part of the primary circuit in which the interventions are the longest. It is therefore very important to have a process for rapidly decontaminating components or parts of the primary circuit on which the personnel must intervene, during cold stops.
  • Decontamination consists in eliminating the layers of deposit formed on the walls of the circuit during its use. To decontaminate, it is necessary to remove not only the outer layer of oxide which is generally thin and not very adherent, but also the inner layer, compact and strongly adherent on the metal walls.
  • Chemical decontamination consists in using chemical solutions to dissolve the oxide layer adhering to the metal walls, then to treat the collected solutions, so as to concentrate them and obtain only low volume waste. This waste can then be easily stored in landfill systems suitable for this purpose, that is to say protected and where the radioactivity is controlled.
  • the oxides formed on the walls are generally very rich in iron and chromium. However, chromium oxide and especially spinels are difficult to dissolve.
  • the method optionally includes a subsequent step of treating the effluents obtained at the end of the reducing and oxidizing attacks, by passing these effluents over a cation exchange resin.
  • This process is not effective enough to completely remove the oxide layers deposited on the walls of the treated metal pipes.
  • the reducing phase will dissolve these oxides the less they are loaded with chromium. As a result, a greater amount of chromium oxide remains in this case on the walls, after the reducing phase, thus making decontamination imperfect.
  • the efficiency of the process is greatly reduced by the excessively high pH value of the reducing phase which decreases the solubility of the spinels loaded with chromium.
  • a complexing agent such as oxalic acid constitutes an important source of pollution since this acid remains partly trapped in the state of cationic complexes on the cation exchange resins, after the treatment of the effluents or in the sludge in the case of treatment on an evaporator.
  • the oxidative and reducing attacks are carried out at pH values too high to be effective.
  • the second step of the process simply makes it possible to reduce the residual MnO 4 K and the MnO 2 formed during the oxidizing phase.
  • Document FR 2 590 716 also discloses a process for decontaminating the walls of nuclear reactors, in particular the walls of the primary circuit of nuclear reactors with a pressurized water circuit. This process consists in increasing the efficiency of renewal of the solution by the emission of ultrasound throughout the duration of the oxidizing and reducing phases. Moreover, the effectiveness of ultrasound appears especially in the oxidizing phase where the penetration of the solution in depth plays a greater role than in the reducing phase.
  • the invention relates to a method for dissolving oxides deposited on a metal substrate.
  • this method comprises at least one cycle consisting in:
  • a) carry out an oxidative attack at a temperature between 80 and 85 ° C, using a solution containing a permanganate anion and nitric acid, at a pH between 1.8 and 2.3, this pH being maintained throughout the duration of the oxidative attack, b) carrying out a reducing attack using a solution comprising a reducing agent and nitric acid, at a pH below 2 and at a temperature between 80 and 85 ° C.
  • the oxidative attack is carried out at a pH of between 1.8 and 2.
  • the oxidative attack is carried out using a solution comprising a permanganate anion and sodium hydroxide, at a pH greater than or equal to 12, this pH being maintained throughout the duration of the oxidative attack.
  • the oxidative attack is thus adapted according to the nature of the substrate.
  • the reducing agent is chosen from dehydroascorbic acid, aldols, diacids, reducing sugars or better still ascorbic acid.
  • the permanganate anion is introduced in the form of potassium permanganate. Thanks to this process and when the substrate does not contain Inconel, the pH of the oxidizing phase is maintained at a sufficiently acidic level so as to increase the efficiency of the oxidizing phase. Maintaining the pH is ensured by the addition of nitric acid. Furthermore, at the start of each cycle, it is checked that the oxidizing power is always close to 100% and the permanganate anion is added accordingly.
  • the pH is further lowered to keep it sufficiently acid, using nitric acid so as to dissolve the oxides charged with chromium still present at the start of said reducing phase.
  • the reducing power is also maintained in the vicinity, of 100% by adding reducer, at the start of each new cycle.
  • this method makes it possible to improve the decontamination factor Fd from 2.5 to 5 times compared with what was obtained with the methods of the prior art.
  • This decontamination factor corresponds to the ratio of the activities measured before and after treatment. More precisely, the quantity of radioactive elements present in the oxide is measured before and after decontamination.
  • This decontamination factor being increased, the process for dissolving oxides is effective in a shorter time than the processes of the prior art (here about 5 hours of oxidizing phase per cycle and 1 to 3 treatment cycles).
  • nitric acid is used in concentrations such that it is not corrosive to metallic substrates.
  • the use of nitric acid avoids the use of complexing agents, the drawbacks of which have been mentioned above.
  • the figure is a diagram illustrating the different stages of the process for dissolving oxides according to the invention.
  • the substrates on which the oxide deposits are likely to be carried out are mainly stainless steels of the 308 L or 316 L type, the Inconel 600 and stellites. These substrates can also be made of Inconel 82, bronze, copper, graphite, zircaloy 4 and titanium. Finally, these substrates can be seals.
  • the thickness of the deposits is generally close to 1 to 2 ⁇ m but can reach 8 to 10 ⁇ m.
  • a decontamination tank 1 in which is placed the metal substrate to be treated by the method according to the invention. Also shown are storage tanks 3 and 5, respectively, oxidizing and reducing solutions, a filter 7 and a cation exchange resin 9.
  • a filter of approximately 3 ⁇ m will be chosen for the oxidizing phase and 0 , About 45 ⁇ m for the reducing phase.
  • the oxidizing solution preferably contains approximately 0.5 to 1 g / l of nitric acid and 0.7 to 1 g / l of potassium permanganate or better still approximately 1 g / l of nitric acid and 1 g / l of permanganate potassium.
  • This oxidizing solution is therefore at a pH between 1.8 and 2.3.
  • This solution initially at a pH of between 1.8 and 2, is mainly suitable for stainless steel substrates or more generally for all the substrates previously mentioned and not containing Inconel.
  • the oxidizing solution is alkaline. It then contains approximately between 0.5 and 1 g / l or better 1 g / l of potassium permanganate and at least 1 g / l or better approximately 1 g / l of sodium hydroxide.
  • the pH of this solution is greater than or equal to 12.
  • the reducing solution contains a reducing agent chosen from one of those mentioned above and nitric acid. It preferably contains approximately between 0.5 and 1 g / l of nitric acid and 0.7 to 2 g / l of ascorbic acid or better still 1 g / l of nitric acid and 1 g / l of acid ascorbic.
  • This reducing solution has a pH of less than 2.
  • the oxidizing solution is heated to a temperature between 80 and 85 ° C, preferably 80 ° C and it is injected through a line 11 into the decontamination tank 1.
  • the oxidative attack lasts approximately 5 hours during which the pH is maintained either at values between 1.8 and 2.3 and the permanganate content between 0.7 and 1 g / l in the case of an acid attack, or at values greater than or equal to 12 in the case of an alkaline attack, so that the efficiency of the oxidizing phase is maximum.
  • the pH is maintained between 1.8 and 2.
  • the pH directly influences the kinetics of the reaction.
  • the lower the pH the faster the kinetics of the reaction. Pores of the metal to be treated tend to be blocked by the Mn ⁇ 2 formed during the reaction. So the faster the reaction, the more the metal can be treated before its pores are closed.
  • the oxidative attack generally begins at pH 1.8 and ends at pH 2, since the pH tends to increase during the reaction.
  • the oxidizing solution is recovered and conveyed via a line 13 to the filter 7, before being reintroduced into the storage tank 3 of oxidizing solution by a line 15.
  • the reducing solution is heated to a temperature between 80 and 85 ° C, preferably 80 ° C, then it is injected into the decontamination tank 1.
  • This reducing attack is maintained for about 5 hours and optionally added nitric acid to maintain the pH always below 2 and ascorbic acid to maintain a reducing power vis-à-vis iron III equivalent to an ascorbic acid content of between 0.7 and 1 g / l .
  • the reducing solution recovered after passing through the decontamination tank 1 is conveyed to the filter 7 and the cation exchange resin 9 then to the storage tank 5, via a line 17.
  • the residual radioactivity of the substrate is then measured to determine if a second cycle is necessary; in the affirmative, the operations which have just been described are repeated without having checked the pH and the oxidizing or reducing powers of the solutions used.
  • the oxides present on the substrates to be treated consist of a spinel composed of iron, chromium and nickel.
  • Nickel spinel dissolving well in a reducing medium, we will only consider the case of chromium spinel (mixture of iron chromite and magnetite).
  • This oxidation reaction makes it possible to dissolve the chromium.
  • the oxidation is preferably carried out in an alkaline medium and the chemical reaction is as follows:
  • Mn ⁇ 2 is formed, either directly in an alkaline medium, or indirectly in an acidic medium, from the oxidation of water catalyzed by Mn 2+ ions, according to the following reaction:
  • the Mn ⁇ 2 formed tends to deposit on the walls and limit the efficiency of the oxidative phase over time. It is therefore necessary to start the oxidative attack at low pH so as to have a rapidly effective attack and to be able to limit the duration of this phase to approximately 5 or 6 hours. In the prior art, the oxidative phases lasted approximately 15 hours, because the oxidative phase was less effective at the start of the attack.
  • the decontamination of oxidizing and reducing solutions is carried out using a cationic resin 9.
  • the oxidizing phase makes it possible to recover approximately 10% of the radioactive materials while the reducing phase makes it possible to recover approximately 90%. Consequently, it is above all this latter solution which can be decontaminated on the resin 9, possibly after each cycle.
  • the cation exchange resin also lowers the pH. The oxidizing solution will not be decontaminated until after the last cycle on a cation exchange resin.
  • the resins 9 and 18 are generally formed by a single resin.
  • the radioactive materials and the cations were retained on these resins.
  • the oxidizing and reducing solutions are then extracted from their respective storage tank 3 and 5 and conveyed by pipes 19 to a mixing tank 21. After treatment of the mixture on cation exchange resin or evaporator, the final solution obtained is no longer radioactive and has a low COD in compliance with current pollution standards, which allows its elimination to the site's disposal facilities.
  • the cation exchange resins 9 and 18 on which the radioactive elements are concentrated are either transferred to the reservoirs storage site for used resins, then treated by the PRECED process (registered trademark), or packaged in appropriate drums and treated by the COMET process (registered trademark). These two methods consist in mixing the ion exchange resins with a polymer which, once solidified, ensures the stability of the mixture.
  • Test 1 measurements of the decontamination factor (Fd):
  • the decontamination factor Fd was measured for several substrates of the stainless steel or Inconel type, by carrying out radioactivity measurements before and after a given treatment. These treatments were carried out with various oxidizing and reducing solutions, at different concentrations and at different pHs. The results are given in Table 1 below.
  • Tests 3, 4, 13 and 14 were carried out with substrates covered with significant deposits. Tests 13 and 14 correspond to the process described in document EP 406 098 where the pH of the oxidizing and reducing solutions was high.
  • Tests 5 and 12 correspond to the third cycle of decontamination of samples in Inconel including
  • Test 2 measurements of the quantities of chromium and iron in the reducing phase:
  • Tests numbers 4 and 5 corresponding to the process according to the invention show that the Cr / iron ratio is significantly increased compared to the process of the prior art. This means that the lowering of the pH in the reducing phase has made it possible to dissolve oxides still charged with chromium present in the reducing phase and which would not have been at a higher pH.
  • Test 3 corrosion measurements of the substrate:
  • Tests numbers 5 and 6 correspond to those carried out by the method according to the invention. It is noted that the loss of thickness measured in microns, after 5 hours is very low compared to what could be obtained in tests 3 and 4 corresponding to the process of the prior art described in the patent application EP 0 406 098. This trend is also confirmed after 20 hours since the loss of thickness hardly changes.
  • chromium content of stainless steel and Inconel being greater than 12%, in an aqueous medium a passive layer is created, formed of a mixture of oxides and hydroxides of iron and chromium, with bonds under bridge shape.
  • the compounds thus created are relatively stable and protective with respect to the NO 3 - and H + ions.
  • the corrosion of the base metal in the reducing phase depends on the prior oxidation. In all cases, it remains very low (maximum value of 0.1 ⁇ m in 20 hours) and does not change significantly until the first hours.

Abstract

L'invention concerne un procédé de dissolution d'oxydes déposés sur un substrat métallique. Le but de l'invention est de décontaminer des substrats pollués par des dépôts de matières radioactives, sans attaque significative du substrat. Ce but est atteint à l'aide d'un procédé comprenant au moins un cycle consistant à: a) effectuer une attaque oxydante à l'aide d'une solution contenant au moins du permanganate, à une température comprise entre 80 et 85 °C, b) effectuer une attaque réductrice au moyen d'une solution comprenant un réducteur et de l'acide nitrique, à un pH inférieur à 2 et à une température comprise entre 80 et 85 °C.

Description

PROCEDE DE DISSOLUTION D'OXYDES DEPOSES
SUR UN SUBSTRAT METALLIQUE
La présente invention concerne un procédé de dissolution d'oxydes déposés sur un substrat métallique, ce procédé étant destiné plus particulièrement à la décontamination de pièces métalliques, contaminées lors de leur exposition en zone chaude.
Il peut être nécessaire de décontaminer des pièces et notamment des pièces constitutives des parois ou des canalisations du circuit primaire des générateurs de vapeur de réacteurs nucléaires, aussi bien pour les sortir hors de la zone protégée que lors du démantèlement des centrales nucléaires et pour réduire la dosimétrie du personnel intervenant. L'essentiel de la radioactivité du circuit primaire est dû à des produits de corrosionc qui se sont activés dans le coeur du réacteur, puis qui ont été précipités et incorporés dans l'oxyde se déposant sous forme de couches successives, sur les parois du circuit. Les matières radioactives sont principalement les 60 Co, 58 Co, 51 Cr, 54 Mn, 59 Fe, 121 Sb, 124 Sb, 110 mAg. Le processus de dépôt est cumulatif et en quelques années, les pièces du circuit primaire présentent une radioactivité très élevée.
La contamination gêne considérablement les opérations de maintenance lors des arrêts à froid, cependant que les irradiations du personnel nécessitent des mesures de protection qui se traduisent par un surcoût économique important. Le problème est particulièrement aigu au niveau de la boîte à eau du générateur de vapeur, partie du circuit primaire dans laquelle les interventions sont les plus longues. Il est donc très important de disposer d'un procédé permettant de décontaminer rapidement des composants ou des parties du circuit primaire sur lequel le personnel doit intervenir, lors des arrêts à froid. La décontamination consiste à éliminer les couches de dépôt formées sur les parois du circuit durant son utilisation. Pour décontaminer, il est nécessaire d'enlever non seulement la couche externe d'oxyde qui est généralement mince et peu adhérente, mais également la couche interne, compacte et fortement adhérente sur les parois métalliques.
Parmi les procédé mécaniques, électrochimiques ou chimiques envisagés, les procédés chimiques sont les plus développés. En effet, les procédé mécaniques tels que le sablage, les jets à haute pression, l'abrasion et les procédés électrochimiques posent des problêmes de mise en oeuvre et de récupération des déchets dans les générateurs de vapeur.
La décontamination chimique consiste à utiliser des solutions chimiques pour dissoudre la couche d'oxyde adhérant sur les parois métalliques, puis à traiter les solutions recueillies, de façon à les concentrer et à n'obtenir que des déchets de faible volume. Ces déchets pourront ensuite être facilement stockés dans des systèmes de décharge adaptés à cet effet, c'est-à-dire protégés et où la radioactivité est contrôlée.
Les oxydes formés sur les parois sont en général très riches en fer et en chrome. Or, l'oxyde de chrome et surtout les spinelles sont difficiles à dissoudre.
On connaît déjà d'après le document EP O 406 098 du 26 juin 1990, un procédé de dissolution d'oxydes comprenant les étapes consistant à réaliser :
- a) une attaque oxydante avec une solution de permanganate de potassium et d'acides sulfurique et nitrique à un pH compris entre 2 et 6, et
- b) une attaque réductrice au moyen d'un réduc teur constitué notamment par l'acide ascorbique et d'un agent complexant choisi parmi les polyacides carboxyliques, du type acide oxalique ou acide citrique.
Le procédé comporte éventuellement une étape ultérieure de traitement des effluents obtenus à l'issue des attaques réductrice et oxydante, par passage de ces effluents sur une résine échangeuse de cations.
Ce procédé n'est pas suffisamment efficace pour éliminer complètement les couches d'oxydes déposées sur les parois des canalisations métalliques traitées.
En effet, dès le début de la phase oxydante, le pH s'élève vers des valeurs de 2,8 à 3,2, ce qui rend cette phase oxydante moins efficace. De ce fait, les oxydes de chrome et les spinelles chargés en chrome sont moins solubilisés au profondeur.
Or, la phase réductrice va d'autant moins dissoudre ces oxydes qu'ils sont plus chargés en chrome. En conséquence, une plus grande quantité d'oxyde de chrome reste dans ce cas sur les parois, après la phase réductrice, rendant ainsi imparfaite la décontamination.
En outre, l'efficacité du procédé est grandement réduite par la valeur trop élevée du pH de la phase réductrice qui diminue la solubilité des spinelles chargés en chrome.
Enfin, l'emploi d'un agent complexant comme l'acide oxalique constitue une source de pollution importante puisque cet acide reste en partie piégé à l'état de complexes cationiques sur les résines échangeuses de cations, après le traitement des effluents ou dans les boues dans le cas d'un traitement sur évaporateur.
On connaît également d'après la demande de brevetEP-A-0 071 336 un procédé chimique de dissolution d'oxydes riches en chrome, déposés sur les surfaces des structures d'un réacteur à eau pressurisée. Ce procédé comprend trois étapes consistant à réaliser :
- une attaque oxydante à pH 2,5 à l'aide de permanganate de potassium et d'acide nitrique,
- une attaque réductrice à l'aide d'acide oxalique et d'acide nitrique, et
- un autre attaque réductrice à pH 2,5 à l'aide d'acide oxalique, citrique et d'hydroxyde de potassium.
Toutefois, dans ce procédé, les attaques oxydante et réductrice sont effectuées à des valeurs de pH trop élevées pour être efficaces. En outre, la deuxième étape du procédé permet simplement de réduire le MnO4K résiduel et le MnO2 formé lors de la phase oxydante.
Un tel procédé ne peut être utilisé pour solubiliser des spinelles de fer et de chrome, efficacement.
On connaît également d'après le document FR 2 590 716, un procédé de décontamination des parois de réacteurs nucléaires, en particulier des parois du circuit primaire des réacteurs nucléaires à circuit d'eau pressurisée. Ce procédé consiste à augmenter l'efficacité de renouvellement de la solution par l'émission d'ultrasons durant toute la durée des phases oxydante et réductrice. D'ailleurs, l'efficacité des ultrasons apparaît spécialement en phase oxydante où la pénétration de la solution en profondeur joue un rôle plus importante qu'en phase réductrice.
Ce procédé présente également un certain nombre d'inconvénients. Seules les surfaces directement au voisinage des sondes à ultrasons sont bien décontaminées. En outre, le positionnement des sondes à ultrasons est délicat à mettre en place. Il peut même être impossible avec certains profils de surface à décontaminer (tuyauteries de petits diamètres, présences de coudes, ...). En conséquence, l'invention a pour but de résoudre les inconvénients précédemment évoqués.
A cet effet, l'invention concerne un procédé de dissolution d'oxydes déposés sur un substrat métallique.
Selon les caractéristiques de l'invention, ce procédé comprend au moins un cycle consistant à :
a) effectuer une attaque oxydante à température comprise entre 80 et 85°C, à l'aide d'une solution contenant un anion de permanganate et de l'acide nitrique, à un pH compris entre 1,8 et 2,3, ce pH étant maintenu pendant toute la durée de l'attaque oxydante, b) effectuer une attaque réductrice au moyen d'une solution comprenant un réducteur et de l'acide nitrique, à un pH inférieur à 2 et à une température comprise entre 80 et 85°C.
De façon avantageuse, l'attaque oxydante est réalisée à un pH compris entre 1,8 et 2.
Grâce à ces caractéristiques de l'invention, on n'utilise plus aucun agent complexant, ce qui évite une source importante de pollution.
Lorsque le substrat métallique comprend au moins une partie réalisée en Inconel, l'attaque oxydante est effectuée à l'aide d'une solution comprenant un anion permanganate et de l'hydroxyde de sodium, à un pH supérieur ou égal à 12, ce pH étant maintenu pendant toute la durée de l'attaque oxydante.
L'attaque oxydante est ainsi adaptée en fonction de la nature du substrat.
De préférence, le réducteur est choisi parmi l'acide déshydroascorbique, les aldols, les diacides, les sucres réducteurs ou mieux encore l'acide ascorbique.
De façon avantageuse, l'anion permanganate est introduit sous forme de permanganate de potassium. Grâce à ce procédé et lorsque le substrat ne contient pas d' Inconel, on maintient le pH de la phase oxydante à un niveau suffisamment acide de façon à accroître l'efficacité de la phase oxydante. Le maintien du pH est assuré par l'addition d'acide nitrique. Par ailleurs, au début de chaque cycle, on vérifie que le pouvoir oxydant est toujours voisin de 100% et l'on rajoute de l'anion permanganate en conséquence.
Dans la phase réductrice, on abaisse encore le pH pour le maintenir suffisamment acide, à l'aide de l'acide nitrique de façon à dissoudre les oxydes chargés en chrome encore présents au début de ladite phase réductrice. On maintient également le pouvoir réducteur au voisinage, de 100% en rajoutant du réducteur, au début de chaque nouveau cycle.
En outre, comme cela sera détaillé ultérieurement, ce procédé permet d'améliorer le facteur de décontamination Fd de 2,5 à 5 fois par rapport à ce que l'on obtenait avec les procédés de l'art antérieur. Ce facteur de décontamination correspond au rapport des activités mesurées avant et après traitement. Plus précisément, on mesure la quantité d'éléments radioactifs présents dans l'oxyde avant et après décontamination. Ce facteur de décontamination étant augmenté, le procédé de dissolution d'oxydes est efficace en un temps plus court que les procédés de l'art antérieur (ici environ 5 heures de phase oxydante par cycle et 1 à 3 cycles de traitement).
En outre, l'acide nitrique est utilisé à des concentrations telles qu'il n'est pas corrosif face aux substrats métalliques. Enfin, l'utilisation de l'acide nitrique évite l'emploi d'agents complexants dont les inconvénients ont été cités ci-dessus.
L'invention sera mieux comprise à la lecture de la description suivante d'un mode de réalisation de l'invention donné à titre illustratif et non limitatif, cette description étant faite en faisant référence au dessin joint, dans lequel :
- la figure est un schéma illustrant les différentes étapes du procédé de dissolution d'oxydes selon l'invention.
Les substrats sur lesquels les dépôts d'oxydes sont susceptibles de s'effectuer, c'est-à-dire les substrats que l'on trouve dans les circuits primaires sont principalement les aciers inox du type 308 L ou 316 L, l'Inconel 600 et les stellites. Ces substrats peuvent être également réalisés en Inconel 82, en bronze, en cuivre, en graphite, en zircaloy 4 et en titane. Enfin, ces substrats peuvent être des joints d'étanchéité.
L'épaisseur des dépôts est généralement voisine de 1 à 2 um mais peut atteindre 8 à 10 um.
Sur la figure, on a représenté un bac de décontamination 1 dans lequel est placé le substrat métallique devant être traité par le procédé selon l'invention. On a également représenté des bacs de stockage 3 et 5, respectivement, des solutions oxydante et réductrice, un filtre 7 et une résine échangeuse de cations 9. De façon avantageuse, on choisira un filtre de 3 um environ pour la phase oxydante et de 0,45 um environ pour la phase réductrice.
On notera que pour des pièces de faibles dimensions, il est possible d'utiliser le bac de décontamination 1. Par contre pour des pièces de grandes dimensions ou des canalisations, on leur appliquera directement les solutions oxydante ou réductrice.
La solution oxydante contient de préférence environ de 0,5 à 1 g/l d'acide nitrique et de 0,7 à 1 g/l de permanganate de potassium ou mieux encore environ 1 g/l d'acide nitrique et 1 g/l de permanganate de potassium. Cette solution oxydante se trouve donc à un pH compris entre 1,8 et 2,3. Cette solution, intialement à un pH compris entre 1,8 et 2, convient principalement pour les substrats en acier inoxydable ou de manière plus générale pour tous les substrats précédemment évoqués et ne contenant pas d'Inconel.
Pour les substrats réalisés en tout ou partie en Inconel, la solution oxydante est alcaline. Elle contient alors environ entre 0,5 et 1 g/l ou mieux 1 g/l de permanganate de potassium et au moins 1 g/l ou mieux environ 1 g/l d'hydroxyde de sodium. Le pH de cette solution est supérieur ou égal à 12.
La solution réductrice contient un réducteur choisi parmi l'un de ceux précités et de l'acide nitrique. Elle contient de préférence environ entre 0,5 et 1 g/l d'acide nitrique et 0,7 à 2 g/l d'acide ascorbique ou mieux encore 1 g/l d'acide nitrique et 1 g/l d'acide ascorbique. Cette solution réductrice présente un pH inférieur à 2.
Au cours d'un cycle de dissolution d'oxyde, la solution oxydante est chauffée à une température comprise entre 80 et 85°C, de préférence 80°C et elle est injectée par une canalisation 11 dans le bac de décontamination 1. L'attaque oxydante dure environ 5 heures durant lesquelles on maintient le pH soit à des valeurs comprises entre 1,8 et 2,3 et la teneur en permanganate entre 0,7 et 1 g/l dans le cas d'une attaque acide, soit à des valeurs supérieures ou égales à 12 dans le cas d'une attaque alcaline, de façon que l'efficacité de la phase oxydante soit maximale.
De façon avantageuse, dans le cas de l'attaque oxydante acide, on maintient le pH entre 1,8 et 2. En effet, le pH influence directement la cinétique de la réaction. Plusle pH est faible et plus la cinétique de la réaction est rapide. Or, les pores du métal à traiter ont tendance à être obturés par le Mnθ2 formé au cours de la réaction. Donc plus la réaction est rapide et plus le métal peut être traité avant que ses pores ne soient obturés. En pratique, on commence généralement l'attaque oxydante à pH 1,8 et on termine à pH 2, puisque le pH a tendance à s'accroître au cours de la réaction.
A l'issue de cette première attaque oxydante, la solution oxydante est récupérée et acheminée par l'intermédiaire d'une canalisation 13 vers le filtre 7, avant d'être réintroduite dans le bac de stockage 3 de solution oxydante par une canalisation 15.
Ensuite, la solution réductrice est chauffée à une température comprise entre 80 et 85°C, de préférence 80°C, puis elle est injectée dans le bac de décontamination 1. Cette attaque réductrice est maintenue pendant environ 5 heures et l'on rajoute éventuellement de l'acide nitrique afin de maintenir le pH toujours inférieur à 2 et de l'acide ascorbique pour maintenir un pouvoir réducteur vis-à-vis du fer III équivalent à une teneur en acide ascorbique comprise entre 0,7 et 1 g/l.
La solution réductrice récupérée après le passage dans le bac de décontamination 1 est acheminée vers le filtre 7 et la résine echangeuse de cations 9 puis vers le bac de stockage 5, par une canalisation 17.
La radioactivité résiduelle du substrat est alors mesurée afin de déterminer si un deuxième cycle est nécessaire ; dans l'affirmative on répète les opérations qui viennent d'être décrites non sans avoir vérifié le pH et les pouvoirs oxydant ou réducteur des solutions utilisées.
Les oxydes présents sur les substrats à traiter sont constitués d'un spinelle composé de fer, de chrome et de nickel. Le spinelle de nickel se solubilisant bien en milieu réducteur, nous ne considérerons que le cas du spinelle de chrome (mélange de chromite de fer et de magnétite).
La réaction chimique d'oxydation en milieu acide, sur un substrat en inox recouvert d'oxydes chargés en chromite de fer, est la suivante :
7MnO4-+5FeCr2O4+26H+----- 7Mn2++5Cr2O7 2-+5Fe3++13H2O (1)
Cette réaction d'oxydation permet de solubiliser le chrome.
La cinétique de cette réaction est favorisée par les ions H+, ce qui justifie la diminution du pH de la phase oxydante du nouveau procédé.
Sur un substrat en Inconel, l'oxydation s'effectue de préférence en milieu alcalin et la réaction chimique est la suivante :
7MnO4-+3FeCr2O4+8OH------- 7MnO2+6CrO4 2-+3FeO3H2-+H2O (2)
Pour ces deux types d'oxydation, on a formation de Mnθ2, soit directement en milieu alcalin, soit indirectement en milieu acide, à partir de l'oxydation de l'eau catalysée par les ions Mn2+, selon la réaction suivante :
MnO4-+H+---- MnO2+3/4O2+1/2H2O (3)
Le Mnθ2 formé a tendance à se déposer sur les parois et à limiter dans le temps l'efficacité de la phase oxydante. Il est donc nécessaire de démarrer l'attaque oxydante à pH faible de façon à avoir une attaque rapidement efficace et à pouvoir limiter à environ 5 ou 6 heures la durée de cette phase. Dans l'art antérieur, les phases oxydantes duraient environ 15 heures, car la phase oxydante était moins efficace au début de l'attaque.
En phase réductrice, on observe une réduction du spinelle de surface ne contenant plus de chromite de fer (FeCr2O4) et également d'une partie de celui situé en profondeur qui en contient encore à un faible pourcentage, c'est dans ce cas que l'abaissement du pH de la phase réductrice, préconisé dans la présente invention prend tout son intérêt, permettant la solubilisation du chrome résiduel.
La décontamination des solutions oxydantes et réductrices s'effectue au moyen d'une résine cationique 9. La phase oxydante permet de récupérer environ 10% des matières radioactives tandis que la phase réductrice permet d'en récupérer environ 90%. En conséquence, c'est surtout cette dernière solution qui pourra être décontaminée sur la résine 9, éventuellement après chaque cycle. La résine echangeuse de cations permet également d'abaisser le pH. La solution oxydante ne sera décontaminée qu'après lé dernier cycle sur une résine echangeuse de cations.
On notera que pour des raisons économiques, les résines 9 et 18 sont généralement formées par une seule et même résine.
Lors du dernier cycle et après le passage des solutions oxydante et réductrice sur les résines échangeuses de cations 9 et 18, on a retenu sur ces résines les matières radioactives et les cations. Les solutions oxydante et réductrice sont alors extraites de leur bac de stockage 3 et 5 respectif et acheminées par des canalisations 19 vers un bac de mélange 21. Après traitement du mélange sur résine echangeuse de cations ou évaporateur, la solution finale obtenue n'est plus radioactive et présente une faible DCO conforme aux normes en vigueur en matière de pollution, ce qui permet son élimination vers les installations de rejet du site.
Par ailleurs, les résines échangeuses de cations 9 et 18 sur lesquelles sont concentrés les éléments radioactifs sont soit transférées vers les réservoirs de stockage de résines usées du site, puis traitées par le procédé PRECED (marque déposée), soit conditionnées dans des fûts appropriés et traitées par le procédé COMET (marque déposée). Ces deux procédés consistent à mélanger les résines échangeuses d'ions à un polymère qui une fois solidifié assure la stabilité du mélange.
Il est également possible de traiter les solutions après leur mélange par les installations d'évaporation du site. On obtient alors un concentrât de sels qui une fois séchés sont stockés dans des fûts en béton.
Divers essais ont été effectués afin de prouver l'efficacité du procédé selon l'invention.
Essai 1 : mesures du facteur de décontamination (Fd) :
On a mesuré le facteur de décontamination Fd de plusieurs substrats du type acier inoxydable ou Inconel, en effectuant des mesures de la radioactivité avant et après un traitement donné. Ces traitements ont été effectués avec diverses solutions oxydante et réductrice, à des concentrations différentes et à des pH différents. Les résultats sont donnés dans le tableau 1 ci-dessous.
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
AA = acide ascorbique
AC = acide citrique monohydraté
Les essais 3, 4, 13 et 14 ont été réalisés avec des substrats recouverts de dépôts importants. Les essais 13 et 14 correspondent au procédé décrit dans le document EP 406 098 où le pH des solutions oxydante et réductrice était élevé.
* Les essais 5 et 12 correspondent au troisième cycle de décontamination d'échantillons en Inconel dont
les deux premiers cycles ont été réalisés par le procédé décrit dans le document EP 406 098.
Au vu des résultats de ce tableau 1, on constate premièrement que la valeur du pH de la phase réductrice est extrêmement importante puisqu'à chaque fois que le pH est de l'ordre de 2,8, (voir notamment les essais 9 à 14), les résultats de facteur de décontamination sont faibles, c'est-à-dire inférieurs à 2,7. Au contraire, lorsqu'on utilise la solution réductrice selon l'invention et que l'on maintient le pH à des valeurs voisines de 2, voire inférieures à 2, les valeurs du facteur de décontamination sont nettement supérieures, c'est-à-dire qu'elles sont comprises entre 4,6 et 15 pour les essais 1 à 8.
De plus, on constate que lorsque le pH de la phase oxydante est en outre, maintenu à des valeurs comprises entre 2 et 2,3, (ce qui est le cas des deux essais 3 et 4), le facteur de décontamination est meilleur. Ce facteur de décontamination est encore meilleur lorsque le pH de la phase oxydante est compris entre 1,8 et 2, comme cela est le cas des deux essais 1 et 2.
Ces résultats prouvent la nette amélioration du procédé de dissolution des oxydes selon l'invention comparés à ceux de l'art antérieur.
Essai 2 : mesures des quantités de chrome et de fer en phase réductrice :
Après avoir effectué un cycle de traitement en utilisant des solutions oxydante et réductrice variées avec divers concentrations en réactif et pH, sur des substrats en acier inoxydable de 3,4 cm2 et de même provenance, on a mesuré les teneurs en Cr et en Fer dissous dans la solution réductrice. On a également mesuré le facteur de décontamination. Les résultats obtenus sont donnés dans le tableau 2 ci-dessous.
Figure imgf000019_0001
AA : acide ascorbique
AC : acide citrique monohydraté
Les essais numéros 4 et 5 correspondant au procédé selon l'invention montrent que le rapport Cr/fer est nettement augmenté par rapport au procédé de l'art antérieur. Ceci signifie que l'abaissement du pH dans la phase réductrice a permis de solubiliser des oxydes encore chargés en chrome présents en phase réductrice et qui ne l'auraient pas été à un pH plus élevé.
Essai 3 : mesures de corrosion du substrat :
Enfin, on a effectué des tests sur un acier inoxydable, de norme 304 L, afin d'étudier l'effet de corrosion de diverses solutions oxydante et réductrice utilisées, et notamment celles selon l'invention. Les résultats sont donnés dans le tableau 3 ci-dessous.
Figure imgf000021_0001
Les essais numéros 5 et 6 correspondent à ceux effectués par le procédé selon l'invention. On constate que la perte d'épaisseur mesurée en microns, au bout de 5 heures est très faible comparé à ce que l'on pouvait obtenir dans les essais 3 et 4 correspondant au procédé de l'art antérieur décrit dans la demande de brevet EP 0 406 098. Cette tendance se confirme également après 20 heures puisque la perte d'épaisseur n'évolue pratiquement pas.
L'abaissement du pH de la phase réductrice n'a donc pas augmenté la corrosion des substrats.
Attaque du substrat (inox en Inconel) : inocuité due à l'acide nitrique en milieu réducteur.
La teneur en chrome de l'inox et de l'Inconel étant supérieure à 12%, en milieu aqueux une couche passive se crée, formée d'un mélange d'oxydes et d'hydroxydes de fer et de chrome, avec des liaisons sous forme de pont.
Les composés ainsi créés sont relativement stables et protecteurs vis-à-vis des ions NO3- et H+.
Par contre, la présence d'autres acides générant des ions tels que SO4 2, Cl- ou C2O4 2- pourrait détruire cette couche par formation de complexes solubles d'où l'attaque généralisée du substrat par les ions H+.
La corrosion du métal de base en phase réductrice dépend toutefois de l'oxydation préalable. Dans tous les cas, elle reste très faible (valeur maxi de 0,1 um en 20h) et n'évolue de façon significative que pendant les premières heures.

Claims

REVENDICATIONS
1. Procédé de dissolution d'oxydes déposés sur un substrat métallique, caractérisé en ce qu'il comprend au moins un cycle consistant à :
a) effectuer une attaque oxydante à température comprise entre 80 et 85°C, à l'aide d'une solution contenant un anion de permanganate et de l'acide nitrique, à un pH compris 1,8 et 2,3, ce pH étant maintenu pendant toute la durée de l'attaque oxydante, b) effectuer une attaque réductrice au moyen d'une solution comprenant un réducteur et de l'acide nitrique, à un pH inférieur à 2 et à une température comprise entre 80 et 85°C.
2. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce que l'attaque oxydante est réalisée à un pH compris entre 1,8 et 2.
3. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce que le substrat métallique traité comprend au moins une partie réalisée en Inconel, et en ce que l'étape a) consiste à effectuer une attaque oxydante à l'aide d'une solution comprenant un anion permanganate et de l'hydroxyde de sodium, à un pH supérieur ou égal à 12, ce pH étant maintenu pendant toute la durée de l'attaque oxydante.
4. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce que le réducteur est l'acide ascorbique.
5. Procédé de dissolution d'oxydes selon la revendication 1 ou 3, caractérisé en ce que l'anion permanganate est introduit sous forme de permanganate de potassium.
6. Procédé de dissolution d'oxydes selon les revendications 1 et 5, caractérisé en ce que la solution oxydante contient environ entre 0,5 et 1 g/l d'acide nitrique et entre 0,7 et 1 g/l de permanganate de potassium.
7. Procédé de dissolution d'oxydes selon la revendication 6, caractérisé en ce que la solution oxydante contient environ 1 g/l d'acide nitrique et 1 g/l de permanganate de potassium.
8. Procédé de dissolution d'oxydes selon les revendications 3 et 5, caractérisé en ce que la solution oxydante contient environ entre 0,5 et 1 g/l de permanganate de potassium et au moins 1 g/l d'hydroxyde de sodium.
9. Procédé de dissolution d'oxydes selon la revendication 8, caractérisé en ce que la solution oxydante contient environ 1 g/l de permanganate de potassium et 1 g/l d'hydroxyde de sodium.
10. Procédé de dissolution d'oxydes selon la revendication 4, caractérisé en ce que la solution réductrice contient environ 0,5 à 1 g/l d'acide nitrique et 0,7 à 2 g/l d'acide ascorbique.
11. Procédé de dissolution d'oxydes selon la revendication 10, caractérisé en ce que la solution réductrice contient environ 1 g/l d'acide nitrique et 1 g/l d'acide ascorbique.
12. Procédé de dissolution d'oxydes selon la revendication 1, 2 ou 3, caractérisé en ce que les durées respectives de l'attaque oxydante et de l'attaque réductrice sont d'environ 5 heures.
13. Procédé de dissolution d'oxydes selon la revendication 1, 2 ou 3, caractérisé en ce que la température des phases oxydante et réductrice est voisine de 80°C.
14. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce qu'avant un nouveau cycle, la solution réductrice déjà utilisée est traitée séparément sur une résine echangeuse de cations (9), afin de recueillir sur celle-ci les éléments radioactifs et d'abaisser le pH.
15. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce qu'à l'issue du dernier cycle de traitement, les solutions oxydante et réductrice sont mélangées et traitées sur évaporateur.
16. Procédé de dissolution d'oxydes selon la revendication 1, caractérisé en ce qu'à l'issue du dernier cycle de traitement, les solutions oxydante et réductrice sont mélangées et traitées sur une résine echangeuse de cations.
PCT/FR1993/001298 1992-12-24 1993-12-23 Procede de dissolution d'oxydes deposes sur un substrat metallique WO1994015001A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94902858A EP0675973B1 (fr) 1992-12-24 1993-12-23 Procede de dissolution d'oxydes deposes sur un substrat metallique
KR1019950702622A KR100313971B1 (ko) 1992-12-24 1993-12-23 금속기판상에점착된산화물을용해하는방법
DE69312966T DE69312966T2 (de) 1992-12-24 1993-12-23 Verfahren zum auflösung von auf einem metallsubstrat aufgeschiedenen oxyde

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR92/15722 1992-12-24
FR9215722A FR2699936B1 (fr) 1992-12-24 1992-12-24 Procédé de dissolution d'oxydes déposés sur un substrat métallique.
CN94101670A CN1039037C (zh) 1992-12-24 1994-02-05 沉积在金属基体的氧化物的溶解方法

Publications (2)

Publication Number Publication Date
WO1994015001A2 true WO1994015001A2 (fr) 1994-07-07
WO1994015001A3 WO1994015001A3 (fr) 1994-10-13

Family

ID=36950097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/001298 WO1994015001A2 (fr) 1992-12-24 1993-12-23 Procede de dissolution d'oxydes deposes sur un substrat metallique

Country Status (6)

Country Link
EP (1) EP0675973B1 (fr)
CN (1) CN1039037C (fr)
DE (1) DE69312966T2 (fr)
ES (1) ES2107798T3 (fr)
FR (1) FR2699936B1 (fr)
WO (1) WO1994015001A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406299B (zh) * 2005-11-29 2013-08-21 Areva Gmbh 去除核能設施之組件表面或系統表面上的氧化物層的方法
US9502146B2 (en) 2013-03-08 2016-11-22 Horst-Otto Bertholdt Process for dissolving an oxide layer

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818772C2 (de) * 1998-04-27 2000-05-31 Siemens Ag Verfahren zum Abbau der Radioaktivität eines Metallteiles
US6454870B1 (en) * 2001-11-26 2002-09-24 General Electric Co. Chemical removal of a chromium oxide coating from an article
FR2850673B1 (fr) * 2003-02-04 2006-09-08 Electricite De France Procede de dissolution d'oxydes deposes sur un substrat metallique stellite
EP2090676A1 (fr) * 2008-02-01 2009-08-19 Ateco Services AG Procédé destiné l'enlèvement de couches et de dépôts
US8192550B2 (en) 2008-02-01 2012-06-05 Ateco Services Ag Use of an aqueous neutral cleaning solution and method for removing rouging from stainless steel surfaces
DE102009047524A1 (de) * 2009-12-04 2011-06-09 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination
WO2013041595A1 (fr) 2011-09-20 2013-03-28 Nis Ingenieurgesellschaft Mbh Procédé de dégradation d'une couche d'oxyde
DE102012204415A1 (de) * 2012-03-20 2013-09-26 Areva Gmbh Verfahren zur Entfernung radioaktiver Verunreinigungen aus Abwässern
CN103007720A (zh) * 2012-11-16 2013-04-03 云南钛业股份有限公司 一种酸洗钛卷时减少酸雾中氮氧化物含量的方法
DE102013100933B3 (de) * 2013-01-30 2014-03-27 Areva Gmbh Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors
HUE047725T2 (hu) 2015-02-05 2020-05-28 Framatome Gmbh Eljárás fém felületek szennyezõdés-mentesítésére nukleáris reaktor hûtõrendszerében
ES2795002T3 (es) * 2017-01-19 2020-11-20 Framatome Gmbh Procedimiento para descontaminar superficies metálicas de una instalación nuclear
KR102378652B1 (ko) 2017-02-14 2022-03-28 짐펠캄프 니스 인제니어게젤샤프트 엠베하 방사성핵종 함유 산화물 층의 분해 방법
CN107170503B (zh) * 2017-06-02 2019-04-02 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法
CN109207930A (zh) * 2018-08-31 2019-01-15 江苏鼎启科技有限公司 一种金属制品表面处理方法
DE102019135684A1 (de) * 2019-12-23 2021-06-24 Siempelkamp NIS Ingenieurgesellschaft mbH Verfahren und Anordnung zum Reinigen von Flüssigkeit
CN112700900A (zh) * 2020-12-10 2021-04-23 中国辐射防护研究院 一种注锌反应堆部件放射性沉积氧化物的清洗方法
CN113737191A (zh) * 2021-08-19 2021-12-03 中国辐射防护研究院 一种低碳马氏体镍铬不锈钢的去污方法
EP4269657A1 (fr) * 2022-04-29 2023-11-01 Technochim SA Procédé de dissolution d'oxydes métalliques à partir d'un équipement de sciences de la vie

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000829A (en) * 1958-06-12 1961-09-19 Purex Corp Ltd Composition and process for descaling metal parts
US3025189A (en) * 1958-12-10 1962-03-13 Purex Corp Ltd Composition and process for removing heat scale from metal parts
US3080323A (en) * 1959-04-07 1963-03-05 Purex Corp Ltd Composition for radioactive decontamination and descaling of cobalt alloys
GB1130068A (en) * 1966-04-28 1968-10-09 Atomic Energy Commission Method of and composition for decontaminating nuclear reactors
DD108843A1 (fr) * 1973-11-26 1974-10-05
EP0071336A1 (fr) * 1981-06-17 1983-02-09 Central Electricity Generating Board Procédé pour la dissolution chimique des dépôts d'oxyde
FR2590716A1 (fr) * 1985-11-26 1987-05-29 Electricite De France Procede de decontamination de parois de reacteurs nucleaires, en particulier des parois du circuit primaire des reacteurs nucleaires a circuit d'eau pressurisee
EP0242449A1 (fr) * 1986-01-30 1987-10-28 KOLEDA HOLDING S.A., société anonyme Procédé pour décontaminer des matériaux contaminés par la radioactivité
FR2644618A1 (fr) * 1989-03-14 1990-09-21 Commissariat Energie Atomique Procede de decontamination de surfaces metalliques, notamment de parties constitutives d'un reacteur nucleaire a eau sous pression, et solutions de decontamination utilisees dans ce procede
EP0406098A1 (fr) * 1989-06-27 1991-01-02 Electricite De France Procédé de dissolution d'oxyde déposé sur un substrat métallique et son application à la décontamination
WO1991017124A1 (fr) * 1990-04-30 1991-11-14 Arch Development Corporation Nouvelles formulations de dissolution d'oxydes de fer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000829A (en) * 1958-06-12 1961-09-19 Purex Corp Ltd Composition and process for descaling metal parts
US3025189A (en) * 1958-12-10 1962-03-13 Purex Corp Ltd Composition and process for removing heat scale from metal parts
US3080323A (en) * 1959-04-07 1963-03-05 Purex Corp Ltd Composition for radioactive decontamination and descaling of cobalt alloys
GB1130068A (en) * 1966-04-28 1968-10-09 Atomic Energy Commission Method of and composition for decontaminating nuclear reactors
DD108843A1 (fr) * 1973-11-26 1974-10-05
EP0071336A1 (fr) * 1981-06-17 1983-02-09 Central Electricity Generating Board Procédé pour la dissolution chimique des dépôts d'oxyde
FR2590716A1 (fr) * 1985-11-26 1987-05-29 Electricite De France Procede de decontamination de parois de reacteurs nucleaires, en particulier des parois du circuit primaire des reacteurs nucleaires a circuit d'eau pressurisee
EP0242449A1 (fr) * 1986-01-30 1987-10-28 KOLEDA HOLDING S.A., société anonyme Procédé pour décontaminer des matériaux contaminés par la radioactivité
FR2644618A1 (fr) * 1989-03-14 1990-09-21 Commissariat Energie Atomique Procede de decontamination de surfaces metalliques, notamment de parties constitutives d'un reacteur nucleaire a eau sous pression, et solutions de decontamination utilisees dans ce procede
EP0406098A1 (fr) * 1989-06-27 1991-01-02 Electricite De France Procédé de dissolution d'oxyde déposé sur un substrat métallique et son application à la décontamination
WO1991017124A1 (fr) * 1990-04-30 1991-11-14 Arch Development Corporation Nouvelles formulations de dissolution d'oxydes de fer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406299B (zh) * 2005-11-29 2013-08-21 Areva Gmbh 去除核能設施之組件表面或系統表面上的氧化物層的方法
US8608861B2 (en) 2005-11-29 2013-12-17 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
US9502146B2 (en) 2013-03-08 2016-11-22 Horst-Otto Bertholdt Process for dissolving an oxide layer

Also Published As

Publication number Publication date
FR2699936A1 (fr) 1994-07-01
EP0675973B1 (fr) 1997-08-06
WO1994015001A3 (fr) 1994-10-13
DE69312966D1 (de) 1997-09-11
ES2107798T3 (es) 1997-12-01
DE69312966T2 (de) 1998-02-19
CN1039037C (zh) 1998-07-08
FR2699936B1 (fr) 1995-01-27
EP0675973A1 (fr) 1995-10-11
CN1106472A (zh) 1995-08-09

Similar Documents

Publication Publication Date Title
EP0675973B1 (fr) Procede de dissolution d'oxydes deposes sur un substrat metallique
EP0928489A1 (fr) Gel organomineral de decontamination et son utilisation pour la decontamination de surfaces
FR2547450A1 (fr) Procede et appareillage pour le perfectionnement dans ou en ce qui concerne la decontamination de surfaces metalliques dans des reacteurs de centrale nucleaire et solution oxydante utilisee
JP4876190B2 (ja) 原子力施設の部品又は系の酸化物層を含む表面を汚染除去する方法
JPH0145600B2 (fr)
JPH02503600A (ja) 表面の汚染除去方法
JP5574828B2 (ja) 放射性物質付着抑制方法および装置
FR2471655A1 (fr) Reactif et procede pour la decontamination de systemes radioactifs
EP0406098B1 (fr) Procédé de dissolution d'oxyde déposé sur un substrat métallique et son application à la décontamination
CA1224123A (fr) Oxydation a l'hypohalite pour la decontamination des reacteurs nucleaires
EP1344228B1 (fr) Procede de dissolution des solides formes dans une installation nucleaire
CA2350214C (fr) Procede de decontamination d'une surface d'un element
WO1990008385A1 (fr) Procede de decontamination radioactive de surface metallique, notamment de portions de circuits primaires de reacteurs nucleaires refroidis a l'eau
FR2590716A1 (fr) Procede de decontamination de parois de reacteurs nucleaires, en particulier des parois du circuit primaire des reacteurs nucleaires a circuit d'eau pressurisee
EP2352864B1 (fr) Procédé et dispositif de décontamination d'une surface métallique
EP0727243B1 (fr) Mousse de décontamination à l'ozone, et procédé de décontamination utilisant cette mousse
KR100313971B1 (ko) 금속기판상에점착된산화물을용해하는방법
FR2861890A1 (fr) Procede de decontamination radioactive de surface
FR2600203A1 (fr) Procede pour la decontamination des materiaux a contamination radioactive
JP3088826B2 (ja) 放射性廃棄物の混酸による除染法
FR2850673A1 (fr) Procede de dissolution d'oxydes deposes sur un substrat metallique stellite
FR2820417A1 (fr) Procede de dissolution et de decontamination
JP2013088213A (ja) 化学除染方法及びその装置
EP1393326A1 (fr) Procede de decontamination ou de prevention de la contamination de surfaces par un mecanisme d'echange.
FR2873848A1 (fr) Procede de decontamination d'objets en plomb

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1994902858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019950702622

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1994902858

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994902858

Country of ref document: EP