WO1992022934A1 - Electrode au nickel pour piles alcalines - Google Patents

Electrode au nickel pour piles alcalines Download PDF

Info

Publication number
WO1992022934A1
WO1992022934A1 PCT/JP1992/000740 JP9200740W WO9222934A1 WO 1992022934 A1 WO1992022934 A1 WO 1992022934A1 JP 9200740 W JP9200740 W JP 9200740W WO 9222934 A1 WO9222934 A1 WO 9222934A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cobalt
zinc
weight
nickel
Prior art date
Application number
PCT/JP1992/000740
Other languages
English (en)
French (fr)
Inventor
Masaharu Watada
Masahiko Oshitani
Masuhiro Ohnishi
Original Assignee
Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3170587A external-priority patent/JPH04368777A/ja
Priority claimed from JP3309960A external-priority patent/JPH05121074A/ja
Application filed by Yuasa Corporation filed Critical Yuasa Corporation
Priority to DE69223116T priority Critical patent/DE69223116T2/de
Priority to EP92911246A priority patent/EP0544011B1/en
Priority to US07/975,579 priority patent/US5366831A/en
Publication of WO1992022934A1 publication Critical patent/WO1992022934A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel electrode used for an alkaline storage battery, for example, a nickel-cadmium storage battery, a nickel metal hydride storage battery, and the like.
  • a Nigel electrode directly filled with nickel hydroxide powder which is an active material, includes a paste electrode in which nickel hydroxide powder is pasted and filled into a porous substrate made of nickel; There are a button-type electrode and a pocket-type electrode in which a nigger oxide powder is wrapped with a current collector.
  • a porous metal substrate, which is a current collector, made of an alkali-resistant metal is relatively expensive. .
  • the pasted nickel electrode is manufactured by forming nickel hydroxide powder in a base and directly filling the porous substrate made of Nigel. Therefore, in order to obtain a paste-type nickel electrode having a high energy density, the porosity of the electrode substrate and the density of the Nigel hydroxide powder as an active material may be increased.
  • Nigel hydroxide powder whose internal pore volume is controlled to 0.1 m1Zg or less has been developed. This nickel hydroxide powder has a bulk density of as high as about 2 gZ m 1, so it can be filled by about 20% more than before.
  • One or more past-type Nigel electrodes can be manufactured and applied to storage batteries with high energy density.
  • nickel hydroxide powder whose internal pore volume is controlled to 0.1 m 1 Zg or less has a feature that it is obtained as a spherical powder due to its production process. For this reason, in the filled state, as shown in FIG. 7, gaps were formed between the powders, and this point was a negative factor in increasing the energy density.
  • the first invention of the present application is a pasted nickel electrode that can prevent electrode swelling without causing environmental pollution and has excellent charge efficiency even in a wide temperature range, particularly at high temperatures. It is an object of the present invention to provide a Nigel electrode for an alkaline storage battery.
  • the second invention of the present application provides a nickel electrode for an alkaline storage battery, in which the gap between the filled nickel hydroxide powders 5 is reduced, whereby the nickel hydroxide powder is more densely packed. The purpose is to do so.
  • the first invention of the present application is a nickel electrode using nickel hydroxide powder whose internal pore volume is controlled to 0.1 m1 g or less as an active material.
  • a nickel electrode for an alkaline storage battery characterized by containing an element and cobalt in a solid solution state.
  • the Group II element only zinc, or zinc and one or more other elements are used.
  • the content of the group II element is preferably 1% by weight or more in terms of zinc 5 alone, the cobalt content is preferably 2% by weight or more, and the content of the group II element and the cobalt is preferably not less than 2% by weight.
  • the sum is preferably not more than 10% by weight.
  • the present inventor has proposed that the electrode swelling of a Nigel electrode using a hydroxylated Nigel powder whose density has been controlled by controlling the internal pore volume is caused by low-density ⁇ -type oxy-water produced during repeated charge and discharge. Attributable to nickel oxide (r-NiOOH), and that addition of cadmium in a solid solution suppresses the formation of ⁇ -NiOH.
  • group II elements such as magnesium have the same effect as cadmium. That is, in the first invention of the present application, electrode swelling is suppressed by the group II element contained in a solid solution state. In particular, when zinc is contained in an amount of 1% by weight or more, generation of 7-N ⁇ 00 ⁇ is effectively suppressed.
  • the group II element contained in a solid solution state acts to preciously shift the oxygen generation potential at the end of charging.
  • the nickel electrode using the densified hydroxide nigel powder is charged at a high temperature, the oxidation reaction of the active material and the oxygen generation reaction occur simultaneously, that is, the difference between the oxygen generation potential and the oxidation potential. Since the oxygen overvoltage is small, the oxygen generation reaction becomes dominant and the charging efficiency decreases.
  • cobalt is present in a solid solution state in the active material, the charge oxidation potential shifts low, and thus the oxygen overvoltage increases and the charge efficiency at high temperatures improves.
  • the generation of 7—Ni0H is suppressed by the group II element, so that the electrode swelling is prevented, and the oxygen generation potential of the active material is increased by the group II element.
  • Shift to Cobalt shifts the charge oxidation potential of the active material to a low level, so that the synergistic effect increases the oxygen overvoltage as compared to the case of using a Group 11 element / cobalt alone, and improves the charging efficiency at high temperatures. Accordingly, a pollution-free and high-performance paste-type nickel electrode, that is, a Nigel electrode for an alkaline storage battery can be obtained.
  • the second invention of the present application is a nickel electrode using a digger hydroxide powder whose internal pore volume is controlled to 0.1 m1 or less as an active material, the nickel electrode having a diameter of 20 to 40 m.
  • the pulverized nickel particles may be used together with the unpulverized nickel particles.
  • FIG. 1 is a diagram showing the pore size distribution of the nickel hydroxide powder used in Example 1
  • FIG. 2 is a relationship between the zinc content and the production rate of Ni-NiH in Example 1.
  • Fig. 3 shows the relationship between the cobalt content and the oxygen overvoltage in Example 1
  • Fig. 4 shows the relationship between the cobalt content and the charging efficiency at a high temperature of 45 ° C in Example 1.
  • FIG. 5 is a diagram showing the 5 capacity characteristics of Example 1 and its comparative example.
  • FIG. 6 is a diagram showing the zinc and cobalt contents and the production rate of 7—Ni0H in Example 2. Diagram showing the relationship with FIG.
  • FIG. 7 is a schematic view showing a state in which spherical densified hydroxygel particles having been densified by controlling the internal pore volume are directly filled
  • FIG. 8 is a diagram showing the state of the nickel hydroxide powder filling in Example 3. It is a schematic diagram showing a state.
  • a digger hydroxide powder containing sub-forceps and cobalt in a solid solution state was obtained as follows. That is, after adding ammonium nitrate to an aqueous solution obtained by adding predetermined amounts of zinc nitrate and cobalt nitrate to niger nitrate, the aqueous solution of sodium hydroxide is vigorously stirred while being dripped, and complex ions are removed. After decomposition, nickel hydroxide particles containing zinc and cobalt in a solid solution state were gradually precipitated and grown.
  • FIG. 1 is a view showing the pore size distribution of the Nigel hydroxide powder obtained as described above.
  • the horizontal axis shows the pore radius (A), and the vertical axis shows the pore distribution.
  • the nickel hydroxide powder contains 5% by weight of zinc and 5% by weight of cobalt in a solid solution state.
  • the internal pore volume of this hydroxy nigel powder was 0.02 ml / g, indicating that the powder had a high density controlled to 0.1 m 1 Zg or less.
  • the bulk density was 2.0 gZm1.
  • dumbbell is 1% by weight or more
  • cobalt is 2% by weight or more
  • the sum of zinc and cobalt is 1 °% by weight or less.
  • a small amount of cobalt monoxide powder is mixed with the nickel hydroxide powder obtained as described above, and The resulting aqueous solution was added to form a paste, and this fixed amount was filled in a substrate made of a porous nickel fiber to produce a paste-type nickel electrode of this example.
  • the electrode was charged and discharged in an electrolyte solution of a potassium hydroxide aqueous solution or a lithium hydroxide aqueous solution with a cadmium negative electrode as a counter electrode, and the degree of electrode swelling, charging efficiency at high temperatures, etc. were measured. .
  • FIG. 2 is a graph showing the relationship between the zinc content (% by weight) and the production rate (%) of 7—NiOH.
  • Y 1 indicates the case where only cobalt is contained at 5% by weight
  • Z 1 indicates the case where zinc contains 5% by weight and cobalt is 5% by weight, that is, this example is shown
  • X 1 contains only zinc.
  • the generation rate of 7-NiOOH was determined by X-ray analysis after charging the nickel electrode at a high current density of 1C. As can be seen from X1, the formation rate of Ni0H decreases in proportion to the zinc content.
  • the zinc content is 1% by weight or more from FIG. It is preferred that The same applies to the case where zinc and cobalt are contained, as in the case of X1 and Z1 forces.
  • Y1 when only cobalt is contained, when the content is 20% by weight or less, the generation rate of 7-NiOOH is reduced, that is, a-Ni0. No effect of suppressing the generation of H was observed.
  • Figure 3 shows the relationship between cobalt content (% by weight) and oxygen overvoltage 7? (MV).
  • Z 2 contains zinc and cobalt, that is, this embodiment is shown. However, zinc The content is constant at 5% by weight.
  • Y2 shows the case where only cobalt is contained at 5% by weight, and ⁇ 2 shows the case where zinc and cobalt are not contained, that is, the case of only nickel.
  • ⁇ 2 when the conoult content is 0, that is, ⁇ 2 ′ indicates a platform containing only 5% by weight of zinc.
  • the measurement conditions were as follows: temperature: 20; charging: 0.1 lC xl 5 h.
  • Figure 4 shows the relationship between the cobalt content (% by weight) and the charging efficiency (%) at a high temperature of 45 ° C.
  • Z 3 indicates a platform containing zinc and cobalt, that is, the present embodiment.
  • the zinc content is constant at 5% by weight.
  • the measurement conditions were as follows: temperature: 45 ° C, charge: 0.1 CX 15 h, discharge: 0.2 C.
  • the charging efficiency increases in proportion to the cobalt content. This is considered to be because the charging effect was increased by the increase in the oxygen overvoltage shown in Fig. 3.
  • FIG. 4 if the cobalt content is 2% by weight or more, a practically satisfactory charging efficiency of 80% or more can be obtained.
  • the content of cobalt is preferably set to 2% by weight or more. However, as the cobalt content increases, the discharge voltage decreases, so the cobalt content is preferably set to 10% by weight or less.
  • FIG. 5 is a diagram showing the capacitance characteristics of the nickel electrodes of the present example and the comparative example. The horizontal axis is the charge / discharge temperature (in), and the vertical axis is the battery capacity
  • Z 4 shows the case of containing 5% by weight of zinc and 5% by weight of cobalt, ie, this example, X 4 shows a comparative example containing only 5% by weight of zinc, and Y 4 shows 5% by weight of cobalt alone.
  • U4 indicates a comparative example containing 5% by weight of zinc and lithium hydroxide added to the electrolyte.
  • the battery type is KR-AA, and the measurement conditions are 0.3 C x 5 h for charging and 1 C for discharging. In the present embodiment shown in Z4, 5 to 45. It shows stable capacitance characteristics with almost no fluctuation in the temperature range of C.
  • the contained zinc and cobalt do not themselves act as active materials, so that the higher the content, the lower the capacity per unit active material weight. Become. Therefore, from a practical point of view, it is preferable that the sum of the contents of zinc and cobalt be 1% by weight or less.
  • digger hydroxide powder containing zinc, balium and cobalt in a solid solution state was obtained in the same manner as in Example 1. That is, after adding ammonium nitrate to a water solution obtained by adding a predetermined amount of zinc nitrate, barium nitrate, and cobalt nitrate to nickel nitrate, vigorously stirring while dripping an aqueous sodium hydroxide solution, Was decomposed, and nickel hydroxide particles containing zinc, barium, and cobalt in a solid solution state were gradually precipitated and grown.
  • a paste-type nickel electrode of this example was produced in the same manner as in Example 1. This electrode is charged and discharged in an electrolyte, which is a potassium hydroxide aqueous solution or an aqueous lithium hydroxide solution, with the negative electrode of the power drum as a counter electrode. was measured.
  • an electrolyte which is a potassium hydroxide aqueous solution or an aqueous lithium hydroxide solution
  • FIG. 6 is a graph showing the relationship between the content of zinc and barrier (% by weight) and the production rate (%) of ferrous NiOOH.
  • the vertical axis indicates the production rate of NiOOH, and 3 y in the figure indicates the type of NiOOH.
  • the cobalt content is constant at 5% by weight.
  • V 0 contains no zinc and barium, that is, contains only cobalt
  • V 1 contains zinc only
  • V 2 contains only barrier
  • V 3 Indicates the case where zinc and balium are contained, that is, this example is shown.
  • zinc and barium are contained as hydroxides.
  • W1 indicates the end of charge and W2 indicates the end of discharge.
  • V 2 vs V 3 Thus, when both zinc and barium are contained, the generation rate of 7-NiOOH is lower than when both are contained alone.
  • a nickel electrode having a thickness of 0.7 mm in this example was produced.
  • the nickel electrode was combined with a paste-type cadmium electrode as a counter electrode, and an aqueous solution of potassium hydroxide having a specific gravity of 1.26 was used as the electrolyte, and a storage battery having a flowing electrolyte was prototyped.
  • nickel electrodes were prepared in the same manner by using nickel hydroxide powder before pulverization and nickel hydroxide powder having a diameter of 4 to 8 m. Furthermore, a storage battery was prototyped in the same manner using the nickel electrode of the comparative example.
  • Table 1 shows the discharge capacity of each storage battery when discharged at 0.2 CA.
  • A is a storage battery using the nickel electrode of the present example
  • B is a storage battery using the Nigel electrode of the comparative example using pulverized Nigel hydroxide powder
  • C is originally 4 to 8 m in diameter.
  • This is a storage battery using a Nigger electrode of a comparative example using the Nigger hydroxide powder.
  • Table 2 shows the change in active material utilization rate due to high-rate discharge.
  • the discharge capacity of the storage battery A is larger than that of the storage battery B, and is the same as that of the storage battery C.
  • storage battery A has a higher active material utilization rate than the storage battery. is there. Therefore, storage battery A is superior to storage battery B in discharge capacity and active material utilization. That is, in the nickel electrode of the present embodiment, which is obtained by pulverizing spherical nickel hydroxide particles having a diameter of 20 to 40 m, the amount of the active material to be added increases, and the discharge capacity per unit volume is improved. Moreover, no deterioration of the high rate discharge characteristics is observed.
  • cobalt monoxide is used as an additive.
  • a—Co (OH) 2 and ⁇ -Co (OH) 9 may be used, and a similar effect is obtained. Show. Similar effects were observed when metal cobalt powder was used, although the effect was smaller than when divalent cobalt compound powder was used.
  • spherical digger hydroxide particles having a diameter of 2 ° to 4 ° m are used after being pulverized.
  • a high-capacity Nigel electrode for a rechargeable battery can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
アル力 リ蓄電池用ニッケル電極
技術分野
本発明は、 アルカ リ蓄電池、 例えばニッケル · カ ドミ ウム 蓄電池、 ニッケル ♦金属水素化物蓄電池等、 に用いられる二 ッケル電極に関するものである。
背景技術
活物質である水酸化二ッケル粉末を直接充填してなるニッ ゲル電極と しては、 水酸化ニッケル粉末をペース ト状にして ニッケルからなる多孔性基板に充填するペー ス ト式電極と、 水酸化二ッゲル粉末を集電体で包み込むボタン型電極及びポ ケッ ト型電極とがある。 また、 ペー ス ト式電極では、 集電体 である耐アルカ リ性金属からなる多孔性基板が比較的高価で あることから、 芯金を集電体と して用いたものが研究されて いる。
一方、 近年のポータブルエレク トロニクス機器の小型軽量 化に伴って、 その携帯電源である電池にも高エネルギー密度 化が求められている。 そして、 その要求に対処するために、 ペース ト式ニッケル電極を用いた、 ニッケル ♦ カ ドミ ウム蓄 電池、 ニッケル · 金属水素化物蓄電池、 ニッケル ·亜鉛蓄電 池等が、 開発され、 実用化されている。
ペース ト式ニッケル電極は、 水酸化二ッケル粉末をべ—ス ト状にしてニッゲルからなる多孔性基板に直接充填して作製 されるものである。 従って、 高エネルギー密度のペー ス ト式 ニッケル電極を得るためには、 電極基板の多孔度、 活物質で ある水酸化ニッゲル粉末の密度を高くすればよい。 一
電極基板については、 その作製限界に近い 95%程度の多 孔度を有するニッケル繊維多孔体、 発泡二ッゲル多孔体等が 実用化されている。 活物質については、 内部細孔容積が 0. 1 m 1 Z g以下に制御された水酸化二ッゲル粉末が開発され ている。 この水酸化ニッケル粉末は、 その嵩密度が約 2 gZ m 1 と高いため、 従来より 20 %程度多く充填することを可 能にしている。 これらの高多孔度の電極基板と高密度な水酸 化ニッケル粉末とを用いることによって、 55 O mA hZm
1以上のペース ト式ニッゲル電極の作製が可能となり、 高工 ネルギー密度な蓄電池系に適用されている。
—方、 内部細孔容積が 0. 1 m 1 Zg以下に制御された水 酸化ニッケル粉末は、 その生産過程に起因して球状のものと して得られるという特徵を有している。 このため、 充填状態 においては、 第 7図に示すように、 粉末間に隙間が生じてお り、 この点が高エネルギー密度化においてマイナス要因とな つていた。
発明の開示
従来の高エネルギー密度化されたペース ト式ニッゲル電極 においては、 ( 1 ) 充放電の繰返しによって、 活物質が低密 度化し、 電極膨潤が生じる、 (2) 高温時の充電効率が低い、 などの重要な問題があった。 そして、 上記 (1 ) の問題を解 決するためには、 少量の力 ドミ ゥムを固溶状態で活物質に添 加すればよいことが従来から知られていた。 また、 上記 (2) の問題を解決するためには、 一般に、 電解液として用いられ ている水酸化力 リ ゥム水溶液に水酸化リチウムを添加するこ とが行なわれていた。 しかし、 最近の環境問題との関連において、 有害重金属で ある力 ドミ ゥムを用いることは好ま しく なく なってきており 力 ドミ ゥムに代わる新たな添加元素の開発が切望されている , また、 上記 ( 2 ) の問題を解決する上記の方法では、 放電電 5 圧や低温時の放電容量を低下させるという欠点があつた。
—方、 水酸化二ッゲル粉末を充填した際に生じる粉末間の 隙間を減少させることも、 高エネルギー密度化を図る上で要 望されている。
本願の第 1の発明は、 環境汚染の要因となることなく電極 0 膨潤を防止でき、 且つ、 広い温度範囲において、 特に高温に おいても、 充電効率が優れているペース ト式ニッケル電極即 ちアルカリ蓄電池用ニッゲル電極を提供することを目的とす る ものである。
また、 本願の第 2の発明は、 充填された水酸化ニッケル粉 5 末間の隙間を減少させることによって、 水酸化二ッゲル粉末 がより高密度に充填されたアルカ リ蓄電池用ニッケル電極を 提供することを目的とするものである。
本願の第 1の発明は、 内部細孔容積を 0 . 1 m 1 g以下 に制御した水酸化二ッケル粉末を活物質として用いたニッケ 0 ル電極であって、 水酸化ニッケル粉末に、 I I族元素及びコバ ルトを固溶状態で含有させたことを特徴とするアルカ リ蓄電 池用二ッケル電極である。
上記 I I族元素としては、 亜鉛のみが、 又は亜鉛及び他の 1 種以上の元素が用いられる。 上記 I I族元素の含有量は、 亜鉛5 のみに換算して 1重量%以上が好ま しく 、 コバル トの含有量 は 2重量%以上が好ま しく、 I I族元素とコバル 卜の含有量の 和は 1 0重量%以下であるのが好ま しい。
本発明者は、 内部細孔容積を制御して高密度化された水酸 化二ッゲル粉末を用いた二ッゲル電極の電極膨潤が、 充放電 の繰返し時に生成される低密度な τ型ォキシ水酸化二ッケル ( r - N i O O H ) に起因すること、 及びカ ドミ ウムの固溶 体添加がァ — N i 0 0 Hの生成を抑制していること、 を見出 し、 更に、 亜鉛、 マグネシゥム等の I I族元素にもカ ドミ ウム と同様の作用があることを見出した。 即ち、 本願の第 1の発 明において、 電極膨潤は固溶状態で含有された I I族元素によ り抑制される。 特に、 亜鉛を 1重量%以上含有すると、 7— N ί 0 0 Ηの生成が効果的に抑制される。 また、 固溶状態で 含有された I I族元素は、 充電末期での酸素発生電位を貴にシ フ 卜させるよう作用する。 一方、 高密度化された水酸化ニッ ゲル粉末を用いたニッケル電極を高温で充電すると、 活物質 の酸化反応と酸素発生反応とが同時に起こるため、 即ち、 酸 素発生電位と酸化電位との差である酸素過電圧が小さいため、 酸素発生反応が優位となり、 充電効率の低下が生じる。 しか し、 活物質中にコバルトが固溶状態で存在すると、 充電酸化 電位は卑にシフ ト し、 従って、 酸素過電圧は大きく なり、 高 温時の充電効率は向上する。 特に、 コバルトを 2重量%以上 含有すると、 効果的である。 I I族元素を含有せず、 コバルト のみを含有した場合には、 ァ ー N i 0 0 Hの生成抑制及び酸 素発生電位を貴にシフ 卜させる作用は認められない。
即ち、 本願の第 1の発明においては、 Π族元素により 7 — N i 0 0 Hの生成が抑制されるので、 電極膨潤が防止され、 且つ、 I I族元素により活物質の酸素発生電位が貴にシフ ト し、 コバル トにより活物質の充電酸化電位が卑にシフ 卜するので その相乗作用により、 1 1族元素ゃコバル 卜の単独の場合より も酸素過電圧が大き く なり、 高温時の充電効率が向上する。 従って、 無公害で高性能のペース ト式ニッケル電極即ちアル カ リ蓄電池用二ッゲル電極が得られることとなる。
本願の第 2の発明は、 内部細孔容積を 0 . 1 m 1 以下 に制御した水酸化二ッゲル粉末を活物質と して用いたニッケ ル電極であって、 直径 2 0 〜 4 0 mの球状水酸化ニッケル 粒子を粉碎して用いたことを特徴とするアルカ リ蓄電池用二0 ッゲル電極である。
なお、 粉碎したニッケル粒子は、 粉砕していないニッケル 粒子と共に用いてもよい。
直径 2 0 〜 4 0 / mの球状水酸化二ッケル粒子を粉砕して 用いると、 第 8図に示すように、 粉末間の隙間が埋められ、 5 即ち、 粉末間の隙間が減少し、 活物質の密度が向上する。 従 つて、 高密度なアル力 リ蓄電池用二ッケル電極が得らること となる。
図面の簡単な説明
第 1図は実施例 1で用いる水酸化二ッケル粉末の細孔径分 0 布を示す図、 第 2図は実施例 1 における亜鉛の含有量と Ί一 N i 0 0 Hの生成率との関係を示す図、 第 3図は実施例 1 に おけるコバルト含有量と酸素過電圧との関係を示す図、 第 4 図は実施例 1 におけるコバルト含有量と高温 4 5 °Cでの充電 効率との関係を示す図、 第 5図は実施例 1及びその比較例の 5 容量特性を示す図、 第 6図は実施例 2における亜鉛及びコバ ノレ トの含有量と 7 — N i 0 0 Hの生成率との関係を示す図、 第 7図は内部細孔容積を制御して高密度化された球状水酸化 二ッゲル粒子をそのまま充填した場合の状態を示す模式図、 第 8図は実施例 3における水酸化二ッケル粉末の充填状態を 示す模式図である。
発明を実施するための最良の形態
(実施例 1 )
I I族元素と して亜鉛のみを用い、 亜鉗及びコバル卜を固溶 状態で含有した水酸化二ッゲル粉末を、 次のようにして得た。 即ち、 硝酸二ッゲルに所定量の硝酸亜鉛及び硝酸コバルトを 加えてなる水溶液に、 硝酸ァン乇ニゥムを添加した後、 水酸 化ナト リ ゥム水溶液を滴下しながら激しく攪拌し、 錯イオン を分解させ、 亜鉛及びコバル 卜を固溶状態で含有した水酸化 ニッケル粒子を徐々に析出させ、 成長させた。
第 1図は上記のようにして得た水酸化二ッゲル粉末の細孔 径分布を示す図である。 横軸は細孔半径 (A ) 、 縦軸は細孔 分布を示す。 なお、 この水酸化ニッケル粉末は、 亜鉛 5重量 %及びコバル ト 5重量%を固溶状態で含有している。 この水 酸化ニッゲル粉末の内部細孔容積は 0 . 0 2 m l / gであり、 0 . 1 m 1 Z g以下に制御された高密度なものであること力《 わかる。 なお、 嵩密度は 2 . 0 g Z m 1であった。 なお、 亜 鉛とコバルトの含有量が上記とは異なる場合においても、 上 記と同様の細孔径分布を示した。 但し、 亜鈴が 1重量%以上、 コバルトが 2重量%以上、 亜鉛とコバルトの和が 1 ◦重量% 以下である場合に限られる。
上記のようにして得た水酸化二ッケル粉末に少量の一酸化 コバルト粉末を混合し、 カルボキシメチルセルロースで增粘 した水溶液を加えてペース ト状と し、 この一定量をニッケル 繊維多孔体からなる基板に充填して本実施例のペース ト式二 ッケル電極を作製した。 この電極をカ ドミ ウム負極を相手極 と し、 水酸化カ リ ウム水溶液又は水酸化リ チウム水溶液であ る電解液中で充放電して、 電極膨潤度、 高温時の充電効率等 を測定した。
第 2図は亜鉛の含有量 (重量%) と 7 — N i O O Hの生成 率 (%) との関係を示す図である。 なお、 図において、 Y 1 はコバル トのみを 5重量%含有した場合、 Z 1 は亜鉛 5重量 %及びコバル ト 5重量%を含有した場合即ち本実施例を示す, X 1 は亜鉛のみを含有した場合を示す。 また、 7 — N i O O Hの生成率は、 ニッケル電極を 1 Cの高電流密度で充電した 後に X線解析にて求めたものである。 X 1からわかるように. ァ ー N i 0 0 Hの生成率は亜鉛の含有量に比例して減少して いる。 ァ — N i 0 0 Hの生成率が 5 0 %以下の範囲であれば. 実用的に問題となるような電極膨潤は生じないので、 第 2図 から、 亜鉛の含有量は 1重量%以上とするのが好ま しい。 こ のことは、 X 1及び Z 1力、らゎ力、るように、 亜鉛及びコバル 卜を含有した場合についても、 同様である。 しかし、 Y 1に 示すように、 コバル トのみを含有した場合には、 含有量が 2 0重量%以下の範囲においては、 7 - N i O O Hの生成率の 低下、 即ち ァ — N i 0 0 Hの生成抑制の効果は認められなか つた。
第 3図はコバル トの含有量 (重量%) と酸素過電圧 7? ( m V ) との関係を示す図である。 図において、 Z 2は亜鉛及び コバルトを含有した場合即ち本実施例を示す。 但し、 亜鉛の 含有量は 5重量%で一定である。 Y 2はコバルトのみを 5重 量%含有した場合、 ϋ 2は亜鉛及びコバルトを含有していな い場合即ちニッケルのみの場合を示す。 Ζ 2において、 コノく ルト含有量が 0の場合即ち Ζ 2 ' は亜鉛のみを 5重量%含有 した場台を示す。 なお、 測定条件は、 温度 : 2 0で、 充電: 0 . l C x l 5 hである。 ϋ 2に対する Z 2 '及び Y 2力、ら わかるように、 亜鉛のみ又はコバルトのみを含有した場合は、 何も含有しない場合に比して酸素過電圧は大きく なるが、 Ζ 2に示すように、 亜鉛及びコバル卜を含有した場合の方が更 に大きく なる。 これは、 亜鉛により酸素発生電位が貴にシフ 卜 し、 コバルトにより酸化電位が卑にシフ 卜することによる 相乗効果によるものと考えられる。
第 4図はコバル卜の含有量 (重量%) と高温 4 5 °Cでの充 電効率 (%) との関係を示す図である。 図において、 Z 3は 亜鉛及びコバルトを含有した場台即ち本実施例を示す。 但し、 亜鉛の含有量は 5重量%で一定である。 なお、 測定条件は、 温度 : 4 5 °C、 充電 : 0 . 1 C X 1 5 h、 放電 ·· 0 . 2 Cで ある。 図からわかるように、 充電効率はコバルトの含有量に 比例して大きく なつている。 これは、 第 3図で示した酸素過 電圧の増大により充電効果が大きく なつたためと考えられる。 第 4図からわかるように、 コバル卜の含有量が 2重量%以上 であれば、 実用的に満足できる 8 0 %以上の充電効率が得ら れる。 従って、 コバルトの含有量は 2重量%以上とするのが 好ま しい。 しかし、 コバルトの含有量が多く なるほど放電電 圧の低下を来たすので、 コバル トの含有量は 1 0重量%以下 とするのが好ま しい。 第 5図は本実施例及び比較例の二ッケル電極の容量特性を 示す図である。 横軸は充放電温度 (で) 、 縦軸は電池容量
( % : 2 0 °C容量基準) である。 図において、 Z 4は亜鉛 5 重量%及びコバル ト 5重量%を含有した場合即ち本実施例を 示し、 X 4は亜鉛のみを 5重量%含有した比較例、 Y 4はコ バル トのみを 5重量%含有した比較例、 U 4は亜鉛を 5重量 %含有し且つ水酸化リチウムを電解液に添加した比較例を示 す。 なお、 電池型式 : K R - A Aであり、 測定条件は、 充電 0 . 3 C x 5 h、 放電 : 1 Cである。 Z 4に示す本実施例で は、 5〜 4 5。Cの温度範囲で殆んど変動のない安定した容量 特性を示している。 これに対し、 U 4に示す比較例では、 高 温時の容量は向上しているが、 低温時の容量は低下しており, 広い温度範囲での安定した容量は得られていない。 また、 Y 4に示す比較例では、 低温時に 7 一 N i O O Hが生成して容 量の增大と共に電極膨潤が生じ、 広い温度範囲での安定した 容量は得られていない。
と ころで、 含有する亜鉛及びコバル トは、 それ自体は活物 質と して作用しないものであるので、 含有量が増えれば、 そ れだけ単位活物質重量当りの容量が低下するこ ととなる。 従 つて、 実用的見地から、 亜鉛とコバル トの含有量の和は 1 〇 重量%以下とするのが好ま しい。
以上のように、 本実施例によれば、 亜鉛を固溶状態で含有 しているために、 電極膨潤を防止でき、 亜鉛及びコバル トを 固溶状態で含有しているために、 相乗的に酸素過電圧を増大 させて、 特に高温時の充電効率を向上させ、 広い温度範囲で の安定した容量を得ることができる。 しかも、 従来例のよう 0 な力 ドミ ゥムを用いないので、 環境汚染を防止できる。
(実施例 2 )
I I族元素と して亜鉛及びバリ ゥムを用い、 亜鉛及びバリ ゥ 厶とコバルトとを固溶状態で含有した水酸化二ッゲル粉末を 実施例 1 と同様にして得た。 即ち、 硝酸ニッケルに所定量の 硝酸亜鉛、 硝酸バリ ウム、 及び硝酸コバルトを加えてなる水 溶液に、 硝酸ァンモニゥムを添加した後、 水酸化ナ ト リ ウム 水溶液を滴下しながら激しく攪拌し、 錯イオンを分解させ、 亜鉛、 バリ ウム、 及びコバルトを固溶状態で含有した水酸化 ニッケル粒子を徐々に析出させ、 成長させた。
こう して得た水酸化ニッケル粉末を用いて、 実施例 1 と同 様にして、 本実施例のペース ト式ニッケル電極を作製した。 この電極を力 ドミ ゥム負極を相手極とし、 水酸化カ リ ウム水 溶液又は水酸化リチゥム水溶液である電解液中で充放電して、 電極膨潤度即ちァ ー N i 0 0 Hの生成率を測定した。
第 6図は亜鉛及びバリ ゥムの含有量 (重量%) と ァー N i O O Hの生成率 (%) との関係を示す図である。 縦軸はァ一 N i O O Hの生成率を示し、 図中の 3、 yは N i O O Hの型 を示す。 コバル トの含有量は 5重量%で一定である。 図にお いて、 V 0は亜鉛、 バリ ウムを共に含有しない場合即ちコバ ルトのみを含有した場合、 V 1は亜鉛のみを含有した場合、 V 2はバリ ゥムのみを含有した場合、 V 3は亜鉛及びバリ ゥ ムを含有した場合即ち本実施例を示す。 なお、 ここでは、 亜 鉛及びバリ ウムは水酸化物として含有されている。 また、 図 の左上に示すように、 各棒グラフにおいて、 W 1は充電末、 W 2は放電末を示す。 V I、 V 2に対する V 3からわかるよ うに、 亜鉛及びバリ ウムを共に含有した場合の方が、 それぞ れを単独で含有した場合に比して、 7 — N i O O Hの生成率 は低く なっている。
以上のように、 H族元素と して亜鉛及びバリ ゥムを用いた 本実施例によっても、 実施例 1 と同様の作用効果を奏する。 (実施例 3)
内部細孔容積が◦ . 1 m 1 g以下である直径 2 0〜4 0 ^ mの球状水酸化ニッケル粒子の見かけ密度は、 1. 8〜 2, I g Z c m3 であるが、 これを直径 4〜 8 111に粉砕した後 に再び測定したところ、 2. 1〜 2. 5 g / c m 3 に増加し ていた。 得られた水酸化ニッケル粉末 9 0 w t %に、 一酸化 コバル ト粉末 2. 0 w t %及びグラフアイ ト粉末 8. 0 w t %を混合して活物質とした。 この活物質に、 ポリテ トラフル ォロエチレン 3 w t %を結着剤と して加え、 シ一 卜状に加工 し、 この活物質シー トをニッケルメ ッ シュ基板に圧着させ、 乾燥し、 プレスして、 厚さ 0. 7 m mの本実施例のニッケル 電極を作製した。 このニッケル電極に、 対極と してペース ト 式カ ドミ ウム電極を組合せ、 比重 1. 26の水酸化カ リ ウム 水溶液を電解液と して用い、 流動する電解液を有する蓄電池 を試作した。
なお、 比較例として、 粉砕前の水酸化ニッケル粉末、 もと もと直径が 4〜 8 mである水酸化ニッケル粉末をそれぞれ 用いて、 同様にしてニッケル電極を作製した。 更に、 比較例 のニッケル電極を用いて、 同様にして蓄電池を試作した。
これらの蓄電池を 24時間放置して一酸化コバルトを溶解 再析出させた後、 温度 2 0 において、 0. 1 C Aで 1 5時 2 一 間の充電及び 0. 2 C Aで終始電圧 1. 0 0 Vまでの放電か らなるサイクルを 1 ◦サイクル繰返す試験を行なつた。 また 放電を 1. O C A (終始電圧 1. 0 0 V) 、 2. O C A (終 始電圧◦ . 9 0 V) 、 3. O C A (終始電圧 1. 0 0 V) と して、 上記と同じ試験を行なった。
表 1は 0. 2 C Aで放電した場合の各蓄電池の放電容量を 示す。 なお、 Aは本実施例のニッケル電極を用いた蓄電池、 Bは粉砕前の水酸化二ッゲル粉末を用いてなる比較例の二ッ ゲル電極を用いた蓄電池、 Cはもともと直径が 4〜8 mで ある水酸化二ッゲル粉末を用いてなる比較例のニッゲル電極 を用いた蓄電池である。 また、 表 2は高率放電による活物質 利用率の変化を示す。
[表 1 ]
Figure imgf000014_0001
[表 2]
Figure imgf000014_0002
表 1からわかるように、 蓄電池 Aの放電容量は、 蓄電池 B より も大きく、 蓄電池 Cと同じである。 また、 表 2からわか るように、 蓄電池 Aは蓄電池じより も活物質利用率が良好で ある。 従って、 蓄電池 Aは、 蓄電池 B、 じより も、 放電容量 及び活物質利用率において優れている。 即ち、 直径が 2 0〜 4 0 mの球状水酸化ニッゲル粒子を粉砕して用いた本実施 例のニッケル電極では、 活物質の充填量が增加し、 単位体積 当りの放電容量が向上する。 しかも、 高率放電特性の劣化は 認められない。
なお、 本実施例では、 添加剤と して、 一酸化コバル トを用 いているが、 a— C o ( O H ) 2 、 ^ - C o ( O H ) 9 を用 いてもよく、 類似の作用を示す。 また、 金属コバル ト粉末を 用いても、 その効果は二価コバルト化合物粉末を用いた場合 に比して小さいが、 類似の作用が観察された。
以上のように、 本実施例によれば、 直径 2 ◦〜4 ◦ mの 球状水酸化二ッゲル粒子を粉砕して用いたので、 水酸化二ッ ゲル粉末をより高密度に充填でき、 高性能で高容量のアル力 リ蓄電池用ニッゲル電極を得ることができる。
産業上の利用可能性
環境汚染の要因となることなく電極膨潤を防止でき、 且つ、 広い温度範囲において充電効率が優れているので、 高工ネル ギー密度のペース 卜式ニッケル電極と して、 アルカ リ蓄電池 に好適に利用することができる。

Claims

4 一 求 の
1. 内部細孔容積を 0. 1 m 1 Zg以下に制御した水酸化 二ッケル粉末を活物質として用いたニッゲル電極であつて、 水酸化二ッケル粉末に、 II族元素及びコバルトを固溶状態で 含有させたことを特徴とするアル力 リ蓄電池用ニッケル電極 (
2. 上記 II族元素として亜鉛のみを用い、 亜鉛を 1重量% 以上含有し、 コバルトを 2重量%以上含有している請求項 1 記載のアル力リ蓄電池用ニッケル電極。
3. 上記 II族元素として亜鉛のみを用い、 亜鉛を 1重量お 以上含有し、 コバル トを 2重量%以上含有し、 亜鉛とコバル 卜の含有量の和が 10重量%以下である請求項 1記載のアル 力リ蓄電池用二ッゲル電極。
4. 上記 II族元素として亜鉛及び他の 1種以上の元素を用 い、 II族元素の含有量が亜鉛のみに換算して 1重量%以上で あり、 コバルトを 2重量%以上含有している請求項 1記載の アル力 リ蓄電池用二ッ ケル電極。
5. 上記 II族元素として亜鉛及び他の 1種以上の元素を用 い、 II族元素の含有量が亜鉛のみに換算して 1重量%以上で あり、 コバルトを 2重量%以上含有し、 II族元素とコバル ト の含有量の和が 1 0重量%以下である請求項 1記載のアル力 リ蓄電池用ニッゲル電極。
6. 内部細孔容積を 0. 1 m 1 Zg以下に制御した水酸化 二ッゲル粉末を活物質として用いた二ッゲル電極であつて、 直径 20〜40 mの球状水酸化二ッ ゲル粒子を粉砕して用 いたことを特徴とするアル力 リ蓄電池用ニッゲル電極。
7. 直径 20〜40 mの球状水酸化ニッ ケル粒子を粉砕 し、 球状水酸化二ッケル粒子と混合して用いた請求項 6記載 のアル力 リ蓄電池用二ッケル電極。
PCT/JP1992/000740 1991-06-14 1992-06-10 Electrode au nickel pour piles alcalines WO1992022934A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69223116T DE69223116T2 (de) 1991-06-14 1992-06-10 Nickelelektrode für alkalibatterien
EP92911246A EP0544011B1 (en) 1991-06-14 1992-06-10 Nickel electrode for alkali storage batteries
US07/975,579 US5366831A (en) 1991-06-14 1992-06-10 Nickel electrode for alkaline battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/170587 1991-06-14
JP3170587A JPH04368777A (ja) 1991-06-14 1991-06-14 アルカリ蓄電池用ニッケル電極
JP3309960A JPH05121074A (ja) 1991-10-28 1991-10-28 アルカリ蓄電池用ニツケル極
JP3/309960 1991-10-28

Publications (1)

Publication Number Publication Date
WO1992022934A1 true WO1992022934A1 (fr) 1992-12-23

Family

ID=26493539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000740 WO1992022934A1 (fr) 1991-06-14 1992-06-10 Electrode au nickel pour piles alcalines

Country Status (5)

Country Link
US (1) US5366831A (ja)
EP (1) EP0544011B1 (ja)
CA (1) CA2089496A1 (ja)
DE (1) DE69223116T2 (ja)
WO (1) WO1992022934A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569563A (en) * 1992-11-12 1996-10-29 Ovshinsky; Stanford R. Nickel metal hybride battery containing a modified disordered multiphase nickel hydroxide positive electrode
JPH07122271A (ja) * 1993-10-25 1995-05-12 Furukawa Electric Co Ltd:The ニッケル極用水酸化ニッケルの製造方法、およびその水酸化ニッケルを用いたニッケル極の製造方法、ならびにそのニッケル極を組込んだアルカリ二次電池
JP2835282B2 (ja) * 1994-07-11 1998-12-14 古河電気工業株式会社 ニッケル極用水酸化ニッケル、その製造方法、ニッケル極、それを組込んだアルカリ二次電池
DE4426970A1 (de) * 1994-07-29 1996-02-01 Varta Batterie Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
DE69505911T2 (de) * 1994-08-04 1999-04-08 Sanyo Electric Co Aktivmasse Pulver für nichtgesinterte Nickelelektrode, nichtgesinterte Nickelelektrode für alkalische Batterie und Verfahren zu ihrer Herstellung
JP3738052B2 (ja) * 1994-09-20 2006-01-25 三洋電機株式会社 ニッケル電極用活物質とこれを用いたニッケル電極及びニッケルアルカリ蓄電池並びにこれらの製造方法
KR100288472B1 (ko) * 1994-09-20 2001-05-02 다카노 야스아키 니켈전극용활물질과 이것을 사용한 니켈전극 및 니켈알칼리축전지 및 이들의 제조방법
JP2802482B2 (ja) * 1994-10-28 1998-09-24 古河電池株式会社 アルカリ二次電池用ニッケル極
JP3249326B2 (ja) * 1995-02-14 2002-01-21 三洋電機株式会社 アルカリ蓄電池用ニッケル活物質、その製造方法
DE19606879C2 (de) * 1995-02-23 2001-07-05 Toshiba Kawasaki Kk Verfahren zur Herstellung einer alkalischen Sekundärbatterie
KR100385479B1 (ko) * 1995-04-11 2003-08-21 산요 덴키 가부시키가이샤 고용량으로주기수명이우수한알칼리축전지및알칼리축전지용니켈전극의제조방법
EP0750359B1 (en) * 1995-06-23 1999-12-08 Hitachi, Ltd. Secondary battery comprising electrode with multiphase, porous active material
KR100385480B1 (ko) * 1995-07-31 2003-08-19 산요 덴키 가부시키가이샤 알칼리축전지용비소결식니켈전극의제조방법및알칼리축전지
EP0809309B1 (en) * 1995-11-22 2003-03-05 Matsushita Electric Industrial Co., Ltd. Electrode with positive plate active material for alkaline storage battery
US6261720B1 (en) 1996-09-20 2001-07-17 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries
CN1129198C (zh) * 1997-02-03 2003-11-26 松下电器产业株式会社 碱性蓄电池的正极活性材料的制造方法
JP3489960B2 (ja) * 1997-04-01 2004-01-26 松下電器産業株式会社 アルカリ蓄電池
US6074785A (en) * 1997-04-14 2000-06-13 Matsushita Electric Industrial Co., Ltd. Nickel/metal hydride storage battery
JP3923157B2 (ja) * 1997-12-11 2007-05-30 松下電器産業株式会社 アルカリ蓄電池
EP0940865A3 (en) * 1998-03-05 2004-11-03 Matsushita Electric Industrial Co., Ltd Active materials for the positive electrode in alkaline storage battery and the manufacturing method of them
US6015538A (en) * 1998-06-16 2000-01-18 Inco Limited Methods for doping and coating nickel hydroxide
US6177213B1 (en) 1998-08-17 2001-01-23 Energy Conversion Devices, Inc. Composite positive electrode material and method for making same
US20110136005A1 (en) * 2009-12-04 2011-06-09 Gregory Scott Callen Vitamin B12 iron battery
US9406934B2 (en) 2012-02-07 2016-08-02 Basf Corporation Rechargeable battery cell with improved high temperature performance
US9425456B2 (en) 2012-02-07 2016-08-23 Ovonic Battery Company, Inc. Rechargeable battery cell with improved high temperature performance
US10587012B2 (en) 2015-03-26 2020-03-10 Basf Corporation Electrolyte compositions comprising ionic liquids and metal hydride batteries comprising same
JP7021102B2 (ja) 2016-03-28 2022-02-16 ビーエーエスエフ コーポレーション 充電式電池用のシリコンに基づく固体電解質
WO2022145030A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Salt containing electrolytes that promote the formation of proton-conducting rechargeable batteries
WO2022145029A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Group 14 element-containing metal hydride with a superlattice structure for use in hydrogen storage.
WO2022145028A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Group 14 element-containing metal hydrides with a superlattice structure for use in proton-conducting rechargeable batteries
WO2022145031A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Processes of hydrogen annealing of si-surfaces
CN116724412A (zh) 2020-12-29 2023-09-08 川崎摩托株式会社 用于质子导电的充电电池的块体硅负极
WO2022145027A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Ionic liquid electrolytes including salt additives for use in proton-conducting rechargeable batteries
WO2022145026A1 (en) 2020-12-29 2022-07-07 Kawasaki Motors, Ltd. Si-containing alloy for the anode of proton-conducting rechargeable batteries
WO2022239204A1 (en) 2021-05-13 2022-11-17 Kawasaki Motors, Ltd. Bipolar battery with proton and hydroxide ion conducting polymer based separator
WO2022269687A1 (en) 2021-06-21 2022-12-29 Kawasaki Motors, Ltd. Proton conducting rechargeable batteries and processes
WO2023007751A1 (en) 2021-07-30 2023-02-02 Kawasaki Motors, Ltd. Si-containing metal hydrides with expanded superlattice structure for use in proton-conducting rechargeable electrochemical cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983347A (ja) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd 密閉形ニツケル−カドミウム蓄電池
JPS60131765A (ja) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd 電池用ニッケル正極およびその製造法
JPS63124371A (ja) * 1986-11-12 1988-05-27 Sanyo Electric Co Ltd アルカリ蓄電池用陽極
JPH01112663A (ja) * 1987-10-27 1989-05-01 Sony Corp アルカリ二次電池
JPH0230061A (ja) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd ニッケル電極用活物質及びその製造方法、ニッケル電極及びそれを用いたアルカリ電池の製造方法
JPH02109261A (ja) * 1988-10-18 1990-04-20 Yuasa Battery Co Ltd ニッケル電極用活物質及びニッケル電極とこれを用いたアルカリ電池
JPH0346758A (ja) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd ニッケル―水素電池
JPH0378965A (ja) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd アルカリ蓄電池用ニッケル電極活物質

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016091A (en) * 1975-03-13 1977-04-05 Westinghouse Electric Corporation Method of preparing high capacity nickel electrode powder
JPS60131766A (ja) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd アルカリ電池用正極板
JPH0724218B2 (ja) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション アルカリ電池用ニッケル電極及びこれを用いた電池
EP0353837B1 (en) * 1988-07-19 1994-07-27 Yuasa Corporation A nickel electrode for an alkaline battery
JPH02207452A (ja) * 1989-02-06 1990-08-17 Yuasa Battery Co Ltd ニッケル電極及びこれを用いたアルカリ蓄電池
JPH0434843A (ja) * 1990-05-29 1992-02-05 Yuasa Corp ニッケル極板の製造法
EP0557522B1 (en) * 1990-10-29 1996-02-07 Yuasa Corporation Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JP2576717B2 (ja) * 1991-05-27 1997-01-29 株式会社ユアサコーポレーション アルカリ蓄電池用ニッケル電極活物質

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983347A (ja) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd 密閉形ニツケル−カドミウム蓄電池
JPS60131765A (ja) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd 電池用ニッケル正極およびその製造法
JPS63124371A (ja) * 1986-11-12 1988-05-27 Sanyo Electric Co Ltd アルカリ蓄電池用陽極
JPH01112663A (ja) * 1987-10-27 1989-05-01 Sony Corp アルカリ二次電池
JPH0230061A (ja) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd ニッケル電極用活物質及びその製造方法、ニッケル電極及びそれを用いたアルカリ電池の製造方法
JPH02109261A (ja) * 1988-10-18 1990-04-20 Yuasa Battery Co Ltd ニッケル電極用活物質及びニッケル電極とこれを用いたアルカリ電池
JPH0346758A (ja) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd ニッケル―水素電池
JPH0378965A (ja) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd アルカリ蓄電池用ニッケル電極活物質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0544011A4 *

Also Published As

Publication number Publication date
DE69223116D1 (de) 1997-12-18
CA2089496A1 (en) 1992-12-15
EP0544011A4 (ja) 1995-04-26
DE69223116T2 (de) 1998-04-02
EP0544011A1 (en) 1993-06-02
EP0544011B1 (en) 1997-11-12
US5366831A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
WO1992022934A1 (fr) Electrode au nickel pour piles alcalines
JP3097347B2 (ja) ニッケル・水素蓄電池
JPH0528992A (ja) アルカリ蓄電池用ニツケル正極とこれを用いたニツケル・水素蓄電池
JP3136668B2 (ja) 水酸化ニッケル活物質粉末およびニッケル正極とこれを用いたアルカリ蓄電池
JP3138120B2 (ja) 金属水素化物蓄電池
Jun et al. Effect of cupric oxide addition on the performance of nickel electrode
JP3077473B2 (ja) アルカリ蓄電池
JP3575196B2 (ja) アルカリ蓄電池用ニッケル極の製造法
JP2603188B2 (ja) 水素吸蔵合金電極
JP3204275B2 (ja) アルカリ蓄電池用ニッケル電極
JPH04368777A (ja) アルカリ蓄電池用ニッケル電極
JP3506365B2 (ja) ニッケル正極活物質
JPH09180717A (ja) アルカリ蓄電池用ニッケル電極
JPH10172562A (ja) 陽極用活物質、その製造方法および陽極製造方法
WO2000062361A1 (en) Active electrode compositions comprising raney based catalysts and materials
JPH07201327A (ja) アルカリ蓄電池用の非焼結式ニッケル正極
JPH04109556A (ja) 密閉型二次電池
JP3101622B2 (ja) ニッケル・水素アルカリ蓄電池
JPS6199277A (ja) 金属−水素アルカリ蓄電池
JP2623413B2 (ja) アルカリ蓄電池用ペースト式ニッケル極
JP3490800B2 (ja) 水素吸蔵合金電極、その製造方法及び金属水素化物蓄電池
JPH05121074A (ja) アルカリ蓄電池用ニツケル極
JP2538303B2 (ja) アルカリ蓄電池用亜鉛極
JPH11238507A (ja) アルカリ蓄電池
JP2595664B2 (ja) カドミウム負極板およびその負極板を用いたアルカリ二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 2089496

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992911246

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992911246

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992911246

Country of ref document: EP