WO1990007683A1 - Dispositif a cycle de carnot renverse en conditions transcritiques - Google Patents

Dispositif a cycle de carnot renverse en conditions transcritiques Download PDF

Info

Publication number
WO1990007683A1
WO1990007683A1 PCT/NO1989/000089 NO8900089W WO9007683A1 WO 1990007683 A1 WO1990007683 A1 WO 1990007683A1 NO 8900089 W NO8900089 W NO 8900089W WO 9007683 A1 WO9007683 A1 WO 9007683A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
capacity
heat exchanger
receiver
Prior art date
Application number
PCT/NO1989/000089
Other languages
English (en)
Inventor
Gustav Lorentzen
Original Assignee
Sinvent As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19891609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1990007683(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE68908181T priority Critical patent/DE68908181T3/de
Priority to EP89910211A priority patent/EP0424474B2/fr
Priority to JP1509515A priority patent/JPH0718602B2/ja
Priority to KR1019900701990A priority patent/KR0126550B1/ko
Priority to UA93003690A priority patent/UA27758C2/uk
Priority to DE8989910211A priority patent/DE68908181D1/de
Application filed by Sinvent As filed Critical Sinvent As
Priority to CA002018250A priority patent/CA2018250C/fr
Priority to AU56968/90A priority patent/AU635031B2/en
Priority to HU904128A priority patent/HU213995B/hu
Priority to PL28596690A priority patent/PL285966A1/xx
Publication of WO1990007683A1 publication Critical patent/WO1990007683A1/fr
Priority to ES9001955A priority patent/ES2025443A6/es
Priority to BR909004438A priority patent/BR9004438A/pt
Priority to DK214690A priority patent/DK167985B1/da
Priority to NO903903A priority patent/NO171810C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • This invention relates to vapour compression cycle devices such as refrigerators, air-conditioning units and heat pumps, using a refrigerant operating in a closed circuit under trans-critical conditions, and more particularly, to methods for modulating and controlling the capacity of such devices.
  • a conventional vapour compression cycle device for refri ⁇ geration, air-conditioning or heat pump purposes is shown in principle in Fig. 1.
  • the device consists of a compressor (1), a condensing heat exchanger (2), a throttling valve (3) and a evaporating heat exchanger (4). These components are connected in a closed flow circuit, in which a refrigerant is circulated.
  • the operating principle of a vapour compres ⁇ sion cycle device is as follows: The pressure and tempera ⁇ ture of the refrigerant vapour is increased by the compres ⁇ sor (1), before it enters the condenser (2) where it is cooled and condensed, giving off heat to a secondary cool ⁇ ant.
  • the high-pressure liquid is then throttled to the eva ⁇ porator pressure and temperature by means of the expansion valve (3).
  • the evaporator (4) the refrigerant boils and absorbs heat from its surroundings.
  • the vapour at the eva ⁇ porator outlet is drawn into the compressor, completing the cycle.
  • refrige ⁇ rants as for instance R-12, CF 2 C1 2
  • refrigerant A number of different substances or mixtures of substances may be used as a refrigerant.
  • the choice of refrigerant is among others influenced by the condensation temperature, as the critical temperature of the fluid sets the upper limit for the condensation to occur. In order to maintain a reasonable efficiency, it is normally desirable to use a refrigerant with critical temperature at least 20-30K above the condensation temperature. Near- critical temperatures are normally avoided in design and operation of conventional systems.
  • Capacity control of the conventional vapour compression cycle device is achieved mainly by regulating the mass flow of refrigerant passing through the evaporator. This is done e.g. by controlling the compressor capacity, throttling or bypassing. These methods involve more complicated flow cir ⁇ cuit and components, need for additional equipment and ac- cesories, reduced part-load efficiency and other compli ⁇ cations.
  • a common type of liquid regulation device is a thermostatic expansion valve, which is controlled by the superheat at the evaporator outlet. Proper valve operation under varying operating conditions is achieved by using a considerable part of the evaporator to superheat the refrigerant, resul ⁇ ting in a low heat transfer coefficient.
  • thermodynamic losses occur due to large temperature differences when giving off heat to a secondary coolant with large temperature increase, as in heat pump applications or when the available secondary cool ⁇ ant flow is small.
  • Another object of the present invention is to provide a vapour compression cycle avoiding use of CFC refrigerants, and at the same time offering possibility to apply several attractive refrigerants with respect to safety, environ ⁇ mental hazards and price.
  • Further object of the present invention is to provide a new method of capacity control, which involves operation at mainy constant refrigerant mass flow rate and simple capa ⁇ city modulation by valve operation.
  • Still another object of the present invention is to provide a cycle rejecting heat at gliding temperature, reducing heat-exchange losses in applications where secondary coolant flow is small or when the secondary coolant is to be heated to a relatively high temperature.
  • thermodynamic properties in the super-critical state are utilized to con ⁇ trol the refrigerating and heating capacity of the device.
  • the present invention involves the regulation of specific enthalpy at evaporator inlet by deliberate use of the pres ⁇ sure and/or temperature before throttling for capacity con ⁇ trol. Capacity is controlled by varying the refrigerant enthalpy difference in the evaporator, by changing the spe ⁇ cific enthalpy of the refrigerant before throttling. In the super-critical state this can be done by varying the pres ⁇ sure and temperature independently. In a preferred embodi ⁇ ment this modulation of specific enthalpy is done by varying the pressure before throttling.
  • the refrigerant is cooled down as far as it is feasible by means of the available cooling medium, and the pressure regulated to give the re ⁇ quired enthalpy.
  • Another embodiment involves modulation of enthalpy by variation of the refrigerant temperature before throttling. This is done by controlling the heat rejection from the device.
  • Fig. 1 is a schematic representation of a conventional (sub- critical) vapour compression cycle device.
  • Fig. 2 is a schematic representation of a trans-critical vapour compression cycle device constructed in accordance with a preferred embodiment of the invention.
  • This embodi ⁇ ment includes a volume as an integral part of the evaporator system, holding refrigerant in the liquid state.
  • Fig. 3 is a schematic representation of a trans-critical vapour compression cycle device constructed in accordance with a second embodiment of the invention.
  • This embodiment includes an intermediate pressure receiver connected direct ⁇ ly into the flow circuit between two valves.
  • Fig. 4 is a schematic representation of a trans-critical vapour compression cycle device constructed in accordance with a third embodiment of the invention.
  • This embodiment includes a special receiver to hold refrigerant as liquid or in the super-critical state.
  • Fig. 5 is a graph illustrating the relationship of pressure versus enthalpy of the trans-critical vapour compression cycle device of Fig. 2, 3 or 4, at different operating con ⁇ ditions.
  • Fig. 6 is a collection of graphs illustrating the control of refrigerating capacity by the method of pressure control in accordance with the present invention. The results shown are measured in a laboratory demonstration system built accord ⁇ ing to a preferred embodiment of the invention.
  • Fig. 7 is a collection of graphs illustrating the control of refrigerating capacity by control of the heat rejection, in accordance with the present invention. The results shown are measured in a laboratory demonstration system build accord ⁇ ing to a preferred embodiment of the present invention.
  • Fig. 8 is test results showing the relationship of tempera ⁇ ture versus entropy of the trans-critical vapour compression cycle device of Fig. 2, operating at different high-side pressures, employing carbon dioxide as refrigerant Detailed description of the invention
  • a trans-critical vapour compression cycle device includes a refrigerant, of which critical temperature is between the temperature of the heat inlet and the mean temperature of heat submittal, and a closed working fluid circuit where the refrigerant is circu ⁇ lated.
  • Suitable working fluids may be by the way of examples: ethy- len (C 2 H 4 ), diborane (B 2 H 6 ), carbon dioxide (C0 2 ), ethane (C 2 H 6 ) and nitrogen oxide (N 2 0).
  • the closed working fluid circuit consists of a refrigerant flow loop with an integrated storage segment.
  • Fig. 2 shows a preferred embodiment of the invention where the storage segment is an integral part of the evaporator system.
  • the flow circuit includes a compressor 10 connected in series to a heat exchanger 11, a counterflow heat exchanger 12 and a throttling valve 13.
  • the throttling valve can be replaced by an optional expansion device.
  • An evaporating heat exchanger 14, a liquid separator/receiver 16 and the low-pressure side of the counterflow heat exchanger 12 are connected in flow communication intermediate the throttling valve 13 and the inlet 19 of the compressor 10.
  • the liquid receiver 16 is connected to the evaporator outlet 15, and the gas phase outlet of the receiver 16 is connected to the counterflow heat exchanger 12.
  • the counterflow heat exchanger 12 is not absolutely neces ⁇ sary for the functioning of the device but improves its efficiency, in particular its rate of response to a capacity increase requirement. It also serves to return oil to the compressor.
  • a liquid phase line from the receiver (16) (shown with broken line in Fig. 2) is connect ⁇ ed to the suction line either before the counterflow heat exchanger (12) at 17 or after it at 18, or anywhere between these points.
  • the liquid flow i.e. refrigerant and oil, is controlled by a suitable conventional liquid flow restrict ⁇ ing device (not shown in the figure). By allowing some ex- cess liquid refrigerant to enter the vapour line, a liquid surplus at the evaporator outlet is obtained.
  • the storage segment of the working fluid circuit includes a receiver 22 integrated in the flow circuit between a valve 21 and the throttling valve 13.
  • the other components 10-14 of the flow circuit is identical to the components of the previous embodiment, although the heat exchanger 12 can be omitted without any great consequence.
  • the pressure in the receiver 22 is kept intermediate the high-side and low-side pressures of the flow circuit.
  • the storage segment of the working fluid circuit includes a special receiver 25, where the pressure is kept between the high-side pressure and the low-side pressure of the flow circuit.
  • the storage segment further consists of the valves 23 and 24 which are connected to the high pressure and low pressure part of the flow circuit respectively.
  • the refrigerant is compressed to a suitable supercritical pressure in the compressor 10, the compressor outlet 20 is shown as state “a” in Fig. 5.
  • the refrigerant is circulated through the heat exchanger 11 where it is cooled to state "b", giving off heat to a suitable cooling agent, e.g. cooling air or water.
  • a suitable cooling agent e.g. cooling air or water.
  • the refrig ⁇ erant can be further cooled to state "c" in the counterflow heat exchanger 12, before throttling to state "d".
  • a two-phase gas/liquid mixture is formed, shown as state “d” in Fig. 3.
  • the refrigerant absorbs heat in the evaporator 14 by eva ⁇ poration of the liquid phase.
  • the refrigerant vapour can be superheated in the counterflow heat exchanger 12 to state “f" before it enters the compressor inlet 19, making the cycle complete.
  • the evaporator outlet condition "e” will be in the two-phase region due to the liquid surplus at the evaporator outlet. Modulation of the trans-critical cycle device capacity is accomplished by varying the refrigerant state at the eva ⁇ porator inlet, i.e. point "d" in Fig. 5.
  • the refrigerating capacity per unit of refrigerant mass flow corresponds to the enthalpy difference between state “d” and state “e”; This enthalpy difference is found as a horizontal distance in the enthalpy-pressure diagram. Fig. 5.
  • Throttling is a constant enthalpy process, thus the enthalpy in point “d” is equal to the enthalpy in point "c".
  • the ref igerating capacity (in k ) at constant refrigerant mass flow can be controlled by varying the en ⁇ thalpy at point "c".
  • the high-pressure single-phase refrigerant vapour is not conden ⁇ sed but reduced in temperature in the heat exchanger 11.
  • the terminal temperature of the refrigerant in the heat ex ⁇ changer (point “b” ) will be some degrees above the entering cooling air or water temperature, if counterflow is used.
  • the high-pressure vapour can then be cooled a few degrees lower, to point "c", in the counterflow heat exchanger 12. The result is, however, that at constant cooling air or water inlet temperature, the temperature at point "c" will be mainly constant, independent of the pressure level in the high side.
  • modulation of device capacity is accomplished by varying the pressure in the highside, while the temperature in point "c" is mainly constant.
  • the curvature of the iso ⁇ therms near the critical point result in a variation of enthalpy with pressure, as shown in Fig. 5.
  • the figure shows a reference cycle (a-b-c-d-e-f) , a cycle with reduced capa ⁇ city due to reduced high side pressure (a'-b'-c'-d'-e-f) and a cycle with increased capacity due to higher pressure in the high side (a"-b"-c"-d"-e-f) .
  • the evaporator pressure is assumed to be constant.
  • the pressure in the high-pressure side is independent of temperature, because it is filled with a single phase fluid. To vary the pressure it is necessary to vary the mass of refrigerant in the high side, i.e. to add or remove some of the instant refrigerant charge in the high side. These vari ⁇ ations must be taken up by a buffer, to avoid liquid over ⁇ flow or drying up of the evaporator.
  • the refrigerant mass in the high side can be in ⁇ creased by temporarily reducing the opening of the throt ⁇ tling valve 13. Due to the incidentally reduced refrigerant flow to the evaporator, the excess liquid fraction at the evaporator outlet (15) will be reduced. The liquid refri ⁇ gerant flow from the receiver 16 into the suction line is however constant. Consequently, the balance between the liquid flow entering and leaving the receiver 16 is shifted, resulting in a net reduction in receiver liquid content and a corresponding accumulation of refrigerant in the high pressure side of the flow circuit.
  • the increase in high side charge involves increasing pres ⁇ sure and thereby higher refrigerating capacity. This mass transfer from the low-pressure to the high-pressure side of the circuit will continue until balance between refrigerat ⁇ ing capacity and load is found.
  • Opening of the throttling valve 13 will increase the excess liquid fraction at the evaporator outlet 15, because the evaporated amount of refrigerant is mainly constant. The difference between this liquid flow entering the receiver and the liquid flow from the receiver into the suction line, will accumulate. The result is a net transport of refri ⁇ gerant charge from the high side to the low side of the flow circuit, with the reduction in the high side charge stored in liquid state in the receiver. By reducing the high-side charge and thereby pressure, the capacity of the device is reduced, until balance is found.
  • the refrigerant mass in the high side can be increased by simultaneously shutting the valve 21 and modulating the throttling valve 13 to provide the evaporator with suf ⁇ ficient liquid flow. This will reduce the refrigerant flow from the high side into the receiver through valve 21, while refrigerant mass is transferred from the low side to the high side by the compressor.
  • Reduction of high-side charge is obtained by opening the valve 21 while keeping the flow through the throttling valve 13 mainly constant. This will transfer mass from the high- side of the flow circuit to the receiver 22.
  • the refrigerant mass in the high side can be increased by opening the valve 24 and simultaneously reducing the flow through the throttling valve 13.
  • refrigerant charge is accumulated in the high-pressure side due to reduced flow through the throttling valve 13.
  • Sufficient liquid flow to the evaporator is obtained by opening the valve 24.
  • a reduction in the high side charge can be accomplished by opening the valve 23 to transfer some refrigerant charge from the high side to the receiver. Capacity control of the device is thus accomplished by modulation of the valves 23 and 24, and simultaneously operating the throttling valve 13.
  • the preferred embodiment of the invention has the advantage of simplicity, with capacity con ⁇ trol by operation of one valve only. Furthermore, the trans- critical vapour compression cycle device built according to this embodiment has a certain self-regulating capability by adapting to changes in cooling load through changes in liquid content in the receiver 16, involving changes in highside charge and thus cooling capacity. In addition, the operation with liquid surplus at evaporator outlet gives favourable heat transfer characteristics.
  • the second embodiment as indicated in Fig. 3, has the ad ⁇ vantage of simplified valve operation. Valve 21 only regu ⁇ lates the pressure in the high side of the device, and the throttling valve 13 only assures that the evaporator is fed sufficiently. A conventional thermostatic valve can thus be used for throttling.
  • Oil return to the compressor is easily achieved by allowing the refrigerant to flow through the receiver.
  • This embodiment does not offer the capa ⁇ city control function at high-side pressures below the cri ⁇ tical pressure.
  • the volume of the receiver 22 must be rela ⁇ tively large since it is only operating between the dis ⁇ charge pressure and the liquid line pressure.
  • Still another embodiment as indicated in Fig. 4 has the advantage of operating as a conventional vapour compression cycle device, when it is running at stable conditions.
  • the valves 23 and 24, connecting the receiver 25 to the flow circuit, are activated only during capacity control.
  • This embodiment requires use of three different valves during periods of capacity change.
  • Trans-critical vapour compression cycle devices built ac ⁇ cording to the described embodiments can be applied in seve ⁇ ral areas.
  • the technology is well suitable in small and medium-sized stationary and mobile air-conditioning units, small and medium-sized refrigerators/freezers and in smaller heat pump units.
  • One of the most promising applications is in automotive air-conditioning, where the present need for a new, non-CFC, lightweight and efficient alternative to R12- systems is urgent.
  • the laboratory test device uses water as heat source, i.e. the water is refrigerated by heat exchange with boiling CO 2 in the evaporator 14. Water is also used as cooling agent, being heated by C0 2 in the heat exchanger 11.
  • the test de ⁇ vice includes a 61 ccm reciprocating compressor (10) and a receiver (16) with total volume of 4 liters.
  • the system also includes a counterflow heat exchanger (12) and liquid line connection from the receiver to point 17, as indicated in Fig. 2.
  • the throttling valve 13 is operated manually.
  • This example shows how control of refrigerating capacity is obtained by varying the position of the throttling valve 13, thereby varying the pressure in the high-side of the flow circuit.
  • the specific refrigerant enthalpy at the evaporator inlet is controlled, resulting in modulation of refrigerating capacity at constant mass flow.
  • the water inlet temperature to the evaporator 14 is kept constant at 20°C, and the water inlet temperature to the heat exchanger 11 is kept constant at 35°C.
  • Water circu ⁇ lation is constant both in the evaporator 14 and the heat exchanger 11.
  • the compressor is running at constant speed.
  • Fig. 6 shows the variation of refrigerating capacity (Q), compressor shaft work (W), high ⁇ ide pressure (p H ), C0 2 mass flow (m), C0 2 temperature at evaporator outlet (t # ), C0 2 temperature at the outlet of heat exchanger 11 (t b ) and liquid level in the receiver (h) when the throttling valve 13 is operated as indicated at the top of the figure.
  • the adjustment of throttling valve position is the only mani ⁇ pulation.
  • capacity (Q) is easily controlled by operating the throttling valve (13). It is further clear from the figure that at stable conditions, the circulating mass flow of CO 2 (m) is mainly constant and independent of the cooling capacity. The CO 2 temperature at the outlet of heat exchanger 11 (t b ) is also mainly constant. The graphs show that the variation of capacity is a result of varying high side pressure (p H ) only.
  • the water inlet temperature to the evaporator is kept constant at 20°C, and the compressor is running at constant speed.
  • the cooling capacity can be kept mainly constant when the ambient temperature is rising, by in ⁇ creasing the high side pressure.
  • the refrigerant mass flow is mainly constant, as shown.
  • Increased high-side pressures involve a reduction in receiver liquid content, as indicated by the liquid level readings.
  • FIG. 7 shows the variation of refrigerating capacity (Q) when the circulation rate of cooling water (m w ) is regulated as shown at the top of the figure.
  • the mass flow of C0 2 (m), the high-side pressure (p H ) and the water inlet temperature to heat exchanger 11 (ti) are kept constant.
  • the compressor is running at constant speed and both the temperature and flow rate of water entering the evaporator are kept constant.
  • the refrigerating capacity is easily controlled by variation of the water flow, as shown in the figure. Mass flow of C0 2 is mainly constant.
  • Fig. 8 is a graphic representation of trans critical cycles in the entropy/temperature diagram. The cycles shown in the diagram are based on measurements on the laboratory test device, during operation at five different high-side pressures. The evaporator pressure is kept constant, refrigerant is C0 2 .
  • the diagram gives a good impression of the capacity control principle, indicating the changes in specific enthalpy (h) at evaporator inlet caused by variation of the high-side pressure (p) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

La présente invention utilise la régulation de l'enthalpie spécifique à l'entrée de l'évaporateur par utilisation délibérée de la pression et/ou de la température avant l'étranglement pour obtenir un réglage de la capacité. La capacité est réglée par variation de la différence d'enthalpie du réfrigérant dans l'évaporateur et par modification de l'enthalpie spécifique du réfrigérant avant l'étranglement. En état surcritique, ce réglage peut être assuré par variation de la pression et de la température séparément. Dans un mode de réalisation préféré, cette modulation de l'enthalpie spécifique est effectuée par variation de la pression avant étranglement. Le réfrigérant est refroidi à une température aussi basse qu'il est possible de descendre au moyen du milieu de refroidissement disponible et la pression est régulée pour produire l'enthalpie requise. Dans un autre mode de réalisation, on utilise la modulation de l'enthalpie par variation de la température du réfrigérant avant étranglement, ce qui est effectué par réglage du rejet de chaleur depuis le dispositif.
PCT/NO1989/000089 1989-01-09 1989-09-06 Dispositif a cycle de carnot renverse en conditions transcritiques WO1990007683A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DE68908181T DE68908181T3 (de) 1989-01-09 1989-09-06 Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder überkritischen bedingungen.
EP89910211A EP0424474B2 (fr) 1989-01-09 1989-09-06 Procede pour operer un cycle de carnot renverse en conditions transcritiques ou supercritiques
JP1509515A JPH0718602B2 (ja) 1989-01-09 1989-09-06 超臨界蒸気圧縮サイクルの運転方法およびその装置
KR1019900701990A KR0126550B1 (ko) 1989-01-09 1989-09-06 증기압축 사이클의 용량조정방법 및 그 사이클을 포함하는 자동차 공기조화장치
UA93003690A UA27758C2 (uk) 1989-01-09 1989-09-06 Спосіб регулювання тиску на боці високого тиску пристрою і холодильний чи нагрівальний пристрій (варіанти)
DE8989910211A DE68908181D1 (de) 1989-01-09 1989-09-06 Verfahren zum betrieb eines kaltdampfprozesses unter trans- oder ueberkritischen bedingungen.
CA002018250A CA2018250C (fr) 1989-09-06 1990-06-05 Dispositif a cycle de compression de vapeur trans-critique
AU56968/90A AU635031B2 (en) 1989-09-06 1990-06-08 Trans-critical vapour compression cycle device
PL28596690A PL285966A1 (en) 1989-01-09 1990-07-06 Circulation device for compression of criotical process steam
HU904128A HU213995B (en) 1989-09-06 1990-07-06 Method for controlling the capacity of steam-compression cycle and apparatus for carrying out steam-compression cycle of controlled capacity particularly air-conditioning apparatus of automatic operation
ES9001955A ES2025443A6 (es) 1989-09-06 1990-07-19 Metodo para regular la capacidad de un ciclo de compresion de vapor y dispositivo acondicionador de aire para automocion.
BR909004438A BR9004438A (pt) 1989-09-06 1990-09-06 Processo para a regulagem da capacidade de um ciclo de compressao a vapor e dispositivo de condicionamento de ar para automotivos
DK214690A DK167985B1 (da) 1989-01-09 1990-09-07 Fremgangsmaade ved regulering af et kompressionskoelesystem og varme/koeleanordning til udoevelse af fremgangsmaaden
NO903903A NO171810C (no) 1989-01-09 1990-09-07 Fremgangsmaate ved regulering av et kompresjonskuldesystemsamt kjoeleanordning for utfoerelse av fremgangsmaaten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO890076A NO890076D0 (no) 1989-01-09 1989-01-09 Luftkondisjonering.
NO890076 1989-01-09

Publications (1)

Publication Number Publication Date
WO1990007683A1 true WO1990007683A1 (fr) 1990-07-12

Family

ID=19891609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO1989/000089 WO1990007683A1 (fr) 1989-01-09 1989-09-06 Dispositif a cycle de carnot renverse en conditions transcritiques

Country Status (10)

Country Link
EP (1) EP0424474B2 (fr)
JP (1) JPH0718602B2 (fr)
KR (1) KR0126550B1 (fr)
DE (2) DE68908181D1 (fr)
DK (1) DK167985B1 (fr)
NO (2) NO890076D0 (fr)
PL (1) PL285966A1 (fr)
RU (1) RU2039914C1 (fr)
UA (1) UA27758C2 (fr)
WO (1) WO1990007683A1 (fr)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006423A1 (fr) * 1991-09-16 1993-04-01 Sinvent A/S Procede de regulation de pression en partie haute dans un dispositif a cycle de carnot renverse transcritique
WO1993013370A1 (fr) * 1991-12-27 1993-07-08 Sinvent A/S Dispositif a cycle de compression de vapeur transcritique avec element a volume variable en partie haute
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
WO1994014016A1 (fr) * 1992-12-11 1994-06-23 Sinvent A/S Dispositif de compression trans-critique de vapeur
EP0675013A1 (fr) * 1994-03-31 1995-10-04 Mercedes-Benz Ag Véhicule automobile avec un dispositif de climatisation
EP0742116A2 (fr) * 1995-05-10 1996-11-13 TES WANKEL, TECHNISCHE FORSCHUNGS- UND ENTWICKLUNGSSTELLE LINDAU GmbH Installation de climatisation de véhicule
US5685160A (en) * 1994-09-09 1997-11-11 Mercedes-Benz Ag Method for operating an air conditioning cooling system for vehicles and a cooling system for carrying out the method
US5921756A (en) * 1995-12-04 1999-07-13 Denso Corporation Swash plate compressor including double-headed pistons having piston sections with different cross-sectional areas
EP0931991A2 (fr) 1998-01-21 1999-07-28 Denso Corporation Système frigorifique supercritique
DE19806654A1 (de) * 1998-02-18 1999-08-19 Obrist Engineering Gmbh Klimaanlage für Fahrzeuge
WO2000003882A1 (fr) * 1998-07-20 2000-01-27 Ford-Werke Aktiengesellschaft Climatiseur pouvant fonctionner au co2 et destine a un vehicule
WO2000003883A1 (fr) * 1998-07-20 2000-01-27 Ford-Werke Aktiengesellschaft Climatiseur pouvant fonctionner au co¿2?
DE19829335A1 (de) * 1998-07-01 2000-02-03 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Kälteanlage
EP0915306A3 (fr) * 1997-11-06 2000-04-12 Denso Corporation Appareil frigorifigue supercritique
US6085544A (en) * 1996-01-26 2000-07-11 Konvekta Ag Compression refrigeration unit
EP0837291A3 (fr) * 1996-08-22 2000-10-04 Denso Corporation Système frigorifique du type à compression de vapeur
EP1043550A1 (fr) * 1997-12-26 2000-10-11 Zexel Corporation Cycle de refrigeration
DE19918617A1 (de) * 1999-04-23 2000-11-02 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
WO2000068621A1 (fr) * 1999-05-11 2000-11-16 Zexel Valeo Climate Control Corporation Procede de commande de cycle de refrigeration et cycle de refrigeration mettant en oeuvre ce procede
WO2001006183A1 (fr) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Cycle frigorifique
WO2001025699A1 (fr) * 1999-10-06 2001-04-12 Zexel Valeo Climate Control Corporation Cycle frigorifique
WO2001027543A1 (fr) * 1999-10-08 2001-04-19 Zexel Valeo Climate Control Corporation Cycle frigorifique
US6244840B1 (en) 1999-06-08 2001-06-12 Mitsubishi Heavy Industries, Ltd. Scroll compressor having end plates of fixed and revolving scrolls thicker than heights of spiral protrusions of the scrolls
US6287097B1 (en) 1999-06-08 2001-09-11 Mitsubishi Heavy Industries, Ltd. Scroll compressor having discharge port formed only in end plate of fixed scroll, and discharge valve attached to the end plate
US6321544B1 (en) 1998-10-08 2001-11-27 Zexel Valeo Climate Control Corporation Refrigerating cycle
US6334764B1 (en) 1999-06-08 2002-01-01 Mitsubishi Heavy Industries, Ltd. Scroll compressor for introducing high-pressure fluid to thrust-face side so as to decrease thrust load imposed on revolving scroll
EP0892226A3 (fr) * 1997-07-18 2002-01-16 Denso Corporation Soupape de commande de pression pour système frigorifique
US6343486B1 (en) 1999-06-08 2002-02-05 Mitsubishi Heavy Industries, Ltd. Supercritical vapor compression cycle
EP1207359A2 (fr) * 2000-11-15 2002-05-22 Carrier Corporation Régulation de la haute pression d'un cycle de compression à vapeur surcritique
EP1209361A1 (fr) * 1999-08-31 2002-05-29 Sanyo Electric Co., Ltd. Compresseur rotatif interne de type a compression a 2 etages a pression intermediaire
DE19813220C2 (de) * 1998-03-26 2002-12-12 Univ Dresden Tech Kolbenexpansionsmaschine und Verfahren zur Einbindung dieser Maschine in einen transkritischen Kompressionskälteprozeß
DE10137999A1 (de) * 2001-08-02 2003-02-13 Bayerische Motoren Werke Ag Kälteanlage, Wärmetauscher hierfür sowie Kältemittel-Kreisprozess
US6523360B2 (en) 2000-10-30 2003-02-25 Calsonic Kansei Corporation Cooling cycle and control method thereof
DE10140630A1 (de) * 2001-08-18 2003-02-27 Bayerische Motoren Werke Ag Kälteanlage für ein Kraftfahrzeug sowie Kältemittel-Kreisprozess
EP1329677A3 (fr) * 2002-01-22 2003-12-17 Carrier Corporation Système de compression à vapeur transcritique
EP1445551A1 (fr) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Congelateur
EP1484560A2 (fr) 2003-06-04 2004-12-08 Sanyo Electric Co., Ltd. Appareil de refroidissement
WO2005022051A1 (fr) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Procede de reglage d'une installation de climatisation
EP1519127A1 (fr) * 2003-09-26 2005-03-30 Valeo Climatisation Cycle de refroidissement
EP1553365A2 (fr) * 2004-01-06 2005-07-13 Samsung Electronics Co., Ltd. Installation de climatisation
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US6959557B2 (en) 2003-09-02 2005-11-01 Tecumseh Products Company Apparatus for the storage and controlled delivery of fluids
US6962059B2 (en) 2000-08-01 2005-11-08 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
NL1026728C2 (nl) * 2004-07-26 2006-01-31 Antonie Bonte Verbetering van koelsystemen.
EP1692439A1 (fr) * 2003-11-07 2006-08-23 Carrier Corporation Systeme refrigerant avec quantite de charge refrigerante controlee
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7131294B2 (en) * 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
US7302807B2 (en) 2002-03-28 2007-12-04 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
WO2009005366A1 (fr) * 2007-06-29 2009-01-08 Sinvent As Système frigorifique à compression de vapeur en circuit fermé et son procédé de fonctionnement
WO2010003590A3 (fr) * 2008-07-07 2010-07-29 Carrier Corporation Circuit de réfrigération
EP2304345A2 (fr) * 2008-05-14 2011-04-06 Carrier Corporation Gestion de la charge dans des systèmes de réfrigération à compression de vapeur
US8109105B2 (en) 2004-11-29 2012-02-07 Mitsubishi Electric Corporation Refrigerating air conditioning system, method of controlling operation of refrigerating air conditioning system, and method of controlling amount of refrigerant in refrigerating air conditioning system
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
WO2012049259A1 (fr) 2010-10-14 2012-04-19 Energreen Heat Recovery As Procédé et système d'utilisation d'une source d'énergie à température relativement basse
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
US10101065B2 (en) 2013-08-14 2018-10-16 Central Glass Company, Limited Heat transmission method and high-temperature heat pump device
US10156392B2 (en) 2015-09-11 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
US10161655B2 (en) 2015-09-11 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
CN109163917A (zh) * 2018-07-19 2019-01-08 西安交通大学 一种跨临界co2热泵加速寿命实验系统及方法
US10214292B2 (en) 2006-02-03 2019-02-26 Airbus Operations Gmbh Cooling system using chiller and thermally coupled cooling circuit
EP3431896A4 (fr) * 2016-03-17 2019-03-27 Mitsubishi Electric Corporation Distributeur d'eau chaude à pompe à chaleur

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4415326C1 (de) * 1994-05-02 1995-06-08 Buse Gase Gmbh & Co Verfahren und Vorrichtung zum Kühlen von Gasen und Gasgemischen mit CO¶2¶
CH690189A5 (de) * 1995-03-10 2000-05-31 Daimler Benz Ag Verfahren zur Regelung der Leistung einer Anlage für die Kühlung des Fahrgastraumes eines Kraftfahrzeuges.
JPH0949662A (ja) * 1995-08-09 1997-02-18 Aisin Seiki Co Ltd 圧縮式空調機
JP3508465B2 (ja) 1997-05-09 2004-03-22 株式会社デンソー 熱交換器
JPH1137579A (ja) * 1997-07-11 1999-02-12 Zexel Corp 冷凍装置
JPH1163686A (ja) * 1997-08-12 1999-03-05 Zexel Corp 冷却サイクル
JP3365273B2 (ja) * 1997-09-25 2003-01-08 株式会社デンソー 冷凍サイクル
DE19813673B4 (de) 1998-03-27 2004-01-29 Daimlerchrysler Ag Verfahren und Vorrichtung zum Heizen und Kühlen eines Nutzraumes eines Kraftfahrzeuges
JP3861451B2 (ja) 1998-04-20 2006-12-20 株式会社デンソー 超臨界冷凍サイクル
WO2000023752A1 (fr) * 1998-10-19 2000-04-27 Zexel Valeo Climate Control Corporation Cycle frigorifique
DE19850914A1 (de) * 1998-11-05 2000-05-18 Messer Griesheim Gmbh Klimaanlage und Verfahren zur Steuerung einer Klimaanlage
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
DE19935731A1 (de) * 1999-07-29 2001-02-15 Daimler Chrysler Ag Verfahren zum Betreiben einer unter- und transkritisch betriebenen Fahrzeugkälteanlage
US6457325B1 (en) * 2000-10-31 2002-10-01 Modine Manufacturing Company Refrigeration system with phase separation
JP3510587B2 (ja) * 2000-12-06 2004-03-29 三菱重工業株式会社 空調装置用冷却サイクルおよび冷却サイクル用潤滑油
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
JP2003294338A (ja) * 2002-03-29 2003-10-15 Japan Climate Systems Corp 熱交換器
JP4522641B2 (ja) * 2002-05-13 2010-08-11 株式会社デンソー 蒸気圧縮式冷凍機
DE20208337U1 (de) * 2002-05-28 2003-10-16 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
DE10223712C1 (de) * 2002-05-28 2003-10-30 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
DE10306394A1 (de) * 2003-02-15 2004-08-26 Volkswagen Ag Kältemittelkreislauf mit einem geregelten Taumelscheibenkompressor
JP4286064B2 (ja) * 2003-05-30 2009-06-24 三洋電機株式会社 冷却装置
DE10332505B3 (de) * 2003-07-17 2005-01-13 Daimlerchrysler Ag Klimaanlage
US6813895B2 (en) * 2003-09-05 2004-11-09 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of adaptive control
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
JP2005226918A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 太陽電池駆動冷媒サイクル装置、給湯器、温蔵庫、冷却貯蔵庫、飲料供給装置及び空気調和機
JP2005226913A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 遷臨界冷媒サイクル装置
JP2005226927A (ja) * 2004-02-13 2005-08-25 Sanyo Electric Co Ltd 冷媒サイクル装置
DE102004008210A1 (de) * 2004-02-19 2005-09-01 Valeo Klimasysteme Gmbh Kraftfahrzeugklimaanlage
DE102004014812B3 (de) * 2004-03-24 2005-08-11 Adam Opel Ag Fahrzeug-Klimmaanlage
JP2009052880A (ja) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp ヒートポンプ給湯機
DE102004015297A1 (de) * 2004-03-29 2005-11-03 Andreas Bangheri Vorrichtung und Verfahren zur zyklischen Dampfkompression
JP4613526B2 (ja) * 2004-06-23 2011-01-19 株式会社デンソー 超臨界式ヒートポンプサイクル装置
DE102005022513A1 (de) * 2005-05-11 2006-11-16 Behr Gmbh & Co. Kg Kältemittelleitungen für Klimageräte
JP2007085685A (ja) * 2005-09-26 2007-04-05 Sanyo Electric Co Ltd ソーラー発電を用いたco2サイクル駆動装置
JP4848211B2 (ja) * 2006-06-08 2011-12-28 株式会社日立プラントテクノロジー 除湿空調システム
JP4591355B2 (ja) * 2006-01-13 2010-12-01 株式会社日立プラントテクノロジー 除湿空調システム
CN101713573B (zh) * 2006-01-13 2013-07-03 株式会社日立工业设备技术 除湿空调系统
JP2007187407A (ja) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の運転方法
JP2007263433A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 冷媒サイクル装置及び冷媒サイクル装置用熱交換器
WO2007139554A1 (fr) 2006-06-01 2007-12-06 Carrier Corporation Système et procédé pour un ajustement commandé de soupape de détente
DE102007043162B4 (de) * 2006-09-14 2021-02-25 Konvekta Ag Klimaanlage mit automatischer Kältemittelverlagerung
JP5040256B2 (ja) * 2006-10-19 2012-10-03 パナソニック株式会社 冷凍サイクル装置およびその制御方法
US20100050668A1 (en) * 2006-11-30 2010-03-04 Carrier Corporation Refrigerant Charge Storage
DE102007027524A1 (de) * 2007-06-15 2008-12-18 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug
DE202007011617U1 (de) 2007-08-20 2009-01-08 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
DE102007039195B4 (de) * 2007-08-20 2015-03-26 Ingersoll-Rand Klimasysteme Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
JP2009139037A (ja) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd 冷媒回路
NO331155B1 (no) 2008-12-02 2011-10-24 Varmepumpen As Varmepumpe/luftkondisjoneringsapparat med sekvensiell drift
US8468845B2 (en) * 2009-04-01 2013-06-25 Thar Geothermal, Inc. Geothermal energy system
JP2010261670A (ja) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp 冷凍装置
JP2011133206A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
DK2339266T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
EP2339265B1 (fr) 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Appareil de réfrigération
JP5496645B2 (ja) * 2009-12-25 2014-05-21 三洋電機株式会社 冷凍装置
JP2011133208A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP5484889B2 (ja) * 2009-12-25 2014-05-07 三洋電機株式会社 冷凍装置
JP5484890B2 (ja) * 2009-12-25 2014-05-07 三洋電機株式会社 冷凍装置
DE102011052776B4 (de) * 2011-04-27 2016-12-29 Dürr Thermea Gmbh Überkritische Wärmepumpe
JP6087611B2 (ja) * 2012-12-14 2017-03-01 シャープ株式会社 冷凍サイクル及びこれを備えた空気調和機
JP6174314B2 (ja) * 2012-12-14 2017-08-02 シャープ株式会社 冷凍システム装置
FR3005154B1 (fr) * 2013-04-26 2015-05-15 Commissariat Energie Atomique Four a chauffage par induction electromagnetique, utilisation du four pour la fusion d'un melange de metal(ux) et d'oxyde(s) representatif d'un corium
JP6388260B2 (ja) * 2014-05-14 2018-09-12 パナソニックIpマネジメント株式会社 冷凍装置
FR3044748B1 (fr) * 2015-12-03 2019-07-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Four a creuset froid a chauffage par deux inducteurs electromagnetiques, utilisation du four pour la fusion d'un melange de metal(ux) et d'oxyde(s) representatif d'un corium
CN108603697B (zh) * 2016-02-08 2020-06-05 松下知识产权经营株式会社 冷冻装置
CN108603696B (zh) * 2016-02-08 2020-06-12 松下知识产权经营株式会社 冷冻装置
EP3594587B1 (fr) * 2017-03-09 2021-04-21 Mitsubishi Electric Corporation Dispositif d'alimentation en eau chaude d'une pompe à chaleur
DE102017118424A1 (de) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Kreislaufsystem für ein Brennstoffzellen-Fahrzeug
DE102017118425A1 (de) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Kreislaufsystem für ein Fahrzeug und Verfahren dazu
JP2019207088A (ja) * 2018-05-30 2019-12-05 株式会社前川製作所 ヒートポンプシステム
JP2022083749A (ja) 2020-11-25 2022-06-06 パナソニックIpマネジメント株式会社 冷凍装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE278095C (fr) *
US1408453A (en) * 1921-01-24 1922-03-07 Justus C Goosmann Refrigerating apparatus
US3400555A (en) * 1966-05-02 1968-09-10 American Gas Ass Refrigeration system employing heat actuated compressor
US3844131A (en) * 1973-05-22 1974-10-29 Dunham Bush Inc Refrigeration system with head pressure control
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US4205532A (en) * 1977-05-02 1980-06-03 Commercial Refrigeration (Wiltshire) Limited Apparatus for and method of transferring heat
US4679403A (en) * 1984-09-06 1987-07-14 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128344A (fr) * 1973-04-11 1974-12-09
US4224801A (en) * 1978-11-13 1980-09-30 Lewis Tyree Jr Stored cryogenic refrigeration
JPS5582270A (en) * 1978-12-15 1980-06-20 Nippon Denso Co Refrigerating plant
JPS5828906B2 (ja) * 1980-09-05 1983-06-18 株式会社デンソー 冷凍装置
JPS58120056A (ja) * 1982-01-09 1983-07-16 三菱電機株式会社 冷凍装置
JPH0718602A (ja) * 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE278095C (fr) *
US1408453A (en) * 1921-01-24 1922-03-07 Justus C Goosmann Refrigerating apparatus
US3400555A (en) * 1966-05-02 1968-09-10 American Gas Ass Refrigeration system employing heat actuated compressor
US3844131A (en) * 1973-05-22 1974-10-29 Dunham Bush Inc Refrigeration system with head pressure control
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US4205532A (en) * 1977-05-02 1980-06-03 Commercial Refrigeration (Wiltshire) Limited Apparatus for and method of transferring heat
US4679403A (en) * 1984-09-06 1987-07-14 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
AU669473B2 (en) * 1991-09-16 1996-06-13 Sinvent As Method of high-side pressure regulation in transcritical vapor compression cycle device
WO1993006423A1 (fr) * 1991-09-16 1993-04-01 Sinvent A/S Procede de regulation de pression en partie haute dans un dispositif a cycle de carnot renverse transcritique
KR100331717B1 (ko) * 1991-12-27 2002-08-08 신벤트에이.에스 증기압축사이클장치의하이사이드압력을제어하는장치
WO1993013370A1 (fr) * 1991-12-27 1993-07-08 Sinvent A/S Dispositif a cycle de compression de vapeur transcritique avec element a volume variable en partie haute
US5497631A (en) * 1991-12-27 1996-03-12 Sinvent A/S Transcritical vapor compression cycle device with a variable high side volume element
AU662589B2 (en) * 1991-12-27 1995-09-07 Sinvent As Transcritical vapor compression cycle device with a variable high side volume element
US5655378A (en) * 1992-12-11 1997-08-12 Sinvent A/S Trans-critical vapor compression device
WO1994014016A1 (fr) * 1992-12-11 1994-06-23 Sinvent A/S Dispositif de compression trans-critique de vapeur
US5515691A (en) * 1994-03-31 1996-05-14 Mercedes-Benz Ag Motor vehicle with an air-conditioning system
EP0675013A1 (fr) * 1994-03-31 1995-10-04 Mercedes-Benz Ag Véhicule automobile avec un dispositif de climatisation
US5685160A (en) * 1994-09-09 1997-11-11 Mercedes-Benz Ag Method for operating an air conditioning cooling system for vehicles and a cooling system for carrying out the method
EP0742116A2 (fr) * 1995-05-10 1996-11-13 TES WANKEL, TECHNISCHE FORSCHUNGS- UND ENTWICKLUNGSSTELLE LINDAU GmbH Installation de climatisation de véhicule
EP0742116A3 (fr) * 1995-05-10 1998-04-29 TES WANKEL, TECHNISCHE FORSCHUNGS- UND ENTWICKLUNGSSTELLE LINDAU GmbH Installation de climatisation de véhicule
US5921756A (en) * 1995-12-04 1999-07-13 Denso Corporation Swash plate compressor including double-headed pistons having piston sections with different cross-sectional areas
US6085544A (en) * 1996-01-26 2000-07-11 Konvekta Ag Compression refrigeration unit
EP0837291A3 (fr) * 1996-08-22 2000-10-04 Denso Corporation Système frigorifique du type à compression de vapeur
EP0892226A3 (fr) * 1997-07-18 2002-01-16 Denso Corporation Soupape de commande de pression pour système frigorifique
USRE44636E1 (en) 1997-09-29 2013-12-10 Emerson Climate Technologies, Inc. Compressor capacity modulation
EP0915306A3 (fr) * 1997-11-06 2000-04-12 Denso Corporation Appareil frigorifigue supercritique
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
EP1043550A1 (fr) * 1997-12-26 2000-10-11 Zexel Corporation Cycle de refrigeration
EP1043550A4 (fr) * 1997-12-26 2003-02-19 Zexel Valeo Climate Contr Corp Cycle de refrigeration
EP0931991A2 (fr) 1998-01-21 1999-07-28 Denso Corporation Système frigorifique supercritique
DE19806654A1 (de) * 1998-02-18 1999-08-19 Obrist Engineering Gmbh Klimaanlage für Fahrzeuge
DE19813220C2 (de) * 1998-03-26 2002-12-12 Univ Dresden Tech Kolbenexpansionsmaschine und Verfahren zur Einbindung dieser Maschine in einen transkritischen Kompressionskälteprozeß
DE19829335A1 (de) * 1998-07-01 2000-02-03 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Kälteanlage
DE19829335C2 (de) * 1998-07-01 2000-06-08 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Kälteanlage
WO2000003883A1 (fr) * 1998-07-20 2000-01-27 Ford-Werke Aktiengesellschaft Climatiseur pouvant fonctionner au co¿2?
WO2000003882A1 (fr) * 1998-07-20 2000-01-27 Ford-Werke Aktiengesellschaft Climatiseur pouvant fonctionner au co2 et destine a un vehicule
US6321544B1 (en) 1998-10-08 2001-11-27 Zexel Valeo Climate Control Corporation Refrigerating cycle
DE19918617A1 (de) * 1999-04-23 2000-11-02 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
DE19918617C2 (de) * 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gaskühler für einen überkritischen CO¶2¶-Hochdruck-Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
WO2000068621A1 (fr) * 1999-05-11 2000-11-16 Zexel Valeo Climate Control Corporation Procede de commande de cycle de refrigeration et cycle de refrigeration mettant en oeuvre ce procede
US6244840B1 (en) 1999-06-08 2001-06-12 Mitsubishi Heavy Industries, Ltd. Scroll compressor having end plates of fixed and revolving scrolls thicker than heights of spiral protrusions of the scrolls
US6287097B1 (en) 1999-06-08 2001-09-11 Mitsubishi Heavy Industries, Ltd. Scroll compressor having discharge port formed only in end plate of fixed scroll, and discharge valve attached to the end plate
US6334764B1 (en) 1999-06-08 2002-01-01 Mitsubishi Heavy Industries, Ltd. Scroll compressor for introducing high-pressure fluid to thrust-face side so as to decrease thrust load imposed on revolving scroll
US6343486B1 (en) 1999-06-08 2002-02-05 Mitsubishi Heavy Industries, Ltd. Supercritical vapor compression cycle
WO2001006183A1 (fr) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Cycle frigorifique
EP1209361A4 (fr) * 1999-08-31 2002-12-04 Sanyo Electric Co Compresseur rotatif interne de type a compression a 2 etages a pression intermediaire
EP1209361A1 (fr) * 1999-08-31 2002-05-29 Sanyo Electric Co., Ltd. Compresseur rotatif interne de type a compression a 2 etages a pression intermediaire
US6651458B1 (en) 1999-08-31 2003-11-25 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
WO2001025699A1 (fr) * 1999-10-06 2001-04-12 Zexel Valeo Climate Control Corporation Cycle frigorifique
WO2001027543A1 (fr) * 1999-10-08 2001-04-19 Zexel Valeo Climate Control Corporation Cycle frigorifique
US6962059B2 (en) 2000-08-01 2005-11-08 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
US6523360B2 (en) 2000-10-30 2003-02-25 Calsonic Kansei Corporation Cooling cycle and control method thereof
EP1207359A2 (fr) * 2000-11-15 2002-05-22 Carrier Corporation Régulation de la haute pression d'un cycle de compression à vapeur surcritique
EP1207359A3 (fr) * 2000-11-15 2002-08-28 Carrier Corporation Régulation de la haute pression d'un cycle de compression à vapeur surcritique
DE10137999A1 (de) * 2001-08-02 2003-02-13 Bayerische Motoren Werke Ag Kälteanlage, Wärmetauscher hierfür sowie Kältemittel-Kreisprozess
DE10140630A1 (de) * 2001-08-18 2003-02-27 Bayerische Motoren Werke Ag Kälteanlage für ein Kraftfahrzeug sowie Kältemittel-Kreisprozess
US7481067B2 (en) 2001-11-13 2009-01-27 Daikin Industries, Ltd. Freezer
EP1445551A4 (fr) * 2001-11-13 2005-04-13 Daikin Ind Ltd Congelateur
EP1445551A1 (fr) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Congelateur
EP1329677A3 (fr) * 2002-01-22 2003-12-17 Carrier Corporation Système de compression à vapeur transcritique
US7302807B2 (en) 2002-03-28 2007-12-04 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
US7040116B2 (en) 2003-06-04 2006-05-09 Sanyo Electric Co., Ltd. Cooling apparatus and method for setting refrigerant sealing amount for the same
EP1484560A3 (fr) * 2003-06-04 2005-05-25 Sanyo Electric Co., Ltd. Appareil de refroidissement
EP1484560A2 (fr) 2003-06-04 2004-12-08 Sanyo Electric Co., Ltd. Appareil de refroidissement
WO2005022051A1 (fr) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Procede de reglage d'une installation de climatisation
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US6959557B2 (en) 2003-09-02 2005-11-01 Tecumseh Products Company Apparatus for the storage and controlled delivery of fluids
EP1519127A1 (fr) * 2003-09-26 2005-03-30 Valeo Climatisation Cycle de refroidissement
EP1692439A4 (fr) * 2003-11-07 2009-04-08 Carrier Corp Systeme refrigerant avec quantite de charge refrigerante controlee
EP1692439A1 (fr) * 2003-11-07 2006-08-23 Carrier Corporation Systeme refrigerant avec quantite de charge refrigerante controlee
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
EP1553365A3 (fr) * 2004-01-06 2012-06-20 Samsung Electronics Co., Ltd. Installation de climatisation
EP1553365A2 (fr) * 2004-01-06 2005-07-13 Samsung Electronics Co., Ltd. Installation de climatisation
US7721569B2 (en) 2004-01-13 2010-05-25 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
US7131294B2 (en) * 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
NL1026728C2 (nl) * 2004-07-26 2006-01-31 Antonie Bonte Verbetering van koelsystemen.
US8109105B2 (en) 2004-11-29 2012-02-07 Mitsubishi Electric Corporation Refrigerating air conditioning system, method of controlling operation of refrigerating air conditioning system, and method of controlling amount of refrigerant in refrigerating air conditioning system
US10214292B2 (en) 2006-02-03 2019-02-26 Airbus Operations Gmbh Cooling system using chiller and thermally coupled cooling circuit
WO2009005366A1 (fr) * 2007-06-29 2009-01-08 Sinvent As Système frigorifique à compression de vapeur en circuit fermé et son procédé de fonctionnement
US8578722B2 (en) 2007-06-29 2013-11-12 Sinvent As Closed circuit vapour compression refrigeration system and a method for operating the system
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
US8807961B2 (en) 2007-07-23 2014-08-19 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
EP2304345A4 (fr) * 2008-05-14 2014-10-15 Carrier Corp Gestion de la charge dans des systèmes de réfrigération à compression de vapeur
EP2304345A2 (fr) * 2008-05-14 2011-04-06 Carrier Corporation Gestion de la charge dans des systèmes de réfrigération à compression de vapeur
WO2010003590A3 (fr) * 2008-07-07 2010-07-29 Carrier Corporation Circuit de réfrigération
US8308455B2 (en) 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
WO2012049259A1 (fr) 2010-10-14 2012-04-19 Energreen Heat Recovery As Procédé et système d'utilisation d'une source d'énergie à température relativement basse
US10101065B2 (en) 2013-08-14 2018-10-16 Central Glass Company, Limited Heat transmission method and high-temperature heat pump device
US10156392B2 (en) 2015-09-11 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
US10161655B2 (en) 2015-09-11 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
EP3431896A4 (fr) * 2016-03-17 2019-03-27 Mitsubishi Electric Corporation Distributeur d'eau chaude à pompe à chaleur
CN109163917A (zh) * 2018-07-19 2019-01-08 西安交通大学 一种跨临界co2热泵加速寿命实验系统及方法

Also Published As

Publication number Publication date
DE68908181D1 (de) 1993-09-09
DE68908181T3 (de) 1998-06-18
EP0424474A1 (fr) 1991-05-02
DK214690A (da) 1990-11-06
DE68908181T2 (de) 1994-04-14
NO903903D0 (no) 1990-09-07
KR910700437A (ko) 1991-03-15
NO171810C (no) 1993-05-05
PL285966A1 (en) 1991-03-25
DK167985B1 (da) 1994-01-10
EP0424474B1 (fr) 1993-08-04
DK214690D0 (da) 1990-09-07
DE68908181T4 (de) 1995-06-14
UA27758C2 (uk) 2000-10-16
NO890076D0 (no) 1989-01-09
NO171810B (no) 1993-01-25
RU2039914C1 (ru) 1995-07-20
EP0424474B2 (fr) 1997-11-19
JPH03503206A (ja) 1991-07-18
JPH0718602B2 (ja) 1995-03-06
NO903903L (no) 1990-09-07
KR0126550B1 (ko) 1998-04-03

Similar Documents

Publication Publication Date Title
EP0424474B1 (fr) Procede pour operer un cycle de carnot renverse en conditions transcritiques ou supercritiques
US5245836A (en) Method and device for high side pressure regulation in transcritical vapor compression cycle
US8424326B2 (en) Refrigerant vapor compression system and method of transcritical operation
DK2264385T3 (en) Cooling circuits and method for operating a cooling circuit.
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US9068765B2 (en) Refrigeration storage in a refrigerant vapor compression system
US6250086B1 (en) High efficiency refrigeration system
WO2008019689A2 (fr) Système de réfrigération transcritique doté d'un surpresseur
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
US20090272128A1 (en) Cascade cooling system with intercycle cooling
US20030177782A1 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
JP3838008B2 (ja) 冷凍サイクル装置
WO1982003449A1 (fr) Systeme et condenseur de pre-refroidissement/refroidissement au-dessous du point de condensation
US3952533A (en) Multiple valve refrigeration system
EP3862657A1 (fr) Système de réfrigération comportant plusieurs échangeurs de chaleur absorbant la chaleur
KR102477314B1 (ko) 냉동싸이클 시스템의 수액기 냉매액 온도저감 방법 및 증발기 냉각성능 개선방법
JP2002168536A (ja) 空気調和装置
CA2018250C (fr) Dispositif a cycle de compression de vapeur trans-critique
JP3480205B2 (ja) 空気調和機
Missimer et al. Cascade refrigerating systems-state of the art
NO344191B1 (en) Apparatus and method for transferring heat
JPH1038394A (ja) 冷媒循環式熱移動装置
KR19980010735U (ko) 냉동기의 냉매저온화장치
AU8334582A (en) Precool/subcool system and condenser therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DK FI JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989910211

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989910211

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989910211

Country of ref document: EP