US20180057594A1 - Pseudotyped oncolytic viral delivery of therapeutic polypeptides - Google Patents
Pseudotyped oncolytic viral delivery of therapeutic polypeptides Download PDFInfo
- Publication number
- US20180057594A1 US20180057594A1 US15/720,696 US201715720696A US2018057594A1 US 20180057594 A1 US20180057594 A1 US 20180057594A1 US 201715720696 A US201715720696 A US 201715720696A US 2018057594 A1 US2018057594 A1 US 2018057594A1
- Authority
- US
- United States
- Prior art keywords
- virus
- nucleic acid
- mir
- acid sequence
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 227
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 181
- 102000004196 processed proteins & peptides Human genes 0.000 title claims description 161
- 229920001184 polypeptide Polymers 0.000 title claims description 159
- 230000003612 virological effect Effects 0.000 title description 26
- 230000000174 oncolytic effect Effects 0.000 title description 20
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 358
- 244000309459 oncolytic virus Species 0.000 claims abstract description 176
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 46
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 46
- 210000004027 cell Anatomy 0.000 claims description 262
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 237
- 241000700605 Viruses Species 0.000 claims description 232
- 239000000427 antigen Substances 0.000 claims description 141
- 102000036639 antigens Human genes 0.000 claims description 141
- 108091007433 antigens Proteins 0.000 claims description 141
- 230000004913 activation Effects 0.000 claims description 99
- 239000012636 effector Substances 0.000 claims description 68
- -1 CD86 Proteins 0.000 claims description 40
- 210000004881 tumor cell Anatomy 0.000 claims description 35
- 239000002679 microRNA Substances 0.000 claims description 30
- 108700011259 MicroRNAs Proteins 0.000 claims description 24
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 claims description 18
- 102000004127 Cytokines Human genes 0.000 claims description 17
- 108090000695 Cytokines Proteins 0.000 claims description 17
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 14
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 14
- 230000002829 reductive effect Effects 0.000 claims description 13
- 230000010415 tropism Effects 0.000 claims description 12
- 102000037982 Immune checkpoint proteins Human genes 0.000 claims description 11
- 108091008036 Immune checkpoint proteins Proteins 0.000 claims description 11
- 241000700588 Human alphaherpesvirus 1 Species 0.000 claims description 10
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 claims description 9
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 claims description 9
- 108091028049 Mir-221 microRNA Proteins 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 230000010076 replication Effects 0.000 claims description 8
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 claims description 7
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 claims description 7
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 claims description 6
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 claims description 6
- 239000002870 angiogenesis inducing agent Substances 0.000 claims description 6
- 108091033773 MiR-155 Proteins 0.000 claims description 5
- 108091028684 Mir-145 Proteins 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 5
- 108091062762 miR-21 stem-loop Proteins 0.000 claims description 5
- 108091041631 miR-21-1 stem-loop Proteins 0.000 claims description 5
- 108091044442 miR-21-2 stem-loop Proteins 0.000 claims description 5
- 210000004882 non-tumor cell Anatomy 0.000 claims description 5
- 108091027559 Mir-96 microRNA Proteins 0.000 claims description 4
- 108091064157 miR-106a stem-loop Proteins 0.000 claims description 4
- 108091064399 miR-10b stem-loop Proteins 0.000 claims description 4
- 108091063365 miR-1247 stem-loop Proteins 0.000 claims description 4
- 108091091360 miR-125b stem-loop Proteins 0.000 claims description 4
- 108091032320 miR-146 stem-loop Proteins 0.000 claims description 4
- 108091024530 miR-146a stem-loop Proteins 0.000 claims description 4
- 108091043612 miR-146b stem-loop Proteins 0.000 claims description 4
- 108091091751 miR-17 stem-loop Proteins 0.000 claims description 4
- 108091069239 miR-17-2 stem-loop Proteins 0.000 claims description 4
- 108091023796 miR-182 stem-loop Proteins 0.000 claims description 4
- 108091029500 miR-183 stem-loop Proteins 0.000 claims description 4
- 108091061917 miR-221 stem-loop Proteins 0.000 claims description 4
- 108091063489 miR-221-1 stem-loop Proteins 0.000 claims description 4
- 108091055391 miR-221-2 stem-loop Proteins 0.000 claims description 4
- 108091031076 miR-221-3 stem-loop Proteins 0.000 claims description 4
- 108091080321 miR-222 stem-loop Proteins 0.000 claims description 4
- 108091086713 miR-96 stem-loop Proteins 0.000 claims description 4
- 108091070961 miR-96-3 stem-loop Proteins 0.000 claims description 4
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 3
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 claims description 3
- 230000000139 costimulatory effect Effects 0.000 claims description 3
- 230000001988 toxicity Effects 0.000 claims description 3
- 231100000419 toxicity Toxicity 0.000 claims description 3
- 102000005741 Metalloproteases Human genes 0.000 claims description 2
- 108010006035 Metalloproteases Proteins 0.000 claims description 2
- 230000003527 anti-angiogenesis Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 102000008096 B7-H1 Antigen Human genes 0.000 claims 2
- 210000000987 immune system Anatomy 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 115
- 238000000034 method Methods 0.000 abstract description 38
- 201000011510 cancer Diseases 0.000 abstract description 34
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 9
- 150000001413 amino acids Chemical group 0.000 description 147
- 108090000623 proteins and genes Proteins 0.000 description 144
- 239000012634 fragment Substances 0.000 description 106
- 102000004169 proteins and genes Human genes 0.000 description 68
- 230000027455 binding Effects 0.000 description 64
- 238000009739 binding Methods 0.000 description 64
- 235000018102 proteins Nutrition 0.000 description 56
- 210000001744 T-lymphocyte Anatomy 0.000 description 52
- 108010065805 Interleukin-12 Proteins 0.000 description 50
- 102000013462 Interleukin-12 Human genes 0.000 description 50
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 47
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 45
- 239000000203 mixture Substances 0.000 description 45
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 44
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 44
- 230000014509 gene expression Effects 0.000 description 44
- 239000003112 inhibitor Substances 0.000 description 40
- 239000013598 vector Substances 0.000 description 36
- 241000282414 Homo sapiens Species 0.000 description 34
- 108090000172 Interleukin-15 Proteins 0.000 description 28
- 102000003812 Interleukin-15 Human genes 0.000 description 28
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 27
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 27
- 229940045513 CTLA4 antagonist Drugs 0.000 description 26
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 25
- 101000938346 Homo sapiens Ephrin type-A receptor 2 Proteins 0.000 description 25
- 241000711975 Vesicular stomatitis virus Species 0.000 description 25
- 235000001014 amino acid Nutrition 0.000 description 25
- 230000003993 interaction Effects 0.000 description 24
- 229920000642 polymer Polymers 0.000 description 24
- 102000005962 receptors Human genes 0.000 description 24
- 108020003175 receptors Proteins 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 23
- 108090000565 Capsid Proteins Proteins 0.000 description 22
- 210000001519 tissue Anatomy 0.000 description 22
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 21
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 21
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 21
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 21
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 21
- 102000017578 LAG3 Human genes 0.000 description 21
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 21
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 21
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 20
- 201000010099 disease Diseases 0.000 description 20
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 19
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 17
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 17
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 16
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 16
- 230000002018 overexpression Effects 0.000 description 16
- 102100027207 CD27 antigen Human genes 0.000 description 15
- 102000003886 Glycoproteins Human genes 0.000 description 15
- 108090000288 Glycoproteins Proteins 0.000 description 15
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 15
- 101100519207 Mus musculus Pdcd1 gene Proteins 0.000 description 15
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 15
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 15
- 229960003301 nivolumab Drugs 0.000 description 15
- 239000013603 viral vector Substances 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- 108091030071 RNAI Proteins 0.000 description 14
- 230000009368 gene silencing by RNA Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 12
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 12
- 102000018697 Membrane Proteins Human genes 0.000 description 12
- 108010052285 Membrane Proteins Proteins 0.000 description 12
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 12
- 201000005787 hematologic cancer Diseases 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- 241001529453 unidentified herpesvirus Species 0.000 description 12
- 108010050904 Interferons Proteins 0.000 description 11
- 102000014150 Interferons Human genes 0.000 description 11
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 11
- 239000003446 ligand Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 102100025221 CD70 antigen Human genes 0.000 description 10
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 10
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 10
- 230000000692 anti-sense effect Effects 0.000 description 10
- 241001493065 dsRNA viruses Species 0.000 description 10
- 101710091045 Envelope protein Proteins 0.000 description 9
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 9
- 102100034349 Integrase Human genes 0.000 description 9
- 241000712079 Measles morbillivirus Species 0.000 description 9
- 101710188315 Protein X Proteins 0.000 description 9
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 9
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 108091070501 miRNA Proteins 0.000 description 9
- 210000000581 natural killer T-cell Anatomy 0.000 description 9
- 210000000822 natural killer cell Anatomy 0.000 description 9
- 102000019034 Chemokines Human genes 0.000 description 8
- 108010012236 Chemokines Proteins 0.000 description 8
- 102100031351 Galectin-9 Human genes 0.000 description 8
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 8
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 8
- 101000955999 Homo sapiens V-set domain-containing T-cell activation inhibitor 1 Proteins 0.000 description 8
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 8
- 102000015696 Interleukins Human genes 0.000 description 8
- 108010063738 Interleukins Proteins 0.000 description 8
- 108010043610 KIR Receptors Proteins 0.000 description 8
- 241000713666 Lentivirus Species 0.000 description 8
- 208000005718 Stomach Neoplasms Diseases 0.000 description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 8
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 229960005386 ipilimumab Drugs 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 102100026882 Alpha-synuclein Human genes 0.000 description 7
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 7
- 102100038078 CD276 antigen Human genes 0.000 description 7
- 101150013553 CD40 gene Proteins 0.000 description 7
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 7
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 7
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 7
- 101000884279 Homo sapiens CD276 antigen Proteins 0.000 description 7
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 7
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 7
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 7
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 7
- 101000679851 Homo sapiens Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 7
- 108090001005 Interleukin-6 Proteins 0.000 description 7
- 102000004889 Interleukin-6 Human genes 0.000 description 7
- 108091033760 Oncomir Proteins 0.000 description 7
- 239000012272 PD-L2 inhibitor Substances 0.000 description 7
- 101710120463 Prostate stem cell antigen Proteins 0.000 description 7
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 7
- 241000702263 Reovirus sp. Species 0.000 description 7
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 7
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 7
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 7
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 7
- 210000000234 capsid Anatomy 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 208000005017 glioblastoma Diseases 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 229940047124 interferons Drugs 0.000 description 7
- 210000002540 macrophage Anatomy 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 7
- 229940121654 pd-l2 inhibitor Drugs 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- 241000711404 Avian avulavirus 1 Species 0.000 description 6
- 206010006187 Breast cancer Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- 239000012275 CTLA-4 inhibitor Substances 0.000 description 6
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 6
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 6
- 102000001301 EGF receptor Human genes 0.000 description 6
- 108060006698 EGF receptor Proteins 0.000 description 6
- 102000003951 Erythropoietin Human genes 0.000 description 6
- 108090000394 Erythropoietin Proteins 0.000 description 6
- 101000916489 Homo sapiens Chondroitin sulfate proteoglycan 4 Proteins 0.000 description 6
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 6
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 6
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 6
- 241000701076 Macacine alphaherpesvirus 1 Species 0.000 description 6
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 6
- 102100023832 Prolyl endopeptidase FAP Human genes 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 241001529934 Simian T-lymphotropic virus 3 Species 0.000 description 6
- 230000006044 T cell activation Effects 0.000 description 6
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 6
- 241000700618 Vaccinia virus Species 0.000 description 6
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 6
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 6
- 210000001072 colon Anatomy 0.000 description 6
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 229940105423 erythropoietin Drugs 0.000 description 6
- 108010072257 fibroblast activation protein alpha Proteins 0.000 description 6
- 206010017758 gastric cancer Diseases 0.000 description 6
- 229940126546 immune checkpoint molecule Drugs 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229940047122 interleukins Drugs 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 210000004779 membrane envelope Anatomy 0.000 description 6
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 6
- 201000011549 stomach cancer Diseases 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 5
- 208000003174 Brain Neoplasms Diseases 0.000 description 5
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 5
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 5
- 101150029707 ERBB2 gene Proteins 0.000 description 5
- 102100021260 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Human genes 0.000 description 5
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 5
- 208000031886 HIV Infections Diseases 0.000 description 5
- 102000007346 Hepatitis A Virus Cellular Receptor 2 Human genes 0.000 description 5
- 108010007707 Hepatitis A Virus Cellular Receptor 2 Proteins 0.000 description 5
- 101000894906 Homo sapiens Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Proteins 0.000 description 5
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 5
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 5
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 5
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- 241000712902 Lassa mammarenavirus Species 0.000 description 5
- 102000003729 Neprilysin Human genes 0.000 description 5
- 108090000028 Neprilysin Proteins 0.000 description 5
- 241001505332 Polyomavirus sp. Species 0.000 description 5
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 5
- 102100038358 Prostate-specific antigen Human genes 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 108091027967 Small hairpin RNA Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 108091008874 T cell receptors Proteins 0.000 description 5
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 5
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 210000003289 regulatory T cell Anatomy 0.000 description 5
- 229920002477 rna polymer Polymers 0.000 description 5
- 210000001550 testis Anatomy 0.000 description 5
- 102000003390 tumor necrosis factor Human genes 0.000 description 5
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 4
- 101150051188 Adora2a gene Proteins 0.000 description 4
- 241000271566 Aves Species 0.000 description 4
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 4
- 102100032976 CCR4-NOT transcription complex subunit 6 Human genes 0.000 description 4
- 102100024263 CD160 antigen Human genes 0.000 description 4
- 102100038077 CD226 antigen Human genes 0.000 description 4
- 102000000905 Cadherin Human genes 0.000 description 4
- 108050007957 Cadherin Proteins 0.000 description 4
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 4
- 102000000844 Cell Surface Receptors Human genes 0.000 description 4
- 108010001857 Cell Surface Receptors Proteins 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 241001466953 Echovirus Species 0.000 description 4
- 241000709661 Enterovirus Species 0.000 description 4
- 241000991587 Enterovirus C Species 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 4
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 4
- 108091006027 G proteins Proteins 0.000 description 4
- 102000030782 GTP binding Human genes 0.000 description 4
- 108091000058 GTP-Binding Proteins 0.000 description 4
- 101710121810 Galectin-9 Proteins 0.000 description 4
- 101100229077 Gallus gallus GAL9 gene Proteins 0.000 description 4
- 241001663880 Gammaretrovirus Species 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 4
- 101000761938 Homo sapiens CD160 antigen Proteins 0.000 description 4
- 101000884298 Homo sapiens CD226 antigen Proteins 0.000 description 4
- 101001037256 Homo sapiens Indoleamine 2,3-dioxygenase 1 Proteins 0.000 description 4
- 101001037261 Homo sapiens Indoleamine 2,3-dioxygenase 2 Proteins 0.000 description 4
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 4
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 4
- 101000679903 Homo sapiens Tumor necrosis factor receptor superfamily member 25 Proteins 0.000 description 4
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 4
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 4
- 102100040061 Indoleamine 2,3-dioxygenase 1 Human genes 0.000 description 4
- 102100040062 Indoleamine 2,3-dioxygenase 2 Human genes 0.000 description 4
- 108090000176 Interleukin-13 Proteins 0.000 description 4
- 102000003816 Interleukin-13 Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102100023123 Mucin-16 Human genes 0.000 description 4
- 241000829388 Mus musculus polyomavirus 1 Species 0.000 description 4
- 241000700562 Myxoma virus Species 0.000 description 4
- 101710160107 Outer membrane protein A Proteins 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 4
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 108010001267 Protein Subunits Proteins 0.000 description 4
- 102000002067 Protein Subunits Human genes 0.000 description 4
- 241000125945 Protoparvovirus Species 0.000 description 4
- 102100029198 SLAM family member 7 Human genes 0.000 description 4
- 206010042971 T-cell lymphoma Diseases 0.000 description 4
- 102100022203 Tumor necrosis factor receptor superfamily member 25 Human genes 0.000 description 4
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 4
- 108091008605 VEGF receptors Proteins 0.000 description 4
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 4
- 108010067390 Viral Proteins Proteins 0.000 description 4
- 230000001772 anti-angiogenic effect Effects 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 4
- 229960002986 dinoprostone Drugs 0.000 description 4
- 229940056913 eftilagimod alfa Drugs 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 229940126864 fibroblast growth factor Drugs 0.000 description 4
- 230000003176 fibrotic effect Effects 0.000 description 4
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 102000006495 integrins Human genes 0.000 description 4
- 108010044426 integrins Proteins 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 230000036210 malignancy Effects 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 210000000214 mouth Anatomy 0.000 description 4
- 229960002621 pembrolizumab Drugs 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 4
- 210000002307 prostate Anatomy 0.000 description 4
- 150000003839 salts Chemical group 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 230000007502 viral entry Effects 0.000 description 4
- 210000002845 virion Anatomy 0.000 description 4
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 3
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 3
- 241001664176 Alpharetrovirus Species 0.000 description 3
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 3
- 241000145903 Bombyx mori cypovirus 1 Species 0.000 description 3
- 208000011691 Burkitt lymphomas Diseases 0.000 description 3
- 102100035793 CD83 antigen Human genes 0.000 description 3
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 3
- 101710120595 Cancer/testis antigen 2 Proteins 0.000 description 3
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 3
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- 102100023321 Ceruloplasmin Human genes 0.000 description 3
- 102000009410 Chemokine receptor Human genes 0.000 description 3
- 108050000299 Chemokine receptor Proteins 0.000 description 3
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 3
- 102100039361 Chondrosarcoma-associated gene 2/3 protein Human genes 0.000 description 3
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 3
- 101710126281 Cysteine-rich secretory protein 3 Proteins 0.000 description 3
- 102100027367 Cysteine-rich secretory protein 3 Human genes 0.000 description 3
- 241000450599 DNA viruses Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000050554 Eph Family Receptors Human genes 0.000 description 3
- 108091008815 Eph receptors Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000711950 Filoviridae Species 0.000 description 3
- 102000003817 Fos-related antigen 1 Human genes 0.000 description 3
- 108090000123 Fos-related antigen 1 Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 3
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 3
- 101000745414 Homo sapiens Chondrosarcoma-associated gene 2/3 protein Proteins 0.000 description 3
- 101000833614 Homo sapiens Interferon-inducible protein AIM2 Proteins 0.000 description 3
- 101001138062 Homo sapiens Leukocyte-associated immunoglobulin-like receptor 1 Proteins 0.000 description 3
- 101001008874 Homo sapiens Mast/stem cell growth factor receptor Kit Proteins 0.000 description 3
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 3
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 3
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 3
- 101000825253 Homo sapiens Sperm protein associated with the nucleus on the X chromosome A Proteins 0.000 description 3
- 101000794200 Homo sapiens Testis-specific serine/threonine-protein kinase 6 Proteins 0.000 description 3
- 101000814511 Homo sapiens X antigen family member 2 Proteins 0.000 description 3
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 3
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 3
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- 102100024064 Interferon-inducible protein AIM2 Human genes 0.000 description 3
- 102000003814 Interleukin-10 Human genes 0.000 description 3
- 108090000174 Interleukin-10 Proteins 0.000 description 3
- 102100020793 Interleukin-13 receptor subunit alpha-2 Human genes 0.000 description 3
- 101710112634 Interleukin-13 receptor subunit alpha-2 Proteins 0.000 description 3
- 102000002698 KIR Receptors Human genes 0.000 description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 description 3
- 102100031357 L-lactate dehydrogenase C chain Human genes 0.000 description 3
- 108010028554 LDL Cholesterol Proteins 0.000 description 3
- 102100020943 Leukocyte-associated immunoglobulin-like receptor 1 Human genes 0.000 description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 3
- 102100026753 Lymphokine-activated killer T-cell-originated protein kinase Human genes 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 102100030301 MHC class I polypeptide-related sequence A Human genes 0.000 description 3
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 3
- 102100037020 Melanoma antigen preferentially expressed in tumors Human genes 0.000 description 3
- 101710178381 Melanoma antigen preferentially expressed in tumors Proteins 0.000 description 3
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 3
- 102000013013 Member 2 Subfamily G ATP Binding Cassette Transporter Human genes 0.000 description 3
- 108010090306 Member 2 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 3
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 3
- 108700015928 Mitogen-activated protein kinase 13 Proteins 0.000 description 3
- 108010063954 Mucins Proteins 0.000 description 3
- 102000015728 Mucins Human genes 0.000 description 3
- 241000714177 Murine leukemia virus Species 0.000 description 3
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 3
- 108010004222 Natural Cytotoxicity Triggering Receptor 3 Proteins 0.000 description 3
- 102100032852 Natural cytotoxicity triggering receptor 3 Human genes 0.000 description 3
- 102000002111 Neuropilin Human genes 0.000 description 3
- 108050009450 Neuropilin Proteins 0.000 description 3
- 102000004473 OX40 Ligand Human genes 0.000 description 3
- 108010042215 OX40 Ligand Proteins 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 239000012270 PD-1 inhibitor Substances 0.000 description 3
- 239000012668 PD-1-inhibitor Substances 0.000 description 3
- 108010014971 PDZ-binding kinase Proteins 0.000 description 3
- 241001631646 Papillomaviridae Species 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 241000709664 Picornaviridae Species 0.000 description 3
- 102100040120 Prominin-1 Human genes 0.000 description 3
- 102000008993 Prospero homeobox protein 1 Human genes 0.000 description 3
- 108050000980 Prospero homeobox protein 1 Proteins 0.000 description 3
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 3
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 3
- 241000700564 Rabbit fibroma virus Species 0.000 description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 3
- 241000711931 Rhabdoviridae Species 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- 208000000453 Skin Neoplasms Diseases 0.000 description 3
- 102100022327 Sperm protein associated with the nucleus on the X chromosome A Human genes 0.000 description 3
- 101800001271 Surface protein Proteins 0.000 description 3
- 241000282898 Sus scrofa Species 0.000 description 3
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 102100030141 Testis-specific serine/threonine-protein kinase 6 Human genes 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 102100033504 Thyroglobulin Human genes 0.000 description 3
- 108010034949 Thyroglobulin Proteins 0.000 description 3
- 108010033576 Transferrin Receptors Proteins 0.000 description 3
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 3
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 3
- 108010042352 Urokinase Plasminogen Activator Receptors Proteins 0.000 description 3
- 102000004504 Urokinase Plasminogen Activator Receptors Human genes 0.000 description 3
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 3
- 102100039492 X antigen family member 2 Human genes 0.000 description 3
- 102100040814 Zinc finger protein 165 Human genes 0.000 description 3
- 101710145512 Zinc finger protein 165 Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 206010014599 encephalitis Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 108020001756 ligand binding domains Proteins 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 108090000743 multidrug resistance protein 3 Proteins 0.000 description 3
- 102000004233 multidrug resistance protein 3 Human genes 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 229940121655 pd-1 inhibitor Drugs 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229950010773 pidilizumab Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 241000114864 ssRNA viruses Species 0.000 description 3
- 210000002536 stromal cell Anatomy 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 229960002175 thyroglobulin Drugs 0.000 description 3
- 210000003932 urinary bladder Anatomy 0.000 description 3
- 210000004291 uterus Anatomy 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 2
- 102100022464 5'-nucleotidase Human genes 0.000 description 2
- 241000701242 Adenoviridae Species 0.000 description 2
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 2
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 2
- 241000710929 Alphavirus Species 0.000 description 2
- 208000003829 American Hemorrhagic Fever Diseases 0.000 description 2
- 102000009840 Angiopoietins Human genes 0.000 description 2
- 108010009906 Angiopoietins Proteins 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 102100031323 Anthrax toxin receptor 1 Human genes 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- 201000009695 Argentine hemorrhagic fever Diseases 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 229940125565 BMS-986016 Drugs 0.000 description 2
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 2
- 102100027522 Baculoviral IAP repeat-containing protein 7 Human genes 0.000 description 2
- 101710177963 Baculoviral IAP repeat-containing protein 7 Proteins 0.000 description 2
- 102000015735 Beta-catenin Human genes 0.000 description 2
- 108060000903 Beta-catenin Proteins 0.000 description 2
- 241001231757 Betaretrovirus Species 0.000 description 2
- 241000829192 Bos taurus polyomavirus 1 Species 0.000 description 2
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 description 2
- 241000700585 Bovine alphaherpesvirus 2 Species 0.000 description 2
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- 108700012439 CA9 Proteins 0.000 description 2
- 101150104494 CAV1 gene Proteins 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 2
- 108010058905 CD44v6 antigen Proteins 0.000 description 2
- 102100027221 CD81 antigen Human genes 0.000 description 2
- 102100027217 CD82 antigen Human genes 0.000 description 2
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 108010052500 Calgranulin A Proteins 0.000 description 2
- 102000004225 Cathepsin B Human genes 0.000 description 2
- 108090000712 Cathepsin B Proteins 0.000 description 2
- 241000710777 Classical swine fever virus Species 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102100032768 Complement receptor type 2 Human genes 0.000 description 2
- 241000711573 Coronaviridae Species 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102100040606 Dermatan-sulfate epimerase Human genes 0.000 description 2
- 101150076616 EPHA2 gene Proteins 0.000 description 2
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 2
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 2
- 241001115402 Ebolavirus Species 0.000 description 2
- 241000725630 Ectromelia virus Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 102100038083 Endosialin Human genes 0.000 description 2
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 2
- 241000701081 Equid alphaherpesvirus 1 Species 0.000 description 2
- 241000701089 Equid alphaherpesvirus 4 Species 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 241000701087 Felid alphaherpesvirus 1 Species 0.000 description 2
- 102100037362 Fibronectin Human genes 0.000 description 2
- 102000002090 Fibronectin type III Human genes 0.000 description 2
- 108050009401 Fibronectin type III Proteins 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 102100039717 G antigen 1 Human genes 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 102100033366 Glutathione hydrolase 1 proenzyme Human genes 0.000 description 2
- 102000010956 Glypican Human genes 0.000 description 2
- 108050001154 Glypican Proteins 0.000 description 2
- 108050007237 Glypican-3 Proteins 0.000 description 2
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 2
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 2
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 2
- 108010075704 HLA-A Antigens Proteins 0.000 description 2
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 2
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 2
- 108010058607 HLA-B Antigens Proteins 0.000 description 2
- 108010052199 HLA-C Antigens Proteins 0.000 description 2
- 241000150562 Hantaan orthohantavirus Species 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 241000893570 Hendra henipavirus Species 0.000 description 2
- 241000724709 Hepatitis delta virus Species 0.000 description 2
- 241000700586 Herpesviridae Species 0.000 description 2
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 2
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 2
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 2
- 101000796095 Homo sapiens Anthrax toxin receptor 1 Proteins 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 2
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 2
- 101000914469 Homo sapiens CD82 antigen Proteins 0.000 description 2
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 2
- 101000816698 Homo sapiens Dermatan-sulfate epimerase Proteins 0.000 description 2
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 2
- 101001024566 Homo sapiens Ecto-ADP-ribosyltransferase 4 Proteins 0.000 description 2
- 101000884275 Homo sapiens Endosialin Proteins 0.000 description 2
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101000997558 Homo sapiens Glutathione hydrolase 1 proenzyme Proteins 0.000 description 2
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 description 2
- 101001042104 Homo sapiens Inducible T-cell costimulator Proteins 0.000 description 2
- 101001046687 Homo sapiens Integrin alpha-E Proteins 0.000 description 2
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 2
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 2
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 2
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 description 2
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 description 2
- 101001036675 Homo sapiens Melanoma-associated antigen B6 Proteins 0.000 description 2
- 101001109508 Homo sapiens NKG2-A/NKG2-B type II integral membrane protein Proteins 0.000 description 2
- 101000589305 Homo sapiens Natural cytotoxicity triggering receptor 2 Proteins 0.000 description 2
- 101000971513 Homo sapiens Natural killer cells antigen CD94 Proteins 0.000 description 2
- 101001123834 Homo sapiens Neprilysin Proteins 0.000 description 2
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 2
- 101000829725 Homo sapiens Phospholipid hydroperoxide glutathione peroxidase Proteins 0.000 description 2
- 101000880774 Homo sapiens Protein SSX4 Proteins 0.000 description 2
- 101000880775 Homo sapiens Protein SSX5 Proteins 0.000 description 2
- 101001076732 Homo sapiens RNA-binding protein 27 Proteins 0.000 description 2
- 101001056234 Homo sapiens Sperm mitochondrial-associated cysteine-rich protein Proteins 0.000 description 2
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 2
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 2
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 2
- 101000612981 Homo sapiens Testis-specific gene 10 protein Proteins 0.000 description 2
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 description 2
- 101000599037 Homo sapiens Zinc finger protein Helios Proteins 0.000 description 2
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 2
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 2
- 241000702617 Human parvovirus B19 Species 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 description 2
- 102100021317 Inducible T-cell costimulator Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100022341 Integrin alpha-E Human genes 0.000 description 2
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 2
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 102000000704 Interleukin-7 Human genes 0.000 description 2
- 102100026236 Interleukin-8 Human genes 0.000 description 2
- 241000701646 Kappapapillomavirus 2 Species 0.000 description 2
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 2
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 2
- 229940125563 LAG3 inhibitor Drugs 0.000 description 2
- 101150030213 Lag3 gene Proteins 0.000 description 2
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 2
- 206010023856 Laryngeal squamous cell carcinoma Diseases 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 241000712899 Lymphocytic choriomeningitis mammarenavirus Species 0.000 description 2
- 102100026238 Lymphotoxin-alpha Human genes 0.000 description 2
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 2
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 2
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 241001480512 Mammalian orthoreovirus 3 Species 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- 241001115401 Marburgvirus Species 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 description 2
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 description 2
- 102100039483 Melanoma-associated antigen B6 Human genes 0.000 description 2
- 241000710185 Mengo virus Species 0.000 description 2
- 102000003735 Mesothelin Human genes 0.000 description 2
- 108090000015 Mesothelin Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 206010027459 Metastases to lymph nodes Diseases 0.000 description 2
- 108091060585 Mir-31 Proteins 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 241000701029 Murid betaherpesvirus 1 Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000711466 Murine hepatitis virus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102100031789 Myeloid-derived growth factor Human genes 0.000 description 2
- 102100022682 NKG2-A/NKG2-B type II integral membrane protein Human genes 0.000 description 2
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 2
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 2
- 102100032851 Natural cytotoxicity triggering receptor 2 Human genes 0.000 description 2
- 102100029527 Natural cytotoxicity triggering receptor 3 ligand 1 Human genes 0.000 description 2
- 101710201161 Natural cytotoxicity triggering receptor 3 ligand 1 Proteins 0.000 description 2
- 102100021462 Natural killer cells antigen CD94 Human genes 0.000 description 2
- 102100028782 Neprilysin Human genes 0.000 description 2
- 102000008730 Nestin Human genes 0.000 description 2
- 108010088225 Nestin Proteins 0.000 description 2
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 description 2
- 102100028749 Neuritin Human genes 0.000 description 2
- 101710189685 Neuritin Proteins 0.000 description 2
- 108010051791 Nuclear Antigens Proteins 0.000 description 2
- 102000019040 Nuclear Antigens Human genes 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 241000700635 Orf virus Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 241000711504 Paramyxoviridae Species 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 208000000474 Poliomyelitis Diseases 0.000 description 2
- 241000700625 Poxviridae Species 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- 102000013668 Prostaglandin E synthase 2 Human genes 0.000 description 2
- 108090000748 Prostaglandin-E Synthases Proteins 0.000 description 2
- 102100029200 Prostate and breast cancer overexpressed gene 1 protein Human genes 0.000 description 2
- 101710171432 Prostate and breast cancer overexpressed gene 1 protein Proteins 0.000 description 2
- 102100032442 Protein S100-A8 Human genes 0.000 description 2
- 102100037727 Protein SSX4 Human genes 0.000 description 2
- 102100037723 Protein SSX5 Human genes 0.000 description 2
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 2
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 2
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 2
- 102100025873 RNA-binding protein 27 Human genes 0.000 description 2
- 102100022491 RNA-binding protein NOB1 Human genes 0.000 description 2
- 241000320410 Rat sialodacryoadenitis coronavirus Species 0.000 description 2
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 2
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 2
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 2
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 241000702247 Reoviridae Species 0.000 description 2
- 241000712909 Reticuloendotheliosis virus Species 0.000 description 2
- 241000710942 Ross River virus Species 0.000 description 2
- 241000702670 Rotavirus Species 0.000 description 2
- 241000150278 Seoul orthohantavirus Species 0.000 description 2
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- 208000000277 Splenic Neoplasms Diseases 0.000 description 2
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 2
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 2
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 2
- 108010002687 Survivin Proteins 0.000 description 2
- 102100035721 Syndecan-1 Human genes 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 2
- 208000000389 T-cell leukemia Diseases 0.000 description 2
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 2
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 2
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 2
- 102100038126 Tenascin Human genes 0.000 description 2
- 108010008125 Tenascin Proteins 0.000 description 2
- 102100040873 Testis-specific gene 10 protein Human genes 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 2
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 2
- 102100024598 Tumor necrosis factor ligand superfamily member 10 Human genes 0.000 description 2
- 101710097160 Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 2
- 102100039094 Tyrosinase Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- 241000700647 Variola virus Species 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 241000710951 Western equine encephalitis virus Species 0.000 description 2
- 241001536558 Yaba monkey tumor virus Species 0.000 description 2
- 108010016200 Zinc Finger Protein GLI1 Proteins 0.000 description 2
- 102100037796 Zinc finger protein Helios Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000011374 additional therapy Methods 0.000 description 2
- 108700010877 adenoviridae proteins Proteins 0.000 description 2
- 201000006966 adult T-cell leukemia Diseases 0.000 description 2
- 208000037844 advanced solid tumor Diseases 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- SRHNADOZAAWYLV-XLMUYGLTSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](NC(C)=O)[C@H](O)O[C@@H]2CO)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)O[C@H](CO)[C@H](O)[C@@H]1O SRHNADOZAAWYLV-XLMUYGLTSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 210000001188 articular cartilage Anatomy 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 201000009909 cataract 6 multiple types Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 239000002771 cell marker Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 201000010549 croup Diseases 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 102000006815 folate receptor Human genes 0.000 description 2
- 108020005243 folate receptor Proteins 0.000 description 2
- 201000003444 follicular lymphoma Diseases 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000001794 hormone therapy Methods 0.000 description 2
- 230000005099 host tropism Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 108040006858 interleukin-6 receptor activity proteins Proteins 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 210000003071 memory t lymphocyte Anatomy 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 208000020298 milker nodule Diseases 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001565 modulated differential scanning calorimetry Methods 0.000 description 2
- 230000004070 myogenic differentiation Effects 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 210000005055 nestin Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000005156 neurotropism Effects 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 206010073131 oligoastrocytoma Diseases 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 210000004738 parenchymal cell Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 210000003668 pericyte Anatomy 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 201000006037 primary mediastinal B-cell lymphoma Diseases 0.000 description 2
- 239000000092 prognostic biomarker Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000003156 radioimmunoprecipitation Methods 0.000 description 2
- 201000000441 refractory hematologic cancer Diseases 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000003079 salivary gland Anatomy 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 201000002471 spleen cancer Diseases 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 101150047061 tag-72 gene Proteins 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 229950007217 tremelimumab Drugs 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 229940055760 yervoy Drugs 0.000 description 2
- FFILOTSTFMXQJC-QCFYAKGBSA-N (2r,4r,5s,6s)-2-[3-[(2s,3s,4r,6s)-6-[(2s,3r,4r,5s,6r)-5-[(2s,3r,4r,5r,6r)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(e)-3-hydroxy-2-(octadecanoylamino)octadec-4-enoxy]oxan-3-yl]oxy-3-hy Chemical compound O[C@@H]1[C@@H](O)[C@H](OCC(NC(=O)CCCCCCCCCCCCCCCCC)C(O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 FFILOTSTFMXQJC-QCFYAKGBSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- APHFXDBDLKPMTA-UHFFFAOYSA-N 2-(3-decanoyl-4,5,7-trihydroxynaphthalen-2-yl)acetic acid Chemical compound CCCCCCCCCC(=O)c1c(CC(O)=O)cc2cc(O)cc(O)c2c1O APHFXDBDLKPMTA-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- GMOGICAFJFPMNS-UHFFFAOYSA-N 4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1CN1CCNCCCNCCNCCC1 GMOGICAFJFPMNS-UHFFFAOYSA-N 0.000 description 1
- 108010082808 4-1BB Ligand Proteins 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 101710164309 56 kDa type-specific antigen Proteins 0.000 description 1
- 241000714175 Abelson murine leukemia virus Species 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 241001428876 Adelaide River virus Species 0.000 description 1
- 241000724685 African green monkey polyomavirus Species 0.000 description 1
- 241000120516 African horse sickness virus Species 0.000 description 1
- 241000701386 African swine fever virus Species 0.000 description 1
- 241001135972 Aleutian mink disease virus Species 0.000 description 1
- 241000175213 Alloherpesviridae Species 0.000 description 1
- 241000961634 Alphaflexiviridae Species 0.000 description 1
- 241000520665 Alphatetraviridae Species 0.000 description 1
- 241000190711 Amapari mammarenavirus Species 0.000 description 1
- 241000702419 Ambidensovirus Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241001206546 Ampullaviridae Species 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 241001339993 Anelloviridae Species 0.000 description 1
- 206010002412 Angiocentric lymphomas Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000282709 Aotus trivirgatus Species 0.000 description 1
- 241000710189 Aphthovirus Species 0.000 description 1
- 241000702652 Aquareovirus Species 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 241000712891 Arenavirus Species 0.000 description 1
- 241001292006 Arteriviridae Species 0.000 description 1
- 241000157873 Ascoviridae Species 0.000 description 1
- 241001533362 Astroviridae Species 0.000 description 1
- 241000701061 Ateline gammaherpesvirus 2 Species 0.000 description 1
- 241000178568 Aura virus Species 0.000 description 1
- 241000295638 Australian bat lyssavirus Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000701802 Aviadenovirus Species 0.000 description 1
- 241000713840 Avian erythroblastosis virus Species 0.000 description 1
- 241000714230 Avian leukemia virus Species 0.000 description 1
- 241000713826 Avian leukosis virus Species 0.000 description 1
- 241000713838 Avian myeloblastosis virus Species 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 241000701397 Avihepadnavirus Species 0.000 description 1
- 241001651352 Avihepatovirus A Species 0.000 description 1
- 241000700663 Avipoxvirus Species 0.000 description 1
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 description 1
- 241000231314 Babanki virus Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000701412 Baculoviridae Species 0.000 description 1
- 241000710946 Barmah Forest virus Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 241000608319 Bebaru virus Species 0.000 description 1
- 241001331006 Berrimah virus Species 0.000 description 1
- 241000961645 Betaflexiviridae Species 0.000 description 1
- 241000405758 Betapartitivirus Species 0.000 description 1
- 241001340646 Bicaudaviridae Species 0.000 description 1
- 241000543377 Bidnaviridae Species 0.000 description 1
- 241000702628 Birnaviridae Species 0.000 description 1
- 241000150523 Black Creek Canal orthohantavirus Species 0.000 description 1
- 241000120506 Bluetongue virus Species 0.000 description 1
- 208000034200 Bolivian hemorrhagic fever Diseases 0.000 description 1
- 241000776207 Bornaviridae Species 0.000 description 1
- 241001115070 Bornavirus Species 0.000 description 1
- 241000711443 Bovine coronavirus Species 0.000 description 1
- 241000712462 Bovine ephemeral fever virus Species 0.000 description 1
- 241001227615 Bovine foamy virus Species 0.000 description 1
- 241000713704 Bovine immunodeficiency virus Species 0.000 description 1
- 241000714266 Bovine leukemia virus Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 241000621124 Bovine papular stomatitis virus Species 0.000 description 1
- 241000701922 Bovine parvovirus Species 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 241001533462 Bromoviridae Species 0.000 description 1
- 241000231316 Buggy Creek virus Species 0.000 description 1
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 1
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 1
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 1
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 1
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 1
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 1
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 1
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 1
- 102100036849 C-C motif chemokine 24 Human genes 0.000 description 1
- 102100021933 C-C motif chemokine 25 Human genes 0.000 description 1
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 1
- 102100021942 C-C motif chemokine 28 Human genes 0.000 description 1
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 description 1
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 1
- 102100025250 C-X-C motif chemokine 14 Human genes 0.000 description 1
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 1
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 1
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 1
- 102100036189 C-X-C motif chemokine 3 Human genes 0.000 description 1
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 1
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 1
- 102000007269 CA-125 Antigen Human genes 0.000 description 1
- 108010008629 CA-125 Antigen Proteins 0.000 description 1
- 101150049756 CCL6 gene Proteins 0.000 description 1
- 101150011672 CCL9 gene Proteins 0.000 description 1
- 108010046080 CD27 Ligand Proteins 0.000 description 1
- 108010041397 CD4 Antigens Proteins 0.000 description 1
- 208000016778 CD4+/CD56+ hematodermic neoplasm Diseases 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 201000004085 CLL/SLL Diseases 0.000 description 1
- 101100463133 Caenorhabditis elegans pdl-1 gene Proteins 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 241001493160 California encephalitis virus Species 0.000 description 1
- 241001137864 Camelpox virus Species 0.000 description 1
- 241000178270 Canarypox virus Species 0.000 description 1
- 241000680578 Canid alphaherpesvirus 1 Species 0.000 description 1
- 241000711506 Canine coronavirus Species 0.000 description 1
- 241000046998 Canine minute virus Species 0.000 description 1
- 241000712083 Canine morbillivirus Species 0.000 description 1
- 241000701931 Canine parvovirus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000150506 Cano Delgadito orthohantavirus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700664 Capripoxvirus Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 241000710190 Cardiovirus Species 0.000 description 1
- 241000520666 Carmotetraviridae Species 0.000 description 1
- 241001181440 Carpias Species 0.000 description 1
- 108090000026 Caveolin 1 Proteins 0.000 description 1
- 102100035888 Caveolin-1 Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241001467055 Caviid betaherpesvirus 2 Species 0.000 description 1
- 101150075117 Ccl12 gene Proteins 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 241000701071 Cercopithecine alphaherpesvirus 2 Species 0.000 description 1
- 241000711969 Chandipura virus Species 0.000 description 1
- 241000120508 Changuinola virus Species 0.000 description 1
- 241001331000 Charleville virus Species 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- 241001502567 Chikungunya virus Species 0.000 description 1
- 241001060419 Chrysoviridae Species 0.000 description 1
- 241001533399 Circoviridae Species 0.000 description 1
- 241000351651 Clavaviridae Species 0.000 description 1
- 241000973027 Closteroviridae Species 0.000 description 1
- 241000501789 Cocal virus Species 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 241000581522 Coho salmon aquareovirus Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 241000204955 Colorado tick fever virus Species 0.000 description 1
- 241000702669 Coltivirus Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000120509 Corriparta virus Species 0.000 description 1
- 241000701520 Corticoviridae Species 0.000 description 1
- 241000700626 Cowpox virus Species 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000710127 Cricket paralysis virus Species 0.000 description 1
- 241000150230 Crimean-Congo hemorrhagic fever orthonairovirus Species 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000702662 Cypovirus Species 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 241000702221 Cystoviridae Species 0.000 description 1
- 102100035298 Cytokine SCM-1 beta Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241001506928 Deformed wing virus Species 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000701809 Deltapapillomavirus 1 Species 0.000 description 1
- 241000701808 Deltapapillomavirus 2 Species 0.000 description 1
- 241001663879 Deltaretrovirus Species 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000712471 Dhori virus Species 0.000 description 1
- 241000615461 Dicistroviridae Species 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 241000907524 Drosophila C virus Species 0.000 description 1
- 241000725618 Duck hepatitis B virus Species 0.000 description 1
- 241001176668 Duck hepatitis virus 2 Species 0.000 description 1
- 241001520695 Duvenhage lyssavirus Species 0.000 description 1
- 241000709643 Echovirus E9 Species 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000868840 Endornaviridae Species 0.000 description 1
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 1
- 102100023688 Eotaxin Human genes 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 101710116743 Ephrin type-A receptor 2 Proteins 0.000 description 1
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 241000120510 Epizootic hemorrhagic disease virus Species 0.000 description 1
- 241000725578 Equid gammaherpesvirus 2 Species 0.000 description 1
- 241000710803 Equine arteritis virus Species 0.000 description 1
- 241001154301 Equine encephalosis virus Species 0.000 description 1
- 241000713730 Equine infectious anemia virus Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000465885 Everglades virus Species 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 208000016937 Extranodal nasal NK/T cell lymphoma Diseases 0.000 description 1
- 241000877986 Eyach virus Species 0.000 description 1
- 101150089023 FASLG gene Proteins 0.000 description 1
- 208000004729 Feline Leukemia Diseases 0.000 description 1
- 241000714201 Feline calicivirus Species 0.000 description 1
- 241000519954 Feline foamy virus Species 0.000 description 1
- 241000713800 Feline immunodeficiency virus Species 0.000 description 1
- 241000711475 Feline infectious peritonitis virus Species 0.000 description 1
- 241000714165 Feline leukemia virus Species 0.000 description 1
- 241000701915 Feline panleukopenia virus Species 0.000 description 1
- 241000701925 Feline parvovirus Species 0.000 description 1
- 241000714174 Feline sarcoma virus Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100020760 Ferritin heavy chain Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 241001470863 Flanders hapavirus Species 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 241000231322 Fort Morgan virus Species 0.000 description 1
- 241001428964 Four Corners hantavirus Species 0.000 description 1
- 241000701796 Fowl aviadenovirus 1 Species 0.000 description 1
- 102100020997 Fractalkine Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000701367 Fuselloviridae Species 0.000 description 1
- 101710092262 G antigen 1 Proteins 0.000 description 1
- 241000531123 GB virus C Species 0.000 description 1
- 102100024405 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000961639 Gammaflexiviridae Species 0.000 description 1
- 241000701046 Gammaherpesvirinae Species 0.000 description 1
- 206010062878 Gastrooesophageal cancer Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000702463 Geminiviridae Species 0.000 description 1
- 241000608297 Getah virus Species 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 241001136687 Globuloviridae Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241001112691 Goatpox virus Species 0.000 description 1
- 241001631709 Gonometa Species 0.000 description 1
- 241001517118 Goose parvovirus Species 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 241000700735 Ground squirrel hepatitis virus Species 0.000 description 1
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 1
- 241000190708 Guanarito mammarenavirus Species 0.000 description 1
- 241001664989 Guttaviridae Species 0.000 description 1
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 1
- 108010035452 HLA-A1 Antigen Proteins 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 241000070949 Haloarcula hispanica pleomorphic virus 1 Species 0.000 description 1
- 241001453579 Halogeometricum pleomorphic virus 1 Species 0.000 description 1
- 241001132172 Halorubrum pleomorphic virus 1 Species 0.000 description 1
- 241001453499 Halorubrum pleomorphic virus 2 Species 0.000 description 1
- 241001453581 Halorubrum pleomorphic virus 3 Species 0.000 description 1
- 241001453580 Halorubrum pleomorphic virus 6 Species 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 241000035314 Henipavirus Species 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000724675 Hepatitis E virus Species 0.000 description 1
- 206010019771 Hepatitis F Diseases 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 241000709715 Hepatovirus Species 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 241001136039 Heron hepatitis B virus Species 0.000 description 1
- 208000029433 Herpesviridae infectious disease Diseases 0.000 description 1
- 241000710948 Highlands J virus Species 0.000 description 1
- 241000148627 Hirame novirhabdovirus Species 0.000 description 1
- 101710196274 Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 101000738584 Homo sapiens C-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000978379 Homo sapiens C-C motif chemokine 13 Proteins 0.000 description 1
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 1
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 1
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 1
- 101000978371 Homo sapiens C-C motif chemokine 18 Proteins 0.000 description 1
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 description 1
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 1
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 1
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 1
- 101000713078 Homo sapiens C-C motif chemokine 24 Proteins 0.000 description 1
- 101000897486 Homo sapiens C-C motif chemokine 25 Proteins 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 101000897494 Homo sapiens C-C motif chemokine 27 Proteins 0.000 description 1
- 101000897477 Homo sapiens C-C motif chemokine 28 Proteins 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 1
- 101000946794 Homo sapiens C-C motif chemokine 8 Proteins 0.000 description 1
- 101000858060 Homo sapiens C-X-C motif chemokine 11 Proteins 0.000 description 1
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 1
- 101000858068 Homo sapiens C-X-C motif chemokine 14 Proteins 0.000 description 1
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 1
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 1
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 1
- 101000947193 Homo sapiens C-X-C motif chemokine 3 Proteins 0.000 description 1
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 1
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101100135226 Homo sapiens CD200 gene Proteins 0.000 description 1
- 101100099884 Homo sapiens CD40 gene Proteins 0.000 description 1
- 101000910338 Homo sapiens Carbonic anhydrase 9 Proteins 0.000 description 1
- 101000804771 Homo sapiens Cytokine SCM-1 beta Proteins 0.000 description 1
- 101100172510 Homo sapiens EPHA2 gene Proteins 0.000 description 1
- 101000978392 Homo sapiens Eotaxin Proteins 0.000 description 1
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 1
- 101001002987 Homo sapiens Ferritin heavy chain Proteins 0.000 description 1
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 1
- 101000981252 Homo sapiens GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 1
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 description 1
- 101001034829 Homo sapiens Interferon alpha-10 Proteins 0.000 description 1
- 101001034828 Homo sapiens Interferon alpha-14 Proteins 0.000 description 1
- 101001034835 Homo sapiens Interferon alpha-16 Proteins 0.000 description 1
- 101001034834 Homo sapiens Interferon alpha-17 Proteins 0.000 description 1
- 101000959794 Homo sapiens Interferon alpha-2 Proteins 0.000 description 1
- 101001034833 Homo sapiens Interferon alpha-21 Proteins 0.000 description 1
- 101000959708 Homo sapiens Interferon alpha-4 Proteins 0.000 description 1
- 101000959704 Homo sapiens Interferon alpha-5 Proteins 0.000 description 1
- 101000959714 Homo sapiens Interferon alpha-6 Proteins 0.000 description 1
- 101000961126 Homo sapiens Interferon alpha-7 Proteins 0.000 description 1
- 101000999391 Homo sapiens Interferon alpha-8 Proteins 0.000 description 1
- 101001002470 Homo sapiens Interferon lambda-1 Proteins 0.000 description 1
- 101000853002 Homo sapiens Interleukin-25 Proteins 0.000 description 1
- 101000853000 Homo sapiens Interleukin-26 Proteins 0.000 description 1
- 101000998139 Homo sapiens Interleukin-32 Proteins 0.000 description 1
- 101001043807 Homo sapiens Interleukin-7 Proteins 0.000 description 1
- 101100510618 Homo sapiens LAG3 gene Proteins 0.000 description 1
- 101000804764 Homo sapiens Lymphotactin Proteins 0.000 description 1
- 101000916628 Homo sapiens Macrophage colony-stimulating factor 1 Proteins 0.000 description 1
- 101001005728 Homo sapiens Melanoma-associated antigen 1 Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 101001024605 Homo sapiens Next to BRCA1 gene 1 protein Proteins 0.000 description 1
- 101001098352 Homo sapiens OX-2 membrane glycoprotein Proteins 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 101000582950 Homo sapiens Platelet factor 4 Proteins 0.000 description 1
- 101000854388 Homo sapiens Ribonuclease 3 Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 1
- 101000934376 Homo sapiens T-cell differentiation antigen CD6 Proteins 0.000 description 1
- 101000980827 Homo sapiens T-cell surface glycoprotein CD1a Proteins 0.000 description 1
- 101000716149 Homo sapiens T-cell surface glycoprotein CD1b Proteins 0.000 description 1
- 101000716124 Homo sapiens T-cell surface glycoprotein CD1c Proteins 0.000 description 1
- 101100207070 Homo sapiens TNFSF8 gene Proteins 0.000 description 1
- 101000664703 Homo sapiens Transcription factor SOX-10 Proteins 0.000 description 1
- 101000825086 Homo sapiens Transcription factor SOX-11 Proteins 0.000 description 1
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000836268 Homo sapiens U4/U6.U5 tri-snRNP-associated protein 1 Proteins 0.000 description 1
- 101000804921 Homo sapiens X-ray repair cross-complementing protein 5 Proteins 0.000 description 1
- 101001074035 Homo sapiens Zinc finger protein GLI2 Proteins 0.000 description 1
- 241000714259 Human T-lymphotropic virus 2 Species 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 101001001300 Human cytomegalovirus (strain Towne) 65 kDa phosphoprotein Proteins 0.000 description 1
- 241000713673 Human foamy virus Species 0.000 description 1
- 241001243761 Human hepatitis A virus Species 0.000 description 1
- 241000701027 Human herpesvirus 6 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241000829111 Human polyomavirus 1 Species 0.000 description 1
- 241000726041 Human respirovirus 1 Species 0.000 description 1
- 241000712003 Human respirovirus 3 Species 0.000 description 1
- 241001559187 Human rubulavirus 2 Species 0.000 description 1
- 241001559186 Human rubulavirus 4 Species 0.000 description 1
- 241001135958 Human type D retrovirus Species 0.000 description 1
- 101100273566 Humulus lupulus CCL10 gene Proteins 0.000 description 1
- 241001533448 Hypoviridae Species 0.000 description 1
- 241000543391 Hytrosaviridae Species 0.000 description 1
- 241000701378 Ichnovirus Species 0.000 description 1
- 241000700723 Ictalurid herpesvirus 1 Species 0.000 description 1
- 241000073062 Iflaviridae Species 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 241000711450 Infectious bronchitis virus Species 0.000 description 1
- 241000711804 Infectious hematopoietic necrosis virus Species 0.000 description 1
- 241000710921 Infectious pancreatic necrosis virus Species 0.000 description 1
- 241001500351 Influenzavirus A Species 0.000 description 1
- 241001500350 Influenzavirus B Species 0.000 description 1
- 241001500343 Influenzavirus C Species 0.000 description 1
- 241000401052 Influenzavirus D Species 0.000 description 1
- 241000702394 Inoviridae Species 0.000 description 1
- 101710192051 Interferon alpha-1/13 Proteins 0.000 description 1
- 102100039734 Interferon alpha-10 Human genes 0.000 description 1
- 102100039733 Interferon alpha-14 Human genes 0.000 description 1
- 102100039728 Interferon alpha-16 Human genes 0.000 description 1
- 102100039730 Interferon alpha-17 Human genes 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 102100039729 Interferon alpha-21 Human genes 0.000 description 1
- 102100039949 Interferon alpha-4 Human genes 0.000 description 1
- 102100039948 Interferon alpha-5 Human genes 0.000 description 1
- 102100040007 Interferon alpha-6 Human genes 0.000 description 1
- 102100039350 Interferon alpha-7 Human genes 0.000 description 1
- 102100036532 Interferon alpha-8 Human genes 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 102100026688 Interferon epsilon Human genes 0.000 description 1
- 101710147309 Interferon epsilon Proteins 0.000 description 1
- 102100022469 Interferon kappa Human genes 0.000 description 1
- 102100020990 Interferon lambda-1 Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102100030694 Interleukin-11 Human genes 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 102000003810 Interleukin-18 Human genes 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 102100039879 Interleukin-19 Human genes 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 108010065637 Interleukin-23 Proteins 0.000 description 1
- 102000013264 Interleukin-23 Human genes 0.000 description 1
- 102100036679 Interleukin-26 Human genes 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 101710181613 Interleukin-31 Proteins 0.000 description 1
- 102100033501 Interleukin-32 Human genes 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 108091007973 Interleukin-36 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 241000701377 Iridoviridae Species 0.000 description 1
- 241000701372 Iridovirus Species 0.000 description 1
- 241000701460 JC polyomavirus Species 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- 241000712890 Junin mammarenavirus Species 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 241000120527 Kemerovo virus Species 0.000 description 1
- 241000897510 Klamath virus Species 0.000 description 1
- 241000479166 Kolongo virus Species 0.000 description 1
- 241000231318 Kyzylagach virus Species 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000713102 La Crosse virus Species 0.000 description 1
- 241000710789 Lactate dehydrogenase-elevating virus Species 0.000 description 1
- 241001520693 Lagos bat lyssavirus Species 0.000 description 1
- 241001428884 Langur virus Species 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 206010023927 Lassa fever Diseases 0.000 description 1
- 241000700563 Leporipoxvirus Species 0.000 description 1
- 241000714210 Leviviridae Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 241000701365 Lipothrixviridae Species 0.000 description 1
- 241000609846 Lumpy skin disease virus Species 0.000 description 1
- 241000253097 Luteoviridae Species 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 241000701043 Lymphocryptovirus Species 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 241000711828 Lyssavirus Species 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 101710102605 MHC class I polypeptide-related sequence A Proteins 0.000 description 1
- 241000712898 Machupo mammarenavirus Species 0.000 description 1
- 241000175209 Malacoherpesviridae Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001480504 Mammalian orthoreovirus 1 Species 0.000 description 1
- 241001480506 Mammalian orthoreovirus 2 Species 0.000 description 1
- 241001559177 Mapuera rubulavirus Species 0.000 description 1
- 241001661687 Marnaviridae Species 0.000 description 1
- 241000645849 Marseilleviridae Species 0.000 description 1
- 241000713821 Mason-Pfizer monkey virus Species 0.000 description 1
- 241000701244 Mastadenovirus Species 0.000 description 1
- 241000608292 Mayaro virus Species 0.000 description 1
- 102100025050 Melanoma-associated antigen 1 Human genes 0.000 description 1
- 241001643857 Menangle virus Species 0.000 description 1
- 241001009374 Mesoniviridae Species 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 108091093082 MiR-146 Proteins 0.000 description 1
- 241000702318 Microviridae Species 0.000 description 1
- 241000710949 Middelburg virus Species 0.000 description 1
- 241000186187 Mimiviridae Species 0.000 description 1
- 241000702625 Mink enteritis virus Species 0.000 description 1
- 241000702623 Minute virus of mice Species 0.000 description 1
- 108091028066 Mir-126 Proteins 0.000 description 1
- 108091027977 Mir-200 Proteins 0.000 description 1
- 241000725171 Mokola lyssavirus Species 0.000 description 1
- 241000700559 Molluscipoxvirus Species 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 1
- 241000700627 Monkeypox virus Species 0.000 description 1
- 241000711513 Mononegavirales Species 0.000 description 1
- 241000712045 Morbillivirus Species 0.000 description 1
- 241000479161 Mount Elgon bat virus Species 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000868135 Mucambo virus Species 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 241001136036 Murid betaherpesvirus 2 Species 0.000 description 1
- 241000711941 Murine orthopneumovirus Species 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000701034 Muromegalovirus Species 0.000 description 1
- 241000710908 Murray Valley encephalitis virus Species 0.000 description 1
- 101100222387 Mus musculus Cxcl15 gene Proteins 0.000 description 1
- 101100149887 Mus musculus Sox10 gene Proteins 0.000 description 1
- 101100366227 Mus musculus Sox11 gene Proteins 0.000 description 1
- 101100207071 Mus musculus Tnfsf8 gene Proteins 0.000 description 1
- 241000701553 Myoviridae Species 0.000 description 1
- 244000024215 Myrica gale Species 0.000 description 1
- 230000006051 NK cell activation Effects 0.000 description 1
- 241001457453 Nairobi sheep disease virus Species 0.000 description 1
- 241001336717 Nanoviridae Species 0.000 description 1
- 241000264424 Nariva virus Species 0.000 description 1
- 241000238847 Nelson Bay orthoreovirus Species 0.000 description 1
- 206010029098 Neoplasm skin Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 241001244466 New world arenaviruses Species 0.000 description 1
- 241001484257 Nimaviridae Species 0.000 description 1
- 241000526636 Nipah henipavirus Species 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- 241000723741 Nodaviridae Species 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 241000439378 Nyamiviridae Species 0.000 description 1
- 102100037589 OX-2 membrane glycoprotein Human genes 0.000 description 1
- 241001428748 Ockelbo virus Species 0.000 description 1
- 206010061534 Oesophageal squamous cell carcinoma Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000277329 Oncorhynchus keta Species 0.000 description 1
- 241000922889 Ophioviridae Species 0.000 description 1
- 241000702259 Orbivirus Species 0.000 description 1
- 241000250439 Oropouche virus Species 0.000 description 1
- 241000713112 Orthobunyavirus Species 0.000 description 1
- 241000150452 Orthohantavirus Species 0.000 description 1
- 241000700732 Orthohepadnavirus Species 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 241000150218 Orthonairovirus Species 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 241000702244 Orthoreovirus Species 0.000 description 1
- 241000123724 Ovine papillomavirus Species 0.000 description 1
- 241000120518 Palyam virus Species 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 241000057726 Panine gammaherpesvirus 1 Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 241001459566 Papulosa Species 0.000 description 1
- 241000700639 Parapoxvirus Species 0.000 description 1
- 206010033976 Paravaccinia Diseases 0.000 description 1
- 206010034016 Paronychia Diseases 0.000 description 1
- 241000710936 Partitiviridae Species 0.000 description 1
- 241000701945 Parvoviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000150350 Peribunyaviridae Species 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 241000520712 Permutotetraviridae Species 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 241001466490 Phaeocystis pouchetii Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 241000713137 Phlebovirus Species 0.000 description 1
- 241000711899 Phocine morbillivirus Species 0.000 description 1
- 241000701253 Phycodnaviridae Species 0.000 description 1
- 241001627241 Picobirnaviridae Species 0.000 description 1
- 241000711965 Piry virus Species 0.000 description 1
- 206010035104 Pituitary tumour Diseases 0.000 description 1
- 241000868134 Pixuna virus Species 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 241000701369 Plasmaviridae Species 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 102100030304 Platelet factor 4 Human genes 0.000 description 1
- 206010035742 Pneumonitis Diseases 0.000 description 1
- 241000711902 Pneumovirus Species 0.000 description 1
- 241000702072 Podoviridae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001631648 Polyomaviridae Species 0.000 description 1
- 241001135549 Porcine epidemic diarrhea virus Species 0.000 description 1
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 241000702619 Porcine parvovirus Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001533393 Potyviridae Species 0.000 description 1
- 206010036524 Precursor B-lymphoblastic lymphomas Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101710094000 Programmed cell death 1 ligand 1 Proteins 0.000 description 1
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 description 1
- 241000150258 Prospect Hill orthohantavirus Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 241000621172 Pseudocowpox virus Species 0.000 description 1
- 108010059278 Pyrin Proteins 0.000 description 1
- 102000005583 Pyrin Human genes 0.000 description 1
- 241000569181 Quailpox virus Species 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000702434 Raccoon parvovirus Species 0.000 description 1
- 241000700638 Raccoonpox virus Species 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 206010029107 Respiratory Tract Neoplasms Diseases 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 241000701037 Rhadinovirus Species 0.000 description 1
- 241000701794 Rhizidiovirus Species 0.000 description 1
- 102100036007 Ribonuclease 3 Human genes 0.000 description 1
- 241000713124 Rift Valley fever virus Species 0.000 description 1
- 241000711897 Rinderpest morbillivirus Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241001534527 Roniviridae Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 241000710801 Rubivirus Species 0.000 description 1
- 241000040592 Rudiviridae Species 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- 241000192617 Sabia mammarenavirus Species 0.000 description 1
- 241000608282 Sagiyama virus Species 0.000 description 1
- 241000701026 Saimiriine alphaherpesvirus 1 Species 0.000 description 1
- 241000701062 Saimiriine gammaherpesvirus 2 Species 0.000 description 1
- 241001135555 Sandfly fever Sicilian virus Species 0.000 description 1
- 241000479163 Sandjimba virus Species 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- 241001123657 Seal parapoxvirus Species 0.000 description 1
- 241000961587 Secoviridae Species 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- 208000033218 Serous carcinoma of the corpus uteri Diseases 0.000 description 1
- 241000700665 Sheeppox virus Species 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 241000713656 Simian foamy virus Species 0.000 description 1
- 241000710192 Simian hepatitis A virus Species 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 241000150288 Sin Nombre orthohantavirus Species 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 241000702202 Siphoviridae Species 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 244000258044 Solanum gilo Species 0.000 description 1
- 235000018650 Solanum gilo Nutrition 0.000 description 1
- 241001514388 Sphaerolipoviridae Species 0.000 description 1
- 241000405448 Spiraviridae Species 0.000 description 1
- 241000713675 Spumavirus Species 0.000 description 1
- 241000269319 Squalius cephalus Species 0.000 description 1
- 206010041834 Squamous cell carcinoma of skin Diseases 0.000 description 1
- 208000036765 Squamous cell carcinoma of the esophagus Diseases 0.000 description 1
- 241001476589 Squirrel fibroma virus Species 0.000 description 1
- 241000713820 Squirrel monkey retrovirus Species 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 241000702287 Sugarcane streak virus Species 0.000 description 1
- 241001485053 Suid betaherpesvirus 2 Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000700568 Suipoxvirus Species 0.000 description 1
- 241000700565 Swinepox virus Species 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 102100025131 T-cell differentiation antigen CD6 Human genes 0.000 description 1
- 102100024219 T-cell surface glycoprotein CD1a Human genes 0.000 description 1
- 241000712908 Tacaribe mammarenavirus Species 0.000 description 1
- 241000404000 Tanapox virus Species 0.000 description 1
- 241001137863 Taterapox virus Species 0.000 description 1
- 241000701521 Tectiviridae Species 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 241000710209 Theiler's encephalomyelitis virus Species 0.000 description 1
- 240000001068 Thogoto virus Species 0.000 description 1
- 241000150291 Thottapalayam orthohantavirus Species 0.000 description 1
- 241000710771 Tick-borne encephalitis virus Species 0.000 description 1
- 101150074789 Timd2 gene Proteins 0.000 description 1
- 241001125862 Tinca tinca Species 0.000 description 1
- 241000341969 Tioman virus Species 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 241001533336 Tombusviridae Species 0.000 description 1
- 241000711517 Torovirus Species 0.000 description 1
- 241000710915 Totiviridae Species 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100038808 Transcription factor SOX-10 Human genes 0.000 description 1
- 102100022415 Transcription factor SOX-11 Human genes 0.000 description 1
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 241000711484 Transmissible gastroenteritis virus Species 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 208000004062 Tumor Virus Infections Diseases 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 102100032100 Tumor necrosis factor ligand superfamily member 8 Human genes 0.000 description 1
- 241001329715 Tupaia virus Species 0.000 description 1
- 241000711955 Turkey rhinotracheitis virus Species 0.000 description 1
- 241000385708 Turkeypox virus Species 0.000 description 1
- 241001059845 Tymoviridae Species 0.000 description 1
- 102100027244 U4/U6.U5 tri-snRNP-associated protein 1 Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 241000608278 Una virus Species 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 241000713152 Uukuniemi virus Species 0.000 description 1
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 241000701067 Varicellovirus Species 0.000 description 1
- 241000726423 Variola major virus Species 0.000 description 1
- 201000009693 Venezuelan hemorrhagic fever Diseases 0.000 description 1
- 241000711970 Vesiculovirus Species 0.000 description 1
- 241000725110 Vilyuisk human encephalomyelitis virus Species 0.000 description 1
- 241000271897 Viperidae Species 0.000 description 1
- 241000711825 Viral hemorrhagic septicemia virus Species 0.000 description 1
- 241000961586 Virgaviridae Species 0.000 description 1
- 208000010094 Visna Diseases 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 241001137865 Volepox virus Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 241000120535 Wallal virus Species 0.000 description 1
- 241000120524 Warrego virus Species 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 241000231320 Whataroa virus Species 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 241000714205 Woolly monkey sarcoma virus Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000713893 Xenotropic murine leukemia virus Species 0.000 description 1
- 241000700574 Yatapoxvirus Species 0.000 description 1
- 241000710772 Yellow fever virus Species 0.000 description 1
- 241001481505 Yug Bogdanovac vesiculovirus Species 0.000 description 1
- 102100035535 Zinc finger protein GLI1 Human genes 0.000 description 1
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 1
- 102000012736 Zonula Occludens Proteins Human genes 0.000 description 1
- 108010079485 Zonula Occludens Proteins Proteins 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000002255 anal canal Anatomy 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000003622 anti-hsv Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 244000309743 astrovirus Species 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 208000008921 border disease Diseases 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000010479 cellular ifn response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 208000025997 central nervous system neoplasm Diseases 0.000 description 1
- 125000001549 ceramide group Chemical group 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000023738 chronic lymphocytic leukemia/small lymphocytic lymphoma Diseases 0.000 description 1
- 230000001113 coital effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000003792 cranial nerve Anatomy 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000000375 direct analysis in real time Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 241001492478 dsDNA viruses, no RNA stage Species 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012063 dual-affinity re-targeting Methods 0.000 description 1
- 210000000959 ear middle Anatomy 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 208000009724 equine infectious anemia Diseases 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000001752 female genitalia Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 210000004475 gamma-delta t lymphocyte Anatomy 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000006974 gastroesophageal cancer Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000007045 gastrulation Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002339 glycosphingolipids Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000010005 growth-factor like effect Effects 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 230000001894 hemadsorption Effects 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000010710 hepatitis C virus infection Diseases 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 208000021173 high grade B-cell lymphoma Diseases 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 102000053464 human BTLA Human genes 0.000 description 1
- 102000043444 human CCR4 Human genes 0.000 description 1
- 102000053925 human CSF1 Human genes 0.000 description 1
- 102000046157 human CSF2 Human genes 0.000 description 1
- 102000043321 human CTLA4 Human genes 0.000 description 1
- 102000057105 human CX3CL1 Human genes 0.000 description 1
- 102000049109 human HAVCR2 Human genes 0.000 description 1
- 102000052622 human IL7 Human genes 0.000 description 1
- 102000046720 human SLAMF7 Human genes 0.000 description 1
- 102000049823 human TIGIT Human genes 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 102000047758 human TNFRSF18 Human genes 0.000 description 1
- 102000050320 human TNFRSF4 Human genes 0.000 description 1
- 102000047299 human XRCC5 Human genes 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000037951 infantile gastroenteritis Diseases 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 108010080375 interferon kappa Proteins 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 102000004114 interleukin 20 Human genes 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 102000003898 interleukin-24 Human genes 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 210000003228 intrahepatic bile duct Anatomy 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 208000026876 intravascular large B-cell lymphoma Diseases 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 208000006116 lymphomatoid granulomatosis Diseases 0.000 description 1
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 108091005446 macrophage receptors Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000000260 male genitalia Anatomy 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000001370 mediastinum Anatomy 0.000 description 1
- 210000002418 meninge Anatomy 0.000 description 1
- 208000037843 metastatic solid tumor Diseases 0.000 description 1
- 108091008057 miR-10 Proteins 0.000 description 1
- 108091084090 miR-106 stem-loop Proteins 0.000 description 1
- 108091064282 miR-125 stem-loop Proteins 0.000 description 1
- 108091037066 miR-125-1 stem-loop Proteins 0.000 description 1
- 108091062107 miR-125-2 stem-loop Proteins 0.000 description 1
- 108091079767 miR-125-3 stem-loop Proteins 0.000 description 1
- 108091054189 miR-196a stem-loop Proteins 0.000 description 1
- 108091074487 miR-34 stem-loop Proteins 0.000 description 1
- 108091092493 miR-34-1 stem-loop Proteins 0.000 description 1
- 108091059780 miR-34-2 stem-loop Proteins 0.000 description 1
- 108091029119 miR-34a stem-loop Proteins 0.000 description 1
- 108091079013 miR-34b Proteins 0.000 description 1
- 108091084018 miR-34b stem-loop Proteins 0.000 description 1
- 108091063470 miR-34b-1 stem-loop Proteins 0.000 description 1
- 108091049916 miR-34b-2 stem-loop Proteins 0.000 description 1
- 108091057222 miR-34b-3 stem-loop Proteins 0.000 description 1
- 108091092639 miR-34b-4 stem-loop Proteins 0.000 description 1
- 108091090583 miR-34c stem-loop Proteins 0.000 description 1
- 108091082133 miR-34c-1 stem-loop Proteins 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 230000002276 neurotropic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000003681 parotid gland Anatomy 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000013594 poultry meat Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108091007428 primary miRNA Proteins 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 210000003065 pyriform sinus Anatomy 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 231100000205 reproductive and developmental toxicity Toxicity 0.000 description 1
- 208000028466 reproductive system neoplasm Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 201000006845 reticulosarcoma Diseases 0.000 description 1
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 1
- 210000000574 retroperitoneal space Anatomy 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 210000001202 rhombencephalon Anatomy 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 208000011571 secondary malignant neoplasm Diseases 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 208000020352 skin basal cell carcinoma Diseases 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 210000004511 skin melanocyte Anatomy 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 1
- 241001147420 ssDNA viruses Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 238000001709 templated self-assembly Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009752 translational inhibition Effects 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701451 unidentified granulovirus Species 0.000 description 1
- 241000007181 unidentified human coronavirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 230000002477 vacuolizing effect Effects 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 201000011531 vascular cancer Diseases 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 206010055031 vascular neoplasm Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940051021 yellow-fever virus Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/768—Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4703—Inhibitors; Suppressors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/521—Chemokines
- C07K14/522—Alpha-chemokines, e.g. NAP-2, ENA-78, GRO-alpha/MGSA/NAP-3, GRO-beta/MIP-2alpha, GRO-gamma/MIP-2beta, IP-10, GCP-2, MIG, PBSF, PF-4, KC
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5434—IL-12
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5443—IL-15
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70532—B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70596—Molecules with a "CD"-designation not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3076—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
- C07K16/3092—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6489—Metalloendopeptidases (3.4.24)
- C12N9/6491—Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16633—Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16641—Use of virus, viral particle or viral elements as a vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16032—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16041—Use of virus, viral particle or viral elements as a vector
- C12N2740/16043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20232—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20241—Use of virus, viral particle or viral elements as a vector
- C12N2760/20243—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- bispecific antibodies to direct cytotoxic T cells to tumor cells, and chimeric antigen receptors (CARs) to engineer antigen specificity onto an immune effector cell are being demonstrated to provide a therapeutic benefit.
- oncolytic virus technologies are useful additions to the current standard of care of solid tumors, expected to have a safety profile and the ability to infect, replicate in, and lyse tumor cells.
- the antitumor efficacy of the bispecific antibodies, CARs and oncolytic virus are suboptimal, demonstrating the continued need for further advances of oncology, antibodies, and oncolytic virus therapy.
- the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an antigen recognition domain specific for a cell-surface antigen expressed on a target cell.
- the antigen recognition domain specifically binds to a tumor antigen.
- tumor antigen is selected from Table 2.
- the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and a therapeutic molecule domain that binds to an inhibitory antigen expressed on a cell surface.
- the therapeutic molecule domain specifically binds to PD1, PDL1, or CD47.
- the recombinant nucleic acid further comprises a second nucleic acid sequence encoding a therapeutic polypeptide.
- the therapeutic polypeptide is an immune modulator polypeptide.
- the immune modulator polypeptide is selected from a cytokine, a costimulatory molecule, an immune checkpoint polypeptide, an anti-angiogenesis factor, a matrix metalloprotease (MMP), or a nucleic acid.
- a cytokine a costimulatory molecule
- an immune checkpoint polypeptide an immune checkpoint polypeptide
- an anti-angiogenesis factor a matrix metalloprotease (MMP)
- MMP matrix metalloprotease
- the immune checkpoint polypeptide comprises (i) an inhibitor of PD-1, PDL-1, CTLA-4, LAG3, TIM3, neuropilin, or CCR4; (ii) an agonist of GITR, OX-40, or CD28; or (iii) a combination of (i) and (ii).
- the immune checkpoint polypeptide comprises an MMP, wherein the MMP is MMP9.
- the immune checkpoint polypeptide comprises a cytokine, wherein the cytokine is selected from IL-15, IL-12, and CXCL10.
- the effector cell engaged by the engager molecules herein is a T cell, an NKT cell, an NK cell, or a macrophage.
- the activation domain of the effector molecule specifically binds to CD3, CD4, CD5, CD8, CD16, CD28, CD40, CD134, CD137, or NKG2D.
- the recombinant nucleic acid provides herein are multicistronic sequences.
- the multicistronic sequence is a bicistronic sequence or a tricistronic sequence.
- the multicistronic sequence comprises a picomavirus-2a-like sequence, and wherein the first and second nucleic acid sequences are expressed from a single promoter sequence present in the recombinant nucleic acid.
- the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an antigen recognition domain specific for a tumor cell antigen expressed on a target cell, wherein the antigen expressed on the effector cell is CD3, and wherein the tumor cell antigen is CD19.
- the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 44.
- the recombinant nucleic acid sequence comprises SEQ ID NO. 43.
- the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In such embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 54. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15. In such embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 53.
- the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10.
- the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 55.
- the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9.
- the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an therapeutic molecule domain specific for an inhibitory antigen, wherein the antigen expressed on the effector cell is CD3, and wherein the inhibitory antigen is PDL1.
- the recombinant nucleic acid sequence comprises a nucleic acid sequence encoding a polypeptide sequence that is at least 90% identical to SEQ ID NO: 50.
- the recombinant nucleic acid sequence comprises SEQ ID NO: 49.
- the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 63. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 62.
- the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 64. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9. In some embodiments, the engager molecule further comprises a third binding domain. In some embodiments, the third binding domain comprises an immunoglobulin Fc domain. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 52. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 51.
- the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an therapeutic molecule domain specific for an inhibitory antigen, wherein the antigen expressed on the effector cell is CD3, and wherein the inhibitory antigen is SIRP1 ⁇ .
- the recombinant nucleic acid sequence comprises a nucleic acid sequence encoding a polypeptide sequence that is at least 90% identical to SEQ ID NO: 46 or 48.
- the recombinant nucleic acid sequence comprises SEQ ID NO: 45 or 47. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 58 or 59. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15.
- the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 56 or 57. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 60 or 61. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9.
- the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 65 or 66. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is an anti-PDL1 scFv linked to an IgG1 Fc domain. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 68 or 70. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 67 or 69.
- the pseudotyped oncolytic viruses of the present invention are selected from adenovirus, herpes simplex virus 1 (HSV1), myxoma virus, reovirus, poliovirus, vesicular stomatitis virus (VSV), measles virus (MV), lassa virus (LASV), or Newcastle disease virus (NDV).
- the pseudotyped oncolytic virus comprises a reduced neurotropism activity and/or neurotoxicity activity in a human subject as compared to a reference virus.
- the reference virus is i) a non-pseudotyped oncolytic virus, or ii) a vaccinia virus.
- the pseudotyped oncolytic virus is an attenuated oncolytic virus. In some embodiments, the virus is not a vaccinia virus.
- the pseudotyped oncolytic viruses of the present invention comprise a single recombinant nucleic acid. In some embodiments, the pseudotyped oncolytic viruses comprise a plurality of recombinant nucleic acids. In some embodiments, the oncolytic virus selectively infects a target cell. In some embodiments, the target cell is a tumor cell and wherein the oncolytic virus is capable of selectively replicating within the tumor cell.
- the engager polypeptide is a bipartite polypeptide and is comprised of an antibody, an antibody domain, a human immunoglobulin heavy chain variable domain, a dual-variable-domain antibody (DVD-Ig), a Tandab, a diabody, a flexibody, a dock-and-lock antibody, a Scorpion polypeptide, a single chain variable fragment (scFv), a BiTE, a DuoBody, an Fc-engineered IgG, an Fcab, a Mab2, or DART polypeptide.
- the present invention provides a pharmaceutical composition comprising any of the pseudotyped oncolytic viruses described herein.
- the pseudotyped oncolytic virus induces an immune response.
- immune response is selectively cytotoxic to a target cell.
- the target cell is a solid tumor cell or a hematologic cancer cell.
- the target cell expresses one or more tumor antigens.
- the one or more tumor antigens are selected from Table 2.
- the present invention provides a method of treating a cancer in a subject in need thereof, comprising administering a therapeutically effective amount of an oncolytic virus described herein or a pharmaceutical composition described herein.
- the method further comprises administering one or more additional therapies to the subject in need thereof.
- the one or more additional therapies comprise surgery, radiation, chemotherapy, immunotherapy, hormone therapy, or a combination thereof.
- the present invention provides a method of treating one or more tumors in a subject in need thereof comprising administering a therapeutically effective amount of an oncolytic virus described herein or a pharmaceutical composition described herein to a patient, wherein the one or more tumors express a tumor antigen.
- the present invention provides a method of selecting a patient for treatment comprising (a) determining the expression of a tumor antigen on one or more tumor cells derived from the patient; and (b) administering an oncolytic virus described herein or a pharmaceutical composition described herein if the tumor cells obtained from the patient express the one or more tumor antigens.
- the one or more tumor antigens are selected from Table 2.
- the present invention provides a method of delivering an engager polypeptide and a therapeutic polypeptide to a tumor site comprising administering to a patient in need thereof an oncolytic virus described herein or a pharmaceutical composition described herein.
- FIG. 1 illustrates an amino acid sequence of a CD19-CD3 bipartite polypeptide comprising a first single chain variable fragment (scFv) directed against CD19 linked to a second scFv directed against CD3.
- scFv single chain variable fragment
- FIG. 2 illustrates an amino acid sequence of a CD19-CD3-IL15 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3.
- a second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 3 illustrates an amino acid sequence of a CD19-CD3-IL12 construct encoded by a multicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3.
- a second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.
- FIG. 4 illustrates an amino acid sequence of a CD19-CD3-CXCL10 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3.
- a second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 5 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3 bipartite polypeptide comprising a first protein comprising the first 120 amino acids of SIRP1 ⁇ linked by a single amino acid linker to an scFv directed against CD3.
- FIG. 6 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-LL bipartite polypeptide comprising a first protein comprising the first 120 amino acids of SIRP1 ⁇ linked by a G4S motif linker to an scFv directed against CD3.
- FIG. 7 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-IL15 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a single amino acid linker to an scFv directed against CD3.
- a second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 8 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-IL5-LL construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a G4S motif linker to an scFv directed against CD3.
- a second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 9 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-IL12 construct encoded by a multicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a single amino acid linker to an scFv directed against CD3.
- a second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.
- FIG. 10 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-IL2-LL construct encoded by a multicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a G4S motif linker to an scFv directed against CD3.
- a second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.
- FIG. 11 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-CXCL10 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a single amino acid linker to an scFv directed against CD3.
- a second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 12 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-CXCL10-LL construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a G4S motif linker to an scFv directed against CD3.
- a second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 13 illustrates an amino acid sequence of a PDL1-CD3 bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3.
- FIG. 14 illustrates an amino acid sequence of a PDL1-CD3-IL15 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3.
- a second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 15 illustrates an amino acid sequence of a PDL1-CD3-IL12 construct encoded by a multicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3.
- a second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.
- FIG. 16 illustrates an amino acid sequence of a PDL1-CD3-CXCL10 construct encoded by a bicistronic gene.
- the first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3.
- a second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.
- FIG. 17 illustrates an amino acid sequence of a PDL1-CD3-Fc tripartite polypeptide comprising a first scFv directed against CD3, linked by a G4S motif linker to a second scFv directed against PDL1, which is in turn linked to the CH2-CH3 domain of human IgG1 by an IgG1 hinge.
- FIG. 18A - FIG. 18B illustrate an amino acid sequence of a SIRP1 ⁇ -CD3-MMP9-SL construct encoded by a bicistronic gene ( FIG. 18A ) and an amino acid sequence of a SIRP1 ⁇ -CD3-MMP9-LL construct encoded by a bicistronic gene ( FIG. 18B ).
- FIG. 19A-19C illustrate the binding of CD19-CD3 BiTE constructs ( FIG. 19A ), SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 19B ), and PDL1-CD3-Fc tripartite T cell engagers ( FIG. 19C ) CD3 + T cells.
- FIG. 20 illustrates the quantification of the T cell engager construct binding shown in FIG. 19 .
- FIG. 21A - FIG. 21C illustrate the CD3-specific binding of CD19-CD3 BiTE constructs ( FIG. 21A ), SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 21B ), and PDL1-CD3-Fc tripartite T cell engagers ( FIG. 21C ) through the use of an anti-CD3 antibody, OKT3.
- FIG. 22 illustrates the specificity of the CD47-binding SIRP1 ⁇ arm of a SIRP1 ⁇ -CD3 BiTE construct.
- FIG. 23A - FIG. 23B illustrate the binding of CD19-CD3 and SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 23A ) to Raji cells (CD19 + CD47 + ). % binding is quantified in FIG. 23B .
- FIG. 24A - FIG. 24B illustrate the binding of CD19-CD3 and SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 24A ) to U2OS cells (CD19 ⁇ CD47 + ). % binding is quantified in FIG. 24B .
- FIG. 25A - FIG. 25B illustrate the binding of CD19-CD3 and SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 25A ) to GBM30-luc cells (CD19 ⁇ CD47 + ). % binding is quantified in FIG. 25B .
- FIG. 26A - FIG. 26B illustrate the binding of CD19-CD3 and SIRP1 ⁇ -CD3 BiTE constructs ( FIG. 26A ) to U251 cells (CD19 ⁇ CD47 + ). % binding is quantified in FIG. 26B .
- FIG. 27A - FIG. 27C illustrate the binding of PDL1-Fc-CD3 tripartite T cell engagers to U251 cells.
- the binding of the PDL1-Fc-CD3 constructs ( FIG. 27B ) is compared to the binding of an anti-PDL antibody ( FIG. 27A ). Binding was not mediated by Fc ⁇ Rs, as U251 cells do not express Fc ⁇ RI, Fc ⁇ RII, or Fc ⁇ RIII ( FIG. 27C ).
- FIG. 28 illustrates CD19-CD3 BiTE, SIRP1 ⁇ -CD3 BiTE, and PDL1-CD3-Fc tripartite T cell engager-mediated T cell-dependent cytotoxicity (TDCC) of Raji cells.
- TDCC T cell-dependent cytotoxicity
- FIG. 29 illustrates CD19-CD3 BiTE and PDL1-CD3-Fc tripartite T cell engager-mediated TDCC of THP1 cells.
- FIG. 30 illustrates CD19-CD3 BiTE and PDL1-CD3-Fc tripartite T cell engager-mediated TDCC of U251 cells.
- FIG. 31 illustrates SIRP1 ⁇ -CD3 BiTE-mediated TDCC of 293F cells compared to an osteopontin-fusion control construct.
- FIG. 32 illustrates expression of SIRP1 ⁇ -CD3 BiTE constructs from oncolytic-HSV vectors. Expression of SIRP1 ⁇ -CD3 BiTE constructs with short linkers (Lanes 1-4 and ONCR085 in lanes 5-6, shown in FIG. 5 ) and SIRP1 ⁇ -CD3 BiTE constructs with long linkers (ONCR087 in lanes 7-8, shown in FIG. 6 ) are shown.
- FIG. 33 illustrates expression of PDL1-CD3-Fc BiTE constructs from oncolytic-HSV vectors.
- Purified PDL1-CD3-Fc BiTE protein is shown in lanes 1-4.
- Concentrated viral supernatants are shown in lanes 5-6.
- FIG. 34A - FIG. 34B illustrate TDCC of U251 cells by virally produced SIRP1 ⁇ -CD3, SIRP1 ⁇ -CD3-LL, and PDL1-CD3-Fc BiTE constructs. Photographs of U251 cell cultures after incubation with the indicated BiTE constructs and CD8+ T cells are shown in FIG. 34A . Activity of virally produced BiTE constructs, measured by % of cell killing and quantified by flow cytometry, is shown in FIG. 34B .
- FIG. 35 illustrates that Amicon ultrafiltration effectively removes virus from samples, as determined by Western blotting with polyclonal anti-HSV antibody, and indicated that BiTE-killing is due to the BiTE and not viral infection.
- FIG. 36 illustrates a cartoon representation of the production of a pseudotyped oncolytic virus and a recombinant oncolytic virus and infection of a target cell by the respective pseudotyped oncolytic virus and the recombinant oncolytic virus.
- FIG. 37 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-PDL1-Fc (SL) construct encoded by a bicistronic gene wherein the first gene encodes an anti-PDL1 scFv linked to an IgG1 Fc domain and the second gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a single amino acid linker to an scFv directed against CD3.
- SL SIRP1 ⁇ -CD3-PDL1-Fc
- FIG. 38 illustrates an amino acid sequence of a SIRP1 ⁇ -CD3-PDL1-Fc (LL) construct encoded by a bicistronic gene wherein the first gene encodes an anti-PDL1 scFv linked to an IgG1 Fc domain and the second gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 ⁇ linked by a G4S motif linker to an scFv directed against CD3.
- LL SIRP1 ⁇ -CD3-PDL1-Fc
- FIG. 39 illustrates a schematic of a SIRP1 ⁇ -CD3-PDL1-Fc expression plasmid.
- Two plasmid constructs, one for SIRP1 ⁇ -CD3-PDL1-Fc (SL) and one for SIRP1 ⁇ -CD3-PDL1-Fc (LL) were generated.
- FIG. 40A - FIG. 40B illustrate purification of the SIRP1 ⁇ -CD3 BiTE (SL), SIRP1 ⁇ -CD3 BiTE (LL), and the anti-PDL1-Fc compounds from supernatants of transfected 293 T cells.
- FIG. 40A shows purification of anti-PDL1-Fc compounds assessed by Coomassie.
- FIG. 40B illustrates purification of SIRP1 ⁇ -CD3 BiTE compounds as assessed by Western Blot using an anti-His detection antibody.
- FIG. 41A - FIG. 41C show results of a PD1/PDL1 blockade assay.
- a schematic of the assay is shown in FIG. 41A - FIG. 41B .
- the results of the PD1/PDL1 blockade assay using the anti-PDL1-Fc compound produced from 293 cells transfected are shown in FIG. 41C
- the present disclosure provides novel engineered oncolytic viruses, in particular pseudotyped oncolytic viruses that produce multipartite polypeptides and/or other therapeutic polypeptides for the treatment of cancer including solid tumors (e.g., advanced solid tumors) and hematologic malignancies.
- the oncolytic virus is engineered by pseudotyping or other recombinant technology in order to modulate the tropism of the virus to result in a viral infection specific for tumor cells and/or surrounding tumor stroma and/or for other beneficial purposes as provided herein.
- the multipartite and/or therapeutic polypeptides produced by the oncolytic viruses described herein mediate or enhance the anti-tumor effects of the oncolytic viruses, such as by effector-cell mediated lysis of target cells (e.g., tumor cells).
- target cells e.g., tumor cells
- the oncolytic viruses described herein may have multiple (e.g. dual) modes of action, including effector cell-mediated cytolysis of target cells as a result of the expression of multipartite polypeptides, and viral-mediated destruction of target cells.
- the present disclosure further provides therapeutic compositions comprising the engineered oncolytic viruses and methods of use in the treatment of solid tumors and hematologic malignancies.
- the present invention provides pseudotyped oncolytic viruses, compositions thereof, and methods of use for the treatment of cancer.
- the pseudotyped oncolytic viruses provided herein comprise recombinant nucleic acids that encode engager polypeptides and/or other therapeutic molecules (e.g., therapeutic polypeptides).
- the engager polypeptides function as effector cell engagers and generally comprise a first domain directed against an activation molecule expressed on an effector cell (e.g., an activation domain or an engager domain) and a second domain directed against a target cell antigen (e.g., an antigen recognition domain) or other cell-surface molecule (e.g., a therapeutic molecule domain).
- bipartite, tripartite or multipartite polypeptides e.g., comprising one or multiple engager domains, one or multiple antigen recognition domains, or one or multiple therapeutic molecule domains, and optionally one or multiple other functional domains.
- Also provided are methods of treating cancer comprising the step of delivering to human subject in need thereof a therapeutically effective amount of the oncolytic viruses or pharmaceutical compositions thereof provided herein.
- Such methods optionally include the step of delivering to the human subject an additional cancer therapy, such as surgery, radiation, chemotherapy, immunotherapy, hormone therapy, or a combination thereof.
- the terms “about” and “approximately” are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art.
- the term “approximately” or “about” refers to a range of values that fall within 30%, 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- subject or “subjects” or “individuals” include, but are not limited to, mammals such as humans or non-human mammals, including domesticated, agricultural or wild, animals, as well as birds, and aquatic animals.
- subjects are livestock such as cattle, sheep, goats, cows, swine, and the like; poultry such as chickens, ducks, geese, turkeys, and the like; and domesticated animals such as dogs and cats.
- subjects are rodents (e.g., mice, rats, hamsters), rabbits, primates, or swine such as inbred pigs and the like.
- the subject is a human.
- “Patients” are subjects suffering from or at risk of developing a disease, disorder, or condition or otherwise in need of the compositions and methods provided herein. None of the terms require or are limited to situations characterized by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly or a hospice worker).
- a health care worker e.g. a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly or a hospice worker.
- treating refers to any indicia of success in the treatment or amelioration of a disease or condition, particularly cancer. Treating or treatment may be performed in vitro and/or in vivo, and may comprise delivering an oncolytic virus, or composition thereof, described herein to a patient or subject in need thereof. In some embodiments, treating includes, for example, reducing, delaying or alleviating the severity of one or more symptoms of the disease or condition, and/or reducing the frequency with which symptoms of a disease, defect, disorder, or adverse condition are experienced by a subject or patient.
- “treat or prevent” is used herein to refer to a method that results in some level of treatment or amelioration of the disease or condition, and contemplates a range of results directed to that end, including but not restricted to prevention of the condition entirely.
- preventing refers to the prevention of a disease or condition, e.g., tumor formation, in a patient or subject and may also be referred to as “prophylactic treatment.” Prevention of disease development can refer to complete prevention of the symptoms of disease, a delay in disease onset, or a lessening of the severity of the symptoms in a subsequently developed disease. As a non-limiting illustrative example, if an individual at risk of developing a tumor or other form of cancer is treated with the methods of the present invention and does not later develop the tumor or other form of cancer, then the disease has been prevented, at least over a period of time, in that individual.
- therapeutically effective amount and “therapeutically effective dose” are used interchangeably herein and refer to the amount of an oncolytic virus or composition thereof that is sufficient to provide a beneficial effect or to otherwise reduce a detrimental non-beneficial event (e.g. an amount or dose sufficient to treat a disease).
- the exact amount or dose of an oncolytic virus comprised within a therapeutically effective amount or therapeutically effective dose will depend on variety of factors including: the purpose of the treatment; the weight, sex, age, and general health of the subject or patient; the route of administration; the timing of administrations; and the nature of the disease to be treated.
- the therapeutically effective amount for a given subject or patient is ascertainable by one skilled in the art using known techniques (see, e.g. Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); and Pickar, Dosage Calculations (1999)).
- “Pseudotype” refers to a virus particle, wherein a portion of the virus particle (e.g., the envelope or capsid) comprises heterologous proteins, such as viral proteins derived from a heterologous virus or non-viral proteins.
- Non-viral proteins may include antibodies and antigen-binding fragments thereof.
- a pseudotyped virus is capable of i) altered tropism relative to non-pseudotyped virus, and/or ii) reduction or elimination of a non-beneficial effect.
- a pseudotyped virus demonstrates reduced toxicity or reduced infection of non-tumor cells or non-tumor tissue as compared to a non-pseudotyped virus.
- targeting moiety refers herein to a heterologous protein linked to a virus particle that is capable of binding to a protein on the cell surface of a selected cell type in order to direct interaction between the virus particle and the selected cell type.
- the targeting moiety may be covalently or non-covalently linked and is generally linked to an envelope protein, e.g., E1, E2, or E3.
- Representative targeting moieties include antibodies, antigen binding fragments thereof, and receptor ligands.
- a viral “envelope” protein, or “Env” protein refers to any polypeptide sequence that resides on the surface lipid bilayer of a virion and whose function is to mediate the adsorption to and the penetration of host cells susceptible to infection.
- vector is used herein to refer to a nucleic acid molecule capable transferring or transporting another nucleic acid molecule.
- the transferred nucleic acid is generally linked to, e.g., inserted into, the vector nucleic acid molecule.
- a vector may include sequences that direct autonomous replication in a cell, or may include sequences sufficient to allow integration into host cell DNA.
- the vector is a virus (i.e., a viral vector or oncolytic viral vector) and the transferred nucleic acid sequence is a recombinant nucleic acid sequence encoding an engager molecule and/or a therapeutic molecule.
- a viral vector may sometimes be referred to as a “recombinant virus” or a “virus.”
- the terms “oncolytic virus” and “oncolytic vector” are used interchangeably herein.
- Nucleic acid genome refers to the nucleic acid component of a virus particle, which encodes the genome of the virus particle including any proteins required for replication and/or integration of the genome.
- a viral genome acts as a viral vector and may comprise a heterologous gene operably linked to a promoter.
- the promoter may be either native or heterologous to the gene and may be viral or non-viral in origin.
- the viral genomes described herein may be based on any virus, may be an RNA or DNA genome, and may be either single stranded or double stranded.
- the nucleic acid genome is from the family Rhabdoviridae.
- Retroviral vectors refer to viral vectors based on viruses of the Retroviridae family. In their wild-type (WT) form, retroviral vectors typically contain a nucleic acid genome. Provided herein are pseudotyped retroviral vectors that also comprise a heterologous gene, such as a recombinant nucleic acid sequence described herein.
- WT wild-type
- pseudotyped retroviral vectors that also comprise a heterologous gene, such as a recombinant nucleic acid sequence described herein.
- antibody fragment or derivative thereof includes polypeptide sequences containing at least one CDR and capable of specifically binding to a target antigen.
- the term further relates to single chain antibodies, or fragments thereof, synthetic antibodies, antibody fragments, such as a Camel Ig, Ig NAR, Fab fragments, Fab′ fragments, F(ab)′2 fragments, F(ab)′3 fragments, Fv, single chain Fv antibody (“scFv”), bis-scFv, (scFv)2, minibody, diabody, triabody, tetrabody, disulfide stabilized Fv protein (“dsFv”), and single-domain antibody (sdAb, nanobody), etc., or a chemically modified derivative of any of these.
- scFv single chain Fv antibody
- dsFv disulfide stabilized Fv protein
- sdAb single-domain antibody
- antibodies or their corresponding immunoglobulin chain(s) are further modified by using, for example, amino acid deletion(s), insertion(s), substitution(s), addition(s), and/or recombination(s) and/or any other modification(s) (e.g. posttranslational and chemical modifications, such as glycosylation and phosphorylation), either alone or in combination.
- modification(s) e.g. posttranslational and chemical modifications, such as glycosylation and phosphorylation
- single-chain refers to the covalent linkage of two or more polypeptide sequences, preferably in the form of a co-linear amino acid sequence encoded by a single nucleic acid molecule.
- binding to and “interacting with” are used interchangeably herein and refer to the interaction of at least two “antigen-interaction-sites” with each other.
- An “antigen-interaction-site” refers to a motif of a polypeptide (e.g., an antibody or antigen binding fragment thereof) capable of specific interaction with an antigen or a group of antigens.
- the binding/interaction is also understood to define a “specific interaction” or “specific binding.”
- specific binding refers to an antigen-interaction-site that is capable of specifically interacting with and/or binding to at least two amino acids of a target molecule as defined herein.
- the term relates to the ability of the antigen-interaction-site to discriminate between the specific regions (e.g. epitopes) of the target molecules defined herein such that it does not, or essentially does not, cross-react with polypeptides of similar structures.
- the epitopes are linear.
- the epitopes are conformational epitopes, a structural epitope, or a discontinuous epitope consisting of two regions of the human target molecules or parts thereof.
- a conformational epitope is defined by two or more discrete amino acid sequences separated in the primary sequence which come together on the surface of the folded protein.
- Specificity and/or cross-reactivity of a panel of antigen bindings construct under investigation can be tested, for example, by assessing binding of the panel of the constructs to the polypeptide of interest as well as to a number of more or less (structurally and/or functionally) closely related polypeptides under conventional conditions (see, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988 and Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999).
- the specific interaction of the antigen-interaction-site with a specific antigen results in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, oligomerization of the antigen, etc.
- specific binding encompasses a “key-lock-principle.” Therefore in some embodiments, specific motifs in the amino acid sequence of the antigen-interaction-site interact with specific motifs in the antigen and bind to each other as a result of their primary, secondary or tertiary structure, or as the result of secondary modifications of said structure. In some embodiments, the specific interaction of the antigen-interaction-site with its specific antigen results in a simple binding of the site to the antigen.
- Oncolytic viruses are able to infect, replicate in, and lyse tumor cells, and are further capable of spreading to other tumor cells in successive rounds of replication. While past oncolytic virus therapy has shown promise in preclinical models and clinical studies, anti-tumor efficacy of these oncolytic virus, such as vaccinia, has been suboptimal. For example, these viruses demonstrated limited viral spread throughout the tumor and/or limited activation of anti-tumor T cell responses within the tumor. Therefore, the present disclosure provides an oncolytic virus that 1) facilitates tumor infiltration and activation of effector cells (e.g., T cells), and 2) effectively lyses tumor cells that are not infected the virus (also known as by-stander killing).
- effector cells e.g., T cells
- viral vectors which have advantages including one or more of the following properties:
- VSV vesicular stomatitis viruses
- the VSV genome includes five genes, l, m, n, p and g, which encode the proteins L, M, N, P and G and are essential for the reproduction of the virus.
- N is a nucleoprotein which packages the VSV genomic RNA.
- the VSV genome is replicated as RNA-protein complex and L and P together form a polymerase complex which replicates the VSV genome and transcribes the VSV mRNA.
- M is a matrix protein which provides structural support between the lipid envelope and nucleocapsid and is important for particle sprouting at the cell membrane.
- G is the envelope protein which is incorporated in the viral envelope and is essential for the infectivity and tropism of the virus.
- the present invention provides oncolytic viruses that are capable of being pseudotyped or otherwise engineered.
- “Pseudotyped viruses” refer to viruses in which one or more of the viral coat proteins (e.g., envelope proteins) have been replaced or modified.
- a pseudotyped virus is capable of infecting a cell or tissue type that the corresponding non-pseudotyped virus is not capable of infecting.
- a pseudotyped virus is capable of perferentially infecting a cell or tissue type compared to a non-pseudotyped virus.
- viruses have natural host cell populations that they infect most efficiently.
- retroviruses have limited natural host cell ranges
- adenoviruses and adeno-associated viruses are able to efficiently infect a relatively broader range of host cells, although some cell types are refractory to infection by these viruses.
- the proteins on the surface of a virus e.g., envelope proteins or capsid proteins
- the oncolytic viruses described herein comprise a single types of protein on the surface of the virus.
- retroviruses and adeno-associated viruses have a single protein coating their membrane.
- the oncolytic viruses described herein comprise more than one type of protein on the surface of the virus.
- adenoviruses are coated with both an envelope protein and fibers that extend away from the surface of the virus.
- the proteins on the surface of the virus can bind to cell-surface molecules such as heparin sulfate, thereby localizing the virus to the surface of the potential host cell.
- the proteins on the surface of the virus can also mediate interactions between the virus and specific protein receptors expressed on a host cell that induce structural changes in the viral protein in order to mediate viral entry.
- interactions between the proteins on the surface of the virus and cell receptors can facilitate viral internalization into endosomes, wherein acidification of the endosomal lumen induces refolding of the viral coat.
- viral entry into potential host cells requires a favorable interaction between at least one molecule on the surface of the virus and at least one molecule on the surface of the cell.
- the oncolytic viruses described herein comprise a viral coat (e.g., a viral envelop or viral capsid), wherein the proteins present on the surface of the viral coat (e.g., viral envelop proteins or viral capsid proteins) modulate recognition of a potential target cell for viral entry.
- a viral coat e.g., a viral envelop or viral capsid
- the proteins present on the surface of the viral coat e.g., viral envelop proteins or viral capsid proteins
- this process of determining a potential target cell for entry by a virus is referred to as host tropism.
- the host tropism is cellular tropism, wherein viral recognition of a receptor occurs at a cellular level, or tissue tropism, wherein viral recognition of cellular receptors occurs at a tissue level.
- the viral coat of a virus recognizes receptors present on a single type of cell.
- the viral coat of a virus recognizes receptors present on multiple cell types (e.g., 2, 3, 4, 5, 6 or more different cell types). In some instances, the viral coat of a virus recognizes cellular receptors present on a single type of tissue. In other instances, the viral coat of a virus recognizes cellular receptors present on multiple tissue types (e.g., 2, 3, 4, 5, 6 or more different tissue types).
- the oncolytic viruses described herein comprise a viral coat that has been modified to incorporate surface proteins from a different virus in order to facilitate viral entry to a particular cell or tissue type.
- Such oncolytic viruses are referred to herein as pseudotyped oncolytic viruses.
- a pseudotyped oncolytic viruses comprises a viral coat wherein the viral coat of a first virus is exchanged with a viral coat of second, wherein the viral coat of the second virus is allows the pseudotyped oncolytic virus to infect a particular cell or tissue type.
- the viral coat comprises a viral envelope.
- the viral envelope comprises a phospholipid bilayer and proteins such as proteins obtained from a host membrane.
- the viral envelope further comprises glycoproteins for recognition and attachment to a receptor expressed by a host cell.
- the viral coat comprises a capsid.
- the capsid is assembled from oligomeric protein subunits termed protomers.
- the capsid is assembled from one type of protomer or protein, or is assembled from two, three, four, or more types of protomers or proteins.
- the chimeric proteins are comprised of parts of a viral protein necessary for incorporation into the virion, as well proteins or nucleic acids designed to interact with specific host cell proteins, such as a targeting moiety.
- the pseudotyped oncolytic viruses described herein are pseudotyped in order to limit or control the viral tropism (i.e., to reduce the number of cell or tissue types that the pseudotyped oncolytic virus is capable of infecting).
- Most strategies adopted to limit tropism have used chimeric viral coat proteins (e.g., envelope proteins) linked antibody fragments. These viruses show great promise for the development of oncolytic therapies.
- the pseudotyped oncolytic viruses described herein are pseudotyped in order to expand the viral tropism (i.e., to increase the number of cell or tissue types that the pseudotyped oncolytic virus is capable of infecting).
- viruses e.g., enveloped viruses
- pseudotypes a process that commonly occurs during viral assembly in cells infected with two or more viruses.
- HIV-1 human immunodeficiency virus type 1
- HIV1 infects cells that express CCR4 with an appropriate co-receptor.
- HIV1 forms pseudotypes by the incorporation of heterologous glycoproteins (GPs) through phenotypic mixing, such that the virus can infect cells that do not express the CD4 receptor and/or an appropriate co-receptor, thereby expanding the tropism of the virus.
- GPs heterologous glycoproteins
- VSV G-proteins VSV-G
- lentivirus pseudotypes include pseudotypes bearing lyssavirus-derived GPs, pseudotyped lentiviruses bearing lymphocytic choriomeningitis virus GPs, lentivirus pseudotypes bearing alphavirus GPs (e.g., lentiviral vectors pseudotyped with the RRV and SFV GPs, lentiviral vectors pseudotyped with Sindbis virus GPs), pseudotypes bearing filovirus GPs, and lentiviral vector pseudotypes containing the baculovirus GP64.
- pseudotypes bearing lyssavirus-derived GPs pseudotyped lentiviruses bearing lymphocytic choriomeningitis virus GPs
- lentivirus pseudotypes bearing alphavirus GPs e.g., lentiviral vectors pseudotyped with the RRV and SFV GPs, lentiviral vectors pseudotyped with Sindbis virus GPs
- the engineered (e.g., pseudotyped) viruses are capable of binding to a tumor and/or tumor cell, typically by binding to a protein, lipid, or carbohydrate expressed on a tumor cell.
- the engineered viruses described herein may comprise a targeting moiety that directs the virus to a particular host cell.
- any cell surface biological material known in the art or yet to be identified that is differentially expressed or otherwise present on a particular cell or tissue type e.g., a tumor or tumor cell, or tumor associated stroma or stromal cell
- the cell surface material is a protein.
- the targeting moiety binds cell surface antigens indicative of a disease, such as a cancer (e.g., breast, lung, ovarian, prostate, colon, lymphoma, leukemia, melanoma, and others); an autoimmune disease (e.g., a cancer (e.g., breast, lung, ovarian, prostate, colon, lymphoma, leukemia, melanoma, and others); an autoimmune disease (e.g.
- a cancer e.g., breast, lung, ovarian, prostate, colon, lymphoma, leukemia, melanoma, and others
- an autoimmune disease e.g.
- myasthenia gravis multiple sclerosis, systemic lupus erythymatosis, rheumatoid arthritis, diabetes mellitus, and others
- an infectious disease including infection by HIV, HCV, HBV, CMV, and HPV
- a genetic disease including sickle cell anemia, cystic fibrosis, Tay-Sachs, J3-thalassemia, neurofibromatosis, polycystic kidney disease, hemophilia, etc.
- the targeting moiety targets a cell surface antigen specific to a particular cell or tissue type, e.g., cell-surface antigens present in neural, lung, kidney, muscle, vascular, thyroid, ocular, breast, ovarian, testis, or prostate tissue.
- a cell surface antigen specific to a particular cell or tissue type e.g., cell-surface antigens present in neural, lung, kidney, muscle, vascular, thyroid, ocular, breast, ovarian, testis, or prostate tissue.
- antigens and cell surface molecules for targeting include, e.g. P-glycoprotein, Her2/Neu, erythropoietin (EPO), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGF-R), cadherin, carcinoembryonic antigen (CEA), CD4, CD8, CD19, CD20, CD33, CD34, CD45, CD117 (c-kit), CD133, HLA-A, HLA-B, HLA-C, chemokine receptor 5 (CCR5), stem cell marker ABCG2 transporter, ovarian cancer antigen CA125, immunoglobulins, integrins, prostate specific antigen (PSA), prostate stem cell antigen (PSCA), dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), thyroglobulin, granulocyte-macrophage colony stimulating factor (GM-CSF), myogenic differentiation promoting factor-1 (MyoD-1), Leu
- the pseudotyped oncolytic viruses provided herein are capable of selectively entering, replicating in, and/or lysing tumor cells. Such an embodiment is illustrated in FIG. 36 , wherein the pseudotyped oncolytic virus gains entry to the target cell due to the incorporation of viral glycoproteins derived from a different (i.e., heterologous) virus that allow for entry of the pseudotyped oncolytic virus into the target cell. In contrast, the non-pseudotyped oncolytic virus is unable to gain entry into the target cell due to the non-permissive nature of the envelope proteins.
- the ability of a pseudotyped oncolytic virus to selectively enter, replicate in, and/or lyse a tumor cells is due to a reduced or otherwise ineffective cellular interferon (IFN) response.
- the pseudotyped oncolytic viruses produce an engager molecule and/or a therapeutic molecule, such as an immune modulating polypeptide, that interferes or impairs the cellular IFN response, thereby enhancing the replication of the pseudotyped or engineered virus.
- the pseudotyped oncolytic viruses described herein may be derived from a variety of viruses, non-limiting examples of which include vaccinia virus, adenovirus, herpes simplex virus 1 (HSV1), myxoma virus, reovirus, poliovirus, vesicular stomatitis virus (VSV), measles virus (MV), lassa virus (LASV) and Newcastle disease virus (NDV).
- the pseudotyped oncolytic viruses described herein can infect substantially any cell type.
- An exemplary lentivirus for use in oncolytic therapy is Simian immunodeficiency virus coated with the envelope proteins, G-protein (GP), from VSV. In some instances, this virus is referred to as VSV G-pseudotyped lentivirus, and is known to infect an almost universal set of cells.
- the pseudotyped oncolytic viruses of the present invention are VSV viruses pseudotyped against healthy brain cells, i.e., neurons and exhibit considerably reduced toxicity. Since neurotropism is a dose-limiting factor in all applications of oncolytic VSV, the use of the vector according to some embodiments of the present invention is that they are used for all tumors types of solid tumors.
- the pseudotyped VSV vectors have one or more key attributes including: (i) the VSV is not cell-toxic; (ii) the vectors are concentrated by ultracentrifugation without loss of infectivity; and (iii) the vectors show a tropism for tumor cells, whereas neurons and other non-tumor cells are infected inefficiently.
- some embodiments of the present invention provide a vector system which ensures that replication, oncolysis and the production of VSV viruses takes place only in cells which are infected by at least two replication-deficient, mutually complementing vectors.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a DNA virus, an RNA virus, or from both virus types.
- a DNA virus is a single-stranded (ss) DNA virus, a double-stranded (ds) DNA virus, or a DNA virus that contains both ss and ds DNA regions.
- an RNA virus is a single-stranded (ss) RNA virus or a double-stranded (ds) RNA virus.
- an ssRNA virus is further classified into a positive-sense RNA virus or a negative-sense RNA virus.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a dsDNA virus of any one of the following families: Myoviridae, Podoviridae, Siphoviridae, Alloherpesviridae, Herpesviridae, Malacoherpesviridae, Lipothrixviridae, Rudiviridae, Adenoviridae, Ampullaviridae, Ascoviridae, Asfaviridae, Baculoviridae, Bicaudaviridae, Clavaviridae, Corticoviridae, Fuselloviridae, Globuloviridae, Guttaviridae, Hytrosaviridae, Iridoviridae, Marseilleviridae, Mimiviridae, Nimaviridae, Pandoraviridae, Papillomaviridae, Phycodnaviridae, Plasmaviridae, Polydnaviruse
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a ssDNA virus of any one of the following families: Anelloviridae, Bacillariodnaviridae, Bidnaviridae, Circoviridae, Geminiviridae, Inoviridae, Microviridae, Nanoviridae, Parvoviridae, or Spiraviridae.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a DNA virus that contains both ssDNA and dsDNA regions.
- the DNA virus is from the group pleolipoviruses.
- the pleolipoviruses include Haloarcula hispanica pleomorphic virus 1, Halogeometricum pleomorphic virus 1, Halorubrum pleomorphic virus 1, Halorubrum pleomorphic virus 2, Halorubrum pleomorphic virus 3, or Halorubrum pleomorphic virus 6.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a dsRNA virus of any one of the following families: Birnaviridae, Chrysoviridae, Cystoviridae, Endornaviridae, Hypoviridae, Megavirnaviridae, Partitiviridae, Picobirnaviridae, Reoviridae, Rotavirus or Totiviridae.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a positive-sense ssRNA virus of any one of the following families: Alphaflexiviridae, Alphatetraviridae, Alvemaviridae, Arteriviridae, Astroviridae, Bamaviridae, Betaflexiviridae, Bromoviridae, Caliciviridae, Carmotetraviridae, Closteroviridae, Coronaviridae, Dicistroviridae, Flaviviridae, Gammaflexiviridae, Iflaviridae, Leviviridae, Luteoviridae, Marnaviridae, Mesoniviridae, Namaviridae, Nodaviridae, Permutotetraviridae, Picornaviridae, Potyviridae, Roniviridae, Secoviridae, Togaviridae, Tombusviridae, Tymovirida
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a negative-sense ssRNA virus of any one of the following families: Bornaviridae, Filoviridae, Paramyxoviridae, Rhabdoviridae, Nyamiviridae, Arenaviridae, Bunyaviridae, Ophioviridae, or Orthomyxoviridae.
- the genetic material for generating a pseudotyped oncolytic virus is obtained from oncolytic DNA viruses that comprise capsid symmetry that is isocahedral or complex.
- isosahedral oncolytic DNA viruses are naked or comprise an envelope.
- Exemplary families of oncolytic DNA viruses include the Adenoviridae (for example, Adenovirus, having a genome size of 36-38 kb), Herpesviridae (for example, HSV1, having a genome size of 120-200 kb), and Poxviridae (for example, Vaccinia virus and myxoma virus, having a genome size of 130-280 kb).
- the genetic material for generating a pseudotyped oncolytic virus is obtained from oncolytic RNA viruses include those having icosahedral or helical capsid symmetry.
- icosahedral oncolytic viruses are naked without envelope and include Reoviridae (for example, Reovirus, having a genome of 22-27 kb) and Picornaviridae (for example, Poliovirus, having a genome size of 7.2-8.4 kb).
- helical oncolytic RNA viruses are enveloped and include Rhabdoviridae (for example, VSV, having genome size of 13-16 kb) and Paramyxoviridae (for example MV and NDV, having genome sizes of 16-20 kb).
- Rhabdoviridae for example, VSV, having genome size of 13-16 kb
- Paramyxoviridae for example MV and NDV, having genome sizes of 16-20 kb
- the genetic material for generating a pseudotyped oncolytic virus is obtained from a virus such as Abelson leukemia virus, Abelson murine leukemia virus, Abelson's virus, Acute laryngotracheobronchitis virus, Sydney River virus, Adeno associated virus group, Adenovirus, African horse sickness virus, African swine fever virus, AIDS virus, Aleutian mink disease parvovirus, Alpharetrovirus, Alphavirus, ALV related virus, Amapari virus, Aphthovirus, Aquareovirus, Arbovirus, Arbovirus C, arbovirus group A, arbovirus group B, Arenavirus group, Argentine hemorrhagic fever virus, Argentine hemorrhagic fever virus, Arterivirus, Astrovirus, Ateline herpesvirus group, Aujezky's disease virus, Aura virus, Ausduk disease virus, Australian bat lyssavirus, Aviadenovirus, avian erythroblastosis virus,
- a pseudotyped oncolytic virus described herein is generated using methods well known in the art. In some instances, the methods involve one or more transfection steps and one or more infection steps. In some instances, a cell line such as a mammalian cell line, an insect cell line, or a plant cell line is infected with a pseudotyped oncolytic virus described herein to produce one or more viruses.
- a cell line such as a mammalian cell line, an insect cell line, or a plant cell line is infected with a pseudotyped oncolytic virus described herein to produce one or more viruses.
- Exemplary mammalian cell lines include: 293A cell line, 293FT cell line, 293F cells, 293 H cells, CHO DG44 cells, CHO-S cells, CHO-K1 cells, Expi293FTM cells, Flp-InTM T-RExTM 293 cell line, Flp-InTM-293 cell line, Flp-InTM-3T3 cell line, Flp-InTM-BHK cell line, Flp-InTM-CHO cell line, Flp-InTM-CV-1 cell line, Flp-InTM-Jurkat cell line, FreeStyleTM 293-F cells, FreeStyleTM CHO-S cells, GripTiteTM 293 MSR cell line, GS-CHO cell line, HepaRGTM cells, T-RExTM Jurkat cell line, Per.C6 cells, T-RExTM-293 cell line, T-RExTM-CHO cell line, T-RExTM-HeLa cell line, 3T6, A549, A9, AtT-20, BALB/3T3, BHK
- any method known to one skilled in the art is used for large scale production of recombinant oncolytic vectors and vector constructs, such as pseudotyped oncolytic vectors.
- master and working seed stocks can be prepared under GMP conditions in qualified primary CEFs or by other methods.
- cells are plated on large surface area flasks, grown to near confluency, and infected at selected MOI.
- the produced virus can then be purified.
- cells are harvested and intracellular virus is released by mechanical disruption.
- cell debris is removed by large-pore depth filtration and/or host cell DNA is digested with an endonuclease.
- virus particles are subsequently purified and concentrated by tangential-flow filtration, followed by diafiltration.
- the resulting concentrated virus can formulated by dilution with a buffer containing one or more stabilizers, filled into vials, and lyophilized. Compositions and formulations can be stored for later use. In some embodiments, a lyophilized virus is reconstituted by addition of one or more diluents.
- the oncolytic viral vectors provided herein are pseudotyped oncolytic viruses that are further engineered to include a polynucleotide sequence that encodes an engager molecule, e.g., an engager polypeptide.
- the engager molecules of the present invention comprise at least two domains each capable of binding to a different cell surface molecule.
- engager polypeptides comprise an antigen recognition domain and an activation domain that recognize particular cell surface proteins (e.g., cell-surface receptors or ligands) expressed by target and effector cells, respectively.
- an “antigen recognition domain” is a polypeptide that binds one or more molecules present on the cell surface of a target cell (e.g., a tumor antigen), and an “activation domain” is a polypeptide that binds to one or more molecules present on the cell surface of an effector cell (e.g., an activation molecule).
- An activation domain may also be referred to as an “engager domain.”
- engager polypeptides comprise a therapeutic molecule domain and an activation domain.
- a therapeutic molecule domain is a polypeptide that binds to a particular cell surface protein expressed on an effector cell (e.g., cell-surface receptors or ligands) and that is distinct from the cell surface protein recognized by the activation domain.
- the therapeutic molecule domain binds to a cell surface protein that is a negative regulator of effector cell function (e.g., an immune checkpoint molecule or other inhibitory molecule).
- Exemplary cell-surface antigen for targeting by a therapeutic domain include CD47, PD1, PDL1, CTLA4, TIM2, LAG3, BTLA, KIR, TIGIT, OX40, FITR, CD27, SLAMF7, and CD200.
- binding of an activation domain to a molecule present on the surface of the effector cell results in activation of the effector cell.
- binding of an activation domain to a molecule on an effector cell and binding of an antigen recognition domain to a molecule present on a target cell brings the effector cell in close proximity to the target cell and thereby facilitates the destruction of the target cell by the effector cell.
- binding of an activation domain to an activation molecule on an effector cell and binding of a therapeutic molecule domain to an inhibitory molecule present on an effector cell enhances the activation of the effector cell and thereby facilitates the destruction of one or more bystander target cells by the effector cell.
- the engager molecule is a protein, e.g., an engineered protein. In some embodiments, the engager molecule is a bipartite polypeptide. In some embodiments, the engager molecule is a tripartite or multipartite polypeptide. In such embodiments, the engager molecule may comprise one or more activation domains and/or antigen recognition domains, or other domains, including one or more co-stimulatory domains, one or more dimerization or trimerization domains, or other domain capable of binding a molecule expressed on the cell surface. Alternatively, the one or more additional domains are optionally present on a separate polypeptide. In some embodiments, the engager molecule comprises an antibody or antibody fragment.
- the engager molecule is a is a trifunctional antibody, an Fab 2 , a bi-specific scFv such as a bi-specific T-cell engager (BiTE), a bivalent minibody, a bispecific diabody, a DuoBody, or an Mab2.
- the engager molecule is a bipartite T cell engager (BiTE) or a tripartite T cell engager (TiTE).
- the activation domain, the antigen recognition domain, and/or the therapeutic molecule domain of the engager molecule comprises an antibody or an antigen-binding fragment thereof, e.g., a single chain variable fragment (scFv), a monoclonal antibody, Fv, Fab, minibody, diabody.
- the activation domain, the antigen recognition domain, and/or the therapeutic molecule domain of the engager molecule comprises a ligand, a peptide, a peptide that recognize and interacts with a soluble TCR, or combinations thereof.
- these antibody-derived fragments or derivatives may be modified by chemical, biochemical, or molecular biological methods.
- polypeptides, antibodies, or antigen-binding fragments thereof used in the construction of the engager molecules described herein are humanized or deimmunized constructs. Methods for the humanization and/or deimmunization of polypeptides and, in particular, antibody constructs are known to the person skilled in the art.
- the respective domains are in any order from N-terminus to C-terminus.
- the engager molecule may comprise an N-terminal activation domain and a C-terminal antigen recognition domain.
- the engager molecule may comprise an N-terminal antigen recognition domain and a C-terminal activation domain.
- the engager molecule may comprise an N-terminal activation domain and a C-terminal therapeutic molecule domain.
- the engager molecule may comprise an N-terminal therapeutic molecule domain and a C-terminal activation domain.
- T-cells are modified to secrete engager molecules that have an antigen recognition domain or therapeutic molecule domain N-terminal to an activation domain.
- linker is of any suitable length, and such a parameter is routinely optimized in the art.
- linkers are of a length and sequence sufficient to ensure that each of the first and second domains can, independently from one another, retain their differential binding specificities.
- peptide linker refers to an amino acid sequence by which the amino acid sequences of a first domain (e.g., an activation domain) and a second domain (e.g., an antigen recognition domain or therapeutic molecule domain) of a defined construct are linked together.
- one technical feature of such peptide linker is that said peptide linker does not comprise any polymerization activity and/or does not promote formation of secondary structures.
- Such peptide linkers are known in the art and described, for example, in Dall'Acqua et al. (Biochem. (1998) 37, 9266-9273); Cheadle et al. (Mol Immunol (1992) 29, 21-30); and Raag and Whitlow (FASEB (1995) 9(1), 73-80).
- the peptide linkers of the present invention comprise less than 5 amino acids, less than 4 amino acids, less than 3 amino acids, less than 2 amino acids, or 1 amino acid.
- the peptide linker is a single amino acid linker.
- the single amino acid is typically a glycine (Gly).
- peptide linkers that also do not promote any secondary structures are preferred.
- the engager molecule is a single chain bi-specific antibody construct.
- single chain bispecific antibody construct refers to a construct comprising two antibody-derived binding domains. One of the binding domains comprises variable regions (or parts thereof) of both heavy chain (VH) and light chain (VL) of an antibody or antigen binding fragments or derivatives thereof, capable of specifically binding to/interacting with an activation molecule expressed on an effector cell (e.g., CD3).
- VH heavy chain
- VL light chain
- an activation molecule expressed on an effector cell e.g., CD3
- the second binding domain comprises variable regions (or parts thereof) of both heavy chain (VH) and light chain (VL) of an antibody or antigen binding fragments or derivatives thereof, capable of specifically binding to/interacting with a target antigen expressed on a target cell (e.g., CD19) or an antigen expressed by and effector cell (e.g., an inhibitor molecule).
- VH heavy chain
- VL light chain
- each of the two antibody or antigen binding fragments or derivatives comprise at least one complementary determining region (CDR), particularly a CDR3.
- the single chain bi-specific antibody construct is a bispecific scFv or diabody.
- the single chain bispecific antibody construct is a single chain bispecific scFv.
- An scFv in general contains a VH and VL domain connected by a linker peptide.
- a single chain bispecific scFv is comprised of a signal peptide to allow for secretion from cells, followed by two scFvs connected by one or more linker peptides (Lx, Ly, Lz).
- Bispecific single chain molecules are known in the art and are described in International PCT Publication No. WO 99/54440; Mack, J. Immunol. (1997), 158, 3965-3970; Mack, PNAS, (1995), 92, 7021-7025; Kufer, Cancer Immunol. Immunother., (1997), 45, 193-197; Loftier, Blood, (2000), 95, 6, 2098-2103; and Bruhl, J. Immunol., (2001), 166, 2420-2426.
- the molecular format of the polynucleotide encoding a single chain bi-specific scFv polypeptide comprises nucleic acid sequence encoding a signal peptide (such as the signal sequences of SEQ ID NO: 2 and 4) followed by two or more antibody-derived regions (e.g., a first scFv and a second scFv).
- Each antibody-derived region e.g., scFv
- the two or more antibody-derived regions are scFvs and are linked by a peptide linker to form a single chain bi-specific scFv construct.
- the bi-specific scFv is a tandem bi-scFv or a diabody.
- Bispecific scFvs can be arranged in different formats including the following: VHO-Lx-V La -Ly-V H -Lz-ViJ3, V La -Lx-V Ha -Ly-VH-Lz-ViJ3, V La -Lx-V H -Ly-VL-Lz-VH, V H -Lx-V La -Ly-VL-Lz-VH, V H -Lx-VL-Ly-VH-Lz-V La , V La -Lx-VL-Ly-VH-Lz-V H , VH-Lx-VH-Ly-VL-Lz-VLa, VLa-Lx-VH-Ly-VL-Lz-V H , VH-Lx-V La -Ly-V H -Lz-VL, V
- the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) antigen binding domains to allow targeting of multiple antigens. In some embodiments, the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) activation domains to activate effector cells. In some embodiments, the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) therapeutic molecule domains to activate effector cells.
- the engager molecule comprises additional domains for the isolation and/or preparation of recombinantly produced constructs, such as a tag or a label.
- the tag or label may be a short peptide sequence, such as a histidine tag (SEQ ID NO: 12), or may be a tag or label that is capable of being imaged, such as fluorescent or radioactive label.
- the engager molecules of the present invention specifically bind to/interact with a particular conformational/structural epitope(s) of a target antigen expressed on a target cell and an activation molecule expressed on an effector cell (e.g., an activation domain that specifically binds to one of the two regions of the human CD3 complex, or parts thereof).
- the engager molecules of the present invention specifically bind to/interact with a particular conformational/structural epitope(s) of an activation molecule expressed on an effector cell and a different cell-surface protein expressed on an effector cell. Accordingly, specificity in some instances is determined experimentally by methods known in the art and methods as disclosed and described herein.
- Such methods comprise, but are not limited to Western blots, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunoprecipitation (RIP), electrochemiluminescence (ECL), immunoradiometric assay (IRMA), enzyme immunoassay (EIA), and peptide scans.
- ELISA enzyme-linked immunosorbent assay
- RIA radioimmunoassay
- RIP radioimmunoprecipitation
- ECL electrochemiluminescence
- IRMA immunoradiometric assay
- EIA enzyme immunoassay
- peptide scans peptide scans.
- the term “effector cell” refers to any mammalian cell type that is capable of facilitating the death of a target cell.
- the effector cells of the present invention are immune cells, such as a T cell, a B cell, an innate lymphocyte, a natural killer (NK) cell, a natural killer T cell (NKT), a granulocyte (e.g., a neutrophil, basophil, mast cell, or eosinophil), a macrophage, a monocyte, or a dendritic cell.
- exemplary effector cell types include T cells, NK cells, NKT cells, and macrophages.
- activation of an effector cell may result in one or more of the following: (i) increased proliferation of the effector cell; (ii) changes in the expression or activity of one or more cell surface proteins of the effector cell; (iii) change in expression or activity of one or more intracellular proteins expressed by the effector cell; (iv) changes in the amount or nature of factors produced and/or secreted by the effector cell, such as cytokines, chemokines or reactive oxygen species; (v) changes in the morphology of the effector cell; (vi) changes in the chemotactic potential of the effector cell, such as through increased or decreased expression of one or more chemokine receptors; (vii) changes in the functional activity of the effector cell, such as increased cytolytic activity and/or increased phagocytic activity.
- Activation of an effector cell, or population of effector cells can be determined by any means known in the art. For example, changes in proliferation, protein expression, production, or secretion can be determined by flow cytometry, Western blot, ELISA, immunohistochemistry, immunoprecipitation, or immunofluorescence and changes in cell morphology can be determined by numerous types of microscopy known in the art.
- the nature of the activating molecule may vary according to the nature of the effector cell, although different groups of effector cells may share expression of certain types of activation molecules.
- T cells express different surface receptors, i.e. different activating receptors, than NK cells or macrophages.
- CD3 is an activating receptor expressed by T-cells that is not expressed by NK cells or macrophages
- CD1, CD16, NKG2D, and/or NKp30 are activating receptors expressed by NK cells that are not expressed by T cells. Therefore, in some instances, engager molecules that activate T-cells have a different activation domain than engager molecules that activate NK cells, macrophages, NKT cells, or other types of effector cells. Exemplary activation molecules are described below and shown in Table 1.
- the effector cell is a T cell and the activation domain of the engager molecule binds to an activation molecule expressed by the T cell.
- the T-cell repertoire is comprised of numerous sub-types of T cell, including NKT cells, cytotoxic T cells (Tc or CTL), memory T cells, helper T cells (e.g., Th1, Th2, Th17, Th9, and/or Th22 cells), suppressor T cells (e.g., regulator T cells (Tregs)), mucosal-associated invariant T cells, and ⁇ T cells.
- Tc or CTL cytotoxic T cells
- memory T cells e.g., cytotoxic T cells (Tc or CTL)
- helper T cells e.g., Th1, Th2, Th17, Th9, and/or Th22 cells
- suppressor T cells e.g., regulator T cells (Tregs)
- mucosal-associated invariant T cells e.g., mucosal-associated invariant T
- one or more surface receptors expressed by one T cell subtype are expressed by at least one other T cell subtype. In some instances, one or more surface receptors expressed by one T cell subtype are generally expressed by all, or most, T cell subtypes.
- CD3 is a signaling component of the T cell receptor (TCR) complex and is expressed in multiple T cell subtypes.
- Exemplary activation molecules expressed by T cells include, but are not limited to one or more components of CD3, (e.g., CD3 ⁇ , CD3 ⁇ , CD3 ⁇ or CD3 ⁇ ), CD2, CD4, CD5, CD6, CD7, CD8, CD25, CD27, CD28, CD30, CD38, CD40, CD57, CD69, CD70, CD73, CD81, CD82, CD134, CD137, CD152, or CD278.
- the effector cell is an NKT-cell.
- the activation molecule includes, but is not limited to, CD3 or an invariant TCR.
- the effector cell is an NK cell and the activation domain of the engager molecule binds to an activation molecule expressed by the NK cell.
- exemplary activation molecules expressed by NK cells include, but are not limited to, CD116, CD94/NKG2 (e.g., NKG2D), NKp30, NKp44, NKp46, or killer activation receptors (KARs).
- T cell Activation NKT cell Activation Molecules Molecules CD3 or components CD3 thereof (e.g., CD3 ⁇ , CD3 ⁇ , CD3 ⁇ or CD3 ⁇ ) CD2 invariant TCR CD4 NK Cell Activation Molecules CD5 CD16 CD6 CD94/NKG2 (e.g., NKG2D) CD7 NKp30 CD8 NKp44 CD16 NKp46 CD25 KARs CD27 CD28 CD30 CD38 CD40 CD57 CD69 CD70 CD73 CD81 CD82 CD134 CD137 CD152 CD278
- CD3 or components CD3 thereof e.g., CD3 ⁇ , CD3 ⁇ , CD3 ⁇ or CD3 ⁇
- CD2 invariant TCR CD4 NK Cell Activation Molecules CD5 CD16 CD6 CD94/NKG2 (e.g., NKG2D) CD7 NKp30 CD8 NKp44 CD16 NKp46 CD25 KARs CD27 CD28 CD30 CD38 CD
- binding of an engager molecule to a target cell and an effector cell brings the effector cell in close proximity to the target cell and thereby facilitates the destruction of the target cell by the effector cell.
- an effector cell refers to a mammalian cell that should be killed, attacked, destroyed, and/or controlled.
- target cells are cells that are in some way altered compared to a normal cell of the same cell type, such as a cancerous cell, a bacterially-infected cell, a virally-infected cell, a fungally-infected cell, and/or an autoimmune cell.
- the target cells of the present invention are cancerous cells (e.g., tumor cells).
- Destruction (i.e., death) of a target cell can be determined by any means known in the art, such as flow cytometry (e.g., by AnnexinV, propidium iodide, or other means), cell counts, and/or microscopy to determine the cellular morphology of the target cells.
- the antigen recognition domain of an engager molecule brings a target cell (e.g., tumor cell) into the vicinity of an effector cell via interaction between the antigen recognition domain and surface antigens expressed by the target cell (e.g., target cell antigens).
- the target-cell antigen is a tumor antigen.
- a tumor antigen is a tumor-specific antigen (TSA), and is expressed only by tumor cells.
- TSA tumor-specific antigen
- the target cell angien is a tumor-associated antigen (TAA), and is expressed by tumor cells and one or more types of normal cells or non-tumor cells.
- TSA is also present in one or more types of normal cells or non-tumor cells, but is predominantly expressed by tumor cells.
- a tumor antigen e.g., TSA or TAA
- TSA or TAA is present in one cancer type.
- a tumor antigen is present in multiple cancer types.
- a tumor antigen is expressed on a blood cancer cell.
- a tumor antigen is expressed on a cell of a solid tumor.
- the solid tumor is a glioblastoma, a non-small cell lung cancer, a lung cancer other than a non-small cell lung cancer, breast cancer, prostate cancer, pancreatic cancer, liver cancer, colon cancer, stomach cancer, a cancer of the spleen, skin cancer, a brain cancer other than a glioblastoma, a kidney cancer, a thyroid cancer, or the like.
- a tumor antigen is expressed by a tumor cell in an individual.
- Exemplary tumor antigens include, but are not limited to, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), CA-125, epithelial tumor antigen (ETA), tyrosinase, CD10 (also known as neprilysin, membrane metallo-endopeptidase (MME), neutral endopeptidase (NEP), or common acute lymphoblastic leukemia antigen (CALLA)), CD15, CD19, CD20, CD21, CD22, CD30, CD33, CD38, CD44, CD44v6, CD44v7/8, CD70, CD123, CD138, CD171, ras, p53, v-raf murine sarcoma viral oncogene homolog B1 (BRAF), calcium binding tyrosine-(Y)-pbosphorylation regulated (CABYR), cysteine-rich secretory protein 3 (CRISP3)
- BRAF alphafetoprotein
- Other exemplary tumor antigens are antigens that are present in the extracellular matrix of tumors, such as oncofetal variants of fibronectin, tenascin, or necrotic regions of tumors.
- the antigen recognition domain of an engager molecule specifically binds a tumor-associated antigen (TAA) or a tumor-specific antigen (TSA).
- TAA tumor-associated antigen
- TSA tumor-specific antigen
- the antigen recognition domain comprises an antibody or an antibody fragment or an antigen-binding fragment or portion thereof, such as for example, a monoclonal antibody, Fv, a scFv, Fab, minibody, or diabody that is specific for a TAA or TSA.
- the antigen recognition domain of the engager is an scFv that is specific for a TAA or TSA.
- the TAA or TSA is expressed on a cancer cell. In one embodiment, the TAA or TSA is expressed on a blood cancer cell.
- the TAA or TSA is expressed on a cell of a solid tumor.
- the solid tumor is a glioblastoma, a non-small cell lung cancer, a lung cancer other than a non-small cell lung cancer, breast cancer, prostate cancer, pancreatic cancer, liver cancer, colon cancer, stomach cancer, a cancer of the spleen, skin cancer, a brain cancer other than a glioblastoma, a kidney cancer, a thyroid cancer, or the like.
- the TAA or TSA is expressed by a tumor cell in an individual.
- the antigen-recognition domain of the engager molecule is specific for one or more target cell antigens shown in Table 2.
- EphA2 is referred to as EPH receptor A2 (ephrin type-A receptor 2; EPHA2; ARCC2; CTPA; CTPP1; or ECK), which is a protein that in humans is encoded by the EPHA2 gene in the ephrin receptor subfamily of the protein-tyrosine kinase family.
- Receptors in this subfamily generally comprise a single kinase domain and an extracellular region comprising a Cys-rich domain and 2 fibronectin type III repeats; embodiments of the antibodies of the disclosure target any of these domains.
- An exemplary human EphA2 nucleic sequence is in GenBank® Accession No.
- NM_004431 and an exemplary human EphA2 polypeptide sequence is in GenBank® Accession No. NP_004422, both of which sequences are incorporated herein in their entirety.
- An exemplary human EphA2 nucleic sequence is in GenBank® Accession No. NM_004448.2, and an exemplary human EphA2 polypeptide sequence is in GenBank® Accession No. NP_004439, both of which sequences are incorporated herein in their entirety.
- Eph family the largest group among tyrosine kinase receptor families, is comprised of the EphA (EphA1-10) or EphB (EphB1-6) subclasses of receptors classified as per their sequence homologies and their binding affinity for their ligands, Ephrins (Eph receptor interacting protein).
- EphA2 gene is located on chromosome 1, encodes a receptor tyrosine kinase of 976 amino acids with an apparent molecular weight of 130 kDa and has a 90% amino acid sequence homology to the mouse EphA2.
- Eph family contains an extracellular conserved N-terminal ligand-binding domain followed by a cysteine-rich domain with an epidermal growth factor-like motif and two fibronectin type-III repeats.
- the extracellular motif is followed by a membrane spanning region and a cytoplasmic region that encompasses a juxtamembrane region, a tyrosine kinase domain, a sterile alpha motif (SAM), and a post synaptic domain (disc large and zona occludens protein (PDZ) domain-binding motif).
- EphA2 shows 25-35% sequence homologies with other Eph receptors, and the tyrosine residues are conserved within the juxtamembrane and kinase domain.
- EphA2 mRNA expression is observed in the skin, bone marrow, thymus, uterus, testis, prostate, urinary bladder, kidney, small intestine, colon, spleen, liver, lung and brain. EphA2 expression in the colon, skin, kidney and lung was over ten-fold relative to the bone marrow. EphA2 is also expressed during gastrulation in the ectodermal cells and early embryogenesis in the developing hind brain. In the skin, EphA2 is present in keratinocytes of epidermis and hair follicles but not in dermal cells (fibroblasts, vascular cells and inflammatory cells).
- EphA2 is also expressed in proliferating mammary glands in female mice at puberty and differentially expressed during the estrous cycle. Besides its expression in embryo and in normal adult tissues, EphA2 is overexpressed in several cancers, such as breast cancer, gastric cancer, melanoma, ovarian cancer, lunch cancer, gliomas, urinary bladder cancer, prostate cancer, esophageal, renal, colon and vulvar cancers. In particular, a high level of EphA2 is detected in malignant cancer-derived cell lines and advanced forms of cancer.
- EphA2 In light of the EphA2 overexpression in pre-clinical models and clinical specimens of many different types of cancer, the increased level of EphA2 expression is informative in both the prediction of cancer outcomes and in the clinical management of cancer.
- the differential expression of EphA2 in normal cells compared to cancer cells also signifies its importance as a therapeutic target.
- HER2 is referred to as human Epidermal Growth Factor Receptor 2 (Neu, ErbB-2, CD340, or pi 85), which is a protein that in humans is encoded by the ERBB2 gene in the epidermal growth factor receptor (EFR/ErbB) family.
- HER2 contains an extracellular ligand binding domain, a transmembrane domain, and an intracellular domain that interacts with a multitude of signaling molecules.
- HER2 is a member of the epidermal growth factor receptor family having tyrosine kinase activity.
- HER2 HER2 dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis.
- Amplification or overexpression of HER2 occurs in approximately 15-30% of breast cancers and 10-30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker.
- HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck.
- HER2 is overexpressed in 15-30% of invasive breast cancers, which has both prognostic and predictive implications.
- HER2 overexpression is directly correlated with poorer outcome in gastric cancer.
- HER2 overexpression was an independent negative prognostic factor and HER2 staining intensity was correlated with tumor size, serosal invasion, and lymph node metastases.
- Other studies also confirmed the negative impact of HER2 overexpression in gastric cancer.
- HER2 overexpression is reported in 0-83% of esophageal cancers, with a tendency towards higher rates of positivity in adenocarcinoma (10-83%) compared to squamous cell carcinomas (0-56%). Overexpression of HER2 is seen in 20-30% patients with ovarian cancer. In endometrial serous carcinoma, the reported rates of HER2 overexpression range between 14% and 80% with HER2 amplification (by fluorescence in situ hybridization [FISH]) ranging from 21% to 47%.
- FISH fluorescence in situ hybridization
- Disialoganglioside GD2 is a sialic acid-containing glycosphingolipid expressed primarily on the cell surface. The function of this carbohydrate antigen is not completely understood; however, it is thought to play an important role in the attachment of tumor cells to extracellular matrix proteins. GD2 expression in normal fetal and adult tissues is primarily restricted to the central nervous system, peripheral nerves, and skin melanocytes, although GD2 expression has been described in the stromal component of some normal tissues and white pulp of the spleen. In malignant cells, GD2 is uniformly expressed in neuroblastomas and most melanomas and to a variable degree in a variety of other tumors, including bone and soft-tissue sarcomas, small cell lung cancer, and brain tumors.
- GD2 is present and concentrated on cell surfaces, with the two hydrocarbon chains of the ceramide moiety embedded in the plasma membrane and the oligosaccharides located on the extracellular surface, where they present points of recognition for extracellular molecules or surfaces of neighboring cells. Because of the relatively tumor-selective expression combined with its presence on the cell surface, GD2 is an attractive target for tumor-specific antibody therapy. Embodiments of the antibodies of the disclosure target the extracellular domain.
- the pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and one or more additional nucleic acid sequences that encode one or more therapeutic molecules.
- a “therapeutic molecule” refers to a molecule that enhances the therapeutic efficacy of an oncolytic virus described herein.
- the therapeutic molecules described herein are proteins, nucleic acids, or a combination thereof.
- Exemplary therapeutic molecules include cytokines, chemokines, antibodies or antigen binding fragments thereof, proteases, RNA polynucleotides, and DNA polynucleotides.
- the therapeutic molecule is capable of increasing or enhancing the therapeutic efficacy of an oncolytic virus described herein by stimulating, or activating, a cellular immune response. In some embodiments, the therapeutic molecule is capable of increasing or enhancing the therapeutic efficacy of an oncolytic virus described herein by antagonizing a suppressive or regulatory immune response. In some embodiments, reduction of a suppressive immune response occurs in a tumor microenvironment. In some instances, reduction of a suppressive immune response by the therapeutic molecule enhances the oncolytic effects of a pseudotyped oncolytic virus described herein. In some embodiments, the therapeutic molecule further reduces immunoregulatory T cell activity in a subject treated with a pseudotyped oncolytic virus described herein. In some embodiments, the therapeutic molecule modulates or impairs the production level of a protein at a nucleic acid level or at a protein level, or disrupts a protein function.
- a nucleic acid sequence encoding an engager molecule and a nucleic acid sequence encoding one or more therapeutic molecules are comprised within the same vector. In some embodiments, a nucleic acid sequence encoding an engager molecule and a nucleic acid sequence encoding one or more therapeutic molecules are comprised in different vectors.
- the vector is a viral vector.
- a therapeutic molecule comprises a polypeptide or a nucleic acid polymer. In some embodiments, the additional nucleic acid sequence is inserted into a viral vector which allows higher expression levels and production of the therapeutic molecule.
- the therapeutic molecule is a polypeptide.
- the polypeptide is an immune modulator polypeptide.
- the immune modulator polypeptide is a cytokine, a co-stimulatory domain, a domain that inhibits negative regulatory molecules of T-cell activation (e.g., an immune checkpoint inhibitor), or a combination thereof.
- the immune modulator polypeptide modulates the activity of one or more cell types, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), dendritic cells, and/or T cells.
- Treg modulatory polypeptides include CCR4, Helios, TIGIT, GITR, neuropilin, neuritin, CD103, CTLA-4, ICOS, and Swap70.
- Exemplary MDSC modulatory polypeptides include TGF- ⁇ R1, GM-CSF, INF ⁇ , interleukins such as IL- ⁇ , IL-1F2, IL-6, IL-10, IL-12, IL-13, IL-6, IL-6R ⁇ , IL-6/IL-6R complex, TGF- ⁇ 1, M-CSF, Prostaglandin E2/PGE2, Prostaglandin E Synthase 2, S100A8, and VEGF.
- Exemplary dendritic-cell directed modulatory polypeptides include GM-CSF and/or IL-13.
- T cell-directed modulatory polypeptides include IL-12, OX-40, GITR, CD28, or IL-28, or an antibody that agonizes a pathway comprising IL-12, OX-40, GITR, CD28, or IL-28.
- the therapeutic polypeptides modulate the fibrotic stroma.
- exemplary fibrotic stromal polypeptides include fibroblast activation protein-alpha (FAP).
- FAP fibroblast activation protein-alpha
- the therapeutic polypeptide is a protease.
- the protease is capable of altering the extracellular matrix, particularly the extracellular matrix within a tumor microenvironment.
- Exemplary proteases include matrixmetalloproteases (MMP), such as MMP9, collagenases, and elastases.
- the immune modulator polypeptide is a cytokine.
- Cytokines are a category of small proteins between about 5-20 kDa that are involved in cell signaling and include chemokines, interferons (INF), interleukins (IL), and tumor necrosis factors (TNF), among others. Chemokines play a role as a chemoattractant to guide the migration of cells and are classified into four subfamilies: CXC, CC, CX3C, and XC.
- chemokines include chemokines from the CC subfamily, such as CCL1, CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL6, CCL7, CCL8, CCL9 (or CCL10), CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28; the CXC subfamily, such as CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17; the XC subfamily, such as XCL1 and XCL2; and the CX3C subfamily, such as C
- Interferons comprise Type I IFNs (e.g. IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , and IFN- ⁇ ), Type II IFNs (e.g. IFN- ⁇ ), and Type III IFNs.
- IFN- ⁇ is further classified into about 13 subtypes including IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, and IFNA21.
- Interleukins are a broad class of cytokine that promote the development and differentiation of immune cells, including T and B cells, and other hematopoietic cells.
- exemplary interleukins include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-35, and IL-36.
- Tumor necrosis factors are a group of cytokines that modulate apoptosis.
- TNFs tumor necrosis factors
- TNF ⁇ lymphotoxin-alpha
- LT- ⁇ lymphotoxin-beta
- CD40L T cell antigen gp39
- CD27L CD30L
- FASL 4-1BBL
- OX40L TNF-related apoptosis inducing ligand
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a cytokine selected from chemokine, interferon, interleukin, or tumor necrosis factor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodesa chemokine, an interferon, an interleukin, and/or a tumor necrosis factor.
- the immune modulator polypeptide is a co-stimulatory domain.
- the co-stimulatory domain enhances antigen-specific cytotoxicity. In some cases, the co-stimulatory domain further enhances cytokine production.
- the co-stimulatory domain comprises CD27, CD28, CD70, CD80, CD83, CD86, CD134 (OX-40), CD134L (OK-40L), CD137 (41BB), CD137L (41BBL), or CD224.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a co-stimulatory domain. In some embodiments, a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a co-stimulatory domain selected from CD27, CD28, CD80, CD83, CD86, CD134, CD134L, CD137, CD137L, or CD224.
- the immune modulator polypeptide is an immune checkpoint inhibitor polypeptide that inhibits a negative regulatory molecule of T-cell activation.
- Immune checkpoint inhibitor bind to immune checkpoint molecules, which are a group of molecules on the cell surface of CD4 and CD8 T cells. In some instances, these molecules effectively serve as “brakes” to down-modulate or inhibit an anti-tumor immune response.
- An immune checkpoint inhibitor refers to any molecule that modulates or inhibits the activity of an immune checkpoint molecule.
- immune checkpoint inhibitors include antibodies, antibody-derivatives (e.g., Fab fragments, scFvs, minobodies, diabodies), antisense oligonucleotides, siRNA, aptamers, or peptides.
- antibody-derivatives e.g., Fab fragments, scFvs, minobodies, diabodies
- antisense oligonucleotides e.g., siRNA, aptamers, or peptides.
- Exemplary immune checkpoint molecules include, but are not limited to, programmed death-ligand 1 (PDL1, also known as B7-H1, CD274), programmed death 1 (PD-1), PD-L2 (B7-DC, CD273), LAG3, TIM3, 2B4, A2aR, B7H1, 87H3, B7H4, BTLA, CD2, CD16, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, inducible T cell costimulatory (ICOS), KIR, LAIR, LIGHT, macrophage receptor with collageneous structure (MARCO), OX-40, phosphatidylserine (PS), SLAM, TIGHT, VISTA, and VTCN1.
- PDL1 programmed death-ligand 1
- PD-1 programmed death 1
- PD-L2 B7-DC, CD
- an immune checkpoint inhibitor inhibits on or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes an immune checkpoint inhibitor.
- the immune checkpoint inhibitor reduces the expression or activity of one or more immune checkpoint molecules.
- the immune checkpoint inhibitor reduces the interaction between an immune checkpoint molecule and its ligand (e.g., reduced the interaction between PD-1 and PDL1).
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes an immune checkpoint inhibitor that inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain, wherein the therapeutic molecule domain is an immune checkpoint inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain, wherein the therapeutic molecule domain is an immune checkpoint inhibitor that inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.
- the therapeutic molecule domain is an immune checkpoint inhibitor that inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B
- the immune checkpoint inhibitor is an inhibitor of PDL1.
- the immune checkpoint inhibitor is an antibody (e.g., a monoclonal antibody or antigen-binding fragments thereof, or a humanized or chimeric antibody or antigen-binding fragments thereof) against PDL1.
- the inhibitor of PDL1 reduces the expression or activity of PDL1.
- the inhibitor of PDL1 reduces the interaction between PD-1 and PDL1.
- Exemplary inhibitors of PDL1 include anti-PDL1 antibodies, RNAi molecules (e.g., anti-PDL1 RNAi), antisense molecules (e.g., an anti-PDL1 antisense RNA), or dominant negative proteins (e.g., a dominant negative PDL1 protein).
- RNAi molecules e.g., anti-PDL1 RNAi
- antisense molecules e.g., an anti-PDL1 antisense RNA
- dominant negative proteins e.g., a dominant negative PDL1 protein
- anti-PDL1 antibodies includes clone EH12; MPDL3280A (Genentech, RG7446); anti-mouse PDL1 antibody Clone 10F.9G2 (BioXcell, Cat # BE0101); anti-PDL1 monoclonal antibody MDX-1105 (BMS-936559 and BMS-935559 from Bristol-Meyers Squibb; MSB0010718C; mouse anti-PDL11 Clone 29E.2A3; and AstraZeneca's MED14736.
- the anti-PDL1 antibody is an anti-PDL1 antibody disclosed in International PCT Publication Nos. WO 2013/079174; WO 2010/036959; WO 2013/056716; WO 2007/005874; WO 2010/089411; WO 2010/077634; WO 2004/004771; WO 2006/133396; WO 2013/09906; WO 2012/145493; WO 2013/181634; U.S. Patent Application Publication No. 20140294898; or Chinese Patent Application Publication No. CN 101104640.
- the PDL1 inhibitor is a nucleic acid inhibitor of PDL1 expression. In some embodiments, the PDL1 inhibitor is one disclosed in international PCT Publication Nos. WO 2011/127180 or WO 2011/000841. In some embodiments, the PDL1 inhibitor is rapamycin.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PDL1 (e.g., an anti-PDL scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PDL1. In some embodiments, a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PDL1 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PDL1 inhibitor selected from EH12, Genentech's MPDL3280A (RG7446); Anti-mouse PDL1 antibody Clone 10F.9G2 (Cat # BE0101) from BioXcell; anti-PDL1 monoclonal antibody MDX-1105 (BMS-936559) and BMS-935559 from Bristol-Meyer's Squibb; MSB0010718C; mouse anti-PDL1 Clone 29E.2A3; and AstraZeneca's MED14736.
- PDL1 inhibitor selected from EH12, Genentech's MPDL3280A (RG7446); Anti-mouse PDL1 antibody Clone 10F.9G2 (Cat # BE0101) from BioXcell; anti-PDL1 monoclonal antibody MDX-1105 (BMS-936559) and BMS-9355
- the immune checkpoint inhibitor is an inhibitor of PD-L2.
- the inhibitor of PD-L2 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against PD-L2.
- the inhibitor of PD-L2 reduces the expression or activity of PD-L2.
- the inhibitor of PD-L2 reduces the interaction between PD-1 and PD-L2.
- Exemplary inhibitors of PD-L2 include antibodies (e.g., an anti-PD-L2 antibody), RNAi molecules (e.g., an anti-PD-L2 RNAi), antisense molecules (e.g., an anti-PD-L2 antisense RNA), or dominant negative proteins (e.g., a dominant negative PD-L2 protein).
- antibodies e.g., an anti-PD-L2 antibody
- RNAi molecules e.g., an anti-PD-L2 RNAi
- antisense molecules e.g., an anti-PD-L2 antisense RNA
- dominant negative proteins e.g., a dominant negative PD-L2 protein
- the PD-L2 inhibitor is GlaxoSmithKline's AMP-224 (Amplimmune). In some embodiments, the PD-L2 inhibitor is rHIgM12B7.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD-L2 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PD-L2 inhibitor selected from AMP-224 (Amplimmune) or rHIgM12B7.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PDL2.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PD-L2 (e.g., an anti-PDL2 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the immune checkpoint inhibitor is an inhibitor of PD1.
- the inhibitor of PDL1 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against PD-1.
- Exemplary antibodies against PD-1 include: anti-mouse PD-1 antibody Clone J43 (Cat # BE0033-2) from BioXcell; anti-mouse PD-1 antibody Clone RMP1-14 (Cat # BE0146) from BioXcell; mouse anti-PD-1 antibody Clone EH12; Merck's MK-3475 anti-mouse PD-1 antibody (Keytruda, pembrolizumab, lambrolizumab); and AnaptysBio's anti-PD-1 antibody, known as ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human lgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011), CureTech Ltd.
- CT-011 CureTech Ltd.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD1 inhibitor selected from ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011).
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PD-1 inhibitor selected from ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011).
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD-L2 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes PD-L2 inhibitor selected from AMP-224 (Amplimmune) or rHIgM1287.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PD1.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PD1 (e.g., an anti-PD1 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the immune checkpoint inhibitor is an inhibitor of CTLA-4.
- the an inhibitor of CTLA-4 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against CTLA-4.
- the anti-CTLA-4 antibody blocks the binding of CTLA-4 to CD80 (B7-1) and/or CD86 (B7-2) expressed on antigen presenting cells.
- Exemplary antibodies against CTLA-4 include ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101, Bristol Meyers Squibb); anti-CTLA4 antibody clone 9H10 from Millipore; tremelimumab (CP-675,206, ticilimumab, Pfizer); and anti-CTLA4 antibody clone BNI3 from Abcam.
- ipilimumab also known as Yervoy®, MDX-010, BMS-734016 and MDX-101, Bristol Meyers Squibb
- anti-CTLA4 antibody clone 9H10 from Millipore
- tremelimumab CP-675,206, ticilimumab, Pfizer
- anti-CTLA4 antibody clone BNI3 from Abcam.
- the anti-CTLA-4 antibody is one disclosed in any of International PCT Publication Nos. WO 2001/014424; WO 2004/035607; WO 2003/086459; WO 2012/120125; WO 2000/037504; WO 2009/100140; WO 2006/09649; WO 2005/092380; WO 2007/123737; WO 2006/029219; WO 2010/0979597; WO 2006/12168; WO 1997/020574 U.S. Patent Application Publication No. 2005/0201994; or European Patent Application Publication No. EP 1212422. Additional CTLA-4 antibodies are described in U.S. Pat. Nos.
- the anti-CTLA-4 antibody is one disclosed in any of International PCT Publication Nos. WO 1998/42752; U.S. Pat. Nos. 6,682,736 and 6,207,156; Hurwitz et al, Proc. Natl. Acad. Sci.
- the CTLA-4 inhibitor is a CTLA-4 ligand as disclosed in International PCT Publication No. WO 1996/040915.
- the CTLA-4 inhibitor is a nucleic acid inhibitor of CTLA-4 expression, such as an RNAi molecule.
- anti-CTLA4 RNAi molecules take the form of those described in any of International PCT Publication Nos. WO 1999/032619 and WO 2001/029058; U.S. Patent Application Publication Nos. 2003/0051263, 2003/0055020, 2003/0056235, 2004/265839, 2005/0100913, 2006/0024798, 2008/0050342, 2008/0081373, 2008/0248576, and 2008/055443; and/or U.S. Pat. Nos. 6,506,559; 7,282,564; 7,538,095; and 7,560,438.
- the anti-CTLA4 RNAi molecules are double stranded RNAi molecules, such as those disclosed in European Patent No. EP 1309726. In some instances, the anti-CTLA4 RNAi molecules are double stranded RNAi molecules, such as those described in U.S. Pat. Nos. 7,056,704 and 7,078,196.
- the CTLA4 inhibitor is an aptamer, such as those described in International PCT Publication No. WO 2004/081021, such as Del 60 or M9-14 del 55.
- the anti-CTLA4 RNAi molecules of the present invention are RNA molecules, such as those described in U.S. Pat. Nos. 5,898,031, 6,107,094, 7,432,249, and 7,432,250, and European Application No. EP 0928290.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a CTLA-4 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes a CTLA-4 inhibitor selected from ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101); anti-CTLA4 Antibody, clone 9H10 from Millipore; Pfizer's tremelimumab (CP-675,206, ticilimumab); and anti-CTLA4 antibody clone BNI3 from Abcam.
- ipilimumab also known as Yervoy®, MDX-010, BMS-734016 and MDX-101
- anti-CTLA4 Antibody clone 9H10 from Millipore
- Pfizer's tremelimumab CP-675,206, ticilimumab
- anti-CTLA4 antibody clone BNI3 from Abcam.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to CTLA-4.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to CTLA-4 (e.g., an anti-CTLA-4 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the immune checkpoint inhibitor is an inhibitor of LAG3 (CD223).
- the inhibitor of LAG3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against LAG3.
- an antibody against LAG3 blocks the interaction of LAG3 with major histocompatibility complex (MHC) class II molecules.
- MHC major histocompatibility complex
- Exemplary antibodies against LAG3 include: anti-Lag-3 antibody clone eBioC9B7W (C97W) from eBioscience; anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences; IMP321 (ImmuFact) from Immutep; anti-Lag3 antibody BMS-986016; and the LAG-3 chimeric antibody A9H12.
- the anti-LAG3 antibody is an anti-LAG3 antibody disclosed in International PCT Publication Nos. WO 2010/019570; WO 2008/132601; or WO 2004/078928.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes LAG3 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes LAG3 inhibitor selected from anti-Lag-3 antibody clone eBioC9B7W (C9B7W) from eBioscience; anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences; IMP321 (ImmuFact) from Immutep; anti-Lag3 antibody BMS-986016; and the LAG-3 chimeric antibody A9H12.
- LAG3 inhibitor selected from anti-Lag-3 antibody clone eBioC9B7W (C9B7W) from eBioscience; anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences; IMP321 (ImmuFact) from Immutep; anti-Lag3 antibody BMS-986016; and the LAG-3 chimeric antibody A9H12.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to LAG3.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to LAG3 (e.g., an anti-LAG3 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the immune checkpoint inhibitor is an inhibitor of TIM3.
- the inhibitor of TIM3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against TIM3 (also known as HAVCR2).
- an antibody against TIM3 blocks the interaction of TIM3 with galectin-9 (Gal9).
- the anti-TIM3 antibody is an anti-TIM3 antibody disclosed in International PCT Publication Nos. WO 2013/006490; WO 2011/55607; WO 2011/159877; or WO 2001/17057.
- a TIM3 inhibitor is a TIM3 inhibitor disclosed in International PCT Publication No. WO 2009/052623.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes TIM3 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes TIM3 inhibitor such as an antibody against TIM3 blocks the interaction of TIM3 with galectin-9 (Gal9).
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to TIM3.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to LAG3 (e.g., an anti-TIM3 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the immune checkpoint inhibitor is an inhibitor of B7-3.
- the inhibitor of B7-H3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against B7-H3.
- the inhibitor of B7-H3 is MGA271 (MacroGenics).
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a B7-H3 inhibitor.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a B7-H3 inhibitor such as MGA271.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to B7-H3.
- a pseudytoped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to B7-H3 (e.g., an anti-B7-H3 scFv).
- the pseudytoped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.
- the engager molecule additionally comprises one or more other domains, e.g., one or more of a cytokine, a co-stimulatory domain, a domain that inhibits negative regulatory molecules of T-cell activation, or a combination thereof.
- the engager is a first polypeptide provided within the pseudotyped oncolytic virus with a second polypeptide having one or more other domains, e.g., one or more of a cytokine, a co-stimulatory domain, a domain that inhibits negative regulatory molecules of T-cell activation, or a combination thereof.
- the first polypeptide and the second polypeptide are encoded in the same vector (e.g., viral vector).
- the first polypeptide and the second polypeptide are encoded in different vectors (e.g., viral vectors).
- the cytokine is IL-15, IL-2, and/or IL-7.
- the co-stimulatory domain is CD27, CD80, CD83, CD86, CD134, or CD137,
- the domain that inhibits negative regulatory molecules of T-cell activation is PD-1, PDL1, CTLA4, or B7-H4.
- the therapeutic molecule is a polypeptide such as an anti-angiogenic factor.
- Angiogenesis or neovascularization is the formation of new microvessels from an established vascular network.
- the angiogenic process involves communications from multiple cell types such as endothelial cells (EC) and circulating endothelial progenitor cells, pericytes, vascular smooth muscle cells, stromal cells, including stem cells, and parenchymal cells. These communications or interactions occur through secreted factors such as VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), or angiopoietins.
- VEGF vascular smooth muscle cells
- stromal cells including stem cells, and parenchymal cells.
- an anti-angiogenic factor is a polypeptide that disrupts one or more of the interactions of the cell types: endothelial cells (EC) and circulating endothelial progenitor cells, pericytes, vascular smooth muscle cells, stromal cells, including stem cells, and parenchymal cells.
- an anti-angiogenic factor is a polypeptide that disrupts one or more of the interactions of secreted factors such as VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) or angiopoietins.
- pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate regulatory T cells.
- regulatory T cells maintain the tolerance to self-antigens and in some instances abrogate autoimmune.
- Treg suppresses or downregulates induction and proliferation of effector T cells.
- Exemplary Treg modulatory polypeptides include CCR4, Helios, TIGIT, GITR, neuropilin, neuritin, CD103, CTLA-4, ICOS, and Swap70.
- pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate myeloid-derived suppressor cells (MDSCs).
- MDSCs are a heterogenous population of immune cells from the myeloid lineage (a cluster of different cell types that originate from bone marrow stem cells), to which also includes dendritic cells, macrophages and neutrophils.
- myeloid cells interact with T cells to regulate the T cell's function.
- MDSC modulatory polypeptides include TGF- ⁇ R1, GM-CSF, IFN- ⁇ , Interleukins (e.g., IL- ⁇ , IL-1F2, IL-6, IL-10, IL-12, IL-13, IL-6, IL-6R ⁇ , IL-6/IL-6R complex, TGF- ⁇ 1, M-CSF, Prostaglandin E2/PGE2, Prostaglandin E Synthase 2, S100A8, and VEGF.
- Interleukins e.g., IL- ⁇ , IL-1F2, IL-6, IL-10, IL-12, IL-13, IL-6, IL-6R ⁇ , IL-6/IL-6R complex
- TGF- ⁇ 1, M-CSF Prostaglandin E2/PGE2, Prostaglandin E Synthase 2, S100A8, and VEGF.
- pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate the fibrotic stroma.
- fibrosis occurs in response to inflammation, either chronic or recurrent. Over time, the repeated bouts of inflammation irritate and scar the tissue, causing buildups of fibrous tissue. In some instances, if enough fibrous material develops, it turns into stromal fibrosis.
- Exemplary fibrotic stromal polypeptides include fibroblast activation protein-alpha (FAP).
- the therapeutic molecule is a nucleic acid polymer.
- the nucleic acid polymer is a RNA polymer.
- the RNA polymer is an antisense polymer those sequence is complementary to a microRNA (miRNA or miR) target sequence.
- the RNA polymer is a microRNA polymer.
- the RNA polymer comprises a DNA-directed RNAi (ddRNAi) sequence, which enables in vivo production of short hairpin RNAs (shRNAs).
- a microRNA polymer is a short non-coding RNA that is expressed in different tissue and cell types which suppresses the expression of a target gene.
- miRNAs are transcribed by RNA polymerase 11 as part of the capped and polyadenylated primary transcripts (pri-miRNAs).
- the primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products.
- the mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and in some instances results in translational inhibition or destabilization of the target mRNA.
- RISC RNA-induced silencing complex
- dysregulated microRNA expression is correlated with one or more types of cancer.
- the microRNA is referred to as an oncomiR.
- the dysregulated microRNA expression is an elevated expression.
- the elevated expression level of microRNA correlates to one or more types of cancer. For example, overexpression of microRNA-155 (miR-155) has been observed in cancers such as Burkitt lymphoma, or laryngeal squamous cell carcinoma (LSCC) and overexpression of microRNA-21 (miR-21) has been observed in breast cancer.
- LSCC laryngeal squamous cell carcinoma
- exemplary microRNAs with an elevated expression level include, but are not limited to, miR-10 family (e.g., miR-10b), miR-17, miR-21, miR-106 family (e.g., miR-106a), miR-125 family (e.g., miR-125b), miR-145, miR-146 family (e.g., miR-146a, miR-146b), miR-155, miR-96, miR-182, miR-183, miR-221, miR-222, and miR-1247-5p.
- miR-10 family e.g., miR-10b
- miR-17 miR-17
- miR-21 miR-106 family
- miR-125 family e.g., miR-125b
- miR-145 miR-146 family
- miR-155 miR-96
- miR-182 miR-183, miR-221, miR-222, and miR-1247-5p.
- the nucleic acid polymer is an antisense polymer those sequence complements an oncomiR. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements an oncomiR that is characterized with an overexpression. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements a microRNA target sequence. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements a microRNA target sequence that is characterized with an overexpression. In some instances, the therapeutic molecule is an antisense polymer those sequence complements a microRNA target sequence. In some instances, the therapeutic molecule is an antisense polymer those sequence complements a microRNA target sequence that is characterized with an overexpression. In some instances, the overexpression level is relative to the endogenous expression level of the microRNA.
- the dysregulated microRNA expression is a reduced expression.
- the reduced expression level of microRNA correlates to one or more types of cancer. For example, a depleted level of miR-31 has been observed in both human and mouse metastatic breast cancer cell lines.
- exemplary microRNAs with reduced expression levels include, but are not limited to, miR-31, miR-34 family (e.g., miR34a, miR-34b, and miR-34c), miR-101, miR-126, miR-145, miR-196a, and the miR-200 family.
- miR-31 miR-34 family (e.g., miR34a, miR-34b, and miR-34c), miR-101, miR-126, miR-145, miR-196a, and the miR-200 family.
- the nucleic acid polymer is an oncomiR. In some instances, the oncomiR is equivalent to an endogeous oncomiR wherein the endogeous oncomiR is characterized with a reduced expression level. In some instances, the nucleic acid polymer is a microRNA polymer. In some instances, the therapeutic molecule is a microRNA polymer. In some instances, the microRNA is equivalent to an endogeous microRNA polymer wherein the endogenous microRNA is characterized with a reduced expression level.
- the RNA polymer comprises a DNA-directed RNAi (ddRNAi) sequence.
- a ddRNAi construct encoding a shRNA is packaged into a viral vector such as a viral vector of a pseudotyped oncolytic virus described herein.
- the viral genome is processed to produce the encoded shRNAs.
- the shRNAs are then processed by endogenous host systems and enter the RNAi pathway to modulate or silence the desired gene target.
- the gene target is a gene that is overexpressed in a cancer type. In some instances, the gene target is a gene that is overexpressed in a solid tumor.
- the gene target is a gene that is overexpressed in a hematologic cancer.
- genes that are overexpressed in cancer include, but are not limited to, TP53, human epidermal growth factor receptor 2 (HER2), mucin 1-cell surface associated (MUC1), human pituitary tumour-transforming gene 1 (hPPTG1), prostate and breast cancer overexpressed gene 1 protein (PBOV1), and the like.
- the nucleic acid polymer comprises a ddRNAi sequence. In some instances, the nucleic acid polymer is comprises a ddRNAi sequence which targets a gene that is overexpressed in a cancer. In some instances, the therapeutic molecule comprises a ddRNAi sequence. In some instances, the therapeutic molecule comprises a ddRNAi sequence which targets a gene that is overexpressed in a cancer.
- the engager molecules described herein comprise a bi-specific antibody construct comprising an activation domain and an antigen recognition domain, in which the activation domain interacts or binds to an effector cell surface receptor shown in Table 1; and the antigen recognition domain interacts or binds to a target-cell antigen shown in Table 2.
- the engager molecules described herein comprise a bi-specific antibody construct comprising an activation domain and a therapeutic molecule domain, in which the activation domain interacts or binds to an effector cell surface receptor shown in Table 1; and the therapeutic molecule domain interacts or binds to a cell surface antigen shown in Table 2.
- the engager molecules provided herein comprise an activation domain, wherein the activation domain comprises an anti-CD3 scFv.
- the anti-CD3 scFv comprises a light chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 22.
- the anti-CD3 scFv comprises a light chain variable fragment comprising an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment that is 100% identical to the amino acid sequence of SEQ ID NO: 22. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment comprising the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment comprising the amino acid sequence of SEQ ID NO: 22. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 22.
- the engager molecules provided herein comprise an activation domain, wherein the activation domain comprises an anti-CD3 scFv, wherein the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 21.
- the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 21.
- the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence comprising SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence comprising SEQ ID NO: 21.
- the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 21.
- the engager molecules provided herein comprise an antigen recognition domain, wherein the antigen recognition domain comprises an anti-CD19 scFv.
- the anti-CD19 scFv comprises a light chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 16 and a heavy chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 18.
- the anti-CD19 scFv comprises a light chain variable fragment comprising an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 16 and a heavy chain variable fragment that is 100% identical to the amino acid sequence of SEQ ID NO: 18. In some embodiments, the anti-CD19 scFv comprises a light chain variable fragment comprising the amino acid sequence of SEQ ID NO: 16 and a heavy chain variable fragment comprising the amino acid sequence of SEQ ID NO: 18. In some embodiments, the anti-CD19 scFv comprises a light chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 16 and a heavy chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 18.
- the engager molecules provided herein comprise an antigen recognition domain, wherein the antigen recognition domain comprises an anti-CD19 scFv, wherein the anti-CD19 scFv comprises a light chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 15 and a heavy chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 17.
- the anti-CD19 scFv comprises a light chain variable fragment nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 15 and a heavy chain variable fragment nucleic acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 17.
- the anti-CD19 scFv comprises a light chain variable fragment nucleic acid sequence comprising SEQ ID NO: 15 and a heavy chain variable fragment nucleic acid sequence comprising SEQ ID NO: 17.
- the anti-CD19 scFv comprises a light chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 15 and a heavy chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 17.
- the engager molecules provided herein comprise a therapeutic molecule domain, wherein the therapeutic molecule domain comprises an anti-PDL1 scFv.
- the anti-PDL1 scFv comprises a light chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 38.
- the anti-PDL1 scFv comprises a light chain variable fragment comprising an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment that is 100% identical to the amino acid sequence of SEQ ID NO: 38. In some embodiments, the anti-PDL1 scFv comprises a light chain variable fragment comprising the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment comprising the amino acid sequence of SEQ ID NO: 38. In some embodiments, the anti-PDL1 scFv comprises a light chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 38.
- the engager molecules provided herein comprise a therapeutic molecule domain, wherein the therapeutic molecule domain comprises an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 37.
- the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 37.
- the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence comprising SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence comprising SEQ ID NO: 37.
- the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 37.
- the engager molecules provided herein comprise a therapeutic molecule domain, wherein the therapeutic molecule domain comprises a SIRP1 ⁇ polypeptide fragment.
- the SIRP1 ⁇ polypeptide fragment comprises an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 32.
- the SIRP1 ⁇ polypeptide fragment comprises an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 32.
- the SIRP1 ⁇ polypeptide fragment comprises the amino acid sequence of SEQ ID NO: 32.
- the SIRP1 ⁇ polypeptide fragment consists of the amino acid sequence of SEQ ID NO: 32.
- the engager molecules provided herein comprise a therapeutic molecule domain, wherein the therapeutic molecule domain comprises a SIRP1 ⁇ polypeptide fragment, wherein the SIRP1 ⁇ polypeptide fragment comprises a nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 31.
- the SIRP1 ⁇ polypeptide fragment comprises a nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 31.
- the SIRP1 ⁇ polypeptide fragment comprises the nucleic acid sequence of SEQ ID NO: 31.
- the SIRP1 ⁇ polypeptide fragment consists of the nucleic acid sequence of SEQ ID NO: 31.
- the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and an antigen recognition domain comprising an scFv that binds to CD19, referred to herein as a CD19-CD3 BiTE, or a CD19 BiTE.
- a CD19-CD3 BiTE A schematic of an exemplary CD19-CD3 BiTE is shown in FIG. 1 (SEQ ID NO: 44).
- the anti-CD3 scFv and the anti-CD19 scFv are linked together by a G4S linker (SEQ ID NO: 6).
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a CD19-CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 ( FIG. 2 , SEQ ID NO: 53), IL-12 ( FIG. 3 , SEQ ID NO: 54), or CXCL10 ( FIG. 4 , SEQ ID NO: 55).
- the CD19-CD3 BiTE (e.g., SEQ ID NO; 44) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).
- the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and a therapeutic molecule domain comprising a SIRP1 ⁇ polypeptide fragment that binds to CD47 (SEQ ID NO: 32), referred to herein as an SIRP1 ⁇ -CD3 BiTE or a SIRP1 ⁇ BiTE.
- SIRP1 ⁇ -CD3 BiTE A schematic of an exemplary SIRP1 ⁇ -CD3 BiTE is shown in FIG. 5 (SIRP1 ⁇ -CD3 (SL), SEQ ID NO: 46) and FIG. 6 (SIRP1 ⁇ -CD3 (LL), SEQ ID NO: 48).
- the anti-CD3 scFv and the SIRP1 ⁇ peptide fragment are linked together by a single amino acid linker, or a “short linker” (SL) (e.g., SIRP1 ⁇ -CD3 (SL) as shown in FIG. 5 ).
- the anti-CD3 scFv and the SIRP1a peptide fragment are linked together by G4S linker, or a “long linker” (LL) (e.g., SIRP1 ⁇ -CD3 (LL) as shown in FIG. 6 ).
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 ⁇ -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 ( FIG. 7 , SEQ ID NO: 56 and FIG. 8 , SEQ ID NO: 57), IL-12 ( FIG. 9 , SEQ ID NO: 58 and FIG. 10 , SEQ ID NO: 59), or CXCL10 ( FIG. 11 , SEQ ID NO: 60 and FIG. 12 , SEQ ID NO: 61).
- IL-15 FIG. 7 , SEQ ID NO: 56 and FIG. 8 , SEQ ID NO: 57
- IL-12 FIG. 9 , SEQ ID NO: 58 and FIG. 10 , SEQ ID NO: 59
- CXCL10 FIG. 11 , SEQ ID NO: 60 and FIG. 12 , SEQ ID NO: 61.
- the SIRP1 ⁇ -CD3 BiTE (e.g., SEQ ID NO: 46 or SEQ ID NO: 48) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 ⁇ -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as MMP9 ( FIG. 18A , SEQ ID NO: 65 and FIG. 18B , SEQ ID NO: 66).
- the SIRP1 ⁇ -CD3 BiTE e.g., SEQ ID NO: 65 or 66
- the MMP9 polypeptide SEQ ID NO: 34
- T2A self-cleaving peptide linker SEQ ID NO: 14
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 ⁇ -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule comprising an anti-PDL1 scFv linked to an IgG1 Fc domain (e.g., comprises an IgG1 CH2-CH3-Hinge, SEQ ID NO: 40), such as the SIRP1 ⁇ -CD3-PDL1-Fc (SL) construct shown in FIG. 37 (SEQ ID NO: 68) or the SIRP1 ⁇ -CD3-PDL1-Fc (LL) construct show in FIG. 38 (SEQ ID NO: 70).
- a first nucleic acid sequence encodes a SIRP1 ⁇ -CD3 BiTE
- a second nucleic acid sequence encodes a therapeutic molecule comprising an anti-PDL1 scFv linked to an IgG1 Fc domain (e.g.,
- the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and a therapeutic molecule domain comprising an scFv that binds to PDL1, referred to herein as an PDL1-CD3 BiTE or a PDL1 BiTE.
- PDL1-CD3 BiTEs Exemplary PDL1-CD3 BiTEs are shown in FIG. 13 (SEQ ID NO: 50).
- the anti-CD3 scFv and the anti-PDL1 scFv are linked together by G4S linker (SEQ ID NO: 6).
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a PDL1-CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 ( FIG. 14 , SEQ ID NO: 62), IL-12 ( FIG. 15 , SEQ ID NO: 63), or CXCL10 ( FIG. 16 , SEQ ID NO: 64).
- the SIRP1 ⁇ -CD3 BiTE (e.g., SEQ ID NO: 50) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).
- the engager molecule is a tripartite engager molecule and comprises an activation domain comprising an scFv that binds to CD3, a therapeutic molecule domain comprising an scFv that binds to PDL1, and a third domain comprising an IgG1 Fc domain (e.g., comprises an IgG1 CH2-CH3-Hinge, SEQ ID NO: 40) and capable of binding to one or more Fc ⁇ Rs, referred to herein as an PDL1-CD3-Fc tripartite T cell engager, or TiTE, or a PDL1 TiTE.
- FIG. 17 A schematic of an exemplary PDL1-CD3-Fc TiTE is shown in FIG. 17 (SEQ ID NO: 52).
- amino acid sequences of exemplary engager molecules and therapeutic molecules are shown in Table 3.
- the present invention provides recombinant nucleic acid sequences encoding an engager molecule and/or a therapeutic molecule. Exemplary recombinant nucleic acid sequences are shown in Table 4.
- the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is IL-15.
- the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 900%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 24.
- the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 24.
- the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 23.
- the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 23. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 23.
- the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is IL-12 (i.e., IL-12 p35 and/or IL-12 p40).
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 26.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 26.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 25.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 25. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 25.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 28.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 27. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 27. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 27.
- the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence of SEQ ID NO: 26 and 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequences of SEQ ID NO: 25 and 27.
- the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is CXCL10.
- the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 30.
- the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 30.
- the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 30. In some embodiments, the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 29.
- the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 29. In some embodiments, the nucleic acid sequences provided herein encode a CXCL10 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 29.
- the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is MMP9.
- the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 34.
- the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 34.
- the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 34. In some embodiments, the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 34. In some embodiments, the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 33.
- the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 33. In some embodiments, the nucleic acid sequences provided herein encode an MMP9 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 33.
- the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule comprises an anti-PDL1 scFv. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 38.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment comprising an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment that is 100% identical to the amino acid sequence of SEQ ID NO: 38.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment comprising the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment comprising the amino acid sequence of SEQ ID NO: 38.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 36 and a heavy chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 38.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 37.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 37.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence comprising SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence comprising SEQ ID NO: 37.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv, wherein the anti-PDL1 scFv comprises a light chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 35 and a heavy chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 37.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain comprises an amino acid sequence that is that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 40.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain is 100% identical to the amino acid sequence of SEQ ID NO: 40. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain comprises the amino acid sequence of SEQ ID NO: 40.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain consists of the amino acid sequence of SEQ ID NO: 40.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain nucleic acid sequence is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 39.
- the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain nucleic acid sequence comprises SEQ ID NO: 39. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain nucleic acid sequence comprises SEQ ID NO: 39.
- the nucleic acid sequences provided herein comprise a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the nucleic acid sequences provided herein are at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the nucleic acid sequences provided herein are 100% identical to a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the nucleic acid sequences provided herein consist of a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69.
- the nucleic acid sequences provided herein encode an engager molecule and/or therapeutic molecule that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52.
- the nucleic acid sequences provided herein encode an engager molecule protein that is 100% identical to an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52.
- the nucleic acid sequences provided herein encode an engager molecule protein comprising an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52.
- the nucleic acid sequences provided herein encode an engager molecule protein consisting of an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52.
- the recombinant nucleic acid sequences provided herein encode an engager molecule and a therapeutic molecule. In some embodiments, the recombinant nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from SEQ ID NOs: 53-66, 68 and 70.
- the nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence is 100% identical to an amino acid sequences selected from SEQ ID NOs: 53-66, 68 and 70. In some embodiments, the nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence consists of an amino acid sequence selected from SEQ ID NOs: 53-66, 68 and 70.
- engager molecules include engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and a therapeutic domain comprising an scFv that binds to a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, or GITR.
- an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and a therapeutic domain comprising an scFv that binds to a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, or GITR.
- a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, or GITR.
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes an engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and a therapeutic domain comprising an scFv that binds to a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, CD47, or GITR, and a second nucleic acid sequence encoding a therapeutic molecule such as IL-15 (SEQ ID NO: 24), IL-12 (SEQ ID NOs: 26 and 28), CXCL10 (SEQ ID NO: 30), or MMP9 (SEQ ID NO: 34).
- the engager molecule is linked to the therapeutic molecule polypeptide by a T2A self-cleaving peptide linker (SEQ ID NO: 14).
- engager molecules include engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and an antigen recognition domain comprising an scFv that binds to SLAMF7 (also known as CD319) or CD27 (either the membrane bound form of CD27 or the soluble form of CD27).
- an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and an antigen recognition domain comprising an scFv that binds to SLAMF7 (also known as CD319) or CD27 (either the membrane bound form of CD27 or the soluble form of CD27).
- the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes an engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and an antigen-recognition domain comprising an scFv that binds to a target cell antigen such as SLAMF7 or CD27, and a second nucleic acid sequence encoding a therapeutic molecule such as IL-15 (SEQ ID NO: 24), IL-12 (SEQ ID NOs: 26 and 28), CXCL10 (SEQ ID NO: 30), or MMP9 (SEQ ID NO: 34).
- the engager molecule is linked to the therapeutic molecule polypeptide by a T2A self-cleaving peptide linker (SEQ ID NO: 14).
- the present invention provides compositions and methods of use for the prevention, treatment, and/or amelioration of a cancerous disease.
- the methods described herein comprise administering an effective amount (e.g., a therapeutically effective amount) of an oncolytic virus described herein to a subject in need thereof, wherein the virus expresses an engager molecule or an engager molecule and a therapeutic molecule.
- compositions and methods of the present invention are useful for all stages and types of cancer, including for minimal residual disease, early solid tumor, advanced solid tumor and/or metastatic solid tumor.
- compositions and methods of the present invention are used to treat a variety of solid tumors associated with a number of different cancers.
- solid tumors refers to relapsed or refractory tumors as well as metastases (wherever located), other than metastatses observed in lymphatic cancer.
- Exemplarly solid tumors include, but are not limited to, brain and other central nervous system tumors (e.g. tumors of the meninges, brain, spinal cord, cranial nerves and other parts of central nervous system, e.g. glioblastomas or medulla blastomas); head and/or neck cancer; breast tumors; circulatory system tumors (e.g. heart, mediastinum and pleura, and other intrathoracic organs, vascular tumors and tumor-associated vascular tissue); excretory system tumors (e.g. kidney, renal pelvis, ureter, bladder, other and unspecified urinary organs); gastrointestinal tract tumors (e.g.
- oesophagus oesophagus, stomach, small intestine, colon, colorectal, rectosigmoid junction, rectum, anus and anal canal
- vulva vagina, Cervix uteri, Corpus uteri, uterus, ovary, and other sites associated with female genital organs, placenta, penis, prostate, testis, and other sites associated with male genital organs); respiratory tract tumors (e.g. nasal cavity and middle ear, accessory sinuses, larynx, trachea, bronchus and lung, e.g. small cell lung cancer or non-small cell lung cancer); skeletal system tumors (e.g. bone and articular cartilage of limbs, bone articular cartilage and other sites); skin tumors (e.g.
- malignant melanoma of the skin non-melanoma skin cancer, basal cell carcinoma of skin, squamous cell carcinoma of skin, mesothelioma, Kaposi's sarcoma); and tumors involving other tissues including peripheral nerves and autonomic nervous system, connective and soft tissue, retroperitoneum and peritoneum, eye and adnexa, thyroid, adrenal gland and other endocrine glands and related structures, secondary and unspecified malignant neoplasm of lymph nodes, secondary malignant neoplasm of respiratory and digestive systems and secondary malignant neoplasm of other sites, oligodendroglioma, oligoastrocytoma, astrocytoma, glioblastoma or medulloblastoma or other solid tumor.
- the solid tumor is a brain tumor.
- the brain tumor includes, but is not limited to, a glioma, in particular ependymoma, oligodendroglioma, oligoastrocytoma, astrocytoma, glioblastoma, or a medulloblastoma.
- compositions and methods of the present invention are used to treat a hematologic cancer.
- hematologic cancer refers herein to a cancer of the blood system and includes relapsed or refractory hematologic cancer as well as a metastasized hematologic cancer (wherever located).
- the hematologic cancer is a T-cell malignancy or a B-cell malignancy.
- T-cell malignancies include, but are not limited to, peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large cell lymphoma, angioimmunoblastic lymphoma, cutaneous T-cell lymphoma, adult T-cell leukemia/lymphoma (ATLL), blastic NK-cell lymphoma, enteropathy-type T-cell lymphoma, hematosplenic gamma-delta T-cell lymphoma, lymphoblastic lymphoma, nasal NK/T-cell lymphomas, or treatment-related T-cell lymphomas.
- PTCL-NOS peripheral T-cell lymphoma not otherwise specified
- anaplastic large cell lymphoma angioimmunoblastic lymphoma
- ATLL adult T-cell leukemia/lymphoma
- blastic NK-cell lymphoma enteropathy-type T-cell lymphoma
- Exemplary B-cell malignancies include, but are not limited to, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), high risk CLL, a non-CLL/SLL lymphoma, prolymphocytic leukemia (PLL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Waldenström's macroglobulinemia, multiple myeloma, extranodal marginal zone B cell lymphoma, nodal marginal zone B cell lymphoma, Burkitt's lymphoma, non-Burkitt high grade B cell lymphoma, primary mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, splenic marginal zone lymphoma,
- the oncolytic virus is engineered to produce a high level of expression of the engager molecule and/or the therapeutic polypeptide prior to the death of the virally-infected cell, e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours of infection, or within 2, 3, 4, 5, or 6 days of infection.
- Expression of the engager molecule and/or the therapeutic polypeptide can be determined by methods known in the art, including Western blot, ELISA, immunoprecipitation, or electrophoresis, among others.
- a “high level of expression” in reference to a therapeutic molecule refers to a level of expression that is greater than the basal level of expression of a corresponding polypeptide in a cell that is not infected with the oncolytic virus
- compositions described herein relates to a composition for administration to an individual.
- Administration of the compositions described herein can be local or systemic and can be effected by different ways, e.g., by intravenous, subcutaneous, intraperitoneal, intramuscular, topical or intradermal administration.
- compositions disclosed herein are administered by any means known in the art.
- compositions described herein may be administered to a subject intravenously, intratumorally, intradermally, intraarterially, intraperitoneally, intralesionally, intracranially, intraarticularly, intraprostaticaly, intrapleurally, intratracheally, intranasally, intravitreally, intravaginally, intrarectally, topically, intratumorally, intramuscularly, intrathecally, subcutaneously, subconjunctival, intravesicularily, mucosally, intrapericardially, intraumbilically, intraocularly, orally, locally, by inhalation, by injection, by infusion, by continuous infusion, by localized perfusion, via a catheter, via a lavage, in a cream, or in a lipid composition.
- the composition is administered to the individual via infusion or injection.
- administration is parenteral, e.g., intravenous.
- the oncolytic virus or composition thereof is administered directly to the target site, e.g., by biolistic delivery to an internal or external target site or by catheter to a site in an artery.
- the compositions described herein are administered subcutaneously or intravenously.
- the oncolytic viruses or compositions thereof described herein are administered intravenously or intraarterially.
- compositions described herein are formulated for a particular route of administration, for parenteral, transdermal, intraluminal, intra-arterial, intrathecal, intravenous administration, or for direct injection into a cancer.
- the compositions further comprise a pharmaceutically acceptable carrier.
- “Pharmaceutically or pharmacologically acceptable” refer herein to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate.
- the pharmaceutical compositions of the present disclosure further comprise a pharmaceutically acceptable carrier.
- a “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, buffer, stabilizing formulation, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like.
- suitable pharmaceutical carriers include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, etc.
- Compositions comprising such carriers are formulated by well-known conventional methods.
- supplementary active ingredients are also incorporated into the compositions.
- the compositions described herein are met with sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biologics standards.
- the compositions described herein comprise a carrier such as a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- a carrier such as a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- a coating such as lecithin
- surfactants by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms is brought about by various antibacterial and antifungal agents known in the art. In many cases, it is preferable to include isotonic agents, for example, sugars or sodium chloride.
- prolonged absorption of the injectable compositions is brought about by the use in the compositions of agents
- the oncolytic viruses described herein are formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups are derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- compositions suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form is sterile and is fluid. In some cases, it is stable under the conditions of manufacture and certain storage parameters (e.g. refrigeration and freezing) and is preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Aqueous compositions of some embodiments herein include an effective amount of a virus, nucleic acid, therapeutic protein, peptide, construct, stimulator, inhibitor, and the like, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.
- Aqueous compositions of vectors expressing any of the foregoing are also contemplated.
- biological material is extensively dialyzed to remove undesired small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle, where appropriate.
- the active compounds or constructs are formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous, intralesional, intranasal or intraperitoneal routes. Any route used for vaccination or boost of a subject is used.
- the preparation of an aqueous composition that contains an active component or ingredient is known to those of skill in the art in light of the present disclosure. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for use in preparing solutions or suspensions upon the addition of a liquid prior to injection is also prepared; and the preparations are also emulsified.
- the oncolytic virus is dispersed in a pharmaceutically acceptable formulation for injection.
- sterile injectable solutions are prepared by incorporating the active compounds or constructs in the required amount in the appropriate solvent with any of the other ingredients enumerated above, as required, followed by filtered sterilization.
- compositions described herein are administered in a manner compatible with disease to be treated and the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but also as slow release capsules or microparticles and microspheres and the like.
- aqueous solutions for parenteral administration in an aqueous solution, for example, the solution is suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intratumorally, intramuscular, subcutaneous and intraperitoneal administration.
- sterile aqueous media that is employed is known to those of skill in the art in light of the present disclosure.
- one dosage is dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermolysis fluid or injected at the proposed site of infusion.
- parenteral administration such as intravenous, intratumorally, intradermal or intramuscular injection
- other pharmaceutically acceptable forms include, e.g., tablets or other solids for oral administration; liposomal formulations; time release capsules; biodegradable and any other form currently used.
- the viruses are encapsulated to inhibit immune recognition and placed at the site of a tumor.
- preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishes, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives are also present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
- the pharmaceutical composition of the present disclosure might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the pharmaceutical composition of the disclosure might comprise, in addition to the proteinaceous bispecific single chain antibody constructs or nucleic acid molecules or vectors encoding the same (as described in this disclosure), further biologically active agents, depending on the intended use of the pharmaceutical composition.
- tumor-infiltrating virus-producing cells which continuously release vectors are formulated for direct implantation into a tumor in order to increase the viral oncolysis and the transfer efficiency of the therapeutic genes.
- Intranasal formulations are known in the art and are described in, for example, U.S. Pat. Nos. 4,476,116; 5,116,817; and 6,391,452.
- Formulations which are prepared according to these and other techniques well-known in the art are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, for example, Ansel, H. C. et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, Sixth Ed. (1995).
- these compositions and formulations are prepared with suitable nontoxic pharmaceutically acceptable ingredients.
- Nasal dosage forms generally contain large amounts of water in addition to the active ingredient. Minor amounts of other ingredients such as pH adjusters, emulsifiers or dispersing agents, preservatives, surfactants, gelling agents, or buffering and other stabilizing and solubilizing agents are also present.
- the nasal dosage form is isotonic with nasal secretions.
- compositions described herein are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- the dosage unit is determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of, such as, by way of example only, gelatin for use in an inhaler or insufflator is formulated containing a powder mix of the compound described herein and a suitable powder base such as lactose or starch.
- the oncolytic viruses and compositions thereof described herein are administered to a subject at therapeutically effective amount.
- the therapeutically effective amount will depend on the subject to be treated, the state (e.g., general health) of the subject, the protection desired, the disease to be treated, the route of administration, and/or the nature of the virus.
- the person responsible for administration e.g., an attending physician
- dosages for any one patient depend upon many factors, including the patient's size, weight, body surface area, age, sex, and general health, the particular compound to be administered, the particular disease to be treated, timing and route of administration, and other drugs being administered concurrently. Therefore, it is expected that for each individual patient, even if the viruses that are administered to the population at large, each patient is monitored for the proper dosage for the individual, and such practices of monitoring a patient are routine in the art.
- the therapeutically effective amount of an oncolytic virus described herein is administered in a single dose.
- the pseudotyped oncolytic viruses or compositions thereof are administered to a subject at a dose ranging from about 1 ⁇ 10 +5 pfu to about 1 ⁇ 10 +15 pfu (plaque forming units), about 1 ⁇ 10 +8 pfu to about 1 ⁇ 10 +15 pfu, about 1 ⁇ 10 +10 pfu to about 1 ⁇ 10 +15 pfu, or about 1 ⁇ 10 +8 pfu to about 1 ⁇ 10 +12 pfu.
- the pseudotyped oncolytic viruses or compositions thereof are administered to a subject at a dose of about 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , or 10 15 pfu of virus.
- the dose depends, on the age of the subject to which a composition is being administered. For example, a lower dose may be required if the subject is juvenile, and a higher dose may be required if the subject is an adult human subject.
- a juvenile subject receives about 1 ⁇ 10 +8 pfu and about 1 ⁇ 10 +10 pfu, while an adult human subject receives a dose between about 1 ⁇ 10 +10 pfu and about 1 ⁇ 10 +12 pfu.
- the therapeutically effective amount of an oncolytic virus described herein is administered over the course of two or more doses.
- the two or more doses are administered simultaneously (e.g., on the same day or over a short period of time) or at appropriate intervals, for example as two, three, four or more sub-doses per day.
- the oncolytic viruses or compositions thereof described herein are administered to a subject once. In some embodiments, the oncolytic viruses or compositions thereof described herein are administered to a subject more than once. For example, a composition disclosed herein may be administered multiple times, including 1, 2, 3, 4, 5, 6, or more times. In some embodiments, a composition disclosed herein may be administered to a subject on a daily or weekly basis for a time period or on a monthly, bi-yearly, or yearly basis depending on need or exposure to a pathogenic organism or to a condition in the subject (e.g. cancer). In particular embodiments, the oncolytic viruses and compositions thereof are formulated in such a way, and administered in such and amount and/or frequency, that they are retained by the subject for extended periods of time.
- the pseudotyped oncolytic viruses or compositions thereof are administered for therapeutic applications or is administered as a maintenance therapy, such as for example, for a patient in remission.
- the pseudotyped oncolytic viruses or compositions thereof are administered once every month, once every 2 months, once every 6 months, once a year, twice a year, three times a year, once every two years, once every three years, or once every five years.
- the pseudotyped oncolytic viruses or compositions thereof may be administered continuously upon the doctor's discretion.
- the dose composition is temporarily reduced and/or administration of the composition is temporarily suspended for a certain length of time (i.e., a “drug holiday”).
- the length of the drug holiday varies between 2 days and 1 year, including by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days.
- the dose reduction during a drug holiday is from 10%100%, including, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.
- a maintenance dose may be administered if necessary.
- the dosage and/or the frequency of administration of the composition is reduced, as a function of the symptoms, to a level at which the improved disease, disorder or condition is retained.
- patients may require intermittent treatment on a long-term basis upon any recurrence of symptoms.
- toxicity and therapeutic efficacy of such therapeutic regimens are determined by standard pharmaceutical procedures in cell cultures or experimental animals, including, but not limited to, the determination of the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between the toxic and therapeutic effects is the therapeutic index and it is expressed as the ratio between LD 50 and ED 50 .
- Compounds exhibiting high therapeutic indices are preferred.
- the data obtained from cell culture assays and animal studies are used in formulating a range of dosage for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with minimal toxicity. The dosage varies within this range depending upon the dosage form employed and the route of administration utilized.
- tumor antigen expression levels are evaluated to assess the progress of treatment in a patient, to stratify a patient, and/or to modulate a therapeutic regimen.
- assessment of antigen expression levels include the use of immunohistochemistry (IHC) (including semi-quantitative or quantitative IHC) or other antibody-based assays (Western blot, fluorescent immunoassay (FIA), fluorescence in situ hybridization (FISH), radioimmunoassay (RIA), radioinununoprecipitation (RIP), enzyme-linked immunosorbent assay (ELISA), immunoassay, immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, gel electrophoresis), or indirectly by quantitating the transcripts for these genes (e.g.
- cells for example, lymphocytes, are analyzed using FACs technology or paraffin embedded tumor sections using antibodies.
- antibodies are used to characterize the protein content of target cells through techniques such as immunohistochemistry, ELISAs and Western blotting. In some cases, this provides a screen e.g. for the presence or absence of a subject likely to respond favorably to oncolytic virus therapy and/or a need for co-administering an immune stimulating agent with an oncolytic virus.
- immunohistochemistry is performed on a sample of tissue from a biopsy.
- the sample is examined fresh or frozen.
- antibodies against antigens presented in the cell are added to the sample on a slide and the antibodies bind wherever the antigens are present.
- excess antibody is then washed away.
- the antibodies that remain bound to the cell are further labeled by a secondary antibody for visualization under a microscope.
- test samples are obtained from a subject such as for example, from tissue (e.g. tumor biopsy), cerebrospinal fluid (CSF), lymph, blood, plasma, serum, peripheral blood mononuclear cells (PBMCs), lymph fluid, lymphocytes, synovial fluid and urine.
- tissue e.g. tumor biopsy
- CSF cerebrospinal fluid
- PBMCs peripheral blood mononuclear cells
- lymph fluid lymphocytes
- synovial fluid and urine e.g. tumor biopsy
- CSF cerebrospinal fluid
- PBMCs peripheral blood mononuclear cells
- lymph fluid lymphocytes
- synovial fluid and urine e.g., synovial fluid and urine.
- the test sample is obtained from CSF or tumor tissue.
- the test sample is obtained from tumor tissue and e.g. the relative number of CD4 + and/or CD8 + cells in the sample is determined and/or the level of one or more Th1 and/or Th2 cytokines in the sample is measured e.g
- test sample is obtained from blood and e.g. the level of one or more Th1 and/or Th2 cytokines in the sample is measured by ELISA.
- the viruses, expression constructs, nucleic acid molecules and/or vectors described herein are administered in combination with another therapeutic agent.
- the oncolytic viruses and an additional therapeutic agent are formulated in the same compositions.
- the composition may further comprise a pharmaceutically acceptable carrier or excipient.
- the oncolytic viruses and an additional therapeutic agent are formulated in separate compositions (e.g., two or more compositions suitable for administration to patient or subject).
- the disclosure further encompasses co-administration protocols with other cancer therapies, e.g. bispecific antibody constructs, targeted toxins or other compounds, including those which act via immune cells, including T-cell therapy.
- the clinical regimen for co-administration of the inventive composition(s) encompass(es) co-administration at the same time, before and/or after the administration of the other component.
- Particular combination therapies include chemotherapy, radiation, surgery, hormone therapy, and/or other types of immunotherapy.
- a therapeutically effective amount of a pseudotyped oncolytic virus is administered to a subject in need thereof in combination with an additional therapeutic agent.
- the additional therapeutic agent is a chemotherapeutic agent, a steroid, an immunotherapeutic agent, a targeted therapy, or a combination thereof.
- compositions are administered in conjunction with an adjuvant therapy.
- activating adjuvant treatments are administered prior to, contemporaneous with, or after one or more administrations (e.g., intratumoral injection of the pseudotyped virus).
- adjuvant therapy includes modulation of Toll-like receptor (TLR) ligands, such as TLR9 activation by DNA molecules comprising CpG sequences, or TLR9 activation (e.g., by RNA ligands).
- TLR Toll-like receptor
- Other adjuvant treatments include agonizing antibodies or other polypeptides (e.g., activation of CD40 or GITR by CD40 Ligand (CD40L) or GITR Ligand (GITRL), respectively).
- cyclic dinucleotides e.g., c-di-GMP
- Another activating adjuvant includes interleukins such as IL-33.
- the additional therapeutic agent comprises an agent selected from: bendamustine, bortezomib, lenalidomide, idelalisib (GS-1101), vorinostat, everolimus, panobinostat, temsirolimus, romidepsin, vorinostat, fludarabine, cyclophosphamide, mitoxantrone, pentostatine, prednisone, etopside, procarbazine, and thalidomide.
- the additional therapeutic agent is a multi-agent therapeutic regimen.
- the additional therapeutic agent comprises the HyperCVAD regimen (cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with methotrexate and cytarabine).
- the HyperCVAD regimen is administered in combination with rituximab.
- the additional therapeutic agent comprises the R-CHOP regiment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone).
- the additional therapeutic agent comprises the FCR regimen (FCR (fludarabine, cyclophosphamide, rituximab).
- FCR fludarabine, cyclophosphamide, rituximab
- the additional therapeutic agent comprises the FCMR regimen (fludarabine, cyclophosphamide, mitoxantrone, rituximab).
- the additional therapeutic agent comprises the FMR regimen (fludarabine, mitoxantrone, rituximab).
- the additional therapeutic agent comprises the PCR regimen (pentostatin, cyclophosphamide, rituximab).
- the additional therapeutic agent comprises the PEPC regimen (prednisone, etoposide, procarbazine, cyclophosphamide).
- the additional therapeutic agent comprises radioimmunotherapy with 90 Y-ibritumomab tiuxetan or 131 I-tositumomab.
- the additional therapeutic agent is an autologous stem cell transplant.
- the additional therapeutic agent is selected from: nitrogen mustards such as for example, bendamustine, chlorambucil, chlormethine, cyclophosphamide, ifosfamide, meiphalan, prednimustine, trofosfamide; alkyl sulfonates like busulfan, mannosulfan, treosulfan; ethylene imines like carboquone, thiotepa, triaziquone; nitrosoureas like carmustine, fotemustine, lomustine, nimustine, ranimustine, semustine, streptozocin; epoxides such as for example, etoglucid; other alkylating agents such as for example dacarbazine, mitobronitol, pipobroman, temozolomide; folic acid analogues such as for example methotrexate, permetrexed, pralatrexate, raltitrexed;
- the additional therapeutic agent is selected from: interferons, interleukins, tumor necrosis factors, growth factors, or the like.
- the additional therapeutic agent is selected from: ancestim, filgrastim, lenograstim, molgramostim, pegfilgrastim, sargramostim; Interferons such as for example IFN ⁇ natural, IFN ⁇ -2a, IFN ⁇ -2b, IFN alfacon-1, IFN ⁇ -n1, IFN ⁇ natural, IFN ⁇ -1 ⁇ , IFN ⁇ -1b, IFN ⁇ , peginterferon ⁇ -2a, peginterferon ⁇ -2b; interleukins such as for example aldesleukin, oprelvekin; other immunostimulants such as for example BCG vaccine, glatiramer acetate, histamine dihydrochloride, immunocyanin, lentinan, melanoma vaccine, mifamurtide, pegademase, pidotimod, plerixafor, poly I:C, poly ICLC, roquinimex, tason
- the additional therapeutic agent is selected from: Adalimumab, Alemtuzumab, Basiliximab, Bevacizumab, Cetuximab, Certolizumab pegol, Daclizumab, Eculizumab, Efalizumab, Gemtuzumab, Ibritumomab tiuxetan, Infliximab, Muromonab-CD3, Natalizumab, Panitumumab, Ranibizumab, Rituximab, Tositumomab, Trastuzumab, or the like, or a combination thereof.
- the additional therapeutic agent is selected from: monoclonal antibodies such as for example alemtuzumab, bevacizumab, catumaxomab, cetuximab, edrecolomab, gemtuzumab, panitumumab, rituximab, trastuzumab; Immunosuppressants, eculizumab, efalizumab, muromab-CD3, natalizumab; TNF alpha Inhibitors such as for example adalimumab, afelimomab, certolizumab pegol, golimumab, infliximab; Interleukin Inhibitors, basiliximab, canakinumab, daclizumab, mepolizumab, tocilizumab, ustekinumab; Radiopharmaceuticals, ibritumomab tiuxetan, tositumomab; additional monoclonal antibodies
- the additional therapeutic agent is selected from: agents that affect the tumor micro-enviroment such as cellular signaling network (e.g. phosphatidylinositol 3-kinase (PI3K) signaling pathway, signaling from the B-cell receptor and the IgE receptor).
- cellular signaling network e.g. phosphatidylinositol 3-kinase (PI3K) signaling pathway, signaling from the B-cell receptor and the IgE receptor.
- the additional therapeutic agent is a PI3K signaling inhibitor or a syc kinase inhibitor.
- the syk inhibitor is R788.
- is a PKC ⁇ inhibitor such as by way of example only, enzastaurin.
- agents that affect the tumor micro-environment include PI3K signaling inhibitor, syc kinase inhibitor, protein kinase inhibitors such as for example dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazonanib, sorafenib, sunitinib, temsirolimus; other angiogenesis inhibitors such as for example GT-111, 11-101, R1530; other kinase inhibitors such as for example AC220, AC480, ACE-041, AMG 900, AP24534, Arry-614, AT7519, AT9283, AV-951, axitinib, AZD1152, AZD7762, AZD8055, AZD8931, bafetinib, BAY 73-4506, BGJ398, BGT226, BI 811283, BI6727, BIBF 11
- the additional therapeutic agent is selected from: inhibitors of mitogen-activated protein kinase signaling, e.g., U0126, PD98059, PD184352, PD0325901, ARRY-142886, SB239063, SP600125, BAY 43-9006, wortmannin, or LY294002; Syk inhibitors; mTOR inhibitors; and antibodies (e.g., rituxan).
- mitogen-activated protein kinase signaling e.g., U0126, PD98059, PD184352, PD0325901, ARRY-142886, SB239063, SP600125, BAY 43-9006, wortmannin, or LY294002
- Syk inhibitors e.g., mTOR inhibitors
- mTOR inhibitors e.g., rituxan
- the additional therapeutic agent is selected from: 20-epi-1, 25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA;
- the additional therapeutic agent is selected from: alkylating agents, antimetabolites, natural products, or hormones, e.g., nitrogen mustards (e.g., mechloroethamine, cyclophosphamide, chlorambucil, etc.), alkyl sulfonates (e.g., busulfan), nitrosoureas (e.g., carmustine, lomusitne, ete.), or triazenes (decarbazine, etc.).
- nitrogen mustards e.g., mechloroethamine, cyclophosphamide, chlorambucil, etc.
- alkyl sulfonates e.g., busulfan
- nitrosoureas e.g., carmustine, lomusitne, ete.
- triazenes decarbazine, etc.
- antimetabolites include but are not limited to folic acid analog (e.g., methotrexate), or pyrimidine analogs (e.g., Cytarabine), purine analogs (e.g., mercaptopurine, thioguanine, pentostatin).
- folic acid analog e.g., methotrexate
- pyrimidine analogs e.g., Cytarabine
- purine analogs e.g., mercaptopurine, thioguanine, pentostatin.
- compositions are administered in conjunction with an adjuvant therapy.
- activating adjuvant treatments are administered prior to, contemporaneous with, or after one or more administrations (e.g., intratumoral injection of the pseudotyped virus).
- adjuvant therapy includes modulation of Toll-like receptor (TLR) ligands, such as TLR9 activation by DNA molecules comprising CpG sequences, or TLR9 activation (e.g., by RNA ligands).
- TLR Toll-like receptor
- Other adjuvant treatments include agonizing antibodies or other polypeptides (e.g., activation of CD40 or GITR by CD40 Ligand (CD40L) or GITR Ligand (GITRL), respectively).
- cyclic dinucleotides e.g., c-di-GMP
- Another activating adjuvant includes interleukins such as IL-33.
- the pharmaceutical compositions described herein are administered in conjunction with an adjuvant therapy.
- kits comprising one or more oncolytic viruses as described herein, a nucleic acid sequence as described herein, a vector as described herein, and/or a host cell as described herein.
- the kits comprise a pharmaceutical composition as described herein above, either alone or in combination with further therapeutic agents to be administered to an individual in need thereof.
- the present invention provides kits for the use of vectors and virus-producing cells according to the invention as drugs in therapeutic methods.
- the vectors and virus producing cells according to some embodiments of the invention are used for the therapy or treatment of solid tumors in a subject.
- the therapeutic effect is caused by the oncolytic properties of the recombinant vectors and viruses as well as by the use of therapeutic genes.
- kits for use with methods and compositions concern kits having vaccine compositions of use to reduce onset of or treat subjects having one or more solid tumors.
- kits concern kits for making and using molecular constructs described herein.
- kits also include a suitable container, for example, vials, tubes, mini- or microfuge tubes, test tube, flask, bottle, syringe or other container. Where an additional component or agent is provided, the kit contains one or more additional containers into which this agent or component is placed.
- Kits herein also include a means for containing the constructs, vaccine compositions and any other reagent containers in close confinement for commercial sale. Such containers include injection or blow-molded plastic containers into which the desired vials are retained.
- one or more additional agents such as other anti-viral agents, anti-fungal or anti-bacterial agents are needed for compositions described, for example, for compositions of use as a vaccine.
- VSV-GP VSV-Glycoprotein
- DNA of the following packaging plasmids was mixed and prepared for transfection into 293T cells: pMDLg/pRRE expressing HIV-1 GAG/POL; pRSVIREV expressing HIV-1 REV; and pMD2.G 5 60 5.8 VSV glycoprotein.
- the DNA mix was added to 500 ⁇ L of pre-warmed Optimem II medium.
- a working stock of polyethyleneimine transfection reagent (PEI) was prepared at 1 ⁇ g/ ⁇ L in 1 ⁇ PBS, pH 4.5, and 88 ⁇ L of the working stock was added to the mixture, maintaining a 4:1 v/w ratio of PEI:DNA. The mixture was vortexed briefly and left for 5-10 min at room temperature to form a PEI:DNA transfection complex.
- a total of 2.5 ⁇ 10 6 low passage (less than P20) 293T cells were seeded per 15 cm dish in 15 mL DMEM supplemented with 10% serum and 1% Pen/Strep. 2 hours prior to transfection, the cell culture medium was aspirated and replaced with 15 mL of fresh pre-warmed growth medium (GM). The transfection complex was then added drop-wise to each 15 cm plate, swirled briefly to mix and incubated for 8 hrs in 10% CO 2 , 35° C. After 8 hours, the medium was replaced with 10 mL of fresh growth medium containing 25 mM HEPES and 10% serum. The mixture was then incubated for 48 hrs post-transfection.
- GM pre-warmed growth medium
- the medium from each dish was removed, pooled, and filtered through a 0.22 ⁇ m low protein binding/fast flow filter unit and stored at 4° C. A 5 mL volume of fresh growth medium was added to each dish and incubated overnight at 4° C. (60-72 hours post transfection). The second lot of medium from each dish was collected, as in the previous step, and pooled with previous media harvest.
- the plasmid carry-over is removed by digestion with DNASE-I (1 mg/mL stock).
- a 1 ⁇ g/mL solution the viral supernatant, supplemented with 1 ⁇ L of 1M MgCl 2 , was incubated at room temperature for 30 min followed by 2-4 hrs at 4° C.
- the filtered supernatants can be used directly on cultured cells, or aliquoted and stored at ⁇ 80° C.
- the pseduotyped VSV-G viral supernatant can be optionally concentrated and purified.
- Pseudotyped VSV-G is prepared as described in Example 1 and further processed to express a nucleic acid encoding an engager polypeptide comprising an activation domain comprising an anti-CD28 molecule and an antigen recognition domain comprising an anti-CA125 molecule, and a nucleic acid encoding an anti-PD immune modulatory peptide.
- the resulting oncolytic virus is a pseudotyped oncolytic VSV-G virus encoding a CD28-CA125 engager molecule and an anti-PD1 therapeutic molecule (CD28-CA125-PD1 VSV-G).
- Example 3 CD28-CA125-PD1 VSV-G Activates Human T Cells and Exhibits Anti-Tumor Activity
- Human T cells are infected with the pseudotyped CD28-CA125-PD1 VSV-G virus. 24 hrs to 48 hrs post viral infection, the T cell culture medium is collected and checked for the presence of proinflammatory cytokines. These results will show that T cells are activated by CD28-CA125-PD1 VSV-G, as evidenced by presence of proinflammatory cytokines such as IFN- ⁇ and IL-2 in the cell culture supernatant of CD28-CA125-PD1 VSV-G infected human T cells.
- proinflammatory cytokines such as IFN- ⁇ and IL-2
- EphA2-overexpressing gastric cancer cells from KATO3 cell line, are infected with pseudotyped CD28-CA125-PD1 VSV-G or non-pseudotyped CD28-CA125-PD1 VSV virus and the cell proliferation is assessed. These results will show that cell proliferation is significantly reduced in cells KATO3 cells infected with pseudotyped CD28-CA125-PD1 VSV-G compared to KATO3 cells infected with non-pseudotyped CD28-CA125-PD VSV virus.
- Example 4 CD19-CD3, SIRP1 ⁇ -CD3, and PDL1-CD3-Fc Engager Molecules Specifically Bind to T-Cells Via CD3
- T cells were stimulated with 200 U/mL IL-2 for 12 days. After 12 days, T cell were incubated with varying concentrations of engager molecules (500, 1000, or 2000 ng/mL for CD19-CD3 and SIRP1 ⁇ -CD3; neat supernatant for PDL1-CD3-Fc) for 20 minutes at room temperature in triplicate. Cells were then washed twice, followed by staining with an anti-6 ⁇ His APC antibody at 500 ng/mL for an additional 20 minutes.
- engager molecules 500, 1000, or 2000 ng/mL for CD19-CD3 and SIRP1 ⁇ -CD3; neat supernatant for PDL1-CD3-Fc
- results for CD19-CD3 show that the CD3 binding moiety of each of these molecules functional binds to CD3-expressing 293F T cells, as indicated by an increase in the percentage of cells that are positive for the engager molecules compared to the secondary antibody alone.
- a dose dependent increase in the % positive cells is observed for CD19-CD3 ( FIG. 19A ), while the SIRP1 ⁇ -CD3 construct demonstrated maximal binding at all concentrations.
- the amount of the neat PDL1-CD3-Fc supernatant used resulted in binding of the construct to the majority of T cells ( FIG. 19C ).
- FIG. 23 The results of SIRP1 ⁇ -CD3 and CD19-CD3 binding to CD19 + CD47 + Raji cells are shown in FIG. 23 .
- Quantitation of the binding data showing percentage of BiTE positive cells is show in FIG. 23B .
- FIG. 24 The results of SIRP1 ⁇ -CD3 and CD19-CD3 binding to CD19 ⁇ CD47 + U2OS cells are shown in FIG. 24 .
- CD19-CD3 BiTEs were unable to bind to U2OS cells, which was expected based on the lack of CD19 expression by U2OS cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 24B .
- FIG. 25 The results of SIRP1 ⁇ -CD3 and CD19-CD3 binding to CD19 ⁇ CD47 + GBM30-luc cells are shown in FIG. 25 .
- SIRP1 ⁇ -CD3 BiTE were able to bind to GBM30-luc cells at all concentrations used, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram ( FIG. 25A ).
- CD19-CD3 BiTEs were unable to bind to GBM30-luc cells, which was expected based on the lack of CD19 expression by GBM30-luc cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 25B .
- FIG. 26 The results of SIRP1 ⁇ -CD3 and CD19-CD3 binding to CD19 ⁇ CD47 + U251 cells are shown in FIG. 26 .
- SIRP1 ⁇ -CD3 BiTE were able to bind to U251 cells at all concentrations used, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram ( FIG. 26A ).
- CD19-CD3 BiTEs were unable to bind to U251 cells, which was expected based on the lack of CD19 expression by U251 cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 26B .
- the PDL1-CD3-Fc TiTE construct comprises 2 domains that are capable of binding to target cells (the anti-PDL1 and the Fc domain) experiments were performed to assess the binding specificity of these constructs.
- CD19 ⁇ CD47 + U251 cells were treated with 2 g/mL of a fluorescently labeled anti-PDL1 antibody, an isotype control, or PDL1-CD3-Fc transfection supernant.
- Relative to negative control Ig the PDL1-CD3-Fc TiTE bound to U251 cells ( FIG. 27B ). To assess whether this observed binding was due to interactions with CD47 or Fc ⁇ Rs expressed by U251 cells, the Fc ⁇ R expression on U251 cells was determined.
- Example 8 CD19-CD3, SIRP1 ⁇ -CD3, and PDL1-CD3-Fc Constructs Stimulate CD8 + T Cell-Mediated Killing of Target Cells
- CD19-CD3, SIRP1 ⁇ -CD3, and PDL1-CD3-Fc constructs were stimulated for 8-12 days in the presence of 200 U/mL IL-2 and Dynabeads. Prior to co-culture with target cells, all Dynabeads were removed by magnet and cells were washed to remove IL-2. Raji ( FIG. 28 ), THP1 ( FIG. 29 ), U251 ( FIG. 30 ), and 293F ( FIG. 31 ) target cells were labeled with the fluorescent membrane dye PKH67 green before plating.
- CD8 + effector T cells were then co-cultured with target cells at an effector to target ratio of 1:1 along with 1000 ng/mL CD19-CD3 BiTE, SIRP1 ⁇ -CD3 BiTEs, or a 1:3 dilution of PDL1-CD3-Fc transfection supernatant.
- Co-cultures of target and effector cells were incubated for 18 hours, after which they were stained with 7-AAD and live/dead analysis was performed by flow cytometry on a BD LSR Fortesa cytometer.
- the PDL1-CD3-Fc engager constructs were capable of inducing effector cell-mediated death of U251 target cells ( FIG. 30 ), while the CD19-CD3 constructs did not induce effector cell-mediated death of U251 cells due to a lack of CD19 expression by U251 cells.
- the EC 50 for each of the CD19-CD3 and PDL1-CD3-Fe constructs on U251 cells are shown below in Table 8.
- SIRP1 ⁇ -CD3 engager constructs were capable of inducing effector cell-mediated death of 293F target cells ( FIG. 31 ), indicated by the increase in cell death in SIRP1 ⁇ -CD3 containing cultures compared to a control osteopontin-fusion protein (OPN 1).
- OPN 1 osteopontin-fusion protein
- Vero cells were infected with oHSV expressing SIRP1 ⁇ -CD3 BiTEs ( FIG. 32 ) with either a short linker (SL) (ONCR-085; 2A5B SIRP1 ⁇ -CD3 (SL) BiTE) or long linker (LL) (ONCR-087; 2A5B SIRP1 ⁇ -CD3 (LL) BiTE), or with oHSV expressing PD1-CD3-Fc TiTEs (ONCR-089, FIG. 33 ). Cells were infected for 3 days, after which supernatants from infected cells were passed through a 100K MWCO ultrafiltration membrane to remove any viral particles.
- the flowthrough was concentrated with a 10K MWCO ultrafiltration membrane. Concentrated viral supernatants and 100 ng, 50 ng, 25 ng, or 12.5 ng of purified SIRP1 ⁇ -CD3 or PDL1-CD3-Fc protein were then analyzed by PAGE followed by Western blotting with an anti-6 ⁇ His detection antibody in order to determine the amount of engager protein present in the viral supernatants.
- the workflow for clarifying viral supernatants comprises low-speed centrifugation of the supernatants followed by filtration through a 0.8 ⁇ m filter membrane.
- SIRP1 ⁇ -CD3 and PDL1-CD3-Fc constructs were prepared from Vero cells as described in Example 10. 50 ⁇ L of the resulting SIRP1 ⁇ -CD3 (SL), SIRP1 ⁇ -CD3 (LL), and PDL1-CD3-Fc engager proteins protein samples were diluted 1:1 in tissue culture media containing 20% FBS.
- the diluted engager proteins were then incubated with activated CD8 + effector T cells co-cultured with fluorescently labelled U251 target cells at a target to effector ratio of 1:1 for 18 hours. Cell death of U251 cells was assessed by flow cytometry on a BD LSR Fortesa cytometer.
- Two expression plasmids encoding a SIRP1 ⁇ -CD3 engager molecule and a PDL1-Fc therapeutic molecule were generated.
- One construct comprised a first gene encoding an HA-tagged PDL1-Fc linked to a second gene encoding a His-tagged SIRP1 ⁇ -CD3 BiTE.
- the SIRP1 ⁇ amino acid sequence was linked to the anti-CD3 scFv by a single amino acid linker (i.e., a short linker) (SIRP1 ⁇ -CD3/PDL1-Fc (SL), FIG. 37 ).
- the other construct comprised a first gene encoding a PDL1-Fc linked to a second gene encoding a SIRP1 ⁇ -CD3 BiTE.
- SIRP1 ⁇ amino acid sequence was linked to the anti-CD3 scFv by a G4S linker (i.e., a long linker) (SIRP1 ⁇ -CD3/PDL1-Fc (LL), FIG. 38 ).
- the constructs were inserted into a plasmid ( FIG. 39 ) and the resultant SIRP1 ⁇ -CD3/PDL1-Fc expression plasmids were transfected into 293 Free Style T cells. Four days after plasmid transfection, culture supernatants were collected.
- Anti-PDL1-Fc compounds were purified from the culture supernatants using a HiTrap MabSelect SuRe Protein A column HiTrap column (GE Healthcare). Briefly, supernatants from 293 T cells transfected with either the SIRP1 ⁇ -CD3/PDL1-Fc (LL) or the SIRP1 ⁇ -CD3/PDL1-Fc (LL) expression plasmids were loaded onto the column to purify the anti-PDL1-Fc compounds by binding of the HA-tag to the column. Flow through was collected for SIRP1 ⁇ -CD3 BiTE detection by Western Blot using an anti-His antibody ( FIG. 40B ).
- the anti-PDL1-Fc protein content of different elution fractions then were visualized by Coomassie staining. Briefly, elution fractions were run on a 4%-12% Bis-Tris NuPAGE gel in MOPS buffer at 180 volts for 1 hour. Gels were stained for 1 hour in Simply Blue SafeStain followed by destaining with water. Anti-PDL1-Fc protein content for each elution fraction is show in FIG. 40A . After Coomassie analysis, elution fractions were combined and dialyzed against PBS at 4° C. Total anti-PDL1-Fc protein concentration was then determined by a BCA assay.
- Example 13 Isolated PDL1-Fe Proteins Stimulate T Cell-Mediated Death of Target Cells
- the ability of the anti-PDL1-Fc proteins to induce effector cell-mediated death of target cells was assessed by a PD1/PDL1 blockade assay.
- a general schematic of the assay is show in FIG. 41A-41B . Briefly, CD8 + T cells were co-cultured with PDL1-expressing target cells (CHO-K1 cells). Varying concentrations of the anti-PDL1-Fc protein isolated as described in Example 12 were then added to the culture. The highest concentration of anti-PDL1-Fc used was 50 ⁇ g/mL. 8, 2.5 fold serial dilutions were then performed to generate the remainder of the anti-PDL1-Fc concentrations.
- Example 13 oHSV-Infected Vero Cells Express MMP9 and Anti-PDL1-Fc Therapeutic Molecules
- Vero cells are infected with oHSV expressing SIRP1 ⁇ -CD3/PDL1-Fc constructs BiTEs ( FIG. 37 and FIG. 38 ) or with oHSV expressing SIRP1 ⁇ -CD3/MMP9 constructs ( FIG. 18A and FIG. 18B ).
- Cells are infected for 3 days, after which supernatants from infected cells are passed through a 100K MWCO ultrafiltration membrane to remove any viral particles. The flowthrough is concentrated with a 10K MWCO ultrafiltration membrane.
- MMP9 and anti-PDL1-Fc are purified from filtered, concentrated supernatants according to the protocol outlined in Example 11. Protein A-isolated MMP9 and anti-PDL1 fractions are analyzed by PAGE followed by Coomassie staining. SIRP1 ⁇ -CD3 BiTEs present in the Protein A flowthrough are analyzed by Western blotting with an anti-6 ⁇ His detection antibody.
- SIRP1 ⁇ -CD3 HIV-induced engager molecules
- MMP9 and anti-PDL1-Fc virally-produced engager molecules
- SL SIRP1 ⁇ -CD3
- LL therapeutic molecules
- anti-PDL1-Fc proteins are prepared from Vero cells as described in Example 13. 50 ⁇ L of the resulting protein samples are diluted in tissue culture media containing 20% FBS. The diluted proteins are then incubated with activated CD8 + effector T cells or NK effector cells and are co-cultured with fluorescently labelled target cells at a target to effector ratio of 1:1 for 18 hours. Cell death of target cells is assessed by flow cytometry on a BD LSR Fortesa cytometer.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Wood Science & Technology (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Hematology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/720,696 US20180057594A1 (en) | 2016-06-30 | 2017-09-29 | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
| US16/170,764 US10604574B2 (en) | 2016-06-30 | 2018-10-25 | Oncolytic viral delivery of therapeutic polypeptides |
| US16/775,164 US11078280B2 (en) | 2016-06-30 | 2020-01-28 | Oncolytic viral delivery of therapeutic polypeptides |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662357195P | 2016-06-30 | 2016-06-30 | |
| PCT/US2017/040354 WO2018006005A1 (en) | 2016-06-30 | 2017-06-30 | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
| US15/720,696 US20180057594A1 (en) | 2016-06-30 | 2017-09-29 | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2017/040354 Continuation WO2018006005A1 (en) | 2016-06-30 | 2017-06-30 | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/170,764 Continuation US10604574B2 (en) | 2016-06-30 | 2018-10-25 | Oncolytic viral delivery of therapeutic polypeptides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180057594A1 true US20180057594A1 (en) | 2018-03-01 |
Family
ID=60787595
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/720,696 Abandoned US20180057594A1 (en) | 2016-06-30 | 2017-09-29 | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
| US16/170,764 Active US10604574B2 (en) | 2016-06-30 | 2018-10-25 | Oncolytic viral delivery of therapeutic polypeptides |
| US16/775,164 Expired - Fee Related US11078280B2 (en) | 2016-06-30 | 2020-01-28 | Oncolytic viral delivery of therapeutic polypeptides |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/170,764 Active US10604574B2 (en) | 2016-06-30 | 2018-10-25 | Oncolytic viral delivery of therapeutic polypeptides |
| US16/775,164 Expired - Fee Related US11078280B2 (en) | 2016-06-30 | 2020-01-28 | Oncolytic viral delivery of therapeutic polypeptides |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US20180057594A1 (enExample) |
| EP (1) | EP3478321A4 (enExample) |
| JP (3) | JP2019519245A (enExample) |
| KR (1) | KR20190035714A (enExample) |
| CN (1) | CN109983121A (enExample) |
| AU (1) | AU2017290828A1 (enExample) |
| BR (1) | BR112019000015A2 (enExample) |
| CA (1) | CA3029426A1 (enExample) |
| IL (2) | IL263879B (enExample) |
| MX (1) | MX2019000252A (enExample) |
| RU (2) | RU2021127872A (enExample) |
| SG (1) | SG11201811600PA (enExample) |
| WO (1) | WO2018006005A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018218137A1 (en) | 2017-05-25 | 2018-11-29 | Leidos, Inc. | Pd-1 and ctla-4 dual inhibitor peptides |
| WO2020142725A1 (en) * | 2019-01-04 | 2020-07-09 | Oncorus, Inc. | Encapsulated rna polynucleotides and methods of use |
| WO2020160047A3 (en) * | 2019-01-28 | 2020-09-10 | Rhode Island Council On Postsecondary Education | Phlip® peptide-mediated epitope tethering at cell surfaces |
| WO2020237050A1 (en) | 2019-05-22 | 2020-11-26 | Leidos, Inc. | Lag3 binding peptides |
| US10888549B2 (en) | 2016-03-07 | 2021-01-12 | The Johns Hopkins University | Pharmaceutical agents targeting cancer stem cells |
| US20210147548A1 (en) * | 2018-04-16 | 2021-05-20 | Institute Of Biophysics Chinese Academy Of Sciences | Fusion protein of interferon (ifn) and anti-pd-l1 antibody and use thereof |
| US20210386804A1 (en) * | 2020-06-11 | 2021-12-16 | Tibor Bakács | Combination of viral superinfection therapy with subthreshold doses of nivolumab plus ipilimumab in chronic HBV patients |
| CN113811603A (zh) * | 2019-03-15 | 2021-12-17 | 河谷细胞有限公司 | 重组erIL-15 NK细胞 |
| WO2022026496A2 (en) | 2020-07-31 | 2022-02-03 | Leidos, Inc. | Lag3 binding peptides |
| WO2022081426A1 (en) | 2020-10-12 | 2022-04-21 | Leidos, Inc. | Immunomodulatory peptides |
| US12331320B2 (en) | 2018-10-10 | 2025-06-17 | The Research Foundation For The State University Of New York | Genome edited cancer cell vaccines |
Families Citing this family (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3478321A4 (en) | 2016-06-30 | 2020-04-22 | Oncorus, Inc. | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
| US12121573B2 (en) | 2019-07-14 | 2024-10-22 | Tianxin Wang | Methods and agents including STING agonist to treat tumor |
| EP4063859A1 (en) | 2017-04-28 | 2022-09-28 | Merck Sharp & Dohme Corp. | Biomarkers for cancer therapeutics |
| KR20200042904A (ko) * | 2017-07-26 | 2020-04-24 | 온코루스, 인크. | 종양용해성 바이러스 벡터 및 그의 용도 |
| CA3071376A1 (en) | 2017-08-03 | 2019-02-07 | Amgen Inc. | Interleukin-21 muteins and methods of treatment |
| EP3833765A1 (en) * | 2017-08-09 | 2021-06-16 | The Ohio State Innovation Foundation | Oncolytic virus carrying e-cadherin and uses thereof |
| EP3679040B1 (en) | 2017-09-08 | 2022-08-03 | Amgen Inc. | Inhibitors of kras g12c and methods of using the same |
| EP3731850A4 (en) | 2017-12-29 | 2021-12-01 | Oncorus, Inc. | ONCOLYTIC VIRUS DELIVERY OF THERAPEUTIC POLYPEPTIDES |
| AU2019207895A1 (en) | 2018-01-12 | 2020-06-18 | Amgen Inc. | Anti-PD-1 antibodies and methods of treatment |
| IL321888A (en) * | 2018-04-15 | 2025-09-01 | Immvira Co Ltd | Antibodies that bind PD-1 and their uses |
| WO2019201169A1 (en) * | 2018-04-15 | 2019-10-24 | Salubris (Chengdu) Biotech Co., Ltd | Antibodies binding pd-1 and uses thereof |
| CN118147029A (zh) | 2018-07-11 | 2024-06-07 | 阿克蒂姆治疗有限公司 | 工程化的免疫刺激性细菌菌株及其用途 |
| CN110819657B (zh) * | 2018-08-10 | 2021-11-19 | 睿丰康生物医药科技(浙江)有限公司 | 一种减毒棒状病毒的制备方法及应用 |
| SG11202103497WA (en) * | 2018-10-22 | 2021-05-28 | Univ Pittsburgh Commonwealth Sys Higher Education | Cleavable activators of cxcr3 and methods of use |
| MX2021005448A (es) * | 2018-11-13 | 2021-08-11 | Oncorus Inc | Polinucleotidos encapsulados y metodos de uso. |
| EP3906038A4 (en) | 2018-11-21 | 2022-06-01 | Mayo Foundation for Medical Education and Research | ADENOVIRUS AND METHODS OF USE OF ADENOVIRUS |
| MX2021007639A (es) | 2018-12-27 | 2021-08-11 | Amgen Inc | Formulaciones de virus liofilizadas. |
| US20220127319A1 (en) | 2019-01-15 | 2022-04-28 | Cornell University | Recombinant mucins, and compositions and methods for using the same |
| CN113474458A (zh) * | 2019-01-30 | 2021-10-01 | 威斯塔解剖学和生物学研究所 | 靶向癌症抗原的dna编码的双特异性t细胞连接子以及在癌症治疗中的使用方法 |
| US12024709B2 (en) | 2019-02-27 | 2024-07-02 | Actym Therapeutics, Inc. | Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment |
| CA3176660A1 (en) | 2019-02-27 | 2020-09-03 | Actym Therapeutics, Inc. | Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment |
| KR20210135532A (ko) | 2019-03-05 | 2021-11-15 | 암젠 인크 | 암 치료를 위한 종양 용해 바이러스의 용도 |
| TW202102543A (zh) | 2019-03-29 | 2021-01-16 | 美商安進公司 | 溶瘤病毒在癌症新輔助療法中之用途 |
| EP3911671A1 (en) * | 2019-04-29 | 2021-11-24 | Mayo Foundation for Medical Education and Research | Multivalent pd-l1 binding compounds for treating cancer |
| JP7457037B2 (ja) * | 2019-05-31 | 2024-03-27 | 広州威溶特医薬科技有限公司 | M1ウイルス変異体及びその使用 |
| WO2021011844A2 (en) * | 2019-07-17 | 2021-01-21 | The Regents Of The University Of California | Combination cancer therapy agents and methods |
| MX2022004323A (es) * | 2019-10-10 | 2022-08-02 | Univ Arizona State | Virus oncoliticos que expresan captadores multiespecificos de celulas inmunitarias. |
| EP4058578A2 (en) | 2019-11-12 | 2022-09-21 | Actym Therapeutics, Inc. | Immunostimulatory bacteria delivery platforms and their use for delivery of therapeutic products |
| CN115916226A (zh) * | 2020-02-07 | 2023-04-04 | 希望之城 | 用于治疗癌症的溶瘤病毒组合物和方法 |
| CN111759841A (zh) * | 2020-06-03 | 2020-10-13 | 山西第三医学研究发展有限公司 | 一种用匹多莫德在抗新型冠状病毒感染中的应用 |
| CN113832114A (zh) * | 2020-06-23 | 2021-12-24 | 南京大学 | 一种新型溶瘤腺病毒EM/VSV-G Ad5-P及其在制备抗肿瘤药物中的应用 |
| EP4196139A2 (en) | 2020-08-12 | 2023-06-21 | Actym Therapeutics, Inc. | Immunostimulatory bacteria-based vaccines, therapeutics, and rna delivery platforms |
| CN112143711B (zh) * | 2020-09-29 | 2021-07-23 | 杭州荣谷生物科技有限公司 | 重组痘瘤病毒、药物组合物及其构建方法和应用 |
| WO2022148736A1 (en) * | 2021-01-05 | 2022-07-14 | Transgene | Vectorization of muc1 t cell engager |
| WO2022151078A1 (zh) * | 2021-01-13 | 2022-07-21 | 嘉兴允英医学检验有限公司 | 溶瘤病毒及其应用 |
| US20240358780A1 (en) * | 2021-04-05 | 2024-10-31 | Implicyte, Inc. | Armed chimeric oncolytic viruses |
| CN113969266B (zh) * | 2021-10-26 | 2023-10-13 | 山东大学齐鲁医院 | 一种重组溶瘤腺病毒及其应用 |
| CN113980915B (zh) * | 2021-11-04 | 2023-07-07 | 江苏省人民医院(南京医科大学第一附属医院) | 一种新型的表达cxcl10的复制型溶瘤腺病毒和应用 |
| JP2024542173A (ja) | 2021-11-09 | 2024-11-13 | アクティム・セラピューティクス・インコーポレイテッド | マクロファージを処置に適している表現型に変換するための免疫刺激細菌および処置のための対象の同定のためのコンパニオン診断法 |
| CN114249836A (zh) * | 2021-12-27 | 2022-03-29 | 上海鑫湾生物科技有限公司 | 双特异性t细胞衔接器、其重组溶瘤病毒及其用途 |
| WO2023235596A1 (en) * | 2022-06-03 | 2023-12-07 | 10X Genomics, Inc. | Systems and methods for determining antigen binding specificity of antigen binding molecules |
| WO2024055022A2 (en) * | 2022-09-08 | 2024-03-14 | Virogin Biotech Canada Ltd | Oncolytic virus expressing an immune cell engager for tumor targeting |
| TW202426648A (zh) * | 2022-09-30 | 2024-07-01 | 大陸商蘇州亦諾微醫藥科技有限公司 | 用於血液癌治療的基因改造的i型單純皰疹病毒 |
| TW202505030A (zh) * | 2023-06-14 | 2025-02-01 | 美商旗艦先鋒創新公司 | 用於遞送效應物至中樞神經系統之指環載體 |
Family Cites Families (125)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5116817A (en) | 1982-12-10 | 1992-05-26 | Syntex (U.S.A.) Inc. | LHRH preparations for intranasal administration |
| US4476116A (en) | 1982-12-10 | 1984-10-09 | Syntex (U.S.A.) Inc. | Polypeptides/chelating agent nasal compositions having enhanced peptide absorption |
| US5244792A (en) | 1984-04-06 | 1993-09-14 | Chiron Corporation | Expression of recombinant glyoprotein B from herpes simplex virus |
| JPH0668B2 (ja) | 1985-08-30 | 1994-01-05 | 財団法人化学及血清療法研究所 | 単純ヘルペスウイルス遺伝子が組込まれた組換えプラスミド |
| US5851795A (en) | 1991-06-27 | 1998-12-22 | Bristol-Myers Squibb Company | Soluble CTLA4 molecules and uses thereof |
| US5804413A (en) | 1992-07-31 | 1998-09-08 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Herpes simplex virus strains for gene transfer |
| US6084067A (en) | 1993-07-26 | 2000-07-04 | Dana-Farber Cancer Institute | CTLA4/CD28 ligands and uses therefor |
| GB9415369D0 (en) | 1994-07-29 | 1994-09-21 | Lynxvale Ltd | Mutant virus |
| US6051227A (en) | 1995-07-25 | 2000-04-18 | The Regents Of The University Of California, Office Of Technology Transfer | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
| US5811097A (en) | 1995-07-25 | 1998-09-22 | The Regents Of The University Of California | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
| US5855887A (en) | 1995-07-25 | 1999-01-05 | The Regents Of The University Of California | Blockade of lymphocyte down-regulation associated with CTLA-4 signaling |
| US5898031A (en) | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
| US6071742A (en) | 1997-03-05 | 2000-06-06 | Board Of Regents Of The University Of Nebraska | Coxsackie virus as a vector for delivery of anti-inflammatory cytokines |
| WO1998040475A1 (en) | 1997-03-11 | 1998-09-17 | Abbott Laboratories | Human matrix metalloprotease gene, proteins encoded therefrom and methods of using same |
| WO1998042752A1 (en) | 1997-03-21 | 1998-10-01 | Brigham And Women's Hospital Inc. | Immunotherapeutic ctla-4 binding peptides |
| US6391452B1 (en) | 1997-07-18 | 2002-05-21 | Bayer Corporation | Compositions for nasal drug delivery, methods of making same, and methods of removing residual solvent from pharmaceutical preparations |
| AU8605598A (en) | 1997-07-31 | 1999-02-22 | University Of Pittsburgh | Targeted hsv vectors |
| US6989435B2 (en) | 1997-09-11 | 2006-01-24 | Cambridge University Technical Services Ltd. | Compounds and methods to inhibit or augment an inflammatory response |
| AU742757C (en) | 1997-12-17 | 2007-05-17 | Immunex Corporation | Cell surface glycoproteins associated with human B cell lymphomas - ULBP, DNA and polypeptides |
| US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
| KR100508289B1 (ko) | 1998-04-21 | 2005-08-17 | 마이크로메트 에이지 | Cd19×cd3 특이 폴리펩티드 및 그의 용도 |
| EP0953639A1 (en) | 1998-04-30 | 1999-11-03 | Boehringer Ingelheim International GmbH | FAPalpha-specific antibody with improved producibility |
| US6455677B1 (en) | 1998-04-30 | 2002-09-24 | Boehringer Ingelheim International Gmbh | FAPα-specific antibody with improved producibility |
| EP1002864A1 (en) | 1998-11-10 | 2000-05-24 | Universita' degli studi di Bologna | HIgR and related V domain for the manufacture of a medicament for preventing or treating HSV-1, HSV-2 and BHV infections |
| WO2000037504A2 (en) | 1998-12-23 | 2000-06-29 | Pfizer Inc. | Human monoclonal antibodies to ctla-4 |
| EE05627B1 (et) | 1998-12-23 | 2013-02-15 | Pfizer Inc. | CTLA-4 vastased inimese monoklonaalsed antikehad |
| US7109003B2 (en) | 1998-12-23 | 2006-09-19 | Abgenix, Inc. | Methods for expressing and recovering human monoclonal antibodies to CTLA-4 |
| US7605238B2 (en) | 1999-08-24 | 2009-10-20 | Medarex, Inc. | Human CTLA-4 antibodies and their uses |
| EP1212422B1 (en) | 1999-08-24 | 2007-02-21 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
| US6897057B1 (en) | 1999-08-31 | 2005-05-24 | The General Hospital Corporation | Cell-specific and/or tumor-specific promoter retargeting of herpes γ 34.5 gene expression |
| HK1047109A1 (zh) | 1999-10-15 | 2003-02-07 | University Of Massachusetts | 作为指定基因干预工具的rna干预轨迹基因 |
| JP2003520828A (ja) | 2000-01-27 | 2003-07-08 | ジェネティクス インスティテュート,エルエルシー | Ctla4(cd152)に対する抗体、これを含む結合体、およびその使用 |
| JP2003530092A (ja) | 2000-03-17 | 2003-10-14 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | ヒトFAP−α−特異抗体 |
| EP1309726B2 (en) | 2000-03-30 | 2018-10-03 | Whitehead Institute For Biomedical Research | Rna sequence-specific mediators of rna interference |
| RU2322500C2 (ru) | 2000-12-01 | 2008-04-20 | Макс-Планк-Гезелльшафт Цур Фердерунг Дер Виссеншафтен Е.Ф. | Малые молекулы рнк, опосредующие интерференцию рнк |
| JP4212897B2 (ja) | 2001-03-27 | 2009-01-21 | 具紀 藤堂 | ウイルスおよび治療法におけるそれらの使用 |
| EP1451333B1 (en) | 2001-10-04 | 2009-06-24 | Immunex Corporation | Ul16 binding protein 4 |
| KR100900249B1 (ko) | 2001-12-07 | 2009-05-29 | 포항공과대학교 산학협력단 | SIVmac239의 면역원성 플라스미드 및 이들을 함유한AIDS DNA 백신 |
| NZ536420A (en) | 2002-04-12 | 2008-04-30 | Medarex Inc | Methods of treatment using CTLA-4 antibodies |
| AU2003281200A1 (en) | 2002-07-03 | 2004-01-23 | Tasuku Honjo | Immunopotentiating compositions |
| US8927251B2 (en) | 2002-10-07 | 2015-01-06 | The University Of Chicago | Targeting of herpes simplex virus to specific receptors |
| WO2004035607A2 (en) | 2002-10-17 | 2004-04-29 | Genmab A/S | Human monoclonal antibodies against cd20 |
| EP1591527B1 (en) * | 2003-01-23 | 2015-08-26 | Ono Pharmaceutical Co., Ltd. | Substance specific to human pd-1 |
| JP2006523226A (ja) | 2003-02-28 | 2006-10-12 | ザ ジョンズ ホプキンス ユニバーシティ | T細胞調節方法 |
| US20060246123A1 (en) | 2003-03-12 | 2006-11-02 | Eli Gilboa | Oligonucleotide mimetics |
| US7473418B2 (en) | 2004-03-25 | 2009-01-06 | Cell Genesys, Inc. | Pan cancer oncolytic vectors and methods of use thereof |
| BRPI0509274A (pt) | 2004-03-26 | 2007-09-04 | Pfizer Prod Inc | usos de anticorpos anti-ctla-4 |
| US8236298B2 (en) | 2004-08-20 | 2012-08-07 | Viralytics Limited | Methods and compositions for treatment of hematologic cancers |
| EP1793858A4 (en) | 2004-09-08 | 2008-12-10 | Univ Ohio State Res Found | HUMAN MONOCLONAL ANTI-CTLA4 ANTIBODIES FOR CANCER TREATMENT |
| EP1805213B1 (en) | 2004-10-28 | 2015-11-18 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain |
| WO2006074526A1 (en) | 2005-01-17 | 2006-07-20 | Viralytics Limited | Method and composition for treatment of neoplasms |
| PL2002003T3 (pl) | 2005-05-27 | 2016-06-30 | Ospedale San Raffaele Srl | Wektor genetyczny zawierający mi-RNA |
| EP3130350A1 (en) | 2005-06-08 | 2017-02-15 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
| KR101411165B1 (ko) | 2005-07-01 | 2014-06-25 | 메다렉스, 엘.엘.시. | 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날항체 |
| US8980246B2 (en) | 2005-09-07 | 2015-03-17 | Sillajen Biotherapeutics, Inc. | Oncolytic vaccinia virus cancer therapy |
| ES2532124T3 (es) | 2005-12-16 | 2015-03-24 | Amgen Research (Munich) Gmbh | Medios y procedimientos para el tratamiento de enfermedades tumorales |
| KR20080090441A (ko) | 2005-12-21 | 2008-10-08 | 메디뮨 엘엘씨 | Epha2 bite 분자 및 이의 용도 |
| EP1806365A1 (en) | 2006-01-05 | 2007-07-11 | Boehringer Ingelheim International GmbH | Antibody molecules specific for fibroblast activation protein and immunoconjugates containing them |
| JP6092497B2 (ja) | 2006-03-30 | 2017-03-08 | ユニバーシティー オブ カリフォルニア | 抗ctla−4抗体の限局性分泌のための方法および組成物 |
| AU2007266306A1 (en) | 2006-05-26 | 2007-12-06 | Apollo Life Sciences Limited | An isolated IL-12 molecule or chimeric molecules thereof |
| CN101104640A (zh) | 2006-07-10 | 2008-01-16 | 苏州大学 | 抗人pd-l1单克隆抗体制备及应用 |
| JP2008066402A (ja) | 2006-09-05 | 2008-03-21 | Fujifilm Corp | 撮像素子および撮像装置 |
| CN105769931B (zh) * | 2006-09-15 | 2021-04-27 | 渥太华医院研究机构 | 溶瘤弹状病毒 |
| WO2008103755A1 (en) | 2007-02-20 | 2008-08-28 | Mayo Foundation For Medical Education And Research | Treating cancer with viral nucleic acid |
| EP1987839A1 (en) | 2007-04-30 | 2008-11-05 | I.N.S.E.R.M. Institut National de la Sante et de la Recherche Medicale | Cytotoxic anti-LAG-3 monoclonal antibody and its use in the treatment or prevention of organ transplant rejection and autoimmune disease |
| US20110027310A1 (en) * | 2007-05-04 | 2011-02-03 | Medin Jeffrey A | Compositions and Methods for Cancer Treatment |
| US8586028B2 (en) | 2007-05-09 | 2013-11-19 | Board Of Supervisors Of Lousiana State University And Agricultural And Mechanical College | Synthetic herpes simplex viruses type-1 for treatment of cancers |
| EP2212350B1 (en) | 2007-10-26 | 2013-08-28 | Governing Council of the University of Toronto | Treating chronic viral infection by targetting TIM-3 |
| US8263073B2 (en) | 2008-02-04 | 2012-09-11 | Medarex, Inc. | Anti-CTLA-4 antibodies with reduced blocking of binding of CTLA-4 to B7 and uses thereof |
| WO2009111892A1 (en) | 2008-03-14 | 2009-09-17 | Ottawa Health Research Institute | Microrna mediated oncolytic targeting |
| PT2700405T (pt) | 2008-05-29 | 2018-05-02 | Univ Bologna Alma Mater Studiorum | Vírus herpes simplex (hsv) com tropismo modificado, suas utilizações e processo de preparação |
| WO2009148488A2 (en) | 2008-05-29 | 2009-12-10 | The General Hospital Corporation | Use of oncolytic herpes viruses for killing cancer stem cells |
| GB0810912D0 (en) | 2008-06-13 | 2008-07-23 | Inst Animal Health Ltd | Vector |
| AR072999A1 (es) | 2008-08-11 | 2010-10-06 | Medarex Inc | Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos |
| ES2592216T3 (es) | 2008-09-26 | 2016-11-28 | Dana-Farber Cancer Institute, Inc. | Anticuerpos anti-PD-1, PD-L1 y PD-L2 humanos y sus usos |
| WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
| US8741295B2 (en) | 2009-02-09 | 2014-06-03 | Universite De La Mediterranee | PD-1 antibodies and PD-L1 antibodies and uses thereof |
| CN102625842A (zh) | 2009-03-13 | 2012-08-01 | 艾根股份有限公司 | 用于输送生物活性rna的组合物和方法 |
| ES2385251B1 (es) * | 2009-05-06 | 2013-05-06 | Fundació Privada Institut D'investigació Biomèdica De Bellvitge | Adenovirus oncolíticos para el tratamiento del cáncer. |
| US20100297072A1 (en) | 2009-05-19 | 2010-11-25 | Depinho Ronald A | Combinations of Immunostimulatory Agents, Oncolytic Virus, and Additional Anticancer Therapy |
| CA2792561C (en) | 2010-04-06 | 2021-10-26 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of cd274/pd-l1 gene |
| CA2795695A1 (en) | 2010-04-09 | 2011-10-13 | The University Of Tokyo | Microrna-controlled recombinant vaccinia virus and use thereof |
| WO2011130749A2 (en) | 2010-04-16 | 2011-10-20 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Identification of mutations in herpes simplex virus envelope glycoproteins that enable or enhance vector retargeting to novel non-hsv receptors |
| US9163087B2 (en) | 2010-06-18 | 2015-10-20 | The Brigham And Women's Hospital, Inc. | Bi-specific antibodies against TIM-3 and PD-1 for immunotherapy in chronic immune conditions |
| WO2012006181A2 (en) | 2010-06-29 | 2012-01-12 | Mount Sinai School Of Medicine | Compositions and methods for inhibiting oncogenic micrornas and treatment of cancer |
| PL2603530T3 (pl) | 2010-08-13 | 2018-03-30 | Roche Glycart Ag | Przeciwciała anty-FAP i sposoby stosowania |
| GB201103955D0 (en) | 2011-03-09 | 2011-04-20 | Antitope Ltd | Antibodies |
| PL2699264T3 (pl) | 2011-04-20 | 2018-08-31 | Medimmune, Llc | Przeciwciała i inne cząsteczki wiążące B7-H1 i PD-1 |
| US8841418B2 (en) | 2011-07-01 | 2014-09-23 | Cellerant Therapeutics, Inc. | Antibodies that specifically bind to TIM3 |
| RS58146B1 (sr) * | 2011-09-08 | 2019-02-28 | Univ New York | Onkolitički herpes simpleks virus i njegova terapeutska upotreba |
| EP2591796A1 (en) | 2011-11-10 | 2013-05-15 | Universität Zürich | Combination medicament comprising IL-12 and an anti-CTLA-4 ligand for tumor therapy |
| CA3101783C (en) | 2011-10-11 | 2023-01-31 | Universitat Zurich Prorektorat Mnw | Combination medicament comprising il-12 and an agent for blockade of t-cell inhibitory molecules for tumour therapy |
| US11951157B2 (en) | 2011-10-11 | 2024-04-09 | Universitat Zurich | Methods of treating malignant tumour with IL-12 and anti-PD-1 antibody |
| BR112014009526B8 (pt) | 2011-10-17 | 2023-01-17 | Herlev Hospital | Composição de vacina compreendendo pd-l1, kit de partes compreendendo tal composição e uso dos mesmos para tratar ou prevenir câncer |
| US20130156808A1 (en) | 2011-11-22 | 2013-06-20 | Stipan Jonjic | Vaccine comprising beta-herpesvirus |
| EP2785375B1 (en) | 2011-11-28 | 2020-07-22 | Merck Patent GmbH | Anti-pd-l1 antibodies and uses thereof |
| EP2806883B1 (en) | 2012-01-25 | 2019-04-24 | DNAtrix, Inc. | Biomarkers and combination therapies using oncolytic virus and immunomodulation |
| CN104736168B (zh) | 2012-05-31 | 2018-09-21 | 索伦托治疗有限公司 | 与pd-l1结合的抗原结合蛋白 |
| US20150250837A1 (en) * | 2012-09-20 | 2015-09-10 | Morningside Technology Ventures Ltd. | Oncolytic virus encoding pd-1 binding agents and uses of the same |
| US9365641B2 (en) | 2012-10-01 | 2016-06-14 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
| WO2014138314A1 (en) * | 2013-03-05 | 2014-09-12 | Baylor College Of Medicine | Oncolytic virus |
| JP6420776B2 (ja) * | 2013-03-05 | 2018-11-07 | ベイラー カレッジ オブ メディスンBaylor College Of Medicine | 免疫療法のためのエンゲージャー細胞 |
| US9308236B2 (en) | 2013-03-15 | 2016-04-12 | Bristol-Myers Squibb Company | Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions |
| UA118028C2 (uk) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування |
| WO2014170389A1 (en) | 2013-04-18 | 2014-10-23 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
| US20160163211A1 (en) | 2013-05-16 | 2016-06-09 | Pearson Education, Inc. | Accessible content publishing engine |
| JP6588024B2 (ja) | 2013-10-28 | 2019-10-09 | ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション | 腫瘍溶解性hsvベクター |
| US20170000832A1 (en) | 2014-02-27 | 2017-01-05 | Viralytics Limited | Combination method for treatment of cancer |
| JP6895374B2 (ja) | 2014-07-16 | 2021-06-30 | トランジェーヌTransgene | 免疫チェックポイントモジュレーターの発現用腫瘍溶解性ウイルス |
| WO2016055432A2 (en) | 2014-10-08 | 2016-04-14 | F. Hoffmann-La Roche Ag | Combination therapy of bispecific antibodies specific for fap and dr5 and chemotherapeutic agents |
| JP2018503399A (ja) * | 2015-01-14 | 2018-02-08 | コンパス セラピューティクス リミテッド ライアビリティ カンパニー | 多特異性免疫調節抗原結合構築物 |
| ES2994611T3 (en) | 2015-10-19 | 2025-01-27 | Cg Oncology Inc | Methods of treating solid or lymphatic tumors by combination therapy |
| EA201891022A1 (ru) * | 2015-12-17 | 2019-01-31 | Псайоксус Терапьютикс Лимитед | Вирус, кодирующий антитело к комплексу tcr или фрагмент указанного антитела |
| DK3400290T5 (da) | 2016-01-08 | 2024-09-23 | Replimune Ltd | Onkolytisk virusstamme |
| EP4089166A1 (en) | 2016-01-27 | 2022-11-16 | Oncorus, Inc. | Oncolytic viral vectors and uses thereof |
| WO2017156349A1 (en) | 2016-03-10 | 2017-09-14 | Cold Genesys, Inc. | Methods of treating solid or lymphatic tumors by combination therapy |
| EP3478321A4 (en) | 2016-06-30 | 2020-04-22 | Oncorus, Inc. | Pseudotyped oncolytic viral delivery of therapeutic polypeptides |
| ES2972406T3 (es) | 2016-08-01 | 2024-06-12 | Virogin Biotech Canada Ltd | Vectores del virus oncolítico del herpes simple que expresan moléculas estimuladoras del sistema inmunitario |
| WO2018027316A1 (en) | 2016-08-09 | 2018-02-15 | Alkayyal Almohanad | Oncolytic rhabdovirus expressing il12 |
| TW201825674A (zh) | 2016-09-09 | 2018-07-16 | 美商艾斯合顧問有限公司 | 表現雙特異性接合分子的溶瘤病毒 |
| WO2018085461A1 (en) | 2016-11-01 | 2018-05-11 | Dnatrix, Inc. | Combination therapy for treatment of brain cancers |
| KR20190098215A (ko) | 2016-12-21 | 2019-08-21 | 멤젠 엘엘씨 | 무장된 복제-가능 종양 분해 아데노바이러스 |
| US11298420B2 (en) | 2016-12-21 | 2022-04-12 | Memgen, Llc | Armed oncolytic viruses |
| GB201700350D0 (en) | 2017-01-09 | 2017-02-22 | Replimune Ltd | Altered virus |
| EP3731850A4 (en) | 2017-12-29 | 2021-12-01 | Oncorus, Inc. | ONCOLYTIC VIRUS DELIVERY OF THERAPEUTIC POLYPEPTIDES |
-
2017
- 2017-06-30 EP EP17821384.9A patent/EP3478321A4/en not_active Withdrawn
- 2017-06-30 WO PCT/US2017/040354 patent/WO2018006005A1/en not_active Ceased
- 2017-06-30 CA CA3029426A patent/CA3029426A1/en active Pending
- 2017-06-30 AU AU2017290828A patent/AU2017290828A1/en not_active Abandoned
- 2017-06-30 MX MX2019000252A patent/MX2019000252A/es unknown
- 2017-06-30 RU RU2021127872A patent/RU2021127872A/ru unknown
- 2017-06-30 JP JP2018568903A patent/JP2019519245A/ja not_active Withdrawn
- 2017-06-30 SG SG11201811600PA patent/SG11201811600PA/en unknown
- 2017-06-30 RU RU2019102391A patent/RU2758007C2/ru active
- 2017-06-30 CN CN201780051486.3A patent/CN109983121A/zh active Pending
- 2017-06-30 KR KR1020197002887A patent/KR20190035714A/ko not_active Ceased
- 2017-06-30 BR BR112019000015-1A patent/BR112019000015A2/pt not_active IP Right Cessation
- 2017-09-29 US US15/720,696 patent/US20180057594A1/en not_active Abandoned
-
2018
- 2018-10-25 US US16/170,764 patent/US10604574B2/en active Active
- 2018-12-20 IL IL263879A patent/IL263879B/en active IP Right Grant
-
2020
- 2020-01-28 US US16/775,164 patent/US11078280B2/en not_active Expired - Fee Related
-
2021
- 2021-04-11 IL IL282216A patent/IL282216A/en unknown
-
2022
- 2022-02-02 JP JP2022014714A patent/JP2022048304A/ja not_active Withdrawn
-
2023
- 2023-10-20 JP JP2023181009A patent/JP2023174945A/ja active Pending
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10888549B2 (en) | 2016-03-07 | 2021-01-12 | The Johns Hopkins University | Pharmaceutical agents targeting cancer stem cells |
| WO2018218137A1 (en) | 2017-05-25 | 2018-11-29 | Leidos, Inc. | Pd-1 and ctla-4 dual inhibitor peptides |
| US12077589B2 (en) * | 2018-04-16 | 2024-09-03 | Institute Of Biophysics Chinese Academy Of Sciences | Fusion protein of interferon (IFN) and anti-PD-L1 antibody and use thereof |
| US20210147548A1 (en) * | 2018-04-16 | 2021-05-20 | Institute Of Biophysics Chinese Academy Of Sciences | Fusion protein of interferon (ifn) and anti-pd-l1 antibody and use thereof |
| US12331320B2 (en) | 2018-10-10 | 2025-06-17 | The Research Foundation For The State University Of New York | Genome edited cancer cell vaccines |
| WO2020142725A1 (en) * | 2019-01-04 | 2020-07-09 | Oncorus, Inc. | Encapsulated rna polynucleotides and methods of use |
| WO2020160047A3 (en) * | 2019-01-28 | 2020-09-10 | Rhode Island Council On Postsecondary Education | Phlip® peptide-mediated epitope tethering at cell surfaces |
| US12285462B2 (en) | 2019-01-28 | 2025-04-29 | University Of Rhode Island Board Of Trustees | pH-triggered membrane peptide-mediated epitope tethering at cell surfaces |
| CN113811603A (zh) * | 2019-03-15 | 2021-12-17 | 河谷细胞有限公司 | 重组erIL-15 NK细胞 |
| WO2020237050A1 (en) | 2019-05-22 | 2020-11-26 | Leidos, Inc. | Lag3 binding peptides |
| US20210386804A1 (en) * | 2020-06-11 | 2021-12-16 | Tibor Bakács | Combination of viral superinfection therapy with subthreshold doses of nivolumab plus ipilimumab in chronic HBV patients |
| WO2022026496A2 (en) | 2020-07-31 | 2022-02-03 | Leidos, Inc. | Lag3 binding peptides |
| WO2022081426A1 (en) | 2020-10-12 | 2022-04-21 | Leidos, Inc. | Immunomodulatory peptides |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018006005A1 (en) | 2018-01-04 |
| US10604574B2 (en) | 2020-03-31 |
| EP3478321A1 (en) | 2019-05-08 |
| US11078280B2 (en) | 2021-08-03 |
| IL282216A (en) | 2021-05-31 |
| AU2017290828A1 (en) | 2019-01-24 |
| US20190048082A1 (en) | 2019-02-14 |
| RU2019102391A (ru) | 2020-07-30 |
| CA3029426A1 (en) | 2018-01-04 |
| EP3478321A4 (en) | 2020-04-22 |
| KR20190035714A (ko) | 2019-04-03 |
| CN109983121A (zh) | 2019-07-05 |
| JP2023174945A (ja) | 2023-12-08 |
| RU2021127872A (ru) | 2021-11-09 |
| MX2019000252A (es) | 2019-10-09 |
| IL263879A (en) | 2019-01-31 |
| JP2019519245A (ja) | 2019-07-11 |
| RU2019102391A3 (enExample) | 2021-01-26 |
| RU2758007C2 (ru) | 2021-10-25 |
| US20200157221A1 (en) | 2020-05-21 |
| BR112019000015A2 (pt) | 2019-04-24 |
| JP2022048304A (ja) | 2022-03-25 |
| IL263879B (en) | 2021-04-29 |
| SG11201811600PA (en) | 2019-01-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11078280B2 (en) | Oncolytic viral delivery of therapeutic polypeptides | |
| US20240207334A1 (en) | Oncolytic viral delivery of therapeutic polypeptides | |
| CN105392888B (zh) | 使用人源化抗cd19嵌合抗原受体治疗癌症 | |
| CA3142513A1 (en) | Flt3l-fc fusion proteins and methods of use | |
| JP2019010117A (ja) | がんにおけるcd138の標的化 | |
| CN111727373A (zh) | 靶向bcma的嵌合抗原受体及其用途 | |
| CN106687483A (zh) | 使用人源化抗‑bcma嵌合抗原受体治疗癌症 | |
| JP2017536812A (ja) | バイパータイト型およびトリパータイト型のシグナル伝達免疫細胞 | |
| BR112015021414B1 (pt) | vírus da doença newcastle e seus usos | |
| CA2984624A1 (en) | Her2/erbb2 chimeric antigen receptor | |
| JP2025081512A (ja) | 血液がんおよび固形がんの治療のためのキメラ抗原受容体改変t細胞(car-t) | |
| JP7672340B2 (ja) | シアリルルイスaを標的とするキメラ抗原受容体およびその使用 | |
| JP7467414B2 (ja) | 改良したt細胞治療方法 | |
| US20230147832A1 (en) | Oncolytic virus compositions including il-15 complex and methods for the treatment of cancer | |
| CN111971071A (zh) | 用于治疗和预防癌症的靶向ctla-4的dna单克隆抗体 | |
| US20250186520A1 (en) | Oncolytic virus compositions and methods for the treatment of cancer | |
| Burchett et al. | A universal boosting strategy for adoptive T cell therapy using a paired vaccine/chimeric antigen receptor | |
| Burchett et al. | Boosting of CAR-T cells with rhabdovirus is limited by type I interferon and rapid contraction | |
| Rajwani | The role of cancer and non-cancer cell infections in systemic VSV∆ M51 therapy | |
| NZ749647A (en) | Pseudotyped oncolytic viral delivery of therapeutic polypeptides | |
| HK40015632A (en) | Improved t-cell therapy | |
| HK40049717A (en) | Improved t-cell therapy method | |
| HK40043101A (en) | Dna monoclonal antibodies targeting ctla-4 for the treatment and prevention of cancer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ONCORUS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MPM CAPITAL;REEL/FRAME:043743/0602 Effective date: 20170630 Owner name: MPM CAPITAL, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EVNIN, LUKE;REEL/FRAME:043743/0588 Effective date: 20170630 |
|
| AS | Assignment |
Owner name: ONCORUS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MPM CAPITAL;REEL/FRAME:044162/0810 Effective date: 20170630 Owner name: MPM CAPITAL, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EVNIN, LUKE;REEL/FRAME:044162/0790 Effective date: 20170630 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: ONCORUS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MPM CAPITAL;REEL/FRAME:048312/0228 Effective date: 20180925 Owner name: MPM CAPITAL, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EVNIN, LUKE;REEL/FRAME:048312/0188 Effective date: 20180925 |
|
| AS | Assignment |
Owner name: ONCORUS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FINER, MITCHELL H.;REEL/FRAME:055993/0301 Effective date: 20210408 |