US20120277210A1 - Solid dispersions containing an apoptosis-inducing agent - Google Patents

Solid dispersions containing an apoptosis-inducing agent Download PDF

Info

Publication number
US20120277210A1
US20120277210A1 US13/282,773 US201113282773A US2012277210A1 US 20120277210 A1 US20120277210 A1 US 20120277210A1 US 201113282773 A US201113282773 A US 201113282773A US 2012277210 A1 US2012277210 A1 US 2012277210A1
Authority
US
United States
Prior art keywords
compound
methyl
pyridin
yloxy
chlorophenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/282,773
Other languages
English (en)
Inventor
Nathaniel Catron
David Lindley
Jonathan M. Miller
Eric A. Schmitt
Ping Tong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to US13/282,773 priority Critical patent/US20120277210A1/en
Assigned to ABBOTT LABORATORIES reassignment ABBOTT LABORATORIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLER, JONATHAN M., LINDLEY, DAVID, CATRON, NATHANIEL, TONG, PING, SCHMITT, ERIC A.
Publication of US20120277210A1 publication Critical patent/US20120277210A1/en
Assigned to ABBVIE INC. reassignment ABBVIE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT LABORATORIES
Priority to US14/537,392 priority patent/US10213433B2/en
Priority to US16/239,199 priority patent/US20190275051A1/en
Priority to US17/341,158 priority patent/US20220125796A1/en
Priority to US18/809,439 priority patent/US20250161318A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to solid dispersions comprising an apoptosis-inducing agent, to pharmaceutical dosage forms comprising such dispersions, to processes for preparing such dispersions and dosage forms and to methods of use thereof for treating diseases characterized by overexpression of anti-apoptotic Bcl-2 family proteins.
  • Bcl-2 proteins correlates with resistance to chemotherapy, clinical outcome, disease progression, overall prognosis or a combination thereof in various cancers and disorders of the immune system.
  • NHL non-Hodgkin's lymphoma
  • Treatment of follicular lymphoma typically consists of biologically-based or combination chemotherapy.
  • Combination therapy with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) is routinely used, as is combination therapy with rituximab, cyclophosphamide, vincristine and prednisone (RCVP).
  • R-CHOP combination therapy with rituximab, cyclophosphamide, vincristine and prednisone
  • RCVP prednisone
  • Single-agent therapy with rituximab targeting CD20, a phosphoprotein uniformly expressed on the surface of B-cells
  • fludarabine is also used. Addition of rituximab to chemotherapy regimens can provide improved response rate and increased progression-free survival.
  • Radioimmunotherapy agents can be used to treat refractory or relapsed NHL.
  • First-line treatment of patients with aggressive large B-cell lymphoma typically consists of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP), or dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin and rituximab (DA-EPOCH-R).
  • lymphomas respond initially to any one of these therapies, but tumors typically recur and eventually become refractory. As the number of regimens patients receive increases, the more chemotherapy-resistant the disease becomes. Average response to first-line therapy is approximately 75%, 60% to second-line, 50% to third-line, and about 35-40% to fourth-line therapy. Response rates approaching 20% with a single agent in a multiple relapsed setting are considered positive and warrant further study.
  • neoplastic diseases for which improved therapies are needed include leukemias such as chronic lymphocytic leukemia (like NHL, a B-cell lymphoma) and acute lymphocyctic leukemia.
  • leukemias such as chronic lymphocytic leukemia (like NHL, a B-cell lymphoma) and acute lymphocyctic leukemia.
  • CLL Chronic lymphoid leukemia
  • CLL is the most common type of leukemia.
  • CLL is primarily a disease of adults, more than 75% of people newly diagnosed being over the age of 50, but in rare cases it is also found in children.
  • Combination chemotherapies are the prevalent treatment, for example fludarabine with cyclophosphamide and/or rituximab, or more complex combinations such as CHOP or R-CHOP.
  • Acute lymphocyctic leukemia also known as acute lymphoblastic leukemia (ALL)
  • ALL acute lymphoblastic leukemia
  • New therapies are still needed to provide further improvement in survival rates.
  • Bcl-2 and Bcl-X L have been shown to confer chemotherapy resistance in short-term survival assays in vitro and, more recently, in vivo. This suggests that if improved therapies aimed at suppressing the function of Bcl-2 and Bcl-X L can be developed, such chemotherapy-resistance could be successfully overcome.
  • Bcl-2 proteins in bladder cancer brain cancer, breast cancer, bone marrow cancer, cervical cancer, CLL, colorectal cancer, esophageal cancer, hepatocellular cancer, lymphoblastic leukemia, follicular lymphoma, lymphoid malignancies of T-cell or B-cell origin, melanoma, myelogenous leukemia, myeloma, oral cancer, ovarian cancer, non-small cell lung cancer, prostate cancer, small cell lung cancer, spleen cancer and the like is described in International Patent Publication Nos. WO 2005/024636 and WO 2005/049593.
  • Bcl-2 proteins Compounds that occupy a binding site on Bcl-2 proteins are known.
  • such compounds desirably have high binding affinity, exhibiting for example K i ⁇ 1 nM, preferably ⁇ 0.1 nM, more preferably ⁇ 0.01 nM, to proteins of the Bcl-2 family, specifically Bcl-2, Bcl-X L and Bcl-w. It is further desirable that they be formulated in a manner that provides high systemic exposure after oral administration.
  • a typical measure of systemic exposure after oral administration of a compound is the area under the curve (AUC) resulting from graphing plasma concentration of the compound versus time from oral administration.
  • Liquid dosage forms can be useful for some drugs of low aqueous solubility, provided a suitable pharmaceutically acceptable solvent system (generally lipid-based) can be found that provides adequate drug loading without posing solubility or storage-stability issues.
  • a suitable pharmaceutically acceptable solvent system generally lipid-based
  • Other approaches that have been proposed for such drugs include solid dispersions, which bring their own challenges.
  • a solid dosage form is often preferred over a liquid dosage form.
  • oral solid dosage forms of a drug provide lower bioavailability than oral solutions of the drug.
  • a solvent evaporation method for preparing solid dispersions is described therein, mentioning as an example a solid dispersion of etoricoxib, prepared by a process that includes dissolving polyethylene glycol (PEG), polyvinylpyrrolidone (PVP or povidone) and the active ingredient in 2-propanol.
  • PEG polyethylene glycol
  • PVP polyvinylpyrrolidone
  • Apoptosis-inducing drugs that target Bcl-2 family proteins such as Bcl-2 and Bcl-X L are best administered according to a regimen that provides continual, for example daily, replenishment of the plasma concentration, to maintain the concentration in a therapeutically effective range.
  • This can be achieved by daily parenteral, e.g., intravenous (i.v.) or intraperitoneal (i.p.) administration.
  • daily parenteral administration is often not practical in a clinical setting, particularly for outpatients.
  • a solid dosage form with acceptable oral bioavailability would be highly desirable.
  • Such a dosage form, and a regimen for oral administration thereof would represent an important advance in treatment of many types of cancer, including NHL, CLL and ALL, and would more readily enable combination therapies with other chemotherapeutics.
  • a solid orally deliverable dosage form comprising such a solid dispersion, optionally together with one or more additional excipients.
  • the compound present in the finished solid dispersion can be in the same chemical form (e.g., parent compound or salt) as in the API used to prepare it.
  • the process can comprise one or more additional steps wherein the API is converted from parent compound to salt or vice versa.
  • the process further comprises, prior to removing the solvent, adding a base for conversion of the API in salt form to its corresponding parent compound, and optionally extracting a by-product of such conversion (e.g., a salt by-product) from the resulting mixture.
  • the process further comprises, prior to removing the solvent, adding an acid for conversion of the API in parent compound form to a salt, for example an acid addition salt.
  • neoplastic diseases include cancers.
  • a specific illustrative type of cancer that can be treated according to the present method is non-Hodgkin's lymphoma (NHL).
  • Another specific illustrative type of cancer that can be treated according to the present method is chronic lymphocytic leukemia (CLL).
  • CLL chronic lymphocytic leukemia
  • ALL acute lymphocytic leukemia
  • a solid dispersion in accordance with the present disclosure comprises an active ingredient in an essentially non-crystalline or amorphous form, which is usually more soluble than the crystalline form.
  • the term “solid dispersion” herein encompasses systems having small solid-state particles (e.g., essentially non-crystalline or amorphous particles) of one phase dispersed in another solid-state phase. More particularly, the present solid dispersions comprise particles of one or more active ingredients dispersed in an inert carrier or matrix in solid state, and can be prepared by melting or solvent methods or by a combination of melting and solvent methods. According to the present invention a solvent method as described herein is particularly favored.
  • An “amorphous form” refers to a particle without definite structure, i.e., lacking crystalline structure.
  • essentially non-crystalline herein means that no more than about 5%, for example no more than about 2% or no more than about 1% crystallinity is observed by X-ray diffraction analysis. In a particular embodiment, no detectable crystallinity is observed by one or both of X-ray diffraction analysis or polarization microscopy. In this regard it is to be noted that, when no detectable crsytallinity is observed, the solid dispersion referenced herein may additionally or alternatively be described as a solid solution.
  • Compounds of Formula I, including salts thereof, useful herein typically have very low solubility in water, being classed as essentially insoluble, i.e., having a solubility of less than about 10 ⁇ g/ml.
  • active ingredients are, for example, Biopharmaceutics Classification System (BCS) Class IV drug substances that are characterized by low solubility and low permeability (see “Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system”, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), August 2000).
  • aqueous solubility of many compounds is pH-dependent; in the case of such compounds the solubility of interest herein is at a physiologically relevant pH, for example a pH of about 1 to about 8.
  • the drug has a solubility in water, at least at one point in a pH range from about 1 to about 8, of less than about 10 ⁇ g/ml, in some cases less than about 1 ⁇ g/ml or even less than about 0.1 ⁇ g/ml.
  • a particular compound useful herein has a solubility in water at pH 4 of ⁇ 0.004 ⁇ g/ml.
  • Solid dispersions of the present invention comprise as active ingredient a compound of Formula I as defined above, or a pharmaceutically acceptable salt of such a compound.
  • they may further comprise a second active ingredient, for example a therapeutic agent useful in combination therapy with the compound of Formula I as indicated hereinbelow.
  • the compound has Formula I where R 0 is chloro.
  • the compound has Formula I where R 1 is methyl or methoxy, R 2 is methyl, and R 3 and R 4 are each H.
  • the compound has Formula I where R 5 is trifluoromethyl, trifluoromethylsulfonyl, chloro, bromo or nitro.
  • R 5 is trifluoromethyl, trifluoromethylsulfonyl, chloro, bromo or nitro.
  • the compound has Formula I where (a) R 0 is chloro, (b) R 1 is methyl or methoxy, R 2 is methyl, and R 3 and R 4 are each H, and (c) R 5 is trifluoromethyl, trifluoromethylsulfonyl, chloro, bromo or nitro.
  • R 6 is a 3- to 7-membered carbocyclic or heterocyclic ring, optionally substituted as defined above.
  • R 6 is a saturated carbocyclic (i.e., cycloalkyl) ring, for example but not limited to cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in each case optionally substituted as more fully described below.
  • heterocyclic herein embraces saturated and partly and fully unsaturated ring structures having 4 to 7 ring atoms, one or more of which are heteroatoms independently selected from N, O and S. Typically the heterocyclic ring has no more than two such heteroatoms.
  • R 6 is a saturated heterocyclic ring, for example but not limited to azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, imazolidinyl, pyrazolidinyl, tetrahydrofuranyl, oxazolidinyl, isoxazolidinyl, thiophanyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, tetrahydropyranyl, 1,4-dioxanyl, morpholinyl or tetrahydrothiopyranyl, in each case optionally substituted as more fully described below.
  • R 6 is a carbocyclic or heterocyclic ring, for example a saturated ring as described immediately above, it can be unsubstituted or substituted at up to three positions on the ring.
  • Substituents if present, comprise no more than two Z 1 groups and/or no more than one Z 2 group.
  • Z 1 groups are independently selected from (a) C 1-4 alkyl, C 2-4 alkenyl, C 1-4 alkoxy, C 1-4 alkylthio, C 1-4 alkylamino, C 1-4 alkylsulfonyl, C 1-4 alkylsulfonylamino, C 1-4 alkylcarbonyl, C 1-4 alkylcarbonylamino and C 1-4 alkylcarboxy, each optionally substituted with one or more substituents independently selected from halo, hydroxy, C 1-4 alkoxy, amino, C 1-4 alkylamino, di-(C 1-4 alkyl)amino and cyano, (b) halo, (e) hydroxy, (f) amino and (g) oxo groups.
  • Illustrative examples of such Z 1 groups include without limitation methyl, cyanomethyl, methoxy, fluoro, hydroxy, amino and methylsulfonyl.
  • the Z 2 group if present, is a further 3- to 7-membered carbocyclic or heterocyclic ring, optionally substituted with no more than two Z 1 groups as described above.
  • Ring Z 2 if present, is typically but not necessarily saturated, and in most cases is not further substituted.
  • Z 2 is a saturated carbocyclic ring, for example but not limited to cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • Z 2 is a saturated heterocyclic ring, for example but not limited to azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, imazolidinyl, pyrazolidinyl, tetrahydrofuranyl, oxazolidinyl, isoxazolidinyl, thiophanyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, tetrahydropyranyl, 1,4-dioxanyl, morpholinyl or tetrahydrothiopyranyl.
  • R 6 is a group NR 7 R 8 , where R 7 and R 8 are each independently H or R 9 —(CH 2 ) m — groups, no more than one of R 7 and R 8 being H, where each R 9 is independently a 3- to 7-membered carbocyclic or heterocyclic ring, optionally substituted with no more than two Z 1 groups as defined above, and each m is independently 0 or 1.
  • Each of rings R 9 is typically but not necessarily saturated, and in most cases is unsubstituted.
  • Illustrative carbocyclic rings at R 7 and/or R 8 include without limitation cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • Illustrative heterocyclic rings at R 7 and/or R 8 include without limitation azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, imazolidinyl, pyrazolidinyl, tetrahydrofuranyl, oxazolidinyl, isoxazolidinyl, thiophanyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, tetrahydropyranyl, 1,4-dioxanyl, morpholinyl or tetrahydrothiopyranyl.
  • R 6 is selected from the group consisting of 4-methoxycyclohexyl, cis-4-hydroxy-4-methylcyclohexyl, trans-4-hydroxy-4-methylcyclohexyl, 4-morpholin-4-ylcyclohexyl, (3R)-1-(methylsulfonyl)pyrrolidin-3-yl, (3R)-1-tetrahydro-2H-pyran-4-ylpyrrolidin-3-yl, tetrahydro-2H-pyran-4-yl, (3S)-tetrahydro-2H-pyran-3-yl, 4-methoxytetrahydro-2H-pyran-4-yl, 4-fluorotetrahydro-2H-pyran-4-yl, 4-aminotetrahydro-2H-pyran-4-yl, 1-(cyanomethyl)piperidin-4-yl, 4-fluoro-1-oxetan-3-ylpiperidin-4-yl, 1-tetrahydro-2H-pyr
  • Compounds of Formula I may contain asymmetrically substituted carbon atoms in the R- or S-configuration; such compounds can be present as racemates or in an excess of one configuration over the other, for example in an enantiomeric ratio of at least about 85:15.
  • the compound can be substantially enantiomerically pure, for example having an enantiomeric ratio of at least about 95:5, or in some cases at least about 98:2 or at least about 99:1.
  • Compounds of Formula I may alternatively or additionally contain carbon-carbon double bonds or carbon-nitrogen double bonds in the Z- or E-configuration, the term “Z” denoting a configuration wherein the larger substituents are on the same side of such a double bond and the term “E” denoting a configuration wherein the larger substituents are on opposite sides of the double bond.
  • the compound can alternatively be present as a mixture of Z- and E-isomers.
  • Compounds of Formula I may alternatively or additionally exist as tautomers or equilibrium mixtures thereof wherein a proton shifts from one atom to another.
  • tautomers illustratively include keto-enol, phenol-keto, oxime-nitroso, nitro-aci, imine-enamine and the like.
  • the API present in the solid dispersion is selected from compounds specifically identified in above-referenced U.S. application Ser. No. 12/787,682 (U.S. 2010/0305122) in Examples 1-378 thereof, and pharmaceutically acceptable salts of such compounds, independently of whether these compounds are individually embraced by the present Formula I. Compounds 1-378 of these Examples, and illustrative procedures for their synthesis, are reproduced hereinbelow.
  • the API present in the solid dispersion is selected from Compounds 1-378 and pharmaceutically acceptable salts thereof, but only to the extent that such Examples are individually embraced by the present Formula I.
  • the entire disclosure of U.S. application Ser. No. 12/787,682 (U.S. 2010/0305122) is expressly incorporated herein by reference.
  • This Compound was prepared by substituting 3-(N-morpholinyl)-propylamine for 1-(tetrahydropyran-4-yl)methylamine in the procedure for Compound 1F.
  • This Compound was prepared by substituting 4-amino-N-methylpiperidine for 1-(tetrahydropyran-4-yl)methylamine in the procedure for Compound 1F.
  • This Compound was prepared by substituting ethyl 2,4-difluorobenzoate for methyl 2,4-difluorobenzoate and 4-hydroxycarbazole for Compound 3G in the procedure for Compound 3H.
  • This Compound was prepared by substituting Compound 7A for Compound 3H in the procedure for Compound 3I.
  • This Compound was prepared by substituting Compound 7B for Compound 3I in the procedure for Compound 3J, except here upon completion of the reaction, water and 2N HCl were added to adjust the pH to 2, and the HCl salt of the product was extracted using CHCl 3 /CH 3 OH.
  • This Compound was prepared by substituting Compound 7C for Compound 1E and Compound 4A for Compound 1F in the procedure for Compound 1G, except here the purification was done by preparative HPLC using a C18 column, 250 ⁇ 50 mm, 10 ⁇ , and eluting with a gradient of 20-100% CH 3 CN vs. 0.1% trifluoroacetic acid in water, giving the product as a bistrifluoroacetate salt.
  • This Compound was prepared by substituting 3-(pyrrolidin-1-yl)propan-1-amine for 1-(tetrahydropyran-4-yl)methylamine in the procedure for Compound 1F.
  • This Compound was prepared by substituting Compound 7C for Compound 1E and Compound 8A for Compound 1F in the procedure for Compound 1G, except here the purification was done by preparative HPLC using a C18 column, 250 ⁇ 50 mm, 10 ⁇ , and eluting with a gradient of 20-100% CH 3 CN vs. 0.1% trifluoroacetic acid in water, giving the product as a bistrifluoroacetate salt.
  • trans-4-morpholinocyclohexanamine dihydrochloride (5 g, 19.44 mmol), 4-fluoro-3-nitrobenzenesulfonamide (4.32 g, 19.63 mmol) and triethylamine (20 ml, 143 mmol) in tetrahydrofuran (60 ml) was stirred for 16 hours at room temperature.
  • the solid product was filtered off, washed with tetrahydrofuran, ether, dichloromethane (3 ⁇ ) and dried under vacuum.
  • This compound was prepared by substituting 2-methoxyethylamine for 1-(tetrahydropyran-4-yl)methylamine in the procedure for Compound 1F.
  • This racemic mixture was prepared by substituting (tetrahydro-2H-pyran-3-yl)methanamine for 1-(tetrahydropyran-4-yl)methylamine in the procedure for Compound 1F.
  • the racemic mixture of Compound 11A was resolved by chiral SFC on an AD column (21 mm i.d.x 250 mm in length) using a gradient of 10-30% 0.1% diethylamine methanol in CO 2 over 15 minutes (oven temperature: 40° C.; flow rate: 40 ml/minute) to provide the title compound.
  • the racemic mixture of Compound 11A was resolved by chiral SFC on an AD column (21 mm i.d.x 250 mm in length) using a gradient of 10-30% 0.1% diethylamine methanol in CO 2 over 15 minutes (oven temperature: 40° C.; flow rate: 40 ml/minute) to provide the title compound.
  • This Compound was prepared by substituting 1-(tetrahydropyran-4-yl)methylamine for 2-methoxyethanamine in the procedure for Compound 16A.
  • the title compound was prepared by substituting 5,6-dichloropyridine-3-sulfonyl chloride for 5-bromo-6-chloropyridine-3-sulfonyl chloride in the procedure for Compound 36A.
  • aqueous layer was adjusted to pH ⁇ 4 with 1N aqueous HCl and the organic layer was separated, washed with brine (50 ml), dried over magnesium sulfate, filtered, and concentrated.
  • the residue was loaded onto silica gel (GraceResolv 40 g) and eluted using a gradient of 0.5% to 7.5% methanol/dichloromethane over 30 minutes. This solid was treated with HCl (4.0M in dioxane, 5 ml) at room temperature for 1 hour and concentrated to give the title compound.
  • the title compound was prepared by substituting Compound 66A for Compound 1F and Compound 3J for Compound 1E in the procedure for Compound 1F, with the exception that the product was purified on a silica gel column eluted with 4% methanol in dichloromethane.
  • the title compound was prepared by substituting 4,4-dimethyl-2-methoxycarbonylcyclohexanone for 5,5-dimethyl-2-methoxycarbonylcyclohexanone in the procedure for Compound 3A.
  • the title compound was prepared by replacing 4′-chlorobiphenyl-2-carboxaldehyde with Compound 75D and tert-butyl piperazine-1-carboxylate with Compound 15F in the procedure for Compound 1A.
  • N-Benzyl-1,1-dioxotetrahydro-2H-thiopyran-4-amine (2.00 g) was added to ethanol (40 ml) in a pressure bottle.
  • Palladium hydroxide on carbon (0.587 g,) was added and the solution was stirred under 30 psi of hydrogen at room temperature for 2 hours.
  • the mixture was filtered though a nylon membrane and the solvent was removed under vacuum.
  • the obtained material was chromatographed on silica gel a second time with 10-40% ethyl acetate in CH 2 Cl 2 as the eluent, triturated with diethyl ether and dried under vacuum at 45° C. to give the product.
  • the title compound was prepared by substituting Compound 87C for Compound 1E in the procedure for Compound 1G, except here the crude was purified by preparative HPLC using a 250 ⁇ 50 mm C18 column and eluting with 20-100% CH 3 CN vs. 0.1% trifluoroacetic acid in water, giving the product as a trifluoroacetate salt.
  • the title compound was prepared by substituting Compound 87C for Compound 1E and Compound 2A for Compound 1F in the procedure for Compound 1G, except here the crude was purified by preparative HPLC using a 250 ⁇ 50 mm C18 column and eluting with 20-100% CH 3 CN vs. 0.1% trifluoroacetic acid in water, giving the product as a trifluoroacetate salt.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
US13/282,773 2010-10-29 2011-10-27 Solid dispersions containing an apoptosis-inducing agent Abandoned US20120277210A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/282,773 US20120277210A1 (en) 2010-10-29 2011-10-27 Solid dispersions containing an apoptosis-inducing agent
US14/537,392 US10213433B2 (en) 2010-10-29 2014-11-10 Solid dispersions containing an apoptosis-inducing agent
US16/239,199 US20190275051A1 (en) 2010-10-29 2019-01-03 Solid dispersions containing an apoptosis-inducing agent
US17/341,158 US20220125796A1 (en) 2010-10-29 2021-06-07 Solid dispersions containing an apoptosis-inducing agent
US18/809,439 US20250161318A1 (en) 2010-10-29 2024-08-20 Solid dispersions containing an apoptosis-inducing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40851710P 2010-10-29 2010-10-29
US13/282,773 US20120277210A1 (en) 2010-10-29 2011-10-27 Solid dispersions containing an apoptosis-inducing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/537,392 Continuation US10213433B2 (en) 2010-10-29 2014-11-10 Solid dispersions containing an apoptosis-inducing agent

Publications (1)

Publication Number Publication Date
US20120277210A1 true US20120277210A1 (en) 2012-11-01

Family

ID=44947217

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/282,773 Abandoned US20120277210A1 (en) 2010-10-29 2011-10-27 Solid dispersions containing an apoptosis-inducing agent
US14/537,392 Active 2032-05-25 US10213433B2 (en) 2010-10-29 2014-11-10 Solid dispersions containing an apoptosis-inducing agent
US16/239,199 Abandoned US20190275051A1 (en) 2010-10-29 2019-01-03 Solid dispersions containing an apoptosis-inducing agent
US17/341,158 Abandoned US20220125796A1 (en) 2010-10-29 2021-06-07 Solid dispersions containing an apoptosis-inducing agent
US18/809,439 Pending US20250161318A1 (en) 2010-10-29 2024-08-20 Solid dispersions containing an apoptosis-inducing agent

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/537,392 Active 2032-05-25 US10213433B2 (en) 2010-10-29 2014-11-10 Solid dispersions containing an apoptosis-inducing agent
US16/239,199 Abandoned US20190275051A1 (en) 2010-10-29 2019-01-03 Solid dispersions containing an apoptosis-inducing agent
US17/341,158 Abandoned US20220125796A1 (en) 2010-10-29 2021-06-07 Solid dispersions containing an apoptosis-inducing agent
US18/809,439 Pending US20250161318A1 (en) 2010-10-29 2024-08-20 Solid dispersions containing an apoptosis-inducing agent

Country Status (16)

Country Link
US (5) US20120277210A1 (enExample)
EP (1) EP2632436B1 (enExample)
JP (1) JP6068352B2 (enExample)
KR (2) KR20180059560A (enExample)
CN (1) CN103167867B (enExample)
AU (1) AU2011319842B2 (enExample)
BR (1) BR112013009093B1 (enExample)
CA (2) CA2811805A1 (enExample)
ES (1) ES2699205T3 (enExample)
IL (1) IL225340A (enExample)
MX (1) MX349533B (enExample)
NZ (1) NZ608274A (enExample)
RU (1) RU2598345C2 (enExample)
SG (2) SG189471A1 (enExample)
TW (1) TWI598333B (enExample)
WO (1) WO2012058392A1 (enExample)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722657B2 (en) 2010-11-23 2014-05-13 Abbvie Inc. Salts and crystalline forms of an apoptosis-inducing agent
WO2014165044A1 (en) 2013-03-13 2014-10-09 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
US9006438B2 (en) 2013-03-13 2015-04-14 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
US9034875B2 (en) 2009-05-26 2015-05-19 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US9045475B2 (en) 2009-05-26 2015-06-02 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US20150299197A1 (en) * 2013-03-14 2015-10-22 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US9238652B2 (en) * 2014-03-04 2016-01-19 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
WO2016024230A1 (en) 2014-08-11 2016-02-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor
US9345702B2 (en) 2010-11-23 2016-05-24 Abbvie Inc. Methods of treatment using selective Bcl-2 inhibitors
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US9566443B2 (en) 2013-11-26 2017-02-14 Corquest Medical, Inc. System for treating heart valve malfunction including mitral regurgitation
WO2017079399A1 (en) 2015-11-03 2017-05-11 Genentech, Inc. Combination of bcl-2 inhibitor and mek inhibitor for the treatment of cancer
US9849128B2 (en) 2014-01-28 2017-12-26 Unity Biotechnology, Inc. Unit dose of a cis-imidazoline for treating an osteoarthritic joint by removing senescent cells
US9884065B2 (en) 2011-12-13 2018-02-06 Buck Institute For Research On Aging Inhibiting activity of senescent cells using a glucocorticoid
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US10159571B2 (en) 2012-11-21 2018-12-25 Corquest Medical, Inc. Device and method of treating heart valve malfunction
US10195213B2 (en) 2015-03-13 2019-02-05 Unity Biotechnology, Inc. Chemical entities that kill senescent cells for use in treating age-related disease
US10213433B2 (en) 2010-10-29 2019-02-26 Abbvie Inc. Solid dispersions containing an apoptosis-inducing agent
US10307167B2 (en) 2012-12-14 2019-06-04 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US10314594B2 (en) 2012-12-14 2019-06-11 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US10328058B2 (en) 2014-01-28 2019-06-25 Mayo Foundation For Medical Education And Research Treating atherosclerosis by removing senescent foam cell macrophages from atherosclerotic plaques
US10413436B2 (en) 2010-06-13 2019-09-17 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
US10813630B2 (en) 2011-08-09 2020-10-27 Corquest Medical, Inc. Closure system for atrial wall
US10842626B2 (en) 2014-12-09 2020-11-24 Didier De Canniere Intracardiac device to correct mitral regurgitation
US11110087B2 (en) 2012-09-07 2021-09-07 Genentech, Inc. Combination therapy of a type II anti-CD20 antibody with a selective Bcl-2 inhibitor
CN114174295A (zh) * 2019-08-14 2022-03-11 庄信万丰股份有限公司 维奈托克的多晶型体和用于制备该多晶型体的方法
US11369599B2 (en) 2010-10-29 2022-06-28 Abbvie Inc. Melt-extruded solid dispersions containing an apoptosis-inducing agent
US11517572B2 (en) 2014-01-28 2022-12-06 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a SRC inhibitor and a flavonoid
CN115925511A (zh) * 2022-09-21 2023-04-07 苏州汉德创宏生化科技有限公司 一种中间体4,4-二氟环己醇的合成方法
CN116234539A (zh) * 2020-07-07 2023-06-06 Atxa治疗有限公司 血栓素受体拮抗剂调配物
CN116635015A (zh) * 2020-09-29 2023-08-22 深圳市药欣生物科技有限公司 药物组合物
US11897864B2 (en) 2009-05-26 2024-02-13 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US12285427B2 (en) 2014-01-28 2025-04-29 Unity Biotechnology, Inc. Treatment of a senescence-associated ocular disease or disorder using a Bcl-xL selective inhibitor

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750696B2 (en) 2011-08-01 2017-09-05 Sun Pharmaceutical Industries Limited Dissolution enhanced controlled drug delivery system for poorly water soluble drugs
JP6232262B2 (ja) * 2013-11-13 2017-11-15 アクアス株式会社 徐放性を有する固形水処理剤、およびその製造方法
US9925192B2 (en) 2014-02-28 2018-03-27 Merck Sharp & Dohme Corp. Method for treating cancer
WO2017019540A2 (en) * 2015-07-24 2017-02-02 Yale University Inhibitors of n-linked glycosylation and methods using same
US11001582B2 (en) 2016-03-10 2021-05-11 Assia Chemical Industries Ltd. Solid state forms of Venetoclax and processes for preparation of Venetoclax
WO2018009444A1 (en) * 2016-07-06 2018-01-11 Concert Pharmaceuticals, Inc. Deuterated venetoclax
KR102429704B1 (ko) 2016-08-05 2022-08-04 더 리젠츠 오브 더 유니버시티 오브 미시건 Bcl-2 억제제로서의 n-(페닐설포닐)벤즈아미드 및 관련 화합물
WO2018069941A2 (en) 2016-10-14 2018-04-19 Mylan Laboratories Limited Polymorphic forms of venetoclax
CN106674085B (zh) * 2016-12-20 2020-06-23 苏州汉德创宏生化科技有限公司 N-1,3-二氟异丙基-4-氨基哌啶类化合物的合成方法
WO2018127130A1 (en) 2017-01-07 2018-07-12 Shanghai Fochon Pharmaceutical Co., Ltd. Compounds as bcl-2-selective apoptosis-inducing agents
WO2018157803A1 (zh) * 2017-02-28 2018-09-07 苏州科睿思制药有限公司 维奈妥拉的晶型及其制备方法
CN110546151B (zh) 2017-04-18 2023-04-28 重庆复创医药研究有限公司 凋亡诱导剂
CN107501260B (zh) * 2017-08-14 2019-08-13 郑州大学第一附属医院 一种Bcl-2抑制剂venetoclax以及中间体的制备方法
EP3672975B1 (en) 2017-08-23 2023-04-12 Guangzhou Lupeng Pharmaceutical Company Ltd. Condensed heterocyclic derivatives as bcl-2 inhibitors for the treatment of neoplastic diseases
CN108037196B (zh) * 2017-11-23 2020-06-23 中山奕安泰医药科技有限公司 一种3-硝基-4-[[(四氢-2h-吡喃-4-基)甲基]氨基]苯磺酰胺的检测方法
WO2019135253A1 (en) 2018-01-02 2019-07-11 Mylan Laboratories Limited Polymorphic forms of venetoclax
SG11202005985PA (en) 2018-01-10 2020-07-29 Recurium Ip Holdings Llc Benzamide compounds
CN114369094B (zh) * 2018-03-30 2023-09-29 正大天晴药业集团股份有限公司 三氟甲基取代的磺酰胺类选择性bcl-2抑制剂
FI3788042T3 (fi) 2018-04-29 2025-04-07 Beigene Switzerland Gmbh Bcl-2-inhibiittoreita
WO2020023435A1 (en) 2018-07-24 2020-01-30 Albany Molecular Research, Inc. Venetoclax basic salts and processes for the purification of venetoclax
CN110772521A (zh) 2018-07-31 2020-02-11 苏州亚盛药业有限公司 Bcl-2抑制剂或Bcl-2/Bcl-xL抑制剂与BTK抑制剂的组合产品及其用途
CA3095699A1 (en) 2018-07-31 2020-02-06 Ascentage Pharma (Suzhou) Co., Ltd. Combination product of bcl-2 inhibitor and chemotherapeutic agent and use thereof in the prevention and/or treatment of diseases
EP3672594B1 (en) 2018-07-31 2021-09-29 Ascentage Pharma (Suzhou) Co., Ltd. Combination product of bcl-2 inhibitor and mdm2 inhibitor and use thereof in the prevention and/or treatment of diseases
US11554127B2 (en) 2018-07-31 2023-01-17 Ascentage Pharma (Suzhou) Co., Ltd. Synergistic antitumor effect of Bcl-2 inhibitor combined with rituximab and/or bendamustine or Bcl-2 inhibitor combined with CHOP
WO2020041406A1 (en) 2018-08-22 2020-02-27 Newave Pharmaceutical Inc. Bcl-2 inhibitors
CA3117849A1 (en) 2018-10-29 2020-05-07 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Trifluoromethyl-substituted sulfonamide as bcl-2-selective inhibitor
CN109438441A (zh) * 2018-11-30 2019-03-08 重庆三圣实业股份有限公司 一种维奈妥拉的制备方法及其产品
EP3902805A4 (en) 2018-12-28 2023-03-01 SPV Therapeutics Inc. CYCLINE-DEPENDENT KINASE INHIBITORS
EP3978494A4 (en) * 2019-05-24 2023-04-19 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. METHYL AND TRFLUOROMETHYL CONTAINING DISUBSTITUTED SULFONAMIDE SELECTIVE BCL-2 INHIBITORS
WO2021007303A1 (en) * 2019-07-10 2021-01-14 Recurium Ip Holdings, Llc Nanoparticle formulation of bcl-2 inhibitor
JP2023514750A (ja) * 2020-02-24 2023-04-07 グアンジョウ・ルペン・ファーマシューティカル・カンパニー・リミテッド Bcl2阻害剤を含むホットメルト押出し固体分散体
US20230128137A1 (en) * 2020-03-12 2023-04-27 Medshine Discovery Inc. Benzo five-membered cyclic compound
TW202200574A (zh) 2020-04-15 2022-01-01 英屬開曼群島商百濟神州有限公司 Bcl-2抑制劑
CN111643458A (zh) * 2020-07-28 2020-09-11 青岛市肿瘤医院 一种治疗横纹肌肉瘤的药物制剂及其制备方法
CN114057728A (zh) * 2020-08-06 2022-02-18 北京诺诚健华医药科技有限公司 作为bcl-2抑制剂的杂环化合物
WO2022111558A1 (en) * 2020-11-25 2022-06-02 Ascentage Pharma (Suzhou) Co., Ltd. Solid dispersion, pharmaceutical preparations, preparation method, and application thereof
EP4499047A1 (en) * 2022-03-25 2025-02-05 Shenzhen Pharmacin Co., Ltd. Amorphous solid dispersions and pharmaceutical compositions comprising the same
CN115260191B (zh) * 2022-09-29 2022-12-27 上海睿跃生物科技有限公司 哌啶类化合物及其制备方法和应用

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617612B1 (en) * 1991-12-18 1997-09-10 Warner-Lambert Company A process for the preparation of a solid dispersion
MY115155A (en) 1993-09-09 2003-04-30 Upjohn Co Substituted oxazine and thiazine oxazolidinone antimicrobials.
BE1009856A5 (fr) 1995-07-14 1997-10-07 Sandoz Sa Composition pharmaceutique sous la forme d'une dispersion solide comprenant un macrolide et un vehicule.
PT1019385E (pt) 1995-09-15 2004-06-30 Upjohn Co N-oxidos de aminoaril-oxazolidinona
DK0929578T3 (da) 1996-02-09 2003-08-25 Abbott Lab Bermuda Ltd Humane antistoffer, der binder human TNFalfa
US20030220234A1 (en) 1998-11-02 2003-11-27 Selvaraj Naicker Deuterated cyclosporine analogs and their use as immunodulating agents
CN1149196C (zh) 1998-07-06 2004-05-12 布里斯托尔-迈尔斯斯奎布公司 作为血管紧张肽和内皮肽受体双重拮抗剂的联苯基磺酰胺
DE19913692A1 (de) 1999-03-25 2000-09-28 Basf Ag Mechanisch stabile pharmazeutische Darreichungsformen, enthaltend flüssige oder halbfeste oberflächenaktive Substanzen
DE19929361A1 (de) 1999-06-25 2001-01-04 Basf Ag Mechanisch stabile pharmazeutische Darreichungsformen, enthaltend flüssige oder halbfeste oberflächenaktive Substanzen
US20030236236A1 (en) 1999-06-30 2003-12-25 Feng-Jing Chen Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
GB9918037D0 (en) 1999-07-30 1999-09-29 Biochemie Gmbh Organic compounds
KR100641802B1 (ko) 1999-12-28 2006-11-02 에자이 가부시키가이샤 술폰아미드 함유 복소환 화합물
US20020055631A1 (en) 2000-09-20 2002-05-09 Augeri David J. N-acylsulfonamide apoptosis promoters
US6720338B2 (en) 2000-09-20 2004-04-13 Abbott Laboratories N-acylsulfonamide apoptosis promoters
UY26942A1 (es) 2000-09-20 2002-04-26 Abbott Lab N-acilsulfonamidas promotoras de la apoptosis
US6995162B2 (en) 2001-01-12 2006-02-07 Amgen Inc. Substituted alkylamine derivatives and methods of use
WO2002098848A1 (en) 2001-06-06 2002-12-12 Eli Lilly And Company Benzoylsulfonamides and sulfonylbenzamidines for use as antitumour agents
GB0123400D0 (en) 2001-09-28 2001-11-21 Novartis Ag Organic compounds
CA2476587C (en) 2002-02-26 2010-05-04 Astrazeneca Ab Pharmaceutical formulation of iressa comprising a water-soluble cellulose derivative
CA2833470C (en) 2002-02-26 2016-03-29 Astrazeneca Ab Processes for preparing form 1 zd1839 polymorph
FR2836914B1 (fr) 2002-03-11 2008-03-14 Aventis Pharma Sa Indazoles substitues, compositions les contenant, procede de fabrication et utilisation
JO2479B1 (en) 2002-04-29 2009-01-20 ميرك شارب اند دوم ليمتد Rates for the activity of the chemokine receptor of tetrahydrobranyl cycloneptil tetrahydrobredo predine
JP4336678B2 (ja) 2003-09-04 2009-09-30 株式会社日立超エル・エス・アイ・システムズ 半導体装置
WO2005049593A2 (en) 2003-11-13 2005-06-02 Abbott Laboratories N-acylsulfonamide apoptosis promoters
US7973161B2 (en) 2003-11-13 2011-07-05 Abbott Laboratories Apoptosis promoters
US8614318B2 (en) 2003-11-13 2013-12-24 Abbvie Inc. Apoptosis promoters
US7642260B2 (en) 2003-11-13 2010-01-05 Abbott Laboratories, Inc. Apoptosis promoters
US7767684B2 (en) 2003-11-13 2010-08-03 Abbott Laboratories Apoptosis promoters
US7790190B2 (en) 2004-03-20 2010-09-07 Yasoo Health, Inc. Aqueous emulsions of lipophile solubilized with vitamin E TPGS and linoleic acid
DE602004009344T2 (de) 2004-04-19 2008-07-10 Symed Labs Ltd., Hyderabad Neues verfahren zur herstellung von linezolid und verwandten verbindungen
EP1750669A1 (en) 2004-05-04 2007-02-14 Boehringer Ingelheim International Gmbh Solid pharmaceutical form comprising an ltb4 antagonist
DE602004020812D1 (de) 2004-07-20 2009-06-04 Symed Labs Ltd Neue zwischenprodukte für linezolid und verwandte verbindungen
EP1796642B1 (en) 2004-08-27 2008-05-21 Bayer Pharmaceuticals Corporation Pharmaceutical compositions in the form of solid dispersions for the treatment of cancer
MY191349A (en) 2004-08-27 2022-06-17 Bayer Pharmaceuticals Corp New pharmaceutical compositions for the treatment of hyper-proliferative disorders
US7511013B2 (en) 2004-09-29 2009-03-31 Amr Technology, Inc. Cyclosporin analogues and their pharmaceutical uses
US8624027B2 (en) 2005-05-12 2014-01-07 Abbvie Inc. Combination therapy for treating cancer and diagnostic assays for use therein
KR101533268B1 (ko) 2005-05-12 2015-07-03 애브비 바하마스 리미티드 아폽토시스 촉진제
CN101218241B (zh) 2005-05-16 2011-02-16 Irm责任有限公司 用作蛋白激酶抑制剂的吡咯并吡啶衍生物
TW200716636A (en) 2005-05-31 2007-05-01 Speedel Experimenta Ag Heterocyclic spiro-compounds
UA95244C2 (ru) 2005-06-22 2011-07-25 Плексикон, Инк. Соединения и способ модулирования активности киназ, и показания для их применения
US7514068B2 (en) 2005-09-14 2009-04-07 Concert Pharmaceuticals Inc. Biphenyl-pyrazolecarboxamide compounds
JP5320291B2 (ja) 2006-07-14 2013-10-23 ケモセントリックス, インコーポレイテッド トリアゾリルピリジルベンゼンスルホンアミド類
EP1880715A1 (en) 2006-07-19 2008-01-23 Abbott GmbH & Co. KG Pharmaceutically acceptable solubilizing composition and pharmaceutical dosage form containing same
US7799790B2 (en) 2006-07-20 2010-09-21 Helm Ag Amorphous aripiprazole and process for the preparation thereof
KR100767349B1 (ko) * 2006-08-01 2007-10-17 삼천당제약주식회사 페노피브레이트를 함유하는 경구용 약제 조성물 및 그의제조방법
JP5277168B2 (ja) 2006-09-05 2013-08-28 アボット・ラボラトリーズ 血小板過剰を治療するbclインヒビター
US8796267B2 (en) 2006-10-23 2014-08-05 Concert Pharmaceuticals, Inc. Oxazolidinone derivatives and methods of use
CA2669938C (en) 2006-11-15 2016-01-05 Abbott Laboratories Solid pharmaceutical dosage formulations
US20080182845A1 (en) 2006-11-16 2008-07-31 Abbott Laboratories Method of preventing or treating organ, hematopoietic stem cell or bone marrow transplant rejection
EP2121641B1 (en) 2007-02-15 2014-09-24 F. Hoffmann-La Roche AG 2-aminooxazolines as taar1 ligands
US8536157B2 (en) 2007-04-13 2013-09-17 The University Of Melbourne Non-steroidal compounds
US7528131B2 (en) 2007-04-19 2009-05-05 Concert Pharmaceuticals Inc. Substituted morpholinyl compounds
US7531685B2 (en) 2007-06-01 2009-05-12 Protia, Llc Deuterium-enriched oxybutynin
US20090131485A1 (en) 2007-09-10 2009-05-21 Concert Pharmaceuticals, Inc. Deuterated pirfenidone
US20090118238A1 (en) 2007-09-17 2009-05-07 Protia, Llc Deuterium-enriched alendronate
US20090082471A1 (en) 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched fingolimod
US20090088416A1 (en) 2007-09-26 2009-04-02 Protia, Llc Deuterium-enriched lapaquistat
EP2195027A4 (en) 2007-10-01 2011-11-16 Univ Johns Hopkins METHOD FOR THE TREATMENT OF NEUROLOGICAL AUTOIMMUNE DISEASES WITH CYCLOPHOSPHAMID
EP2209774A1 (en) 2007-10-02 2010-07-28 Concert Pharmaceuticals Inc. Pyrimidinedione derivatives
US20090105338A1 (en) 2007-10-18 2009-04-23 Protia, Llc Deuterium-enriched gabexate mesylate
EP2212298B1 (en) 2007-10-18 2013-03-27 Concert Pharmaceuticals Inc. Deuterated etravirine
US20090131363A1 (en) 2007-10-26 2009-05-21 Harbeson Scott L Deuterated darunavir
MX2010005395A (es) 2007-11-16 2010-06-02 Abbott Lab Metodo para tratar artritis.
CN101939008A (zh) 2007-12-06 2011-01-05 雅培制药有限公司 用于治疗癌症的abt-263经口组合物
EP2240581B1 (en) 2008-01-15 2016-05-11 AbbVie Inc. Improved mammalian expression vectors and uses thereof
CN101548960B (zh) 2008-04-01 2012-11-07 沈阳药科大学 高溶出度口服联苯双酯胶囊及其制备方法
PL2346495T5 (pl) * 2008-10-07 2024-06-10 Kudos Pharmaceuticals Limited Preparat farmaceutyczny 514
UA108193C2 (uk) * 2008-12-04 2015-04-10 Апоптозіндукуючий засіб для лікування раку і імунних і аутоімунних захворювань
US20100160322A1 (en) 2008-12-04 2010-06-24 Abbott Laboratories Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8557983B2 (en) 2008-12-04 2013-10-15 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8586754B2 (en) 2008-12-05 2013-11-19 Abbvie Inc. BCL-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
EP2376480B1 (en) * 2008-12-05 2016-06-01 AbbVie Inc. Sulfonamide derivatives as bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
US8563735B2 (en) * 2008-12-05 2013-10-22 Abbvie Inc. Bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
US20110245156A1 (en) 2008-12-09 2011-10-06 Cytokine Pharmasciences, Inc. Novel antiviral compounds, compositions, and methods of use
US20120094963A1 (en) 2008-12-23 2012-04-19 of Queen Elizabeth near Dublin Targeting prodrugs and compositions for the treatment of gastrointestinal diseases
ES2536090T3 (es) * 2009-01-19 2015-05-20 Abbvie Inc. Agentes inductores de la apoptosis para el tratamiento del cáncer y enfermedades inmunitarias y autoinmunitarias
CN104945311A (zh) 2009-01-19 2015-09-30 Abbvie公司 用于治疗癌症和免疫和自身免疫疾病的细胞程序死亡诱导药剂
US20100297194A1 (en) 2009-04-30 2010-11-25 Nathaniel Catron Formulation for oral administration of apoptosis promoter
BR122019016429B1 (pt) 2009-05-26 2020-03-24 Abbvie Ireland Unlimited Company Compostos inibidores da atividade de proteínas bcl-2 antiapoptótica e composição farmacêutica compreendendo ditos compostos
US8546399B2 (en) 2009-05-26 2013-10-01 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
TWI540132B (zh) * 2009-06-08 2016-07-01 亞培公司 Bcl-2族群抑制劑之口服醫藥劑型
CA2737601C (en) 2009-06-11 2014-10-21 Abbott Laboratories Anti-viral compounds
TWI520960B (zh) 2010-05-26 2016-02-11 艾伯維有限公司 用於治療癌症及免疫及自體免疫疾病之細胞凋亡誘導劑
UA113500C2 (xx) 2010-10-29 2017-02-10 Одержані екструзією розплаву тверді дисперсії, що містять індукуючий апоптоз засіб
ES2699205T3 (es) 2010-10-29 2019-02-07 Abbvie Inc Dispersiones sólidas que contienen un agente que induce la apoptosis
NZ708508A (en) 2010-11-23 2016-06-24 Abbvie Bahamas Ltd Methods of treatment using selective bcl-2 inhibitors
AU2011332043C1 (en) 2010-11-23 2016-11-10 Abbvie Inc. Salts and crystalline forms of an apoptosis-inducing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Janssens et al., Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study, 2008, European Journal of Pharmaceutics and Biopharmaceutics, Vol 69, Pages 158-166. *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174982B2 (en) 2009-05-26 2015-11-03 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US9045475B2 (en) 2009-05-26 2015-06-02 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US11897864B2 (en) 2009-05-26 2024-02-13 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US9034875B2 (en) 2009-05-26 2015-05-19 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US11607329B2 (en) 2010-06-13 2023-03-21 Synerz Medical, Inc. Intragastric device for treating obesity
US10413436B2 (en) 2010-06-13 2019-09-17 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10512557B2 (en) 2010-06-13 2019-12-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US11135078B2 (en) 2010-06-13 2021-10-05 Synerz Medical, Inc. Intragastric device for treating obesity
US11351050B2 (en) 2010-06-13 2022-06-07 Synerz Medical, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US11596538B2 (en) 2010-06-13 2023-03-07 Synerz Medical, Inc. Intragastric device for treating obesity
US10213433B2 (en) 2010-10-29 2019-02-26 Abbvie Inc. Solid dispersions containing an apoptosis-inducing agent
US11369599B2 (en) 2010-10-29 2022-06-28 Abbvie Inc. Melt-extruded solid dispersions containing an apoptosis-inducing agent
US9872861B2 (en) 2010-11-23 2018-01-23 Abbvie Inc. Methods of treatment using selective Bcl-2 inhibitors
US9840502B2 (en) 2010-11-23 2017-12-12 Abbvie Inc. Salts and crystalline forms of an apoptosis-inducing agent
US10730873B2 (en) 2010-11-23 2020-08-04 Abbvie Inc. Salts and crystalline forms of an apoptosis-inducing agent
US9238649B2 (en) 2010-11-23 2016-01-19 Abbvie Inc. Salts and crystalline forms of 4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl piperazin-1-yl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide
US8722657B2 (en) 2010-11-23 2014-05-13 Abbvie Inc. Salts and crystalline forms of an apoptosis-inducing agent
US9345702B2 (en) 2010-11-23 2016-05-24 Abbvie Inc. Methods of treatment using selective Bcl-2 inhibitors
US10813630B2 (en) 2011-08-09 2020-10-27 Corquest Medical, Inc. Closure system for atrial wall
US9884065B2 (en) 2011-12-13 2018-02-06 Buck Institute For Research On Aging Inhibiting activity of senescent cells using a glucocorticoid
US11413282B2 (en) 2012-09-07 2022-08-16 Genentech, Inc. Combination therapy of a type II anti-CD20 antibody with a selective BCL-2 inhibitor
US11590128B2 (en) 2012-09-07 2023-02-28 Genentech, Inc. Combination therapy of a type II anti-CD20 antibody with a selective BCL-2 inhibitor
US11110087B2 (en) 2012-09-07 2021-09-07 Genentech, Inc. Combination therapy of a type II anti-CD20 antibody with a selective Bcl-2 inhibitor
US10159571B2 (en) 2012-11-21 2018-12-25 Corquest Medical, Inc. Device and method of treating heart valve malfunction
US10314594B2 (en) 2012-12-14 2019-06-11 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US10307167B2 (en) 2012-12-14 2019-06-04 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
EP3954687A1 (en) 2013-03-13 2022-02-16 AbbVie Ireland Unlimited Company Processes and intermediates useful in the preparation of an apoptosis-inducing agent
EP3293185A1 (en) 2013-03-13 2018-03-14 AbbVie Inc. Processes for the preparation of an apoptosis-inducing agent
US9199992B2 (en) 2013-03-13 2015-12-01 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
EP4019491A1 (en) 2013-03-13 2022-06-29 AbbVie Ireland Unlimited Company Process for preparing a synthetic intermediate useful in the preparation of an apoptosis-inducing agent
EP3569588A1 (en) 2013-03-13 2019-11-20 AbbVie Inc. Process for preparing a synthetic intermediate useful in the preparation of an apoptosis-inducing agent
US9006438B2 (en) 2013-03-13 2015-04-14 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
WO2014165044A1 (en) 2013-03-13 2014-10-09 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
US10081628B2 (en) 2013-03-14 2018-09-25 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US20150299197A1 (en) * 2013-03-14 2015-10-22 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US9566443B2 (en) 2013-11-26 2017-02-14 Corquest Medical, Inc. System for treating heart valve malfunction including mitral regurgitation
US9849128B2 (en) 2014-01-28 2017-12-26 Unity Biotechnology, Inc. Unit dose of a cis-imidazoline for treating an osteoarthritic joint by removing senescent cells
US10130628B2 (en) 2014-01-28 2018-11-20 Unity Biotechnology, Inc. Treatment of joint pain
US10478432B2 (en) 2014-01-28 2019-11-19 Unity Biotechnology, Inc. Compositions of matter for treatment of ophthalmic conditions by selectively removing senescent cells from the eye
US12285427B2 (en) 2014-01-28 2025-04-29 Unity Biotechnology, Inc. Treatment of a senescence-associated ocular disease or disorder using a Bcl-xL selective inhibitor
US10413542B2 (en) 2014-01-28 2019-09-17 Buck Institute For Research On Aging Methods and compositions for killing senescent cells and for treating senescence-associated diseases and disorders using an inhibitor of Akt kinase
US10517866B2 (en) 2014-01-28 2019-12-31 Unity Biotechnology, Inc. Removing senescent cells from a mixed cell population or tissue using a phosphoinositide 3-kinase (PI3K) inhibitor
US10328073B2 (en) 2014-01-28 2019-06-25 Unity Biotechnology, Inc. Use of sulfonamide inhibitors of BCL-2 and BCL-xL to treat ophthalmic disease by selectively removing senescent cells
US11980616B2 (en) 2014-01-28 2024-05-14 Mayo Foundation For Medical Education And Research Treating liver disease by selectively eliminating senescent cells
US10328058B2 (en) 2014-01-28 2019-06-25 Mayo Foundation For Medical Education And Research Treating atherosclerosis by removing senescent foam cell macrophages from atherosclerotic plaques
US11963957B2 (en) 2014-01-28 2024-04-23 Mayo Foundation For Medical Education And Research Treating cardiovascular disease by selectively eliminating senescent cells
US10258618B2 (en) 2014-01-28 2019-04-16 Unity Biotechnology, Inc. Treating pulmonary conditions by selectively removing senescent cells from the lung using an intermittent dosing regimen
US10213426B2 (en) 2014-01-28 2019-02-26 Unity Biotechnology, Inc. Method of optimizing conditions for selectively removing a plurality of senescent cells from a tissue or a mixed cell population
US9855266B2 (en) 2014-01-28 2018-01-02 Unity Biotechnology, Inc. Treatment for osteoarthritis by intra-articular administration of a cis-imidazoline
US11517572B2 (en) 2014-01-28 2022-12-06 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a SRC inhibitor and a flavonoid
US11351167B2 (en) 2014-01-28 2022-06-07 Buck Institute For Research On Aging Treating cognitive decline and other neurodegenerative conditions by selectively removing senescent cells from neurological tissue
US10478433B2 (en) 2014-01-28 2019-11-19 Unity Biotechnology, Inc. Unit dose of an aryl sulfonamide that is effective for treating eye disease and averting potential vision loss
US10010546B2 (en) 2014-01-28 2018-07-03 Unity Biotechnology, Inc. Treatment of ophthalmic conditions by selectively removing senescent cells from the eye
US9993472B2 (en) 2014-01-28 2018-06-12 Unity Biotechnology, Inc. Treatment for osteoarthritis in a joint by administering a means for inhibiting MDM2
US9980962B2 (en) 2014-01-28 2018-05-29 Unity Biotechnology, Inc Use of sulfonamide inhibitors of Bcl-2 to treat senescence-associated lung conditions such as pulmonary fibrosis and chronic obstructive pulmonary disease
US9238652B2 (en) * 2014-03-04 2016-01-19 Abbvie Inc. Processes for the preparation of an apoptosis-inducing agent
WO2016024230A1 (en) 2014-08-11 2016-02-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor
US10842626B2 (en) 2014-12-09 2020-11-24 Didier De Canniere Intracardiac device to correct mitral regurgitation
US10195213B2 (en) 2015-03-13 2019-02-05 Unity Biotechnology, Inc. Chemical entities that kill senescent cells for use in treating age-related disease
US10426788B2 (en) 2015-03-13 2019-10-01 Unity Biotechnology, Inc. Chemical entities that kill senescent cells for use in treating age-related disease
WO2017079399A1 (en) 2015-11-03 2017-05-11 Genentech, Inc. Combination of bcl-2 inhibitor and mek inhibitor for the treatment of cancer
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
CN114174295A (zh) * 2019-08-14 2022-03-11 庄信万丰股份有限公司 维奈托克的多晶型体和用于制备该多晶型体的方法
CN116234539A (zh) * 2020-07-07 2023-06-06 Atxa治疗有限公司 血栓素受体拮抗剂调配物
CN116635015A (zh) * 2020-09-29 2023-08-22 深圳市药欣生物科技有限公司 药物组合物
CN115925511A (zh) * 2022-09-21 2023-04-07 苏州汉德创宏生化科技有限公司 一种中间体4,4-二氟环己醇的合成方法

Also Published As

Publication number Publication date
EP2632436B1 (en) 2018-08-29
SG189471A1 (en) 2013-05-31
KR20140056137A (ko) 2014-05-09
NZ608274A (en) 2015-05-29
CA3152557A1 (en) 2012-05-03
KR102095698B1 (ko) 2020-04-01
KR20180059560A (ko) 2018-06-04
RU2013124824A (ru) 2014-12-10
WO2012058392A1 (en) 2012-05-03
MX349533B (es) 2017-08-02
IL225340A0 (en) 2013-06-27
TW201240967A (en) 2012-10-16
US20150157639A1 (en) 2015-06-11
CN103167867A (zh) 2013-06-19
ES2699205T3 (es) 2019-02-07
CN103167867B (zh) 2016-12-21
US20250161318A1 (en) 2025-05-22
BR112013009093A2 (pt) 2016-07-19
RU2598345C2 (ru) 2016-09-20
TWI598333B (zh) 2017-09-11
JP2013540823A (ja) 2013-11-07
IL225340A (en) 2017-05-29
US10213433B2 (en) 2019-02-26
EP2632436A1 (en) 2013-09-04
US20220125796A1 (en) 2022-04-28
AU2011319842A1 (en) 2013-04-04
US20190275051A1 (en) 2019-09-12
SG10201801794WA (en) 2018-04-27
JP6068352B2 (ja) 2017-01-25
AU2011319842B2 (en) 2014-05-29
MX2013004778A (es) 2013-06-03
BR112013009093B1 (pt) 2022-04-19
CA2811805A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
US20250161318A1 (en) Solid dispersions containing an apoptosis-inducing agent
US11369599B2 (en) Melt-extruded solid dispersions containing an apoptosis-inducing agent
HK1188562B (en) Solid dispersions containing an apoptosis-inducing agent
HK1188562A (en) Solid dispersions containing an apoptosis-inducing agent
HK40089498A (en) Melt-extruded solid dispersions containing an apoptosis-inducing agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT LABORATORIES, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CATRON, NATHANIEL;LINDLEY, DAVID;MILLER, JONATHAN M.;AND OTHERS;SIGNING DATES FROM 20111229 TO 20120124;REEL/FRAME:027592/0245

AS Assignment

Owner name: ABBVIE INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:030137/0222

Effective date: 20120801

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION