US20110052936A1 - Metal-coated steel strip - Google Patents
Metal-coated steel strip Download PDFInfo
- Publication number
- US20110052936A1 US20110052936A1 US12/811,213 US81121309A US2011052936A1 US 20110052936 A1 US20110052936 A1 US 20110052936A1 US 81121309 A US81121309 A US 81121309A US 2011052936 A1 US2011052936 A1 US 2011052936A1
- Authority
- US
- United States
- Prior art keywords
- coating
- particles
- alloy
- strip
- steel strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
- Y10T428/12979—Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
Definitions
- the present invention relates to strip, typically steel strip, which has a corrosion-resistant metal alloy coating.
- the present invention relates particularly to a corrosion-resistant metal alloy coating that contains aluminium-zinc-silicon-magnesium as the main elements in the alloy, and is hereinafter referred to as an “Al—Zn—Si—Mg alloy” on this basis.
- the alloy coating may contain other elements that are present as deliberate alloying additions or as unavoidable impurities.
- Al—Zn—Si—Mg alloy is understood to cover alloys that contain such other elements and the other elements may be deliberate alloying additions or as unavoidable impurities.
- the present invention relates particularly but not exclusively to steel strip that is coated with the above-described Al—Zn—Si—Mg alloy and can be cold formed (e.g. by roll forming) into an end-use product, such as roofing products.
- the Al—Zn—Si—Mg alloy comprises the following ranges in % by weight of the elements aluminium, zinc, silicon, and magnesium:
- the corrosion-resistant metal alloy coating is formed on steel strip by a hot dip coating method.
- steel strip In the conventional hot-dip metal coating method, steel strip generally passes through one or more heat treatment furnaces and thereafter into and through a bath of molten metal alloy held in a coating pot.
- the heat treatment furnace that is adjacent a coating pot has an outlet snout that extends downwardly to a location below the upper surface of the bath.
- the metal alloy is usually maintained molten in the coating pot by the use of heating inductors.
- the strip usually exits the heat treatment furnaces via an outlet end section in the form of an elongated furnace exit chute or snout that dips into the bath. Within the bath the strip passes around one or more sink rolls and is taken upwardly out of the bath and is coated with the metal alloy as it passes through the bath.
- the metal alloy coated strip After leaving the coating bath the metal alloy coated strip passes through a coating thickness control station, such as a gas knife or gas wiping station, at which its coated surfaces are subjected to jets of wiping gas to control the thickness of the coating.
- a coating thickness control station such as a gas knife or gas wiping station
- the metal alloy coated strip then passes through a cooling section and is subjected to forced cooling.
- the cooled metal alloy coated strip may thereafter be optionally conditioned by passing the coated strip successively through a skin pass rolling section (also known as a temper rolling section) and a tension levelling section.
- the conditioned strip is coiled at a coiling station.
- a 55% Al—Zn alloy coating is a well known metal alloy coating for steel strip. After solidification, a 55% Al—Zn alloy coating normally consists of ⁇ -Al dendrites and a ⁇ -Zn phase in the inter-dendritic regions of the coating.
- silicon it is known to add silicon to the coating alloy composition to prevent excessive alloying between the steel substrate and the molten coating in the hot-dip coating method.
- a portion of the silicon takes part in a quaternary alloy layer formation but the majority of the silicon precipitates as needle-like, pure silicon particles during solidification. These needle-like silicon particles are also present in the inter-dendritic regions of the coating.
- Mg when Mg is included in a 55% Al—Zn—Si alloy coating composition, Mg brings about certain beneficial effects on product performance, such as improved cut-edge protection, by changing the nature of corrosion products formed.
- Mg reacts with Si to form a Mg 2 Si phase and that the formation of the Mg 2 Si phase compromises the above-mentioned beneficial effects of Mg in a number of ways.
- mottling One particular way, which is the focus of the present invention is a surface defect called “mottling”. The applicant has found that mottling can occur in Al—Zn—Si—Mg alloy coatings under certain solidification conditions. Mottling is related to the presence of the Mg 2 Si phase on the coating surface.
- mottling is a defect where a large number of coarse Mg 2 Si particles cluster together on the surface of the coating, resulting in a blotchy surface appearance that is not acceptable from an aesthetic viewpoint. More particularly, the clustered Mg 2 Si particles form darker regions approximately 1-5 mm in size and introduce non-uniformity in the appearance of the coating which makes the coated product unsuitable for applications where a uniform appearance is important.
- the present invention is an Al—Zn—Si—Mg alloy coated strip that has Mg 2 Si particles in the coating microstructure with the distribution of Mg 2 Si particles being such that the surface of the coating has only a small proportion of Mg 2 Si particles or is at least substantially free of any Mg 2 Si particles.
- the applicant has found that when at least 250 ppm Sr, preferably 250-3000 ppm Sr, is added to a coating bath containing an Al—Zn—Si—Mg alloy the distribution characteristics of the Mg 2 Si phase in the coating thickness direction are completely changed by this addition of Sr from the distribution that is present when there is no Sr in the coating bath.
- these additions of Sr promote the formation of a surface of the coating that has only a small proportion of Mg 2 Si particles or is free of any Mg 2 Si particles and consequently a considerably lower risk of mottling on the surface.
- the applicant has also found that selecting the cooling rate during solidification of a coated strip exiting a coating bath to be below a threshhold cooling rate, typically below 80° C./sec for coating masses less than 100 grams per square metre of strip surface per side, controls the distribution characteristics of the Mg 2 Si phase so that the surface has only a small proportion of Mg 2 Si particles or is at least substantially free of Mg 2 Si particles, whereby there is a considerably lower risk of Mg 2 Si mottling.
- a threshhold cooling rate typically below 80° C./sec for coating masses less than 100 grams per square metre of strip surface per side
- minimising coating thickness variations controls the distribution characteristics of the Mg 2 Si phase so that the surface has only a small proportion of Mg 2 Si particles or is at least substantially free of Mg 2 Si particles, whereby there is a considerably lower risk of Mg 2 Si mottling.
- the resultant coating microstructure is advantageous in terms of appearance, enhanced corrosion resistance and improved coating ductility.
- an Al—Zn—Si—Mg alloy coated steel strip that comprises a coating of an Al—Zn—Si—Mg alloy on a steel strip, with the microstructure of the coating comprising Mg 2 Si particles, and with the distribution of the Mg 2 Si particles being such that there is only a small proportion of Mg 2 Si particles or at least substantially no Mg 2 Si particles in the surface of the coating.
- the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
- the Al—Zn—Si—Mg alloy comprises the following ranges in % by weight of the elements aluminium, zinc, silicon, and magnesium:
- the Al—Zn—Si—Mg alloy may also contain other elements, such as, by way of example any one or more of iron, vanadium, chromium, and strontium.
- the coating thickness is less than 30 ⁇ m.
- the coating thickness is greater than 7 ⁇ m.
- the coating contains more than 250 ppm Sr, with the Sr addition promoting the formation of the above distribution of Mg 2 Si particles in the coating.
- the coating contains more than 500 ppm Sr.
- the coating contains more than 1000 ppm Sr.
- the coating contains less than 3000 ppm Sr.
- the Al—Zn—Si—Mg—Sr alloy coating may contain other elements as deliberate additions or as unavoidable impurities.
- a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, Mg, and more than 250 ppm Sr and optionally other elements and forming an alloy coating on the strip that has Mg 2 Si particles in the coating microstructure with the distribution of the Mg 2 Si particles being such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in the surface of the coating.
- the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
- the coating contains more than 500 ppm Sr.
- the coating contains at least 1000 ppm Sr.
- the molten bath contains less than 3000 ppm Sr.
- the Al—Zn—Si—Mg—Sr alloy coating may contain other elements as deliberate additions or as unavoidable impurities.
- a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, and Mg and optionally other elements and forming an alloy coating on the strip, and cooling coated strip exiting the coating bath during solidification of the coating at a rate that is controlled so that the distribution of Mg 2 Si particles in the coating microstructure is such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in the surface of the coating.
- the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
- the method comprises selecting the cooling rate for coated strip exiting the coating bath to be less than a threshhold cooling rate.
- the selection of the required cooling rate is related to the coating thickness (or coating mass).
- the method comprises selecting the cooling rate for coated strip exiting the coating bath to be less than 80° C./sec for coating masses up to 75 grams per square metre of strip surface per side.
- the method comprises selecting the cooling rate for coated strip exiting the coating bath to be less than 50° C./sec for coating masses of 75-100 grams per square metre of strip surface per side.
- the method comprises selecting the cooling rate to be at least 11° C./sec.
- cooling rates are as follows:
- the coating bath and the coating on steel strip coated in the bath may contain Sr.
- a hot-dip coating method for forming a coating of a corrosion-resistant Al—Zn—Si—Mg alloy on a steel strip that is characterised by passing the steel strip through a hot dip coating bath that contains Al, Zn, Si, and Mg and optionally other elements and forming an alloy coating on the strip with minimal variation in the thickness of the coating so that the distribution of Mg 2 Si particles in the coating microstructure is such that there is only a small proportion of Mg 2 Si particles or substantially no Mg 2 Si particles in the surface of the coating.
- the small proportion of Mg 2 Si particles in the surface region of the coating may be no more than 10 wt. % of the Mg 2 Si particles.
- the coating thickness variation should be no more than 40% in any given 5 mm diameter section of the coating.
- the coating thickness variation should be no more than 30% in any given 5 mm diameter section of the coating.
- the selection of an appropriate thickness variation is related to the coating thickness for coating mass).
- the maximum thickness in any region of the coating greater than 1 mm in diameter should be 27 ⁇ m.
- the method comprises selecting the cooling rate during solidification of coated strip exiting the coating bath to be less than a threshhold cooling rate.
- the coating bath and the coating on steel strip coated in the bath may contain Sr.
- the hot-dip coating method may be the conventional method described above or any other suitable method.
- the advantages of the invention include the following advantages.
- the applicant has carried out laboratory experiments on a series of 55% Al—Zn-1.5% Si-2.0% Mg alloy compositions having up to 3000 ppm Sr coated on steel substrates.
- FIG. 1 summarises the results of one set of experiments carried out by the applicant that illustrate the present invention.
- the left hand side of the FIGURE comprises a top plan view of a coated steel substrate and a cross-section through the coating with the coating comprising a 55% Al—Zn-1.5% Si-2.0% Mg alloy with no Sr.
- the coating was not formed having regard to the selection of cooling rate during solidification and coating thickness variations discussed above.
- the right hand side of the FIGURE comprises a top plan view of a coated steel substrate and a cross-section through the coating, with the coating comprising a 55% Al—Zn-1.5% Si-2.0% Mg alloy and 500 ppm Sr. A complete absence of mottling is evident from the top plan view.
- the cross-section illustrates upper and lower regions at the coating surface and at the interface with the steel substrate that are completely free of Mg 2 Si particles, with the Mg 2 Si particles being confined to a central band of the coating. This is advantageous for the reasons stated above.
- the applicant has also carried out line trials on 55% Al—Zn-1.5% Si-2.0% Mg alloy composition (not containing Sr) coated on steel substrates.
- the trials covered a range of coating masses from 60 to 100 grams per square metre surface per side of strip, with cooling rates up to 90° C./sec.
- the first factor is the effect of the cooling rate of the strip exiting the coating bath before completing the coating solidification.
- the applicant found that for a AZ150 class coating (or 75 grams of coating per square metre surface per side of strip—refer to Australia Standard AS1397-2001), if the cooling rate is greater than 80° C./sec, Mg 2 Si particles formed on the surface of the coating. In particular, when the cooling rate was greater than 100° C./sec, mottling occurred.
- the cooling rate be too low, particularly below 11° C./sec, as in this case the coating develops a defective “bamboo” structure, whereby the zinc-rich phases forms a vertically straight corrosion path from the coating surface to the steel interface, which compromises the corrosion performance of the coating.
- the cooling rate should be controlled to be in a range of 11-80° C./sec to avoid mottling on the surface.
- the second important factor found by the applicant is the uniformess of coating thickness across the strip surface.
- the coating on the strip surface normally had thickness variations that are (a) long range (across the entire strip width, measured by the “weight-strip-weight” method on a 50 mm diameter disc) and (b) short range (across every 25 mm length in the strip width direction, measured in the cross-section of the coating under a microscope with 500 ⁇ magnification).
- the long range thickness variation is normally regulated to meet the minimum coating mass requirements as defined in relevant national standards.
- there is no regulation for short range thickness variation as long as the minimum coating mass requirements as defined in relevant national standards are met.
- the short range coating thickness variation should be controlled to no greater than 40% above the nominal coating thickness within a distance of 5 mm across the strip surface to avoid mottling.
- the ⁇ -Al phase is the first phase to nucleate.
- the ⁇ -Al phase then grows into a dendritic form.
- Mg and Si, along with other solute elements, are rejected into the molten liquid phase and thus the remaining molten liquid in the interdendritic regions is enriched in Mg and Si.
- the Mg 2 Si phase starts to form, which also corresponds to a temperature around 465° C.
- region A an interdendritic region near the outer surface of the coating
- region B another interdendritic region near the quaternary intermetallic alloy layer at the steel strip surface
- the level of enrichment in Mg and Si is the same in region A as in region B.
- the Mg 2 Si phase has the same tendency to nucleate in region A as in region B.
- the principles of physical metallurgy teach us that a new phase will preferably nucleate at a site whereupon the resultant system free energy is the minimum.
- the Mg 2 Si phase would normally nucleate preferably on the quaternary intermetallic alloy layer in region B provided the coating bath does not contain Sr (the role of Sr with Sr-containing coatings is discussed below).
- the Mg 2 Si phase Upon nucleation in region B, the Mg 2 Si phase grows upwardly, along the molten liquid channels in the interdendritic regions, towards region A.
- the molten liquid phase becomes depleted in Mg and Si (depending on the partition coefficients of Mg and Si between the liquid phase and the Mg 2 Si phase), compared with that in region A.
- a diffusion couple forms between region A and region C.
- Mg and Si in the molten liquid phase will diffuse from region A to region C.
- region A is always enriched in Mg and Si and the tendency for the Mg 2 Si phase to nucleate in region A always exists because the liquid phase is “undercooled” with regard to the Mg 2 Si phase.
- Mg 2 Si phase is to nucleate in region A, or Mg and Si are to keep diffusing from region A to region C, will depend on the level of Mg and Si enrichment in region A, relevant to the local temperature, which in turn depends on the balance between the amount of Mg and Si being rejected into that region by the ⁇ -Al growth and the amount of Mg and Si being moved away from that region by the diffusion.
- the time available for the diffusion is also limited, as the Mg 2 Si nucleation/growth process has to be completed at a temperature around 380° C., before the L ⁇ Al—Zn eutectic reaction takes place, wherein L depicts the molten liquid phase.
- controlling the balance between the time available for diffusion and the diffusion distance for Mg and Si can control the subsequent nucleation or growth of the Mg 2 Si phase or the final distribution of the Mg 2 Si phase in the coating thickness direction.
- the cooling rate should be regulated to a particular range, and more particularly not to exceed a threshhold temperature, to avoid the risk for the Mg 2 Si phase to nucleate in region A.
- a higher cooling rate will drive the ⁇ -Al phase to grow faster, resulting in more Mg and Si being rejected into the liquid phase in region A and a greater enrichment of Mg and Si, or a higher risk for the Mg 2 Si phase to nucleate, in region A (which is undesirable).
- a thicker coating (or a thicker local coating region) will increase the diffusion distance between region A and region C, resulting in a smaller amount of Mg and Si being able to move from region A to region C by the diffusion within a set time and in turn a greater enrichment of Mg and Si, or a higher risk for the Mg 2 Si phase to nucleate, in region A (which is undesirable).
- the cooling rate for coated strip exiting the coating bath has to be in a range of 11-80° C./sec for coating masses up to 75 grams per square metre of strip surface per side and in a range 11-50° C./sec for coating masses of 75-100 grams per square metre of strip surface per side.
- the short range coating thickness variation also has to be controlled to be no greater than 40% above the nominal coating thickness within a distance of 5 mm across the strip surface to achieve the distribution of Mg 2 Si particles of the present invention.
- the present invention focuses on (a) the addition of Sr to Al—Zn—Si—Mg coating alloys, (b) cooling rates (for a given coating mass) and (c) control of short range coating thickness variation as means for achieving a desired distribution of Mg 2 Si particles in coatings, i.e. at least substantially no Mg 2 Si particles in the surface of a coating, the present invention is not so limited and extends to the use of any suitable means to achieve the desired distribution of Mg 2 Si particles in the coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2008901223 | 2008-03-13 | ||
| AU2008901223A AU2008901223A0 (en) | 2008-03-13 | Metal-coated steel strip | |
| AU2008901224A AU2008901224A0 (en) | 2008-03-13 | Metal -coated steel strip | |
| AU2008901224 | 2008-03-13 | ||
| PCT/AU2009/000305 WO2009111842A1 (en) | 2008-03-13 | 2009-03-13 | Metal-coated steel strip |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2009/000305 A-371-Of-International WO2009111842A1 (en) | 2008-03-13 | 2009-03-13 | Metal-coated steel strip |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/848,546 Continuation US20180340250A1 (en) | 2008-03-13 | 2017-12-20 | Metal-coated steel strip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110052936A1 true US20110052936A1 (en) | 2011-03-03 |
Family
ID=41064679
Family Applications (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/811,213 Abandoned US20110052936A1 (en) | 2008-03-13 | 2009-03-13 | Metal-coated steel strip |
| US12/811,212 Abandoned US20110027613A1 (en) | 2008-03-13 | 2009-03-13 | Metal-coated steel strip |
| US15/848,546 Abandoned US20180340250A1 (en) | 2008-03-13 | 2017-12-20 | Metal-coated steel strip |
| US15/880,714 Abandoned US20190003028A1 (en) | 2008-03-13 | 2018-01-26 | Metal-coated steel strip |
| US17/173,507 Abandoned US20210230730A1 (en) | 2008-03-13 | 2021-02-11 | Metal-coated steel strip |
| US17/829,764 Active US11840763B2 (en) | 2008-03-13 | 2022-06-01 | Metal-coated steel strip |
| US18/342,524 Abandoned US20240026512A1 (en) | 2008-03-13 | 2023-06-27 | Metal-coated steel strip |
| US18/488,673 Active US12180594B2 (en) | 2008-03-13 | 2023-10-17 | Metal-coated steel strip |
| US18/946,543 Pending US20250179621A1 (en) | 2008-03-13 | 2024-11-13 | Metal-coated steel strip |
Family Applications After (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/811,212 Abandoned US20110027613A1 (en) | 2008-03-13 | 2009-03-13 | Metal-coated steel strip |
| US15/848,546 Abandoned US20180340250A1 (en) | 2008-03-13 | 2017-12-20 | Metal-coated steel strip |
| US15/880,714 Abandoned US20190003028A1 (en) | 2008-03-13 | 2018-01-26 | Metal-coated steel strip |
| US17/173,507 Abandoned US20210230730A1 (en) | 2008-03-13 | 2021-02-11 | Metal-coated steel strip |
| US17/829,764 Active US11840763B2 (en) | 2008-03-13 | 2022-06-01 | Metal-coated steel strip |
| US18/342,524 Abandoned US20240026512A1 (en) | 2008-03-13 | 2023-06-27 | Metal-coated steel strip |
| US18/488,673 Active US12180594B2 (en) | 2008-03-13 | 2023-10-17 | Metal-coated steel strip |
| US18/946,543 Pending US20250179621A1 (en) | 2008-03-13 | 2024-11-13 | Metal-coated steel strip |
Country Status (11)
| Country | Link |
|---|---|
| US (9) | US20110052936A1 (enExample) |
| EP (4) | EP2250296B1 (enExample) |
| JP (10) | JP2011514935A (enExample) |
| KR (6) | KR20150080001A (enExample) |
| CN (2) | CN101910444B (enExample) |
| AU (8) | AU2009225258B9 (enExample) |
| BR (2) | BRPI0907447B1 (enExample) |
| ES (2) | ES2859525T3 (enExample) |
| MY (2) | MY153085A (enExample) |
| NZ (2) | NZ586488A (enExample) |
| WO (2) | WO2009111842A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2710166A4 (en) * | 2012-08-01 | 2016-02-24 | Bluescope Steel Ltd | METAL-COATED STEEL STRIP |
Families Citing this family (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101517375B1 (ko) * | 2005-04-05 | 2015-05-07 | 블루스코프 스틸 리미티드 | 금속―코팅 강철 스트립 |
| US20110052936A1 (en) | 2008-03-13 | 2011-03-03 | Bluescope Steel Limited | Metal-coated steel strip |
| AU2010223857A1 (en) | 2009-03-13 | 2011-08-25 | Bluescope Steel Limited | Corrosion protection with Al / Zn-based coatings |
| JP6309192B2 (ja) * | 2010-01-06 | 2018-04-11 | ブルースコープ・スティール・リミテッドBluescope Steel Limited | 金属被覆スチールストリップ |
| KR20220158850A (ko) * | 2010-01-25 | 2022-12-01 | 블루스코프 스틸 리미티드 | 금속-코팅된 강철 스트립 |
| CA2780445C (en) * | 2010-02-18 | 2014-02-04 | Nippon Steel & Sumikin Coated Sheet Corporation | Hot-dipped steel and method of producing same |
| WO2012165838A2 (ko) * | 2011-05-27 | 2012-12-06 | 동부제철 주식회사 | 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재 |
| JP5527293B2 (ja) * | 2011-08-24 | 2014-06-18 | 新日鐵住金株式会社 | 表面処理溶融めっき鋼材 |
| WO2014059475A1 (en) | 2012-10-17 | 2014-04-24 | Bluescope Steel Limited | Method of producing metal-coated steel strip |
| JP6619230B2 (ja) | 2012-10-18 | 2019-12-11 | ブルースコープ・スティール・リミテッドBluescope Steel Limited | 金属被覆鋼ストリップの製造方法 |
| NZ712484A (en) * | 2013-03-06 | 2020-05-29 | Bluescope Steel Ltd | Metal-coated steel strip |
| EP2848709B1 (de) * | 2013-09-13 | 2020-03-04 | ThyssenKrupp Steel Europe AG | Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil |
| KR101693934B1 (ko) | 2014-11-04 | 2017-01-06 | 현대자동차주식회사 | 림폼 주행중 셧다운 방지 장치 및 방법 |
| KR101692118B1 (ko) * | 2014-12-12 | 2017-01-17 | 동부제철 주식회사 | 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재 |
| CN107250418B (zh) * | 2015-03-02 | 2020-06-23 | Jfe钢板株式会社 | 热浸镀Al-Zn-Mg-Si钢板及其制造方法 |
| KR101839253B1 (ko) * | 2016-12-23 | 2018-03-15 | 주식회사 포스코 | 가공부 내식성이 우수한 알루미늄계 합금 도금강판 |
| CN113631748A (zh) * | 2019-03-01 | 2021-11-09 | Jfe钢板株式会社 | 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法 |
| KR20210133266A (ko) * | 2019-03-01 | 2021-11-05 | 제이에프이 코우반 가부시키가이샤 | 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법 |
| CN117987688A (zh) * | 2019-03-01 | 2024-05-07 | Jfe钢板株式会社 | 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法 |
| CN117026132A (zh) * | 2019-03-01 | 2023-11-10 | Jfe钢板株式会社 | 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法 |
| JP7475162B2 (ja) * | 2019-03-01 | 2024-04-26 | Jfe鋼板株式会社 | 塗装鋼板及び塗装鋼板の製造方法 |
| JP7724051B2 (ja) * | 2019-03-26 | 2025-08-15 | Jfe鋼板株式会社 | 溶融Al-Zn-Mg-Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法 |
| WO2021199373A1 (ja) * | 2020-04-01 | 2021-10-07 | Jfe鋼板株式会社 | 溶融Al-Zn-Mg-Si系めっき鋼板の製造方法及び塗装鋼板の製造方法 |
| CN115427602B (zh) * | 2020-04-21 | 2024-05-24 | 日本制铁株式会社 | 热浸镀钢板、及其制造方法 |
| CN111705286A (zh) * | 2020-06-12 | 2020-09-25 | 靖江新舟合金材料有限公司 | 一种含镁锶钛的铝锌硅钢板及其生产方法 |
| JP6880299B2 (ja) * | 2020-09-30 | 2021-06-02 | 日鉄鋼板株式会社 | 被覆めっき鋼板及び被覆めっき鋼板の製造方法 |
| WO2022091850A1 (ja) * | 2020-10-30 | 2022-05-05 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板、表面処理鋼板及び塗装鋼板 |
| JP7097488B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板 |
| JP7097489B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg-Sr系めっき鋼板 |
| JP7097492B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 塗装鋼板 |
| KR102756617B1 (ko) | 2020-10-30 | 2025-01-17 | 제이에프이 스틸 가부시키가이샤 | 용융 Al-Zn-Si-Mg-Sr계 도금 강판, 표면 처리 강판 및 도장 강판 |
| CN116490636A (zh) * | 2020-10-30 | 2023-07-25 | 杰富意钢铁株式会社 | 热浸镀Al-Zn-Si-Mg系钢板、表面处理钢板和涂装钢板 |
| JP7097493B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 塗装鋼板 |
| JP7091533B2 (ja) * | 2020-10-30 | 2022-06-27 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板 |
| AU2021369097B2 (en) * | 2020-10-30 | 2024-08-22 | Jfe Galvanizing & Coating Co., Ltd. | HOT-DIP Al-Zn-Si-Mg COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND PRE-PAINTED STEEL SHEET |
| JP7091534B2 (ja) * | 2020-10-30 | 2022-06-27 | Jfeスチール株式会社 | 表面処理鋼板 |
| JP7097491B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 表面処理鋼板 |
| JP7091535B2 (ja) * | 2020-10-30 | 2022-06-27 | Jfeスチール株式会社 | 塗装鋼板 |
| JP7097490B2 (ja) * | 2020-10-30 | 2022-07-07 | Jfeスチール株式会社 | 表面処理鋼板 |
| CN114807739A (zh) * | 2021-01-28 | 2022-07-29 | 宝山钢铁股份有限公司 | 一种镀铝钢板、热成形部件及制造方法 |
| CN116888298A (zh) * | 2021-03-11 | 2023-10-13 | 杰富意钢铁株式会社 | 熔融Al-Zn-Si-Mg系镀覆钢板及其制造方法、表面处理钢板及其制造方法以及涂装钢板及其制造方法 |
| JP2022140248A (ja) * | 2021-03-11 | 2022-09-26 | Jfeスチール株式会社 | 表面処理鋼板及びその製造方法 |
| JP2023036982A (ja) * | 2021-03-11 | 2023-03-14 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法 |
| JP2023038245A (ja) * | 2021-03-11 | 2023-03-16 | Jfeスチール株式会社 | 表面処理鋼板及びその製造方法 |
| JP2022140249A (ja) * | 2021-03-11 | 2022-09-26 | Jfeスチール株式会社 | 塗装鋼板及びその製造方法 |
| JP2023036983A (ja) * | 2021-03-11 | 2023-03-14 | Jfeスチール株式会社 | 塗装鋼板及びその製造方法 |
| JP2022140247A (ja) * | 2021-03-11 | 2022-09-26 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法 |
| KR20230109706A (ko) | 2021-03-11 | 2023-07-20 | 제이에프이 스틸 가부시키가이샤 | 용융 Al-Zn-Si-Mg 계 도금 강판 및 그 제조 방법, 표면 처리 강판 및 그 제조 방법, 그리고, 도장 강판 및 그 제조 방법 |
| KR102589282B1 (ko) * | 2021-12-14 | 2023-10-13 | 현대제철 주식회사 | 열간 프레스용 강판 및 이를 이용하여 제조된 핫 스탬핑 부품 |
| JP7564134B2 (ja) * | 2022-01-06 | 2024-10-08 | Jfeスチール株式会社 | 表面処理鋼板及びその製造方法 |
| JP7564133B2 (ja) * | 2022-01-06 | 2024-10-08 | Jfeスチール株式会社 | 溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法 |
| JP7564135B2 (ja) * | 2022-01-06 | 2024-10-08 | Jfeスチール株式会社 | 塗装鋼板及びその製造方法 |
| KR20240093523A (ko) | 2022-01-06 | 2024-06-24 | 제이에프이 스틸 가부시키가이샤 | 용융 Al-Zn-Si-Mg 계 도금 강판 및 그 제조 방법, 표면 처리 강판 및 그 제조 방법, 그리고, 도장 강판 및 그 제조 방법 |
| KR20240140130A (ko) * | 2022-03-29 | 2024-09-24 | 제이에프이 스틸 가부시키가이샤 | 열간 프레스 부재 및 열간 프레스용 강판 |
| CN115558877A (zh) * | 2022-09-15 | 2023-01-03 | 首钢集团有限公司 | 一种锌铝镁镀层、锌铝镁镀层钢板 |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4401727A (en) * | 1982-06-23 | 1983-08-30 | Bethlehem Steel Corporation | Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method |
| US4412870A (en) * | 1980-12-23 | 1983-11-01 | Aluminum Company Of America | Wrought aluminum base alloy products having refined intermetallic phases and method |
| JPH06279889A (ja) * | 1993-03-30 | 1994-10-04 | Ube Ind Ltd | Si含有マグネシウム合金の金属組織改良方法 |
| US5360641A (en) * | 1992-04-06 | 1994-11-01 | John Lysaght (Australia) Limited | Stripping liquid coatings |
| US5571327A (en) * | 1992-02-12 | 1996-11-05 | Hitachi, Ltd. | Continuous hot dipping apparatus and slide bearing structure therefor |
| JP2001316791A (ja) * | 2000-04-28 | 2001-11-16 | Nippon Steel Corp | 耐食性、外観に優れた溶融亜鉛−アルミ系めっき鋼板 |
| US6635359B1 (en) * | 1999-08-09 | 2003-10-21 | Nippon Steel Corporation | Zn-Al-Mg-Si-alloy plated steel product having excellent corrosion resistance and method for preparing the same |
| US20060057417A1 (en) * | 2003-02-10 | 2006-03-16 | Jfe Steel Corporation | Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same |
| WO2006105593A1 (en) * | 2005-04-05 | 2006-10-12 | Bluescope Steel Limited | Metal-coated steel strip |
| WO2008025066A1 (en) * | 2006-08-29 | 2008-03-06 | Bluescope Steel Limited | Metal-coated steel strip |
Family Cites Families (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3343930A (en) | 1964-07-14 | 1967-09-26 | Bethlehem Steel Corp | Ferrous metal article coated with an aluminum zinc alloy |
| US3782909A (en) | 1972-02-11 | 1974-01-01 | Bethlehem Steel Corp | Corrosion resistant aluminum-zinc coating and method of making |
| US4287008A (en) | 1979-11-08 | 1981-09-01 | Bethlehem Steel Corporation | Method of improving the ductility of the coating of an aluminum-zinc alloy coated ferrous product |
| JPS6223976A (ja) * | 1985-07-23 | 1987-01-31 | Nisshin Steel Co Ltd | 塗装性に優れたZn−AI系合金めつき鋼板 |
| JPH01263255A (ja) | 1988-04-14 | 1989-10-19 | Nippon Aen Kogyo Kk | 高付着溶融アルミニウム−亜鉛合金めっき方法 |
| JPH01279767A (ja) * | 1988-04-28 | 1989-11-10 | Nkk Corp | 金属板の連続めつき方法 |
| DE4111410C2 (de) * | 1990-04-13 | 1998-02-05 | Centre Rech Metallurgique | Verfahren zum kontinuierlichen Tauchbeschichten von Stahlband |
| JP2777571B2 (ja) | 1991-11-29 | 1998-07-16 | 大同鋼板株式会社 | アルミニウム−亜鉛−シリコン合金めっき被覆物及びその製造方法 |
| JPH08260122A (ja) * | 1995-03-17 | 1996-10-08 | Nippon Steel Corp | 溶融めっき鋼板のめっき付着量制御方法 |
| JPH0953167A (ja) * | 1995-08-18 | 1997-02-25 | Sumitomo Metal Ind Ltd | ガスワイピングノズル装置 |
| JP3334521B2 (ja) | 1996-11-25 | 2002-10-15 | 日本鋼管株式会社 | スパングルの均一性に優れたAl含有溶融亜鉛めっき鋼板およびその製造方法 |
| JPH11343599A (ja) | 1998-06-02 | 1999-12-14 | Showa Alum Corp | 表面処理及びそのための装置 |
| JP2000104153A (ja) | 1998-09-28 | 2000-04-11 | Daido Steel Sheet Corp | 亜鉛−アルミニウム合金めっき鋼板 |
| JP3983932B2 (ja) * | 1999-05-19 | 2007-09-26 | 日新製鋼株式会社 | 表面外観の良好な高耐食性Mg含有溶融Zn−Al系合金めっき鋼板 |
| US6465114B1 (en) * | 1999-05-24 | 2002-10-15 | Nippon Steel Corporation | -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same |
| JP2001089838A (ja) | 1999-09-20 | 2001-04-03 | Nippon Steel Corp | 表面外観に優れたアルミニウム−亜鉛めっき鋼板 |
| KR100495443B1 (ko) | 1999-10-07 | 2005-06-14 | 아이에스쥐 테크놀로지 인코포레이티드 | 강 제품 코팅 조성물, 코팅된 강 제품 및 강 제품 코팅방법 |
| US6689489B2 (en) | 1999-10-07 | 2004-02-10 | Isg Technologies, Inc. | Composition for controlling spangle size, a coated steel product, and a coating method |
| JP4537599B2 (ja) * | 2000-03-10 | 2010-09-01 | 新日本製鐵株式会社 | 外観に優れた高耐食性Al系めっき鋼板 |
| JP2001355055A (ja) * | 2000-04-11 | 2001-12-25 | Nippon Steel Corp | 未塗装加工部ならびに塗装端面部の耐食性に優れた溶融Zn−Al−Mg−Siめっき鋼材 |
| JP2002012959A (ja) * | 2000-04-26 | 2002-01-15 | Nippon Steel Corp | 加工部及び端面耐食性に優れたAl系めっき鋼板 |
| JP2002129300A (ja) * | 2000-10-24 | 2002-05-09 | Nippon Steel Corp | 耐食性と加工性に優れた表面処理鋼板とその製造法 |
| AUPR133100A0 (en) | 2000-11-08 | 2000-11-30 | Bhp Innovation Pty Ltd | Cold-formable metal-coated strip |
| KR100500189B1 (ko) | 2001-01-31 | 2005-07-18 | 제이에프이 스틸 가부시키가이샤 | 표면처리강판 및 그 제조방법 |
| JP3563063B2 (ja) | 2001-03-19 | 2004-09-08 | Jfeスチール株式会社 | 加工性及び耐食性に優れた潤滑被覆溶融Al−Zn合金めっき鋼板およびその製造方法 |
| JP3566261B2 (ja) | 2001-03-19 | 2004-09-15 | Jfeスチール株式会社 | 加工性及び耐食性に優れた塗装溶融Al−Zn合金めっき鋼板およびその製造方法 |
| JP3566262B2 (ja) | 2001-03-19 | 2004-09-15 | Jfeスチール株式会社 | 加工性に優れた溶融Al−Zn合金めっき鋼板及びその製造方法 |
| JP2002285310A (ja) * | 2001-03-22 | 2002-10-03 | Daido Steel Co Ltd | 溶融亜鉛メッキ処理用ロール |
| JP2002322527A (ja) * | 2001-04-25 | 2002-11-08 | Nippon Steel Corp | Al−Zn−Mg系合金めっき鉄鋼製品 |
| JP4683764B2 (ja) | 2001-05-14 | 2011-05-18 | 日新製鋼株式会社 | 耐食性に優れた溶融Zn−Al−Mg系合金めっき鋼材 |
| JP2002371345A (ja) * | 2001-06-13 | 2002-12-26 | Sumitomo Metal Ind Ltd | 溶融Zn−Al−Mg合金めっき鋼板の製造方法 |
| CN100540719C (zh) * | 2002-03-08 | 2009-09-16 | 新日本制铁株式会社 | 表面平滑性优良的高耐蚀性热浸镀钢材 |
| JP3599716B2 (ja) | 2002-03-19 | 2004-12-08 | Jfeスチール株式会社 | 表面外観および曲げ加工性に優れた溶融Al−Zn系合金めっき鋼板およびその製造方法 |
| JP2003328506A (ja) * | 2002-05-09 | 2003-11-19 | Mitsubishi Chem Mkv Co | シート固定具及び該固定具を用いた防水施工法 |
| WO2004038060A1 (ja) * | 2002-10-28 | 2004-05-06 | Nippon Steel Corporation | 表面平滑性と成形性に優れる高耐食性溶融めっき鋼材と溶融めっき鋼材の製造方法 |
| JP3876829B2 (ja) * | 2002-11-28 | 2007-02-07 | Jfeスチール株式会社 | 連続溶融めっき方法 |
| KR100928804B1 (ko) | 2002-12-27 | 2009-11-25 | 주식회사 포스코 | 내식성 및 가공성이 우수한 Zn-Al-Mg계 합금 도금강판 |
| JP2004238682A (ja) | 2003-02-06 | 2004-08-26 | Nippon Steel Corp | 耐食性に優れた自動車排気系材用溶融Al系めっき鋼板 |
| AU2003901424A0 (en) | 2003-03-20 | 2003-04-10 | Bhp Steel Limited | A method of controlling surface defects in metal-coated strip |
| JP2005015907A (ja) | 2003-06-05 | 2005-01-20 | Nippon Steel Corp | 高温強度、耐酸化性に優れた溶融Al系めっき鋼板 |
| JP3735360B2 (ja) * | 2003-07-01 | 2006-01-18 | 新日本製鐵株式会社 | 外観に優れた溶融Zn−Mg−Al系めっき鋼板の製造方法 |
| JP4356423B2 (ja) | 2003-10-30 | 2009-11-04 | Jfeスチール株式会社 | 溶融Al−Zn−Mg系めっき鋼板およびその製造方法 |
| MX2007007844A (es) | 2004-12-28 | 2008-02-19 | Posco | Chapa de acero galvanizado sin lentejuela, metodo de fabricacion de este y dispositivo que se utiliza para este. |
| JP4584179B2 (ja) * | 2006-04-13 | 2010-11-17 | Jfe鋼板株式会社 | 耐食性および加工性に優れた溶融Zn−Al合金めっき鋼板の製造方法 |
| US8193641B2 (en) | 2006-05-09 | 2012-06-05 | Intel Corporation | Recessed workfunction metal in CMOS transistor gates |
| AU2008253615B2 (en) * | 2007-05-24 | 2013-05-02 | Bluescope Steel Limited | Metal-coated steel strip |
| US20110052936A1 (en) | 2008-03-13 | 2011-03-03 | Bluescope Steel Limited | Metal-coated steel strip |
| AU2010223857A1 (en) | 2009-03-13 | 2011-08-25 | Bluescope Steel Limited | Corrosion protection with Al / Zn-based coatings |
| JP6020228B2 (ja) | 2013-02-12 | 2016-11-02 | 株式会社デンソー | 冷凍コンテナシステム |
-
2009
- 2009-03-13 US US12/811,213 patent/US20110052936A1/en not_active Abandoned
- 2009-03-13 BR BRPI0907447-3A patent/BRPI0907447B1/pt active IP Right Grant
- 2009-03-13 NZ NZ586488A patent/NZ586488A/xx unknown
- 2009-03-13 KR KR1020157016323A patent/KR20150080001A/ko not_active Ceased
- 2009-03-13 ES ES09719076T patent/ES2859525T3/es active Active
- 2009-03-13 KR KR1020187030475A patent/KR20180118242A/ko not_active Abandoned
- 2009-03-13 AU AU2009225258A patent/AU2009225258B9/en active Active
- 2009-03-13 MY MYPI2010003074A patent/MY153085A/en unknown
- 2009-03-13 EP EP09719021.9A patent/EP2250296B1/en not_active Revoked
- 2009-03-13 WO PCT/AU2009/000305 patent/WO2009111842A1/en not_active Ceased
- 2009-03-13 JP JP2010549999A patent/JP2011514935A/ja active Pending
- 2009-03-13 KR KR1020177035658A patent/KR102099636B1/ko active Active
- 2009-03-13 BR BRPI0907449A patent/BRPI0907449A2/pt not_active Application Discontinuation
- 2009-03-13 EP EP20199705.3A patent/EP3778978A1/en active Pending
- 2009-03-13 CN CN200980101617XA patent/CN101910444B/zh active Active
- 2009-03-13 MY MYPI2010003076A patent/MY153086A/en unknown
- 2009-03-13 CN CN2009801016199A patent/CN101910446B/zh active Active
- 2009-03-13 WO PCT/AU2009/000306 patent/WO2009111843A1/en not_active Ceased
- 2009-03-13 KR KR1020107014576A patent/KR20100131417A/ko not_active Ceased
- 2009-03-13 NZ NZ586491A patent/NZ586491A/xx unknown
- 2009-03-13 KR KR1020107014585A patent/KR20100118101A/ko not_active Ceased
- 2009-03-13 EP EP20193955.0A patent/EP3778977A1/en active Pending
- 2009-03-13 KR KR1020207009800A patent/KR20200039019A/ko not_active Ceased
- 2009-03-13 JP JP2010549998A patent/JP5850619B2/ja active Active
- 2009-03-13 EP EP09719076.3A patent/EP2250297B1/en not_active Revoked
- 2009-03-13 AU AU2009225257A patent/AU2009225257B9/en active Active
- 2009-03-13 US US12/811,212 patent/US20110027613A1/en not_active Abandoned
- 2009-03-13 ES ES09719021T patent/ES2834614T3/es active Active
-
2014
- 2014-10-24 AU AU2014253542A patent/AU2014253542A1/en not_active Abandoned
-
2015
- 2015-07-31 JP JP2015152533A patent/JP6518543B2/ja active Active
- 2015-07-31 JP JP2015152551A patent/JP2016026266A/ja active Pending
-
2016
- 2016-11-10 AU AU2016256784A patent/AU2016256784A1/en not_active Abandoned
-
2017
- 2017-10-05 JP JP2017195059A patent/JP2018059206A/ja active Pending
- 2017-11-06 JP JP2017213987A patent/JP2018100444A/ja active Pending
- 2017-12-20 US US15/848,546 patent/US20180340250A1/en not_active Abandoned
-
2018
- 2018-01-26 US US15/880,714 patent/US20190003028A1/en not_active Abandoned
-
2019
- 2019-08-27 AU AU2019222812A patent/AU2019222812A1/en not_active Abandoned
-
2020
- 2020-04-02 JP JP2020066841A patent/JP6980831B2/ja active Active
-
2021
- 2021-02-11 US US17/173,507 patent/US20210230730A1/en not_active Abandoned
- 2021-03-03 JP JP2021033593A patent/JP7162091B2/ja active Active
- 2021-08-26 AU AU2021221876A patent/AU2021221876B2/en active Active
- 2021-11-17 JP JP2021186782A patent/JP2022027769A/ja active Pending
-
2022
- 2022-06-01 US US17/829,764 patent/US11840763B2/en active Active
- 2022-10-17 JP JP2022165999A patent/JP2023002655A/ja active Pending
-
2023
- 2023-06-27 US US18/342,524 patent/US20240026512A1/en not_active Abandoned
- 2023-10-17 US US18/488,673 patent/US12180594B2/en active Active
- 2023-12-12 AU AU2023282196A patent/AU2023282196A1/en active Pending
-
2024
- 2024-03-14 AU AU2024201691A patent/AU2024201691B2/en active Active
- 2024-11-13 US US18/946,543 patent/US20250179621A1/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4412870A (en) * | 1980-12-23 | 1983-11-01 | Aluminum Company Of America | Wrought aluminum base alloy products having refined intermetallic phases and method |
| US4401727A (en) * | 1982-06-23 | 1983-08-30 | Bethlehem Steel Corporation | Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method |
| US5571327A (en) * | 1992-02-12 | 1996-11-05 | Hitachi, Ltd. | Continuous hot dipping apparatus and slide bearing structure therefor |
| US5360641A (en) * | 1992-04-06 | 1994-11-01 | John Lysaght (Australia) Limited | Stripping liquid coatings |
| JPH06279889A (ja) * | 1993-03-30 | 1994-10-04 | Ube Ind Ltd | Si含有マグネシウム合金の金属組織改良方法 |
| US6635359B1 (en) * | 1999-08-09 | 2003-10-21 | Nippon Steel Corporation | Zn-Al-Mg-Si-alloy plated steel product having excellent corrosion resistance and method for preparing the same |
| JP2001316791A (ja) * | 2000-04-28 | 2001-11-16 | Nippon Steel Corp | 耐食性、外観に優れた溶融亜鉛−アルミ系めっき鋼板 |
| US20060057417A1 (en) * | 2003-02-10 | 2006-03-16 | Jfe Steel Corporation | Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same |
| WO2006105593A1 (en) * | 2005-04-05 | 2006-10-12 | Bluescope Steel Limited | Metal-coated steel strip |
| WO2008025066A1 (en) * | 2006-08-29 | 2008-03-06 | Bluescope Steel Limited | Metal-coated steel strip |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2710166A4 (en) * | 2012-08-01 | 2016-02-24 | Bluescope Steel Ltd | METAL-COATED STEEL STRIP |
| US9428824B2 (en) | 2012-08-01 | 2016-08-30 | Bluescope Steel Limited | Metal-coated steel strip |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12180594B2 (en) | Metal-coated steel strip | |
| AU2021221884A1 (en) | Metal-coated steel strip | |
| AU2014253547A1 (en) | Metal-coated steel strip |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BLUESCOPE STEEL LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, QIYANG;RENSHAW, WAYNE;WILLIAMS, JOE;SIGNING DATES FROM 20100706 TO 20100707;REEL/FRAME:025130/0410 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |