US20040242407A1 - Olefin polymerisation catalyst and methods for preparing the same - Google Patents

Olefin polymerisation catalyst and methods for preparing the same Download PDF

Info

Publication number
US20040242407A1
US20040242407A1 US10/481,314 US48131404A US2004242407A1 US 20040242407 A1 US20040242407 A1 US 20040242407A1 US 48131404 A US48131404 A US 48131404A US 2004242407 A1 US2004242407 A1 US 2004242407A1
Authority
US
United States
Prior art keywords
compound
particles
catalyst
ziegler
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/481,314
Other languages
English (en)
Inventor
Peter Denifl
Timo Leinonen
Erik Praet
Thomas Garoff
Kari Pesonen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis Technology Oy
Original Assignee
Borealis Polymers Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Polymers Oy filed Critical Borealis Polymers Oy
Assigned to BOREALIS POLYMERS OY reassignment BOREALIS POLYMERS OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PESONEN, KARI, GAROFF, THOMAS, PRAET, ERIK VAN, LEINONEN, TIMO, DENIFI, PETER
Publication of US20040242407A1 publication Critical patent/US20040242407A1/en
Assigned to BOREALIS TECHNOLOGY OY reassignment BOREALIS TECHNOLOGY OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOREALIS POLYMERS OY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the present invention relates to an olefin polymerisation catalyst comprising a catalyst component in the form of particles having a predetermined size range and a low surface area, said catalyst being suitable for olefin polymerisation, to the catalysts as such and to their use in polymerising olefins, and to processes for preparing and using the same.
  • ZN type polyolefin catalysts are well known in the field of polymers, generally, they comprise (a) at least a catalyst component formed from a transition metal compound of Group 4 to 6 of the Periodic Table (IUPAC, Nomenclature of Inorganic Chemistry, 1989), a metal compound of Group 1 to 3 of the Periodic Table (IUPAC), and, optionally, a compound of group 13 of the Periodic Table (IUPAC) and/or an internal donor compound.
  • ZN catalyst may also comprise (b) further catalyst component(s), such as a cocatalyst and/or an external donor.
  • a supported ZN catalyst system is prepared by impregnating the catalyst components on a particulate support material.
  • the catalyst component(s) are supported on a porous, inorganic or organic particulate carrier material, such as silica.
  • the carrier material is based on one of the catalyst components, e.g. on a magnesium compound, such as MgCl 2 .
  • a magnesium compound such as MgCl 2
  • This type of carrier material can also be formed in various ways.
  • EP-A-713 886 of Japan Olefins describes the formation of Mg-melt by melting MgCl 2 with an alcohol which is then emulsified and finally the resultant mixture is quenched to cause the solidification of the droplets.
  • EP-A-856 013 of BP discloses the formation of a solid Mg-based carrier, wherein the Mg-component containing phase is dispersed to a continuous phase and the dispersed Mg-phase is solidified by adding the two-phase mixture to a liquid hydrocarbon.
  • the formed solid carrier particles are normally treated with a transition metal compound and optionally with other compounds for forming the active catalyst.
  • the morphology of the carrier is one of the defining factors for the morphology of the final catalyst.
  • One disadvantage encountered with the supported catalyst systems is that a possible surface treatment (impregnation step) of the support with one or more catalytically active compounds may lead to non-uniform distribution of the active component(s) and in turn to an inhomogeneous polymer material.
  • WO-A-00 08073 and WO-A-00 08074 describe further methods for producing a solid ZN-catalyst, wherein a solution of a Mg-based compound and one or more further catalyst compounds are formed and the reaction product thereof is precipitated out of the solution by heating the system.
  • EP-A-926 165 discloses another precipitating method, wherein a mixture of MgCl 2 and Mg-alkoxide is precipitated together with a Ti-compound to give a ZN catalyst.
  • EP-A-83 074 and EP-A-83 073 of Montedison disclose methods for producing a ZN catalyst or a precursor thereof, wherein an emulsion or dispersion of Mg and/or Ti compound is formed in an inert liquid medium or inert gas phase and said system is reacted with an Al-alkyl compound to precipitate a solid catalyst. According to examples said emulsion is then added to a larger volume of Al-compound in hexane and prepolymerised to cause the precipitation.
  • an emulsion of a catalyst component, or a precursor thereof, comprising a Mg and/or Ti compound is formed in perfluoropolyether and the dispersed phase is reacted with a reducing and/or halogenating agent to precipitate said catalyst components or a precursor thereof.
  • said emulsion is then added to a larger volume of a solution of a halogenating agent and TiCl 4 -treatment is further continued in the formed suspension to effect the surface treatment of the particles. It has been indicated in said EP patent that one of the required properties of a good catalyst is a high surface area.
  • the precipitation of the catalyst component(s) may often proceed via a “tar-like” intermediate stage. Said undesired sticky precipitate agglomerates easily and sticks to the walls of the reactor. The morphology of the catalyst would then of course be lost.
  • the object of the present invention is to provide solid particles of a Ziegler-Natta catalyst in a controlled manner, whereby particles with a preferable morphology, such as a spherical shape, an uniform particle size (a narrow particle size distribution), a reduced surface area at high catalytic activity and/or other advantageous surface properties, can be obtained.
  • a further object of the present invention is to provide an olefin polymerisation catalyst obtainable by the method of the invention.
  • FIG. 1 shows the particle size distribution of a catalyst prepared according to a first embodiment of the invention.
  • the invention is based on the finding that catalysts can be obtained having spherical particles with a specific surface area ⁇ 20 g/m 2 .
  • the invention is therefore directed to a Ziegler-Natta catalyst for olefin polymerisation comprising a catalyst component in the form of solid particles having a predetermined particles size distribution, said particles being formed by contacting (a) at least one compound of group 1 to 3 of the Periodic Table (IUPAC) with (b) at least one compound selected from a transition metal compound of group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, to form a reaction product, wherein the catalytically active sites are distributed throughout the particles and wherein said catalyst particles have a spherical shape and a surface area of less than 20 m 2 /g.
  • IUPAC Periodic Table
  • IUPAC transition metal compound of group 4 to 10 of the Periodic Table
  • said distribution of active sites is preferably being effected during the solidification step to form said particles, thus leading to a catalyst having a catalytic activity of more than 10 kg polymer per g catalyst per hour.
  • said Ziegler-Natta catalyst for olefin polymerisation can be obtained in the form of solidified particles, said particles having a spherical shape, a predetermined particles size distribution and a surface area of less than 20 m 2 /g, wherein the catalytically active sites are distributed throughout the particles, said particles being obtainable by a process comprising the steps of
  • the porosity, i.e. a large surface area, of a catalyst has been generally considered to be a requirement for achieving a catalytically active catalyst.
  • a porous structure of a catalyst has also been thought to be necessary for producing certain type of polymers, such as heterophasic PP copolymer.
  • the “nonporous” catalyst of the invention has the same or even higher catalytic activity than the porous systems of the prior art.
  • the present catalyst is particularly suitable for e.g. heterophasic PP copolymerisation.
  • a catalytic activity of more than 15 kg, preferably more than 20 kg and most preferably more than 25 kg polymer per gram catalyst per hour can be obtained.
  • ethylene (co)polymerisations activity of more than 3 kg, preferably more than 5 kg, or even more than 10 kg polymer per gram catalyst per hour can be obtained.
  • the polymerisation conditions in each case are e.g. as described below in the test polymerisations of Examples 1 and 2.
  • the catalytically active sites are distributed throughout the particles.
  • the catalyst is in a form of solidified particles wherein said distribution of active sites being effected (in situ) during the solidification step of the particles.
  • the solidified particles are not subjected to any post treatment with active sites forming compound(s), e.g. a titanium compound, after the solidification of the particles.
  • active sites forming compound(s) e.g. a titanium compound
  • the inventors of the present invention have found that by preparing an emulsion and solidifying the droplets of the dispersed phase in which the active catalyst components are present, preferably by subjecting the emulsion to a heat treatment, particles of the catalyst component can be obtained which show superior properties.
  • the present conversion method enables to create the morphology of the final catalyst in situ during the solidification step of the catalyst component(s).
  • the invention thus provides a controlled method to obtain active catalyst particles with highly preferable morphology, e.g. with a predetermined spherical shape, uniform particle size distribution and desirable surface properties, such as low surface area.
  • the invention is therefore also directed to process for preparing a Ziegler-Natta catalyst for olefin polymerisation according to claim 18 , said process comprising the steps of
  • the solid catalyst component particles may be isolated, optionally washed and dried in a manner known in the art to obtain said catalyst as particulate solids.
  • said catalyst component may be formed, in addition to above said compounds, also from further compounds, which can be added to the solution of the catalyst component forming compounds before or after the dispersing step.
  • further compounds may be those conventionally used in the art, such as an aluminium compound and/or an internal donor compound, preferably an aluminium compound, such as an alkyl aluminium halide.
  • the catalyst of the invention may comprise further catalyst component(s), such as a cocatalyst and/or an external donor compound known in the art.
  • the further catalyst component(s) can be incorporated to the catalyst during the preparation method of the invention, or added separately with the catalyst of the invention at the actual polymerisation step.
  • the invention enables the inclusion of all the desired compounds to the dispersed phase and thus the solidification of the final composition of the catalyst component(s).
  • the obtained particles need no subsequent surface treatment(s) normally required for supported catalyst systems of the prior art.
  • the preferable morphology achievable with the present two-phase solidification method can be maintained.
  • the catalyst comprising the catalyst component(s) of the invention can further be surface treated with further compound(s), e.g. powder flowability improving agent, in a manner known in the art.
  • further compound(s) e.g. powder flowability improving agent
  • the droplets of the dispersed phase of the emulsion can be solidified directly starting from the emulsion form so that the particle size of the so obtainable catalyst component and the particle size distribution can be controlled easily.
  • the formed particles may have an average size range of 1 to 500 ⁇ m, e.g. 5 to 500 ⁇ m, advantageously 5 to 200 ⁇ m or 10 to 150 ⁇ m. Even an average size range of 5 to 50 ⁇ m is possible.
  • two methods for preparing the invention are particularly preferred.
  • similar or identical metal and transition metal compounds as well as donor compounds as exemplified below can be used, depending on the specific characteristics of the catalyst forming phase and the desired properties of the catalyst to be formed. If the catalyst forming phase is formed as said dispersed phase when the reaction partners are brought into contact, the addition of a liquid medium or solvent which is immiscible with the reaction partners or the solution thereof might not be necessary.
  • said compound of group 1 to 3 of the Periodic Table is preferably used in a prereacted form which is obtainable by reacting it with an electron donor or a precursor thereof, and adding said prereacted compound of group 1 to 3 in a liquid medium to said compound selected from a transition metal compound of group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide to form a reaction product.
  • IUPAC Periodic Table
  • an emulsion By adding said solution of said reaction product to at least one compound of a transition metal, an emulsion, the dispersed phase of which contains more than 50 mol % of the Group 1 to 3 metal in said complex, can be prepared by agitating the reaction mixture, optionally in the presence of an emulsion stabilizer, in order to maintain the droplets of said dispersed phase within the average size range 5 to 200 ⁇ m.
  • the droplets are formed by the reaction of the components in the solution and then solidified, particularly by heating the emulsion.
  • said at least a compound of group 1 to 3 of the Periodic Table (IUPAC), optionally prereacted with an internal donor compound, is reacted with a compound selected from at least one transition metal compound of group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide to form a reaction product, which is then mixed with an inert organic solvent, said solvent being immiscible with the reaction product and inert in relation to the compounds and said solvent forming the continuous phase of the emulsion.
  • said immiscible solvent is selected from a fluorinated hydrocarbon or a functionalised derivative thereof, or mixtures thereof.
  • the solvent is a perfluorinated hydrocarbon. Either method is prepared in more detail below.
  • emulsifying agents/emulsion stabilisers can be used additionally in a manner known in the art for facilitating the formation and/or stability of the emulsion.
  • surfactants e.g. a class based on acrylic or methacrylic polymers can be used.
  • said emulsion stabilizers are acrylic or methacrylic polymers, in particular those with medium sized ester side chains having more than 10, preferably more than 12 carbon atoms and preferably less than 30, and most preferably 12 to 20 carbon atoms in the ester side chain.
  • Particular preferred are unbranched C 12 to C 20 acrylates such as poly(hexadecyl)-methacrylate and poly(octadecyl)-methacrylate.
  • Additional agents and/or compounds can be added to the system in any stage of the dispersing and/or solidification step, if needed.
  • the droplet size and size distribution of the formed discontinuous phase can be selected or controlled in a manner known in the art, i.a. by the choice of the device for emulsion formation and by the energy put into emulsification. According to the common knowledge in the emulsion field, vigorous mixing is usually required in order to get desired effect.
  • the solution may already contain all the compounds (to be added) before the dispersing step thereof.
  • the dispersed phase can be formed first from one or more of the compounds and, thereafter, the other compound(s) can be added separately to said dispersed phase.
  • Said other compounds can be added in a form of a solution or already in a form of an emulsion. Portion-wise additions of the dispersed phase are also possible.
  • the inventive process further comprises adding a turbulence minimizing agent(TMA) or mixtures thereof to the emulsion system in order to minimize or to avoid turbulences in the mixture.
  • TMA turbulence minimizing agent
  • said TMA or mixtures thereof are preferred as polymers having linear aliphatic carbon backbone chains, which might be branched with short side chains only in order to serve for uniform flow conditions when stirring.
  • Said TMA is in particular preferably selected from ⁇ -olefin polymers having a high molecular weight of MW about 1-40 ⁇ 10 6 , or mixtures thereof.
  • ⁇ -olefin polymers having a high molecular weight of MW about 1-40 ⁇ 10 6 , or mixtures thereof.
  • polymers of ⁇ -olefin monomers with 6 to 20 carbon atoms most preferable is polydecene.
  • the turbulence minimizing agent is preferably selected from the group consisting of inert poly(C 6 -C 20 )— olefines or mixtures thereof, and more preferably from polyoctene, polynonene, polydecene, polyundecene or polydodecene or mixtures thereof, having the molecular weight and general backbone structure as defined before.
  • said turbulence minimizing agent can be added in any process step before particle formation starts, i.e. commonly before or at the latest before solidification of the emulsion, and is added to the emulsion in an amount of 1 to 1.000 ppm, preferably 5 to 100 ppm and more preferable 5 to 50 ppm, based on the total weight of the reaction mixture.
  • One of the further advantages of the solidification of the dispersed droplets according to the invention is that the undesirable tar formation can be avoided.
  • the idea of the present invention lies in the emulsion/solidification method which provides the advantageous morphology of the final catalyst. Therefore this invention is not limited to a specific ZN catalyst composition, but covers the preparation of any ZN catalyst, the starting material of which can be provided in liquid state during the preparation step. This means that e.g. ZN catalysts for (co)polymerising ethene (PE catalyst) or propene (PP catalyst) can be prepared.
  • PE catalyst ethene
  • PP catalyst propene
  • reaction product of catalyst forming compounds can be formed by contacting:
  • each R 1 is independently a C 1-20 -hydrocarbyl group, e.g. C 2-15 hydrocarbyl group, preferably C 3-10 group, such as C 4-8 group, e.g. linear or branched alkyl, aryl, aralkyl, or alkaryl, which may optionally be substituted with halogen; each X is independently a halogen, preferably chlorine; n is 0, 1 or 2;
  • transition metal compound of Group 4 to 10 or a compound of lanthanide or actinide, preferably a transition compound of group 4 to 6, more preferably of group 4, of the Periodic Table (IUPAC), such as a Ti compound, where particularly, a tetravalent Ti compound can be used examples of which are:
  • At least one (internal) electron donor e.g. those known in the art for (co)polymerising propylene and higher olefins including organic compounds containing oxygen, nitrogen, sulphur and/or phosphorous, such as organic acids, organic acid anhydrides, organic acid esters, alcohols, ethers, aldehydes, ketones, amines, amine oxides, amides, thiols, various phosphorous acid esters and amides, and the like, added as such or formed in situ (see also WO 00 08074 and WO 00 08073)
  • the solid catalyst particles may contain further catalyst component(s), such as cocatalysts and/or external donor(s), depending on the used polymerisation process, in a manner known in the art.
  • catalyst component(s) such as cocatalysts and/or external donor(s)
  • cocatalyst e.g. conventional activators based on compounds of group 13 of the Periodic Table (IUPAC)
  • organo aluminium such as aluminium alkyl compounds (e.g. triethylaluminium) compounds
  • one or more external donors can be used which may be selected e.g. from silanes or from the list of internal donor of point (4) above.
  • a magnesium compound e.g. Mg dialkyl of Mg halide, such as MgCl 2 , optionally in elevated temperature, in a carboxylic acid, an amine or, preferably, an alcohol, e.g. a mono or polyhydric alcohol, such as R 1 OH, wherein R 1 is as defined above in formula (I), e.g. C 2-12 alkyl, suitably C 4-12 -alkyl, such as n-butanol, 2-ethyl-1-hexanol, or phenol, optionally in the presence of an inert solvent, in a manner described e.g. in U.S. Pat. No. 5,212,133, U.S. Pat. No. 5,188,999, EP 713 886 and Wo 98 44009; and by adding the other compounds of the invention;
  • Mg halogenide and Ti alkoxides can be treated with excess of HCl to form a solution. See e.g. EP 876 318 for preparing such Mg- and Ti based solution, wherein the other compounds of the invention can be added;
  • Mg-component e.g. Mg alkoxides, Mg hydrocarbyl alkoxides or Mg hydrocarbyl, in hexane+(CO 2 or SO 2 ) form a Mg-based solution.
  • Mg-component e.g. Mg alkoxides, Mg hydrocarbyl alkoxides or Mg hydrocarbyl, in hexane+(CO 2 or SO 2 ) form a Mg-based solution.
  • the other compounds of the invention can be added;
  • the group 1-3 metal used in step a of the inventive process is preferably magnesium, and the liquid organic medium comprises preferably a C 6 -C 10 aromatic hydrocarbon or a mixture, preferably toluene.
  • electron donor compound to be reacted with the said Group 1-3 metal compound is preferably an mono- or diester of an aromatic carboxylic acid or diacid, the latter being able to form a chelate-like structured complex.
  • Said aromatic carboxylic acid ester or diester can be formed in situ by reaction of an aromatic carboxylic acid chloride or diacid dichloride with a C 2 -C 16 alkanol and/or diol, and is preferable dioctyl phthalate.
  • the reaction for the preparation of the Group 1-3 metal complex is generally carried out at a temperature of 20° to 80° C., and in case that the Group 1-3 metal is magnesium, the preparation of the magnesium complex is carried out at a temperature of 500 to 70° C.
  • the compound of a transition metal of group 4-6 is preferably a compound of a Group 4 metal.
  • the Group 4 metal is preferably titanium, and its compound to be reacted with the complex of a Group 1-3 is preferably a halide.
  • a compound of a transition metal used in the process can also contain organic ligands typically used in the field known as a single site catalyst.
  • a compound of a transition metal can also be selected from Group 5 metals, Group 6 metals, Cu, Fe, Co, Ni and/or Pd compounds.
  • the complex of the Group 1-3 metal is preferably Group 2 metal, and more preferably a magnesium complex.
  • the present invention is directed to a process for producing catalysts of the Ziegler-Natta type in the form of particles having a predetermined size range, said process comprising: preparing a solution of magnesium complex by reacting an alkoxy magnesium compound and an electron donor or precursor thereof in a C 6 -C 10 aromatic liquid reaction medium; reacting said magnesium complex with a compound of at least one fourvalent Group 4 metal at a temperature greater than 10° C. and less than 60° C.
  • the said disperse and dispersed phases in the first embodiment of the invention are thus distinguishable from one another by the fact that the denser oil, if contacted with a solution of titanium tetrachloride in toluene, will not dissolve in it.
  • a suitable solution for establishing this criterion would be one having a toluene mol ratio of 0.1 to 0.3. They are also distinguishable by the fact that the great preponderance of the Mg provided (as complex) for the reaction with the Group 4 metal compound is present in the dispersed phase, as revealed by comparison of the respective Group 4 metal/Mg mol ratios.
  • the morphology is preserved during the heating to solidify the particles, and of course throughout the final washing and drying steps. It is, by contrast, difficult to the point of impossibility to achieve such morphology through precipitation, because of the fundamental uncontrollability of nucleation and growth, and the large number of variables which affect these events.
  • the electron donor is preferably an aromatic carboxylic acid ester, a particularly favoured ester being dioctyl phthalate.
  • the donor may conveniently be formed in situ by reaction of an aromatic carboxylic acid chloride precursor with a C 2 -C 16 alkanol and/or diol.
  • the liquid reaction medium preferably comprises toluene.
  • Solidification of the dispersed phase droplets by heating is suitably carried out at a temperature of 70-150° C., usually at 90-110° C.
  • Preparation of the magnesium complex may be carried out over a wide range of temperatures, 20 to 80° C. being preferred, 50 to 70° C. most preferred.
  • the reagents can be added to the aromatic reaction medium in any order. However it is preferred that in a first step the alkoxy magnesium compound is reacted with a carboxylic acid halide precursor of the electron donor to form an intermediate; and in a second step the obtained product is further reacted with the Group 4 metal.
  • the magnesium compound preferably contains from 1 to 20 carbon atoms per alkoxy group, and the carboxylic acid should contain at least 8 carbon atoms.
  • Reaction of the magnesium compound, carboxylic acid halide and polyhydric alcohol proceeds satisfactorily at temperatures in the range 20 to 80° C., preferably 50 to 70° C.
  • the product of that reaction, the “Mg complex” is however reacted with the Group 4 metal compound at a lower temperature, contrary to previous practice, to bring about the formation of a two-phase, oil-in-oil, product.
  • the method of the invention sharply reduces the volumes of solvent to be handled and thus improving process economics.
  • the liquid medium used as solvent can be aromatic or a mixture of aromatic and aliphatic hydrocarbons, preferably aromatic and is more preferably selected from hydrocarbons such as substituted and unsubstituted benzenes, preferably from alkylated benzenes, even more preferably from toluene and the xylenes, and is most preferably toluene.
  • the molar ratio of said aromatic medium to magnesium is preferably less than 10, for instance from 4 to 10, preferably from 5 to 9.
  • the recovered particulate product is washed at least once, preferably at least twice, most preferably at least three times with a hydrocarbon, which preferably is selected from aromatic and aliphatic hydrocarbons, preferably with toluene, particularly with hot (e.g. 90° C.) toluene, which might include a small amount, preferably a few vol-%, such as about 5 vol-% of TiCl 2 in it.
  • a further wash is advantageously performed with heptane, most preferably with hot (e.g. 90° C.) heptane, and yet a further wash with pentane.
  • a washing step typically includes several substeps.
  • a favoured washing sequence is, for example, one wash with toluene at 90° C., two washes with heptane at 90° C. and one or two washes with pentane at room temperature.
  • the washing can be optimized to give a catalyst with novel and desirable properties.
  • the washed catalyst component is dried, as by evaporation or flushing with nitrogen.
  • the alkoxy magnesium compound group is preferably selected from the group consisting of magnesium dialkoxides, complexes of a magnesium dihalide and an alcohol, and complexes of a magnesium dihalide and a magnesium dialkoxide. It may be a reaction product of an alcohol and a magnesium compound selected from the group consisting of dialkyl magnesium, alkyl magnesium alkoxides, alkyl magnesium halides and magnesium dihalides.
  • Monohydric alcohols suitable for preparing the alkoxy magnesium compound are C 4 -C 12 alkyl-OH, particularly 2-ethyl-1-hexanol.
  • aromatic carboxylic acid ester is a reaction product of a carboxylic acid halide, preferably a dicarboxylic acid dihalide, more preferably an unsaturated ⁇ , ⁇ -dicarboxylic acid dihalide, most preferably phthalic acid dichloride, with the monohydric alcohol.
  • a carboxylic acid halide preferably a dicarboxylic acid dihalide, more preferably an unsaturated ⁇ , ⁇ -dicarboxylic acid dihalide, most preferably phthalic acid dichloride, with the monohydric alcohol.
  • the compound of a fourvalent Group 4 metal compound containing a halogen is preferably a titanium tetrahalide, particularly titanium tetrachloride.
  • reaction conditions used in the claimed process may be varied according to the used reactants and agents.
  • Second Embodiment As explained above for the second embodiment, said at least a compound of group 1 to 3 of the Periodic Table (IUPAC), optionally prereacted with an internal donor compound, is reacted with a compound selected from at least one transition metal compound of group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide to form a reaction product, which is then mixed with an inert organic solvent, said solvent being immiscible with the reaction product and inert in relation to the compounds and said solvent forming the continuous phase of the emulsion.
  • IUPAC Periodic Table
  • a compound of an actinide or lanthanide to form a reaction product, which is then mixed with an inert organic solvent, said solvent being immiscible with the reaction product and inert in relation to the compounds and said solvent forming the continuous phase of the emulsion.
  • the solution dispersed in the immiscible solvent can be any solution prepared from the catalyst component(s) forming compounds, provided that it is in a form of a liquid when dispersed into the continuous phase.
  • solution is understood herein broadly to include any “solutions” prepared by dissolving the compounds to (a) one of said compounds in liquid form, or (b) to an inert solvent, as well as “solutions” prepared from (c) melts of said compounds; as described herein below.
  • the continuous phase is inert in relation to said compounds
  • the continuous phase is chemically inert with respect to the solidification reactions of the catalyst component occurring in the droplets, i.e. no significant solidification reactions of the catalyst component take place between the contents of the continuous phase and the contents of the dispersed phase.
  • the solid particles of the catalyst are formed in the droplets from the compounds which originate from the dispersed phase (i.e. are provided to the emulsion in a solution dispersed into the continuous phase).
  • any suitable solvent which dissolves said compounds may be used, preferably an organic solvent, such as aliphatic or aromatic hydrocarbon, e.g. pentane, hexane, heptane, toluene, benzene etc.
  • a mixture of solvents may also be used, provided that said mixture dissolves the compounds and is immiscible with the continuous phase at least during the emulsion formation step.
  • the solvent used to form the continuous phase is chosen, as stated above, to be inert and immiscible at least at the conditions (e.g. temperature) used during the dispersing step.
  • Said solvent may also be a mixture of one or more solvents.
  • the solvent is chosen so that the compounds and possible intermediate(s) thereof which form the solidifying catalyst component(s), as well as the solidified catalyst, are practically insoluble or only poorly soluble to the continuous phase.
  • said solvent forming the continuous phase is an inert solvent including halogenated organic solvents, particularly fluorinated organic solvents, preferably perfluorinated organic solvents, e.g. perfluorinated hydrocarbons and functionalised derivatives thereof, such as octadecafluorooctane and perfluorinated ethers, octadecafluorooctane being particularly preferred.
  • halogenated organic solvents particularly fluorinated organic solvents, preferably perfluorinated organic solvents, e.g. perfluorinated hydrocarbons and functionalised derivatives thereof, such as octadecafluorooctane and perfluorinated ethers, octadecafluorooctane being particularly preferred.
  • the solidification of the catalyst component(s) in the dispersed droplets can be effected in various ways, e.g. by causing or accelerating the formation of said solid catalyst forming reaction products of the compounds present in the droplets. This can be effected, depending on the used compounds and/or the desired solidification rate, with or without a temperature change of the system.
  • the rate of the solidification reactions occurring in said droplets may be accelerated by increasing the temperature of the dispersed phase in the emulsion system.
  • the solidification reactions of the compounds are started after the formation of the emulsion system. Accordingly, a solution of one or more of the starting compounds of a catalyst component(s) is first dispersed into the inert, immiscible solvent, and thereafter, the other(s) of the starting compounds is added to said first dispersed phase to start the solidification reactions therein. Again, heating or cooling can be used during or after such additions.
  • the solidification may be effected by removing the solvent from the droplets or in case of a molten liquid catalyst by cooling the system.
  • the solidification may also be controlled by the reaction time.
  • the solidification may be effected during the dispersing (droplet formation) step or after the emulsion system is formed, optionally, while heating or cooling the system.
  • the emulsion system may be subjected to a very rapid temperature change to cause a fast/immediate (e.g. in 0.1 to 10 s, such as in few seconds) solidification in the dispersed system.
  • a fast/immediate e.g. in 0.1 to 10 s, such as in few seconds
  • the appropriate temperature change i.e. an increase or a decrease in the temperature of an emulsion system, required for the desired solidification rate of the components cannot be limited to any specific range, but naturally depends on the emulsion system, i.a. on the used compounds and the concentrations/ratios thereof, and is chosen accordingly. It is also evident that any techniques may be used to provide sufficient heating or cooling effect to the dispersed system to cause the desired solidification.
  • the heat treatment is effected by bringing, e.g. dispersing, such as spraying or preferably siphoning, the emulsion system to an inert receiving medium.
  • the temperature of the receiving system can be significantly higher than that of the emulsion to cause an instant solidification of the reaction product in the droplets. Temperature difference of e.g. 10 to 100° C., or 20 to 90° C., such as 50 to 80° C., e.g. 70 to 80° C. can be used.
  • the receiving medium can be gaseous, e.g. air, or a liquid, preferably a solvent, and suitably the same as used as the continuous phase in the formation of the emulsion.
  • gaseous e.g. air
  • a liquid preferably a solvent
  • a perfluorinated hydrocarbon as defined above or a mixture thereof with other solvents, e.g. with an aliphatic or aromatic hydrocarbon as defined above, can be used.
  • the receiving medium is mixed during the siphoning step.
  • the siphoning techniques are known in the art.
  • the solidified catalyst particles may be subjected to washing step(s).
  • the catalyst is prepared by contacting a magnesium dihydrocarbyl compound, e.g. magnesium dialkyl, such as butyloctyl-Mg (BOMAG), with an alcohol R 1 OH, wherein R 1 is as defined above, e.g. 2-ethyl-1-hexanol (EHA).
  • a magnesium dihydrocarbyl compound e.g. magnesium dialkyl, such as butyloctyl-Mg (BOMAG)
  • R 1 OH e.g. 2-ethyl-1-hexanol (EHA).
  • EHA 2-ethyl-1-hexanol
  • Al alkyl halide such as EtAlCl 2
  • TiCl 4 titanium compound
  • the solution may contain additional solvents as described above, e.g. an aliphatic or aromatic solvent, such as n-heptane.
  • Said solution can be formed at a temperature range between the ambient temperature to 100° C., e.g. 40 to 80° C., such as 50 to 70° C., e.g. 60° C. If TiCl 4 is added to the solution, this is preferably done at or below room temperature.
  • the obtained solution is then dispersed, e.g. by mixing, to an immiscible solvent, e.g. to a perfluorinated hydrocarbon as defined above. The mixing is suitably carried out at room temperature, but e.g. lower or elevated temperatures may also be used.
  • the solidification may be effected by changing rapidly the temperature of said emulsion system, e.g. by siphoning the emulsion to a receiving medium as disclosed above.
  • a magnesium alkyl is reacted with R 1 OH as defined above and, optionally, with an aluminium compound, such as an alkyl aluminium halide, e.g. EtAlCl 2 , to form a first solution, which is dispersed to an inert solvent, such as perfluorinated hydrocarbon as defined above.
  • an aluminium compound such as an alkyl aluminium halide, e.g. EtAlCl 2
  • TiCl 4 -solution is then added separately to cause the solidification of the thus formed catalyst component.
  • the emulsion system can be heated during and/or after the addition of the TiCl 4 .
  • Additional inert solvents as defined above can also be used in the formation of said solutions.
  • the dispersing order of the first solution and TiCl 4 -solution can be changed.
  • the molar ratio of Mg:Ti can be e.g. between 10:1 to 1:10, preferably 5:1 to 1:1.
  • the molar ratio of Ti:Al can be e.g. between 10:1 to 1:2, e.g. 3:1 to 1:1.
  • a suitable molar ratio of Mg:R 1 OH is between 1:1 to 1:4, preferably 1:1.5 to 1:3.
  • the catalyst components according to the embodiments of the invention can be used in processes for polymerising olefins. Said polymerisation processes can be carried out as exemplified below.
  • the catalyst particles of the invention can be used as such or together with a separate cocatalyst and/or an electron donor, as a Ziegler-Natta catalyst for the (co)polymerisation of an olefin in a manner known in the art. It is also possible to combine said catalyst with one or more other Zn and/or non-ZN catalysts.
  • the olefin to be polymerised using the catalyst system of the invention can be any olefin polymerisable in a coordination polymerisation including an alpha-olefin alone or as a mixture with one or more comonomers.
  • Preferable olefins are ethylene or propene, or a mixture of ethylene or propene with one or more alpha-olefin(s).
  • Preferable comonomers are C2-C12 olefins, preferably C4-C10 olefins, such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, as well as diene, such as butadiene, 1,7-octadiene and 1,4-hexadiene, or cyclic olefins, such as norbornene, and any mixtures thereof.
  • C2-C12 olefins such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, as well as diene, such as butadiene, 1,7-octadiene and 1,4-hexadiene, or cyclic o
  • Polyethylene and any copolymers thereof are particularly contemplated, as are polypropylene homopolymers and any copolymers thereof.
  • Polymerisation may be effected in one or more, e.g. one, two or three polymerisation reactors, using conventional polymerisation techniques, in particular gas phase, solution phase, slurry or bulk polymerisation.
  • Polymerisation can be a batch or continuous polymerisation process. Generally a combination of slurry (or bulk) and at least one gas phase reactor is preferred, particularly with gas phase operation coming last.
  • the reaction temperature will generally be in the range of 40 to 110° C. (e.g. 60-110° C.)
  • the reactor pressure will generally be in the range 5 to 80 bar (e.g. 50-60 bar)
  • the residence time will generally be in the range 0.3 to 5 hours (e.g. 0.5 to 2 hours).
  • the diluent used will generally be an aliphatic hydrocarbon having a boiling point in the range ⁇ 70 to +100° C. In such reactors, polymerisation may, if desired, be effected under supercritical conditions.
  • reaction temperature used will generally be in the range 60 to 115° C. (e.g. 70 to 110° C.)
  • the reactor pressure will generally be in the range 10 to 25 bar
  • the residence time will generally be 1 to 8 hours.
  • catalyst quantities will depend upon the nature of the catalyst, the reactor types and conditions and the properties desired for the polymer product. Conventional catalyst quantities, such as described in the publications referred herein, may be used.
  • a catalyst system with a good morphology is obtained and the catalyst exhibits high catalytic activity.
  • the morphology correlates with product morphology and—the so-called “replica effect”.
  • the catalyst leads to a polymer which also has advantageous properties, e.g. high bulk density.
  • Examples 1 and 2 have been carried out according to the above first and second embodiments of the invention, respectively.
  • MFR was determined according to ISO 1133 using 190° C., load as subscript.
  • FRR means MFR 21 :MFR 2 .
  • the particle size distribution was analysed by Coulter.
  • a magnesium complex solution was prepared by slowly adding over a 40 minute period, with stirring, 110 ml of BOMAG-A to 38.9 ml of 2-ethylhexanol which had been cooled to 5° C. in a 300 ml glass reactor. During the addition the reactor contents were maintained below 15° C. The temperature was then raised to 60° C. and held at that level for 30 minutes with stirring, at which time reaction was complete. 6.4 ml phthaloyl chloride was then added over an 11 minute period. The reactor contents were stirred at 60° C. for 20 minutes, 12.9 ml 1-chlorobutane was added, and stirring continued for another 15 minutes at 60° C. The resulting stable, yellowish Mg complex solution was cooled to room temperature.
  • the solids were then dried at 60° C. by nitrogen purge.
  • the particles were established by microscopic examination to be perfectly spherical in shape.
  • the Coulter PSD is shown in FIG. 1.
  • Example 1 The composition and morphology of the products of Example 1 is summarized in the following Table 1. TABLE 1 Coulter Coulter Coulter Example Ti % Mg % Dop %* 10% ⁇ m 50% ⁇ m 90% ⁇ m 1 3.3 12.6 27.5 41.6 28 11.7
  • TEA triethyl aluminium
  • CMMS cyclohexyl methyl dimethoxy silane
  • the polymer particles were spherical, with a markedly narrow size distribution: more than 75% of the product was of 0.5-1.00 mm particle diameter.
  • Example 1 The polymerisations were carried out as in Example 1: It was shown that the activity of the catalyst of the invention 29,0 kg PP/(g cat ⁇ hour) was in the same range as that of the comparative supported catalyst prepared in the Comparative Example
  • Composition of the catalyst Mg 6.99 wt-%, Ti 7.42 wt-%.
  • the added molar ratio of Mg:Ti:Al had been 1:1:1 and the obtained catalyst complex of the invention shows the molar ratio of Mg:Ti:Al of 1.9:1:0.3.
  • the spherical particles with a smooth surface are illustrated in FIG. 2.
  • the catalyst was tested in a homo-polymerisation of ethene. Two different polymerisation conditions were used in order to produce both high and low molecular flow rate material (HMFR and LMFR). 5 bar of H 2 pressure corresponded to LMFR polymerisation conditions, and 17.5 bar to the HMFR conditions.
  • TEA-10 was used as the cocatalyst.
  • An Al/Ti molar ratio of 15 was used in the homopolymerisations (0.9-1.5 ml TEA).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
US10/481,314 2001-06-20 2002-06-18 Olefin polymerisation catalyst and methods for preparing the same Abandoned US20040242407A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01115000A EP1273595B8 (en) 2001-06-20 2001-06-20 Preparation of olefin polymerisation catalyst component
EP01115000.0 2001-06-20
PCT/EP2002/006716 WO2003000755A2 (en) 2001-06-20 2002-06-18 Olefin polymerisation catalyst and methods for preparing the same

Publications (1)

Publication Number Publication Date
US20040242407A1 true US20040242407A1 (en) 2004-12-02

Family

ID=8177772

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/481,312 Expired - Fee Related US7271119B2 (en) 2001-06-20 2002-06-18 Process for preparing an olefin polymerization catalyst component
US10/481,314 Abandoned US20040242407A1 (en) 2001-06-20 2002-06-18 Olefin polymerisation catalyst and methods for preparing the same
US10/481,313 Active 2025-10-22 US7902108B2 (en) 2001-06-20 2002-06-18 Preparation of olefin polymerization catalyst component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/481,312 Expired - Fee Related US7271119B2 (en) 2001-06-20 2002-06-18 Process for preparing an olefin polymerization catalyst component

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/481,313 Active 2025-10-22 US7902108B2 (en) 2001-06-20 2002-06-18 Preparation of olefin polymerization catalyst component

Country Status (15)

Country Link
US (3) US7271119B2 (zh)
EP (3) EP1273595B8 (zh)
JP (2) JP2004530765A (zh)
KR (2) KR100796361B1 (zh)
CN (3) CN1308355C (zh)
AT (1) ATE328912T1 (zh)
AU (2) AU2002325246B2 (zh)
BR (2) BR0210403B1 (zh)
CA (2) CA2447644C (zh)
DE (1) DE60120389T2 (zh)
ES (2) ES2266053T3 (zh)
HU (1) HUP0400335A2 (zh)
PL (1) PL202988B1 (zh)
PT (1) PT1273595E (zh)
WO (3) WO2003000754A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111523A1 (en) * 2002-06-18 2006-05-25 Borealis Polymers Oy Method for the preparation of olefin polymerization catalysts
WO2008024897A3 (en) * 2006-08-23 2008-04-24 Fina Technology Promoter system for polymerization processes and polymers formed therefrom
US20100113716A1 (en) * 2002-09-30 2010-05-06 Borealis Polymers Oy Process for preparing an olefin polymerization catalyst component with improved high temperature activity
US8227370B2 (en) 2010-11-10 2012-07-24 Basf Corporation High activity catalyst component for olefin polymerization and method of using the same
WO2013082631A1 (en) 2011-11-30 2013-06-06 Basf Corporation Internal electron donor for olefin polymerization catalysts, method of making and using the same
US8933180B2 (en) 2013-03-14 2015-01-13 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts IV
US9068025B2 (en) 2010-08-19 2015-06-30 China Petroleum & Chemical Corporation Catalyst component for polymerization of olefin and preparation method
US20150322177A1 (en) * 2012-12-21 2015-11-12 Borealis Ag Process for producing a ziegler natta procatalyst for ethylene polymerisation
US9284392B2 (en) 2013-03-15 2016-03-15 Basf Corporation Mixed internal donor structures for 1-olefin polymerization catalysts
WO2016109787A1 (en) 2014-12-31 2016-07-07 Basf Corporation Catalyst systems, olefin polymerization catalyst components comprising at least an internal electron donor compound, and methods of making and using the same
EP3118226A1 (en) 2011-11-21 2017-01-18 BASF Corporation High activity catalyst for olefin polymerization
US9663595B2 (en) 2014-08-05 2017-05-30 W. R. Grace & Co. —Conn. Solid catalyst components for olefin polymerization and methods of making and using the same
US9738736B2 (en) 2014-08-12 2017-08-22 W. R. Grace & Co.-Conn Combined internal donor system for Ziegler-Natta polyolefin catalysts and methods of making and using same
US10457758B2 (en) 2012-12-21 2019-10-29 Borealis Ag Supported Ziegler Natta procatalyst for ethylene polymerisation

Families Citing this family (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323747A1 (en) * 2001-12-19 2003-07-02 Borealis Technology Oy Production of olefin polymerisation catalysts
EP1484345A1 (en) * 2003-06-06 2004-12-08 Borealis Technology Oy Process for the production of polypropylene using a Ziegler-Natta catalyst
ES2377948T3 (es) 2003-06-20 2012-04-03 Borealis Polymers Oy Procedimiento para la preparación de una composición de un catalizador para la polimerización de olefinas
EP1544218A1 (en) 2003-12-19 2005-06-22 Borealis Technology Oy Process for producing olefin polymers
US6962889B2 (en) 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization
US7135531B2 (en) 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization
EP1598379A1 (en) * 2004-05-18 2005-11-23 Borealis Technology OY Process for producing polypropylene film
EP1598377A1 (en) * 2004-05-21 2005-11-23 Borealis Polymers Oy Process for producing heterophasic alpha-olefin polymers
ES2309445T3 (es) 2004-12-17 2008-12-16 Borealis Technology Oy Proceso para la polimerizacion de olefinas en presencia de un catalizador de polimerizacion de las mismas.
ATE514485T1 (de) * 2004-12-31 2011-07-15 Borealis Tech Oy Verfahren zur herstellung eines festen olefinpolymerisationskatalysators
EP1681315B1 (en) 2005-01-14 2008-09-10 Borealis Polymers Oy Heterophasic polymer composition and process for its preparation
EP1717269A1 (en) * 2005-04-28 2006-11-02 Borealis Technology Oy Alpha-olefin homo-or copolymer compositions
ES2588577T3 (es) 2005-12-30 2016-11-03 Borealis Technology Oy Partículas de catalizador
EP1862481B1 (en) * 2006-05-31 2016-08-31 Borealis Technology Oy Catalyst with al-alkoxy component
EP2845868A1 (en) * 2006-05-31 2015-03-11 Borealis Technology Oy Oxidation state of Ti as means for increasing catalyst activity
EP1862479A1 (en) 2006-05-31 2007-12-05 Borealis Technology Oy Olefin polymerisation catalyst
EP1886806B1 (en) 2006-07-10 2010-11-10 Borealis Technology Oy Biaxially oriented polypropylene film
EP1883080B1 (en) 2006-07-10 2009-01-21 Borealis Technology Oy Electrical insulation film
EP1892264A1 (en) 2006-08-25 2008-02-27 Borealis Technology Oy Extrusion coated substrate
DE602006006061D1 (de) 2006-08-25 2009-05-14 Borealis Tech Oy Polypropylenschaumstoff
DE602006013137D1 (de) 2006-09-25 2010-05-06 Borealis Tech Oy Koaxiales Kabel
DE602006005508D1 (de) 2006-12-28 2009-04-16 Borealis Tech Oy Verfahren zur Herstellung von verzweigtem Polypropylen
EP1939227B1 (en) * 2006-12-28 2013-10-30 Borealis Technology Oy Catalyst preparation with phosphorous compound
EP2014714A1 (en) 2007-07-11 2009-01-14 Borealis Technology Oy Heterophasic polyolefin composition
EP2030996A1 (en) 2007-08-31 2009-03-04 Borealis Technology Oy Polyolefin compositions having improved optical and mechanical properties
EP2065404B1 (en) * 2007-11-30 2011-11-09 Borealis Technology OY Process for the manufacture of heterophasic propylene copolymer
EP2065087B1 (en) * 2007-11-30 2012-01-04 Borealis Technology OY Process for the preparation of propylene random copolymers
ES2373922T3 (es) * 2007-11-30 2012-02-10 Borealis Technology Oy Catalizador con baja �?rea superficial.
US8003559B2 (en) 2008-05-13 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
US7638585B2 (en) 2008-05-13 2009-12-29 Basf Catalysts, Llc Catalyst flow
EP2138517B1 (en) 2008-06-26 2012-09-12 Borealis AG Catalyst preparation using H2
EP2147939A1 (en) 2008-07-22 2010-01-27 Borealis AG Polypropylene composition with improved optics for film and moulding applications
US8003558B2 (en) 2008-07-29 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
EP2174962B1 (en) 2008-10-08 2011-11-30 Borealis AG A method to produce very stiff polypropylene
EP2174965B1 (en) 2008-10-08 2013-05-29 Borealis AG Preparation of propylene copolymer with dynamically operated reactor
US8450421B2 (en) 2008-12-29 2013-05-28 Borealis Ag Cable layer of modified soft polypropylene with improved stress whitening resistance
EP2216347A1 (en) 2009-01-30 2010-08-11 Borealis AG A method of catalyst transitions in olefin polymerizations
ATE529450T1 (de) 2009-02-25 2011-11-15 Borealis Ag Multimodales polymer aus propylen, zusammensetzung damit und verfahren zur herstellung davon
EP2226327A1 (en) 2009-03-02 2010-09-08 Borealis AG Preparation of an olefin polymerization catalyst component
BRPI1010294A2 (pt) 2009-04-09 2016-03-22 Borealis Ag composição de poliolefina termoplástica.
EP2251361B1 (en) 2009-05-04 2013-10-02 Borealis AG Preparation of precipitated ZN PP catalysts with internal pore structure using nanoparticles
BR112012011265B1 (pt) 2009-11-11 2020-12-01 Borealis Ag cabo e processo de produção do mesmo
ES2534468T5 (es) 2009-11-11 2022-10-31 Borealis Ag Composición polimérica y cable eléctrico que comprende la composición polimérica
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
CN102666602B (zh) 2009-11-11 2015-11-25 博瑞立斯有限公司 具有有利的电性能的可交联的聚合物组合物和电缆
EP2330135B1 (en) 2009-12-02 2012-11-07 Borealis AG Process for producing polyolefins
CN102947895B (zh) 2010-03-17 2017-03-08 北欧化工股份公司 具有优良电特性的用于电力电缆应用的聚合物组合物
KR101959473B1 (ko) 2010-03-17 2019-03-18 보레알리스 아게 유리한 전기적 특성을 갖는 와이어 및 케이블 용도의 중합체 조성물
EP2399943A1 (en) 2010-06-28 2011-12-28 Borealis AG Process for producing polyethylene
EP2415790B1 (en) 2010-07-13 2014-09-24 Borealis AG Catalyst component
ES2541701T3 (es) 2010-07-13 2015-07-23 Borealis Ag Componente de catalizador
CN102372803B (zh) * 2010-08-19 2013-03-27 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备方法
CN102372801B (zh) * 2010-08-19 2013-05-01 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及其制备方法
CN102372802B (zh) * 2010-08-19 2013-03-27 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及其制备方法
CN102453170B (zh) * 2010-10-19 2013-02-27 中国石油化工股份有限公司 烯烃聚合的催化剂组份、制备方法及应用
CN102453171B (zh) * 2010-10-19 2013-07-03 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及其制备方法
EP2423257B1 (en) 2010-08-27 2012-10-24 Borealis AG Stiff polypropylene composition with excellent elongation at break
EP3591670A1 (en) 2010-11-03 2020-01-08 Borealis AG A polymer composition and a power cable comprising the polymer composition
EP2452960B1 (en) 2010-11-12 2015-01-07 Borealis AG Process for preparing propylene polymers with an ultra high melt flow rate
EP2452957A1 (en) 2010-11-12 2012-05-16 Borealis AG Improved process for producing heterophasic propylene copolymers
EP2452976A1 (en) 2010-11-12 2012-05-16 Borealis AG Heterophasic propylene copolymers with improved stiffness/impact/flowability balance
EP2452920A1 (en) 2010-11-12 2012-05-16 Borealis AG A method for recovering transition metal tetrahalide and hydrocarbons from a waste stream
EP2452975A1 (en) 2010-11-12 2012-05-16 Borealis AG Soft heterophasic propylene copolymers
EP2452959B1 (en) 2010-11-12 2015-01-21 Borealis AG Process for producing propylene random copolymers and their use
EP2452956A1 (en) 2010-11-12 2012-05-16 Borealis AG Improved process for polymerising propylene
HUE051319T2 (hu) 2011-03-02 2021-03-01 Borealis Ag Nagy átmenõteljesítményû reaktoregység olefinek polimerizálására
EP2495038B1 (en) 2011-03-02 2020-09-02 Borealis AG A process for the production polymers
EP2508562B1 (en) 2011-03-28 2018-06-13 Borealis AG Polypropylene composition for extrusion blown molded bottles
CN103476805B (zh) * 2011-04-18 2017-03-29 巴塞尔聚烯烃意大利有限责任公司 二氯化镁‑醇加合物及由其获得的催化剂组分
US8685879B2 (en) * 2011-04-29 2014-04-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts
KR102056952B1 (ko) 2011-05-04 2019-12-17 보레알리스 아게 전기 장치용 중합체 조성물
EP2521137B1 (en) 2011-05-04 2014-12-17 Borealis AG Polymer composition for electrical and communication devices
KR101891366B1 (ko) 2011-05-04 2018-08-23 보레알리스 아게 전기 장치용 중합체 조성물
EP2705087B1 (en) 2011-05-04 2017-03-01 Borealis AG Polymer composition for electrical devices
ES2426273T3 (es) 2011-05-23 2013-10-22 Borealis Ag Copolímero de propileno aleatorio con alta rigidez y baja turbidez
EP2535372B1 (en) 2011-06-15 2016-09-14 Borealis AG In-situ reactor blend of a Ziegler-Natta catalysed, nucleated polypropylene and a metallocene catalysed polypropylene
CN106167533A (zh) 2011-08-30 2016-11-30 博里利斯股份公司 包括聚丙烯的动力电缆
EP2565221B2 (en) 2011-08-30 2018-08-08 Borealis AG Process for the manufacture of a capacitor film
EP2586825B1 (en) 2011-10-28 2014-05-28 Borealis AG High flow soft polypropylene composition
ES2550228T3 (es) 2011-11-29 2015-11-05 Borealis Ag Material de moldeo por soplado
EP2610273B1 (en) 2011-12-30 2018-02-07 Borealis AG Catalyst component
EP2610272B1 (en) 2011-12-30 2017-05-10 Borealis AG Catalyst component
ES2554864T3 (es) 2011-12-30 2015-12-23 Borealis Ag Componente de catalizador
ES2727405T3 (es) 2011-12-30 2019-10-16 Borealis Ag Preparación de catalizadores de ZN PP libres de ftalato
EP2617741B1 (en) 2012-01-18 2016-01-13 Borealis AG Process for polymerizing olefin polymers in the presence of a catalyst system and a method of controlling the process
US9382359B2 (en) 2012-08-29 2016-07-05 Borealis Ag Reactor assembly and method for polymerization of olefins
US9890229B2 (en) 2012-09-24 2018-02-13 Indian Oil Corporation Limited Precursor for catalyst, process for preparing the same and its use thereof
JP6026662B2 (ja) 2012-09-24 2016-11-16 インディアン オイル コーポレーション リミテッド 固体形態の有機金属化合物を調製するプロセス、およびその使用により触媒組成物および触媒系を調製するプロセス
EP2711073B1 (en) 2012-09-24 2018-11-21 Borealis AG Storage and transportation of a catalyst for a production of olefin polymers
EP2719725B1 (en) 2012-10-11 2018-12-05 Abu Dhabi Polymers Company Limited (Borouge) Nucleated polypropylene composition for containers
KR102071747B1 (ko) * 2012-11-08 2020-03-02 릴라이언스 인더스트리즈 리미티드 프로필렌 중합을 위한 변형된 지글러 나타 촉매
EP2745926A1 (en) 2012-12-21 2014-06-25 Borealis AG Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor
EP2745927A1 (en) 2012-12-21 2014-06-25 Borealis AG Fluidized bed reactor with internal moving bed reaction unit
EP2749580B1 (en) 2012-12-28 2016-09-14 Borealis AG Process for producing copolymers of propylene
CN104031184B (zh) * 2013-03-06 2016-05-11 中国石油天然气股份有限公司 一种乙烯聚合或共聚合的固体钛催化剂及其制备和应用
EP2796472B1 (en) 2013-04-22 2017-06-28 Borealis AG Two-stage process for producing polypropylene compositions
EP3235832B1 (en) 2013-04-22 2018-06-20 Borealis AG Polypropylene compositions
ES2628082T3 (es) 2013-04-22 2017-08-01 Borealis Ag Procedimiento con múltiples etapas para producir composiciones de polipropileno resistentes a baja temperatura
EP2808352B1 (en) 2013-05-29 2017-08-23 Abu Dhabi Polymers Co. Ltd (Borouge) Llc. Bimodal polypropylene for cast films or a metallized film wherein the polypropylene comprises two fractions which differ in the comonomer content
CN104277145B (zh) * 2013-07-01 2016-05-25 中国石油化工股份有限公司 用于烯烃聚合的催化剂组份、其制备方法及应用
BR112016002870B1 (pt) 2013-08-12 2020-11-24 Saudi Basic Industries Corporation Sistema catalisador para polimerizacao de uma olefina, seu processo de preparação, processo para preparar uma poliolefina, poliolefina obtenivel do mesmo, artigo moldado e uso
ES2651456T3 (es) 2013-08-14 2018-01-26 Borealis Ag Composición de propileno con mejor resistencia al impacto a baja temperatura
CA2919745C (en) 2013-08-21 2018-08-07 Borealis Ag High flow polyolefin composition with high stiffness and toughness
CA2919171A1 (en) 2013-08-21 2015-02-26 Borealis Ag High flow polyolefin composition with high stiffness and toughness
ES2587781T3 (es) 2013-09-27 2016-10-26 Borealis Ag Películas adecuadas para procesamiento BOPP de polímeros con altos XS y alta Tm
EP2853562A1 (en) 2013-09-27 2015-04-01 Borealis AG Two-stage process for producing polypropylene compositions
EP2860031B1 (en) 2013-10-11 2016-03-30 Borealis AG Machine direction oriented film for labels
PL2865713T3 (pl) 2013-10-24 2016-10-31 Wyrób formowany z rozdmuchiwaniem na bazie dwumodalnego bezładnego kopolimeru
US10519259B2 (en) 2013-10-24 2019-12-31 Borealis Ag Low melting PP homopolymer with high content of regioerrors and high molecular weight
US9670293B2 (en) 2013-10-29 2017-06-06 Borealis Ag Solid single site catalysts with high polymerisation activity
EP2868375A1 (en) 2013-10-31 2015-05-06 Borealis AG A method for producing an olefin polymerization catalyst
BR112016009549B1 (pt) 2013-11-22 2021-07-27 Borealis Ag Homopolímero de propileno de baixa emissão com alto índice de fluidez
WO2015082379A1 (en) 2013-12-04 2015-06-11 Borealis Ag Phthalate-free pp homopolymers for meltblown fibers
WO2015091839A1 (en) 2013-12-18 2015-06-25 Borealis Ag Bopp film with improved stiffness/toughness balance
BR112016013799B1 (pt) 2013-12-20 2022-02-22 Saudi Basic Industries Corporation Pró-catalisador para a polimerização de uma olefina, seu processo de preparação, uso de benzamida de fórmula x e processo de preparação de poliolefinas
CN105849179B (zh) 2013-12-20 2019-11-12 沙特基础工业公司 多相丙烯共聚物
MX2016008041A (es) 2013-12-20 2017-03-03 Saudi Basic Ind Corp Sistema catalizador para polimerizacion de una olefina.
CN106164111B (zh) 2013-12-20 2018-12-18 沙特基础工业公司 用于烯烃聚合的催化剂体系
WO2015091983A1 (en) 2013-12-20 2015-06-25 Saudi Basic Industries Corporation Catalyst system for polymerization of an olefin
WO2015091966A1 (en) 2013-12-20 2015-06-25 Saudi Basic Industries Corporation Catalyst system for polymerization of an olefin
MX2016008034A (es) 2013-12-20 2017-03-03 Saudi Basic Ind Corp Composicion de poliolefina.
MX2016008022A (es) 2013-12-20 2017-05-10 Saudi Basic Ind Corp Sistema catalizador para polimerizacion de una olefina.
WO2015101593A1 (en) 2013-12-31 2015-07-09 Borealis Ag Process for producing propylene terpolymer
US10227427B2 (en) 2014-01-17 2019-03-12 Borealis Ag Process for preparing propylene/1-butene copolymers
CN105934476B (zh) 2014-02-06 2019-03-29 北欧化工公司 软性透明的抗冲击共聚物
CN105934475A (zh) 2014-02-06 2016-09-07 北欧化工公司 高冲击强度的柔性共聚物
EP2907841A1 (en) 2014-02-14 2015-08-19 Borealis AG Polypropylene composite
ES2659731T3 (es) 2014-05-20 2018-03-19 Borealis Ag Composición de polipropileno para aplicaciones en interiores de automóviles
EA036725B1 (ru) 2014-06-02 2020-12-11 Сабик Глоубл Текнолоджиз Б.В. Прокатализатор для полимеризации олефинов
CN106459247A (zh) 2014-06-02 2017-02-22 Sabic环球技术有限责任公司 用于烯烃的聚合的原催化剂
EP2960257B1 (en) 2014-06-27 2022-09-28 Borealis AG Improved process for preparing a particulate olefin polymerisation catalyst component
ES2676219T3 (es) 2014-06-27 2018-07-17 Borealis Ag Componente de catalizador para la preparación de poliolefinas nucleadas
EP2966099B1 (en) 2014-07-08 2020-03-11 Indian Oil Corporation Limited Particle size distribution control through internal donor in ziegler-natta catalyst
EP2995631A1 (en) 2014-09-12 2016-03-16 Borealis AG Process for producing graft copolymers on polyolefin backbone
US9714302B2 (en) 2014-10-10 2017-07-25 W. R. Grace & Co.—Conn. Process for preparing spherical polymerization catalyst components for use in olefin polymerizations
EP3212710B2 (en) 2014-10-27 2023-12-27 Borealis AG Polymer composition for cable applications with advantageous electrical properties
EP3018155A1 (en) 2014-11-05 2016-05-11 Borealis AG Branched polypropylene for film applications
EP3023450B1 (en) 2014-11-21 2017-07-19 Borealis AG Process for producing pellets of soft copolymers
BR112017005285B1 (pt) 2014-12-08 2021-09-28 Borealis Ag Processo para extrudar e peletizar um copolímero de propileno
EP3040364B1 (en) 2014-12-30 2017-06-14 Abu Dhabi Polymers Company Limited (Borouge) L.L.C. Polypropylene compound with improved optical property and gel level
US10435552B2 (en) 2015-06-12 2019-10-08 Sabic Global Technologies B.V. Process for manufacture of low emission polypropylene
CN107709382B (zh) 2015-06-30 2020-11-10 博里利斯股份公司 制备丙烯聚合物组合物的方法
US10851191B2 (en) 2015-06-30 2020-12-01 Borealis Ag Process for preparing propylene polymer compositions
US10870718B2 (en) 2015-07-16 2020-12-22 Borealis Ag Catalyst component
EP3124567A1 (en) 2015-07-30 2017-02-01 Borealis AG Polypropylene based hot-melt adhesive composition
BR112018001471A2 (pt) 2015-07-30 2018-09-11 Borealis Ag composição de polipropileno, processo para fabricação de uma composição de polipropileno, uso de uma composição de polipropileno, artigo, película, composição adesiva, e, processo para produzir um artigo
US10745499B2 (en) 2015-08-07 2020-08-18 Sabic Global Technologies B.V. Process for the polymerization of olefins
EP3331924B1 (en) 2015-08-07 2019-08-21 SABIC Global Technologies B.V. Process for the polymerization of olefins
US10696756B2 (en) 2015-08-07 2020-06-30 Sabic Global Technologies B.V. Process for the polymerization of olefins
EP3353146B1 (en) 2015-09-22 2023-10-25 SABIC Global Technologies B.V. Synthesis of substituted amidobenzoate compounds, the compounds obtained and the use thereof as phthalate free internal electron donor for polymerization of olefins
EP3147324B1 (en) 2015-09-28 2018-09-26 Borealis AG Polypropylene pipes with improved pressure resistance
WO2017068106A1 (en) 2015-10-21 2017-04-27 Borealis Ag Long-chain branched polypropylene composition with increased melt strength stability
US10934422B2 (en) 2015-10-28 2021-03-02 Borealis Ag Polypropylene compositions for a layer element
EP3178853B1 (en) 2015-12-07 2018-07-25 Borealis AG Process for polymerising alpha-olefin monomers
EP3181625A1 (en) 2015-12-18 2017-06-21 SABIC Global Technologies B.V. Composition comprising heterophasic propylene copolymer
EP3187512A1 (en) 2015-12-31 2017-07-05 Borealis AG Process for preparing propylene copolymer compositions
EP3430079A1 (en) 2016-03-14 2019-01-23 Borealis AG Polypropylene composition comprising flame retardant
EP3243622B1 (en) 2016-05-13 2020-09-09 Borealis AG Process for hydraulic conveying of polyolefin pellets
EP3484930A1 (en) 2016-07-12 2019-05-22 Borealis AG Solid catalyst for the preparation of nucleated polyolefins
EP3281973A1 (en) 2016-08-11 2018-02-14 Borealis AG Polypropylene composition with flame retardant activity
EP3510056B2 (en) 2016-09-08 2023-07-19 SABIC Global Technologies B.V. Process of preparing polyolefin with the discontinuous addition of a thermal runaway reducing agent
WO2018046395A1 (en) 2016-09-08 2018-03-15 Sabic Global Technologies B.V. Process of preparing polyolefin with the discontinuous addition of a thermal runaway reducing agent
WO2018060406A1 (en) 2016-09-29 2018-04-05 Sabic Global Technologies B.V. Procatalyst for polymerization of olefins
EA038511B9 (ru) 2016-09-29 2021-10-01 Сабик Глоубл Текнолоджиз Б.В. Прокатализатор для полимеризации олефинов
EA201991032A1 (ru) 2016-11-09 2019-10-31 Композиция полипропилена
EP3551674A1 (en) 2016-12-12 2019-10-16 SABIC Global Technologies B.V. Process for manufacture of low emission homopolymer or random polypropylene
CN110050028B (zh) 2016-12-12 2021-12-07 Sabic环球技术有限责任公司 异相丙烯共聚物
US10995158B2 (en) 2016-12-12 2021-05-04 Sabic Global Technologies B.V. Process for manufacture of low emission heterophasic polypropylene
EP3333222A1 (en) 2016-12-12 2018-06-13 SABIC Global Technologies B.V. Composition comprising heterophasic propylene copolymer
WO2018108929A1 (en) 2016-12-12 2018-06-21 Sabic Global Technologies B.V. Pellet comprising thermoplastic polymer sheath surrounding glass filaments having reduced emissions
US20220347980A1 (en) 2017-02-01 2022-11-03 Borealis Ag Article comprising a layer element
WO2018167155A1 (en) 2017-03-17 2018-09-20 Sabic Global Technologies B.V. Process of making polyolefins
EP3395377A1 (en) 2017-04-28 2018-10-31 Borealis AG Soft polypropylene composition with improved properties
WO2018211107A1 (en) 2017-05-19 2018-11-22 Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. Propylene random copolymer composition with reduced sealing initiation temperature
EP3652247B1 (en) 2017-07-14 2021-09-01 Borealis AG Polypropylene composition
PT3447088T (pt) 2017-08-21 2020-02-03 Borealis Ag Composição de polipropileno
PT3456776T (pt) 2017-09-13 2020-03-09 Borealis Ag Composição de polipropileno
RU2753481C1 (ru) 2017-09-20 2021-08-17 Бореалис Аг Композиция полипропилена
EP3473674B1 (en) 2017-10-19 2022-04-20 Abu Dhabi Polymers Co. Ltd (Borouge) Llc. Polypropylene composition
US11279777B2 (en) 2017-10-24 2022-03-22 Borealis Ag Catalysts
CN111757896B (zh) 2017-12-21 2023-10-13 博里利斯股份公司 制备固体催化剂的方法
EP3732208A1 (en) 2017-12-27 2020-11-04 Borealis AG Ziegler-natta catalyst and preparation thereof
US11753486B2 (en) 2017-12-28 2023-09-12 Borealis Ag Catalyst and preparation thereof
EP3735441B1 (en) 2018-01-05 2021-12-22 Borealis AG Polypropylene composition with improved sealing behaviour
CN108247055B (zh) 2018-02-12 2019-01-29 成都优材科技有限公司 牙科附着体的数字化一体化成型方法
US20210214527A1 (en) 2018-04-10 2021-07-15 Borealis Ag Polypropylene composition
EP3553096B1 (en) 2018-04-10 2020-03-18 Borealis AG Polypropylene composition
TWI736891B (zh) 2018-05-18 2021-08-21 阿拉伯聯合大公國商阿布達比聚合物股份有限公司(波魯) 熱塑性聚烯烴組成物之改良的流變性質
WO2019228908A2 (en) 2018-05-28 2019-12-05 Borealis Ag Devices for a photovoltaic (pv) module
EP3608364A1 (en) 2018-08-06 2020-02-12 Borealis AG Multimodal propylene random copolymer based composition suitable as hot melt adhesive composition
US20210277290A1 (en) 2018-08-06 2021-09-09 Borealis Ag Propylene random copolymer based hot melt adhesive composition
EP3620486B1 (en) 2018-09-06 2020-11-18 Borealis AG Polypropylene based composition with improved paintability
WO2020064484A1 (en) 2018-09-28 2020-04-02 Borealis Ag A multi-stage process for producing a c2 to c8 olefin polymer composition
US20210317290A1 (en) 2018-10-31 2021-10-14 Borealis Ag Polyethylene composition for high pressure resistant pipes with improved homogeneity
EP3647645A1 (en) 2018-10-31 2020-05-06 Borealis AG Polyethylene composition for high pressure resistant pipes
CN113056515A (zh) 2018-11-19 2021-06-29 Sabic环球技术有限责任公司 包含聚合物组合物的食品包装和所述聚合物组合物用于制造食品包装的用途
US20220177613A1 (en) 2018-11-30 2022-06-09 Borealis Ag Washing process
CN113015753A (zh) 2018-12-21 2021-06-22 北欧化工公司 催化剂及其制备方法
EP3670547B1 (en) 2018-12-21 2023-06-07 Borealis AG Polypropylene composition for film sealing layer
JP7283203B2 (ja) 2019-04-25 2023-05-30 住友化学株式会社 プロピレン重合体の製造方法
CN110283261B (zh) * 2019-06-28 2021-08-03 上海化工研究院有限公司 一种烯烃聚合催化剂的主体组分及其制备方法
US20220251358A1 (en) 2019-07-05 2022-08-11 Borealis Ag Soft propylene copolymer composition
EP3994211B1 (en) 2019-07-05 2024-01-31 Borealis AG Soft propylene copolymer composition
WO2021037590A1 (en) 2019-08-27 2021-03-04 Sabic Global Technologies B.V. Heterophasic propylene copolymer composition
WO2021043784A1 (en) 2019-09-06 2021-03-11 Sabic Global Technologies B.V. Healthcare article comprising a random propylene-ethylene copolymer.
EP3650494A3 (en) 2020-02-14 2020-05-27 SABIC Global Technologies B.V. Matte film comprising heterophasic propylene copolymer composition
WO2021160773A1 (en) 2020-02-14 2021-08-19 Sabic Global Technologies B.V. Film comprising heterophasic propylene copolymer composition
EP3650495A3 (en) 2020-02-14 2020-05-27 SABIC Global Technologies B.V. Film comprising heterophasic propylene copolymer composition
EP3875503A1 (en) 2020-03-02 2021-09-08 Borealis AG Catalyst and preparation thereof
KR20220158252A (ko) 2020-03-27 2022-11-30 사빅 글로벌 테크놀러지스 비.브이. 저온에서 개선된 충격 강도를 갖는 폴리머 조성물
JP2021161216A (ja) 2020-03-31 2021-10-11 住友化学株式会社 オレフィン重合用固体触媒成分
EP3912810B1 (en) 2020-05-18 2022-08-10 Borealis AG Polypropylene composition
EP3915782A1 (en) 2020-05-25 2021-12-01 Borealis AG Layer element suitable as integrated backsheet element of a photovoltaic module
US20230197871A1 (en) 2020-05-25 2023-06-22 Borealis Ag Layer element suitable as integrated backsheet for a bifacial photovoltaic module
MX2023006101A (es) 2020-11-27 2023-06-06 Borealis Ag Sistema de alimentacion de catalizador.
KR20230110609A (ko) 2020-12-11 2023-07-24 보레알리스 아게 반도전성 폴리프로필렌 조성물
BR112023018372A2 (pt) 2021-03-25 2024-01-09 Borealis Ag Composição de polipropileno para isolamento de cabo
US20240158623A1 (en) 2021-03-25 2024-05-16 Borealis Ag Polypropylene compostion for cable insulation
EP4144435A1 (en) 2021-09-01 2023-03-08 Borealis AG Gas phase polymerization process with improved gas recycling
EP4155324A3 (en) 2021-09-22 2023-05-03 Sumitomo Chemical Company, Limited Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer
WO2023062108A1 (en) 2021-10-14 2023-04-20 Borealis Ag Process for forming a ziegler-natta catalyst component
WO2023104940A1 (en) 2021-12-09 2023-06-15 Sabic Global Technologies B.V. Catalyst system for polymerization of an olefin
WO2023117789A1 (en) 2021-12-21 2023-06-29 Sabic Global Technologies B.V. High impact polypropylene composition
JP2023103559A (ja) 2022-01-14 2023-07-27 住友化学株式会社 ヘテロファジックプロピレン重合材料およびオレフィン重合体
WO2023174732A1 (en) 2022-03-14 2023-09-21 Sabic Global Technologies B.V. Heterophasic propylene copolymer composition
WO2023174731A1 (en) 2022-03-14 2023-09-21 Sabic Global Technologies B.V. Injection molding process
WO2023217944A1 (en) 2022-05-13 2023-11-16 Sabic Global Technologies B.V. Heterophasic polypropylene composition with low shrinkage
WO2023217946A1 (en) 2022-05-13 2023-11-16 Sabic Global Technologies B.V. Heterophasic polypropylene composition with low hexane extractables
WO2023217945A1 (en) 2022-05-13 2023-11-16 Sabic Global Technologies B.V. Heterophasic polypropylene composition with low emission
WO2024008770A1 (en) 2022-07-05 2024-01-11 Sabic Global Technologies B.V. Catalyst system for polymerization of an olefin
WO2024068578A1 (en) 2022-09-28 2024-04-04 Borealis Ag Polypropylene composition for cable insulation
WO2024068577A1 (en) 2022-09-28 2024-04-04 Borealis Ag Polypropylene composition for cable insulation
WO2024068579A1 (en) 2022-09-28 2024-04-04 Borealis Ag Polypropylene composition for cable insulation
WO2024068580A1 (en) 2022-09-28 2024-04-04 Borealis Ag Polypropylene composition for cable insulation
WO2024068576A1 (en) 2022-09-28 2024-04-04 Borealis Ag Polypropylene composition for cable insulation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534698A (en) * 1944-11-29 1950-12-19 Standard Oil Dev Co Polymerization of olefins in fluorinated diluent
US4298718A (en) * 1968-11-25 1981-11-03 Montecatini Edison S.P.A. Catalysts for the polymerization of olefins
US4315874A (en) * 1979-04-11 1982-02-16 Mitsui Petrochemical Industries Ltd. Process for the production of spherical carrier particles for olefin polymerization catalysts
US4399055A (en) * 1981-05-01 1983-08-16 Mitsubishi Petrochemical Company Limited Carrier of catalyst and catalyst component composed of the carrier, for polymerization of olefins, as well as processes for production thereof
US4481342A (en) * 1982-06-10 1984-11-06 Anic S.P.A. Method of preparing low-density ethylene copolymers
US4517307A (en) * 1981-12-24 1985-05-14 Montedison S.P.A. Catalyst components for the polymerization of ethylene and of mixtures thereof with olefins and catalysts obtained therefrom
US4804798A (en) * 1986-07-31 1989-02-14 Montedison S.P.A. Process for the polymerization of alpha-olefins or of their mixtures with minor amounts of ethylene, by means of catalysts comprising solid components or precursors and such components, in the form of microspheroidal particles
US4805798A (en) * 1987-06-22 1989-02-21 International Precision Components Corporation Container and closure having fastening means
US4843049A (en) * 1987-02-06 1989-06-27 Renzo Invernizzi Catalyst component for polymerizing ethylene or copolymerizing ethylene with an alpha-olefin
US5188999A (en) * 1989-11-16 1993-02-23 Atochem Catalyst support for polymerization of olefins, process for manufacturing the same, and catalyst obtained from this support
US5212133A (en) * 1990-02-19 1993-05-18 Atochem Magnesium chloride particles with a truncated structure, catalytic component supported on these particles, polyolefins obtained by employing this catalytic component, procedures for manufacturing these products
US5382557A (en) * 1991-07-12 1995-01-17 Ecp Enichem Polimeri S.R.L. Procedure for the preparation of a solid component of catalyst for the (co)polymerization of ethylene
US6294682B1 (en) * 1995-12-06 2001-09-25 E. I. Du Pont De Nemours And Company Alkoxides with alkaline earths and titanium, zirconium and/or hafnium, their production and use

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127706A (ja) * 1982-01-23 1983-07-29 Mitsubishi Petrochem Co Ltd オレフイン重合用触媒担体
IT1169292B (it) 1981-12-24 1987-05-27 Montedison Spa Componenti di catalizzatori per la polimerizzazione delle alfa olefine e i catalizzatori da essi ottenuti
DE3765723D1 (de) 1986-07-31 1990-11-29 Montedison Spa Verfahren zur herstellung mikrospheroidaler fester katalysatorbestandteile oder ihrer vorlaeufer und ihre anwendung bei der herstellung von aethylenpolymeren.
IT1213474B (it) * 1986-07-31 1989-12-20 Montedison Spa Procedimento per preparare componenti solidi di catalizzatori, o precursori di tali componenti, in forma di particellmicrosferoidali per la polimerizzazione delle alfa-olefine.
US5094735A (en) 1990-06-14 1992-03-10 The Mitchell-Bate Company Plating workstation support
DZ1626A1 (fr) * 1991-10-09 2002-02-17 Enichem Polimeri Catalyseurs pour la polymérisation d'oléfines.
IT1262934B (it) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
FI942949A0 (fi) 1994-06-20 1994-06-20 Borealis Polymers Oy Prokatalysator foer producering av etenpolymerer och foerfarande foer framstaellning daerav
JP3471099B2 (ja) 1994-11-25 2003-11-25 昭和電工株式会社 オレフィン重合用触媒担体の製造方法
US5955396A (en) 1995-10-17 1999-09-21 Bp Amoco Corporation Morphology-controlled olefin polymerization catalyst formed from an emulsion
BR9804806A (pt) 1997-03-29 1999-08-17 Montell Technology Company Bv Adutos de alcool-dicloreto de magnesio processo para sua prepara-Æo e componentes de catalisadores obtidos a partir deles
WO1999033842A1 (en) 1997-12-23 1999-07-08 Borealis Technology Oy Product containing magnesium, halogen and alkoxy
FI981717A (fi) 1998-08-07 2000-02-08 Borealis As Katalysaattorikomponentti, joka käsittää magnesiumia, titaania, halogeenia ja elektronidonorin, sen valmistus ja käyttö
FI981718A (fi) 1998-08-07 2000-02-08 Borealis As Katalysaattorikomponentti, joka käsittää magnesiumia, titaania, halogeenia ja elektrodonorin, sen valmistus ja käyttö
GB0001914D0 (en) 2000-01-27 2000-03-22 Borealis Polymers Oy Catalyst

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534698A (en) * 1944-11-29 1950-12-19 Standard Oil Dev Co Polymerization of olefins in fluorinated diluent
US4298718A (en) * 1968-11-25 1981-11-03 Montecatini Edison S.P.A. Catalysts for the polymerization of olefins
US4315874A (en) * 1979-04-11 1982-02-16 Mitsui Petrochemical Industries Ltd. Process for the production of spherical carrier particles for olefin polymerization catalysts
US4399055A (en) * 1981-05-01 1983-08-16 Mitsubishi Petrochemical Company Limited Carrier of catalyst and catalyst component composed of the carrier, for polymerization of olefins, as well as processes for production thereof
US4517307A (en) * 1981-12-24 1985-05-14 Montedison S.P.A. Catalyst components for the polymerization of ethylene and of mixtures thereof with olefins and catalysts obtained therefrom
US4481342A (en) * 1982-06-10 1984-11-06 Anic S.P.A. Method of preparing low-density ethylene copolymers
US4804798A (en) * 1986-07-31 1989-02-14 Montedison S.P.A. Process for the polymerization of alpha-olefins or of their mixtures with minor amounts of ethylene, by means of catalysts comprising solid components or precursors and such components, in the form of microspheroidal particles
US4843049A (en) * 1987-02-06 1989-06-27 Renzo Invernizzi Catalyst component for polymerizing ethylene or copolymerizing ethylene with an alpha-olefin
US4805798A (en) * 1987-06-22 1989-02-21 International Precision Components Corporation Container and closure having fastening means
US5188999A (en) * 1989-11-16 1993-02-23 Atochem Catalyst support for polymerization of olefins, process for manufacturing the same, and catalyst obtained from this support
US5212133A (en) * 1990-02-19 1993-05-18 Atochem Magnesium chloride particles with a truncated structure, catalytic component supported on these particles, polyolefins obtained by employing this catalytic component, procedures for manufacturing these products
US5382557A (en) * 1991-07-12 1995-01-17 Ecp Enichem Polimeri S.R.L. Procedure for the preparation of a solid component of catalyst for the (co)polymerization of ethylene
US6294682B1 (en) * 1995-12-06 2001-09-25 E. I. Du Pont De Nemours And Company Alkoxides with alkaline earths and titanium, zirconium and/or hafnium, their production and use

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111523A1 (en) * 2002-06-18 2006-05-25 Borealis Polymers Oy Method for the preparation of olefin polymerization catalysts
US7238637B2 (en) * 2002-06-18 2007-07-03 Borealis Technology Oy Method for the preparation of olefin polymerization catalysts
US20070249489A1 (en) * 2002-06-18 2007-10-25 Borealis Polymers Oy Method For The Preparation Of Olefin Polymerization Catalysts
US7608555B2 (en) 2002-06-18 2009-10-27 Borealis Technology Oy Method for the preparation of olefin polymerization catalysts
US20100113716A1 (en) * 2002-09-30 2010-05-06 Borealis Polymers Oy Process for preparing an olefin polymerization catalyst component with improved high temperature activity
US9260548B2 (en) * 2002-09-30 2016-02-16 Borealis Technology Oy Process for preparing an olefin polymerization catalyst component with improved high temperature activity
WO2008024897A3 (en) * 2006-08-23 2008-04-24 Fina Technology Promoter system for polymerization processes and polymers formed therefrom
US9068025B2 (en) 2010-08-19 2015-06-30 China Petroleum & Chemical Corporation Catalyst component for polymerization of olefin and preparation method
US8227370B2 (en) 2010-11-10 2012-07-24 Basf Corporation High activity catalyst component for olefin polymerization and method of using the same
EP3118226A1 (en) 2011-11-21 2017-01-18 BASF Corporation High activity catalyst for olefin polymerization
WO2013082631A1 (en) 2011-11-30 2013-06-06 Basf Corporation Internal electron donor for olefin polymerization catalysts, method of making and using the same
US20150322177A1 (en) * 2012-12-21 2015-11-12 Borealis Ag Process for producing a ziegler natta procatalyst for ethylene polymerisation
US10457758B2 (en) 2012-12-21 2019-10-29 Borealis Ag Supported Ziegler Natta procatalyst for ethylene polymerisation
US10184016B2 (en) * 2012-12-21 2019-01-22 Borealis Ag Process for producing a Ziegler Natta procatalyst for ethylene polymerisation
US8933180B2 (en) 2013-03-14 2015-01-13 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts IV
US9284392B2 (en) 2013-03-15 2016-03-15 Basf Corporation Mixed internal donor structures for 1-olefin polymerization catalysts
US9663595B2 (en) 2014-08-05 2017-05-30 W. R. Grace & Co. —Conn. Solid catalyst components for olefin polymerization and methods of making and using the same
US9738736B2 (en) 2014-08-12 2017-08-22 W. R. Grace & Co.-Conn Combined internal donor system for Ziegler-Natta polyolefin catalysts and methods of making and using same
WO2016109787A1 (en) 2014-12-31 2016-07-07 Basf Corporation Catalyst systems, olefin polymerization catalyst components comprising at least an internal electron donor compound, and methods of making and using the same

Also Published As

Publication number Publication date
KR20040007733A (ko) 2004-01-24
KR100852432B1 (ko) 2008-08-14
PL366583A1 (en) 2005-02-07
US20040235644A1 (en) 2004-11-25
US20040242406A1 (en) 2004-12-02
EP1397395B1 (en) 2015-07-29
CN1252098C (zh) 2006-04-19
US7271119B2 (en) 2007-09-18
AU2002325838B2 (en) 2007-10-11
EP1273595B8 (en) 2006-10-11
PT1273595E (pt) 2006-10-31
CN1518563A (zh) 2004-08-04
DE60120389T2 (de) 2007-06-14
WO2003000755A2 (en) 2003-01-03
EP1397395A2 (en) 2004-03-17
CA2447644C (en) 2009-09-15
ES2266053T3 (es) 2007-03-01
HUP0400335A2 (hu) 2004-07-28
CN1518565A (zh) 2004-08-04
ATE328912T1 (de) 2006-06-15
BR0210403A (pt) 2004-08-17
AU2002325246B2 (en) 2007-08-16
US7902108B2 (en) 2011-03-08
EP1273595A1 (en) 2003-01-08
WO2003000755A3 (en) 2003-10-23
BR0210400B1 (pt) 2012-10-02
BR0210400A (pt) 2004-08-17
PL202988B1 (pl) 2009-08-31
BR0210403B1 (pt) 2011-09-20
EP1273595B1 (en) 2006-06-07
WO2003000754A1 (en) 2003-01-03
CN1247625C (zh) 2006-03-29
ES2545763T3 (es) 2015-09-15
KR100796361B1 (ko) 2008-01-21
WO2003000757A1 (en) 2003-01-03
JP2004530765A (ja) 2004-10-07
CN1537118A (zh) 2004-10-13
CA2447592C (en) 2012-07-31
CN1308355C (zh) 2007-04-04
DE60120389D1 (de) 2006-07-20
EP1397401A1 (en) 2004-03-17
CA2447644A1 (en) 2003-01-03
KR20040007732A (ko) 2004-01-24
JP2010132919A (ja) 2010-06-17
CA2447592A1 (en) 2003-01-03
JP5300757B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
EP1397395B1 (en) Olefin polymerisation catalyst and methods for preparing the same
AU2002325838A1 (en) Olefin polymerisation catalyst and methods for preparing the same
US7238637B2 (en) Method for the preparation of olefin polymerization catalysts
JP3297120B2 (ja) オレフィンの重合用成分及び触媒
US20060166814A1 (en) Process for preparing an olefin polymerisation catalyst component with improved high temperature activity
WO2004055069A1 (en) Method for the preparation of olefin polymerisation catalyst support and an olefin polymerisation catalyst
US6218331B1 (en) Polymer-supported catalyst for olefin polymerization
US20040116631A1 (en) Process for the (co) polymerization of ethylene
WO1996030122A1 (en) Polymer-supported catalyst for olefin polymerization
KR100880075B1 (ko) 올레핀 중합용 촉매 조성물 및 이 조성물을 이용하는프로세스
EP1232193A1 (en) Catalyst for the polymerization of olefins
US8592536B2 (en) Catalyst preparation using H2

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOREALIS POLYMERS OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENIFI, PETER;LEINONEN, TIMO;PRAET, ERIK VAN;AND OTHERS;REEL/FRAME:015114/0951;SIGNING DATES FROM 20040213 TO 20040301

AS Assignment

Owner name: BOREALIS TECHNOLOGY OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOREALIS POLYMERS OY;REEL/FRAME:018723/0278

Effective date: 20061221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION