TWI728676B - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
TWI728676B
TWI728676B TW109103040A TW109103040A TWI728676B TW I728676 B TWI728676 B TW I728676B TW 109103040 A TW109103040 A TW 109103040A TW 109103040 A TW109103040 A TW 109103040A TW I728676 B TWI728676 B TW I728676B
Authority
TW
Taiwan
Prior art keywords
active material
electrode active
layer
solid electrolyte
material layer
Prior art date
Application number
TW109103040A
Other languages
English (en)
Other versions
TW202040863A (zh
Inventor
長谷川大輔
津國和之
齋藤友和
樋口拓
Original Assignee
日商日本麥克隆尼股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本麥克隆尼股份有限公司 filed Critical 日商日本麥克隆尼股份有限公司
Publication of TW202040863A publication Critical patent/TW202040863A/zh
Application granted granted Critical
Publication of TWI728676B publication Critical patent/TWI728676B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本發明之課題在於提供一種藉由改善自放電而提升蓄電性能之二次電池。

上述課題之解決手段為一種二次電池30,係具備;含有氧化鉭作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有氫氧化鎳(Ni(OH)2)作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有氧化鈦(TiOx)、或氧化鈦(TiOx)與氧化矽(SiOx)作為負極活性物質之負極活性物質層16。

Description

二次電池
本實施的形態係有關二次電池。
就以往的二次電池而言,由於不使用電解液及能夠進行薄膜化,因此曾提出一種積層有第1電極/絶緣物‧n型氧化物半導體層/p型氧化物半導體層/第2電極之二次電池。
又,就與該二次電池類似的結構而言,曾提出一種二次電池,係具備:正極,係具備含有氧化鎳等作為正極活性物質之正極活性物質膜;固體電解質,係具有含水多孔質結構;及負極,係具備含有氧化鈦等作為負極活性物質之負極活性物質膜。
此外,亦提出一種二次電池,係以氧化鎳作為正極活性物質、以經濺鍍成膜的氧化鈦作為負極活性物質、及以氧化矽作為固體電解質等中添加金屬氧化物者。
例如應用使用具有吸濕性或水合物等特性的材料亦即二氧化矽(SiO2)或氧化鋁(Al2O3)等作為固體電解質的材料,而且將錫(Sn)或鈦(Ti)等金屬添加於上述氧化物固體電解質中者,以進行導電性及膜厚的調整。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利第5508542號公報
[專利文獻2]日本專利第5297809號公報
[專利文獻3]日本特開2015-82445號公報
[專利文獻4]日本特開2016-82125號公報
[專利文獻5]日本特開2017-147186號公報
本實施形態係提供一種藉由改善自放電而提升蓄電性能之二次電池。
依據本實施形態之一態樣,提供一種二次電池,係具備:含有氧化鉭作為固體電解質之固體電解質層、配置於前述固體電解質層的上表面且含有氫氧化鎳(Ni(OH)2)作為正極活性物質之正極活性物質層、及與前述正極活性物質層相對立地配置於前述固體電解質層的下表面且含有氧化鈦(TiOx)、或氧化鈦(TiOx)與氧化矽(SiOx)作為負極活性物質之負極活性物質層。
依據本實施形態之其他態樣,提供一種二次電池,係於前述正極活性物質層與前述固體電解質層之間插入有改善界面用的緩衝層者。
依據本實施形態之其他態樣,提供一種二次電池,係前述正極活性物質層與前述固體電解質層之間及/或前述負極活性物質層與前述固體電解質層之間分別插入有改善界面用的緩衝層者。
依據本實施形態,可提供一種藉由改善自放電而提升蓄電性能之二次電池。
12:第1電極(E1)(負極)
14:n型半導體層(TiO2)
16:負極活性物質層(TiOx或TiOx及SiOx)
16S:負極活性物質層(TiOx及SiOx)
16T:負極活性物質層(TiOx)
17:緩衝層(SiOx)
17MO:含有金屬氧化物的緩衝層(含有金屬氧化物的SiOx)
18:固體電解質層(Ta2O5)
18SS:固體電解質層(SiOx+SnO)
18C:固體電解質層的圓弧
19:緩衝層(SiOx)
19MO:含有金屬氧化物的緩衝層(含有金屬氧化物的SiOx)
22:正極活性物質層(Ni(OH)2)
22S:正極活性物質層(Ni(OH)2+SiOx)
24:p型半導體層(NiO)
26:第2電極(E2)(正極)
30:二次電池
R1、R2、R4、R5、A11、A12、A21、A22:電阻值
R3、R6:界面電阻
第1圖為第1實施形態之二次電池的示意性剖面結構圖。
第2圖係顯示第1圖所例示之二次電池的示意性剖面結構中之負極活性物質層、固體電解質層、正極活性物質層的一部分之示意性剖面結構圖,其中,第2圖(a)為在負極活性物質層具備TiOx及在正極活性物質層具備Ni(OH)2之例,第2圖(b)為在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例。
第3圖係顯示在第2圖所例示之二次電池的示意性剖面結構中,於正極活性物質層與固體電解質層之間插入有緩衝層之例的示意性剖面結構圖,其中,第3圖(a)為在負極活性物質層具備TiOx及在正極活性物質層具備Ni(OH)2之例,第3圖(b)為在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例。
第4圖係顯示在第3圖所例示之二次電池的示意性剖面結構中,於負極活性物質層與固體電解質層之間亦插入有緩衝層之例的示意性剖面結構 圖,其中,第4圖為(a)在負極活性物質層具備TiOx及在正極活性物質層具備Ni(OH)2之例,第4圖(b)為在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例。
第5圖係顯示在第2圖所例示之二次電池的示意性剖面結構中,於負極活性物質層與固體電解質層之間插入有緩衝層之例的示意性剖面結構圖,其中,第5圖(a)為在負極活性物質層具備TiOx及在正極活性物質層具備Ni(OH)2之例,第5圖(b)為在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例。
第6圖為第2圖所例示之二次電池的示意性剖面結構,其中,第6圖(a)為於正極活性物質層與固體電解質層之間插入有含有金屬氧化物的緩衝層,且在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例,第6圖(b)為於負極活性物質層與固體電解質層之間更插入有含有金屬氧化物的緩衝層,且在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2之例。
第7圖係顯示第1圖所例示之二次電池的示意性剖面結構中之負極活性物質層、固體電解質層、正極活性物質層的一部分之示意性剖面結構圖,其中,第7圖(a)為在負極活性物質層具備TiOx及在正極活性物質層具備Ni(OH)2與SiOx之例,第7圖(b)為在負極活性物質層具備TiOx與SiOx及在正極活性物質層具備Ni(OH)2與SiOx之例。
第8圖為用來驗證實施形態之二次電池的效果之二次電池的部分示意性剖面結構,其中,第8圖(a)為結構1(比較例),第8圖(b)為結構2(實施 例)、第8圖(c)為結構3(實施例),第8圖(d)為結構4(實施例),第8圖(e)為結構5(實施例),第8圖(f)為結構6(比較例)。
第9圖(a)係顯示藉由電化學阻抗測定所得之固體電解質層的電阻值數據之一例(結構1(比較例)與結構2(實施例)之對比)之圖,第9圖(b)為第9圖(a)所示之圖表曲線的圓弧部分之說明圖。
第10圖(a)係顯示藉由電化學阻抗測定所得之固體電解質層的電阻值數據之一例(結構2(實施例)與結構4(實施例)之對比)之圖,第10圖(b)為第10圖(a)所示之圖表曲線的圓弧部分之說明圖。
第11係顯示藉由電化學阻抗測定所得之在固體電解質層的單膜(SiO2、Al2O3、SiOx+SnO、Ta2O5、Ta2O5/SiOx)中之電阻值數據的一例之圖。
第12圖係顯示結構2與結構4的二次電池之放電特性(放電曲線)的一例之圖。
第13圖係顯示結構1至結構4的二次電池之各結構的自放電殘率之一例(對比)之圖。
第14圖係顯示結構4、結構5、結構1、結構6的二次電池之各結構的放電容量與自放電殘率之一例(對比)之圖。
第15圖為單膜時的電阻值與作為電池的電阻值之一例,其中,第15圖(a)為結構2(實施例)之例,第15圖(b)為結構4(實施例)之例。
第16圖為第2實施形態之二次電池的示意性剖面結構圖。
第17圖為第3實施形態之二次電池的示意性剖面結構圖。
其次,參照圖式來說明本實施形態。在以下說明之圖式的記載中,對於相同或類似的部分加註相同或類似的符號。但請留意,圖式為示意性者,各構成元件的厚度與平面尺寸的關係等是與實際者有所不同。因此,具體的厚度或尺寸應參酌以下的說明來判斷。又,在圖式相互間當然也包含彼此的尺寸關係或比率不同的部分。
又,以下所示的實施形態係例示用以使技術思想具體化之裝置或方法者,並不特定各構成元件的材質、形狀、結構、配置等。此實施形態可在申請範圍範圍內添加各種變更。
又,以下所示之實施形態中,將n型氧化物半導體層簡略記載為n型半導體層,將p型氧化物半導體層簡略記載為p型半導體層而說明。
又,在以下的說明中,所謂Ta2O5之表現係包含五氧化鉭、及缺氧的氧化鉭Ta2O4-5
[第1實施形態]
第1實施形態之二次電池30的示意性剖面結構係表示如圖1所示。第1實施形態之二次電池30係具備第1電極(E1)(負極)12/n型半導體層14/負極活性物質層16/固體電解質層18/正極活性物質層22/第2電極(E2)(正極)26的構成。
如第1圖所示,第1實施形態之二次電池30係具備:含有具有水(H2O)及羥基(-OH)中之至少1種的氧化鉭作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有氫氧化鎳(Ni(OH)2)作 為正極活性物質之正極活性物質層22、配置於正極活性物質層22的上表面之第2電極(正極)26、與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有具有水(H2O)及羥基(-OH)中之至少1種的氧化鈦(TiOx)作為負極活性物質之負極活性物質層16、及與第2電極(正極)26相對立地配置於負極活性物質層16的下表面之第1電極(負極)12。
在此,藉由提升固體電解質層18之固體電解質的離子傳導度,二次電池30的內部電阻下降,充放電的效率得到提升。為了提升固體電解質層18之離子傳導度,必須使正極活性物質層22或負極活性物質層16的活性物質與電解質之間的界面電阻降低。正極活性物質層22或負極活性物質層16的活性物質係指直接參與電子的傳遞之物質,在第1圖所示之例中,正極活性物質層22的活性物質為Ni(OH)2,負極活性物質層16的活性物質為TiOx
又,為了抑制自放電,必須消除固體電解質層18的固體電解質之電子洩漏(提升電子絶緣性)。
在後述的比較例(第8圖(a)之結構1或第8圖(f)之結構6的固體電解質層18SS)中,藉由將Sn或Ti等金屬添加於SiOx的氧化物固體電解質中,使離子傳導度變高,使固體電解質層18SS的膜厚變厚。使膜厚變厚的理由係由於自放電對策(電子洩漏對策),或是為了使已降低短路機率之膜保持可靠性。
然而,將該Sn或Ti等金屬添加於氧化物固體電解質中時,會有電子傳導性產生,蓄電的容量保持變差之問題。
作為固體電解質之SiO2、Al2O3的電子絶緣性雖高,但離子傳導性低,因此為了得到所需的充放電特性,必須使固體電解質層18SS的膜厚變薄。使固體電解質的膜厚變薄時,可提升離子傳導,因此可得到充放電特性。不過,膜厚變薄時,短路的機率會上升等而膜的可靠性會下降,因此在製造上的穩定性或循環特性有劣化的疑慮。
於是,在本實施形態中,固體電解質層18所含之固體電解質係採用離子傳導比SiO2或Al2O3更高之Ta2O5
又,如後所述,為了使正極活性物質層22與固體電解質層18之間的電荷順利傳遞,可插入以SiO2為基質之緩衝層19(參照第3圖等)以改善界面。由於固體電解質層18(Ta2O5)與正極活性物質層22(Ni(OH)2)之間的內部電阻較高,故認為無法順利進行電荷的傳遞。於是,將以具有放電記錄的SiO2為基質之緩衝層19插入於正極活性物質層22與固體電解質層18之間,藉此改善電荷的傳遞。
正極活性物質層22可藉由將氫氧化鎳(Ni(OH)2)直接成膜而形成。此外,正極活性物質層22的正極活性物質除了氫氧化鎳以外,亦可適用氧化鎳(NiO),但此時必須進行使氧化鎳(NiO)的一部分電性地轉換成氫氧化鎳(Ni(OH)2)的處理。
正極活性物質層22亦可具備氧化鎳(NiO)、金屬鎳(Ni)、氫氧化鈷(Co(OH)2)等。
正極活性物質層22係至少具有氫氧化鎳(Ni(OH)2),為可使質子、氫氧化物離子(OH-)及鋞離子(H3O+)中之至少1種進行移動之結構,且充放電時會伴隨著鎳原子的價數變化。
負極活性物質層16係具備具有水(H2O)及羥基(-OH)中之至少1種的氧化鈦化合物(TiOx)、或氧化鈦化合物(TiOx)及氧化矽(SiOx),可使質子、氫氧化物離子(OH-)、及鋞離子(H3O+)中之至少1種進行移動,且充放電時會伴隨著鈦原子的價數變化。
又,上述氧化鈦化合物可塗布脂肪酸鈦並燒製而形成。
又,上述氧化鈦化合物係混合存在地具備價數3價與4價的鈦原子,而且可在鈦原子的周圍具備水(H2O)或羥基(-OH)。此外,上述氧化鈦化合物亦可具備非晶質結構或微結晶結構。
藉由使固體電解質層18的膜厚與添加的金屬氧化物的量適當化,亦可在維持離子的移動之同時,形成相對於電子為高電阻層或絶緣層者。
n型半導體層14為具有金紅石型(rutile type)或銳鈦礦型(anatase type)的結晶結構中之至少1種的氧化鈦(IV)。又,n型半導體層14係以具有金紅石型的結晶結構及銳鈦礦型的結晶結構中之至少1種的結晶結構,且具有水(H2O)或羥基(-OH)較少的金屬氧化物半導體者為較佳。
又,第2電極(正極)可具備Al、Ti、ITO、Ni之任一者。
又,第1電極(負極)可具備W、Ti、ITO之任一者。
正極活性物質層22可藉由濕製程(wet process)來堆積氫氧化鎳。
(負極活性物質層、固體電解質層、正極活性物質層之構成例)
第2圖至第7圖係例示第1圖所例示之二次電池30的示意性剖面結構中之負極活性物質層16、固體電解質層18、正極活性物質層22的一部分之示意性剖面結構。
第2圖(a)所例示之二次電池30係具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立配置於固體電解質層18的下表面且含有TiOx作為負極活性物質之負極活性物質層16。
又,第2圖(b)所例示之二次電池30係具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx與SiOx作為負極活性物質之負極活性物質層16S。
第3圖至第5圖係顯示在正極活性物質層22與固體電解質層18之間插入有改善界面用的緩衝層19之例,或在負極活性物質層16與固體電解質層18之間插入有改善界面用的緩衝層17之例。緩衝層17、19係例如含有氧化矽(SiOx)而構成。
第3圖(a)係顯示在第2圖(a)所例示之二次電池30中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的緩衝層19之例,第3圖(b)係顯示在第2圖(b)所例示之二次電池30中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的緩衝層19之例。
第4圖(a)係顯示在第3圖(a)所例示之二次電池30中,於負極活性物質層16與固體電解質層18之間亦插入有改善界面用的緩衝層17之例,第4圖(b)係顯示在第3圖(b)所例示之二次電池30中,於負極活性物質層16S與固體電解質層18之間亦插入有改善界面用的緩衝層17之例。
第5圖(a)係顯示在第2圖(a)所例示之二次電池30中,於負極活性物質層16與固體電解質層18之間插入有改善界面用的緩衝層17之例,第5圖(b)係顯示在第2圖(b)所例示之二次電池30中,於負極活性物質層16S與固體電解質層18之間插入有改善界面用的緩衝層17之例。
又,第6圖係顯示在正極活性物質層22與固體電解質層18之間插入有含有金屬氧化物的改善界面用的緩衝層(含有金屬氧化物的緩衝層)19MO之例,或在負極活性物質層16與固體電解質層18之間插入有含有金屬氧化物的改善界面用的緩衝層(含有金屬氧化物的緩衝層)17MO之例。(含有金屬氧化物的緩衝層)17MO、19MO係具備含有金屬氧化物的氧化矽(SiOx)而構成。(含有金屬氧化物的緩衝層)17MO、19MO所含之金屬氧化物可適用氧化錫(SnO)、氧化鋁(Al2O3)、氧化鋯(ZrO2)、氧化鎂(MgO)、氧化磷(PxOy)等。
第6圖(a)係顯示在第2圖(b)所例示之二次電池30中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的含有金屬氧化物的緩衝層19MO之例,第6圖(b)係顯示在第2圖(b)所例示之二次電池30中,於負極活性物質層16S與固體電解質層18之間插入有改善界面用的含有金屬氧化物的緩衝層17MO之例。此外,第6圖(a)及第6圖(b) 的負極活性物質層16S(TiOx+SiOx)可分別置換成負極活性物質層16(TiOx)。
又,第7圖係顯示於內部含有SiOx(緩衝層材料)的正極活性物質層22S及於內部含有SiOx(緩衝層材料)的負極活性物質層16S之例。
第7圖(a)所例示的二次電池30係具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質同時含有SiOx作為緩衝層材料之正極活性物質層22S、及與正極活性物質層22S相對立地配置於固體電解質層18的下表面且含有TiOx作為負極活性物質之負極活性物質層16。
第7圖(b)所例示之二次電池30係具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質同時含有SiOx作為緩衝層材料之正極活性物質層22S、及與正極活性物質層22S相對立地配置於固體電解質層18的下表面且含有TiOx作為負極活性物質同時含有SiOx作為緩衝層材料之負極活性物質層16S。
依據藉由第2圖至第7圖所例示之實施形態所得之二次電池30,可藉由改善自放電而提升蓄電性能。
又,依據藉由第3圖至第7圖所例示之實施形態所得之二次電池30,可改善正極活性物質層22與固體電解質層18之間、或負極活性物質層16與固體電解質層18之間的電荷傳遞,而可更加提升蓄電性能。
(二次電池的各結構之對比)
第8圖(a)至第8圖(f)為用來驗證實施形態之二次電池30的效果之二次電池的部分示意性剖面結構。第8圖(a)顯示結構1(比較例),第8圖(b)顯示結構2(實施例),第8圖(c)顯示結構3(實施例),第8圖(d)顯示結構4(實施例),第8圖(e)顯示結構5(實施例),第8圖(f)顯示結構6(比較例)。
第8圖(a)係顯示二次電池30的結構1(比較例),其具備:含有SiOx與SnO作為固體電解質之固體電解質層18SS、配置於固體電解質層18SS的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx+SiOx作為負極活性物質之負極活性物質層16S。
第8圖(b)係顯示二次電池30的結構2(實施例)(對應於第2圖(b)所例示之結構),其具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx+SiOx作為負極活性物質之負極活性物質層16S。
第8圖(c)係顯示二次電池30的結構3(實施例)(對應於第6圖(a)所例示之結構),其具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx+SiOx作為負極活性物質之負極活性物質層16S,其中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的含有金屬氧化物的緩衝層19MO(SiOx+SnO)。
第8圖(d)係顯示二次電池30的結構4(實施例)(對應於第3圖(b)所例示之結構),其具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx+SiOx作為負極活性物質之負極活性物質層16S,其中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的緩衝層19(SiOx)。
第8圖(e)係顯示二次電池30的結構5(實施例)(對應於第3圖(a)所例示之結構),其具備:含有Ta2O5作為固體電解質之固體電解質層18、配置於固體電解質層18SS的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx作為負極活性物質之負極活性物質層16,其中,於正極活性物質層22與固體電解質層18之間插入有改善界面用的緩衝層19(SiOx)。
第8圖(f)係顯示二次電池30的結構6(比較例),其具備:含有SiOx與SnO作為固體電解質之固體電解質層18SS、配置於固體電解質層18SS的上表面且含有Ni(OH)2作為正極活性物質之正極活性物質層22、及與正極活性物質層22相對立地配置於固體電解質層18的下表面且含有TiOx作為負極活性物質之負極活性物質層16。
第8圖(b)至第8圖(e)之固體電解質層18所使用的氧化鉭為適度含有作為水合物的水之介電質,咸認其可得到比第8圖(a)及第8圖(f)的固體電解質層18SS所使用的SiOx+SnO更高的離子傳導度。另一方 面,由於隨著含水量的增減,會使電子傳導性及離子傳導性的特性變動,故咸認需要具有含水性的膜。由於水分量多半會使濺鍍步驟時的壓力變高,故第8圖(b)至第8圖(e)之固體電解質層18係以高壓(2.4Pa左右)進行濺鍍而形成。其結果,所形成之固體電解質層18所使用的Ta2O5膜之氫的量為約36%。適用於本實施形態之固體電解質層18所使用的氧化鉭膜,根據X射線反射率法(XRR:X-ray Reflectivity)的結果含有Ta2O4.6,就含水性之例而言,根據二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry)的結果確認到與SiOx+SnO同等之H濃度。
又,SiOx可藉由以正矽酸四乙酯(TEOS)為原料之溶膠凝膠法等而成膜。
將固體電解質層18所使用的Ta2O5膜藉由濺鍍及離子鍍而改變成膜條件進行成膜來比較。根據成膜條件,可在氧的流量與氣壓、成膜時的電力之適當範圍內確認到充放電。以Ta2O5為靶材之本次的濺鍍沉積的成膜條件,係將O2流量設為Ar流量的1%,將成膜時的電力設為3.19W/cm2
此外,咸認若只是在二次電池30中插入Ta2O5,則比起第8圖(a)及第8圖(f)之固體電解質層18SS所使用的固體電解質(SiOx+SnO),在固體電解質層18與負極活性物質層16的界面之界面電阻變高、放電容量變小。以下針對界面電阻與放電容量的關係進行考察。
第9圖(a)係顯示藉由電化學阻抗測定所得之結構1(比較例)的固體電解質層18SS與結構2(實施例)的固體電解質層18之尼奎斯特圖 (Nyquist plot;亦稱為阻抗圖譜)的對比、第9圖(b)為追加第9圖(a)所示之圖表曲線的圓弧部分後之說明圖。
由第9圖可知,固體電解質層18(Ta2O5)的圓弧18C比固體電解質層18SS(SiOx+SnO)的圓弧更大,若推測圓弧部分為含有固體電解質的部分,則比起固體電解質層18(Ta2O5)的電阻值A21,固體電解質層18SS(SiOx+SnO)的電阻值A11變更低。就第9圖中之具體值而言,例如固體電解質層18SS(SiOx+SnO)的電阻值A11為約670Ω,相對於此,固體電解質層18(Ta2O5)的電阻值A21為約13000Ω左右,顯示19倍以上之高電阻。
另一方面,在二次電池30中插入Ta2O5之結構中,即使Ta2O5本身的離子傳導度為高,放電容量仍小,因此推測固體電解質層18與正極活性物質層22之界面或固體電解質層18與負極活性物質層16之界面電阻變高,為了改變界面的狀態,而在固體電解質層18與正極活性物質層22之間插入SiOx作為緩衝層19,以進行評價。
將緩衝層(SiOx)插入於固體電解質層18與正極活性物質層22之界面進行評價,結果可觀察到充放電特性的改善,而且從實施電化學阻抗測定的結果,在Ta2O5/SiOx結構(第3圖)及Ta2O5/SiOx+SnO結構(第6圖)雙方中亦可確認內部電阻的減少。各個結構中之離子傳導度係與固體電解質層18SS(SiOx+SnO)的離子傳導度同等。
第10圖(a)係顯示藉由電化學阻抗測定所得之結構2(實施例)的固體電解質層18(無緩衝層)與結構4(實施例)的(在與正極活性物質層22之間插入有SiOx作為緩衝層19的)固體電解質層18+19之電阻值的 對比,第10圖(b)係將第10圖(a)所示之圖表曲線的圓弧部分予以點繪後之(尼奎斯特圖)說明圖。
由第10圖可知,結構2的固體電解質層18(Ta2O5)的圓弧18C比結構4的固體電解質層+緩衝層18+19(Ta2O5/SiOx)的圓弧更大,若推定圓弧部分為含有固體電解質的部分,則比起結構2的固體電解質層18(Ta2O5),結構4的固體電解質層+緩衝層(18+19)(Ta2O5/SiOx)的電阻值變更低。就第10圖中之具體值而言,例如固體電解質層18+19(Ta2O5/SiOx)的電阻值A12為約8000Ω,相對於此,固體電解質層18(Ta2O5)的電阻值A22為約13000Ω左右。
第11圖係顯示藉由電化學阻抗測定所得之固體電解質層為單膜時的離子傳導度的數據之一例(SiO2、Al2O3、SiOx+SnO、Ta2O5、Ta2O5/SiOx)。可知Ta2O5的離子傳導為高。又,第12圖係顯示結構2與結構4之二次電池30的放電特性(放電曲線)的一例(結構2與結構4之對比)。
第12圖係顯示添加充放電特性為不同之例後之特性的改善例。從第12圖所示之放電特性(放電曲線)亦可確認到電阻的減低。又,由此情事可知,藉由在固體電解質層18(Ta2O5)與正極活性物質層22(Ni(OH)2)之界面插入緩衝層19(SiOx),使得電阻降低。更具體而言,因為在第12圖之放電曲線中,結構4(Ta2O5/SiOx結構)的放電開始電壓比結構2的放電開始電壓更高之故。因為電阻值較大時,放電開始時的下降會變大,從低電壓開始放電之故。
第13圖係顯示結構1至結構4的二次電池30之各結構的自放電殘率之一例。
如第13圖所示,確認自放電的效果時,可觀察到相較於屬於比較例之結構1(SiOx+SnO),結構3(Ta2O5/SiOx+SnO結構)及結構4(Ta2O5+SiOx結構)得到更大幅的改善。具體而言,如第13圖所示,放置一定期間後的自放電之殘存率,在結構1中改善至10%左右,相對於此,在結構3中改善至33%左右,在結構4中改善至60%。
其次,亦確認負極側的放電容量與自放電殘率。
第14圖係顯示結構4、結構5、結構1、結構6各個的二次電池30之各結構的放電容量與自放電殘率之一例(對比)。各個負極活性物質係以氧化鈦(TiOx)作為基質者。若將在固體電解質層18(Ta2O5)與正極活性物質層22之間插入SiOx作為緩衝層19且將負極活性物質層16S的負極活性物質設為TiOx+SiOx之結構(結構4)、與在固體電解質層18與正極活性物質層22之間不插入緩衝層19而只設為固體電解質層18(Ta2O5)之結構(結構5)進行比較,前者的放電容量比後者的放電容量更高。在屬於比較例之結構1或結構6(將固體電解質設為SiOx+SnO之結構)的時候,未觀察到如此之現象。
藉由在固體電解質層18(Ta2O5)的正極側及/或負極側存在有SiOx,不會使放電容量劣化,可觀察到自放電的改善。
此外,雖然無法從第9圖至第10圖所示之電化學阻抗測定的尼奎斯特圖進行各界面的分離,但根據一連串的實驗結果,咸認藉由在固體電解質層18與正極活性物質層22之間插入SiOx的緩衝層19,可降低在固體電解質層18與正極活性物質層22之界面電阻。
第15圖為二次電池30的電阻成分之一例,其中,第15圖(a)為結構2之例,第15圖(b)為結構4之例。
結構2之只有固體電解質層18(Ta2O5)(無緩衝層)之電阻值R2係比結構4之插入有緩衝層19的固體電解質層18(Ta2O5/SiOx)之電阻值R4更低。例如在第15圖中,電阻值R2為33Ω(3.0E-6[S/cm])左右,電阻值R4為255Ω(2.0E-7[S/cm])左右。
然而,視為二次電池30時,此傾向為顛倒,結構4之電阻值R5比結構2之電阻值R1變更低。例如在第15圖中,電阻值R5為250Ω左右,電阻值R1為1600Ω左右(電阻值R5及R1係由第9圖的尼奎斯特圖導出)。
如此般傾向顛倒的理由,推測是因為在結構2的固體電解質層18與正極活性物質層22之界面電阻R3為接近R1的值,相對於此,結構4之緩衝層19與正極活性物質層22之界面電阻R6相對於R5為小至可無視程度之故。
因此咸認,藉由在固體電解質層18與正極活性物質層22之間插入SiOx的緩衝層19,可降低在固體電解質層18與正極活性物質層22之界面電阻。
[第2實施形態]
第2實施形態之二次電池30的示意性剖面結構係表示如第16圖所示。
第2實施形態之二次電池30係具備第1電極(E1)(負極)12/負極活性物質層16/固體電解質層18/正極活性物質層22/p型半導體層24/第2電極(E2)(正極)26的構成。
第2實施形態之二次電池30係具有於正極活性物質層22上插入有p型半導體層24之結構。
第2實施形態之二次電池30係如第16圖所示,具備配置於正極活性物質層與第2電極(正極)之間的p型半導體層24。
p型半導體層24係具有導電性的電洞輸送層之機能,例如可具備具有結晶結構的氧化鎳(NiO)。其他構成與第1實施形態同樣。
[第3實施形態]
第3實施形態之二次電池30的示意性剖面結構係表示如第17圖所示。第3實施形態之二次電池30係具備第1電極(E1)(負極)12/n型半導體層14/負極活性物質層16T/固體電解質層18/正極活性物質層22/p型半導體層24/第2電極(E2)(正極)26的構成。與第2實施形態的差異在於,負極活性物質層16T具有氧化鈦化合物(TiOx),而不具有氧化矽。
p型半導體層24係具有導電性的電洞輸送層之機能,例如可具有氧化鎳(NiO)。其他構成則與第2實施形態同樣。
此外,第2圖至第15圖所例示之實施形態之二次電池30與第1實施形態同樣,亦可適用於第2實施形態及第3實施形態。
如以上所說明,依據第1實施形態至第3實施形態,可提供一種藉由改善自放電而提升蓄電性能之二次電池。
又,可藉由適用高離子傳導度的膜達成膜厚的控制、適當化,可期待循環特性或製造上的穩定性提升。
[其他實施形態]
如上所述,雖然記載若干實施形態,但構成揭示的一部分之論述及圖式為例示性者,不應理解成用來限定者。對本發明所屬技術領域中具有通常知識者而言,由此揭示可得知各種替代實施形態、實施例及運用技術。
如此地,本實施形態係包含本文所未記載之各種實施形態等。
(產業上之可利用性)
本實施形態之二次電池可利用於各種民生用機器、產業機器,且可適用於通信終端、無線感測網路取向的二次電池等可對各種感測資訊進行低耗電功率傳送之系統應用取向的二次電池等廣範圍的應用領域。
16:負極活性物質層(TiOx或TiOx及SiOx)
16S:負極活性物質層(TiOx及SiOx)
18:固體電解質層(Ta2O5)
22:正極活性物質層(Ni(OH)2)

Claims (16)

  1. 一種二次電池,係具備:
    含有氧化鉭作為固體電解質之固體電解質層、
    配置於前述固體電解質層的上表面且含有氫氧化鎳(Ni(OH)2)作為正極活性物質之正極活性物質層、及
    與前述正極活性物質層相對立地配置於前述固體電解質層的下表面且含有氧化鈦(TiOx)、或氧化鈦(TiOx)與氧化矽(SiOx)作為負極活性物質之負極活性物質層。
  2. 如申請專利範圍第1項所述之二次電池,其中,前述氧化鉭具備Ta2Ox(x=4-5)
  3. 如申請專利範圍第1或2項所述之二次電池,其中,前述正極活性物質層與前述固體電解質層之間及前述負極活性物質層與前述固體電解質層之間分別具備改善界面用的緩衝層。
  4. 如申請專利範圍第1或2項所述之二次電池,其中,在前述正極活性物質層與前述固體電解質層之間或在前述負極活性物質層與前述固體電解質層之間具備改善界面用的緩衝層。
  5. 如申請專利範圍第1或2項所述之二次電池,其中,前述正極活性物質層及前述負極活性物質層含有改善界面用的緩衝材料。
  6. 如申請專利範圍第1或2項所述之二次電池,其中,前述正極活性物質層或前述負極活性物質層含有改善界面用的緩衝材料。
  7. 如申請專利範圍第3項所述之二次電池,其中,前述緩衝層係含有氧化矽(SiOx)而構成者。
  8. 如申請專利範圍第7項所述之二次電池,其中,前述緩衝層係更含有金屬氧化物而構成者。
  9. 如申請專利範圍第5項所述之二次電池,其中,前述緩衝材料含有氧化矽(SiOx)。
  10. 如申請專利範圍第9項所述之二次電池,其中,前述緩衝材料更含有金屬氧化物。
  11. 如申請專利範圍第8項所述之二次電池,其中,前述金屬氧化物具備選自氧化錫(SnO)、氧化鋁(Al2O3)、氧化鋯(ZrO2)、氧化鎂(MgO)、氧化磷(PxOy)的群組之任一種。
  12. 如申請專利範圍第1項所述之二次電池,係具備:
    配置於前述正極活性物質層的上表面之第2電極、
    與前述第2電極相對立地配置於前述負極活性物質層的下表面之第1電極。
  13. 如申請專利範圍第12項所述之二次電池,其中,在前述正極活性物質層與前述第2電極之間更具備p型氧化物半導體層。
  14. 如申請專利範圍第13項所述之二次電池,其中,前述p型氧化物半導體層係由具有結晶結構的氧化鎳所構成。
  15. 如申請專利範圍第14項所述之二次電池,其中,在前述負極活性物質層與前述第1電極之間更具備n型氧化物半導體層。
  16. 如申請專利範圍第15項所述之二次電池,其中,前述n型氧化物半導體層係由具有金紅石型的結晶結構及銳鈦礦型的結晶結構中之至少1種結晶結構之氧化鈦所構成。
TW109103040A 2019-01-31 2020-01-31 二次電池 TWI728676B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019015214A JP7269020B2 (ja) 2019-01-31 2019-01-31 二次電池
JP2019-015214 2019-01-31

Publications (2)

Publication Number Publication Date
TW202040863A TW202040863A (zh) 2020-11-01
TWI728676B true TWI728676B (zh) 2021-05-21

Family

ID=71842038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103040A TWI728676B (zh) 2019-01-31 2020-01-31 二次電池

Country Status (5)

Country Link
US (1) US20210351412A1 (zh)
EP (1) EP3920270A4 (zh)
JP (1) JP7269020B2 (zh)
TW (1) TWI728676B (zh)
WO (1) WO2020158448A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201304240A (zh) * 2011-04-08 2013-01-16 Recapping Inc 複合離子導電電解質

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211245A (en) 1975-07-17 1977-01-28 Sumitomo Bakelite Co Ltd Phenolic resin composition
WO2008053561A1 (fr) 2006-11-02 2008-05-08 Shinoda Plasma Co., Ltd. Élément de étection de champ électrique et dispositif d'affichage utilisant celui-ci
JP5316809B2 (ja) 2007-11-13 2013-10-16 住友電気工業株式会社 リチウム電池およびその製造方法
JP2010272494A (ja) 2008-08-18 2010-12-02 Sumitomo Electric Ind Ltd 非水電解質二次電池及びその製造方法
EP2472663A1 (en) 2009-10-02 2012-07-04 Sumitomo Electric Industries, Ltd. Solid-electrolyte battery
KR101605765B1 (ko) * 2010-10-07 2016-03-24 구엘라 테크놀로지 가부시키가이샤 이차 전지
DE102011013018B3 (de) * 2011-03-04 2012-03-22 Schott Ag Lithiumionen leitende Glaskeramik und Verwendung der Glaskeramik
JP2015082445A (ja) 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2017147186A (ja) 2016-02-19 2017-08-24 パナソニックIpマネジメント株式会社 固体蓄電素子
JP2017228519A (ja) * 2016-03-21 2017-12-28 アイメック・ヴェーゼットウェーImec Vzw Ni(OH)2電極を有する薄膜固体電池を製造する方法、電池セルおよび電池
US20190280330A1 (en) * 2016-11-08 2019-09-12 Fisker Inc. All-solid state li ion batteries comprising mechanically felxible ceramic electrolytes and manufacturing methods for the same
JP6961370B2 (ja) * 2017-03-15 2021-11-05 株式会社日本マイクロニクス 蓄電デバイス
KR20200041882A (ko) * 2017-08-25 2020-04-22 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지와 그의 제조 방법
JP2019140053A (ja) * 2018-02-15 2019-08-22 株式会社日本マイクロニクス 二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201304240A (zh) * 2011-04-08 2013-01-16 Recapping Inc 複合離子導電電解質

Also Published As

Publication number Publication date
WO2020158448A1 (ja) 2020-08-06
EP3920270A1 (en) 2021-12-08
JP7269020B2 (ja) 2023-05-08
JP2020123511A (ja) 2020-08-13
US20210351412A1 (en) 2021-11-11
EP3920270A4 (en) 2022-12-07
TW202040863A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
JP5316809B2 (ja) リチウム電池およびその製造方法
JP5515308B2 (ja) 薄膜固体リチウムイオン二次電池及びその製造方法
US8755169B2 (en) Electrochemical capacitor
TWI580804B (zh) 正極及蓄電裝置的製造方法
JP6904981B2 (ja) リチウムイオン電池
JP5595349B2 (ja) リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
CN113594468B (zh) 一种集流体及其制备方法和应用
TWI728676B (zh) 二次電池
TWI730292B (zh) 二次電池
CN115602786A (zh) 一种锂离子电池及其正极极片
TWI665817B (zh) 二次電池
KR102543247B1 (ko) 다중 코팅 전극, 이의 제조 방법 및 상기 전극을 포함하는 에너지 저장 디바이스
KR20180023380A (ko) 리튬이온전지 및 이의 제조방법
CN115692601B (zh) 一种锂离子电池及其具有多功能保护层的正极极片
WO2019181314A1 (ja) 二次電池、及びその製造方法
JP2024018860A (ja) 電極シート及び電気化学デバイス
TW202323574A (zh) 在電極上形成用於介面控制的金屬氧化物薄膜之方法
KR20200050270A (ko) 다층 구조의 고체 전해질 및 이를 포함하는 전고체 박막 전지
JP2020080368A (ja) 二次電池、及び製造方法
JP2019186107A (ja) 硫化物系全固体電池
JP2013045621A (ja) 薄膜正極,薄膜正極の製造方法,及び非水電解質二次電池