TWI727187B - 嵌合因子viii多肽及其用途 - Google Patents

嵌合因子viii多肽及其用途 Download PDF

Info

Publication number
TWI727187B
TWI727187B TW107124686A TW107124686A TWI727187B TW I727187 B TWI727187 B TW I727187B TW 107124686 A TW107124686 A TW 107124686A TW 107124686 A TW107124686 A TW 107124686A TW I727187 B TWI727187 B TW I727187B
Authority
TW
Taiwan
Prior art keywords
domain
fviii
vwf
protein
patent application
Prior art date
Application number
TW107124686A
Other languages
English (en)
Other versions
TW201839011A (zh
Inventor
艾可塔 喬巴拉
彤瑤 劉
羅伯特 彼得斯
Original Assignee
美商百歐維拉提夫治療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商百歐維拉提夫治療公司 filed Critical 美商百歐維拉提夫治療公司
Publication of TW201839011A publication Critical patent/TW201839011A/zh
Application granted granted Critical
Publication of TWI727187B publication Critical patent/TWI727187B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本發明提供一種包含VWF之D’域及D3域之VWF片段、一種包含該VWF片段及異源部分之嵌合蛋白、或一種包含該VWF片段及FVIII蛋白質之嵌合蛋白及其使用方法。包含本發明之VWF片段之多肽鏈與包含FVIII蛋白質之多肽鏈結合或締合且包含該VWF片段之該多肽鏈可防止或抑制內源性VWF結合該FVIII蛋白質。藉由防止或抑制內源性VWF結合FVIII,該VWF片段可誘導FVIII蛋白質之半衰期延長,其中該結合為FVIII之半衰期限制因素。本發明亦包括核苷酸、載體、宿主細胞、使用該VWF片段或該等嵌合蛋白之方法。

Description

嵌合因子VIII多肽及其用途
本發明係關於嵌合因子VIII多肽及其用途。
凝血為一種使得血液形成凝塊之複雜過程。其為止血(即,停止自受損血管損失血液)之重要部分,其中受損血管壁由血小板及含有纖維蛋白(fibrin)之凝塊覆蓋以阻止流血且開始修復受損血管。凝血病症可導致流血(出血)或阻塞性凝結(血栓形成)之風險增加。
凝血幾乎在血管損傷已損壞血管之內皮襯裡之後即刻開始。血液暴露於諸如組織因子之蛋白質會引發血小板及血漿蛋白質纖維蛋白原(fibrinogen)(一種凝結因子)變化。血小板即刻在損傷部位處形成栓塞;此稱為初級止血。同時發生次級止血:血漿中之蛋白質(稱為凝血因子或凝結因子)以複雜級聯起反應以形成纖維蛋白股,其使血小板栓塞得以強化。非限制性凝血因子包括(但不限於)因子I(纖維蛋白原)、因子II(凝血酶原(prothrombin))、組織因子、因子V(促凝血球蛋白原(proaccelerin),不穩定因子)、因子VII(穩定因子,前轉化素(proconvertin))、因子VIII( 抗血友病因子A)、因子IX(抗血友病因子B或克雷司馬斯因子(Christmas factor))、因子X(斯圖爾特-鮑華因子(Stuart-Prower factor))、因子XI(血漿凝血激素前驅物(plasma thromboplastin antecedent))、因子XII(哈格曼因子(Hageman factor))、因子XIII(纖維蛋白穩定化因子)、VWF、激肽釋放酶原(prekallikrein)(佛來哲因子(Fletcher factor))、高分子量激肽原(kininogen)(HMWK)(菲次吉拉因子(Fitzgerald factor))、纖維連接蛋白(fibronectin)、抗凝血酶III(antithrombin III)、肝素輔因子II(heparin cofactor II)、蛋白質C、蛋白質S、蛋白質Z、血纖維蛋白溶酶原(plasminogen)、α2-抗血纖維蛋白溶酶(antiplasmin)、組織血纖維蛋白溶酶原活化物(tissue plasminogen activator,tPA)、尿激酶(urokinase)、血纖維蛋白溶酶原活化物抑制劑-1(PAI1)及血纖維蛋白溶酶原活化物抑制劑-2(PAI2)。
A型血友病(Haemophilia A)為一種由編碼凝血因子VIII(FVIII)之基因之缺陷引起的流血病症且影響萬分之一至二之男性出生者。Graw等人,Nat.Rev.Genet.6(6):488-501(2005)。受A型血友病影響之患者可輸注純化或重組產生之FVIII加以治療。然而,已知所有市售FVIII產品之半衰期皆為約8-12小時,從而需要頻繁向患者進行靜脈內投藥。參見Weiner M.A.及Cairo,M.S.,Pediatric Hematology Secrets,Lee,M.T.,12.Disorders of Coagulation,Elsevier Health Sciences,2001;Lillicrap,D.Thromb.Res.122增刊4:S2-8(2008)。此外,已嘗試許多 方法來延長FVIII半衰期。舉例而言,用以延長凝結因子之半衰期之開發中的方法包括聚乙二醇化、醣聚乙二醇化及與白蛋白結合。參見Dumont等人,Blood.119(13):3024-3030(2012年1月13日線上發表)。然而,無論所用蛋白質工程改造如何,當前在開發中之長效FVIII產品具有改良半衰期,但據報導該等半衰期有限-在臨床前動物模型中僅改良約1.5至2倍。參見同上。已在人類中證明一致結果,例如相較於ADVATE®,據報導rFVIIIFc在A型血友病患者中之半衰期改良多達約1.7倍。參見同上。因此,儘管改良微小,但半衰期增加可指示存在其他T1/2限制因素。參見Liu,T.等人,2007 ISTH會議,摘要#P-M-035;Henrik,A.等人,2011 ISTH會議,摘要#P=MO-181;Liu,T.等人,2011 ISTH會議,摘要#P-WE-131。
血漿范威爾邦德因子(von Willebrand Factor)之半衰期為約12小時(在9至15小時之範圍內)。http://www.nhlbi.nih.gov/guidelines/vwd/2_scientificoverview.htm(2011年10月22日最後訪問)。VWF半衰期可受以下許多因素影響:糖基化樣式、ADAMTS-13(具有血栓反應素(thrombospondin)基元-13之去整合素(disintegrin)及金屬蛋白酶)及VWF中之各種突變。
在血漿中,95-98%之FVIII以與全長VWF之緊密非共價複合物形式循環。此複合物之形成對於維持活體內FVIII之適當血漿含量而言為重要的。Lenting等人,Blood.92(11):3983-96(1998);Lenting等人,J.Thromb. Haemost.5(7):1353-60(2007)。全長野生型FVIII主要以具有重鏈(MW 200kd)及輕鏈(MW 73kd)之雜二聚體形式存在。當FVIII由於在重鏈中之位置372及740處及在輕鏈中之位置1689處之蛋白水解而活化時,結合於FVIII之VWF自活化FVIII移除。活化FVIII連同活化因子IX、鈣及磷脂一起(「因子X酶複合物(tenase complex)」)涉及產生大量凝血酶之因子X活化。凝血酶又接著裂解纖維蛋白原以形成可溶性纖維蛋白單體,該等單體接著自發聚合以形成可溶性纖維蛋白聚合物。凝血酶亦活化因子XIII,因子XIII連同鈣一起用於交聯及穩定化可溶性纖維蛋白聚合物,從而形成交聯(不溶性)纖維蛋白。活化FVIII藉由蛋白水解快速自循環清除。
歸因於頻繁給藥及由給藥時程所致之不便,仍然需要開發不需要頻繁投藥之FVIII產品,亦即半衰期長於半衰期限制1.5至2倍之FVIII產品。
本發明係關於一種包含因子VIII(「FVIII」)蛋白質及輔助部分(「AM」)之嵌合蛋白,其中該輔助部分抑制或防止內源性VWF結合該FVIII蛋白質。FVIII蛋白質及輔助部分藉由共價鍵彼此連接以防止輔助部分在內源性VWF存在下解離。在一個實施例中,共價鍵為肽鍵、二硫鍵或連接子,其足夠強力以防止輔助部分在內源性VWF存在下自FVIII蛋白質解離。在另一實施例中,輔助 部分防止FVIII蛋白質經由VWF清除路徑清除。在其他實施例中,輔助部分藉由遮蔽或阻斷FVIII蛋白質上之VWF結合位點來抑制或防止內源性VWF結合FVIII蛋白質。舉例而言,VWF結合位點位於FVIII蛋白質之A3域或C2域或A3域與C2域兩者中。
在一些實施例中,該嵌合蛋白包括包含藉由共價鍵彼此連接之FVIII蛋白質及輔助部分之構築體,其中該嵌合蛋白不包含誘導FVIII蛋白質之半衰期限制之FVIII半衰期限制因素,例如全長VWF蛋白質或成熟VWF蛋白質。因此,在一些實施例中,該嵌合蛋白之FVIII蛋白質之半衰期可超越在內源性VWF存在下FVIII蛋白質的半衰期限制加以延長。
在某些實施例中,輔助部分具有至少一種VWF樣FVIII保護性質。VWF樣FVIII保護性質之實例包括(但不限於)保護FVIII蛋白質免遭一或多種蛋白酶裂解、保護FVIII蛋白質免遭活化、穩定化FVIII蛋白質之重鏈及/或輕鏈、或防止FVIII蛋白質由一或多種清除受體(scavenger receptor)清除。在一個實施例中,輔助部分包含多肽、非多肽部分或兩者。在另一實施例中,輔助部分可為包含長度為以下之胺基酸序列之多肽:至少約40、至少約50、至少約60、至少約70、至少約80、至少約90、至少約100、至少約110、至少約120、至少約130、至少約140、至少約150、至少約200、至少約250、至少約300、至少約350、至少約400、至少約450、至少約 500、至少約550、至少約600、至少約650、至少約700、至少約750、至少約800、至少約850、至少約900、至少約950或至少約1000個胺基酸。在某些實施例中,輔助部分包含VWF片段、免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白(transferrin)或其片段或其任何組合。在其他實施例中,輔助部分為包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合之非多肽部分。
在某些實施例中,輔助部分包含VWF片段,該VWF片段包含VWF之D'域及D3域,其中除FVIII蛋白質與輔助部分(VWF片段)之間的共價鍵之外,該VWF片段與FVIII蛋白質亦藉由非共價鍵締合。在一個實例中,VWF片段為單體。在另一實例中,VWF片段包含兩個、三個、四個、五個或六個VWF片段,其中一或多者彼此連接。
在一個態樣中,嵌合蛋白包含輔助部分(例如VWF片段)及至少一個異源部分(H1)及在該輔助部分(例如VWF片段)與該異源部分(H1)之間視情況選用之連接子。在一個實施例中,異源部分(H1)可包含延長FVIII蛋白質之半衰期之部分,例如選自由以下組成之群之多肽:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合;或選自由以下組成之群之非多肽部分:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在一個實施例中,異源部分(H1)包含第一Fc區。在另一 實施例中,異源部分(H1)包含胺基酸序列,該胺基酸序列包含至少約50個胺基酸、至少約100個胺基酸、至少約150個胺基酸、至少約200個胺基酸、至少約250個胺基酸、至少約300個胺基酸、至少約350個胺基酸、至少約400個胺基酸、至少約450個胺基酸、至少約500個胺基酸、至少約550個胺基酸、至少約600個胺基酸、至少約650個胺基酸、至少約700個胺基酸、至少約750個胺基酸、至少約800個胺基酸、至少約850個胺基酸、至少約900個胺基酸、至少約950個胺基酸或至少約1000個胺基酸。在其他實施例中,嵌合蛋白在輔助部分(例如VWF片段)與異源部分(H1)之間包含為可裂解連接子之連接子。
在另一態樣中,嵌合蛋白中之FVIII蛋白質包含FVIII及至少一個異源部分(H2)。在一個實施例中,異源部分(H2)能夠延長FVIII蛋白質之半衰期,該異源部分為例如選自由以下組成之群之多肽:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合;或包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合之非多肽部分。在一特定實施例中,異源部分(H2)包含第二Fc區。
在一些實施例中,嵌合蛋白包含含有VWF片段、第一異源部分及連接子之第一多肽鏈及包含FVIII蛋白質及第二異源部分之第二多肽鏈,其中該第一多肽鏈與該第二 多肽鏈藉由共價鍵彼此連接。在一個實例中,第一異源部分與第二異源部分藉由共價鍵(例如二硫鍵、肽鍵或連接子)彼此連接,其中該共價鍵防止第一多肽鏈中之VWF片段在活體內經內源性VWF置換。在一些實施例中,FVIII蛋白質與第二異源部分之間的連接子為可裂解連接子。
在某些實施例中,連接於VWF片段之第一異源部分(H1)與連接於FVIII蛋白質之第二異源部分(H2)藉由為可加工連接子之連接子(例如scFc連接子)連接。
在其他實施例中,嵌合蛋白中之FVIII蛋白質進一步包含第三異源部分(H3)、第四異源部分(H4)、第五異源部分(H5)、第六異源部分(H6)或其任何組合。在一個實施例中,第三異源部分(H3)、第四異源部分(H4)、第五異源部分(H5)、第六異源部分(H6)之一或多者能夠延長FVIII蛋白質之半衰期。在另一實施例中,第三異源部分(H3)、第四異源部分(H4)、第五異源部分(H5)及第六異源部分(H6)連接於FVIII之C末端或N末端或插入在FVIII之兩個胺基酸之間。在其他實施例中,第三異源部分(H3)、第四異源部分(H4)、第五異源部分(H5)或第六異源部分(H6)之一或多者包含胺基酸序列,該胺基酸序列包含至少約50個胺基酸、至少約100個胺基酸、至少約150個胺基酸、至少約200個胺基酸、至少約250個胺基酸、至少約300個胺基酸、至少約350個胺基酸、至少約400個胺基酸、至少約450個胺基酸、至少約500個胺基酸、至少約550個胺基酸、至少約600個胺基酸、至少約650個胺基酸、至 少約700個胺基酸、至少約750個胺基酸、至少約800個胺基酸、至少約850個胺基酸、至少約900個胺基酸、至少約950個胺基酸或至少約1000個胺基酸。
在一些實施例中,FVIII蛋白質與第二異源部分之間的連接子或VWF片段與第一異源部分之間的連接子進一步包含在連接子之N末端區域之第一裂解位點(P1)、在連接子之C末端區域之第二裂解位點(P2)或兩者。在其他實施例中,在FVIII蛋白質與輔助部分之間的連接子、在FVIII蛋白質與第二異源部分之間的連接子、及在VWF片段與第一異源部分之間的連接子之一或多者之長度為約1至約2000個胺基酸。
在其他實施例中,嵌合蛋白包含FVIII蛋白質及輔助部分,其藉由在該FVIII蛋白質與該輔助部分之間的連接子連接,其中該連接子進一步包含分選酶(sortase)識別基元,例如序列LPXTG(SEQ ID NO:106)。
本發明係有關一種包含VWF之D’域及D3域之范威爾邦德因子(VWF)片段,其中該VWF片段結合因子VIII(FVIII)且抑制內源性VWF結合FVIII蛋白質。在一個實施例中,本發明之VWF片段不為SEQ ID NO:2之胺基酸764至1274。在一個實施例中,不具有VWF片段之FVIII蛋白質之半衰期類似於野生型FVIII。在另一實施例中,FVIII蛋白質為包含FVIII及能夠延長FVIII之半衰期之異源部分的融合蛋白。該異源部分可為多肽、非多肽部分或兩者。異源多肽部分可選自由以下組成之群:免疫 球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在其他實施例中,異源部分為免疫球蛋白恆定區或其部分,例如Fc區。在其他實施例中,非多肽部分係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在某些實施例中,FVIII蛋白質包含第一多肽鏈及第二多肽鏈,其中該第一多肽鏈包含FVIII及第一Fc區,且該第二多肽鏈包含無FVIII之第二Fc區。
在另一實施例中,VWF片段延長FVIII之半衰期。D’域之胺基酸序列與SEQ ID NO:2之胺基酸764至866之一致性可為至少90%、95%、96%、97%、98%、99%或100%。此外,D3域之胺基酸序列與SEQ ID NO:2之胺基酸867至1240之一致性可為至少90%、95%、96%、97%、98%、99%或100%。在某些實施例中,VWF片段在對應於SEQ ID NO:2之殘基1099、殘基1142或兩者之殘基處含有至少一個胺基酸取代。在一特定實施例中,VWF片段包含以下、基本上由以下組成或由以下組成:SEQ ID NO:2之胺基酸764至1240。VWF片段可進一步包含VWF之D1域、D2域、或D1及D2域。在一些實施例中,VWF片段進一步包含選自由以下組成之群之VWF域:A1域、A2域、A3域、D4域、B1域、B2域、B3域、C1域、C2域、CK域、其一或多個片段及其任何組合。在其他實施例中,VWF片段經聚乙二醇化、糖基化、羥乙基 澱粉化或聚唾液酸化。
本發明亦係有關一種嵌合蛋白,其包含本文所述之VWF片段、異源部分、及在該VWF片段與該異源部分之間視情況選用之連接子。異源部分可為多肽、非多肽部分或兩者。在一個實施例中,異源多肽部分係選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在另一實施例中,異源非多肽部分係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在一特定實施例中,異源部分為第一Fc區。嵌合蛋白可進一步包含第二Fc區,其中該第二Fc區與第一Fc區連接或締合或與VWF片段連接或締合。
在一個態樣中,本發明之嵌合蛋白包含選自由以下組成之群之式:(aa)V-L1-H1-L2-H2,(bb)H2-L2-H1-L1-V,(cc)H1-L1-V-L2-H2,及(dd)H2-L2-V-L1-H1,其中V為本文所述之VWF片段之一或多者,L1及L2各自為視情況選用之連接子;H1為第一異源部分;(-)為肽鍵或一或多個胺基酸;且H2為視情況選用之第二異源部分。
在一個實施例中,H1為第一異源部分,例如此項技術中已知之半衰期延長分子。在一個實施例中,第一異源部分為多肽。第一異源多肽部分係選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在另一實施例中,H1為選自由以下組成之群之非多肽部分:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。H2為視情況選用之第二異源部分,例如此項技術中已知之半衰期延長分子。在一個實施例中,第二異源部分可選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在另一實施例中,H2為非多肽部分,其係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在某些實施例中,H1為第一Fc區且H2為第二Fc區。第一Fc區與第二Fc區可相同或不同且可藉由連接子或共價鍵(例如二硫鍵)彼此連接。在另一實施例中,第二Fc區與因子VIII蛋白質連接或締合。視情況,可存在連接於VWF片段、第一異源部分或第二異源部分之作為半衰期延長劑之第三異源部分H3。第三異源部分之非限制性實例可包括多肽或非多肽部分或兩者。在一個實施例中,第三異源多肽部分可選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白 或其片段或其任何組合。在另一實施例中,H2為非多肽部分,其係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在一些實施例中,H3藉由可裂解連接子(例如凝血酶可裂解連接子)連接於VWF片段或第一或第二異源部分。連接子之非限制性實例在本文中其他地方加以揭露。
在另一態樣中,本發明提供一種嵌合蛋白,其包含本文所述之VWF片段、FVIII蛋白質、及在該VWF片段與該FVIII蛋白質之間視情況選用之連接子。VWF片段可結合於FVIII蛋白質。在一個實施例中,嵌合蛋白包含連接於異源部分之本文所述之VWF片段。異源部分可為延長蛋白質之半衰期之部分,其包含多肽、非多肽部分或兩者。該種異源多肽部分之實例包括例如免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、其任何衍生物或變異體或其任何組合。非多肽部分之實例包括例如聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。在另一實施例中,異源部分為連接於VWF片段之第一Fc區。在其他實施例中,嵌合蛋白進一步包含連接於FVIII蛋白質之第二Fc區。VWF片段或FVIII蛋白質可藉由連接子分別連接於第一Fc區或第二Fc區。在其他實施例中,嵌合蛋白包含連接於第一異源部分(例如第一Fc區)之本文所述之VWF片段、及連接於第二異源部分(例如第二Fc區)之FVIII蛋白質,其中該VWF片段藉由連接子或藉由共價鍵進一步連 接於該第二異源部分(例如第二Fc區)或該FVIII蛋白質,或該第一異源部分(例如Fc區)藉由連接子或共價鍵進一步連接於該FVIII蛋白質或該第二異源部分(例如第二Fc區)。在一些實施例中,嵌合蛋白之FVIII具有部分B域。在一些實施例中,具有部分B域之FVIII蛋白質為FVIII198(SEQ ID NO:105)。在其他實施例中,嵌合蛋白進一步包含分選酶識別基元。
在一些實施例中,作為本發明之結果,相較於無VWF片段之FVIII蛋白質或野生型FVIII,FVIII蛋白質之半衰期得以延長。FVIII蛋白質之半衰期比無VWF片段之FVIII蛋白質之半衰期長至少約1.5倍、至少約2倍、至少約2.5倍、至少約3倍、至少約4倍、至少約5倍、至少約6倍、至少約7倍、至少約8倍、至少約9倍、至少約10倍、至少約11倍或至少約12倍。在一個實施例中,FVIII之半衰期比野生型FVIII之半衰期長約1.5倍至約20倍、約1.5倍至約15倍、或約1.5倍至約10倍。在另一實施例中,相較於野生型FVIII或無VWF片段之FVIII蛋白質,FVIII之半衰期延長約2倍至約10倍、約2倍至約9倍、約2倍至約8倍、約2倍至約7倍、約2倍至約6倍、約2倍至約5倍、約2倍至約4倍、約2倍至約3倍、約2.5倍至約10倍、約2.5倍至約9倍、約2.5倍至約8倍、約2.5倍至約7倍、約2.5倍至約6倍、約2.5倍至約5倍、約2.5倍至約4倍、約2.5倍至約3倍、約3倍至約10倍、約3倍至約9倍、約3倍至約8 倍、約3倍至約7倍、約3倍至約6倍、約3倍至約5倍、約3倍至約4倍、約4倍至約6倍、約5倍至約7倍、或約6倍至約8倍。在其他實施例中,FVIII之半衰期為至少約17小時、至少約18小時、至少約19小時、至少約20小時、至少約21小時、至少約22小時、至少約23小時、至少約24小時、至少約25小時、至少約26小時、至少約27小時、至少約28小時、至少約29小時、至少約30小時、至少約31小時、至少約32小時、至少約33小時、至少約34小時、至少約35小時、至少約36小時、至少約48小時、至少約60小時、至少約72小時、至少約84小時、至少約96小時或至少約108小時。在其他實施例中,FVIII之半衰期為約15小時至約兩週、約16小時至約一週、約17小時至約一週、約18小時至約一週、約19小時至約一週、約20小時至約一週、約21小時至約一週、約22小時至約一週、約23小時至約一週、約24小時至約一週、約36小時至約一週、約48小時至約一週、約60小時至約一週、約24小時至約六天、約24小時至約五天、約24小時至約四天、約24小時至約三天、或約24小時至約兩天。
在一些實施例中,每位個體中FVIII蛋白質之平均半衰期為約15小時、約16小時、約17小時、約18小時、約19小時、約20小時、約21小時、約22小時、約23小時、約24小時(1天)、約25小時、約26小時、約27小時、約28小時、約29小時、約30小時、約31小時、 約32小時、約33小時、約34小時、約35小時、約36小時、約40小時、約44小時、約48小時(2天)、約54小時、約60小時、約72小時(3天)、約84小時、約96小時(4天)、約108小時、約120小時(5天)、約六天、約七天(一週)、約八天、約九天、約10天、約11天、約12天、約13天或約14天。
在另一態樣中,本發明之嵌合蛋白包含選自由以下組成之群之式:(a)V-L1-H1-L3-C-L2-H2,(b)H2-L2-C-L3-H1-L1-V,(c)C-L2-H2-L3-V-L1-H1,(d)H1-L1-V-L3-H2-L2-C,(e)H1-L1-V-L3-C-L2-H2,(f)H2-L2-C-L3-V-L1-H1,(g)V-L1-H1-L3-H2-L2-C,(h)C-L2-H2-L3-H1-L1-V,(i)H2-L3-H1-L1-V-L2-C,(j)C-L2-V-L1-H1-L3-H2,(k)V-L2-C-L1-H1-L3-H2,及(l)H2-L3-H1-L1-C-L2-V,其中V為本文所述之VWF片段;L1或L2各自為視情況選用之連接子,例如凝血酶可裂解連接子;L3為視情況選用之連接子,例如scFc連接子,例如 可加工連接子;H1或H2各自為視情況選用之異源部分;且C為FVIII蛋白質;且(-)為肽鍵或一或多個胺基酸。
在其他態樣中,本發明之嵌合蛋白包含選自由以下組成之群之式:(m)V-L1-H1:H2-L2-C,(n)V-L1-H1:C-L2-H2,(o)H1-L1-V:H2-L2-C,(p)H1-L1-V:C-L2-H2,(q)V:C-L1-H1:H2,(r)V:H1-L1-C:H2,(s)H2:H1-L1-C:V,(t)C:V-L1-H1:H2,及(u)C:H1-L1-V:H2,其中V為本文所述之VWF片段;L1或L2各自為視情況選用之連接子,例如凝血酶可裂解連接子;H1或H2各自為視情況選用之異源部分;且C為FVIII蛋白質;(-)為肽鍵或一或多個胺基酸;且(:)為H1與H2之間、V與C之間、及V及H1與C及H2之間的化學或物理締合。(:)表示化學締合,例如至少一個非肽鍵。在某些實施例中,化學締合(亦即(:))為共 價鍵。在一些實施例中,H1與H2之間的締合為共價鍵,例如二硫鍵。在其他實施例中,化學締合(亦即(:))為非共價相互作用,例如離子相互作用、疏水性相互作用、親水性相互作用、凡得瓦(Van der Waals)相互作用、氫鍵。在某些實施例中,FVIII蛋白質與VWF片段之間的締合為非共價鍵。在其他實施例中,(:)為非肽共價鍵。在其他實施例中,(:)為肽鍵。在一個實施例中,H1為第一異源部分。在一個實施例中,第一異源部分能夠延長FVIII活性之半衰期。在另一實施例中,第一異源部分為多肽、非多肽部分或兩者。在一個實施例中,第一異源多肽部分可選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在另一實施例中,非多肽部分係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在一些實施例中,H2為第二異源部分。第二異源部分亦可為此項技術中已知之半衰期延長劑且可為多肽、非多肽部分或兩者之組合。在一個實施例中,第二異源部分係選自由以下組成之群:免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段及其任何組合。在某些實施例中,非多肽部分係選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物及其任何組合。在一特定實施例中,H1為第一Fc區。在一些實施例中,H2為第二Fc區。視情 況,可存在作為半衰期延長劑之第三異源部分H3。H3可藉由視情況選用之連接子(例如可裂解連接子,例如凝血酶可裂解連接子)連接於V、C、H1或H2之一或多者。第三異源部分之非限制性實例可包括免疫球蛋白恆定區或其部分、白蛋白或其片段、聚乙二醇(PEG)、PAS序列及羥乙基澱粉(HES)或其衍生物。
在某些實施例中,用於將式(a)至(u)之VWF片段、FVIII蛋白質、第一異源部分及/或第二異源部分彼此連接之連接子的一或多者為可裂解連接子。嵌合蛋白中使用之一或多個裂解位點可由選自由以下組成之群之蛋白酶裂解:因子XIa、因子XIIa、胰舒血管素(kallikrein)、因子VIIa、因子IXa、因子Xa、因子IIa(凝血酶)、彈性蛋白酶(Elastase)-2、粒酶(Granzyme)-B、TEV、腸激酶、蛋白酶3C、分選酶A、MMP-12、MMP-13、MMP-17及MMP-20。在其他實施例中,式(a)至(l)中使用之一或多個連接子(例如L3)包含可加工連接子。可加工連接子可由分泌之細胞內酶裂解。可加工連接子可包含在連接子之N末端區域之第一裂解位點(P1)、在連接子之C末端區域之第二裂解位點(P2)或兩者。
在一些實施例中,本發明中使用之一或多個連接子之長度為至少約1至2000個胺基酸。在一特定實施例中,本發明中使用之一或多個連接子之長度為至少約20、35、42、48、73、98、144、288、324、576或864個胺基酸。在一特定實施例中,一或多個連接子包含gly/ser肽 。gly/ser肽可為(Gly4 Ser)3或(Gly4 Ser)4
在其他態樣中,嵌合蛋白中之FVIII蛋白質為功能性因子VIII蛋白質。FVIII蛋白質可包含FVIII之一或多個選自由以下組成之群之域:A1域、A2域、B域、A3域、C1域、C2域、其一或多個片段及其任何組合。在一個實施例中,FVIII蛋白質包含B域或其部分。在另一實施例中,FVIII蛋白質為SQ B域缺失之FVIII。在其他實施例中,FVIII蛋白質包含單鏈FVIII。在其他實施例中,FVIII蛋白質包含FVIII之重鏈及因子VIII之輕鏈,其中該重鏈與該輕鏈藉由金屬鍵彼此締合。在某些實施例中,FVIII蛋白質對低密度脂蛋白受體相關蛋白質(LRP)具有低親和力或不結合低密度脂蛋白受體相關蛋白質。舉例而言,適用於本發明之FVIII蛋白質可含有至少一個降低與LRP之親和力或消除與LRP之結合的胺基酸取代。該至少一個胺基酸取代之非限制性實例位於對應於全長成熟FVIII之殘基471、殘基484、殘基487、殘基490、殘基497、殘基2092、殘基2093或其兩種或兩種以上組合之殘基處。在一些實施例中,本發明之嵌合蛋白中之FVIII蛋白質含有至少一個胺基酸取代,其誘導FVIII蛋白質比無該取代之FVIII蛋白質更穩定。在其他實施例中,FVIII蛋白質含有在A2域中之至少一個胺基酸取代及在A3域中之至少一個胺基酸取代,其中該A2域與該A3域藉由共價鍵彼此締合。A2域中之胺基酸取代之非限制性實例在對應於全長成熟FVIII之殘基662或664之殘基處。此 外,A3域中之胺基酸取代之非限制性實例在對應於聚唾液酸化全長成熟FVIII之殘基1826或1828之殘基處。
在其他態樣中,本發明提供一種編碼本文所述之VWF片段或本文所述之嵌合蛋白的聚核苷酸、或包含第一核苷酸鏈及第二核苷酸鏈之一組聚核苷酸,其中該第一核苷酸鏈編碼VWF片段且該第二核苷酸鏈編碼嵌合蛋白之第二Fc區或凝結因子或其片段。在一個實施例中,該組聚核苷酸進一步包含第三聚核苷酸鏈,其編碼屬於枯草桿菌蛋白酶(subtilisin)樣前蛋白轉化酶家族之前蛋白轉化酶。前蛋白轉化酶之非限制性實例包括前蛋白轉化酶枯草桿菌蛋白酶/kexin 3型(PACE或PCSK3)、前蛋白轉化酶枯草桿菌蛋白酶/kexin 5型(PCSK5或PC5)、前蛋白轉化酶枯草桿菌蛋白酶/kexin 7型(PCSK7或PC7)或酵母Kex 2。在其他態樣中,本發明包括一種包含該聚核苷酸或該組聚核苷酸及一或多個可操作地連接於該聚核苷酸或該組聚核苷酸之啟動子之載體或包含第一載體及第二載體之一組載體,其中該第一載體編碼該組聚核苷酸之第一聚核苷酸鏈且該第二載體編碼該組聚核苷酸之第二聚核苷酸鏈。該組載體可進一步包含第三載體,其包含編碼PC5或PC7之第三聚核苷酸鏈。在一些實施例中,該載體進一步包含PACE。在一些實施例中,PACE裂解VWF片段之D1D2域。
在一些態樣中,本發明係有關一種醫藥組合物,其包含該VWF片段、該嵌合蛋白、該聚核苷酸、該組聚核苷 酸、該載體、或該組載體及醫藥學上可接受之載劑。本發明之組合物可延長因子VIII之半衰期。在其他態樣中,本發明包括一種宿主細胞,其包含該聚核苷酸、該組聚核苷酸、該載體或該組載體。
在其他態樣中,本發明係關於一種嵌合蛋白,其包含FVIII蛋白質、輔助部分及視情況選用之連接子,其中該輔助部分抑制或防止內源性VWF結合該FVIII蛋白質且具有至少一種VWF樣FVIII保護性質。VWF樣FVIII保護性質包含保護FVIII蛋白質免遭一或多種蛋白酶裂解、保護FVIII蛋白質免遭活化、穩定化FVIII蛋白質之重鏈及/或輕鏈、或防止FVIII蛋白質由一或多種清除受體清除。
嵌合蛋白中之輔助部分可藉由遮蔽或阻斷FVIII蛋白質上之VWF結合位點來抑制或防止內源性VWF結合FVIII蛋白質。在一些實施例中,VWF結合位點位於FVIII蛋白質之A3域或C2域或FVIII蛋白質之A3域與C2域兩者中。在另一實施例中,VWF結合位點為對應於SEQ ID NO:16之胺基酸1669至1689及2303至2332之胺基酸序列。在一些實施例中,輔助部分為多肽、非多肽部分或兩者。適用作輔助部分之多肽可包含長度為至少40、50、60、70、80、90、100、110、120、130、140、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950或1000個胺基酸之胺基酸序列。舉例而言,適用作輔助部分之多肽可選自 由以下組成之群:VWF片段、免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、其他半衰期延長技術及其任何組合。適用作輔助部分之非多肽部分可選自由以下組成之群:聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)或其衍生物及其任何組合。在一個實施例中,輔助部分為本文所述之VWF片段。輔助部分與FVIII蛋白質可例如藉由連接子連接或彼此締合。連接子可包含可裂解連接子,例如凝血酶可裂解連接子。
在一個態樣中,本發明提供一種防止或抑制FVIII蛋白質與內源性VWF結合之方法,其包含向包含FVIII蛋白質或編碼該FVIII蛋白質之聚核苷酸之細胞添加有效量之該VWF片段、該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該VWF片段結合該FVIII蛋白質。在另一態樣中,本發明包括一種防止或抑制FVIII蛋白質與內源性VWF結合之方法,其包含向有需要之個體添加有效量之該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該VWF片段結合該FVIII蛋白質且因此防止或抑制該FVIII蛋白質之結合。在一些態樣中,本發明包括一種延長或增加FVIII蛋白質之半衰期之方法,其中該方法包含向包含FVIII蛋白質或編碼該FVIII蛋白質之聚核苷酸之細胞或向有需要之個體添加有效量之該VWF片段、該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該VWF片段結合該FVIII蛋白質。在其他態樣中,本發明係關於一種防止或 抑制FVIII蛋白質自細胞清除之方法,其中該方法包含向包含FVIII蛋白質或編碼該FVIII蛋白質之聚核苷酸之細胞或向有需要之個體添加有效量之該VWF片段、該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該VWF片段結合該FVIII蛋白質。
在另一態樣中,本發明係有關一種治療有需要之個體之流血疾病或病症的方法,其包含投與有效量之該VWF片段、該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該流血疾病或病症係選自由以下組成之群:流血凝血病症、關節積血(hemarthrosis)、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血及髂腰肌鞘中流血。在其他實施例中,治療為防治性的或按需進行。在其他實施例中,本發明為一種治療有需要之個體之與2N型范威爾邦德氏病(Type 2N von Willebrand’s disease)相關之疾病或病症的方法,其包含投與有效量之該VWF片段、該嵌合蛋白、該聚核苷酸或該組聚核苷酸,其中該疾病或病症得以治療。
定義
應注意術語「一」實體係指一或多個彼實體;例如「一核苷酸序列」應理解成表示一或多個核苷酸序列。因此,術語「一」、「一或多個」及「至少一個」在本文中可 互換使用。
術語「聚核苷酸」或「核苷酸」意欲涵蓋單個核酸以及複數個核酸,且係指經分離核酸分子或構築體,例如信使RNA(mRNA)或質體DNA(pDNA)。在某些實施例中,聚核苷酸包含習知磷酸二酯鍵或非習知鍵(例如醯胺鍵,諸如見於肽核酸(PNA)中)。術語「核酸」係指存在於聚核苷酸中之任何一或多個核酸鏈段,例如DNA或RNA片段。就「經分離」核酸或聚核苷酸而言,其意欲為已自原生環境移除之核酸分子DNA或RNA。舉例而言,出於本發明之目的,載體中含有之編碼因子VIII多肽之重組聚核苷酸被視為經分離。經分離聚核苷酸之其他實例包括維持在異源宿主細胞中或自其他聚核苷酸純化(部分或實質上純化)之呈溶液形式之重組聚核苷酸。經分離RNA分子包括本發明之聚核苷酸之活體內或活體外RNA轉錄物。本發明之經分離聚核苷酸或核酸進一步包括合成產生之此等分子。此外,聚核苷酸或核酸可包括調控元件,諸如啟動子、增強子、核糖體結合位點或轉錄終止信號。
如本文所用,「編碼區」或「編碼序列」為由可轉譯成胺基酸之密碼子組成之一部分聚核苷酸。儘管「終止密碼子」(TAG、TGA或TAA)通常不轉譯成胺基酸,但其可被視為編碼區之一部分,然而任何側接序列(例如啟動子、核糖體結合位點、轉錄終止子、內含子及其類似序列)皆不為編碼區之一部分。編碼區之邊界通常由在5’末端之起始密碼子(編碼所得多肽之胺基末端)及在3’末端之轉譯 終止密碼子(編碼所得多肽之羧基末端)來確定。本發明之兩個或兩個以上編碼區可存在於單一聚核苷酸構築體中,例如在單一載體上,或存在於各別聚核苷酸構築體中,例如在各別(不同)載體上。則由此可見單一載體可僅含有單一編碼區,或包含兩個或兩個以上編碼區,例如單一載體可各別編碼如下所述之結合域A及結合域B。此外,本發明之載體、聚核苷酸或核酸可編碼融合或未融合於編碼本發明之結合域之核酸的異源編碼區。異源編碼區不加限制地包括專門化元件或基元,諸如分泌信號肽或異源功能域。
由哺乳動物細胞分泌之某些蛋白質與分泌信號肽締合,一旦逐漸增長之蛋白質鏈跨越粗糙內質網之排出已經引發,該信號肽即自成熟蛋白質裂解。一般技藝人士應瞭解信號肽通常融合於多肽之N末端,且自完全或「全長」多肽裂解以產生多肽之分泌或「成熟」形式。在某些實施例中,使用原生信號肽(例如免疫球蛋白重鏈或輕鏈信號肽)、或彼序列之保留引導可操作地與其締合之多肽分泌之能力的功能性衍生物。或者,可使用異源哺乳動物信號肽,例如人類組織血纖維蛋白溶酶原活化物(TPA)或小鼠β-葡糖醛酸酶(β-glucuronidase)信號肽或其功能性衍生物。
術語「下游」係指位於參照核苷酸序列之3’之核苷酸序列。在某些實施例中,下游核苷酸序列係關於在轉錄起始點之後之序列。舉例而言,基因之轉譯起始密碼子位於轉錄起始位點之下游。
術語「上游」係指位於參照核苷酸序列之5’之核苷酸序列。在某些實施例中,上游核苷酸序列係關於位於編碼區或轉錄起始點之5’側之序列。舉例而言,大多數啟動子位於轉錄起始位點之上游。
如本文所用,術語「調控區」係指位於編碼區之上游(5'非編碼序列)、內部或下游(3'非編碼序列),且影響相關編碼區之轉錄、RNA加工、穩定性或轉譯之核苷酸序列。調控區可包括啟動子、轉譯前導序列、內含子、聚腺苷酸化識別序列、RNA加工位點、效應物結合位點及莖-環結構。若編碼區意欲在真核細胞中表現,則聚腺苷酸化信號及轉錄終止序列將通常位於編碼序列之3’。
編碼基因產物(例如多肽)之聚核苷酸可包括可操作地與一或多個編碼區締合之啟動子及/或其他轉錄或轉譯控制元件。在一可操作締合中,基因產物(例如多肽)之編碼區以將該基因產物之表現置於調控區之影響或控制之下的方式與一或多個調控區締合。舉例而言,若誘導啟動子功能會導致編碼由編碼區編碼之基因產物之mRNA轉錄,且若啟動子與編碼區之間的鍵聯之性質不干擾啟動子引導基因產物表現之能力或不干擾DNA模板被轉錄之能力,則編碼區及啟動子係「可操作地締合」。除啟動子之外,其他轉錄控制元件(例如增強子、操縱子、阻遏子及轉錄終止信號)亦可可操作地與編碼區締合以引導基因產物表現。
多種轉錄控制區為熟習此項技術者所知。此等轉錄控 制區不加限制地包括在脊椎動物細胞中起作用之轉錄控制區,諸如(但不限於)來自巨細胞病毒(即刻早期啟動子,連同內含子-A一起)、猿猴病毒40(早期啟動子)及反轉錄病毒(諸如勞斯肉瘤病毒(Rous sarcoma virus))之啟動子及增強子鏈段。其他轉錄控制區包括源於脊椎動物基因(諸如肌動蛋白(actin)、熱休克蛋白、牛生長激素及兔β-球蛋白)之彼等控制區、以及能夠控制真核細胞中之基因表現之其他序列。額外適合轉錄控制區包括組織特異性啟動子及增強子以及淋巴因子(lymphokine)誘導性啟動子(例如可由干擾素或介白素誘導之啟動子)。
類似地,多種轉譯控制元件為一般技藝人士所知。此等轉譯控制元件包括(但不限於)核糖體結合位點、轉譯起始及終止密碼子、及源於微小核糖核酸病毒之元件(特定言之內部核糖體進入位點或IRES,亦稱為CITE序列)。
如本文所用之術語「表現」係指使得聚核苷酸產生基因產物(例如RNA或多肽)之過程。其不加限制地包括聚核苷酸轉錄成信使RNA(mRNA)、轉移RNA(tRNA)、小髮夾RNA(shRNA)、小干擾RNA(siRNA)或任何其他RNA產物,及mRNA轉譯成多肽。表現產生「基因產物」。如本文所用,基因產物可為核酸(例如藉由基因轉錄產生之信使RNA)或自轉錄物轉譯之多肽。本文所述之基因產物進一步包括具有轉錄後修飾(例如聚腺苷酸化或剪接)之核酸、或具有轉譯後修飾(例如甲基化、糖基化、添加脂質、與其他蛋白質次單元締合、或蛋白水解裂解)之多肽。
「載體」係指用於將核酸選殖及/或轉移入宿主細胞中之任何載體。載體可為可與另一核酸鏈段連接以使所連接鏈段複製之複製子。「複製子」係指在活體內充當自主複製單元,亦即能夠在自身控制下複製之任何遺傳元件(例如質體、噬菌體、黏質體、染色體、病毒)。術語「載體」包括用於在活體外、離體或在活體內將核酸引入細胞中之病毒載體與非病毒載體兩者。此項技術中已知且使用許多載體,包括例如質體、經修飾真核病毒或經修飾細菌病毒。將聚核苷酸插入適合載體中可藉由將適當聚核苷酸片段連接入具有互補黏性末端之所選載體中來達成。
載體可經工程改造以編碼提供對已併有載體之細胞之選擇或鑒別的可選擇標記或報導體。可選擇標記或報導體之表現允許鑒別及/或選擇併有且表現載體上含有之其他編碼區之宿主細胞。此項技術中已知且使用之可選擇標記基因之實例包括:提供對胺苄青黴素(ampicillin)、鏈黴素(streptomycin)、健他黴素(gentamycin)、康黴素(kanamycin)、潮黴素(hygromycin)、雙丙胺膦(bialaphos)除草劑、磺醯胺及其類似物之抗性之基因;及用作表型標記之基因,亦即花青素(anthocyanin)調控基因、異戊基轉移酶基因及其類似物。此項技術中已知且使用之報導體之實例包括:螢光素酶(luciferase,Luc)、綠色螢光蛋白(GFP)、氯黴素乙醯轉移酶(CAT)、-半乳糖苷酶(galactosidase,LacZ)、-葡糖醛酸酶(glucuronidase,Gus)及其類似物。可選擇標記亦可視為報導體。
術語「質體」係指染色體外元件,其常攜帶不為細胞之中心代謝之一部分的基因,且通常呈環狀雙股DNA分子形式。此等元件可為源於任何來源之具有單股或雙股DNA或RNA之線性、環狀或超螺旋自主複製序列、基因組整合序列、噬菌體或核苷酸序列,其中許多核苷酸序列已接合或重組成能夠將啟動子片段及所選基因產物之DNA序列連同適當3'未轉譯序列一起引入細胞中之獨特構造。
可使用之真核病毒載體包括(但不限於)腺病毒載體、反轉錄病毒載體、腺相關病毒載體、痘病毒(例如牛痘病毒載體)、桿狀病毒載體或皰疹病毒載體。非病毒載體包括質體、脂質體、帶電荷脂質(細胞轉染劑)、DNA-蛋白質複合物及生物聚合物。
「選殖載體」係指可為依序複製之單位長度之核酸且包含複製起點的「複製子」(諸如質體、噬菌體或黏質體),另一核酸鏈段可與該複製子連接以使所連接鏈段複製。某些選殖載體能夠在一個細胞類型(例如細菌)中複製且在另一細胞類型(例如真核細胞)中表現。選殖載體通常包含一或多種可用於選擇包含載體之細胞之序列及/或一或多個用於插入相關核酸序列之多選殖位點。
術語「表現載體」係指經設計成使插入之核酸序列能夠在插入宿主細胞中之後表現之載體。插入之核酸序列係以與如上所述之調控區可操作締合之方式置放。
藉由此項技術中熟知之方法將載體引入宿主細胞中, 該等方法例如轉染、電穿孔、顯微注射、轉導、細胞融合、DEAE葡聚糖、磷酸鈣沈澱、脂質體轉染(溶酶體融合)、使用基因槍、或DNA載體轉運體(transporter)。
如本文所用之「培養」意謂在允許細胞生長或分裂之活體外條件下培育細胞或意謂使細胞維持存活狀態。如本文所用之「培養細胞」意謂在活體外繁殖之細胞。
如本文所用,術語「多肽」意欲涵蓋單個「多肽」以及複數個「多肽」,且係指由藉由醯胺鍵(亦稱為肽鍵)線性連接之單體(胺基酸)構成之分子。術語「多肽」係指具有兩個或兩個以上胺基酸之任何一或多個鏈,且不指特定長度之產物。因此,肽、二肽、三肽、寡肽、「蛋白質」、「胺基酸鏈」或用於代表具有兩個或兩個以上胺基酸之一或多個鏈之任何其他術語包括在「多肽」之定義內且術語「多肽」可替代任何此等術語加以使用或可與任何此等術語互換使用。術語「多肽」亦意欲代表具有多肽之表現後修飾之產物,該等修飾不加限制地包括糖基化、乙醯化、磷酸化、醯胺化、由已知保護/阻隔基團達成之衍生化、蛋白水解裂解、或由非天然存在之胺基酸達成之修飾。多肽可源於天然生物來源或藉由重組技術產生,但未必自指定核酸序列轉譯。其可以任何方式產生,包括藉由化學合成。
「經分離」多肽或其片段、變異體或衍生物係指不在天然環境中之多肽。不要求特定純化程度。舉例而言,經分離多肽可僅自其原生或天然環境移除。出於本發明之目 的,在宿主細胞中表現之重組產生之多肽及蛋白質被視為經分離,已藉由任何適合技術分離、部分分離、或部分或實質上純化之天然或重組多肽亦視為經分離。
本發明中亦包括多肽之片段或變異體及其任何組合。術語「片段」或「變異體」在關於本發明之多肽結合域或結合分子時包括保留參照多肽之至少一些性質(例如對FcRn結合域或Fc變異體之FcRn結合親和力、FVIII變異體之凝血活性、或VWF片段之FVIII結合活性)之任何多肽。除在本文中其他地方論述之特定抗體片段之外,多肽之片段亦包括蛋白水解片段以及缺失片段,但不包括天然存在之全長多肽(或成熟多肽)。本發明之多肽結合域或結合分子之變異體包括如上所述之片段以及胺基酸序列歸因於胺基酸取代、缺失或插入而改變之多肽。變異體可為天然存在的或非天然存在的。非天然存在之變異體可使用此項技術已知之突變誘發技術來產生。變異多肽可包含保守或非保守胺基酸取代、缺失或添加。
本文中使用之術語「VWF片段」意謂與FVIII相互作用且保留至少一或多種通常由全長VWF對FVIII提供之性質之任何VWF片段,該等性質例如防止過早活化成FVIIIa、防止過早蛋白水解、防止與磷脂膜進行可導致過早清除之締合、防止結合可結合裸露FVIII而非VWF結合之FVIII之FVIII清除受體,及/或穩定化FVIII重鏈及輕鏈相互作用。如本文所用之術語「VWF片段」不包括全長或成熟VWF蛋白質。在一特定實施例中,如本文所 用之「VWF片段」包含VWF蛋白質之D’域及D3域,但不包括VWF蛋白質之A1域、A2域、A3域、D4域、B1域、B2域、B3域、C1域、C2域及CK域。
如本文所用之術語「半衰期限制因素」或「FVIII半衰期限制因素」指示阻止FVIII蛋白質之半衰期相較於野生型FVIII(例如ADVATE®或REFACTO®)長於1.5倍或2倍之因素。舉例而言,全長或成熟VWF可藉由誘導FVIII與VWF複合物藉由一或多種VWF清除路徑自系統清除而充當FVIII半衰期限制因素。在一個實例中,內源性VWF為FVIII半衰期限制因素。在另一實例中,非共價結合於FVIII蛋白質之全長重組VWF分子為FVIII半衰期限制因素。
如本文所用之術語「內源性VWF」指示天然存在於血漿中之VWF分子。內源性VWF分子可為多聚體,但可為單體或二聚體。血漿中之內源性VWF結合FVIII且與FVIII形成非共價複合物。
「保守胺基酸取代」為胺基酸殘基經具有類似側鏈之胺基酸殘基置換之胺基酸取代。具有類似側鏈之胺基酸殘基之家族已在此項技術中加以定義,包括鹼性側鏈(例如離胺酸、精胺酸、組胺酸)、酸性側鏈(例如天冬胺酸、麩胺酸)、不帶電荷極性側鏈(例如甘胺酸、天冬醯胺、麩醯胺酸、絲胺酸、酥胺酸、酪胺酸、半胱胺酸)、非極性側鏈(例如丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸)、β-分支側鏈(例如酥胺酸 、纈胺酸、異白胺酸)及芳族側鏈(例如酪胺酸、苯丙胺酸、色胺酸、組胺酸)。因此,若多肽中之胺基酸經來自同一側鏈家族之另一胺基酸置換,則取代視為保守性取代。在另一實施例中,一串胺基酸可經側鏈家族成員之順序及/或組成不同之在結構上類似之串保守置換。
如此項技術中所知,藉由比較一個多肽之胺基酸序列與第二多肽之序列來確定兩個多肽之間的「序列一致性」。當在本文中論述時,任何特定多肽是否與另一多肽具有至少約50%、60%、70%、75%、80%、85%、90%、95%、99%或100%一致性可使用此項技術中已知之方法及電腦程式/軟體來確定,諸如(但不限於)BESTFIT程式(用於Unix之Wisconsin序列分析包,第8版,Genetics Computer Group,University Research Park,575 Science Drive,Madison,WI 53711)。BESTFIT使用Smith及Waterman,Advances in Applied Mathematics 2:482-489(1981)之局部同源性算法以得到兩個序列之間具有同源性之最佳鏈段。當使用BESTFIT或任何其他序列比對程式來確定特定序列與本發明之參照序列是否具有例如95%一致性時,當然設置參數以使歷經參照多肽序列之全長計算一致性百分比且允許同源性間隙佔參照序列中之胺基酸總數之多達5%。
如本文所用,藉由比對以使第一VWF或FVIII序列與第二VWF或FVIII序列之間的一致性或類似性最大來鑒別VWF序列或FVIII蛋白質序列中之「對應於...之胺 基酸」或「等效胺基酸」。用於鑒別第二VWF或FVIII序列中之等效胺基酸之編號係基於用於鑒別第一VWF或FVIII序列中之相應胺基酸之編號。
「融合」或「嵌合」蛋白包含連接於在自然界中未天然連接之第二胺基酸序列的第一胺基酸序列。通常存在於各別蛋白質中之胺基酸序列可以融合多肽形式集合在一起,或通常存在於同一蛋白質中之胺基酸序列可以新排列置放在融合多肽中,該融合多肽例如為本發明之因子VIII域與免疫球蛋白Fc域之融合物。例如藉由化學合成,或藉由產生並轉譯肽區域以所要關係編碼之聚核苷酸來產生融合蛋白。嵌合蛋白可進一步包含藉由共價非肽鍵或非共價鍵與第一胺基酸序列締合之第二胺基酸序列。
如本文所用,術語「半衰期」係指特定多肽在活體內之生物半衰期。半衰期可由向個體投與之一半數量自動物中之循環及/或其他組織清除所需的時間表示。當構築既定多肽隨時間而變之清除曲線時,曲線通常為雙相的,即快速α相及較長β相。α相通常表示投與之Fc多肽在血管間隙內與血管間隙外之間達到平衡且部分地由多肽之尺寸決定。β相通常表示多肽在血管內間隙中之分解代謝。在一些實施例中,FVIII及包含FVIII之嵌合蛋白為單相的,且因此不具有α相,而僅具有單一β相。因此,在某些實施例中,如本文所用之術語半衰期係指多肽在β相中之半衰期。人類抗體在人類中之典型β相半衰期為21天。
如應用於聚核苷酸或多肽之術語「異源」意謂該聚核苷酸或多肽源於與其所比較之實體不同之實體。因此,連接於VWF片段之異源多肽意謂連接於VWF片段且不為該VWF片段之天然存在之部分的多肽鏈。舉例而言,異源聚核苷酸或抗原可源於不同物種、個體之不同細胞類型、或不同個體之相同或不同細胞類型。
如本文所用之術語「連接」係指第一胺基酸序列或核苷酸序列分別共價或非共價接合於第二胺基酸序列或核苷酸序列。術語「共價連接」或「共價鍵聯」係指連接在一起之兩個部分之間的共價鍵,例如二硫鍵、肽鍵、或一或多個胺基酸,例如連接子。第一胺基酸或核苷酸序列可直接接合或相鄰於第二胺基酸或核苷酸序列,或者介入序列可將第一序列共價接合於第二序列。術語「連接」不僅意謂第一胺基酸序列在C末端或N末端融合於第二胺基酸序列,而且亦包括將整個第一胺基酸序列(或第二胺基酸序列)插入第二胺基酸序列(或相應地第一胺基酸序列)中之任何兩個胺基酸中。在一個實施例中,第一胺基酸序列可藉由肽鍵或連接子接合於第二胺基酸序列。第一核苷酸序列可藉由磷酸二酯鍵或連接子接合於第二核苷酸序列。連接子可為肽或多肽(用於多肽鏈)或核苷酸或核苷酸鏈(用於核苷酸鏈)或任何化學部分(用於多肽與聚核苷酸鏈兩者)。共價鍵聯有時指示為(-)或連字符。
如本文所用,術語「與...締合」係指在第一胺基酸鏈與第二胺基酸鏈之間形成共價或非共價鍵。在一個實施例 中,術語「與...締合」意謂共價非肽鍵或非共價鍵。在一些實施例中,此締合由冒號,亦即(:)指示。在另一實施例中,其意謂除肽鍵之外之共價鍵。在其他實施例中,如本文所用之術語「共價締合」意謂在兩個部分之間由共價鍵達成之締合,該共價鍵例如為二硫鍵、肽鍵、或一或多個胺基酸(例如連接子)。舉例而言,胺基酸半胱胺酸包含可與第二半胱胺酸殘基上之硫醇基形成二硫鍵或二硫橋之硫醇基。在大多數天然存在之IgG分子中,CH1區與CL區藉由二硫鍵締合且兩個重鏈藉由兩個二硫鍵在對應於239及242之位置處締合,該等位置係使用Kabat編號系統(位置226或229,EU編號系統)。共價鍵之實例包括(但不限於)肽鍵、金屬鍵、氫鍵、二硫鍵、σ鍵、π鍵、δ鍵、糖苷鍵、抓氫鍵、彎曲鍵、偶極鍵、π反向鍵、雙鍵、參鍵、四鍵、五鍵、六鍵、結合、超結合、芳香性、哈普托數(hapticity)或反鍵結。非共價鍵之非限制性實例包括離子鍵(例如陽離子-π鍵或鹽鍵)、金屬鍵、氫鍵(例如二氫鍵、二氫複合物、低障壁氫鍵、或對稱氫鍵)、凡得瓦力、倫敦分散力(London dispersion force)、機械鍵、鹵素鍵、親金性、插入、堆疊、熵力或化學極性。
本文使用之術語「單體-二聚體雜交物」係指包含藉由二硫鍵彼此締合之第一多肽鏈及第二多肽鏈之嵌合蛋白,其中該第一鏈包含凝結因子(例如因子VIII)及Fc區,且該第二鏈包含以下、基本上由以下組成或由以下組成:無凝結因子之Fc區。因此,單體-二聚體雜交物構築體為 一種雜交物,其包含僅具有一個凝結因子之單體態樣及具有兩個Fc區之二聚體態樣。
如本文所用,術語「裂解位點」或「酶促裂解位點」係指由酶識別之位點。某些酶促裂解位點包含細胞內加工位點。在一個實施例中,多肽具有由在凝結級聯期間活化之酶裂解之酶促裂解位點,因此此等位點之裂解發生在凝塊形成之部位處。示範性此等位點包括例如由凝血酶、因子XIa或因子Xa識別者。示範性FXIa裂解位點包括例如TQSFNDFTR(SEQ ID NO:47)及SVSQTSKLTR(SEQ ID NO:48)。示範性凝血酶裂解位點包括例如DFLAEGGGVR(SEQ ID NO:49)、TTKIKPR(SEQ ID NO:50)、LVPRG(SEQ ID NO:55)及ALRPR(SEQ ID NO:51之胺基酸1至5)。其他酶促裂解位點在此項技術中為已知的。
如本文所用,術語「加工位點」或「細胞內加工位點」係指多肽中之一種類型之酶促裂解位點,其為在該多肽轉譯之後起作用之酶的目標。在一個實施例中,此等酶在自高爾基體腔(Golgi lumen)轉運至反面高爾基體(trans-Golgi)區室期間起作用。細胞內加工酶在蛋白質自細胞分泌之前裂解多肽。此等加工位點之實例包括例如由內肽酶之PACE/弗林蛋白酶(furin)(其中PACE為成對鹼性胺基酸裂解酶(Paired basic Amino acid Cleaving Enzyme)之頭字語)家族所靶向者。此等酶定位於高爾基體膜且在序列基元Arg-[任何殘基]-(Lys或Arg)-Arg之羧基末端側上裂解 蛋白質。如本文所用,「弗林蛋白酶」酶家族包括例如PCSK1(亦稱為PC1/Pc3)、PCSK2(亦稱為PC2)、PCSK3(亦稱為弗林蛋白酶或PACE)、PCSK4(亦稱為PC4)、PCSK5(亦稱為PC5或PC6)、PCSK6(亦稱為PACE4)、或PCSK7(亦稱為PC7/LPC、PC8或SPC7)。其他加工位點在此項技術中為已知的。
術語「弗林蛋白酶」係指對應於EC編號3.4.21.75之酶。弗林蛋白酶為枯草桿菌蛋白酶樣前蛋白轉化酶,其亦稱為PACE(成對鹼性胺基酸裂解酶,Paired basic Amino acid Cleaving Enzyme)。弗林蛋白酶使不活化前驅體蛋白質之區段缺失以將其轉化成生物活性蛋白質。在其細胞內轉運期間,肽原在高爾基體中由弗林蛋白酶自成熟VWF分子裂解。
在包括一個以上加工或裂解位點之構築體中,應瞭解此等位點可相同或不同。
如本文所用之止血病症意謂特徵在於由於形成纖維蛋白凝塊之能力受損或不能形成纖維蛋白凝塊而有自發出血或由於創傷而出血之傾向的基因遺傳性或獲得性病狀。此等病症之實例包括血友病。三種主要形式為A型血友病(因子VIII缺乏症)、B型血友病(因子IX缺乏症或「克雷司馬斯病(Christmas disease)」)及C型血友病(因子XI缺乏症,輕微流血傾向)。其他止血病症包括例如范威爾邦德病;因子XI缺乏症(PTA缺乏症);因子XII缺乏症;纖維蛋白原、凝血酶原、因子V、因子VII、因子X或因 子XIII缺乏症或結構異常;伯納德-蘇里爾症候群(Bernard-Soulier syndrome),其為一種GPIb缺陷症或缺乏症。VWF之受體GPIb可為有缺陷的且導致缺乏初級凝塊形成(初級止血)及流血傾向增加、以及格蘭茨曼(Glanzman)及內格利(Naegeli)血小板無力症(thrombasthenia)(格蘭茨曼血小板無力症)。在肝衰竭(急性及慢性形式)中,由肝產生之凝血因子存在不足;此可增加流血風險。
本發明之嵌合分子可防治性加以使用。如本文所用,術語「防治性治療」係指在流血事件之前投與分子。在一個實施例中,需要一般性止血劑之個體正經歷或即將經歷手術。本發明之嵌合蛋白可在手術之前或之後作為防治劑加以投與。本發明之嵌合蛋白可在手術期間或之後投與以控制急性流血事件。手術可包括(但不限於)肝移植、肝切除、牙齒程序或幹細胞移植。
本發明之嵌合蛋白亦用於按需(亦稱為「間斷性」)治療。術語「按需治療」或「間斷性治療」係指回應於流血事件之症狀或在可能導致流血之活動之前投與嵌合分子。在一個態樣中,按需(間斷性)治療可在流血開始時(諸如在損傷之後)或在預期會流血時(諸如在手術之前)給與個體。在另一態樣中,按需治療可在會增加流血風險之活動(諸如接觸性運動)之前給與。
如本文所用,術語「急性流血」係指無論潛伏原因如何之流血事件。舉例而言,個體可具有創傷、尿毒症、遺 傳性流血病症(例如因子VII缺乏症)、血小板病症,或由於產生針對凝結因子之抗體而具有抗性。
如本文所用之治療係指例如減輕疾病或病狀之嚴重性;降低疾病病程之持續時間;改善與疾病或病狀相關之一或多種症狀;向患有疾病或病狀之個體提供有益效應,未必治癒該疾病或病狀;或防治與疾病或病狀相關之一或多種症狀。在一個實施例中,術語「治療」意謂藉由投與本發明之嵌合蛋白或VWF片段來使個體中之FVIII谷底含量維持在至少約1IU/dL、2IU/dL、3IU/dL、4IU/dL、5IU/dL、6IU/dL、7IU/dL、8IU/dL、9IU/dL、10IU/dL、11IU/dL、12IU/dL、13IU/dL、14IU/dL、15IU/dL、16IU/dL、17IU/dL、18IU/dL、19IU/dL或20IU/dL。在另一實施例中,治療意謂維持FVIII谷底含量在以下之間:約1與約20IU/dL、約2與約20IU/dL、約3與約20IU/dL、約4與約20IU/dL、約5與約20IU/dL、約6與約20IU/dL、約7與約20IU/dL、約8與約20IU/dL、約9與約20IU/dL、或約10與約20IU/dL。治療疾病或病狀亦可包括維持個體中之FVIII活性在類似於非血友病個體中之FVIII活性之至少約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%的程度下。治療所需之最小谷底含量可藉由一或多種已知方法加以量測且可針對每個人加以調整(增加或減少)。
嵌合蛋白
本發明係有關藉由防止或抑制活體內FVIII半衰期限制因素(例如內源性VWF)與FVIII蛋白質締合來延長因子VIII蛋白質之半衰期。內源性VWF與約95%至約98%之FVIII以非共價複合物形式締合。已知內源性VWF結合於FVIII蛋白質會以各種方式保護FVIII。舉例而言,全長VWF(呈具有約250kDa之多聚體形式)可保護FVIII免遭蛋白酶裂解及FVIII活化,穩定化FVIII重鏈及/或輕鏈,且防止FVIII由清除受體清除。然而,同時,內源性VWF藉由防止胞飲作用及藉由經由VWF清除路徑自系統清除FVIII-VWF複合物而限制FVIII半衰期。如實例中所示,咸信內源性VWF為阻止融合於半衰期延長劑之FVIII蛋白質之半衰期長於野生型FVIII之約兩倍之半衰期限制因素。因此,本發明使用輔助部分來防止或抑制內源性VWF與FVIII蛋白質之間的相互作用,藉此防止FVIII蛋白質經由VWF清除路徑被清除及/或誘導胞飲作用。在一個實施例中,輔助部分能夠防止或抑制FVIII蛋白質與內源性VWF結合且具有至少一種VWF樣FVIII保護性質。此外,輔助部分藉由防止或抑制與內源性VWF之相互作用來降低FVIII自系統之清除。本發明之輔助部分結合FVIII蛋白質或與FVIII蛋白質締合(例如經由非共價鍵結)及/或以物理方式或以化學方式阻斷FVIII蛋白質上之VWF結合位點。因此,相較於野生型FVIII或未與輔助部分締合之FVIII,與輔助部分締合之FVIII蛋白質更緩慢 地由一或多種VWF清除受體自循環清除。
本發明之輔助部分之實例包括例如多肽或FVIII蛋白質之化學或物理修飾、添加、缺失或變化形式。適用於本發明中之輔助部分可包含多肽、非多肽部分或兩者。適用作輔助部分之多肽之非限制性實例包括例如本文所述之VWF片段、免疫球蛋白恆定區或其部分、轉鐵蛋白或其片段、白蛋白或其片段、白蛋白結合部分、HAP序列、PAS序列或其任何組合。非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。適用於本發明中之其他此等部分在此項技術中為已知的。
在一個實施例中,輔助部分藉由共價或非共價鍵與FVIII蛋白質締合(或連接)。然而,在一些情況下,輔助部分與FVIII蛋白質之間的物理阻斷或化學締合(例如非共價鍵結)可能未強烈至足以提供在內源性VWF存在下穩定之包含FVIII蛋白質及輔助部分之複合物。舉例而言,在無任何其他連接下與FVIII蛋白質形成非共價鍵之VWF片段在活體內在內源性VWF存在下可易於解離,從而該VWF片段(例如重組VWF,亦即rVWF)經內源性VWF置換。因此,非共價結合於內源性VWF之FVIII蛋白質將經歷VWF清除路徑且自系統清除。為防止具有FVIII蛋白質之輔助部分解離,在一些實施例中,FVIII蛋白質與輔助部分之間的鍵為共價鍵,例如肽鍵、一或多個胺基酸、或二硫鍵。在某些實施例中,輔助部分與FVIII蛋白質 之間的締合(亦即鍵聯)為FVIII蛋白質與輔助部分之間的肽鍵或連接子(「FVIII/AM連接子」)。連接子之非限制性實例在本文中其他地方加以描述。在一些實施例中,輔助部分為包含以下、基本上由以下組成、或由以下組成之多肽:至少約10、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000、2500、3000或4000個胺基酸。在其他實施例中,輔助部分為包含以下、基本上由以下組成、或由以下組成之多肽:約100至約200個胺基酸、約200至約300個胺基酸、約300至約400個胺基酸、約400至約500個胺基酸、約500至約600個胺基酸、約600至約700個胺基酸、約700至約800個胺基酸、約800至約900個胺基酸、或約900至約1000個胺基酸。在一些實施例中,與FVIII蛋白質共價締合之輔助部分為在本文中其他地方描述之VWF片段。
在某些實施例中,輔助部分以化學方式(例如非共價地)結合或以物理方式阻斷FVIII蛋白質上之一或多個VWF結合位點。FVIII蛋白質上之VWF結合位點位於FVIII蛋白質之A3域或C2域內。在其他實施例中,FVIII蛋白質上之VWF結合位點位於A3域及C2域內。舉例而言,FVIII蛋白質上之VWF結合位點可對應於SEQ ID NO:16[全長成熟FVIII]之胺基酸1669至1689及/或2303至2332。
在其他實施例中,本發明之嵌合蛋白包含連接於輔助 部分之FVIII蛋白質,其中該輔助部分為VWF分子,例如包含D’域及D3域,但不含有VWF清除受體結合位點之VWF片段,且遮蔽或保護FVIII蛋白質上之VWF結合位點,藉此抑制或防止FVIII蛋白質與內源性VWF之相互作用。在某些實施例中,輔助部分為VWF片段。適用於本發明之VWF片段含有D’域及D3域,從而仍然向FVIII蛋白質提供VWF樣性質之一或多個優勢,但VWF片段不經歷VWF清除路徑。FVIII蛋白質與輔助部分可藉由連接子(例如FVIII/AM連接子)共價締合。在一個實施例中,連接子可為可裂解連接子。連接子之非限制性實例在本文中其他地方加以揭露。
在其他實施例中,本發明之嵌合蛋白包含FVIII蛋白質及免疫球蛋白恆定區或其部分(亦即輔助部分),其中該免疫球蛋白恆定區或其部分遮蔽或保護該FVIII蛋白質上之VWF結合位點,藉此抑制或防止該FVIII蛋白質與內源性VWF之相互作用。在其他實施例中,免疫球蛋白恆定區或其部分為Fc區。
在一個態樣中,本發明係有關一種包含一或多種本文揭露之VWF片段之嵌合或融合蛋白或雜交物及其用途。嵌合或融合蛋白可融合於或連接於一或多個異源部分(有時在本文中指示為H或H1)。在一個實施例中,異源部分(H1)為不會天然與VWF片段一起存在及/或連接於VWF片段之異源肽或異源多肽。在另一實施例中,異源部分(H1)為非多肽部分(例如化學修飾)或肽或多肽與非多肽部 分之組合。在一些實施例中,VWF片段藉由連接子(在本文中亦稱為「VWF連接子」)連接於異源部分(H1)。在一個實施例中,VWF連接子為可裂解連接子。VWF片段與異源部分(H1)之間的連接子之非限制性實例在本文中其他地方加以揭露。
在一個實施例中,適用於本發明中之異源部分(H1)會改良VWF片段之一或多種藥物動力學性質而不顯著影響VWF片段之生物活性或功能(例如其與FVIII蛋白質之結合或締合)。在另一實施例中,連接於VWF片段之異源部分(H1)可延長VWF片段之半衰期。異源多肽部分之非限制性實例包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段或其兩種或兩種以上組合。異源非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。
在一些實施例中,異源部分(H1)可用於藉由共價鍵來連接VWF片段及FVIII蛋白質。可提供共價鍵聯之異源部分之實例包括(但不限於)免疫球蛋白恆定區或其包含鉸鏈區之部分,例如Fc區或FcRn結合搭配物。在一特定實例中,FVIII蛋白質連接於第一Fc區,且VWF片段連接於第二Fc區,其中該第一Fc區及該第二Fc區形成一或多個二硫鍵。
在一些實施例中,異源部分(有時在本文中由「H」或「H1」指示)為免疫球蛋白恆定區或其部分。免疫球蛋白 恆定區或其部分之非限制性實例可選自由以下組成之群:CH1域、CH2域、CH3域、CH4域、鉸鏈域及其兩種或兩種以上組合。在一個實施例中,免疫球蛋白恆定區或其部分包含至少一個CH1域、至少一個CH2域、至少一個CH3域、至少一個CH4域或其功能性片段。在另一實施例中,免疫球蛋白恆定區或其部分包含至少一個鉸鏈域或其部分及至少一個CH2域或其部分(例如呈鉸鏈-CH2定向)。在其他實施例中,免疫球蛋白恆定域或其部分包含至少一個CH2域或其部分及至少一個CH3域或其部分(例如呈CH2-CH3定向)。組合之實例包括(但不限於)CH2域、CH3域及鉸鏈域,該等域亦稱為Fc區(或Fc域),例如第一Fc區。在其他實施例中,異源部分(H1)藉由連接子連接於VWF片段。在某些實施例中,異源部分(H1)為如在本文中其他地方描述之FcRn結合搭配物。在其他實施例中,異源部分(H1)為鉸鏈區。
在某些實施例中,嵌合蛋白進一步包含第二(或額外)異源部分(有時在本文中由「H2」指示)。應注意第一異源部分(H1)與第二異源部分(H2)可互換使用且可相同或不同。第二異源部分(H2)可藉由肽鍵、一或多個胺基酸或藉由連接子(例如若連接於FVIII,則為FVIII連接子)連接於FVIII蛋白質或在其他地方連接在嵌合蛋白中。此等構築體可有時稱為FVIII/VWF雜二聚體。在一個實施例中,異源部分(H2)包含異源多肽。在另一實施例中,異源部分(H2)包含非多肽部分。在其他實施例中,異源部分(H2)包 含異源部分與非多肽部分之組合。第二異源部分(H2)可為半衰期延長劑。第二異源多肽部分(H2)之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段或其兩種或兩種以上組合。異源非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。在某些實施例中,第一異源部分(H1)與第二異源部分為相同或不同。第一異源部分(H1)及第二異源部分(H2)之任一者或兩者可向嵌合蛋白中之FVIII蛋白質賦予半衰期延長作用;提供強於非共價締合之連接,亦即藉由嵌合蛋白中之FVIII蛋白質與VWF片段之間的一或多個共價鍵;或兩者。一旦融合於或連接於第一異源部分(H1)之VWF片段藉由防止或抑制FVIII蛋白質與內源性VWF蛋白質之間的相互作用來移除半衰期上限,融合於異源部分之FVIII蛋白質即可達到其全部潛力且相較於野生型FVIII可具有長於兩倍之半衰期。
在某些實施例中,連接於VWF片段之第一異源部分(例如第一Fc區)與連接於FVIII蛋白質之第二異源部分(例如第二Fc區)彼此締合以使該締合防止VWF片段在活體內由內源性VWF置換。在一個實施例中,第二異源部分為第二Fc區,其中第二Fc區與例如第一Fc區之第一異源部分藉由共價鍵,例如二硫鍵、肽鍵或連接子(一或多個胺基酸)連接或締合。舉例而言,在一端連接於FVIII蛋白質之第二異源部分(例如第二Fc區)可藉由連接子(例如 scFc連接子)進一步連接於與VWF片段連接之第一異源部分(例如第一Fc區)或藉由共價或非共價鍵與第一異源部分締合。在另一實施例中,第二異源部分(例如第二Fc區)連接於已連接於第一異源部分之VWF片段。在一些實施例中,嵌合蛋白包含含有VWF片段及第一異源部分之第一多肽鏈及含有FVIII蛋白質及第二異源部分之第二多肽鏈,其中該第一多肽鏈與該第二多肽鏈締合,其中包含該第一異源部分之該第一多肽鏈與包含該第二異源部分之該第二多肽鏈之間的締合為共價鍵,由此允許該VWF片段與該FVIII蛋白質維持其彼此相互作用。同時,可與FVIII蛋白質形成非共價鍵之內源性VWF不能置換包含VWF片段之共價連接之多肽鏈。
第一異源部分(H1)與VWF片段之間的連接子(例如VWF連接子)可為可裂解連接子,例如凝血酶可裂解連接子。可裂解連接子可由選自由以下組成之群之蛋白酶裂解:因子XIa、因子XIIa、胰舒血管素、因子VIIa、因子IXa、因子Xa、因子IIa(凝血酶)、彈性蛋白酶-2、粒酶-B、TEV、腸激酶、蛋白酶3C、分選酶A、MMP-12、MMP-13、MMP-17、MMP-20及其任何組合。此等可裂解連接子允許VWF片段在凝結級聯活化時裂解並自FVIII蛋白質解離,從而產生具有全部活性潛力之FVIII蛋白質。
在其他實施例中,嵌合蛋白係以單一多肽鏈形式產生,該多肽鏈以任何順序包含VWF片段、可裂解連接子、第一異源部分(H1)、可加工連接子、FVIII蛋白質及第二 異源部分(H2)。在合成之後,在分泌之前,可加工連接子可由細胞內蛋白酶裂解,由此產生如上所述之兩個多肽鏈。在分泌之前的單鏈構築體中,第二異源部分(例如第二Fc區)可藉由可加工連接子連接於VWF片段。在某些實施例中,一或多個連接子可包含一或多個裂解位點。
在一些實施例中,本發明之嵌合蛋白進一步包含第三異源部分(有時在本文中由「H3」指示)。第三異源部分(H3)可為半衰期延長劑。異源部分(H3)可包含異源多肽、非多肽部分或兩者組合。第三異源部分(H3)之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段、其任何衍生物或變異體或其兩種或兩種以上組合。非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。連接於VWF片段之第一異源部分(H1)、連接於FVIII蛋白質之第二異源部分(H2)及第三異源部分(H3)可相同或不同。在一個實施例中,第一異源部分(H1)與第二異源部分(H2)相同,但不同於第三異源部分(H3)。在另一實施例中,第三異源部分(H3)融合於或連接於嵌合蛋白之FVIII蛋白質或VWF片段。在一些實施例中,第三異源部分插入在FVIII蛋白質之一或多個域內或FVIII蛋白質之兩個域之間。
在一個實施例中,嵌合蛋白包含第一多肽鏈及第二多肽鏈,其中該第一鏈包含藉由視情況選用之連接子(例如FVIII連接子)連接於例如第一Fc區之第一異源部分(H1) 的FVIII蛋白質,且該第二鏈包含藉由視情況選用之連接子(例如VWF連接子)連接於例如第二Fc區之第二異源部分(H2)的VWF片段。FVIII蛋白質可進一步在FVIII重鏈與FVIII輕鏈之間(亦即SEQ ID NO:16之胺基酸殘基1648)包含第三異源部分(H3),例如任何半衰期延長部分,例如白蛋白或PAS序列,由此成為單鏈FVIII蛋白質。或者,FVIII蛋白質可為雙鏈蛋白質,亦即藉由共價或非共價鍵(例如金屬鍵)彼此締合之FVIII重鏈及FVIII輕鏈,其中該重鏈進一步連接於第三異源部分(H3),例如非結構性半衰期延長多肽、白蛋白或其片段或PAS序列。在另一實施例中,嵌合蛋白包含第一多肽鏈及第二多肽鏈,其中該第一鏈包含藉由視情況選用之連接子(例如FVIII連接子)連接於例如第一Fc區之第一異源部分(H1)的FVIII蛋白質,且該第二鏈包含連接於例如非結構性半衰期延長多肽、白蛋白或PAS序列之第三異源部分(H3)的VWF片段,該第三異源部分藉由視情況選用之連接子連接於例如第二Fc區之第二異源部分(H2)。在一些實施例中,第三異源部分(H3)(例如半衰期延長多肽)可連接於FVIII蛋白質之C末端或N末端或插入在FVIII蛋白質之兩個域之間或FVIII蛋白質之某一域中之兩個胺基酸之間。
在其他實施例中,本發明之嵌合蛋白進一步包含第四異源部分(有時在本文中由「H4」指示)及/或第五異源部分(有時在本文中由「H5」指示)。第四或第五異源部分亦可為半衰期延長劑。第四異源部分及/或第五異源部分可 與第三異源部分相同或不同。異源部分可包含異源多肽、非多肽部分或兩者之組合。第四或第五異源部分之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段、其任何衍生物或變異體或其兩種或兩種以上組合。非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。第一異源部分、第二異源部分、第三異源部分、第四異源部分及第五異源部分可相同或不同。在一些實施例中,第四異源部分(例如半衰期延長多肽)可連接於FVIII蛋白質之C末端或N末端或插入在FVIII蛋白質之兩個域之間或FVIII蛋白質之某一域中之兩個胺基酸之間。在其他實施例中,第五異源部分(例如半衰期延長多肽)亦可連接於FVIII蛋白質之C末端或N末端或插入在FVIII蛋白質之兩個域之間或FVIII蛋白質之某一域中之兩個胺基酸之間。
在某些實施例中,嵌合蛋白包含FVIII蛋白質、VWF片段、第一異源部分、第二異源部分、第三異源部分、第四異源部分及第五異源部分,其中該第一異源部分與該第二異源部分在包含該FVIII蛋白質之鏈與包含該VWF片段之鏈之間形成鍵(例如共價鍵),且該第三異源部分、該第四異源部分及該第五異源部分為半衰期延長劑,且其中在包含該FVIII蛋白質之該鏈與包含該VWF片段之該鏈之間的該鍵強於該FVIII與該VWF片段之間的非共價相互作用,藉此防止內源性VWF在活體內、在活體外或離 體結合該FVIII蛋白質。
在其他實施例中,嵌合蛋白包含FVIII蛋白質、VWF片段、第一異源部分、第二異源部分、第三異源部分、第四異源部分、第五異源部分及第六異源部分(有時在本文中指示為「H6」),其中該第一異源部分與該第二異源部分在包含該FVIII蛋白質之鏈與包含該VWF片段之鏈之間形成鍵,且該第三異源部分、該第四異源部分、該第五異源部分及該第六異源部分為半衰期延長劑,且其中在包含該FVIII蛋白質之該鏈與包含該VWF片段之該鏈之間的該鍵強於該FVIII與該VWF片段之間的相互作用,藉此防止內源性VWF在活體內、在活體外或離體結合該FVIII蛋白質。
在一些實施例中,嵌合蛋白包含選自由以下組成之群之式:(aa)V-L1-H1-L2-H2,(bb)H2-L2-H1-L1-V,(cc)H1-L1-V-L2-H2,及(dd)H2-L2-V-L1-H1,其中V包含本文所述之VWF片段;L1及L2各自包含視情況選用之連接子;且H1包含第一異源部分;且H2包含視情況選用之第二異源部分。第一異源部分及第二異源部分之任一者或兩者可為半衰期延長部分。在一個實施例中,H1包含多肽、非多肽部分或兩者。適用 作H1之多肽可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、其任何衍生物或變異體或任何組合。非多肽部分可包含聚乙二醇(PEG)、聚唾液酸及羥乙基澱粉(HES)、其衍生物或變異體或其任何組合。在另一實施例中,H2包含多肽、非多肽部分或兩者。適用作H2之多肽可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、其任何衍生物或變異體或任何組合。非多肽部分可包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或變異體或其任何組合。在某些實施例中,式(aa)及(bb)中之H1與H2之間的連接子為可加工連接子。在其他實施例中,式(aa)及(bb)中之VWF片段與H1之間的連接子為可裂解連接子,例如可由凝血酶裂解之凝血酶可裂解連接子。
本文多肽式之定向係自N末端(左)至C末端(右)列出。舉例而言,式H-L-V意謂式NH2-H-L-V-COOH。在一個實施例中,本文所述之式可在兩個部分之間包含其他序列。舉例而言,除非另外規定,否則式V-L1-H1-L2-H2可進一步在V之N末端、V與L1之間、L1與H1之間、H1或L2之間、L2或H2之間、或在H2之C末端包含序列。在另一實施例中,連字符(-)指示肽鍵或一或多個胺基酸。
在特定實施例中,嵌合蛋白包含一或多個選自由以下組成之群之式、基本上由一或多個選自由以下組成之群之 式組成、或由一或多個選自由以下組成之群之式組成:(a1)V-H、(a2)H-V、(a3)V-L-H、(a4)H-L-V、(a5)V-L1-H1-H2、(a6)H2-H1-L1-V、(a7)V-L1-H1:H2、(a8)H2:H1-L1-V、(a9)V-H1:H2、(b1)H2:H1-V、(b2)V-L1-H1-L2-H2、(b3)H2-L2-H1-L1-V、(b4)H1-V-H2、(b5)H1-L1-V-L2-H2及(b6)H2-L2-V-L1-H1,其中V包含一或多種本文所述之VWF片段,L、L1或L2包含連接子,H或H1包含第一異源部分。在一個實施例中,第一異源部分(H1)可為多肽、非多肽部分或兩者。異源多肽部分可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列或其任何組合。適用作H1之非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。在另一實施例中,H2包含第二異源部分。第二異源部分可為多肽、非多肽部分或兩者。異源多肽部分可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列或其任何組合。適用作H1之非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。在某些實施例中,第一異源部分與第二異源部分之間的連接子為可加工連接子。在其他實施例中,VWF片段與第一異源部分或第二異源部分之間的連接子為包含一或多個裂解位點之可裂解連接子,例如凝血酶可裂解連接子。
本發明之嵌合蛋白包含選自由(aa)、(bb)、(cc)、(dd) 、(a1)、(a2)、(a3)、(a4)、(a5)、(a6)、(a7)、(a8)、(a9)、(b1)、(b2)、(b3)、(b4)、(b5)及(b6)組成之群之式及FVIII蛋白質,該FVIII蛋白質與該式之VWF片段、第一異源部分(例如第一Fc區)或第二異源部分(例如第二Fc區)共價連接或共價締合。在一個實施例中,FVIII蛋白質藉由共價或非共價鍵或藉由連接子與VWF片段連接或締合。在另一實施例中,FVIII蛋白質可藉由共價或非共價鍵或藉由連接子連接於第一異源部分或第二異源部分。
在一個實施例中,本發明之嵌合蛋白包含與FVIII蛋白質共價連接或共價締合之本文所述之VWF片段。舉例而言,嵌合蛋白可包含VWF片段及FVIII蛋白質,其中該VWF片段與該FVIII蛋白質藉由共價非肽鍵、肽鍵、非共價鍵或藉由例如可裂解連接子之連接子結合。在一特定實施例中,VWF片段與FVIII蛋白質藉由一或多個二硫鍵彼此結合或相互作用。在另一特定實施例中,VWF片段藉由非共價鍵在FVIII之A3域、FVIII之C2域、或FVIII之A3域與C2域兩者處與FVIII蛋白質結合或相互作用。在另一實施例中,與FVIII蛋白質結合或相互作用之VWF片段連接於或融合於第一異源部分。在其他實施例中,與VWF片段結合或相互作用之FVIII蛋白質進一步連接於第二異源部分。在一些實施例中,與FVIII蛋白質結合或相互作用之VWF片段進一步連接於第一異源部分且FVIII蛋白質進一步連接於第二異源部分。在某些實施例中,包含VWF片段及第一異源部分之第一多肽鏈及 包含FVIII蛋白質及第二異源部分之第二多肽鏈彼此締合以使該締合不允許FVIII蛋白質與例如內源性VWF之其他部分相互作用。在一個實施例中,締合為共價鍵,例如二硫鍵。
VWF片段或FVIII蛋白質各自可藉由連接子(例如可裂解連接子,例如凝血酶可裂解連接子)接合或連接於第一及第二異源部分。VWF片段與第一異源部分之間的連接子在本文中可表示為VWF連接子。FVIII蛋白質與第二異源部分之間的連接子在本文中可表示為FVIII連接子。或者,VWF片段或FVIII蛋白質兩者均可藉由連接子(例如可裂解連接子,例如凝血酶可裂解連接子)接合或連接於第一及第二異源部分。在某些實施例中,連接於VWF片段之第一異源部分包含多肽、非多肽部分或兩者。第一異源多肽部分之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段或其兩種或兩種以上組合。非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES或HAES)、其衍生物或變異體或其任何組合。在其他實施例中,連接於FVIII蛋白質之第二異源部分包含多肽、非多肽部分或兩者。第二異源部分之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段或其兩種或兩種以上組合。非多肽部分之非限制性實例包括聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉 (HES或HAES)、其衍生物或變異體或其任何組合。在一些實施例中,使用分選酶介導之活體外蛋白質連接將VWF片段連接於FVIII。在一些實施例中,使用分選酶識別基元。
在一個實施例中,第一異源部分為免疫球蛋白恆定區或其部分。在一特定實施例中,第一異源部分為第一Fc區。在一些實施例中,第二異源部分為免疫球蛋白恆定區或其部分。在一特定實施例中,第二異源部分為第二Fc區。在一特定實施例中,嵌合蛋白包含本文所述之VWF片段及FVIII蛋白質,其中該VWF片段連接於為Fc區之免疫球蛋白恆定區或其部分。在另一實施例中,嵌合蛋白包含本文所述之VWF片段及FVIII蛋白質,其中該FVIII蛋白質連接於為Fc區之免疫球蛋白恆定區或其部分。在其他實施例中,嵌合蛋白包含本文所述之VWF片段及FVIII蛋白質,其中該VWF片段連接於為第一Fc區之第一免疫球蛋白恆定區,且該FVIII蛋白質連接於為第二Fc區之第二免疫球蛋白恆定區,且其中該VWF片段與該FVIII蛋白質藉由非共價鍵彼此結合或相互作用,或該第一Fc區或該第二Fc區藉由共價鍵彼此締合。在其他實施例中,連接於第一異源部分之VWF片段進一步藉由例如可加工連接子之連接子連接於第二異源部分,例如第二Fc區。在一個態樣中,VWF片段藉由連接子(例如VWF連接子,例如可裂解連接子)連接於第一異源部分。在另一態樣中,FVIII蛋白質藉由連接子(例如FVIII連接子, 例如可裂解連接子)連接於第二異源部分。異源部分之非限制性實例在本文中其他地方加以揭露,例如免疫球蛋白恆定區或其部分在段落[0165]-[0193]處,白蛋白、其片段或變異體在段落[0194]-[0198]處,HAP序列在段落[0293]處,轉鐵蛋白、其片段或變異體在段落[0204]-[0205]處,例如聚乙二醇之聚合物在段落[0206]-[0213]處,HES在段落[0214]-[0219]處,或PSA在段落[0220]處,且PAS序列在段落[0199]-[0202]處。
在一些實施例中,本發明之嵌合蛋白包含選自由以下組成之群之式、基本上由選自由以下組成之群之式組成、或由選自由以下組成之群之式組成:(a)V-L1-H1-L3-C-L2-H2,(b)H2-L2-C-L3-H1-L1-V,(c)C-L2-H2-L3-V-L1-H1,(d)H1-L1-V-L3-H2-L2-C,(e)H1-L1-V-L3-C-L2-H2,(g)H2-L2-C-L3-V-L1-H1,(g)V-L1-H1-L3-H2-L2-C,(g)C-L2-H2-L3-H1-L1-V,(i)H2-L3-H1-L1-V-L2-C,(j)C-L2-V-L1-H1-L3-H2,(k)V-L2-C-L1-H1-L3-H2,及(l)H2-L3-H1-L1-C-L2-V,其中V為本文所述之VWF片段; L1或L2各自為視情況選用之連接子,例如可裂解連接子,例如凝血酶可裂解連接子;L3為視情況選用之連接子,例如可加工連接子H1及H2各自為視情況選用之異源部分;C為FVIII蛋白質;且(-)為肽鍵或一或多個胺基酸。
在其他態樣中,本發明之嵌合蛋白包含選自由以下組成之群之式:(m)V-L1-H1:H2-L2-C,(n)V-L1-H1:C-L2-H2,(o)H1-L1-V:H2-L2-C,(p)H1-L1-V:C-L2-H2,(q)V:C-L1-H1:H2,(r)V:H1-L1-C:H2,(s)H2:H1-L1-C:V,(t)C:V-L1-H1:H2,及(u)C:H1-L1-V:H2。
其中V為本文所述之VWF片段;L1或L2各自為視情況選用之連接子,例如凝血酶可裂解連接子;H1或H2各自為視情況選用之異源部分;(-)為肽鍵或一或多個胺基酸;且C為FVIII蛋白質;且(:)為H1與H2之間的化學或物理締合。
在一個實施例中,一或多個異源部分為半衰期延長劑。半衰期延長劑在此項技術中為已知的,且此等半衰期延長劑之非限制性實例包括免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、轉鐵蛋白或其片段、其衍生物或變異體或其兩種或兩種以上組合。非多肽部分可包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。
在一個實施例中,(:)在式(m)至(u)中表示化學締合,例如至少一個非肽鍵。在某些實施例中,化學締合(亦即(:))為共價鍵。在其他實施例中,化學締合(亦即(:))為非共價相互作用,例如離子相互作用、疏水性相互作用、親水性相互作用、凡得瓦相互作用、氫鍵。在其他實施例中,(:)為非肽共價鍵。在其他實施例中,(:)為肽鍵。在其他實施例中,(:)在式(m)至(u)中表示兩個序列之間的物理締合,其中第一序列之一部分緊密接近於第二序列以使該第一序列遮蔽或阻斷該第二序列之一部分與另一部分相互作用,且進一步使此物理締合得以維持而不允許該第二序列與其他部分相互作用。
式(a)-(u)僅作為本發明之構築體之非限制性實例包括在本文中。多肽式之定向係自N末端(左)至C末端(右)顯示。舉例而言,式V-L1-H1-L3-C-L2-H2意謂式NH2-V-L1-H1-L3-C-L2-H2-COOH。此外,除非另外指示,否則(:)可為兩個多肽鏈之間藉由第一鏈之任何部分與第二鏈之任何部分之間的共價鍵或非共價鍵達成之締合或相互作用。 舉例而言,式V-H1:H2-C具有兩個多肽鏈,第一鏈為V-H1且第二鏈為C-H2,其中第一鏈中之V與第二鏈中之C相互作用或締合及/或第一鏈中之H1與第二鏈中之H2相互作用或締合。在一些實施例中,(:)意謂共價非肽鍵或非共價鍵。
在某些實施例中,嵌合蛋白包含選自由以下組成之群之式、基本上由選自由以下組成之群之式組成、或由選自由以下組成之群之式組成:(1)V:C,2)H-V:C或C:V-H,(3)V:C-H或H-C:V,(4)V-H1:H2-C或H1-V:C-H2,(5)V:C-H1:H2或H2:H1-C:V,(6)H2:H1-V:C或C:V-H1:H2,(7)H-L-V:C或C:V-L-H,(8)V:C-L-H或H-L-C:V,(9)V-C或C-V,(10)H-V-C或C-V-H,(11)V-H-C或C-H-V,(12)V-C-H或H-C-V,(13)V-H1-C-H2或H2-C-H1-V,(14)H1-V-C-H2或H2-C-V-H1,(15)H1-V-H2-C或C-H2-V-H1,(16)V-H1-H2-C或C-H2-H1-V,(17)V-L-C或C-L-V,(18)H-L-V-C或C-V-L-H,(19)H-V-L-C或C-L-V-H,(20)V-L-H-C或C-H-L-V,(21)V-H-L-C或C-L-H-V,(22)V-L-C-H或H-C-L-V,(23)V-C-L-H或H-L-C-V,(24)H-L1-V-L2-C或C-L2-V-L1-H, (25)V-L-H1:H2-C或C-H2:H1-L-V,(26)V-H1:H2-L-C或C-L-H2:H1-V,(27)V:C-H1-H2或H2-H1-C:V,(28)H2-H1-V:C或C:V-H1-H2,(29)V:C-L-H1:H2或H2:H1-L-C:V,(30)H2:H1-L-V:C或C:V-L-H1:H2,(31)V-L1-H1:H2-L2-C或L-L2-H2:H1-L1-V,(32)V:C-L-H1-H2或H2-H1-L-C:V,(33)V:C-H1-L-H2或H2-L-H1-C:V,(34)V:C-L1-H1-L2-H2或H2-L2-H1-L1-C:V,(35)H2-H1-V:C或C:V-H1-H2,(36)H2-H1-L-V:C或C:V-L-H1-H2,(37)H2-L-H1-V:C或C:V-H1-L-H2,(38)H2-L2-H1-L1-V:C或C:V-L1-H1-L2-H2,(39)V-L1-H-L2-C或C-L2-H-L1-V,(40)V-L1-C-L2-H或H-L2-C-L1-V,(41)V-L-H1-C-H2或H2-C-H1-L-V,(42)V-H1-C-L-H2或H2-L-C-H1-V,(43)V-H1-L-C-H2或H2-C-L-H1-V,(44)H1-L-V-C-H2或H2-C-V-L-H1,(45)H1-V-L-C-H2或H2-C-L-V-H1,(46)H1-V-C-L-H或H-L-C-V-H1,(47)H1-L-V-H2-C或C-H2-V-L-H1,(48)H1-V-L-H2-C或C-H2-L-V-H1, (49)H1-V-H2-L-C或C-L-H2-V-H1,(50)V-L-H1-H2-C或C-H2-H1-L-V,(51)V-H1-L-H2-C或C-H2-L-H1-V,(52)V-H1-H2-L-C或C-L-H2-H1-V,(53)V-L1-H1-L2-C-H2或H2-C-L2-H1-L1-V,(54)V-L1-H1-C-L2-H2或H2-L2-C-H1-L1-V,(55)V-L1-H1-L2-C-L3-H2或H2-L3-C-L2-H1-L1-V,(56)V-H1-L1-C-L2-H2或H2-L2-C-L1-H1-V,(57)H1-L1-V-L2-C-H2或H2-C-L2-V-L1-H1,(58)H1-L1-V-C-L2-H2或H2-L2-C-V-L1-H1,(59)H1-L1-V-L2-C-L3-H2或H2-L3-C-L2-V-L1-H1,(60)H1-V-L1-C-L2-H2或H2-L2-C-L1-V-H1,(61)H1-L1-V-L2-H2-C或C-H2-L2-V-L1-H1,(62)H1-L1-V-H2-L2-C或C-L2-H2-V-L1-H1,(63)H1-L1-V-L2-H2-L3-C或C-L3-H2-L2-V-L1-H1,(64)H1-V-L1-H2-L2-C或C-L2-H2-L1-V-H1,(65)V-L1-H1-L2-H2-C或C-H2-L2-H1-L1-V,(66)V-L1-H1-H2-L2-C或C-L2-H2-H1-L1-V,(67)V-L1-H1-L2-H2-L3-C或C-L3-H2-L2-H1-L1-V,及(68)V-H1-L1-H2-L2-C或C-L2-H2-L1-H1-V,V為本文所述之VWF片段;C為FVIII蛋白質;H或H1為異源部分或第一異源部分; H2為第二異源部分;第一異源部分與第二異源部分可相同或不同;L、L1或L2各自為視情況選用之連接子;(-)為肽鍵或一或多個胺基酸;且(:)為化學或物理締合。連接子可各自為相同或不同且各自可為包含一或多個酶促裂解位點之可裂解連接子。異源部分可為此項技術中已知之半衰期延長技術、多肽、非多肽部分或兩者。多肽部分可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、PAS序列、HAP序列、其任何衍生物或變異體或其任何組合(例如Fc區)。非多肽部分可包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或變異體或其任何組合。H、H1或H2各自可基於特徵個別地加以選擇且可為全部相同或每一者均不同。異源部分之非限制性實例在本文中其他地方加以揭露,例如免疫球蛋白恆定區或其部分在段落[0126]-[0153]處,白蛋白或其片段或變異體在段落[0154]-[0157]處,例如聚乙二醇之聚合物在段落[0166]-[0173]處,且PAS序列在段落[0159]-[0162]處。式(1)-(68)僅作為本發明之構築體之非限制性實例包括在本文中。
在一個實施例中,(:)表示化學締合,例如至少一個非肽鍵。在某些實施例中,化學締合(亦即(:))為共價鍵。在其他實施例中,化學締合(亦即(:))為非共價相互作用,例如離子相互作用、疏水性相互作用、親水性相互作用、凡得瓦相互作用、氫鍵。在其他實施例中,(:)為非肽共價鍵 。在其他實施例中,(:)為肽鍵。在其他實施例中,(:)表示兩個序列之間的物理締合,其中第一序列之一部分緊密接近於第二序列以使該第一序列遮蔽或阻斷該第二序列之一部分與另一部分相互作用,且進一步使此物理締合得以維持而不允許該第二序列與其他部分相互作用。
在一個實施例中,連接於嵌合蛋白中之VWF片段之第一異源部分(H或H1)為第一Fc區。在另一實施例中,連接於嵌合蛋白中之FVIII蛋白質之第二異源部分(或H2)為第二Fc區。
在某些實施例中,本發明之嵌合蛋白包含兩個多肽鏈,即包含以下、基本上由以下組成、或由以下組成之第一鏈:編碼FVIII(例如單鏈FVIII)之胺基酸序列及第一異源部分(例如第一Fc區);及包含以下、基本上由以下組成、或由以下組成之第二鏈:編碼包含D’域及D3域之VWF片段之胺基酸序列、第二異源部分(例如第二Fc區)、及VWF片段與第二Fc域之間的連接子(例如VWF連接子)。VWF片段與第二Fc域之間的連接子可為凝血酶可裂解連接子。在一些實施例中,單鏈FVIII蛋白質包含第三異源部分(例如半衰期延長劑),其連接於N末端、C末端、或FVIII序列內之一或多個位點。
在其他實施例中,本發明之嵌合蛋白包含三個多肽鏈,其中第一鏈包含以下、基本上由以下組成、或由以下組成:FVIII之重鏈,第二鏈包含以下、基本上由以下組成、或由以下組成:融合於第一異源部分(例如第一Fc區) 之FVIII之輕鏈,且第三多肽鏈包含以下、基本上由以下組成、或由以下組成:包含D’域及D3域之VWF片段、第二異源部分(例如第二Fc區)及連接子。VWF片段與第二異源部分之間的連接子可為凝血酶可裂解連接子。在一些實施例中,重鏈FVIII連接於第三異源部分(例如半衰期延長劑),其可連接於N末端、C末端、或FVIII序列內之一或多個位點。
在其他實施例中,本發明之嵌合蛋白包含兩個多肽鏈,即包含以下、基本上由以下組成、或由以下組成之第一鏈:FVIII之重鏈;及包含以下、基本上由以下組成、或由以下組成之第二鏈:FVIII之輕鏈、第一異源部分(例如第一Fc區)、第一連接子(例如包含一或多個細胞內加工位點之蛋白酶裂解位點)、VWF片段、第二連接子(例如凝血酶可裂解連接子)、及第二異源部分(例如第二Fc區),其中FVIII之該輕鏈連接於該第一異源部分(例如該第一Fc區),該第一異源部分進一步藉由該第一連接子(例如具有包含一或多個細胞內加工位點之蛋白酶裂解位點之可加工連接子)連接於該VWF片段,且其中該VWF片段藉由該第二連接子(例如凝血酶可裂解連接子)連接於該第二Fc區。在某些實施例中,第一連接子與第二連接子為相同或不同。
在某些實施例中,本發明之嵌合蛋白包含一個多肽鏈,其包含單鏈FVIII蛋白質、第一異源部分(例如第一Fc區)、第一連接子(例如凝血酶可裂解連接子)、VWF片段 、第二連接子(例如凝血酶可裂解連接子)、及第二異源部分(例如第二Fc區),其中該單鏈FVIII蛋白質連接於該第一異源部分,該第一異源部分亦藉由該第一連接子連接於該VWF片段,且該VWF片段藉由該第二連接子連接於該第二Fc區。在一個實施例中,第一連接子為包含第一可裂解位點及第二可裂解位點之可裂解連接子。在另一實施例中,第二連接子為包含一或兩個可裂解位點之可裂解連接子。在一特定實施例中,第二連接子為凝血酶可裂解連接子。適用於本發明中之連接子可為任何長度,例如至少10、50、100、200、300、400、500、600或700個胺基酸。舉例而言,連接子可為20個胺基酸、35個胺基酸、42個胺基酸、73個胺基酸或98個胺基酸。
在某些實施例中,VWF片段藉由肽鍵或連接子直接連接於FVIII蛋白質。作為一種直接或經由連接子將VWF片段與FVIII蛋白質連接之方式,可採用酶促連接(例如分選酶)。舉例而言,分選酶係指一組原核酶,其藉由識別且裂解羧基末端分選信號來修飾表面蛋白質。對於分選酶之大多數受質,識別信號由基元LPXTG(Leu-Pro-任何胺基酸-Thr-Gly)(SEQ ID NO:106)、接著高度疏水性跨膜序列、接著一串鹼性殘基(諸如精胺酸)組成。裂解發生在Thr與Gly之間,伴有經由Thr殘基短暫連接於連接搭配物之活性位點Cys殘基,隨後進行使蛋白質共價連接於細胞壁之轉肽過程。在一些實施例中,連接搭配物含有Gly(n)。
在一個實施例中,藉由視情況選用之連接子連接於分選酶識別基元之VWF片段可藉由分選酶融合於連接於Gly(n)之FVIII蛋白質,其中n可為任何整數。一連接構築體包含VWF片段(構築體之N末端部分)及FVIII蛋白質(構築體之C末端部分),其中分選酶識別基元插入在兩者之間。一示範性構築體展示於第24(A)圖中。另一連接構築體包含VWF片段(構築體之N末端部分)、連接子、分選酶識別基元、及FVIII蛋白質(構築體之C末端部分)(例如第24(C)圖)。在另一實施例中,藉由視情況選用之連接子連接於分選酶識別基元之FVIII蛋白質可藉由分選酶融合於連接於Gly(n)之VWF片段,其中n為任何整數。一所得連接構築體包含FVIII蛋白質(構築體之N末端部分)及VWF片段(構築體之C末端部分),其中分選酶識別基元插入在兩者之間。一示範性構築體展示於第24(B)圖中。另一所得連接構築體包含FVIII蛋白質(構築體之N末端部分)、連接子、分選酶識別基元、及VWF片段(構築體之C末端部分)(例如第24(D)圖)。在其他實施例中,藉由第一視情況選用之連接子連接於分選酶識別基元之VWF片段可融合於藉由第二視情況選用之連接子連接於凝血酶裂解位點之異源部分,例如免疫球蛋白恆定區或其部分,例如Fc區。一所得構築體可包含VWF片段(N末端部分)、第一連接子、分選酶識別基元、蛋白酶裂解位點、第二視情況選用之連接子、及異源部分(例如第24(E)圖)。在某些實施例中,此所得構築體為包含FVIII蛋白質 及第二異源部分(例如免疫球蛋白恆定區或其部分,例如第二Fc區)之嵌合蛋白之一部分。在一個實例中,在另一實例中,一嵌合物包含三個多肽鏈,即包含VWF片段、第一連接子、分選酶識別基元、蛋白酶裂解位點、第二視情況選用之連接子、第一異源部分之第一鏈;包含FVIII蛋白質之輕鏈及第二異源部分之第二鏈;及包含FVIII蛋白質之重鏈之第三鏈。
在其他實施例中,包含VWF片段及FVIII蛋白質之本發明之嵌合蛋白的免疫原性小於無該VWF片段之FVIII蛋白質,其中該VWF片段與該FVIII蛋白質彼此共價締合或彼此共價連接。免疫原性降低包括(但不限於)體液免疫反應較小(例如中和抗體效價較小)或針對FVIII之細胞介導免疫反應較小(例如各種細胞激素之產生較少)。
在其他實施例中,作為本發明之結果,相較於無VWF片段之FVIII蛋白質或野生型FVIII,FVIII蛋白質(或嵌合蛋白)之半衰期得以延長。FVIII蛋白質之半衰期比無VWF片段之FVIII蛋白質之半衰期長至少約1.5倍、至少約2倍、至少約2.5倍、至少約3倍、至少約4倍、至少約5倍、至少約6倍、至少約7倍、至少約8倍、至少約9倍、至少約10倍、至少約11倍或至少約12倍。在一個實施例中,FVIII之半衰期比野生型FVIII之半衰期長約1.5倍至約20倍、約1.5倍至約15倍、或約1.5倍至約10倍。在另一實施例中,相較於野生型FVIII或無VWF片段之FVIII蛋白質,FVIII之半衰期延長約2倍至 約10倍、約2倍至約9倍、約2倍至約8倍、約2倍至約7倍、約2倍至約6倍、約2倍至約5倍、約2倍至約4倍、約2倍至約3倍、約2.5倍至約10倍、約2.5倍至約9倍、約2.5倍至約8倍、約2.5倍至約7倍、約2.5倍至約6倍、約2.5倍至約5倍、約2.5倍至約4倍、約2.5倍至約3倍、約3倍至約10倍、約3倍至約9倍、約3倍至約8倍、約3倍至約7倍、約3倍至約6倍、約3倍至約5倍、約3倍至約4倍、約4倍至約6倍、約5倍至約7倍、或約6倍至約8倍。在其他實施例中,FVIII之半衰期為至少約17小時、至少約18小時、至少約19小時、至少約20小時、至少約21小時、至少約22小時、至少約23小時、至少約24小時、至少約25小時、至少約26小時、至少約27小時、至少約28小時、至少約29小時、至少約30小時、至少約31小時、至少約32小時、至少約33小時、至少約34小時、至少約35小時、至少約36小時、至少約48小時、至少約60小時、至少約72小時、至少約84小時、至少約96小時或至少約108小時。在其他實施例中,FVIII之半衰期為約15小時至約兩週、約16小時至約一週、約17小時至約一週、約18小時至約一週、約19小時至約一週、約20小時至約一週、約21小時至約一週、約22小時至約一週、約23小時至約一週、約24小時至約一週、約36小時至約一週、約48小時至約一週、約60小時至約一週、約24小時至約六天、約24小時至約五天、約24小時至約四天、約 24小時至約三天、或約24小時至約兩天。
在一些實施例中,每位個體中FVIII蛋白質之平均半衰期為約15小時、約16小時、約17小時、約18小時、約19小時、約20小時、約21小時、約22小時、約23小時、約24小時(1天)、約25小時、約26小時、約27小時、約28小時、約29小時、約30小時、約31小時、約32小時、約33小時、約34小時、約35小時、約36小時、約40小時、約44小時、約48小時(2天)、約54小時、約60小時、約72小時(3天)、約84小時、約96小時(4天)、約108小時、約120小時(5天)、約六天、約七天(一週)、約八天、約九天、約10天、約11天、約12天、約13天或約14天。
在某些實施例中,相較於由FVIII組成之多肽或FVIII單體-二聚體雜交物,共價連接於VWF片段之FVIII蛋白質在FVIII/VWF雙重基因剔除(「DKO」)小鼠中之半衰期可延長。
A)范威爾邦德因子(VWF)片段
VWF(亦稱為F8VWF)為一種存在於血漿中且在內皮(在懷布爾-帕拉德體(Weibel-Palade body)中)、巨核細胞(血小板之α-顆粒)及內皮下結締組織中組成性產生之大型多聚醣蛋白。基本VWF單體為具有2813個胺基酸之蛋白質。每個單體含有許多具有特定功能之特定域,即D'及D3域(其一起結合因子VIII)、A1域(其結合血小板GPIb受體 、肝素及/或可能膠原蛋白)、A3域(其結合膠原蛋白)、C1域(其中RGD域在此域活化時結合血小板整合素(integrin)αIIbβ3)、及在蛋白質之C末端之「半胱胺酸結(cysteine knot)」域(VWF與血小板源性生長因子(PDGF)、轉化生長因子-β(TGFβ)及β-人類絨毛膜促性腺素(β-human chorionic gonadotropin,βHCG)共有該域)。
人類VWF之2813單體胺基酸序列在Genbank中報導為登錄號NP_000543.2。編碼人類VWF之核苷酸序列在Genbank中報導為登錄號NM_000552.3。人類VWF之核苷酸序列指定為SEQ ID NO:1。SEQ ID NO:2為由SEQ ID NO:1編碼之胺基酸序列。VWF之各域列於表1中。
Figure 107124686-A0101-12-0073-537
Figure 107124686-A0101-12-0074-538
Figure 107124686-A0101-12-0075-539
Figure 107124686-A0101-12-0076-540
Figure 107124686-A0101-12-0077-541
Figure 107124686-A0101-12-0078-542
Figure 107124686-A0101-12-0079-543
Figure 107124686-A0101-12-0080-544
Figure 107124686-A0101-12-0081-545
Figure 107124686-A0101-12-0082-546
Figure 107124686-A0101-12-0083-547
Figure 107124686-A0101-12-0084-548
本發明係有關一種包含VWF之D’域及D3域之范威爾邦德因子(VWF)片段,其中該VWF片段抑制內源性VWF(全長VWF)結合FVIII蛋白質。在一個實施例中,VWF片段與FVIII蛋白質結合或締合。藉由與FVIII蛋白質結合或締合,本發明之VWF片段保護FVIII免遭蛋白酶裂解及FVIII活化,穩定化FVIII之重鏈及輕鏈,且防止FVIII由清除受體清除。在另一實施例中,VWF片段與FVIII蛋白質結合或締合且阻斷或防止FVIII蛋白質結合磷脂及活化蛋白質C。藉由防止或抑制FVIII蛋白質與內源性全長VWF結合,本發明之VWF片段降低FVIII由VWF清除受體清除且因此延長FVIII之半衰期。因此,FVIII蛋白質之半衰期延長係歸因於缺乏VWF清除受體結合位點之VWF片段與FVIII蛋白質結合或締合及由VWF片段遮蔽或保護FVIII蛋白質以免與含有VWF清除受體結合位點之內源性VWF結合。結合於VWF片段或由VWF片段保護之FVIII蛋白質亦可允許FVIII蛋白質再循環。因此,VWF片段不能為全長成熟VWF。藉由消除全長VWF分子中含有之VWF清除路徑受體結合位點,本發 明之FVIII/VWF雜二聚體自VWF清除路徑去偶聯,此允許進一步延長FVIII半衰期。
包含D’域及D3域之VWF片段可進一步包含選自由以下組成之群之VWF域:A1域、A2域、A3域、D1域、D2域、D4域、B1域、B2域、B3域、C1域、C2域、CK域、其一或多個片段及其任何組合。在一個實施例中,VWF片段包含以下、基本上由以下組成、或由以下組成:(1)VWF之D'及D3域或其片段;(2)VWF之D1、D'及D3域或其片段;(3)VWF之D2、D'及D3域或其片段;(4)VWF之D1、D2、D'及D3域或其片段;或(5)VWF之D1、D2、D'、D3及A1域或其片段。本文所述之VWF片段不含有結合VWF清除受體之位點。在另一實施例中,本文所述之VWF片段不為SEQ ID NO:2之胺基酸764至1274。本發明之VWF片段可包含連接於或融合於VWF片段之任何其他序列,但不為全長VWF。舉例而言,本文所述之VWF片段可進一步包含信號肽。
在一個實施例中,本發明之VWF片段包含VWF之D’域及D3域,其中該D’域與SEQ ID NO:2之胺基酸764至866具有至少60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或100%一致性,其中該VWF片段結合FVIII蛋白質,遮蔽、抑制或防止內源性VWF片段結合FVIII蛋白質。在另一實施例中,VWF片段包含VWF之D’域及D3域,其中該D3域與SEQ ID NO:2之胺基酸867至1240具有至少60%、70%、80%、85%、 90%、95%、96%、97%、98%、99%或100%一致性,其中該VWF片段結合FVIII蛋白質或抑制或防止內源性VWF片段結合FVIII蛋白質。在一些實施例中,本文所述之VWF片段包含以下、基本上由以下組成、或由以下組成:VWF之D’域及D3域,該等域與SEQ ID NO:2之胺基酸764至1240具有至少60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或100%一致性,其中該VWF片段結合FVIII蛋白質或抑制或防止內源性VWF片段結合FVIII蛋白質。在其他實施例中,VWF片段包含以下、基本上由以下組成、或由以下組成:D1、D2、D’及D3域,該等域與SEQ ID NO:2之胺基酸23至1240具有至少60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或100%一致性,其中該VWF片段結合FVIII蛋白質或抑制或防止內源性VWF片段結合FVIII蛋白質。在其他實施例中,VWF片段進一步包含可操作地與其連接之信號肽。
在一些實施例中,本發明之VWF片段基本上由以下組成或由以下組成:(1)D’D3域、D1D’D3域、D2D’D3域或D1D2D’D3域及(2)多達約10個胺基酸(例如SEQ ID NO:2之胺基酸764至1240至SEQ ID NO:2之胺基酸764至1250的任何序列)、多達約15個胺基酸(例如SEQ ID NO:2之胺基酸764至1240至SEQ ID NO:2之胺基酸764至1255的任何序列)、多達約20個胺基酸(例如SEQ ID NO:2之胺基酸764至1240至SEQ ID NO:2之胺基酸 764至1260的任何序列)、多達約25個胺基酸(例如SEQ ID NO:2之胺基酸764至1240至SEQ ID NO:2之胺基酸764至1265的任何序列)、或多達約30個胺基酸(例如SEQ ID NO:2之胺基酸764至1240至SEQ ID NO:2之胺基酸764至1260的任何序列)之另一VWF序列。在一特定實施例中,包含D’域及D3域或基本上由D’域及D3域組成之VWF片段既不為SEQ ID NO:2之胺基酸764至1274亦不為全長成熟VWF。
在其他實施例中,包含連接於D1D2域之D’D3域之VWF片段進一步包含細胞內裂解位點(例如PACE或PC5之裂解位點),從而允許在表現時,D1D2域自D’D3域裂解。細胞內裂解位點之非限制性實例在本文中其他地方加以揭露。
在其他實施例中,VWF片段包含D’域及D3域,但不包含選自由以下組成之群之胺基酸序列:(1)SEQ ID NO:2之胺基酸1241至2813,(2)SEQ ID NO:2之胺基酸1270至胺基酸2813,(3)SEQ ID NO:2之胺基酸1271至胺基酸2813,(4)SEQ ID NO:2之胺基酸1272至胺基酸2813,(5)SEQ ID NO:2之胺基酸1273至胺基酸2813,及(6)SEQ ID NO:2之胺基酸1274至胺基酸2813。
在其他實施例中,本發明之VWF片段包含以下、基本上由以下組成、或由以下組成:對應於D’域、D3域及A1域之胺基酸序列,其中該胺基酸序列與SEQ ID NO:2之胺基酸764至1479具有至少60%、70%、75%、80%、 85%、90%、95%、96%、97%、98%、99%或100%一致性,其中該VWF結合FVIII。在一特定實施例中,VWF片段不為SEQ ID NO:2之胺基酸764至1274。
在一些實施例中,本發明之VWF片段包含D’域及D3域,但不包含至少一個選自由以下組成之群之VWF域:(1)A1域,(2)A2域,(3)A3域,(4)D4域,(5)B1域,(6)B2域,(7)B3域,(8)C1域,(9)C2域,(10)CK域,(11)CK域及C2域,(12)CK域、C2域及C1域,(13)CK域、C2域、C1域、B3域,(14)CK域、C2域、C1域、B3域、B2域,(15)CK域、C2域、C1域、B3域、B2域及B1域,(16)CK域、C2域、C1域、B3域、B2域、B1域及D4域,(17)CK域、C2域、C1域、B3域、B2域、B1域、D4域及A3域,(18)CK域、C2域、C1域、B3域、B2域、B1域、D4域、A3域及A2域,(19)CK域、C2域、C1域、B3域、B2域、B1域、D4域、A3域、A2域及A1域,及(20)其任何組合。
在其他實施例中,VWF片段包含D’D3域及一或多個域或模組。此等域或模組之實例包括(但不限於)Zhour等人,Blood 2012年4月6日線上發表:DOI 10.1182/blood-2012-01-405134中揭露之域及模組。舉例而言,VWF片段可包含D’D3域及一或多個選自由以下組成之群之域或模組:A1域、A2域、A3域、D4N模組、VWD4模組、C8-4模組、TIL-4模組、C1模組、C2模組、C3模組、C4模組、C5模組、C5模組、C6模組及其任何組合。
在其他實施例中,VWF片段連接於異源部分,其中該異源部分連接於VWF片段之N末端或C末端或插入在VWF片段中之兩個胺基酸之間。舉例而言,異源部分在VWF片段中之插入位點可在D’域、D3域或兩者中。異源部分可為半衰期延長劑。
在某些實施例中,本發明之VWF片段形成多聚體,例如二聚體、三聚體、四聚體、五聚體、六聚體、七聚體或更高級多聚體。在其他實施例中,VWF片段為僅具有一個VWF片段之單體。在一些實施例中,本發明之VWF片段可具有一或多個胺基酸取代、缺失、添加或修飾。在一個實施例中,VWF片段可包括胺基酸取代、缺失、添加或修飾以使VWF片段不能形成二硫鍵或不能形成二聚體或多聚體。在另一實施例中,胺基酸取代在D’域及D3域內。在一特定實施例中,本發明之VWF片段在對應於SEQ ID NO:2之殘基1099、殘基1142、或殘基1099與1142兩者之殘基處含有至少一個胺基酸取代。至少一個胺基酸取代可為不天然存在於野生型VWF中之任何胺基酸。舉例而言,胺基酸取代可為除半胱胺酸以外之任何胺基酸,例如異白胺酸、丙胺酸、白胺酸、天冬醯胺、離胺酸、天冬胺酸、甲硫胺酸、苯丙胺酸、麩胺酸、酥胺酸、麩醯胺酸、色胺酸、甘胺酸、纈胺酸、脯胺酸、絲胺酸、酪胺酸、精胺酸或組胺酸。在另一實例中,胺基酸取代具有一或多個防止或抑制VWF片段形成多聚體之胺基酸。
在某些實施例中,本文適用之VWF片段可進一步經 修飾以改良其與FVIII之相互作用,例如改良對FVIII之結合親和力。作為一非限制性實例,VWF片段包含在對應於SEQ ID NO:2之胺基酸764之殘基處的絲胺酸殘基及在對應於SEQ ID NO:2之胺基酸773之殘基處的離胺酸殘基。殘基764及/或773可有助於VWF片段對FVIII之結合親和力。在其他實施例中,VWF片段可具有其他修飾,例如該片段可經聚乙二醇化、糖基化、羥乙基澱粉化或聚唾液酸化。
B)異源部分
異源部分可為異源多肽或異源非多肽部分。在某些實施例中,異源部分為此項技術中已知之半衰期延長分子且包含多肽、非多肽部分或兩者組合。異源多肽部分可包含免疫球蛋白恆定區或其部分、白蛋白或其片段、白蛋白結合部分、轉鐵蛋白或其片段、PAS序列、HAP序列、其衍生物或變異體或其任何組合。在一些實施例中,非多肽結合部分包含聚乙二醇(PEG)、聚唾液酸、羥乙基澱粉(HES)、其衍生物或其任何組合。在某些實施例中,可存在一個、兩個、三個或三個以上異源部分,其各自可為相同或不同分子。
1)免疫球蛋白恆定區或其部分
免疫球蛋白恆定區包含表示為CH(恆定重)域(CH1、CH2等)之域。視同型(亦即IgG、IgM、IgA、IgD或IgE) 而定,恆定區可包含三個或四個CH域。一些同型(例如IgG)恆定區亦含有鉸鏈區。參見Janeway等人2001,Immunobiology,Garland Publishing,N.Y.,N.Y。
用於產生本發明之嵌合蛋白之免疫球蛋白恆定區或其部分可自許多不同來源獲得。在較佳實施例中,免疫球蛋白恆定區或其部分源於人類免疫球蛋白。然而,應瞭解免疫球蛋白恆定區或其部分可源於另一哺乳動物物種之免疫球蛋白,該物種包括例如齧齒動物(例如小鼠、大鼠、兔、天竺鼠(guinea pig))或非人類靈長類動物(例如黑猩猩、獼猴)物種。此外,免疫球蛋白恆定區或其部分可源於任何免疫球蛋白類別(包括IgM、IgG、IgD、IgA及IgE)及任何免疫球蛋白同型(包括IgG1、IgG2、IgG3及IgG4)。在一個實施例中,使用人類同型IgG1。
多種免疫球蛋白恆定區基因序列(例如人類恆定區基因序列)可以公開可得之寄存物形式獲得。可選擇具有特定效應功能(或缺乏特定效應功能)或具有用以降低免疫原性之特定修飾之恆定區域序列。許多抗體及抗體編碼基因序列已經公開且可使用此項技術認可之技術自此等序列獲得適合Ig恆定區序列(例如鉸鏈、CH2及/或CH3序列或其部分)。使用任何上述方法獲得之遺傳物質可接著加以改變或合成以獲得本發明之多肽。應進一步瞭解本發明之範疇涵蓋恆定區DNA序列之對偶基因、變異體及突變。
免疫球蛋白恆定區或其部分之序列可例如使用經選擇用以擴增相關域之聚合酶鏈反應及引子來選殖。為自抗體 選殖免疫球蛋白恆定區或其部分之序列,可自融合瘤、脾或淋巴細胞分離mRNA,逆轉錄成DNA,且藉由PCR擴增抗體基因。PCR擴增方法詳述於美國專利第4,683,195號;第4,683,202號;第4,800,159號;第4,965,188號中;及例如「PCR Protocols:A Guide to Methods and Applications」Innis等人編,Academic Press,San Diego,CA(1990);Ho等人1989.Gene 77:51;Horton等人1993.Methods Enzymol.217:270中。PCR可藉由共同恆定區引子或藉由基於公開之重鏈及輕鏈DNA及胺基酸序列之更特異性引子來啟始。如上所論述,PCR亦可用於分離編碼抗體輕鏈及重鏈之DNA純系。在此情況下,可藉由共同引子或較大同源探針(諸如小鼠恆定區探針)來篩檢文庫。適於擴增抗體基因之眾多引子組在此項技術中為已知的,例如基於純化抗體之N末端序列之5’引子(Benhar及Pastan.1994.Protein Engineering 7:1509);cDNA末端之快速擴增物(Ruberti,F.等人1994.J.Immunol.Methods 173:33);抗體前導序列(Larrick等人1989 Biochem.Biophys.Res.Commun.160:1250)之5’引子。抗體序列之選殖進一步描述於Newman等人,1995年1月25日申請之美國專利第5,658,570號中,該專利以引用的方式併入本文中。
本文中使用之免疫球蛋白恆定區可包括所有域及鉸鏈區或其部分。在一個實施例中,免疫球蛋白恆定區或其部分包含CH2域、CH3域及鉸鏈區,亦即Fc區或FcRn結 合搭配物。
如本文所用,術語「Fc區」定義為多肽之對應於天然免疫球蛋白之Fc區的部分,亦即如藉由其兩個重鏈之各別Fc域之二聚締合所形成。天然Fc區與另一Fc區形成均二聚體。相反,如本文所用之術語「遺傳融合Fc區」或「單鏈Fc區」(scFc區)係指合成二聚Fc區,其包含在單一多肽鏈內遺傳連接之Fc域(亦即在單一鄰接遺傳序列中編碼)。
在一個實施例中,「Fc區」係指單一免疫球蛋白重鏈之一部分,其在恰好在木瓜蛋白酶(papain)裂解位點(亦即IgG中之殘基216,將重鏈恆定區之第一殘基看作114)上游之鉸鏈區中開始且在抗體之C末端結束。因此,完全Fc域包含至少鉸鏈域、CH2域及CH3域。
視免疫球蛋白同型而定,免疫球蛋白恆定區之Fc區可包括CH2、CH3及CH4域以及鉸鏈區。包含免疫球蛋白之Fc區之嵌合蛋白對嵌合蛋白賦予若干合乎需要之性質,包括穩定性增加、血清半衰期增加(參見Capon等人1989,Nature 337:525)以及結合Fc受體,諸如新生兒Fc受體(FcRn)(美國專利第6,086,875號、第6,485,726號、第6,030,613號;WO 03/077834;US2003-0235536A1),該等文獻及專利以全文引用的方式併入本文中。
免疫球蛋白恆定區或其部分可為FcRn結合搭配物。FcRn在成人上皮組織中具有活性且表現在腸腔、肺氣道、鼻表面、陰道表面、結腸及直腸表面中(美國專利第 6,485,726號)。FcRn結合搭配物為免疫球蛋白之結合FcRn之部分。
已自包括人類之若干哺乳動物物種分離FcRn受體。已知人類FcRn、猴FcRn、大鼠FcRn及小鼠FcRn之序列(Story等人1994,J.Exp.Med.180:2377)。FcRn受體在相對較低之pH值下結合IgG(但不結合其他免疫球蛋白類別,諸如IgA、IgM、IgD及IgE),以細胞腔至漿膜方向跨細胞主動轉運IgG,且接著在見於間隙液中之相對較高pH值下釋放IgG。其表現在成人上皮組織(美國專利第6,485,726號、第6,030,613號、第6,086,875號;WO 03/077834;US2003-0235536A1),包括肺及腸上皮(Israel等人1997,Immunology 92:69)、腎近端管狀上皮(Kobayashi等人2002,Am.J.Physiol.Renal Physiol.282:F358)以及鼻上皮;陰道表面;及膽系表面中。
適用於本發明中之FcRn結合搭配物涵蓋可由FcRn受體特異性結合之分子,包括完整IgG、IgG之Fc片段、及包括FcRn受體之完全結合區之其他片段。已基於X射線結晶學描述IgG之Fc部分之結合FcRn受體的區域(Burmeister等人1994,Nature 372:379)。Fc與FcRn之主要接觸區域接近CH2域與CH3域之接合點。Fc-FcRn接觸皆在單一Ig重鏈內。FcRn結合搭配物包括完整IgG、IgG之Fc片段及IgG之包括FcRn之完全結合區域的其他片段。主要接觸位點包括CH2域之胺基酸殘基248、250-257、272、285、288、290-291、308-311及314及CH3 域之胺基酸殘基385-387、428及433-436。對免疫球蛋白或免疫球蛋白片段之胺基酸編號所作之提及皆基於Kabat等人1991,Sequences of Proteins of Immunological Interest,U.S.Department of Public Health,Bethesda,Md。
結合於FcRn之Fc區或FcRn結合搭配物可藉由FcRn有效地跨越上皮障壁穿梭,由此提供一種全身性投與所要治療分子之非侵襲性手段。另外,包含Fc區或FcRn結合搭配物之融合蛋白由表現FcRn之細胞胞飲。但替代被標記以進行降解,此等融合蛋白再次重複利用進入循環中,由此增加此等蛋白質之活體內半衰期。在某些實施例中,免疫球蛋白恆定區之部分為Fc區或FcRn結合搭配物,其通常經由二硫鍵及其他非特異性相互作用與另一Fc區或另一FcRn結合搭配物締合以形成二聚體及更高級多聚體。
兩個FcRn受體可結合單一Fc分子。結晶學資料表明各FcRn分子結合Fc均二聚體之單一多肽。在一個實施例中,將FcRn結合搭配物(例如IgG之Fc片段)連接於生物活性分子會提供一種經口、經頰、舌下、經直腸、經陰道、以經鼻或經由肺途徑投與之氣霧劑形式、或經由眼途徑傳遞該生物活性分子之手段。在另一實施例中,可侵襲性投與嵌合蛋白,例如皮下、靜脈內。
FcRn結合搭配物區域為可由FcRn受體特異性結合,隨後由Fc區之FcRn受體主動轉運之分子或其部分。特異性結合係指兩個分子在生理條件下形成相對穩定之複合物 。特異性結合之特徵在於親和力較高且能力較低至中等,如與通常親和力較低且能力中等至較高之非特異性結合相區分。通常,當親和力常數KA高於106M-1或高於108M-1時,結合被視為特異性結合。必要時,可藉由改變結合條件來降低非特異性結合而不實質上影響特異性結合。諸如分子濃度、溶液之離子強度、溫度、允許結合時間、阻斷劑(例如血清白蛋白、乳酪蛋白)濃度等之適當結合條件可由熟練技術人員使用常規技術加以最佳化。
在某些實施例中,本發明之嵌合蛋白包含一或多個截短Fc區,儘管如此,該等Fc區仍然足以對Fc區賦予Fc受體(FcR)結合性質。舉例而言,Fc區之結合FcRn之部分(亦即FcRn結合部分)包含IgG1之約胺基酸282-438(EU編號),其中主要接觸位點為CH2域之胺基酸248、250-257、272、285、288、290-291、308-311及314及CH3域之胺基酸殘基385-387、428及433-436。因此,本發明之Fc區可包含FcRn結合部分或由FcRn結合部分組成。FcRn結合部分可源於包括IgG1、IgG2、IgG3及IgG4之任何同型之重鏈。在一個實施例中,使用來自具有人類同型IgG1之抗體之FcRn結合部分。在另一實施例中,使用來自具有人類同型IgG4之抗體之FcRn結合部分。
在另一實施例中,「Fc區」包括Fc域或源於Fc域之胺基酸序列。在某些實施例中,Fc區包含以下至少一者:鉸鏈(例如上、中及/或下鉸鏈區)域(抗體Fc區之約胺基酸216-230,根據EU編號)、CH2域(抗體Fc區之約胺 基酸231-340,根據EU編號)、CH3域(抗體Fc區之約胺基酸341-438,根據EU編號)、CH4域、或其變異體、部分或片段。在其他實施例中,Fc區包含完全Fc域(亦即鉸鏈域、CH2域及CH3域)。在一些實施例中,Fc區包含以下、基本上由以下組成、或由以下組成:融合於CH3域(或其部分)之鉸鏈域(或其部分)、融合於CH2域(或其部分)之鉸鏈域(或其部分)、融合於CH3域(或其部分)之CH2域(或其部分)、融合於鉸鏈域(或其部分)與CH3域(或其部分)兩者之CH2域(或其部分)。在其他實施例中,Fc區缺乏CH2域之至少一部分(例如CH2域之全部或一部分)。在一特定實施例中,Fc區包含以下或由以下組成:對應於EU編號221至447之胺基酸。
在本文中表示為F、F1或F2之Fc區可自許多不同來源獲得。在一個實施例中,多肽之Fc區源於人類免疫球蛋白。然而,應瞭解Fc區可源於另一哺乳動物物種之免疫球蛋白,該物種包括例如齧齒動物(例如小鼠、大鼠、兔、天竺鼠)或非人類靈長類動物(例如黑猩猩、獼猴)物種。此外,Fc域或其部分之多肽可源於任何免疫球蛋白類別(包括IgM、IgG、IgD、IgA及IgE)及任何免疫球蛋白同型(包括IgG1、IgG2、IgG3及IgG4)。在另一實施例中,使用人類同型IgG1。
在某些實施例中,Fc變異體賦予由包含該野生型Fc域之Fc區賦予之至少一種效應功能的變化(例如Fc區結合於Fc受體(例如FcγRI、FcγRII或FcγRIII)或補體蛋白 質(例如C1q)、或觸發抗體依賴性細胞毒性(ADCC)、吞噬作用或補體依賴性細胞毒性(CDCC)之能力改良或降低)。在其他實施例中,Fc變異體提供工程改造之半胱胺酸殘基。
本發明之Fc區可採用此項技術認可之已知會賦予效應功能及/或FcR或FcRn結合變化(例如增強或降低)之Fc變異體。詳言之,本發明之結合分子可包括例如在以下中揭露之一或多個胺基酸位置處之變化(例如取代):國際PCT公開案WO88/07089A1、WO96/14339A1、WO98/05787A1、WO98/23289A1、WO99/51642A1、WO99/58572A1、WO00/09560A2、WO00/32767A1、WO00/42072A2、WO02/44215A2、WO02/060919A2、WO03/074569A2、WO04/016750A2、WO04/029207A2、WO04/035752A2、WO04/063351A2、WO04/074455A2、WO04/099249A2、WO05/040217A2、WO04/044859、WO05/070963A1、WO05/077981A2、WO05/092925A2、WO05/123780A2、WO06/019447A1、WO06/047350A2及WO06/085967A2;美國專利公開案第US2007/0231329號、第US2007/0231329號、第US2007/0237765號、第US2007/0237766號、第US2007/0237767號、第US2007/0243188號、第US20070248603號、第US20070286859號、第US20080057056號;或美國專利5,648,260;5,739,277;5,834,250;5,869,046;6,096,871;6,121,022;6,194,551;6,242,195;6,277,375; 6,528,624;6,538,124;6,737,056;6,821,505;6,998,253;7,083,784;7,404,956及7,317,091,該等專利各自以引用的方式併入本文中。在一個實施例中,可在一或多個揭露之胺基酸位置處進行特定變化(例如特定取代此項技術中揭露之一或多個胺基酸)。在另一實施例中,可在一或多個揭露之胺基酸位置處進行不同變化(例如此項技術中揭露之一或多個胺基酸位置之不同取代)。
IgG之Fc區或FcRn結合搭配物可根據充分認可之程序(諸如定點突變誘發及其類似程序)加以修飾以產生將由FcRn結合之經修飾IgG或其Fc片段或部分。此等修飾包括保持或甚至增強與FcRn之結合的遠離FcRn接觸位點之修飾以及在接觸位點內之修飾。舉例而言,人類IgG1 Fc(Fc γ1)中之以下單一胺基酸殘基可經取代而不顯著損失Fc對FcRn之結合親和力:P238A、S239A、K246A、K248A、D249A、M252A、T256A、E258A、T260A、D265A、S267A、H268A、E269A、D270A、E272A、L274A、N276A、Y278A、D280A、V282A、E283A、H285A、N286A、T289A、K290A、R292A、E293A、E294A、Q295A、Y296F、N297A、S298A、Y300F、R301A、V303A、V305A、T307A、L309A、Q311A、D312A、N315A、K317A、E318A、K320A、K322A、S324A、K326A、A327Q、P329A、A330Q、P331A、E333A、K334A、T335A、S337A、K338A、K340A、Q342A、R344A、E345A、Q347A、R355A、E356A、 M358A、T359A、K360A、N361A、Q362A、Y373A、S375A、D376A、A378Q、E380A、E382A、S383A、N384A、Q386A、E388A、N389A、N390A、Y391F、K392A、L398A、S400A、D401A、D413A、K414A、R416A、Q418A、Q419A、N421A、V422A、S424A、E430A、N434A、T437A、Q438A、K439A、S440A、S444A及K447A,其中例如P238A表示野生型脯胺酸在位置編號238處經丙胺酸取代。舉例而言,一特定實施例併有N297A突變,從而移除高度保守之N-糖基化位點。除丙胺酸之外,其他胺基酸亦可在以上指定之位置處取代野生型胺基酸。突變可逐一引入Fc中,從而產生一百個以上不同於天然Fc之Fc區。另外,兩個、三個或三個以上此等個別突變之組合可一起引入,從而產生數百個以上Fc區。此外,本發明之構築體之一個Fc區可經突變且該構築體之另一Fc區完全不突變,或其兩者均可經突變,但突變不同。
某些以上突變可對Fc區或FcRn結合搭配物賦予新功能性。舉例而言,一個實施例併有N297A,從而移除高度保守之N-糖基化位點。此突變之效應在於降低免疫原性,藉此增強Fc區之循環半衰期,及在不損害對FcRn之親和力下致使Fc區不能結合FcγRI、FcγRIIA、FcγRIIB及FcγRIIIA(Routledge等人1995,Transplantation 60:847;Friend等人1999,Transplantation 68:1632;Shields等人1995,J.Biol.Chem.276:6591)。作為由於上述突變而產生 之新功能性之另一實例,對FcRn之親和力在一些情況下可增加超過野生型對FcRn之親和力。此親和力增加可反映「締合」速率增加、「解離」速率降低、或「締合」速率增加與「解離」速率降低兩者。咸信會賦予對FcRn之親和力增加之突變的實例包括(但不限於)T256A、T307A、E380A及N434A(Shields等人2001,J.Biol.Chem.276:6591)。
另外,至少三種人類Fcγ受體似乎識別IgG上在下鉸鏈區內之結合位點,通常為胺基酸234-237。因此,新功能性及潛在免疫原性降低之另一實例可由於此區域之突變而產生,如例如藉由將人類IgG1之胺基酸233-236「ELLG」置換成來自IgG2之相應序列「PVA」(其中有一個胺基酸缺失)。已顯示當已引入此等突變時,介導各種效應功能之FcγRI、FcγRII及FcγRIII將不結合IgG1。Ward及Ghetie 1995,Therapeutic Immunology 2:77及Armour等人1999,Eur.J.Immunol.29:2613。
在一個實施例中,免疫球蛋白恆定區或其部分(例如Fc區)為包括序列PKNSSMISNTP(SEQ ID NO:3)且視情況進一步包括選自HQSLGTQ(SEQ ID NO:4)、HQNLSDGK(SEQ ID NO:5)、HQNISDGK(SEQ ID NO:6)或VISSHLGQ(SEQ ID NO:7)之序列的多肽(美國專利第5,739,277號)。
在另一實施例中,免疫球蛋白恆定區或其部分包含在鉸鏈區或其部分中之與另一免疫球蛋白恆定區或其部分形 成一或多個二硫鍵的胺基酸序列。由免疫球蛋白恆定區或其部分達成之二硫鍵將包含FVIII之第一多肽及包含VWF片段之第二多肽置放在一起以使內源性VWF不置換VWF片段且不結合FVIII。因此,第一免疫球蛋白恆定區或其部分與第二免疫球蛋白恆定區或其部分之間的二硫鍵會防止內源性VWF與FVIII蛋白質之間的相互作用。對VWF與FVIII蛋白質之間的相互作用之此抑制允許FVIII蛋白質之半衰期超過兩倍限制。鉸鏈區或其部分可進一步連接於CH1、CH2、CH3中之一或多個域、其片段及其任何組合。在一特定實例中,免疫球蛋白恆定區或其部分包含鉸鏈區及CH2區(例如Fc區之胺基酸221-340)。
在某些實施例中,免疫球蛋白恆定區或其部分經半糖基化。舉例而言,包含兩個Fc區或FcRn結合搭配物之嵌合蛋白可含有第一糖基化Fc區(例如糖基化CH2區)或FcRn結合搭配物及第二無糖基化Fc區(例如無糖基化CH2區)或FcRn結合搭配物。在一個實施例中,連接子可插入在糖基化Fc區與無糖基化Fc區之間。在另一實施例中,Fc區或FcRn結合搭配物經完全糖基化,亦即所有Fc區皆經糖基化。在其他實施例中,Fc區可為無糖基化的,亦即無Fc部分經糖基化。
在某些實施例中,本發明之嵌合蛋白包含對免疫球蛋白恆定區或其部分之胺基酸取代(例如Fc變異體),其改變Ig恆定區之抗原非依賴性效應功能,特定言之改變蛋白質之循環半衰期。
當相較於缺乏此等取代之蛋白質時,此等蛋白質展現與FcRn之結合增加或降低,且因此在血清中之半衰期分別增加或降低。預期對FcRn之親和力改良之Fc變異體會具有較長血清半衰期,且此等分子在治療哺乳動物之方法(其中需要投與之多肽之半衰期較長例如以治療慢性疾病或病症)中具有適用應用(參見例如美國專利7,348,004、7,404,956及7,862,820)。相反,預期FcRn結合親和力降低之Fc變異體會具有較短半衰期,且此等分子亦例如適用於向哺乳動物投與,其中縮短循環時間可為有利的,例如適用於活體內診斷成像或起始多肽當持續延長時期存在於循環中時具有毒性副作用之情形下。FcRn結合親和力降低之Fc變異體亦較不可能跨越胎盤,且因此亦適用於治療懷孕婦女之疾病或病症。此外,可能需要FcRn結合親和力降低之其他應用包括需要定位於腦、腎及/或肝之彼等應用。在一個示範性實施例中,本發明之嵌合蛋白展現自血管結構跨越腎小球之上皮之轉運降低。在另一實施例中,本發明之嵌合蛋白展現自腦跨越血腦障壁(BBB)進入血管間隙中之轉運降低。在一個實施例中,FcRn結合改變之蛋白質包含至少一個在Ig恆定區之「FcRn結合環」內具有一或多個胺基酸取代之Fc區或FcRn結合搭配物(例如一或兩個Fc區或FcRn結合搭配物)。FcRn結合環包含野生型全長Fc區之胺基酸殘基280-299(根據EU編號)。在其他實施例中,本發明嵌合蛋白中之具有改變之FcRn結合親和力的Ig恆定區或其部分包含至少一個在15
Figure 107124686-A0101-12-0104-21
FcRn「接觸區」內具有一或多個胺基酸取代之Fc區或FcRn結合搭配物。如本文所用,術語15
Figure 107124686-A0101-12-0104-22
FcRn「接觸區」包括在野生型全長Fc部分之以下位置處之殘基:243-261、275-280、282-293、302-319、336-348、367、369、372-389、391、393、408、424、425-440(EU編號)。在其他實施例中,本發明之具有改變的FcRn結合親和力之Ig恆定區或其部分包含至少一個在對應於任一以下EU位置之胺基酸位置處具有一或多個胺基酸取代之Fc區或FcRn結合搭配物:256、277-281、283-288、303-309、313、338、342、376、381、384、385、387、434(例如N434A或N434K)及438。改變FcRn結合活性之示範性胺基酸取代揭露於國際PCT公開案第WO05/047327號中,該公開案以引用的方式併入本文中。
本發明中使用之Fc區或FcRn結合搭配物亦可包含此項技術認可之改變嵌合蛋白之糖基化之胺基酸取代。舉例而言,嵌合蛋白之連接於VWF片段或FVIII蛋白質之Fc區或FcRn結合搭配物可包含具有導致糖基化(例如N-連接或O-連接糖基化)降低之突變之Fc區,或可包含野生型Fc部分之改變的糖形式(例如低海藻糖(fucose)或無海藻糖聚醣)。
在一個實施例中,本發明之未加工嵌合蛋白可包含遺傳學融合之Fc區(亦即scFc區),該Fc區具有兩個或兩個以上獨立地選自本文所述之Ig恆定區或其部分之其組成Ig恆定區或其部分。在一個實施例中,二聚Fc區之Fc區 為相同的。在另一實施例中,至少兩個Fc區為不同的。舉例而言,本發明蛋白質之Fc區或FcRn結合搭配物包含相同數目之胺基酸殘基,或其可在長度方面相差一或多個胺基酸殘基(例如約5個胺基酸殘基(例如1、2、3、4或5個胺基酸殘基)、約10個殘基、約15個殘基、約20個殘基、約30個殘基、約40個殘基或約50個殘基)。在其他實施例中,本發明蛋白質之Fc區或FcRn結合搭配物可在序列方面在一或多個胺基酸位置處不同。舉例而言,至少兩個Fc區或FcRn結合搭配物可在約5個胺基酸位置(例如1、2、3、4或5個胺基酸位置)、約10個位置、約15個位置、約20個位置、約30個位置、約40個位置、或約50個位置處不同。
2)白蛋白或其片段或變異體
在某些實施例中,連接於VWF片段或連接於FVIII蛋白質之異源部分為白蛋白或其功能性片段。在其他實施例中,本發明之嵌合蛋白包含FVIII蛋白質及白蛋白或其片段,其中該白蛋白或其片段遮蔽或保護該FVIII蛋白質上之VWF結合位點,藉此抑制或防止該FVIII蛋白質與內源性VWF之相互作用。
人類血清白蛋白(HSA或HA)(一種全長形式具有609個胺基酸之蛋白質)負責顯著比例之血清滲透壓且亦充當內源性及外源性配體之載體。如本文所用之術語「白蛋白」包括全長白蛋白或其功能性片段、變異體、衍生物或類 似物。
在一個實施例中,嵌合蛋白包含本文所述之VWF片段及白蛋白、其片段或變異體,其中該VWF片段連接於白蛋白或其片段或變異體。在另一實施例中,嵌合蛋白包含彼此結合之VWF片段及FVIII蛋白質,其中該VWF片段連接於白蛋白或其片段或變異體,該具有VIII活性之蛋白質連接於白蛋白或其片段或變異體,或該VWF片段與該具有VIII活性之蛋白質兩者均連接於白蛋白或其片段或變異體。在其他實施例中,包含連接於白蛋白或其片段或變異體之VWF片段之嵌合蛋白進一步連接於選自由以下組成之群之異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES及PEG。在其他實施例中,嵌合蛋白包含彼此結合之VWF片段及FVIII蛋白質,其中該FVIII蛋白質連接於白蛋白或其片段或變異體且進一步連接於選自由以下組成之群之異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES及PEG。在其他實施例中,嵌合蛋白包含彼此結合的連接於白蛋白或其片段或變異體之VWF片段及連接於白蛋白或其片段或變異體之FVIII蛋白質,其中該VWF片段活性進一步連接於選自由以下組成之群之第一異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES及PEG,且其中該FVIII蛋白質活性進一步連接於選自由以下組成之群之第二異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES及PEG。
在其他實施例中,連接於VWF片段或FVIII蛋白質之異源部分為白蛋白或其片段或變異體,其延長(或能夠延長)VWF片段或FVIII蛋白質之半衰期。白蛋白或其片段或變異體之其他實例揭露於美國專利公開案第2008/0194481A1號、第2008/0004206 A1號、第2008/0161243 A1號、第2008/0261877 A1號或第2008/0153751 A1號或PCT申請公開案第2008/033413 A2號、第2009/058322 A1號或第2007/021494 A2號中。
3)白蛋白結合部分
在某些實施例中,連接於VWF片段或FVIII蛋白質之異源部分為白蛋白結合部分,其包含白蛋白結合肽、細菌白蛋白結合域、白蛋白結合抗體片段或其任何組合。舉例而言,白蛋白結合蛋白可為細菌白蛋白結合蛋白、抗體或抗體片段,包括域抗體(參見美國專利第6,696,245號)。白蛋白結合蛋白例如可為細菌白蛋白結合域,諸如鏈球菌蛋白質G之白蛋白結合域(Konig,T.及Skerra,A.(1998)J.Immunol.Methods 218,73-83)。可用作結合搭配物之白蛋白結合肽之其他實例為例如具有Cys-Xaa1-Xaa2-Xaa3-Xaa4-Cys共同序列者,其中Xaa1為Asp、Asn、Ser、Thr或Trp;Xaa2為Asn、Gln、His、Ile、Leu或Lys;Xaa3為Ala、Asp、Phe、Trp或Tyr;且Xaa4為Asp、Gly、Leu、Phe、Ser或Thr,如美國專利申請案2003/0069395或Dennis等人(Dennis等人(2002)J.Biol.Chem.277, 35035-35043)中所述。
4)PAS序列
在其他實施例中,連接於VWF片段或FVIII蛋白質之異源部分為PAS序列。在一個實施例中,嵌合蛋白包含本文所述之VWF片段及PAS序列,其中該VWF片段連接於該PAS序列。在另一實施例中,本發明之嵌合蛋白包含FVIII蛋白質及PAS序列,其中該PAS序列遮蔽或保護該FVIII蛋白質上之VWF結合位點,藉此抑制或防止該FVIII蛋白質與內源性VWF之相互作用。
如本文所用之PAS序列意謂主要包含丙胺酸及絲胺酸殘基或主要包含丙胺酸、絲胺酸及脯胺酸殘基之胺基酸序列,該胺基酸序列在生理條件下形成無規線圈構形。因此,PAS序列為包含以下、基本上由以下組成、或由以下組成之可用作嵌合蛋白中之異源部分之一部分的構築嵌段、胺基酸聚合物或序列卡匣:丙胺酸、絲胺酸及脯胺酸。然而,熟練人士應瞭解當除丙胺酸、絲胺酸及脯胺酸以外之殘基作為PAS序列中之次要組分添加時,胺基酸聚合物亦可形成無規線圈構形。如本文所用之術語「次要組分」意謂除丙胺酸、絲胺酸及脯胺酸以外之胺基酸可在某一程度上添加於PAS序列中,該程度例如多達約12%,亦即PAS序列之100個胺基酸中有約12個;多達約10%,亦即PAS序列之100個胺基酸中有約10個;多達約9%,亦即100個胺基酸中有約9個;多達約8%,亦即100 個胺基酸中有約8個;約6%,亦即100個胺基酸中有約6個;約5%,亦即100個胺基酸中有約5個;約4%,亦即100個胺基酸中有約4個;約3%,亦即100個胺基酸中有約3個;約2%,亦即100個胺基酸中有約2個;約1%,亦即100個胺基酸中有約1個。不同於丙胺酸、絲胺酸及脯胺酸之胺基酸可選自由以下組成之群:Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Thr、Trp、Tyr及Val。
在生理條件下,PAS序列鏈段形成無規線圈構形且藉此可介導對VWF因子或具有凝血活性之蛋白質之活體內及/或活體外穩定性增加。因為無規線圈域不獨自採用穩定結構或功能,所以由其所融合之VWF片段或FVIII蛋白質介導之生物活性基本上得以保持。在其他實施例中,形成無規線圈域之PAS序列為生物學惰性的,尤其關於血漿中之蛋白水解、免疫原性、等電點/靜電行為、結合細胞表面受體或內化而言,但仍然為生物可降解的,此提供超過諸如PEG之合成聚合物之明顯優勢。
形成無規線圈構形之PAS序列之非限制性實例包含選自由以下組成之群之胺基酸序列:ASPAAPAPASPAAPAPSAPA(SEQ ID NO:8)、AAPASPAPAAPSAPAPAAPS(SEQ ID NO:9)、APSSPSPSAPSSPSPASPSS(SEQ ID NO:10)、APSSPSPSAPSSPSPASPS(SEQ ID NO:11)、SSPSAPSPSSPASPSPSSPA(SEQ ID NO:12)、 AASPAAPSAPPAAASPAAPSAPPA(SEQ ID NO:13)及ASAAAPAAASAAASAPSAAA(SEQ ID NO:14)或其任何組合。PAS序列之其他實例根據例如美國專利公開案第2010/0292130 A1號及PCT申請公開案第WO 2008/155134 A1號可知。
5)HAP序列
在某些實施例中,連接於VWF片段或FVIII蛋白質之異源部分為富含甘胺酸之均質胺基酸聚合物(HAP)。HAP序列可包含甘胺酸重複序列,其在長度方面具有至少50個胺基酸、至少100個胺基酸、120個胺基酸、140個胺基酸、160個胺基酸、180個胺基酸、200個胺基酸、250個胺基酸、300個胺基酸、350個胺基酸、400個胺基酸、450個胺基酸或500個胺基酸。在一個實施例中,HAP序列能夠延長融合於或連接於HAP序列之部分的半衰期。HAP序列之非限制性實例包括(但不限於)(Gly)n、(Gly4Ser)n或S(Gly4Ser)n,其中n為1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20。在一個實施例中,n為20、21、22、23、24、25、26、26、28、29、30、31、32、33、34、35、36、37、38、39或40。在另一實施例中,n為50、60、70、80、90、100、110、120、130、140、150、160、170、180、190或200。參見例如Schlapschy M等人,Protein Eng.Design Selection,20:273-284(2007)。
6)轉鐵蛋白或其片段
在某些實施例中,連接於VWF片段或FVIII蛋白質之異源部分為轉鐵蛋白或其片段。任何轉鐵蛋白皆可用於製備本發明之嵌合蛋白。舉例而言,野生型人類Tf(Tf)為一種具有679個胺基酸之約75KDa(未考慮糖基化)之蛋白質,具有似乎由基因複製(gene duplication)產生之兩個主要域N(約330個胺基酸)及C(約340個胺基酸)。參見GenBank登錄號NM001063、XM002793、M12530、XM039845、XM 039847及S95936(www.ncbi.nlm.nih.gov/),其全部以全文引用的方式併入本文中。轉鐵蛋白包含兩個域,即N域及C域。N域包含兩個子域N1域及N2域,且C域包含兩個子域C1域及C2域。
在一個實施例中,嵌合蛋白之轉鐵蛋白部分包括轉鐵蛋白剪接變異體。在一個實例中,轉鐵蛋白剪接變異體可為人類轉鐵蛋白之剪接變異體,例如Genbank登錄號AAA61140。在另一實施例中,嵌合蛋白之轉鐵蛋白部分包括轉鐵蛋白序列之一或多個域,例如N域、C域、N1域、N2域、C1域、C2域或其任何組合。
7)聚合物,例如聚乙二醇(PEG)
在其他實施例中,連接於VWF片段或具有凝結活性(例如FVIII活性)之蛋白質之異源部分為此項技術中已知之可溶性聚合物,包括(但不限於)聚乙二醇、乙二醇/丙二醇共聚物、羧甲基纖維素、葡聚糖或聚乙烯醇。諸如可溶性 聚合物之異源部分可連接於VWF片段或FVIII蛋白質內之任何位置或N末端或C末端。在其他實施例中,本發明之嵌合蛋白包含FVIII蛋白質及PEG,其中PEG遮蔽或保護該FVIII蛋白質上之VWF結合位點,藉此抑制或防止該FVIII蛋白質與內源性VWF之相互作用。
在某些實施例中,嵌合蛋白包含本文所述之VWF片段及PEG,其中該VWF片段連接於PEG。在另一實施例中,嵌合蛋白包含彼此結合之VWF片段及FVIII蛋白質,其中該VWF片段連接於PEG,該FVIII蛋白質連接於PEG,或該VWF片段與該FVIII蛋白質兩者均連接於PEG。在其他實施例中,包含連接於PEG之VWF片段之嵌合蛋白進一步連接於選自由以下組成之群之異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES、及白蛋白、其片段或變異體。在其他實施例中,嵌合蛋白包含彼此結合之VWF片段及FVIII蛋白質,其中該FVIII蛋白質進一步連接於選自由以下組成之群之異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES、及白蛋白、其片段或變異體。在其他實施例中,嵌合蛋白包含彼此結合的連接於PEG之VWF片段及連接於PEG之FVIII蛋白質,其中該VWF片段活性進一步連接於選自由以下組成之群之第一異源部分:免疫球蛋白恆定區或其部分(例如Fc區)、PAS序列、HES、及白蛋白、其片段或變異體,且其中該FVIII蛋白質活性進一步連接於選自由以下組成之群之第二異源部分:免疫球蛋白恆定 區或其部分(例如Fc區)、PAS序列、HES、及白蛋白、其片段或變異體。
本發明亦提供本發明之嵌合蛋白之經化學修飾的衍生物,其可提供額外優勢,諸如多肽之溶解性、穩定性及循環時間增加;或免疫原性降低(參見美國專利第4,179,337號)。用於修飾之化學部分可選自由以下組成之群:水溶性聚合物,包括(但不限於)聚乙二醇、乙二醇/丙二醇共聚物、羧甲基纖維素、葡聚糖及聚乙烯醇。嵌合蛋白可在分子內之隨機位置處或在N末端或C末端,或在分子內之預定位置處加以修飾且可包括一個、兩個、三個或三個以上連接之化學部分。
聚合物可具有任何分子量,且可為分支或未分支。對於聚乙二醇,在一個實施例中,分子量在約1kDa與約100kDa之間以便於處理及製造。視所要概況而定(例如持續釋放之所要持續時間、對生物活性之影響(若有)、處理之簡易性、抗原性之程度或抗原性之缺乏及聚乙二醇對蛋白質或類似物之其他已知影響),可使用其他尺寸。舉例而言,聚乙二醇之平均分子量可為約200、500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500、7000、7500、8000、8500、9000、9500、10,000、10,500、11,000、11,500、12,000、12,500、13,000、13,500、14,000、14,500、15,000、15,500、16,000、16,500、17,000、17,500、18,000、18,500、19,000、19,500、20,000、25,000、30,000、35,000、 40,000、45,000、50,000、55,000、60,000、65,000、70,000、75,000、80,000、85,000、90,000、95,000或100,000kDa。
在一些實施例中,聚乙二醇可具有分支結構。分支聚乙二醇例如描述於美國專利第5,643,575號;Morpurgo等人,Appl.Biochem.Biotechnol.56:59-72(1996);Vorobjev等人,Nucleosides Nucleotides 18:2745-2750(1999);及Caliceti等人,Bioconjug.Chem.10:638-646(1999)中,其各自以全文引用的方式併入本文中。
連接於本發明之各嵌合蛋白、VWF片段或FVIII蛋白質之聚乙二醇部分之數目(亦即取代度)亦可變化。舉例而言,本發明之聚乙二醇化蛋白質可平均連接於1、2、3、4、5、6、7、8、9、10、12、15、17、20或20個以上聚乙二醇分子。類似地,平均取代度在每個蛋白質分子諸如1-3、2-4、3-5、4-6、5-7、6-8、7-9、8-10、9-11、10-12、11-13、12-14、13-15、14-16、15-17、16-18、17-19或18-20個聚乙二醇部分之範圍內。用於測定取代度之方法例如論述於Delgado等人,Crit.Rev.Thera.Drug Carrier Sys.9:249-304(1992)中。
在一些實施例中,FVIII蛋白質可經聚乙二醇化。聚乙二醇化因子VIII可指在因子VIII與至少一個聚乙二醇(PEG)分子之間形成之結合物。
在其他實施例中,本發明中使用之FVIII蛋白質結合於一或多種聚合物。聚合物可為水溶性的且共價或非共價 連接於因子VIII或結合於因子VIII之其他部分。聚合物之非限制性實例可為聚(氧化烯)、聚(乙烯吡咯啶酮)、聚(乙烯醇)、聚噁唑啉或聚(丙烯醯基嗎啉)。其他類型之結合聚合物之FVIII揭露於美國專利第7,199,223號中。
8)羥乙基澱粉(HES)
在某些實施例中,連接於VWF片段或FVIII蛋白質之異源部分為聚合物,例如羥乙基澱粉(HES)或其衍生物。在一個實施例中,嵌合蛋白包含本文所述之VWF片段及HES,其中VWF片段連接於HES。在其他實施例中,本發明之嵌合蛋白包含融合於羥乙基澱粉(HES)之FVIII蛋白質,其中該羥乙基澱粉或其衍生物遮蔽或保護該FVIII蛋白質上之VWF結合位點以免與內源性VWF結合,藉此抑制或防止該FVIII蛋白質與內源性VWF之相互作用。
羥乙基澱粉(HES)為天然存在之支鏈澱粉之衍生物且由體內之α-澱粉酶降解。HES為以多達95重量%之濃度存在於玉米澱粉中之碳水化合物聚合物支鏈澱粉的經取代衍生物。HES展現有利生物性質且用作血容量置換劑且在臨床上用於血稀釋療法中(Sommermeyer等人,Krankenhauspharmazie,8(8),271-278(1987);及Weidler等人,Arzneim.-Forschung/Drug Res.,41,494-498(1991))。
支鏈澱粉含有葡萄糖部分,其中在主鏈中存在α-1,4-糖苷鍵,且在分支位點處可見α-1,6-糖苷鍵。此分子之物 理-化學性質主要由糖苷鍵之類型決定。歸因於缺口α-1,4-糖苷鍵,產生每個回轉具有約六個葡萄糖單體之螺旋結構。聚合物之物理化學以及生物化學性質可經由取代加以改變。羥乙基之引入可經由鹼性羥乙基化達成。藉由改適反應條件,有可能開發未經取代之葡萄糖單體中之各別羥基關於羥乙基化的不同反應性。歸因於此事實,熟練人士能夠在有限程度上影響取代樣式。
HES主要藉由分子量分佈及取代度表徵。表示為DS之取代度與莫耳取代度相關,為熟練人士所知。參見如上引用之Sommermeyer等人,Krankenhauspharmazie,8(8),271-278(1987),特定言之第273頁。
在一個實施例中,羥乙基澱粉之平均分子量(重量平均值)為1至300kD、2至200kD、3至100kD、或4至70kD。羥乙基澱粉可進一步展現莫耳取代度0.1至3、較佳0.1至2、更佳0.1至0.9、較佳0.1至0.8,且關於羥乙基之C2:C6之間的取代比率在2至20之範圍內。平均分子量為約130kD之HES之一非限制性實例為取代度為0.2至0.8(諸如0.2、0.3、0.4、0.5、0.6、0.7或0.8)、較佳0.4至0.7(諸如0.4、0.5、0.6或0.7)之HES。在一特定實施例中,平均分子量為約130kD之HES為來自Fresenius之VOLUVEN®。VOLUVEN®為一種例如用於容量置換之人工膠體,容量置換用於血容量過低(hypovolaemia)之治療及防治之治療適應症中。VOLUVEN之特徵為平均分子量130,000+/- 20,000,莫耳取代度0.4 且C2:C6比率約9:1。在其他實施例中,羥乙基澱粉之平均分子量之範圍為例如4至70kD或10至70kD或12至70kD或18至70kD或50至70kD或4至50kD或10至50kD或12至50kD或18至50kD或4至18kD或10至18kD或12至18kD或4至12kD或10至12kD或4至10kD。在其他實施例中,採用之羥乙基澱粉之平均分子量在大於4kD且小於70kD之範圍內,諸如約10kD,或在9至10kD或10至11kD或9至11kD之範圍內,或約12kD,或在11至12kD或12至13kD或11至13kD之範圍內,或約18kD,或在17至18kD或18至19kD或17至19kD之範圍內,或約30kD,或在29至30或30至31kD之範圍內,或約50kD,或在49至50kD或50至51kD或49至51kD之範圍內。
在某些實施例中,異源部分可為具有不同平均分子量及/或不同取代度及/或不同C2:C6取代比率之羥乙基澱粉之混合物。因此,可採用以下羥乙基澱粉之混合物:該等羥乙基澱粉具有不同平均分子量及不同取代度及不同C2:C6取代比率,或具有不同平均分子量及不同取代度及相同或幾乎相同C2:C6取代比率,或具有不同平均分子量及相同或幾乎相同取代度及不同C2:C6取代比率,或具有相同或幾乎相同平均分子量及不同取代度及不同C2:C6取代比率,或具有不同平均分子量及相同或幾乎相同取代度及相同或幾乎相同C2:C6取代比率,或具有相同或幾乎相同平均分子量及不同取代度及相同或幾乎相同C2:C6取代 比率,或具有相同或幾乎相同平均分子量及相同或幾乎相同取代度及不同C2:C6取代比率,或具有幾乎相同平均分子量及幾乎相同取代度及幾乎相同C2:C6取代比率。
9)聚唾液酸(PSA)
在某些實施例中,連接於VWF片段或FVIII蛋白質之非多肽異源部分為聚合物,例如聚唾液酸(PSA)或其衍生物。聚唾液酸(PSA)為由某些細菌菌株及在哺乳動物中在某些細胞中產生之天然存在之未分支唾液酸聚合物,Roth J.,等人(1993),Polysialic Acid:From Microbes to Man,Roth J.,Rutishauser U.,Troy F.A.編(Birkhäuser Verlag,Basel,Switzerland),第335-348頁。其可藉由有限酸水解或藉由用神經胺糖酸苷酶(neuraminidase)消化或藉由部分分離聚合物之天然細菌源性形式而以各種聚合度產生,該等聚合度自n=約80或80個以上唾液酸殘基下至n=2。不同聚唾液酸之組成亦不同以致存在均聚形式,亦即包含大腸桿菌(E.coli)菌株K1及B群腦膜炎球菌(meningococci)之莢膜多醣之α-2,8連接之聚唾液酸,其亦見於神經元細胞黏附分子(N-CAM)之胚胎形式上。亦存在雜聚形式-諸如大腸桿菌菌株K92之交替alpha-2,8 α-2,9聚唾液酸及腦膜炎雙球菌(N.meningitidis)之C群多醣。唾液酸亦可見於具有除唾液酸以外之單體之交替共聚物(諸如腦膜炎雙球菌之W135群或Y群)中。聚唾液酸具有重要生物功能,包括使病原細菌逃避免疫及補體系統及在 胎兒發育期間調控不成熟神經元之神經膠質黏附性(其中聚合物具有抗黏附功能),Cho及Troy,P.N.A.S.,USA,91(1994)11427-11431,但哺乳動物中不存在聚唾液酸之已知受體。大腸桿菌菌株K1之α-2,8連接之聚唾液酸亦稱為『聚乙醯神經胺糖酸(colominic acid)』且(以各種長度)用於例示本發明。將聚唾液酸連接或結合於多肽之各種方法已有描述,例如參見美國專利第5,846,951號;WO-A-0187922及US 2007/0191597 A1,該等專利以全文引用的方式併入本文中。
C)FVIII蛋白質
除非另外規定,否則如本文所用之「FVIII蛋白質」意謂在凝血中發揮正常作用之功能性FVIII多肽。術語FVIII蛋白質包括其保留全長野生型因子VIII在凝血路徑中之功能之功能性片段、變異體、類似物或衍生物。「FVIII蛋白質」可與FVIII多肽(或蛋白質)或FVIII互換使用。FVIII功能之實例包括(但不限於)能夠活化凝血、能夠充當因子IX之輔因子、或能夠在Ca2+及磷脂存在下與因子IX形成因子X酶複合物,其接著將因子X轉化成活化形式之Xa。FVIII蛋白質可為人類、豬、犬、大鼠或鼠類FVIII蛋白質。此外,來自人類與其他物種之FVIII之間的比較已鑒別可能為功能所需之保守殘基(Cameron等人,Thromb.Haemost.79:317-22(1998);US 6,251,632)。
許多測試可用於評估凝血系統之功能:活化之部分凝 血激素時間(aPTT)測試、顯色分析、ROTEM分析、凝血酶原時間(PT)測試(亦用於確定INR)、纖維蛋白原測試(常藉由克勞斯(Clauss)方法)、血小板計數、血小板功能測試(常藉由PFA-100)、TCT、流血時間、混合測試(若患者之血漿與正常血漿混合,則是否進行異常校正)、凝血因子分析、抗磷脂抗體、D二聚體、遺傳測試(例如因子VLeiden、凝血酶原突變G20210A)、稀釋魯塞爾氏蝰毒液時間(Russell's viper venom time,dRVVT)、雜項血小板功能測試、凝血彈性描記術(TEG或Sonoclot)、凝血彈性量測術(TEM®,例如ROTEM®)或優球蛋白(euglobulin)溶解時間(ELT)。
aPTT測試為量度「內在」凝血路徑(亦稱為接觸活化路徑)與共同凝血路徑兩者之功效之性能指標。此測試通常用於量測市售重組凝結因子(例如FVIII或FIX)之凝結活性。其連同量度外在路徑之凝血酶原時間(PT)一起使用。
ROTEM分析提供關於以下整個止血動力學之資訊:凝結時間、凝塊形成、凝塊穩定性及溶解。凝血彈性量測術中之不同參數取決於血漿凝血系統之活性、血小板功能、纖維蛋白溶解或影響此等相互作用之許多因素。此分析可提供對次級止血之完全綜覽。
已知FVIII多肽及聚核苷酸序列,亦已知許多功能性片段、突變體及修飾形式。人類FVIII序列(全長)之實例顯示為SEQ ID NO:16或18中之子序列。
Figure 107124686-A0101-12-0121-549
Figure 107124686-A0101-12-0122-550
Figure 107124686-A0101-12-0123-551
Figure 107124686-A0101-12-0124-552
FVIII多肽包括全長FVIII、全長FVIII減去N末端Met、成熟FVIII(減去信號序列)、在N末端具有另一Met之成熟FVIII及/或B域全部或部分缺失之FVIII。在某些 實施例中,FVIII變異體包括B域缺失,無論部分或全部缺失。
分離且在哺乳動物細胞中表現人類FVIII基因(Toole,J.J.,等人,Nature 312:342-347(1984);Gitschier,J.,等人,Nature 312:326-330(1984);Wood,W.I.,等人,Nature 312:330-337(1984);Vehar,G.A.,等人,Nature 312:337-342(1984);WO 87/04187;WO 88/08035;WO 88/03558;及美國專利第4,757,006號)。自如美國專利第4,965,199號中所示之cDNA推斷FVIII胺基酸序列。此外,B域部分或全部缺失之FVIII展示於美國專利第4,994,371號及第4,868,112號中。在一些實施例中,人類FVIII B域經如美國專利第5,004,803號中所示之人類因子V B域置換。編碼人類因子VIII之cDNA序列及胺基酸序列分別展示於美國申請公開案第2005/0100990號中之SEQ ID NO:17及16中。
豬FVIII序列發表在Toole,J.J.等人,Proc.Natl.Acad.Sci.USA 83:5939-5942(1986)中。此外,由以PCR擴增來自豬脾cDNA文庫之FVIII序列獲得之完全豬cDNA序列已報導於Healey,J.F.等人,Blood 88:4209-4214(1996)中。具有所有域、所有次單元及特定胺基酸序列之取代之雜交人類/豬FVIII揭露於Lollar及Runge之美國專利第5,364,771號中及WO 93/20093中。新近,豬FVIII之A1及A2域及用豬A1及/或A2域取代相應人類域之嵌合FVIII的核苷酸及相應胺基酸序列報導於WO 94/11503中。Lollar,J.S.之美國專利第5,859,204號亦揭露豬cDNA及推斷之胺基酸序列。美國專利第6,458,563號揭露一種B域缺失之豬FVIII。
Lollar,J.S.之美國專利第5,859,204號報導了具有降低的抗原性及降低的免疫反應性之FVIII功能性突變體。Lollar,J.S.之美國專利第6,376,463號亦報導具有降低的免疫反應性之FVIII突變體。Saenko等人之美國申請公開案第2005/0100990號報導在FVIII之A2域中之功能性突變。
在一個實施例中,FVIII(或嵌合蛋白之FVIII部分)可與具有SEQ ID NO:18之胺基酸1至1438或SEQ ID NO:16之胺基酸1至2332的FVIII胺基酸序列(無信號序列)或具有SEQ ID NO:15及SEQ ID NO:18之胺基酸-19至1438或SEQ ID NO:15及SEQ ID NO:16之胺基酸-19至2332的FVIII胺基酸序列(具有信號序列)具有至少50%、60%、70%、80%、90%、95%、96%、97%、98%、99%或100%一致性,其中該FVIII具有凝結活性,例如作為輔因子活化因子IX以將因子X轉化成活化因子X。FVIII(或嵌合蛋白之FVIII部分)可與具有SEQ ID NO:18之胺基酸1至1438或SEQ ID NO:16之胺基酸1至2332的FVIII胺基酸序列(無信號序列)一致。FVIII可進一步包含信號序列。
如本文所用之FVIII之「B域」與此項技術中已知之藉由內部胺基酸序列一致性及蛋白水解裂解位點定義之B 域相同,例如為全長人類FVIII之殘基Ser741-Arg1648。其他人類FVIII域由以下胺基酸殘基界定:A1,殘基Ala1-Arg372;A2,殘基Ser373-Arg740;A3,殘基Ser1690-Asn2019;C1,殘基Lys2020-Asn2172;C2,殘基Ser2173-Tyr2332。A3-C1-C2序列包括殘基Ser1690-Tyr2332。剩餘序列殘基Glu1649-Arg1689通常稱為a3酸性區。豬、小鼠及犬FVIII之包括B域之所有域的邊界位置在此項技術中亦為已知的。在一個實施例中,缺失FVIII之B域(「B域缺失因子VIII」或「BDD FVIII」)。BDD FVIII之一實例為REFACTO®(重組BDD FVIII),其具有與表4中之序列之因子VIII部分相同的序列。(BDD FVIII重鏈加雙底線;B域用斜體表示;且BDD FVIII輕鏈呈純文本形式)。
Figure 107124686-A0101-12-0128-553
Figure 107124686-A0101-12-0128-554
Figure 107124686-A0101-12-0129-555
Figure 107124686-A0101-12-0130-556
「B域缺失之FVIII」可具有揭露於美國專利第6,316,226號、第6,346,513號、第7,041,635號、第5,789,203號、第6,060,447號、第5,595,886號、第6,228,620號、第5,972,885號、第6,048,720號、第5,543,502號、第5,610,278號、第5,171,844號、第5,112,950號、第4,868,112號及第6,458,563號中之全部或部分缺失。在一些實施例中,本發明之B域缺失之FVIII序列包含在美國專利第6,316,226號(亦在US 6,346,513中)之第4欄第4行至第5欄第28行及實例1-5處揭露之任一缺失。在另一實施例中,B域缺失之因子VIII為S743/Q1638 B域缺失之因子VIII(SQ BDD FVIII)(例如因子VIII具有自胺基酸744至胺基酸1637之缺失,例如因子VIII具有SEQ ID NO:16之胺基酸1-743及胺基 酸1638-2332,亦即SEQ ID NO:18)。在一些實施例中,本發明之B域缺失之FVIII具有在美國專利第5,789,203號(以及US 6,060,447、US 5,595,886及US 6,228,620)之第2欄第26-51行及實例5-8處揭露之缺失。在一些實施例中,B域缺失之因子VIII具有以下文獻中描述之缺失:美國專利第5,972,885號之第1欄第25行至第2欄第40行;美國專利第6,048,720號之第6欄第1-22行及實例1;美國專利第5,543,502號之第2欄第17-46行;美國專利第5,171,844號之第4欄第22行至第5欄第36行;美國專利第5,112,950號之第2欄第55-68行,第2圖及實例1;美國專利第4,868,112號之第2欄第2行至第19欄第21行及表2;美國專利第7,041,635號之第2欄第1行至第3欄第19行、第3欄第40行至第4欄第67行、第7欄第43行至第8欄第26行、及第11欄第5行至第13欄第39行;或美國專利第6,458,563號之第4欄第25-53行。
在一些實施例中,B域缺失之FVIII缺失大部分B域,但仍然含有在活體內將初級轉譯產物蛋白水解加工成兩個多肽鏈所必需的B域胺基末端序列,如WO 91/09122中所揭露。在一些實施例中,在缺失胺基酸747-1638,亦即實際上完全缺失B域下構築B域缺失之FVIII。Hoeben R.C.等人J.Biol.Chem.265(13):7318-7323(1990)。B域缺失之因子VIII亦可含有FVIII之胺基酸771-1666或胺基酸868-1562之缺失。Meulien P.等人Protein Eng. 2(4):301-6(1988)。作為本發明之一部分之其他B域缺失包括以下缺失:胺基酸982至1562或760至1639(Toole等人,Proc.Natl.Acad.Sci.U.S.A.(1986)83,5939-5942))、797至1562(Eaton等人Biochemistry(1986)25:8343-8347))、741至1646(Kaufman(PCT公開申請案第WO 87/04187號))、747-1560(Sarver等人,DNA(1987)6:553-564))、741至1648(Pasek(PCT申請案第88/00831號))、或816至1598或741至1648(Lagner(Behring Inst.Mitt.(1988)No 82:16-25,EP 295597))。在其他實施例中,BDD FVIII包括含有B域之保留一或多個N-連接糖基化位點之片段的FVIII多肽,該等位點例如對應於全長FVIII序列之胺基酸序列之殘基757、784、828、900、963或視情況943。B域片段之實例包括如Miao,H.Z.等人,Blood 103(a):3412-3419(2004)、Kasuda,A等人,J.Thromb.Haemost.6:1352-1359(2008)及Pipe,S.W.等人,J.Thromb.Haemost.9:2235-2242(2011)中揭露的B域之226個胺基酸或163個胺基酸(亦即保留B域之前226個胺基酸或163個胺基酸)。在一些實施例中,具有部分B域之FVIII為FVIII198(SEQ ID NO:105)。FVIII198為一種含有部分B域之單鏈FVIIIFc分子-226N6。226表示FVIII B域之N末端226個胺基酸,且N6表示B域中之六個N-糖基化位點。在其他實施例中,BDD FVIII進一步包含在殘基309處之點突變(自Phe至Ser)以改良BDD FVIII蛋白質之表現。參見Miao,H.Z.等人,Blood 103(a): 3412-3419(2004)。在其他實施例中,BDD FVIII包括含有一部分B域,但不含有一或多個弗林蛋白酶裂解位點(例如Arg1313及Arg1648)之FVIII多肽。參見Pipe,S.W.等人,J.Thromb.Haemost.9:2235-2242(2011)。可在任何FVIII序列中進行各前述缺失。
適用於本發明中之FVIII蛋白質可包括其中具有一或多個不影響FVIII凝血活性之額外異源序列或化學或物理修飾的FVIII。此等異源序列或化學或物理修飾可融合於FVIII蛋白質之C末端或N末端或插入在FVIII蛋白質中之兩個胺基酸殘基之一或多者之間。FVIII蛋白質中之此等插入不影響FVIII凝血活性或FVIII功能。在一個實施例中,該等插入改良FVIII蛋白質之藥物動力學性質(例如半衰期)。在另一實施例中,該等插入可大於兩個、三個、四個、五個或六個位點。
在一個實施例中,就在胺基酸1648(在全長因子VIII或SEQ ID NO:16中)、胺基酸754(在S743/Q1638 B域缺失之因子VIII或SEQ ID NO:16中)處之精胺酸或相應精胺酸殘基(在其他變異體中)之後裂解FVIII,藉此產生重鏈及輕鏈。在另一實施例中,FVIII包含重鏈及輕鏈,該等鏈藉由金屬離子介導之非共價鍵連接或締合。
在其他實施例中,FVIII為單鏈FVIII,其尚未就在胺基酸1648(在全長FVIII或SEQ ID NO:16中)、胺基酸754(在S743/Q1638 B域缺失之FVIII或SEQ ID NO:18中)處之精胺酸或相應精胺酸殘基(在其他變異體中)之後被裂 解。單鏈FVIII可包含一或多個胺基酸取代。在一個實施例中,胺基酸取代在對應於全長成熟因子VIII多肽(SEQ ID NO:16)之殘基1648、殘基1645或兩者或SQ BDD因子VIII(SEQ ID NO:18)之殘基754、殘基751或兩者的殘基處。胺基酸取代可為除精胺酸以外之任何胺基酸,例如異白胺酸、白胺酸、離胺酸、甲硫胺酸、苯丙胺酸、酥胺酸、色胺酸、纈胺酸、丙胺酸、天冬醯胺、天冬胺酸、半胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、脯胺酸、硒代半胱胺酸、絲胺酸、酪胺酸、組胺酸、鳥胺酸、吡咯離胺酸或牛磺酸。
FVIII可進一步由凝血酶裂解且接著活化成FVIIIa,充當活化因子IX(FIXa)之輔因子。活化FIX接著連同活化FVIII一起形成X酶複合物且將因子X轉化成活化因子X(FXa)。對於活化,FVIII由凝血酶在於胺基酸372、740及1689(對應於B域缺失FVIII序列中之胺基酸372、740及795)處之三個精胺酸殘基之後裂解,該裂解產生具有50kDa A1、43kDa A2及73kDa A3-C1-C2鏈之FVIIIa。在一個實施例中,適用於本發明之FVIII蛋白質為非活性FVIII。在另一實施例中,FVIII蛋白質為活化FVIII。
具有與VWF片段連接或締合之FVIII多肽之蛋白質可包含與SEQ ID NO:16或18具有至少50%、60%、70%、80%、90%、95%、96%、97%、98%、99%或100%一致性之序列,其中該序列具有FVIII凝結活性,例如作為輔因子活化因子IX以將因子X轉化成活化因子 X(FXa)。
如本文所用之「雜交」多肽及蛋白質意謂視情況融合於第一異源部分之第一多肽鏈(例如VWF片段)與視情況融合於第二異源部分之第二多肽鏈(例如FVIII蛋白質)之組合,藉此形成雜二聚體。在一個實施例中,雜交物中之第一多肽與第二多肽經由蛋白質-蛋白質相互作用(諸如電荷-電荷或疏水性相互作用)彼此締合。在另一實施例中,雜交物中之第一多肽與第二多肽經由二硫鍵或其他共價鍵彼此締合。雜交物例如描述於US 2004/101740及US 2006/074199中。第二多肽可為第一多肽之相同副本或非相同多肽。在一個實施例中,第一多肽為VWF片段-Fc融合蛋白,且第二多肽為包含以下、基本上由以下組成或由以下組成之多肽:FcRn結合域,其中該第一多肽與該第二多肽彼此締合。在另一實施例中,第一多肽包含VWF片段-Fc融合蛋白,且第二多肽包含FVIII-Fc融合蛋白,從而使得雜交物為雜二聚體。第一多肽與第二多肽可經由第一Fc區與第二Fc區之間的共價鍵(例如二硫鍵)締合。第一多肽與第二多肽可進一步藉由VWF片段與FVIII蛋白質之間的結合而彼此締合。
D)連接子
本發明之嵌合蛋白進一步包含連接子。一或多個連接子可存在於任何兩個蛋白質之間,例如在輔助部分與FVIII蛋白質之間(有時亦稱為「FVIII/AM連接子」)、在 VWF片段與例如第一Fc區之第一異源部分之間(有時亦稱為「VWF連接子」)、在FVIII蛋白質與例如第二Fc區之第二異源部分之間(有時亦稱為「FVIII連接子」)、在VWF片段與FVIII蛋白質之間(例如FVIII/AM連接子)、在VWF片段與第二異源部分之間、及/或在FVIII蛋白質與第一異源部分之間。各連接子可具有相同或不同序列。在一個實施例中,連接子為多肽連接子。在另一實施例中,連接子為非多肽連接子。
適用於本發明中之連接子可包含任何有機分子。在一個實施例中,連接子為聚合物,例如聚乙二醇(PEG)或羥乙基澱粉(HES)。在另一實施例中,連接子為胺基酸序列(例如多肽連接子)。多肽連接子可包含至少約10、20、30、40、50、60、70、80、90、100、150、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900或2000個胺基酸。連接子可包含1-5個胺基酸、1-10個胺基酸、1-20個胺基酸、10-50個胺基酸、50-100個胺基酸、100-200個胺基酸、200-300個胺基酸、300-400個胺基酸、400-500個胺基酸、500-600個胺基酸、600-700個胺基酸、700-800個胺基酸、800-900個胺基酸、或900-1000個胺基酸。
多肽連接子之實例在此項技術中為熟知的。在一個實施例中,連接子包含序列Gn。連接子可包含序列(GA)n。連接子可包含序列(GGS)n。在其他實施例中,連接子包含(GGGS)n(SEQ ID NO:20)。在其他實施例中,連接子包含 序列(GGS)n(GGGGS)n(SEQ ID NO:21)。在此等情況下,n可為整數1-100。在其他情況下,n可為整數1-20,亦即1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20。連接子之實例包括(但不限於)GGG、SGGSGGS(SEQ ID NO:22)、GGSGGSGGSGGSGGG(SEQ ID NO:23)、GGSGGSGGGGSGGGGS(SEQ ID NO:24)、GGSGGSGGSGGSGGSGGS(SEQ ID NO:25)、GGGGSGGGGSGGGGS(SEQ ID NO:26)、表13中之連接子(SEQ ID NO:92、93及94)及表14A中之連接子(SEQ ID NO:95、96及97)。連接子不消除或削弱VWF片段活性或因子VIII之凝結活性。視情況,連接子會增強VWF片段活性或因子VIII蛋白質之凝結活性,例如藉由進一步削弱空間位阻效應且使VWF片段或因子VIII部分更易到達其目標結合位點。
在一個實施例中,適用於嵌合蛋白之連接子之長度為15-25個胺基酸。在另一實施例中,適用於嵌合蛋白之連接子之長度為15-20個胺基酸。在一些實施例中,用於嵌合蛋白之連接子之長度為10-25個胺基酸。在其他實施例中,用於嵌合蛋白之連接子之長度為15個胺基酸。在其他實施例中,用於嵌合蛋白之連接子為(GGGGS)n(SEQ ID NO:27),其中G表示甘胺酸,S表示絲胺酸且n為整數1-20。
E)裂解位點
連接子亦可併有能夠以化學方式(例如水解酯鍵)、以酶促方式(亦即併有蛋白酶裂解序列)或以光解方式(例如發色團,諸如3-胺基-3-(2-硝基苯基)丙酸(ANP))裂解之部分以自某一分子釋放另一分子。
在一個實施例中,連接子為可裂解連接子。可裂解連接子可在N末端或C末端或兩者處包含一或多個裂解位點。在另一實施例中,可裂解連接子基本上由以下組成或由以下組成:一或多個可裂解位點。在其他實施例中,可裂解連接子包含本文所述之異源胺基酸連接子序列或聚合物及一或多個可裂解位點。
在某些實施例中,可裂解連接子包含一或多個可在宿主細胞中裂解之裂解位點(亦即細胞內加工位點)。裂解位點之非限制性實例包括RRRR(SEQ ID NO:52)、RKRRKR(SEQ ID NO:53)及RRRRS(SEQ ID NO:54)。
在其他實施例中,可裂解連接子包含一或多個裂解位點,該等位點在向個體投與包含該可裂解連接子之嵌合蛋白之後由蛋白酶裂解。在一個實施例中,裂解位點由選自由以下組成之群之蛋白酶裂解:因子XIa、因子XIIa、胰舒血管素、因子VIIa、因子IXa、因子Xa、因子IIa(凝血酶)、彈性蛋白酶-2、MMP-12、MMP-13、MMP-17及MMP-20。在另一實施例中,裂解位點係選自由以下組成之群:FXIa裂解位點(例如KLTR↓AET(SEQ ID NO:29))、FXIa裂解位點(例如DFTR↓VVG(SEQ ID NO:30))、 FXIIa裂解位點(例如TMTR↓IVGG(SEQ ID NO:31))、胰舒血管素裂解位點(例如SPFR↓STGG(SEQ ID NO:32))、FVIIa裂解位點(例如LQVR↓IVGG(SEQ ID NO:33))、FIXa裂解位點(例如PLGR↓IVGG(SEQ ID NO:34))、FXa裂解位點(例如IEGR↓TVGG(SEQ ID NO:35))、FIIa(凝血酶)裂解位點(例如LTPR↓SLLV(SEQ ID NO:36))、彈性蛋白酶-2裂解位點(例如LGPV↓SGVP(SEQ ID NO:37))、粒酶-B裂解(例如VAGD↓SLEE(SEQ ID NO:38))、MMP-12裂解位點(例如GPAG↓LGGA(SEQ ID NO:39))、MMP-13裂解位點(例如GPAG↓LRGA(SEQ ID NO:40))、MMP-17裂解位點(例如APLG↓LRLR(SEQ ID NO:41))、MMP-20裂解位點(例如PALP↓LVAQ(SEQ ID NO:42))、TEV裂解位點(例如ENLYFQ↓G(SEQ ID NO:43))、腸激酶裂解位點(例如DDDK↓IVGG(SEQ ID NO:44))、蛋白酶3C(PRESCISSIONTM)裂解位點(例如LEVLFQ↓GP(SEQ ID NO:45))及分選酶A裂解位點(例如LPKT↓GSES)(SEQ ID NO:46)。在某些實施例中,FXIa裂解位點包括(但不限於)例如TQSFNDFTR(SEQ ID NO:47)及SVSQTSKLTR(SEQ ID NO:48)。非限制性示範性凝血酶裂解位點包括例如DFLAEGGGVR(SEQ ID NO:49)、TTKIKPR(SEQ ID NO:50)或LVPRG(SEQ ID NO:55),及包含以下、基本上由以下組成或由以下組成之序列:ALRPR(例如ALRPRVVGGA(SEQ ID NO:51))。
在一特定實施例中,裂解位點為 TLDPRSFLLRNPNDKYEPFWEDEEK(SEQ ID NO:56)。
聚核苷酸、載體、宿主細胞及製備方法
本發明中亦提供一種編碼本文所述之VWF片段之聚核苷酸、一種包含該VWF片段及異源部分之嵌合蛋白、一種包含FVIII蛋白質及輔助部分之嵌合蛋白、或一種包含VWF片段及FVIII蛋白質之嵌合蛋白。當VWF片段連接於呈單一多肽鏈形式之嵌合蛋白中之異源部分或FVIII蛋白質時,本發明係關於一種編碼連接於該異源部分或該FVIII蛋白質之該VWF片段之聚核苷酸。當嵌合蛋白包含第一及第二多肽鏈,該第一多肽鏈包含VWF片段及第一異源部分(例如第一Fc區)且該第二多肽鏈包含第二異源部分(例如第二Fc區),其中該第一多肽鏈與該第二多肽鏈彼此締合時,一種聚核苷酸可包含第一核苷酸序列及第二核苷酸序列。在一個實施例中,第一核苷酸序列及第二核苷酸序列在同一聚核苷酸上。在另一實施例中,第一核苷酸序列及第二核苷酸序列在兩個不同聚核苷酸(例如不同載體)上。在某些實施例中,本發明係有關一組包含第一核苷酸鏈及第二核苷酸鏈之聚核苷酸,其中該第一核苷酸鏈編碼嵌合蛋白之VWF片段且該第二核苷酸鏈編碼FVIII蛋白質。
在其他實施例中,該組聚核苷酸進一步包含編碼蛋白質轉化酶之另一核苷酸鏈(例如當嵌合多肽由單一聚核苷酸鏈編碼時之第二核苷酸鏈或當嵌合蛋白由兩個聚核苷酸 鏈編碼時之第三核苷酸鏈)。蛋白質轉化酶可選自由以下組成之群:前蛋白轉化酶枯草桿菌蛋白酶/kexin 5型(PCSK5或PC5)、前蛋白轉化酶枯草桿菌蛋白酶/kexin 7型(PCSK7或PC5)、酵母Kex 2、前蛋白轉化酶枯草桿菌蛋白酶/kexin 3型(PACE或PCSK3)及其兩種或兩種以上組合。在一些實施例中,蛋白質轉化酶為PACE、PC5或PC7。在一特定實施例中,蛋白質轉化酶為PC5或PC7。參見國際申請案第PCT/US2011/043568號,其以引用的方式併入本文中。在另一實施例中,蛋白質轉化酶為PACE/弗林蛋白酶。
在某些實施例中,本發明包括一組聚核苷酸,其包含編碼包含VWF之D'域及D3域之VWF片段的第一核苷酸序列、編碼FVIII蛋白質之第二核苷酸序列、及編碼VWF之D1域及D2域之第三核苷酸序列。在此實施例中,D1域及D2域各別地加以表現(未連接於VWF片段之D'D3域)以達成適當二硫鍵形成及D'D3域折疊。D1D2域表現可呈順式或反式形式。
如本文所用,表現載體係指含有在引入適當宿主細胞中時,為插入編碼序列之轉錄及轉譯所必需之元件,或在RNA病毒載體之情況下,為複製及轉譯所必需之元件的任何核酸構築體。表現載體可包括質體、噬菌粒、病毒及其衍生物。
本發明之表現載體將包括編碼VWF片段或包含VWF片段之嵌合蛋白之聚核苷酸。
在一個實施例中,VWF片段、第二異源部分(例如第二Fc區)或FVIII蛋白質之編碼序列可操作地連接於表現控制序列。如本文所用,當兩個核酸序列以允許各組成核酸序列保留其功能性之方式共價連接時,其經可操作地連接。當編碼序列及基因表現控制序列以將編碼序列之表現或轉錄及/或轉譯置於基因表現控制序列之影響或控制下之方式共價連接時,其稱為可操作地連接。若誘導5'基因表現序列中之啟動子導致編碼序列轉錄且若兩個DNA序列之間的鍵聯之性質不(1)導致引入框移突變,(2)干擾啟動子區域引導編碼序列轉錄之能力,或(3)干擾相應RNA轉錄物被轉譯成蛋白質之能力,則兩個DNA序列稱為可操作地連接。因此,若基因表現序列能夠實現編碼核酸序列之轉錄以使所得轉錄物轉譯成所要蛋白質或多肽,則該基因表現序列將可操作地連接於彼編碼核酸序列。
如本文所用之基因表現控制序列為有助於可操作地連接之編碼核酸之高效轉錄及轉譯的任何調控核苷酸序列,諸如啟動子序列或啟動子-增強子組合。基因表現控制序列可例如為哺乳動物或病毒啟動子,諸如組成性或誘導性啟動子。組成性哺乳動物啟動子包括(但不限於)以下基因之啟動子:次黃嘌呤磷酸核糖基轉移酶(HPRT)、腺苷去胺酶、丙酮酸激酶、β-肌動蛋白啟動子及其他組成性啟動子。在真核細胞中組成性起作用之示範性病毒啟動子包括例如來自巨細胞病毒(CMV)、猿猴病毒(例如SV40)、乳頭狀瘤病毒(papilloma virus)、腺病毒、人類免疫缺陷病毒 (HIV)、勞斯肉瘤病毒、巨細胞病毒、莫洛尼白血病病毒(Moloney leukemia virus)之長末端重複序列(LTR)及其他反轉錄病毒之啟動子、及單純皰疹病毒之胸苷激酶啟動子。其他組成性啟動子為一般技藝人士所知。適用作本發明之基因表現序列之啟動子亦包括誘導性啟動子。誘導性啟動子在誘導劑存在下表現。舉例而言,誘導金屬硫蛋白啟動子以促進在某些金屬離子存在下之轉錄及轉譯。其他誘導性啟動子為一般技藝人士所知。
一般而言,基因表現控制序列在必要時將包括分別涉及轉錄及轉譯啟始之5'非轉錄及5'非轉譯序列,諸如TATA盒、加帽序列、CAAT序列及其類似序列。尤其而言,此等5'非轉錄序列將包括啟動子區域,該區域包括用於對可操作地接合之編碼核酸進行轉錄控制之啟動子序列。基因表現序列視情況包括所要之增強子序列或上游活化序列。
病毒載體包括(但不限於)來自以下病毒之核酸序列:反轉錄病毒,諸如莫洛尼鼠類白血病病毒、哈維(Harvey)鼠類肉瘤病毒、鼠類乳腺腫瘤病毒及勞斯肉瘤病毒;腺病毒、腺相關病毒;SV40型病毒;多型瘤病毒;艾伯斯坦-巴爾病毒(Epstein-Barr virus);乳頭狀瘤病毒;皰疹病毒;牛痘病毒;小兒麻痺病毒;及RNA病毒,諸如反轉錄病毒。可易於採用此項技術中熟知之其他載體。某些病毒載體係基於非必要基因已經相關基因置換之非細胞病變真核病毒。非細胞病變病毒包括反轉錄病毒,其壽命週期涉 及基因組病毒RNA反轉錄成DNA,隨後前病毒整合入宿主細胞DNA中。反轉錄病毒已核准用於人類基因療法試驗。最適用的是缺乏複製(亦即能夠直接合成所要蛋白質,但不能製造感染性粒子)之彼等反轉錄病毒。此等遺傳學改變之反轉錄病毒表現載體具有用於在活體內高效率轉導基因之一般效用。用於產生缺乏複製之反轉錄病毒之標準方案(包括以下步驟:將外源性遺傳物質併入質體中,用質體轉染包裝細胞株,由包裝細胞株產生重組反轉錄病毒,自組織培養基收集病毒粒子,及用病毒粒子感染目標細胞)提供於Kriegler,M.,Gene Transfer and Expression,A Laboratory Manual,W.H.Freeman公司,New York(1990)及Murry,E.J.,Methods in Molecular Biology,第7卷,Humana Press公司,Cliffton,N.J.(1991)中。
在一個實施例中,病毒為腺相關病毒,其為一種雙股DNA病毒。腺相關病毒可經工程改造以缺乏複製且能夠感染廣泛範圍之細胞類型及物種。其進一步具有諸如以下之優勢:熱及脂質溶劑穩定性;在不同譜系之細胞(包括造血細胞)中具有高轉導頻率;及缺乏重複感染抑制,因此允許進行多級轉導。據報導,腺相關病毒可以位點特異性方式整合入人類細胞DNA中,藉此使反轉錄病毒感染之插入突變誘發之可能性及插入基因表現特徵之可變性最小。此外,野生型腺相關病毒感染已在不存在選擇壓力下在組織培養中沿襲100繼代以上,從而暗示腺相關病毒基因組整合為相對穩定事件。腺相關病毒亦可以染色體外方 式起作用。
其他載體包括質體載體。質體載體已在此項技術中廣泛描述且為熟習此項技術者所熟知。參見例如Sambrook等人,Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press,1989。在過去數年中,已發現質體載體由於不能在宿主基因組內複製且整合入宿主基因組中而特別有利於在活體內將基因傳遞至細胞。然而,具有與宿主細胞相容之啟動子之此等質體可自可操作地編碼於質體內之基因表現肽。一些可自商業供應商獲得之通常使用之質體包括pBR322、pUC18、pUC19、各種pcDNA質體、pRC/CMV、各種pCMV質體、pSV40及pBlueScript。特定質體之其他實例包括pcDNA3.1,目錄編號V79020;pcDNA3.1/hygro,目錄編號V87020;pcDNA4/myc-His,目錄編號V86320;及pBudCE4.1,目錄編號V53220,全部來自Invitrogen(Carlsbad,CA.)。其他質體為一般技藝人士所熟知。另外,可使用標準分子生物學技術定製設計質體以移除及/或添加特定DNA片段。
在一種可用於產生本發明蛋白質之昆蟲表現系統中,苜蓿銀紋夜蛾核多角體病病毒(Autographa californica nuclear polyhidrosis virus,AcNPV)用作表現外來基因之載體。病毒生長在草地貪夜蛾(Spodoptera frugiperda)細胞中。編碼序列可選殖入病毒之非必要區域(例如多角體基因)中且置於ACNPV啟動子(例如多角體啟動子)之控制下。成功插入編碼序列將導致多角體基因不活化且產生非封 閉重組病毒(亦即缺乏由多角體基因編碼之蛋白質包衣之病毒)。此等重組病毒接著用於感染表現插入基因之草地貪夜蛾細胞。(參見例如Smith等人(1983)J Virol 46:584;美國專利第4,215,051號)。此表現系統之其他實例可見於Ausubel等人編(1989)Current Protocols in Molecular Biology,第2卷,Greene Publish.Assoc.& Wiley Interscience中。
可用於表現本發明蛋白質之另一系統為麩醯胺酸合成酶基因表現系統,亦稱為「GS表現系統」(Lonza Biologics PLC,Berkshire UK)。此表現系統詳述於美國專利第5,981,216號中。
在哺乳動物宿主細胞中,可利用許多病毒基表現系統。在腺病毒用作表現載體之情況下,編碼序列可連接於腺病毒轉錄/轉譯控制複合物,例如晚期啟動子及三重前導序列。此嵌合基因可接著藉由活體外或活體內重組插入腺病毒基因組中。插入在病毒基因組之非必要區域(例如區域E1或E3)中將產生在受感染宿主中具有活力且能夠表現肽之重組病毒。參見例如Logan及Shenk(1984)Proc Natl Acad Sci USA 81:3655)。或者,可使用牛痘7.5K啟動子。參見例如Mackett等人(1982)Proc Natl Acad Sci USA 79:7415;Mackett等人(1984)J Virol 49:857;Panicali等人(1982)Proc Natl Acad Sci USA 79:4927。
為增加產生效率,聚核苷酸可經設計以編碼由酶促裂解位點分開之本發明蛋白質的多個單元。所得多肽可經裂 解(例如藉由用適當酶處理)以回收多肽單元。此舉可增加由單一啟動子驅動之多肽之產量。當用於適當病毒表現系統中時,由mRNA編碼之各多肽之轉譯在轉錄物內部受引導;例如由內部核糖體進入位點IRES引導。因此,多順反子構築體引導單一較大多順反子mRNA之轉錄,該mRNA又引導多個個別多肽之轉譯。此方法消除多蛋白質之產生及酶促加工且可顯著增加由單一啟動子驅動之多肽之產量。
轉化中使用之載體將通常含有用於鑒別轉化體之可選擇標記。在細菌系統中,此可選擇標記可包括抗生素抗性基因,諸如胺苄青黴素或康黴素。用於所培養哺乳動物細胞中之可選擇標記包括賦予對諸如新黴素(neomycin)、潮黴素及胺甲葉酸(methotrexate)之藥物之抗性的基因。可選擇標記可為可擴增可選擇標記。一種可擴增可選擇標記為二氫葉酸還原酶(dihydrofolate reductase,DHFR)基因。Simonsen C C等人(1983)Proc Natl Acad Sci USA 80:2495-9。可選擇標記由Thilly(1986)Mammalian Cell Technology,Butterworth Publishers,Stoneham,Mass.評述,且對可選擇標記之選擇完全屬於此項技術中之一般技能水準。
可選擇標記可與相關基因同時於各別質體上引入細胞中,或其可於同一質體上引入。若於同一質體上,則可選擇標記及相關基因可在不同啟動子或相同啟動子控制下,後述排列會產生雙順反子訊息。此類型之構築體在此項技 術中為已知的(例如美國專利第4,713,339號)。
表現載體可編碼允許對重組產生之蛋白質進行簡易純化之標籤。實例包括(但不限於)載體pUR278(Ruther等人(1983)EMBO J 2:1791),其中欲表現之蛋白質之編碼序列可與lac z編碼區域同框連接入載體中以使標籤融合蛋白得以產生;pGEX載體可用於表現具有麩胱甘肽(glutathione)S轉移酶(GST)標籤之本發明蛋白質。此等蛋白質通常為可溶性的且可易於藉由吸附於麩胱甘肽-瓊脂糖珠粒,隨後在游離麩胱甘肽存在下溶離來自細胞純化。載體包括用於在純化之後簡易移除標籤之裂解位點(凝血酶或因子Xa蛋白酶或PRESCISSION PROTEASETM(Pharmacia,Peapack,N.J.))。
一或多個表現載體接著轉染或共轉染入將表現多肽之適合目標細胞中。此項技術中已知之轉染技術包括(但不限於)磷酸鈣沈澱(Wigler等人(1978)Cell 14:725)、電穿孔(Neumann等人(1982)EMBO J 1:841)及脂質體基試劑。多種宿主表現載體系統可用於表現本文所述之蛋白質,該等系統包括原核細胞與真核細胞兩者。此等系統包括(但不限於)微生物,諸如用含有適當編碼序列之重組噬菌體DNA或質體DNA表現載體轉化之細菌(例如大腸桿菌);用含有適當編碼序列之重組酵母或真菌表現載體轉化之酵母或絲狀真菌;用含有適當編碼序列之重組病毒表現載體(例如桿狀病毒)感染之昆蟲細胞系統;用重組病毒表現載體(例如花椰菜花葉病毒(cauliflower mosaic virus)或煙 草花葉病毒(tobacco mosaic virus))感染或用含有適當編碼序列之重組質體表現載體(例如Ti質體)轉化之植物細胞系統;或動物細胞系統,包括哺乳動物細胞(例如HEK 293、CHO、Cos、HeLa、HKB11及BHK細胞)。
在一個實施例中,宿主細胞為真核細胞。如本文所用,真核細胞係指具有胚乳原核之任何動物或植物細胞。動物之真核細胞包括脊椎動物(例如哺乳動物)之細胞及無脊椎動物(例如昆蟲)之細胞。植物之真核細胞可特定不加限制地包括酵母細胞。真核細胞不同於例如細菌之原核細胞。
在某些實施例中,真核細胞為哺乳動物細胞。哺乳動物細胞為源於哺乳動物之任何細胞。哺乳動物細胞特定包括(但不限於)哺乳動物細胞株。在一個實施例中,哺乳動物細胞為人類細胞。在另一實施例中,哺乳動物細胞為HEK 293細胞,其為一種人類胚腎細胞株。HEK 293細胞可以CRL-1533自美國菌種中心(American Type Culture Collection,Manassas,VA)及以293-H細胞(目錄編號11631-017)或293-F細胞(目錄編號11625-019)自Invitrogen(Carlsbad,Calif.)獲得。在一些實施例中,哺乳動物細胞為PER.C6®細胞,其為一種源於視網膜之人類細胞株。PER.C6®細胞可自Crucell(Leiden,The Netherlands)獲得。在其他實施例中,哺乳動物細胞為中國倉鼠卵巢(CHO)細胞。CHO細胞可自美國菌種中心(Manassas,VA.)獲得(例如CHO-K1;CCL-61)。在其他實施例中,哺乳動 物細胞為幼小倉鼠腎(BHK)細胞。BHK細胞可自美國菌種中心(Manassas,Va.)獲得(例如CRL-1632)。在一些實施例中,哺乳動物細胞為HKB11細胞,其為HEK293細胞與人類B細胞株之雜交細胞株。Mei等人,Mol.Biotechnol.34(2):165-78(2006)。
在一個實施例中,編碼本發明之VWF片段或嵌合蛋白之質體進一步包括可選擇標記(例如博萊黴素(zeocin)抗性),且轉染入HEK 293細胞中以產生VWF片段或嵌合蛋白。
在另一實施例中,包含因子VIII-Fc融合物編碼序列及第一可選擇標記(例如博萊黴素抗性基因)之第一質體、及包含VWF片段-Fc編碼序列及第二可選擇標記(例如新黴素抗性基因)之第二質體共轉染入HEK 293細胞中以產生因子VIII-Fc及VWF-Fc雜交物。第一及第二質體可以相等量(亦即1:1比率)引入,或其可以不相等量引入。
在一些實施例中,包括因子VIII-Fc融合物編碼序列及第一可選擇標記(例如博萊黴素抗性基因)之第一質體、及包括VWF片段-Fc編碼序列及第二可選擇標記(例如新黴素抗性基因)之第二質體、及包括蛋白質轉化酶編碼序列(例如PC5或弗林蛋白酶)及第三可選擇標記(例如潮黴素抗性基因)之第三質體共轉染入HEK 293細胞中以產生因子VIII-VWF片段雜交物。第一及第二質體可以相等量(亦即1:1莫耳比)引入,或其可以不相等量引入。在某些實施例中,包括因子VIII-Fc融合物編碼序列、VWF片 段-Fc編碼序列及第一可選擇標記(例如博萊黴素抗性基因)之第一質體、及包括蛋白質轉化酶編碼序列(例如PC5或弗林蛋白酶)及第二可選擇標記(例如潮黴素抗性基因)之第二質體共轉染入HEK 293細胞中以產生因子VIII-VWF片段雜交物。在一個實施例中,可連接編碼FVIII-Fc序列及VWF片段-Fc序列之核苷酸序列以編碼一個單一多肽。在另一實施例中,編碼FVIII-Fc序列及VWF片段-Fc序列之核苷酸序列可編碼成兩個多肽鏈。因子VIII-Fc融合物編碼序列及VWF片段-Fc編碼序列之啟動子可不同或其可相同。
在一些實施例中,包含弗林蛋白酶之質體與含有因子VIII-Fc編碼序列及/或VWF片段-Fc編碼序列之質體共轉染。在一些實施例中,弗林蛋白酶蛋白質在包含因子VIII-Fc融合物編碼序列之同一質體上。在一些實施例中,弗林蛋白酶蛋白質在包含VWF片段-Fc編碼序列之同一質體上。在一些實施例中,弗林蛋白酶蛋白質在各別質體上。
在其他實施例中,所轉染細胞經穩定轉染。使用熟習此項技術者已知之習知技術,此等細胞可經選擇且維持為穩定細胞株。
含有蛋白質之DNA構築體之宿主細胞生長在適當生長培養基中。如本文所用,術語「適當生長培養基」意謂含有為細胞生長所需之養分之培養基。為細胞生長所需之養分可包括碳源、氮源、必需胺基酸、維生素、礦物質及 生長因子。視情況,培養基可含有一或多種選擇因子。視情況,培養基可含有小牛血清或胎牛血清(FCS)。在一個實施例中,培養基實質上不含有IgG。生長培養基將通常藉由例如藥物選擇或缺乏必需養分來選擇含有DNA構築體之細胞,該必需養分由DNA構築體上或與DNA構築體共轉染之可選擇標記補充。所培養哺乳動物細胞通常生長在市售含血清或不含血清培養基(例如MEM、DMEM、DMEM/F12)中。在一個實施例中,培養基為CD293(Invitrogen,Carlsbad,CA.)。在另一實施例中,培養基為CD17(Invitrogen,Carlsbad,CA.)。對適於所用特定細胞株之培養基之選擇屬於一般技藝人士之水準。
為共表現VWF片段及第二異源部分或FVIII蛋白質,在允許表現VWF片段與第二異源部分或FVIII蛋白質兩者之條件下培養宿主細胞。如本文所用,培養係指在活體外維持活細胞至少一定時間。維持可(但無需)包括活細胞群體增加。舉例而言,培養中維持之細胞可在群體方面為靜態的,但仍然具有活力且能夠產生所要產物,例如重組蛋白質或重組融合蛋白。適用於培養真核細胞之條件在此項技術中為熟知的且包括適當選擇培養基、培養基補充劑、溫度、pH值、氧飽和度及其類似條件。出於商業目的,培養可包括使用各種類型之按比例擴大系統之任一者,該等系統包括振盪器燒瓶、滾瓶、中空纖維生物反應器、攪拌槽生物反應器、氣升生物反應器、搖袋式生物反應器(Wave bioreactor)及其他系統。
亦選擇細胞培養條件以允許VWF片段與第二異源部分或FVIII蛋白質締合。允許VWF片段及/或FVIII蛋白質表現之條件可包括存在維生素K來源。舉例而言,在一個實施例中,穩定轉染之HEK 293細胞在補充有4mM麩醯胺酸之CD293培養基(Invitrogen,Carlsbad,CA)或OptiCHO培養基(Invitrogen,Carlsbad,CA)中培養。
在一個態樣中,本發明係有關一種表現、製備或產生本發明之VWF片段之方法,其包含a)用編碼該VWF片段之聚核苷酸轉染宿主細胞及b)在適於表現該VWF片段之條件下在培養基中培養該宿主細胞,其中該VWF片段得以表現。在一個實施例中,本發明係關於一種產生成熟VWF蛋白質或其片段之方法,其包含a)用融合於VWF之肽原之編碼該VWF蛋白質或其片段的第一聚核苷酸、及編碼例如PC5、PC7或弗林蛋白酶之蛋白質轉化酶之第二聚核苷酸轉染宿主細胞,及b)在適於表現該成熟VWF蛋白質或其片段之條件下在培養基中培養該宿主細胞。編碼VWF蛋白質或其片段之聚核苷酸亦可融合於VWF之前肽。前肽序列可在分泌之前在插入內質網期間裂解。
在另一態樣中,本發明係有關一種表現、製備或產生包含與異源部分或FVIII蛋白質連接或締合之VWF片段之嵌合蛋白的方法,其包含a)用編碼該嵌合蛋白之聚核苷酸或一組聚核苷酸轉染一或多種宿主細胞,及b)在適於表現該嵌合蛋白之條件下在培養基中培養該宿主細胞。在一個實施例中,本發明係關於一種表現、製備或產生嵌合蛋 白之方法,其包含a)用編碼連接於異源部分之VWF片段之第一聚核苷酸及編碼連接於異源部分之FVIII蛋白質之第二聚核苷酸轉染宿主細胞,及b)在適於表現該嵌合蛋白之條件下在培養基中培養該宿主細胞。第一聚核苷酸及第二聚核苷酸可在一個載體或兩個載體中。在另一實施例中,本發明係關於一種表現、製備或產生嵌合蛋白之方法,其包含a)用編碼連接於異源部分之VWF片段之第一聚核苷酸、編碼連接於異源部分之FVIII蛋白質之第二聚核苷酸、及編碼蛋白質轉化酶之第三聚核苷酸轉染宿主細胞,及b)在適於表現該嵌合蛋白之條件下在培養基中培養該宿主細胞。在其他實施例中,本發明係關於一種表現、製備或產生嵌合蛋白之方法,其包含a)用編碼連接於異源部分之包含D'域及D3域之VWF片段的第一聚核苷酸、編碼連接於異源部分之FVIII蛋白質之第二聚核苷酸、及編碼VWF之D1域及D2域之第三聚核苷酸轉染宿主細胞,及b)在適於表現該嵌合蛋白之條件下在培養基中培養該宿主細胞。在一個實施例中,第一聚核苷酸、第二聚核苷酸及第三聚核苷酸可在一個載體或各別載體中。在另一實施例中,第一聚核苷酸及第二聚核苷酸可在一個載體中,且第三聚核苷酸可在另一載體中。在其他實施例中,第一聚核苷酸及第三聚核苷酸可在一個載體中,且第二聚核苷酸可在另一載體中。在一些實施例中,第二聚核苷酸及第三聚核苷酸可在一個載體中,且第一聚核苷酸可在另一載體中。
在其他實施例中,含有VWF片段之蛋白質產物或包含VWF片段之嵌合蛋白分泌入培養基中。培養基與細胞分離、濃縮、過濾且接著穿過兩個或三個親和管柱,例如蛋白質A管柱及一或兩個陰離子交換管柱。
在某些態樣中,本發明係關於藉由本文所述之方法產生之VWF片段或嵌合多肽。
活體外生產允許按比例擴大以得到大量本發明所要之改變之多肽。用於在組織培養條件下進行哺乳動物細胞培養之技術在此項技術中為已知的且包括例如在氣升反應器中或在連續攪拌器反應器中進行均質懸浮培養,或例如在中空纖維、微囊中、在瓊脂糖微珠粒或陶瓷管殼上進行固定或包埋細胞培養。必要及/或需要時,多肽之溶液可藉由慣用層析方法純化,該等方法例如凝膠過濾、離子交換層析、疏水性相互作用層析(HIC)、經DEAE-纖維素層析或親和層析。
醫藥組合物
含有本發明之VWF片段或嵌合蛋白之組合物可含有適合醫藥學上可接受之載劑。舉例而言,該等組合物可含有有助於將活性化合物加工成設計用於傳遞至作用部位之製劑之賦形劑及/或助劑。
醫藥組合物可經調配以用於藉由團式注射進行非經腸投藥(亦即靜脈內、皮下或肌肉內)。注射用調配物可以例如於安瓿或多劑量容器中之添加有防腐劑的單位劑型提供 。組合物可採用諸如於油性或水性媒劑中之懸浮液、溶液或乳液之形式,且可含有調配劑,諸如懸浮劑、穩定劑及/或分散劑。或者,活性成分可呈用於以適合媒劑(例如無熱原水)復原之粉末形式。
適用於非經腸投藥之調配物亦包括呈水溶性形式(例如水溶性鹽)之活性化合物之水溶液。此外,可投與呈適當油性注射懸浮液形式之活性化合物懸浮液。適合親脂性溶劑或媒劑包括脂肪油(例如芝麻油)或合成脂肪酸酯(例如油酸乙酯或三酸甘油酯)。水性注射懸浮液可含有增加懸浮液黏度之物質,包括例如羧甲基纖維素鈉、山梨糖醇及葡聚糖。視情況,懸浮液亦可含有穩定劑。脂質體亦可用於囊封本發明之分子以傳遞入細胞或間質間隙中。示範性醫藥學上可接受之載劑為生理學可相容溶劑、分散介質、包衣、抗細菌劑及抗真菌劑、等張劑及吸收延遲劑、水、生理食鹽水、磷酸鹽緩衝生理食鹽水、右旋糖、甘油、乙醇及其類似物。在一些實施例中,組合物包含等張劑,例如糖、多元醇(諸如甘露糖醇、山梨糖醇)或氯化鈉。在其他實施例中,組合物包含增強活性成分之保存期限或有效性之醫藥學上可接受之物質,諸如濕潤劑或少量輔助物質,諸如濕潤劑或乳化劑、防腐劑或緩衝劑。
本發明之組合物可呈多種形式,包括例如液體(例如可注射及可輸注溶液)、分散液、懸浮液、半固體及固體劑型。較佳形式取決於投藥模式及治療應用。
組合物可調配成溶液、微乳液、分散液、脂質體或適 於高藥物濃度之其他有序結構。可藉由將活性成分以所需量在必要時與以上列舉之一種成分或成分之組合一起併入適當溶劑中,隨後進行過濾滅菌來製備無菌可注射溶液。一般而言,藉由將活性成分併入含有基本分散介質及來自以上列舉之成分之所需其他成分的無菌媒劑中來製備分散液。在用於製備無菌可注射溶液之無菌粉末之情況下,較佳製備方法為真空乾燥及冷凍乾燥,其產生活性成分外加來自先前無菌過濾溶液之任何其他所要成分的粉末。溶液之適當流動性可例如藉由使用包衣(諸如卵磷脂(lecithin))、在分散液之情況下藉由維持所需粒度及藉由使用界面活性劑加以維持。可注射組合物之延長吸收可藉由在組合物中包括延遲吸收之試劑(例如單硬脂酸鹽及明膠)來達成。
活性成分可與控制釋放調配物或裝置一起調配。此等調配物及裝置之實例包括植入物、經皮貼片及微囊封傳遞系統。可使用生物可降解之生物相容性聚合物,例如乙烯乙酸乙烯酯、聚酸酐、聚乙醇酸、膠原蛋白(collagen)、聚原酸酯及聚乳酸。製備此等調配物及裝置之方法在此項技術中為已知的。參見例如Sustained and Controlled Release Drug Delivery Systems,J.R.Robinson編,Marcel Dekker公司,New York,1978。
可注射儲槽調配物可藉由在諸如聚丙交酯-聚乙交酯之生物可降解聚合物中形成微囊封藥物基質來製備。視藥物與聚合物之比率及所用聚合物之性質而定,可控制藥物釋放速率。其他示範性生物可降解聚合物為聚原酸酯及聚 酸酐。儲槽可注射調配物亦可藉由將藥物包埋在脂質體或微乳液中來製備。
補充性活性化合物可併入組合物中。在一個實施例中,本發明之VWF片段或嵌合蛋白與另一凝結因子或其變異體、片段、類似物或衍生物一起調配。舉例而言,凝結因子包括(但不限於)因子V、因子VII、因子VIII、因子IX、因子X、因子XI、因子XII、因子XIII、凝血酶原、纖維蛋白原、范威爾邦德因子或重組可溶性組織因子(rsTF)或任何前述因子之活化形式。止血劑之凝結因子亦可包括抗纖維蛋白溶解藥物,例如ε-胺基-己酸、胺甲環酸。
可調整劑量方案以提供最佳所要反應。舉例而言,可投與單一大丸劑,可隨時間投與若干分次劑量,或可如藉由治療情形之緊急性所指示,按比例降低或增加劑量。有利的是以劑量單位形式調配非經腸組合物以易於投藥及達成劑量均一性。參見例如Remington's Pharmaceutical Sciences(Mack Pub.公司,Easton,Pa.1980)。
除活性化合物之外,液體劑型亦可含有惰性成分,諸如水、乙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油、甘油、四氫呋喃甲醇、聚乙二醇及脫水山梨醇之脂肪酸酯。
適合醫藥載劑之非限制性實例亦描述於由E.W.Martin所著之Remington's Pharmaceutical Sciences中。賦形劑之一些實例包括澱粉、葡萄糖、乳糖、蔗糖、明膠 、麥芽、米、麵粉、白堊、矽膠、硬脂酸鈉、甘油單硬脂酸酯、滑石、氯化鈉、脫脂乳粉、甘油、丙二醇、水、乙醇及其類似物。組合物亦可含有pH緩衝試劑及濕潤劑或乳化劑。
對於經口投藥,醫藥組合物可採用藉由習知手段製備之錠劑或膠囊形式。組合物亦可製備成液體,例如糖漿或懸浮液。液體可包括懸浮劑(例如山梨糖醇糖漿、纖維素衍生物或氫化食用脂肪)、乳化劑(卵磷脂或阿拉伯膠(acacia))、非水性媒劑(例如杏仁油、油性酯、乙醇或分餾植物油)及防腐劑(例如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯或山梨酸)。製劑亦可包括調味劑、著色劑及甜味劑。或者,組合物可以用於以水或另一適合媒劑復原之乾燥產品形式提供。
對於經頰投藥,組合物可採用根據習知方案之錠劑或口含錠形式。
對於藉由吸入投藥,供根據本發明使用之化合物宜以有或無賦形劑之噴霧氣霧劑形式或以來自視情況具有推進劑之加壓包裝或噴霧器之氣霧劑噴霧形式傳遞,該推進劑例如為二氯二氟甲烷、三氯氟甲烷、二氯四氟甲烷、二氧化碳或其他適合氣體。在加壓氣霧劑之情況下,劑量單位可藉由提供用以傳遞經計量之量的閥來確定。可調配用於吸入器或吹入器中之例如明膠之膠囊及藥筒,其含有化合物與諸如乳糖或澱粉之適合粉末基質之粉末混合物。
醫藥組合物亦可以例如含有習知栓劑基質(諸如可可 脂或其他甘油酯)之栓劑或保留灌腸劑形式調配用於經直腸投藥。
基因療法
本發明之VWF片段或其嵌合蛋白可在例如人類患者之哺乳動物中活體內產生,使用治療流血疾病或病症之基因療法方法將為治療學上有益的,該流血疾病或病症選自由以下組成之群:流血凝血病症、關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血及髂腰肌鞘中流血。在一個實施例中,流血疾病或病症為血友病。在另一實施例中,流血疾病或病症為A型血友病。此方法涉及投與可操作地連接於適合表現控制序列之適合VWF片段或嵌合蛋白編碼核酸。在某些實施例中,此等序列併入病毒載體中。適用於此基因療法之病毒載體包括腺病毒載體、慢病毒載體、桿狀病毒載體、艾伯斯坦巴爾病毒載體、乳多泡病毒載體(papovaviral vector)、牛痘病毒載體、單純性皰疹病毒載體、及腺相關病毒(AAV)載體。病毒載體可為複製有缺陷之病毒載體。在其他實施例中,腺病毒載體在其E1基因或E3基因中具有缺失。當使用腺病毒載體時,哺乳動物可不暴露於編碼可選擇標記基因之核酸。在其他實施例中,序列併入熟習此項技術者已知之非病毒載體中。
使用VWF片段或嵌合蛋白之方法
本發明之一個態樣係有關藉由阻斷或遮蔽FVIII上之VWF結合位點以免與內源性VWF結合來防止或抑制FVIII與內源性VWF相互作用。在一個實施例中,本發明係有關一種構築半衰期長於野生型FVIII或FVIII單體-二聚體雜交物之FVIII蛋白質之方法,該方法包含使輔助部分與該FVIII蛋白質共價締合,藉此製備包含該FVIII蛋白質及該輔助部分之嵌合蛋白,其中該輔助部分遮蔽或防止該FVIII蛋白質與內源性VWF相互作用。適用於該方法中之嵌合蛋白包括本文所述之任何一或多種嵌合蛋白。
本發明之另一態樣包括一種向有需要之個體投與半衰期長於野生型FVIII或FVIII單體-二聚體雜交物之FVIII蛋白質的方法,該FVIII蛋白質由兩個多肽鏈,即由編碼FVIII及Fc區之胺基酸序列組成之第一鏈及由Fc區組成之第二鏈組成,其中該方法包含向該個體投與本文所述之VWF片段或本文所述之嵌合蛋白。單體-二聚體雜交物中之FVIII胺基酸序列可為SQ FVIII或野生型FVIII。
在一個實施例中,本發明係有關一種使用輔助部分(例如本文所述之VWF片段)或包含VWF片段之嵌合蛋白以防止或抑制內源性VWF與FVIII蛋白質相互作用之方法。在另一實施例中,能夠與VWF片段相互作用之FVIII蛋白質為內源性FVIII。在其他實施例中,能夠與VWF片段相互作用之FVIII蛋白質為在VWF片段或包含VWF片段之嵌合蛋白之前或之後或與之同時單獨向個體投與之 FVIII組合物。在其他實施例中,能夠結合VWF片段之FVIII蛋白質為連同VWF片段或嵌合蛋白一起向個體投與之FVIII組合物。在其他實施例中,能夠結合VWF片段之FVIII蛋白質為與VWF片段一起存在或與嵌合蛋白中之VWF片段締合之FVIII。VWF片段或包含VWF片段之嵌合蛋白與FVIII蛋白質結合或締合,且因此延長結合於VWF片段或嵌合蛋白之FVIII蛋白質之半衰期。結合於VWF片段或嵌合蛋白之FVIII蛋白質經遮蔽或保護以免遭VWF之清除路徑,且因此相較於未結合於VWF片段或嵌合蛋白之FVIII蛋白質具有降低之清除。因此,經遮蔽FVIII蛋白質之半衰期長於未與VWF片段或嵌合蛋白結合或締合之FVIII蛋白質。在某些實施例中,與本發明之VWF片段或嵌合蛋白締合或由其保護之FVIII蛋白質不由VWF清除受體清除。在其他實施例中,與VWF片段或嵌合蛋白締合或由其保護之FVIII蛋白質自系統之清除慢於未與VWF片段締合或由其保護之FVIII蛋白質。
在一個態樣中,本發明之VWF片段或包含其之嵌合蛋白自循環之清除降低,因為該VWF片段或該嵌合蛋白不含有VWF清除受體結合位點。VWF片段防止或抑制與VWF片段結合或締合之FVIII經由VWF清除路徑自系統清除。適用於本發明之VWF片段亦可提供至少一或多種由內源性VWF提供之VWF樣FVIII保護性質。在某些實施例中,VWF片段亦可掩蔽一或多個FVIII清除受體結合位點,藉此防止FVIII藉由其自身清除路徑清除。
在另一態樣中,本發明之VWF片段或嵌合蛋白可用於治療或預防與2N型范威爾邦德病(VWD)相關之疾病或病症。2N型VWD為一種定性VWF缺陷,其由結合於FVIII之VWF有缺陷引起且因此導致循環FVIII之含量較低。因此,藉由結合FVIII蛋白質或被結合於FVIII蛋白質,本發明之VWF片段或嵌合蛋白不僅使FVIII蛋白質穩定化,而且亦防止FVIII蛋白質自循環清除。
在一些實施例中,由VWF片段或嵌合蛋白防止或抑制FVIII蛋白質結合內源性VWF可發生在活體外或活體內。
亦提供一種增加FVIII蛋白質之半衰期之方法,其包含向有需要之個體投與VWF片段或包含VWF片段及FVIII蛋白質之嵌合蛋白。與全長VWF結合或締合之非活化FVIII在血漿中之半衰期為約12至14小時。在循環中幾乎不存在VWF之3型VWD中,FVIII之半衰期僅為約六小時,從而由於FVIII濃度降低而在此等患者中產生輕度至中度A型血友病之症狀。與本發明之VWF片段連接或締合之FVIII蛋白質的半衰期可比與全長VWF結合或締合之非活化FVIII之半衰期增加至少高約1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.6倍、2.7.倍、2.8倍、2.9倍、3.0倍、3.1倍、3.2倍、3.3倍、3.4倍、3.5倍、3.6倍、3.7倍、3.8倍、3.9倍或4.0倍。在一個實施例中,與嵌合蛋白中之VWF片段連接或締合之FVIII蛋白質的半衰期比與全長 VWF結合或締合之非活化FVIII之半衰期增加至少高約2倍、2.5倍、3.0倍、3.5倍、4.0倍、4.5倍、5.0倍、5.5倍、6.0倍、7倍、8倍、9倍或10倍。在另一實施例中,與嵌合蛋白中之VWF片段連接或締合之FVIII蛋白質的半衰期比與全長VWF結合或締合之非活化FVIII之半衰期增加高約2至約5倍、約3至約10倍、約5至約15倍、約10至約20倍、約15至約25倍、約20至約30倍、約25至約35倍、約30至約40倍、約35至約45倍。在一特定實施例中,與嵌合蛋白中之VWF片段連接或締合之FVIII蛋白質的半衰期比野生型FVIII在FVIII及VWF雙重基因剔除小鼠中之半衰期增加至少高約30、31、32、33、34、35、36、37、38、39或40倍。在一些實施例中,包含融合於第一異源部分(例如第一Fc區)之VWF片段、及連接於第二異源部分(例如第二Fc區)之FVIII蛋白質之嵌合蛋白的半衰期長於包含FVIII蛋白質及兩個Fc區之嵌合蛋白之半衰期,其中該FVIII蛋白質連接於兩個Fc區之一(亦即FVIII單體-二聚體雜交物)。在其他實施例中,包含融合於第一異源部分(例如第一Fc區)之VWF片段、及連接於第二異源部分(例如第二Fc區)之FVIII蛋白質之嵌合蛋白的半衰期為包含FVIII蛋白質及兩個Fc區之嵌合蛋白之半衰期的至少約1.5倍、2倍、2.5倍、3.5倍、3.6倍、3.7倍、3.8倍、3.9倍、4.0倍、4.5倍或5.0倍,其中該FVIII蛋白質連接於兩個Fc區之一(亦即FVIII單體-二聚體雜交物)。
在一些實施例中,作為本發明之結果,相較於無VWF片段之FVIII蛋白質或野生型FVIII,FVIII蛋白質之半衰期得以延長。FVIII蛋白質之半衰期比無VWF片段之FVIII蛋白質之半衰期長至少約1.5倍、至少約2倍、至少約2.5倍、至少約3倍、至少約4倍、至少約5倍、至少約6倍、至少約7倍、至少約8倍、至少約9倍、至少約10倍、至少約11倍或至少約12倍。在一個實施例中,FVIII之半衰期比野生型FVIII之半衰期長約1.5倍至約20倍、約1.5倍至約15倍、或約1.5倍至約10倍。在另一實施例中,相較於野生型FVIII或無VWF片段之FVIII蛋白質,FVIII之半衰期延長約2倍至約10倍、約2倍至約9倍、約2倍至約8倍、約2倍至約7倍、約2倍至約6倍、約2倍至約5倍、約2倍至約4倍、約2倍至約3倍、約2.5倍至約10倍、約2.5倍至約9倍、約2.5倍至約8倍、約2.5倍至約7倍、約2.5倍至約6倍、約2.5倍至約5倍、約2.5倍至約4倍、約2.5倍至約3倍、約3倍至約10倍、約3倍至約9倍、約3倍至約8倍、約3倍至約7倍、約3倍至約6倍、約3倍至約5倍、約3倍至約4倍、約4倍至約6倍、約5倍至約7倍、或約6倍至約8倍。在其他實施例中,FVIII之半衰期為至少約17小時、至少約18小時、至少約19小時、至少約20小時、至少約21小時、至少約22小時、至少約23小時、至少約24小時、至少約25小時、至少約26小時、至少約27小時、至少約28小時、至少約29小時、至 少約30小時、至少約31小時、至少約32小時、至少約33小時、至少約34小時、至少約35小時、至少約36小時、至少約48小時、至少約60小時、至少約72小時、至少約84小時、至少約96小時或至少約108小時。在其他實施例中,FVIII之半衰期為約15小時至約兩週、約16小時至約一週、約17小時至約一週、約18小時至約一週、約19小時至約一週、約20小時至約一週、約21小時至約一週、約22小時至約一週、約23小時至約一週、約24小時至約一週、約36小時至約一週、約48小時至約一週、約60小時至約一週、約24小時至約六天、約24小時至約五天、約24小時至約四天、約24小時至約三天、或約24小時至約兩天。
在一些實施例中,每位個體中FVIII蛋白質之平均半衰期為約15小時、約16小時、約17小時、約18小時、約19小時、約20小時、約21小時、約22小時、約23小時、約24小時(1天)、約25小時、約26小時、約27小時、約28小時、約29小時、約30小時、約31小時、約32小時、約33小時、約34小時、約35小時、約36小時、約40小時、約44小時、約48小時(2天)、約54小時、約60小時、約72小時(3天)、約84小時、約96小時(4天)、約108小時、約120小時(5天)、約六天、約七天(一週)、約八天、約九天、約10天、約11天、約12天、約13天或約14天。
在一特定實施例中,本發明之嵌合蛋白之半衰期比野 生型FVIII或BDD FVIII之半衰期長約兩倍。在另一實施例中,嵌合蛋白之半衰期比野生型FVIII或BDD FVIII之半衰期長約三倍。
此外,本發明提供一種治療或預防流血疾病或病症之方法,其包含投與有效量之VWF片段或嵌合蛋白(例如包含連接於第一異源部分(例如第一Fc區)之VWF片段、及連接於第二異源部分(例如第二Fc區)之FVIII蛋白質的嵌合蛋白,其中該VWF片段與該FVIII蛋白質結合或締合)。在一個實施例中,該流血疾病或病症係選自由以下組成之群:流血凝血病症、關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血及髂腰肌鞘中流血。在一特定實施例中,流血疾病或病症為A型血友病。
藉由本發明製備之VWF片段及包含輔助部分(例如本文所述之VWF片段)及FVIII蛋白質之嵌合蛋白具有如將由熟習此項技術者認識到之許多用途,包括(但不限於)治療患有止血病症之個體之方法及治療需要一般性止血劑之個體之方法。在一個實施例中,本發明係關於一種治療患有止血病症之個體之方法,其包含投與治療有效量之VWF片段或嵌合蛋白。
嵌合蛋白中之FVIII蛋白質部分藉由在帶負電荷磷脂表面上充當因子IX之輔因子,藉此形成X酶複合物來治 療或預防止血病症。活化凝血因子結合磷脂表面使此過程定位於血管損壞部位。在磷脂表面上,因子VIIIa使由因子IXa達成之因子X活化之最大速度增加約200,000倍,從而導致凝血酶產生之大規模瞬間爆發。
包含輔助部分(例如VWF片段)及FVIII蛋白質之嵌合蛋白可用於治療任何止血病症。可藉由投與本發明之嵌合蛋白治療之止血病症包括(但不限於)A型血友病以及與因子VIII相關之缺乏症或結構異常。在一個實施例中,止血病症為A型血友病。
包含輔助部分(例如VWF片段)及FVIII蛋白質之嵌合蛋白可防治性用於治療患有止血病症之個體。本發明之嵌合蛋白可用於治療患有止血病症之個體之急性流血事件。在另一實施例中,止血病症可為缺陷性凝結因子,例如范威爾邦德氏因子之結果。在一個實施例中,止血病症為遺傳病症。在另一實施例中,止血病症為獲得性病症。獲得性病症可由潛伏繼發性疾病或病狀所致。無關病狀可為例如(但不作為限制)癌症、自體免疫疾病或妊娠。獲得性病症可由老齡或治療潛伏繼發性病症之藥物治療(例如癌症化學療法)所致。
本發明亦係關於治療不患有先天性止血病症,但患有例如由於產生抗FVIII抗體或手術而導致獲得止血病症之繼發性疾病或病狀之個體的方法。因此,本發明係關於一種治療需要一般性止血劑之個體之方法,其包含投與治療有效量之藉由本發明方法製備之包含VWF片段及FVIII 蛋白質的嵌合蛋白。
本發明亦係關於降低FVIII之免疫原性或誘導針對FVIII之較小免疫原性的方法,其包含投與有效量之本文所述之VWF片段、嵌合蛋白或編碼其之聚核苷酸。
在一個實施例中,需要一般性止血劑之個體正經歷或即將經歷手術。包含VWF片段及FVIII蛋白質之嵌合蛋白可在手術之前、期間或之後作為防治性方案加以投與。包含VWF片段及FVIII蛋白質之嵌合蛋白可在手術之前、期間或之後投與以控制急性流血事件。
包含VWF片段及FVIII蛋白質之嵌合蛋白可用於治療具有急性流血事件之未患有止血病症之個體。急性流血事件可由嚴重創傷,例如手術、車禍、傷口、槍射擊裂傷、或導致流血不受控制之任何其他創傷事件所致。流血事件之非限制性實例包括流血凝血病症、關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血、髂腰肌鞘中流血及其任何組合。
在防治性應用中,一或多種含有本發明之嵌合蛋白或VWF片段或其混合物之組合物向尚未處於疾病病況中之患者投與以增強該患者之抗性或減輕與疾病或病症相關之症狀。該種量定義為「防治有效劑量」。在治療性應用中,有時需要在相對較短間隔下之相對較高劑量(例如每劑約1至400mg/kg之多肽,其中5至25mg之劑量更通常 用於放射免疫結合物且更高劑量用於細胞毒素藥物修飾之多肽)直至疾病進展降低或終止,及直至患者顯示部分或完全疾病症狀改善。此後,可向患者投與防治性方案。
在一些實施例中,本發明之嵌合蛋白、VWF片段或組合物用於按需治療,此包括治療流血事件、關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷(頭部創傷)、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血或髂腰肌鞘中流血。個體可需要手術防治、手術期間管理或手術治療。此等手術包括例如小手術、大手術、拔牙、扁桃體切除術、腹股溝疝切開術、滑膜切除術、全部膝蓋置換、開顱術、骨縫合術、創傷手術、顱內手術、腹內手術、胸內手術或關節置換手術。
在一個實施例中,包含VWF片段及FVIII蛋白質之嵌合蛋白經靜脈內、皮下、肌肉內投與或經由任何黏膜表面投與,例如經口、舌下、經頰、經鼻、經直腸、經陰道或經由肺途徑投與。包含VWF片段及FVIII蛋白質之嵌合蛋白可植入在允許嵌合蛋白緩慢釋放至流血部位之生物聚合物固體支撐物內或連接於該生物聚合物固體支撐物,或植入繃帶/敷料中。包含VWF片段及FVIII蛋白質之嵌合蛋白之劑量將視個體及所用特定投藥途徑而變化。劑量可在每公斤體重0.1至100,000μg之範圍內。在一個實施例中,劑量範圍為0.1-1,000μg/kg。在另一實施例中,劑量範圍為0.1-500μg/kg。可連續或在特定時間間隔下投與 蛋白質。可採用活體外分析來確定投藥之最佳劑量範圍及/或時程。量測凝結因子活性之活體外分析在此項技術中為已知的,例如STA-CLOT VIIa-rTF凝結分析或ROTEM凝結分析。另外,可自由動物模型(例如血友病狗)獲得之劑量-反應曲線外推有效劑量(Mount等人2002,Blood 99(8):2670)。
現已詳細描述本發明,藉由參照以下實例將更明確瞭解本發明,該等實例係僅出於說明目的包括於此且不意欲限制本發明。本文中提及之所有專利及公開案皆以引用的方式明確併入本文中。
第1A-F圖. VWF蛋白質之示意圖。第1A圖顯示兩個含有SEQ ID NO:73之胺基酸1至276(SEQ ID NO:2之胺基酸764至1039)之VWF片段。合成之VWF-001無VWF之前肽/肽原序列,而合成之VWF-009具有前肽/肽原序列(D1及D2域)。VWF-009之前肽在合成期間經裂解,且VWF-009含有具有D’及D3域序列之肽原。第1B圖顯示三個含有SEQ ID NO:73之胺基酸1至477(SEQ ID NO:2之胺基酸764至1240)之VWF片段。合成之VWF-002無前肽/肽原序列。除D’D3域之外,VWF-010亦含有D1D2域。除在SEQ ID NO:72之殘基336及379處取代半胱胺酸之丙胺酸殘基之外,VWF-013亦含有D1D2D’D3域。第1C圖顯示兩個含有D’D3域及一部分A1域之 VWF片段。VWF-003具有SEQ ID NO:2之胺基酸764至1274。除D’D3域之外,VWF-011亦含有D1D2域。第1D圖顯示兩個構築體VWF-004及VWF-012。VWF-004含有D’D3域、及A1域之完全序列。VWF-012含有D1D2D’D3域、及A1域之完全序列。第1E圖顯示三個構築體。VWF-006含有VWF之D1D2D’D3域及CK域(半胱胺酸結域)。VWF-008為全長VWF。VWF-031(VWF-Fc)顯示含有藉由可裂解連接子連接於單一Fc區之D1D2D’D3域之構築體。VWF-053為D1D2域。第1F圖顯示包含肽原(D1及D2域)及成熟次單元(D’、D3、A1、A2、A3、D4、B1-3、C1-2域)之全長VWF蛋白質。VWF蛋白質為約250kDa蛋白質且藉由二硫化物鍵結形成多聚體(>20MDa)。VWF蛋白質以非共價複合物形式與FVIII(95-98%)締合且接著藉由保護FVIII免遭蛋白酶裂解/活化、穩定化重鏈及輕鏈、及防止FVIII由清除受體清除來延長FVIII之半衰期。VWF蛋白質亦可藉由經由VWF受體清除FVIII-VWF複合物及防止胞飲作用及使rFVIIIFc再循環來限制FVIII之半衰期。
第2圖. VWF:FVIII雜二聚體構築體之實例之示意圖。左側構築體顯示VWF片段,其具有全長VWF之D’D3域(SEQ ID NO:73之胺基酸1-477)且在SEQ ID NO:72之殘基336及379處含有丙胺酸取代。嵌合蛋白構築體(FVIII 064/065)包含藉由連接子連接於第一Fc區之VWF片段之C末端且FVIII連接於第二Fc區,其中該第二Fc 區藉由連接子進一步連接於VWF片段之N末端(例如式C-H1-L1-V-L2-H2,其中V為VWF片段,C為FVIII,H1及H2為Fc區,且L1及L2為可裂解連接子)。第2b圖中之構築體為經細胞內加工之VWF:FVIII雜二聚體構築體,其中第二Fc與VWF片段之N末端之間的連接子已經裂解。FVIII-064含有VWF之D’D3域(SEQ ID NO:73之胺基酸1至477,具有C336A及C379取代)。FVIII-065含有VWF之D’D3域(SEQ ID NO:73之胺基酸1至276)。FVIII-136含有藉由可由細胞內蛋白酶處理之連接子連接於D’D3片段-Fc之FVIIIFc。當FVIII-136表現時,該酶裂解第二Fc(融合於FVIII-LC)與VWF D’D3片段(融合於第一Fc)之間的連接子,而融合於(或連接於)FVIII-LC之Fc區與融合於(或連接於)VWF片段之第一Fc形成共價鍵(例如二硫鍵)。FVIII-148為具有D’D3片段之單鏈FVIIIFc(藉由將R1645A/R1648A突變引入FVIII基因中所得之單鏈FVIII)。
第3圖. 在VWF與Fc之間含有可變連接子之實例之VWF:FVIII雜二聚體構築體的實例之示意圖。構築體(FVIII-064、FVIII-159、FVIII-160、FVIII-178及FVIII-179)具有表示為式C-H1-L1-V-L2-H2之共同結構,但含有不同連接子或胺基酸取代之實例。所示構築體含有相同VWF片段,該片段為VWF之D’及D3域(亦即SEQ ID NO:73之胺基酸1至477,具有胺基酸取代C336A及C379A)。構築體FVIII 64在VWF片段與Fc(亦即H2)之 間具有含20個胺基酸之凝血酶可裂解連接子(亦即L2)。構築體FVIII 159在VWF片段與Fc(亦即H2)之間具有含35個胺基酸之凝血酶可裂解連接子(亦即L2)。構築體FVIII 160在VWF片段與Fc(亦即H2)之間具有含48個胺基酸之凝血酶可裂解連接子(亦即L2)。構築體FVIII-180、FVIII-181及FVIII-182為FVIII-160之衍生物,其分別含有FVIII C1域中之K2092A突變、FVIII C1域中之K2093A突變、及FVIII C1域中之K2092A/K2093A突變。構築體FVIII-178在VWF片段與Fc(亦即H2)之間具有含73個胺基酸之凝血酶可裂解連接子(亦即L2)。構築體FVIII-179在VWF片段與Fc(亦即H2)之間具有含98個胺基酸之凝血酶可裂解連接子(亦即L2)。
第4圖:FVIII-VWF構築體之實例之示意圖,其中VWF為VWF之D1D2D’D3片段,連接子為含有例如凝血酶裂解位點之裂解位點之可變長度連接子,SC FVIII為含有R1645A/R1648A取代之單鏈FVIII,H為異源部分,例如免疫球蛋白恆定區或其部分、用於結合聚乙二醇(PEG)之部分及/或PEG、白蛋白或白蛋白片段、白蛋白結合部分、HAP序列、用於聚唾液酸化之部分及/或聚唾液酸、用於羥乙基澱粉(HES)之部分及/或HES、或PAS序列等,HC FVIII為FVIII之重鏈,LC FVIII為FVIII之輕鏈,且Fc為免疫球蛋白恆定區之Fc區。第4A圖具有式VWF-連接子-SC FVIII。第4B圖具有式VWF-連接子-H-連接子-SC FVIII。該等連接子(VWF與H之間的第一連接子及H 與SC FVIII之間的第二連接子)可相同或不同。第4C圖具有式VWF-連接子-SC FVIII-連接子-H。該等連接子(VWF與SC FVIII之間的第一連接子及SC FVIII與H之間的第二連接子)可相同或不同。第4D圖具有式VWF-連接子-HC FVIII-H-連接子-LC FVIII。該等連接子(VWF與HC FVIII之間的第一連接子及H與LC FVIII之間的第二連接子)可相同或不同。第4E圖具有式HC FVIII-H-LC FVIII-連接子-第一Fc-連接子-VWF-連接子-第二Fc。該等連接子(LC FVIII與第一Fc之間的第一連接子、第一Fc與VWF之間的第二連接子、及VWF與第二Fc之間的第三連接子)可相同或不同。連接子可為可裂解連接子。舉例而言,第一Fc與VWF之間的連接子可為可裂解連接子,其在連接子之N末端及/或C末端包含裂解位點。第一Fc與第二Fc可相同或不同。第4F圖具有式HC FVIII-H-LC FVIII-連接子-第一Fc-連接子-VWF-連接子-第二Fc。該等連接子(LC FVIII與第一Fc之間的第一連接子、第一Fc與VWF之間的第二連接子、及VWF與第二Fc之間的第三連接子)可相同或不同。一或多個連接子可為可裂解連接子。舉例而言,第一Fc與VWF之間的連接子可為可裂解連接子,其在連接子之N末端及/或C末端包含裂解位點。第一Fc與第二Fc可相同或不同。第4G圖具有式SC FVIII-連接子-Fc-連接子-VWF-H-連接子-Fc。第4H圖具有式聚乙二醇化或羥乙基澱粉化SC FVIII-連接子-Fc-連接子-VWF-H-連接子-Fc。該等連接子(SC FVIII與第一Fc 之間的第一連接子、第一Fc與VWF之間的第二連接子、及H與第二Fc之間的第三連接子)可相同或不同。一或多個連接子可為可裂解連接子。舉例而言,第一Fc與VWF之間的連接子可為可裂解連接子,其在連接子之N末端及/或C末端包含裂解位點。第一Fc與第二Fc可相同或不同。
第5圖. FVIII-VWF雜二聚體共轉染系統之示意圖。構築體FVIII-155含有連接於Fc區之全長FVIII序列(在1645及1648處具有取代精胺酸殘基之丙胺酸殘基)。VWF-031含有用48凝血酶可裂解連接子連接於另一Fc區之D1D2D’D3片段(在336及379處具有取代半胱胺酸殘基之丙胺酸殘基)。在細胞內加工之後,構築體FVIII-155產生融合於一個Fc片段之全長單鏈FVIII(SCFVIII),構築體VWF-031產生連接於另一Fc片段之含477個胺基酸之D’D3片段。可在連接於SC FVIII或D’D3片段之Fc片段之間形成兩個共價鍵,此舉又允許FVIII與D’D3共價締合,此為所要最終產物之主要特徵。
第6圖為VWF-009(D1D2D’D3 1-276 aa×6 HIS)之非還原性及還原性SDS PAGE,其顯示VWF-009以單體形式存在。未加工意謂VVF-009具有肽原(D1D2域)。
第7圖為VWF-002(D’D3 1-477 aa×6 his)或VWF-010(D1D2D’D3 1-477 aa×6 his)之非還原性及還原性SDS PAGE,其顯示VWF-002以單體形式存在且VWF-010以二聚體形式存在。第1欄為vWF-002 IMAC溶離份1A3;第2欄為vWF-002 IMAC溶離份1B1;第3欄為vWF-010 IMAC 溶離份1B3;第4欄為vWF-010 IMAC溶離份2A1;且第5欄為vWF-010 IMAC溶離份2A2。約60kDa之雙重峰顯示不同糖基化狀態。
第8圖顯示第2(b)圖中所示之FVIII-VWF雜二聚體之凝血酶消化。泳道1顯示標記物。泳道2為無凝血酶之rFVIII-Fc。泳道3為有凝血酶之rFVIII-Fc。泳道5為FVIIIFc-VWF。泳道6顯示FVIIIFc-VWF及凝血酶。A1指示FVIII之A1域,A2指示FVIII之A2域,且△a3 LC指示FVIII之輕鏈。
第9A-B圖顯示藉由FVIII顯色分析量測之FVIII活性。第9A圖顯示rFVIII及rFVIIIFc在HemA小鼠中之藥物動力學概況。第9B圖顯示rFVIII及rFVIIIFc在FVIII/VWF雙重基因剔除(DKO)小鼠中之PK概況。Y軸顯示以mIU/mL計之FVIII活性,且X軸顯示時間。
第10A-B圖顯示在質體注射後48小時如藉由mFVIII血漿含量(mIU/mL)及VWF表現量(nM/mL)所示之由D’D3片段對FVIII提供之保護作用。用於顯示FVIII保護作用之VWF片段為VWF-001(276aa,單體)、VWF-009(276aa,單體)、VWF-002(477aa,單體)、VWF-010(477aa,二聚體)、VWF-003(511aa,單體)、VWF-011(511aa,二聚體)、VWF-004(716aa,單體)、VWF-012(716aa,二聚體)、VWF-006及VWF-008。
第11圖顯示當與D’D3片段共投與時rBDD-FVIII在FVIII-VWF DKO小鼠中之藥物動力學概況。第11A圖顯示在FVIII/VWF DKO小鼠中共投與rBDD-FVIII及VWF- 002或rBDD-FVIII及VWF-010或單獨投與rBDD-FVIII之後,藉由FVIII顯色分析量測之FVIII活性(mIU/mL)。第11B圖顯示在投與之後的VWF-002及VWF-010血漿含量(ng/mL)。X軸表示以小時計之時間。
第12圖顯示rFVIIIFc在表現VWF D’D3之小鼠中之藥物動力學概況。第12A圖顯示流體動力學注射(HDI)D’D3域編碼質體DNA(第-5天)、rFVIIIFc靜脈內給藥(第0天)及PK樣品收集(第0天-第3天)之時間線。第12B圖顯示藉由FVIII顯色分析量測之FVIII/VWF DKO小鼠中之rFVIIIFc輸注後血漿FVIII活性(mIU/mL),其中在FVIII/VWF DKO小鼠中流體動力學注射D1D2D’D3域(477 aa)(圓圈)及具有半胱胺酸取代之D1D2D’D3域(477aa)(矩形)。未流體動力學注射D’D3域之對照小鼠中之FVIII活性顯示為三角形。第12C圖顯示在HDI投與D1D2D’D3二聚體或D1D2D’D3單體DNA構築體之後的D’D3血漿含量(ng/mL)。X軸表示以小時計之時間。
第13圖顯示藉由HDI在FVIII/VWF DKO小鼠中進行之D’D3-Fc連接子選擇。不同長度之連接子(20 aa(FVIII-064)、35 aa(FVIII-159)或48 aa(FVIII-160))插入在D’D3域與Fc區之間。在HDI之後藉由FVIII顯色分析量測FVIII/VWF DKO小鼠中之FVIII活性(mIU/ml)。
第14圖顯示在FVIII/VWF DKO小鼠中流體動力學注射單鏈FVIIIFc/D’D3雜二聚體。在HDI之後24小時及48小時量測經加工(雙鏈)rFVIIIFc-D’D3(pSYN-FVIII-136)及單鏈rFVIIIFc-D’D3(pSYN-FVIII-148)之FVIII活性。
第15圖顯示藉由Octet分析測定之FVIII-155/VWF- 031雜二聚體對固定hVWF之結合親和力。FVIIIFc、FVIII及IgG亦用作對照。x軸顯示以秒計之時間,且y軸顯示以奈米(nm)計之結合。
第16圖顯示FVIII-155/VWF-031在FVIII/VWF缺乏(FVIII/VWF DKO)小鼠中之藥物動力學。x軸指示以小時計之時間,且y軸指示以百分比計之相對於投入量之FVIII回收率。
第17圖:VWF片段構築體之實例之示意圖,其中VWF為VWF之D1D2D'D3片段;連接子為含有例如凝血酶裂解位點之裂解位點之可變長度連接子;H為異源部分,例如免疫球蛋白恆定區或其部分、用於結合聚乙二醇(PEG)之部分及/或PEG、白蛋白或白蛋白片段、白蛋白結合部分、HAP序列、用於聚唾液酸化之部分及/或聚唾液酸、用於羥乙基澱粉(HES)之部分及/或HES、或PAS序列等;且Fc為免疫球蛋白之Fc區。第17A圖具有式D1D2-D’部分D3-H-部分D3-連接子-Fc。第17B圖具有式D1D2-部分D’-H-部分D'D3-連接子-Fc。第17C圖具有式D1D2-聚乙二醇化或羥乙基澱粉化D’D3-連接子-Fc。連接子可視情況經裂解。
第18圖:A)顯示FVIIIFc在HemA(菱形)血漿與DKO(正方形)血漿兩者中均隨時間損失FVIII活性。FVIII活性係藉由顯色分析量測。X軸顯示以小時計之時間,且y軸顯示相對活性。B)顯示FVIII活性之損失係由於重鏈(HC)之解離或降解。左側版面顯示使用綿羊抗FVIII多株 抗體在Bio-rad 4-15%凝膠中進行之免疫沈澱分析。凝膠經還原且藉由Bio-rad系統成像。泳道1顯示Bio-rad未染色標記物;泳道2顯示FVIIIFc及PBS;泳道3顯示FVIIIFc及DKO血漿;且泳道5顯示單獨綿羊抗FVIII多株抗體。右側版面顯示使用FVIII抗重鏈抗體(GMA012)進行之凝膠西方分析。泳道1顯示Bio-rad未染色標記物;泳道2顯示FVIIIFc及PBS;泳道3顯示FVIIIFc及DKO血漿;且泳道4顯示單獨綿羊抗FVIII多株抗體。
第19圖:顯示藉由顯色分析測定之野生型FVIIIFc(圓圈)、scFVIIIFc(單鏈FVIII)(實心三角形)或FVIII:VWF雜二聚體(例如FVIII155/VWF31)(空心三角形)在DKO小鼠血漿(左側版面)及HemA小鼠血漿(右側版面)中隨時間變化的FVIII活性。Y軸顯示相對FVIII活性。野生型FVIIIFc含有FVIII之雙鏈(亦即以非共價方式結合在一起之FVIII重鏈及FVIII輕鏈)且因此具有三個鏈,即FVIII重鏈、融合於Fc之FVIII輕鏈、及單獨Fc。ScFVIIIFc含有FVIII單鏈且因此具有兩個鏈,一個鏈為融合於Fc之單鏈FVIII且另一鏈為單獨Fc。FVIII:VWF雜二聚體(例如FVIII155/VWF031)含有融合於Fc之單鏈FVIII及融合於Fc之VWF片段(D'D3)。
第20圖顯示由PC5或PACE(弗林蛋白酶)在不同濃度下對來自VWF片段(例如VWF-031(D1D2D'D3Fc))之D1D2域之加工。D1D2加工係藉由Bio-rad成像器顯示在還原條件下之Bio-rad 4-15%凝膠上。泳道1顯示單獨 VWF031;泳道2顯示單獨PC5;泳道3顯示單獨PACE;泳道4顯示VWF031及在2.5%下之PC5;泳道5顯示VWF031及在5%下之PC5;泳道6顯示VWF031及在7.5%下之PC5;泳道7顯示VWF031及在10%下之PC5;泳道8顯示VWF031及在2.5%下之PACE;泳道9顯示VWF031及在5%下之PACE;泳道10顯示在7.5%下之VWF031;且泳道11顯示VWF031及在10%下之PACE。
第21圖:A)顯示藉由ForteBio octet儀器進行之FVIII:VWF雜二聚體(例如FVIII-155/VWF-031)之結合分析。對於該分析,藉由使用APS感測器捕捉全長VWF。FVIIIFc及FVIII與全長VWF之結合顯示在左下版面處。FVIIIY1680(一種對VWF不具有親和力之突變體)及FVIII:VWF雜二聚體(FVIII155/VWF031)之結合之缺乏顯示在右下版面處。B)顯示FVIII:VWF雜二聚體(例如FVIII-155/VWF-031)之另一結合分析。在此分析中,構築體(VWF031構築體、FVIII-155/VWF031、或FVIII)固定在蛋白質G感測器上。量測構築體與FVIII之結合。
第22圖顯示藉由表面電漿共振實驗量測之VWF D'D3域與FVIII分子的結合親和力。藉由1000RU抗人類IgG捕捉VWF031構築體(100RU)。B域缺失之FVIII係以單循環動力學模式以1:1擬合加以應用。總數為4。
第23圖顯示當投於FVIII/VWF DKO小鼠中時,FVIIIFc/VWF雜二聚體構築體中之不同連接子長度對藥物動力學之影響。三個不同連接子(48 aa、73aa或98aa)插 入在D'D3與Fc之間,亦即VWF031、VWF035及VWF036。相對於5分鐘值校正之FVIII活性(%)顯示在Y軸中。
第24圖顯示VWF片段與FVIII之分選酶連接之實例。A)顯示兩種連接構築體,(1)在C末端融合於分選酶識別基元(例如LPXTG)之VWF片段及(2)在N末端具有甘胺酸(n)之FVIII。在與分選酶反應之後,VWF片段及分選酶識別基元連接於FVIII之N末端。B)顯示兩種連接構築體,(1)在C末端融合於分選酶識別基元之FVIII及(2)在N末端具有甘胺酸(n)之VWF片段。在與分選酶反應之後,FVIII及分選酶識別基元在VWF片段之N末端融合於VWF片段。C)顯示兩種連接構築體,(1)藉由可變長度連接子融合於分選酶識別基元之VWF片段及(2)在N末端融合於甘胺酸(n)之FVIII。在與分選酶反應之後,藉由連接子融合於分選酶識別基元之VWF連接於FVIII之N末端。D)顯示兩種連接構築體,(1)藉由可變長度連接子融合於分選酶識別基元之FVIII及(2)在N末端融合於甘胺酸(n)之VWF片段。在與分選酶反應之後,藉由連接子融合於分選酶識別基元之FVIII連接於VWF片段之N末端。E)顯示含有藉由可變長度連接子融合於分選酶識別基元之VWF片段之連接構築體,該分選酶識別基元亦融合於藉由可變長度連接子融合於Fc之蛋白酶裂解位點(例如凝血酶裂解位點)。
第25圖顯示FVIII155與FVIII198之圖解比較。 FVIII155編碼單鏈FVIIIFc蛋白質。FVIII198為一種含有部分B域之單鏈FVIIIFc分子-226N6。226表示FVIII B域之N末端226個胺基酸,且N6表示B域中之六個N-糖基化位點。
第26A)圖顯示量測FVIII155及FVIII198在DKO血漿中之隨時間變化之相對活性的穩定性分析。如可在圖中所見,在FVIII198中存在部分B域使單鏈FVIIIFc相較於FVIII155,穩定性增加;B)顯示FVIII198、FVIII155及雙鏈(dcFVIIIFc)在DKO小鼠中之半衰期之比較。如可在圖中所見,相較於雙鏈FVIII,單鏈FVIII(FVIII155)之半衰期增加1.5倍。具有266N6 B域之單鏈FVIII(FVIII198)之半衰期進一步增加1.5倍。該圖顯示相對於5分鐘值之FVIII回收率(%)隨時間之變化。
除非另外陳述,否則在整篇實例中,使用以下材料及方法。
材料及方法
一般而言,除非另外指示,否則本發明之實施採用習知化學技術、生物物理學技術、分子生物學技術、重組DNA技術、免疫學技術(尤其例如抗體技術)及電泳中之標準技術。參見例如Sambrook,Fritsch及Maniatis,Molecular Cloning:Cold Spring Harbor Laboratory Press (1989);Antibody Engineering Protocols(Methods in Molecular Biology),510,Paul,S.,Humana Pr(1996);Antibody Engineering:A Practical Approach(Practical Approach Series,169),McCafferty編,Irl Pr(1996);Antibodies:A Laboratory Manual,Harlow等人,CS.H.L.Press,Pub.(1999);及Current Protocols in Molecular Biology,Ausubel等人編,John Wiley & Sons(1992)。
實例1:選殖不同VWF域(第1圖)
(a)選殖pSYN-VWF-001、002、003及004
pSYN-VWF-001至004含有編碼VWF片段之核苷酸序列,該等VWF片段為胺基酸1-276(001)、胺基酸1-477(002)、胺基酸1-511(003)及胺基酸1-716(004)VWF-D’D3A蛋白質序列。胺基酸編號表示無肽原之成熟VWF序列且分別對應於SEQ ID NO:2之胺基酸764-1039(001)、胺基酸764-1240(002)、胺基酸764-1274(003)及胺基酸764-1479(004)。所有四種構築體皆在N末端具有允許合成蛋白質適當分泌之FVIII信號肽,且隨後在C末端具有用於蛋白質純化之6×His標籤。藉由使用以下引子組合合成以上構築體:
pSYN VWF-001:
ESC48-Fwd-VWF-D'D3,具有VIII信號及BsiW1位點 TCGCGACGTACGGCCGCCACCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG(SEQ ID NO:57)
ESC50-Rev-VWF-部分D'D3(1-276胺基酸),具有6 His及Not1位點 TGACCTCGAGCGGCCGCTCAGTGGTGATGGTGATGATGCAGAGGCACTTTTCTGGTGTCAGCACACTG(SEQ ID NO:58)
pSYN VWF-002:
ESC48-Fwd-VWF-D'D3,具有VIII信號及BsiW1位點 TCGCGACGTACGGCCGCCACCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG(SEQ ID NO:59)
ESC51-Rev-VWF D'D3(1-477胺基酸),具有6His及Not 1位點 TGACCTCGAGCGGCCGCTCAGTGGTGATGGTGATGATGCGGCTCCTGGCAGGCTTCACAGGTGAGGTTGACAAC(SEQ ID NO:60)
pSYN VWF-003:
ESC48-Fwd-VWF-D'D3,具有VIII信號及BsiW1位點 TCGCGACGTACGGCCGCCACCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG(SEQ ID NO:61)
ESC52-Rev-VWF-D'D3部分A1(1-511胺基酸),具有6His及Not1位點 TGACCTCGAGCGGCCGCTCAGTGGTGATGGTGATGATGCCTGCTGCAGTAGAAATCGTGCAACGGCGGTTC(SEQ ID NO:62)
pSYN VWF-004:
ESC48-Fwd-VWVF-D'D3,具有VIII信號及BsiW1位點 TCGCGACGTACGGCCGCCACCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG(SEQ ID NO:63)
ESC53-Rev-VWF-D'D3A1(1-716胺基酸),具有6His及Not1位點 TGACCTCGAGCGGCCGCTCAGTGGTGATGGTGATGATGGCCCACAGTGACTTGTGCCATGTGGGG(SEQ ID NO:64)
假定由VWF-001、002、003及004構築體獲得之蛋白質以單體形式存在。
使用2步PCR擴增循環:94℃ 2分鐘;21個循環之(96℃ 30秒,68℃ 2分鐘),用ESC48/ESC50、ESC48/ESC51、ESC48/ESC52、ESC48/ESC53引子組合及作為模板之全長VWF質體進行50μl PCR反應。正確尺寸色帶(VWF 001,約960bp;VWF 002,1460;VWF 003,1520bp;及VWF 004,2150bp)用凝膠提取套組(Qiagen,Valencia,Calif.)進行凝膠純化且選殖入pcDNA 4之BsiWI及Not1限制位點中以分別產生pSYN-VWF 001、002、003及004。
(b)選殖pSYN-VWF-006
pSYN-VWF-006含有VWF之D1D2D’D3-CK(半胱胺酸結)域。為選殖此構築體,含有一部分D3域及CK域之DNA片段之合成被外包(Genscript序列標識號122026,以下顯示)。將Genscript構築體之片段次選殖入經BamH1/EcoRV消化之pSYN-VWF 008(亦即編碼全長VWF之載體)中。
Genscript序列編號122026(SEQ ID NO:65)
Figure 107124686-A0101-12-0187-399
(c)選殖pSYN-VWF-009、010、011、012及013
pSYN VWF 008構築體在pcDNA 3.1中含有全長VWF序列(SEQ ID NO:2之胺基酸1-2813)。其包括含有763個胺基酸之肽原(亦即D1D2域),隨後為成熟VWF之含有剩餘2050個胺基酸之序列。pSYN-VWF-009、010、011及012分別含有與VWF 001、002、003及004相同之編碼序列,但另外在N末端具有D1D2域(VWF肽原)而非FVIII信號肽。pSYN-VWF-008具有在Arg907處之BamH1位點及在編碼區域末端(在終止密碼子之後)之Not1位點。pSYN-VWF-008、001、002、003及004用BamH1及Not1限制酶消化。將來自pSYN-VWF-001(423bp)、pSYN-VWF-002(1026bp)、pSYN-VWF-003(1128bp) 及pSYN-VWF-004(1743bp)之插入物連接入經bamH1/Not1消化之pSYN-VWF-008(8242bp)中以獲得pSYN-VWF-009(D1D2D’D3:SEQ ID NO:2之胺基酸1-1039);pSYN-VWF-010(D1D2D’D3:SEQ ID NO:2之胺基酸1-1240);pSYN-VWF-011(D1D2D’D3:SEQ ID NO:2之胺基酸1-1274);pSYN-VWF-012(D1D2D’D3:胺基酸1-1479)。所有4種構築體在C末端皆具有6×His標籤。在轉染細胞中,合成之pSYN-VWF-009、010、011及012具有肽原,但歸因於細胞內加工,分泌之產物不含有任何肽原(D1D2)。自VWF-009構築體表現之蛋白質以單體形式存在且假定自VWF-010、011及012構築體表現之蛋白質以二聚體形式存在,如分別使用VWF-009及VWF-010作為實例之第6圖及第7圖中所示。
pSYN-VWF-010用於產生pSYN-VWF-013,pSYN-VWF-013在對應於SEQ ID NO:73之C336A及C379A(胺基酸編號表示無D1D2域之成熟VWF序列-VWF序列2)處具有兩個點突變。預測此等突變會防止VWF D’D3域之二聚化。
(d)選殖pSYN-VWF-025及029
pSYN-VWF-025在pLIVE載體中含有全長VWF之野生型D1D2D’D3序列,而pSYN-VWF-029在pLIVE載體中含有具有C336A/C379A突變之D1D2D’D3域。對於選殖pSYN-VWF-025及029,使用以下引子組合:
具有Nhe1位點之ESC 89-fwd=CTCACTATAGGGAGACCCAAGCTGGCTAGCCG(SEQ ID NO:66)
具有Sal1之ESC 91-rev=CTGGATCCCGGGAGTCGACTCGTCAGTGGTGATGGTGATGATG(SEQ ID NO:67)
使用3步PCR擴增循環:94℃-2分鐘;21個循環之(96℃-30秒,55℃-30秒,68℃-4分鐘),用ESC89/ESC91引子組合及作為模板之pSYN-VWF-010(針對pSYN-VWF-025)或pSYN-VWF-013(針對pSYN-VWF-029)質體進行50μl PCR反應。預期尺寸色帶(約3800bp)用凝膠提取套組(Qiagen,Valencia,Calif.)進行凝膠純化且選殖入pLIVE-Mirus載體(Invitrogen,Carlsbad,Calif.)之Nhe1及Sal1限制位點中以產生pSYN-VWF-025及029。
(e)選殖pSYN-VWF-031
pSYN-VWF-031為一種D1D2D'D3(C336A/C379A)-Fc構築體,其在VWF D1D2D'D3(C336A/C379A)與Fc序列之間具有長度為48個胺基酸之凝血酶可裂解連接子(8×GGGGS(SEQ ID NO:110)+凝血酶位點)。為製備此構築體,自構築體pSYN-FVIII-064(以下稱為FVIII-VWF構築體)擴增VWF-Fc區。pSYN-FVIII-VWF用Xba1及Nhe1消化。具有4165bp之含有VWF片段及Fc區之所得插入物區域用作藉由引子組合LW22/LW23擴增VWF及Fc區之模板。
LW 22-FWD-VWF-D'D3,具有FVIII信號序列及 BsiW1位點 GCGCCGGCCGTACGATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG(SEQ ID NO:68)
LW 23-Rev-Fc,具有終止密碼子及Not1位點 TCATCAATGTATCTTATCATGTCTGAATTCGCGGCCGCTCATTTACC(SEQ ID NO:69)
VWF 031之核苷酸序列(SEQ ID NO:108)
Figure 107124686-A0101-12-0190-400
Figure 107124686-A0101-12-0191-401
Figure 107124686-A0101-12-0192-402
VWF 031之蛋白質序列(SEQ ID NO:109)
Figure 107124686-A0101-12-0193-403
Figure 107124686-A0101-12-0193-404
將由LW22/LW23擴增獲得之PCR產物(約2300bp) 選殖於經BsiW1/Not1消化之pSYN-VWF-002中以獲得pSYN-VWF-014中間物。pSYN-VWF-014依次含有FVIII信號肽-D’D3-含20個胺基酸之凝血酶可裂解連接子及Fc區。
為產生D1D2D’D3-Fc構築體,使用引子組合LW24/LW27藉由標準PCR方法自pSYN-VWF-013擴增D1D2D’D3區域。
LW24-Fwd-VWF D1D2D’D3選殖寡聚物,具有BsiW1位點 GCGCCGGCCGTACGATGATTCCTGCCAGATTTGCCGGGGTG(SEQ ID NO:70)
LW27-Rev-VWF D'D3寡聚物,具有EcoRV CCACCGCCAGATATCGGCTCCTGGCAGGCTTCACAGGTGAG(SEQ ID NO:71)
將由LW22/LW23擴增獲得之PCR產物(約3750bp)選殖於經BsiW1/EcoRV消化之pSYN-VWF-014中以獲得pSYN-VWF-015中間物。改變VWF片段與Fc區之間的連接子長度以獲得pSYN-VWF-031。
全長VWF蛋白質序列顯示在表1處。
VWF-D1D2D’D3蛋白質序列1b(SEQ ID NO:72)
Figure 107124686-A0101-12-0195-405
VWF-D’D3蛋白質序列2(SEQ ID NO:73)
Figure 107124686-A0101-12-0195-406
實例2:包含FVIII-Fc及在第二Fc鏈之胺基末端之VWF-D’D3域的雜二聚構築體(FVIII-VWF-Fc雜二聚體,第2 圖)
(a)選殖pSYN-FVIII-064
FVIII-064質體包含具有在於細胞中合成期間經加工之酶裂解位點之單鏈FC(scFc)骨架。該構築體具有全長VWF之FVIII結合域(D’D3)。
質體(pSYN-FVIII-064)經設計以表現FVIII-Fc及VWF-Fc雜二聚體,其中D’D3域結合FVIII且防止FVIII與磷脂及活化蛋白質C相互作用及/或防止或抑制結合於內源性VWF。由pSYN-FVIII-064獲得之蛋白質在細胞中以單一多肽形式表現,其中FVIII-Fc次單元之C末端藉由6×(GGGGS)多肽連接子(SEQ ID NO:74)連接於VWF D’D3-Fc次單元之N末端。此外,RRRRS(SEQ ID NO:75)及RKRRKR(SEQ ID NO:76)序列分別插入在多肽連接子之5’末端及3’末端以達成由前蛋白轉化酶在各序列之末個Arg之後進行細胞內裂解。因此,細胞可表現雙鏈FVIII-Fc/D’D3-Fc雜二聚體,其中FVIII-Fc鏈在C末端具有RRRRS序列(SEQ ID NO:75),但連接子序列之其餘部分已經移除。另一3×(GGGGS)多肽連接子(SEQ ID NO:28)連同凝血酶裂解位點一起引入在VWF域與Fc區之間以有助於一旦FVIII-VWF雜二聚蛋白質由凝血酶活化,即自FVIII釋放VWF片段,從而允許FVIII與其他凝結因子相互作用。
依次含有一部分第一Fc區及6×(GGGGS)(SEQ ID NO:74)、VWF-D’D3域(1-477aa;C336A/C379A突變)、 3×(GGGGS)(SEQ ID NO:28)、凝血酶裂解位點及一部分第二Fc之DNA片段的合成被外包(Genscript序列編號103069,以下顯示)。將Genscript構築體之片段次選殖入經SalI/RsRII消化之pSYN-FVIII-049中,該pSYN-FVIII-049為在兩個Fc域之間具有可裂解連接子之FVIII-Fc構築體。
Genscript序列編號103069(SEQ ID NO:82):
Figure 107124686-A0101-12-0197-407
(b)選殖pSYN-FVIII-065
FVIII-065質體包含VWF之D’D3域之連接於第二Fc 區的前276個胺基酸。藉由使用引子組合ESC17及ESC41自全長VWF質體pSYN-VWF-008以PCR擴增VWF片段。
ESC17-Fwd-VWF選殖寡聚物,具有Cla1 GTCCGGCATGAGAATCGATGTGTG(SEQ ID NO:77)
ESC41-Rev-VWF,具有EcoRV CCTCCACCGCCAGATATCAGAGGCACTTTTC(SEQ ID NO:78)
預期尺寸色帶(約692bp)用凝膠提取套組(Qiagen,Valencia,Calif.)進行凝膠純化且選殖入pSYN-FVIII-064之Cla1及EcoRV位點中以產生pSYN-FVIII-065。
實例3:選殖pSYN-FVIII-159、160、178、179(第3圖)
為改變VWF片段與Fc區之間的連接子長度,在pSYN-FVIII-064中VWF與含20個胺基酸之連接子之開端的接合點處引入EcoRV位點,可變尺寸之連接子接著用於置換PSYN-FVIII-064中之20 aa連接子。新DNA構築體為:pSYN-FVIII-159、160、178及179,其分別含有35 aa、48 aa、73 aa及98 aa連接子。
為在pSYN-FVIII-159中插入含35個胺基酸之連接子,自Integrated DNA Technologies公司(Coralville,IA)定購兩種寡聚物(ESC78-105bp及ESC79-107bp)。使用標準PCR方法黏著且延伸寡聚物:
引子:
ESC78-Fwd,具有EcoRV位點 AAAGTGCCTCTGATATCTGGCGGTGGAGGTTCCGGTGGCGGGGGATCCGGTGGCGGGGGATCCGGTGGCGGGGGATCCGGTGGCGGGGGATCCCTGGTCCCCCGG(SEQ ID NO:79)
ESC79-Rev,具有RsRII位點 GAAGAGGAAGACTGACGGTCCGCCCAGGAGTTCTGGAGCTGGGCACGGTGGGCATGTGTGAGTTTTGTCGCCTCCGCTGCCCCGGGGGACCAGGGATCCCCCGCCAC(SEQ ID NO:80)
使用3步PCR擴增循環:25個循環之(96℃ 30秒,55℃ 30秒,68℃ 30秒),用ESC78/ESC79引子組合進行50μl PCR寡聚物黏著及延伸反應。預期尺寸色帶(約186bp)用凝膠提取套組(Qiagen,Valencia,Calif.)進行凝膠純化且選殖入pSYN-FVIII-064之EcoRV及RsRII限制位點中以產生pSYN-FVIII-159。
(b)選殖pSYN-FVIII-160、178及179
pSYN-VIII-160在VWF片段與Fc區之間具有含48個胺基酸之連接子。編碼含48個胺基酸之連接子(ISGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSLVPRGSGGGGSGGGGS)(SEQ ID NO:81)及一部分Fc區之DNA片段的合成被外包(Genscript序列編號132601,以下顯示)。將Genscript構築體之片段次選殖入經EcoRV/RsRII消化之pSYN-FVIII-0159(以上提及)中。
Genscript序列編號132601(SEQ ID NO:83)
Figure 107124686-A0101-12-0200-408
pSYN-VIII-178在VWF片段與Fc區之間具有含73個胺基酸之連接子。編碼含73個胺基酸之連接子(ISGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSLVPRGSGGGGSGGGGS)(SEQ ID NO:84)及一部分Fc區之DNA片段的合成被外包(Genscript序列編號144849,以下顯示)。將Genscript構築體之片段次選殖入經EcoRV/RsRII消化之pSYN-FVIII-0159(以上提及)中。
Genscript序列編號144849(SEQ ID NO:85)
Figure 107124686-A0101-12-0200-409
pSYN-VIII-179在VWF片段與Fc區之間具有含98個胺基酸之連接子。編碼含98個胺基酸之連接子
Figure 107124686-A0101-12-0200-410
Figure 107124686-A0101-12-0200-411
(SEQ ID NO:86)及一部分Fc區之DNA片段的合成被外包(Genscript序列編號144849,以下顯示)。將Genscript構築體之片段次選殖入經EcoRV/RsRII消化之pSYN-FVIII-0159(以上提及)中。
Genscript序列編號144849(SEQ ID NO:87)
Figure 107124686-A0101-12-0201-412
選殖pSYN-FVIII-180、181及182
自pSYN-FVIII-160構築pSYN-FVIII-180、181及182。將K2093A或F2093A或K2093A/F2093A突變引入pSYN-FVIII-160中之FVIII之C1域中以分別形成pSYN-FVIII-180、pSYN-FVIII-181及pSYN-FVIII-182。
FVIII-VWF-Fc雜二聚體蛋白質序列(SEQ ID NO:88)
(FVIII序列胺基酸位置1-1457;加底線區域表示Fc區;曲線底線表示第一Fc與VWF片段之間的可裂解連接子;加雙底線區域表示VWF片段;粗體區域表示VWF片段與Fc之間的可變長度可裂解連接子。FVIII-064、159、160、178及179構築體中之連接子長度不同)。
Figure 107124686-A0101-12-0202-413
Figure 107124686-A0101-12-0203-414
實例4:FVIII-VWF DNA構築體之實例(第4圖)
使用習知重組DNA技術,VWF片段與FVIII蛋白質可藉由連接子或另一蛋白質或多肽連接在一起,如第4圖中所示。在第4A圖中,VWF之D1D2D’D3域藉由48aa連接子-ISGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSLVPRGSGGGGSGGGGS(SEQ ID NO:89)連接於FVIII蛋白質且保護FVIII免遭過早清除。為進一步增強D’D3之FVIII保護活性,具有半衰期延長潛力之另一蛋白質或多肽,諸如白蛋白或PAS序列(異源部分)可併入構築體中。例如白蛋白蛋白質或PAS序列之異源部分可併入FVIII分子之不同位置中:數個實例展示於第4B-4D圖中:在FVIII之N末端(4B)、在FVIII之C末端(4C)、或在B區域中(4D)。在彼等構築體中,其他蛋白質序列可增強D’D3保護活性且進一步延長FVIII半衰期。
此外,例如白蛋白或PAS序列之異源部分亦可併入FVIII/VWF雜二聚體構築體中,如第4E-4G圖中所示。在第4E圖中,例如白蛋白或PAS序列之異源部分併入FVIII-148之FVIII B域區域中;在第4F圖中,例如白蛋白或PAS序列之異源部分併入FVIII-136之FVIII B域區域中;在第4G圖中,例如白蛋白或PAS序列之異源部分 用作連接D’D3片段與Fc之連接子。在彼等組態中,預期D’D3、Fc及作為半衰期延長劑之異源部分(例如白蛋白/PAS序列)對FVIII半衰期延長具有協同效應。
實例5:FVIIIFc-VWF雜二聚體之共轉染系統之質體構築(第5圖)
產生用於FVIIIFc-VWF雜二聚體產生之共轉染系統,其含有三種DNA構築體。第一DNA構築體pSYN-FVIII-155編碼FVIII-Fc融合蛋白,其中單鏈FVIII蛋白質直接融合於單一Fc片段,且第二DNA構築體為pSYN-VWF-031,其編碼D’D3-Fc融合蛋白(以上在實例1中提及)。HEK293F細胞用兩種質體連同第三質體(PC5)一起在80:15:5比率下轉染。與PC5共轉染在於確保對D1及D2區域進行完全肽原加工以使吾人獲得成熟D’D3域。合成蛋白質以FVIIIFc/D’D3Fc雜二聚體及D’D3Fc均二聚體形式分泌且藉由蛋白質純化使FVIIIFc/D’D3Fc雜二聚體與D’D3Fc均二聚體分離。
pSYN-FVIII-155成熟蛋白質序列(SEQ ID NO:90):
Figure 107124686-A0101-12-0205-415
pSYN-FVIII-155 DNA序列(SEQ ID NO:91):
Figure 107124686-A0101-12-0205-416
Figure 107124686-A0101-12-0206-417
Figure 107124686-A0101-12-0207-418
以下列出已構築之其他VWF片段及FVIIIFC-VWF雜二聚體。
Figure 107124686-A0101-12-0207-419
Figure 107124686-A0101-12-0208-420
Figure 107124686-A0101-12-0209-421
Figure 107124686-A0101-12-0210-422
Figure 107124686-A0101-12-0211-423
實例6:蛋白質純化 VWF片段之蛋白質純化
經由兩步純化方法純化VWF片段。硫酸鎳帶電荷IMAC(固定金屬親和層析)管柱用於初級純化,Fractogel DEAE離子交換管柱用於最終純化。以下描述詳細純化方法。
(a)在鎳IMAC上初級純化VWF片段
14mL鎳IMAC瓊脂糖HP管柱[XK26/3]用25mM HEPES、500mM NaCl、10mM咪唑及0.05%吐溫-20在pH 7.5下平衡。用100mL 1M HEPES(在pH 7.5下)及600mL 5M NaCl調整約7.2L VWF條件培養基。接著添加80mL 1M咪唑(在pH 7.5下)至最終濃度10mM。接著在2-8℃下在10毫升/分鐘[113公分/小時]下將7.8L經調整之VWF條件培養基裝載於管柱上。在13.3毫升/分鐘[150公分/小時]下進行洗滌步驟。首先,用25mM HEPES、500mM NaCl、10mM咪唑及0.05%吐溫-20在pH 7.5下以正向流動{「向下流動」}進行2倍管柱體積(CV)洗滌。接著,用25mM HEPES、500mM NaCl、10mM咪唑及 0.05%吐溫-20在pH 7.5下以反向流動{「向上流動」}進行3×CV洗滌。最後,用25mM HEPES、500mM NaCl、10mM咪唑及0.05%吐溫-20在pH 7.5下以正向流動{「向下流動」}進行3×CV洗滌。以10×CV梯度至50% B1(25mM HEPES、500mM NaCl、500mM咪唑及0.05%吐溫-20,在pH 7.5下)進行溶離。溶離份體積設定至10mL。接著,用100% B1洗提管柱。在此之後為用25mM HEPES、500mM NaCl、10mM咪唑及0.05%吐溫-20在pH 7.5下洗滌。用1N NaOH進行第二洗提。接著依次用1M TRIS、1M NaCl(在pH 7.8下)以及25mM HEPES、500mM NaCl、10mM咪唑及0.05%吐溫-20(在pH 7.5下)沖洗管柱。最後,管柱用5CV之DPBS+20%乙醇沖洗且儲存在4℃下。
(b)在Fractogel DEAE上次級純化VWF片段
在Fractogel DEAE上在pH 7.5下進行VWF片段之次級純化。首先,20mL VWF鎳IMAC溶離物(對應於VWF片段峰值)用200mg兩性洗滌劑3-14兩性離子洗滌劑調整以試圖在不使用變性或還原賦形劑下破壞聚集物質。在洗滌劑溶解之後,使蛋白質置於室溫下約15分鐘。接著,蛋白質用4公克海藻糖、1mL 10%吐溫-20、5mL 1M HEPES(在pH 7.5下)及174mL「Milli-Q」水調整。平衡緩衝液「A12」為25mM HEPES、50mM NaCl、1%海藻糖、0.05%吐溫-20,在pH 7.5下。溶離緩衝液「B1」為 25mM HEPES、1000mM NaCl、1%海藻糖、0.05%吐溫-20,在pH 7.5下。以10CV梯度至50% B1,在50% B1下保持5+CV,隨後階躍至100% B1來進行溶離。接著用0.85%磷酸洗提管柱,隨後用1M TRIS、1M NaCl(在pH 7.5下)進行洗提。接著用1N NaOH、2M NaCl洗提管柱,隨後用1M TRIS、1M NaCl(在pH 7.5下)進行洗提。接著用25mM HEPES、100mM NaCl+20%乙醇在pH 7.5下沖洗管柱以進行儲存。
(c)FVIII-VWF雜二聚體之蛋白質純化
FVIII-VWF雜二聚體首先藉由親和管柱(GE VIIISelect)純化,然後藉由Fractogal TMAE離子交換管柱純化。(McCue JT,Selvitelli K,Walker J,J Chromatogr A.2009年11月6日;1216(45):7824-30.電子檔發表2009年9月23日。)
對於FVIII-155/VWF-31之純化,使用切向流過濾(TFF)步驟用緩衝液交換澄清條件培養基。接著使用親和層析捕捉濾液中之目標蛋白質。遵循弱陰離子交換層析步驟以降低HMW物質。分子之純度與尺寸兩者均藉由HPLC-SEC及SDS-PAGE獲得。進一步藉由西方印漬術確認存在FVIII-155/VWF-31之不同域。分子之比活性與B域缺失之FVIII相似。
(d)用凝血酶消化FVIII-VWF雜二聚體(第8圖)
FVIII-VWF-Fc雜二聚體或FVIII-Fc(對照)以1:10比率與凝血酶混合於凝血酶裂解緩衝液(50mM Tris(pH 7.4)、150mM NaCl、2mM CaCl2、5%甘油)中。在37℃下培育反應20分鐘。消化產物於4-12%還原性tris-甘胺酸凝膠上進行操作。未消化蛋白質用作對照。藉由考馬斯(coomassie)染色來觀察色帶。
(e)藉由Octet分析評估FVIII-155/VWF-031之VWF結合能力
在25℃下,使用Tris結合緩衝液(50mM Tris(pH 7.2)、150mM NaCl、5mM CaCl2),用ForteBio Octet 384儀器藉由基於生物層干涉量測術(BLI)之量測法(Octet分析)來測定FVIII-155/VWF-031之VWF結合能力。用於測定FVIII結合之Octet分析係基於將人類范威爾邦德因子(hVWF)(Haematologic Technologies目錄編號HCVWF-0191)疏水性固定於APS生物感測器上,隨後結合1.0%牛血清白蛋白(Jackson ImmunoResearch目錄編號001-000-161)。簡言之,hVWF(38.5nM)於Tris緩衝液中稀釋且跨越APS生物感測器裝載600秒,從而在反應探針上產生約3.0-3.5nm結合。對照APS探針在不存在hVWF下用1.0% BSA裝載以達成參照減除。在裝載之後,所有探針皆在Tris緩衝液中培育300秒以建立新基線。隨後,生物感測器探針在室溫下在FVIII-155/VWF-031、FVIIIFc原料藥或rFVIII(60nM)之溶液中培育5分鐘,隨後進行5 分鐘解離步驟。使用Octet資料分析軟體,由經減除資料(反應探針減去參照探針)獲得結合反應(nm)。如第15圖中所示,相較於rFVIIIFc及rFVIII之VWF結合親和力,FVIII-155/VWF-031之VWF結合親和力嚴重減損。此指示FVIII由FVIIIFc/VWF雜二聚體內之D’D3片段成功遮蔽以免與全長VWF結合。
實例7. VWF-FVIII相互作用為FVIII半衰期延長之限制因素
大多數循環FVIII以FVIII-VWF複合物形式存在(>95%之血漿FVIII)。此FVIII-VWF相互作用促進FVIII經由VWF清除路徑清除,因此使VWF半衰期(T1/2)成為FVIII半衰期延長之限制。為評估此假設,在FVIII缺乏小鼠(HemA小鼠,其具有完整VWF基因)及FVIII/VWF缺乏(FVIII-VWF雙重基因剔除(DKO))小鼠中測試藉由Fc技術來限制FVIII半衰期延長之情形。
HemA小鼠或FVIII-VWF DKO小鼠用單次靜脈內劑量之rFVIII或rFVIIIFc在125IU/kg(在HemA小鼠中)或200IU/kg(在DKO小鼠中)下處理。收集血液樣品直至72小時(在HemA小鼠中)或直至8小時(在FVIII/VWF DKO小鼠中)。接著藉由FVIII顯色分析量測血漿樣品之FVIII活性。使用WinNonline程式分析兩種rFVIII變化形式之藥物動力學(PK)概況。
如表7及第9圖中所示,在FVIII/VWF DKO小鼠中 ,相較於rFVIII之T1/2(亦即T1/2 0.25小時),rFVIIIFc顯示T1/2長約4.8倍(亦即T1/2 1.2小時)。相反,當在HemA小鼠中測試時,相較於rFVIII,rFVIIIFc之T1/2僅長1.8倍。rFVIIIFc之T1/2為13.7小時,此與內源性鼠類VWF半衰期一致。此指示FVIII-VWF相互作用為FVIII半衰期延長之限制因素。為達成FVIII半衰期延長超過2倍,將必須消除FVIII-VWF相互作用。
Figure 107124686-A0101-12-0216-424
FVIII顯色分析
使用來自DiaPharma之COATEST SP FVIII套組(批號N089019)量測FVIII活性且所有培育皆在振盪下於37℃板式加熱器上進行。
rFVIII標準範圍為100mIU/mL至0.78mIU/mL。匯合之正常人類血漿分析對照及血漿樣品(用1×Coatest緩衝液稀釋)一式兩份添加入Immulon 2HB 96孔盤中(25μL/孔)。新鮮製備之IXa/FX/磷脂混合物(50μL)、25μL 25 mM CaCl2及50μL FXa受質依序添加入各孔中,在各次添加之間培育5分鐘。在與受質一起培育之後,添加25μL 20%乙酸以終止顯色反應,且用SpectraMAX plus(Molecular Devices)儀器量測OD405之吸光度。用SoftMax Pro軟體(第5.2版)分析資料。最低定量含量(LLOQ)為7.8mIU/mL。
實例8. VWF D’D3二聚體保護FVIII免遭FVIII蛋白水解及清除(第10圖)
藉由VWF片段在VWF缺乏小鼠中保護內源性鼠類FVIII免遭其清除之能力來評估該等VWF片段之FVIII保護活性。藉由在100μg/小鼠下流體動力學注射如表8第1行中所列之不同VWF片段(第1圖,實例1)之相應DNA構築體來將該等片段引入VWF缺乏小鼠之血液循環中。在注射後48小時收集血漿樣品,且藉由FVIII顯色分析量測鼠類FVIII血漿活性。藉由VWF ELISA量測VWF表現量。
已測試之VWF片段之四種不同長度為276、477、511及716個胺基酸。測試276至716個胺基酸之範圍以找出FVIII結合(276aa)所需之無VWF清除受體結合域(716aa)之VWF片段長度。全長VWF及D1D2D’D3CK多聚體用作FVIII保護之陽性對照。在血液循環中,合成之具有D1D2域之VWF片段以二聚體形式存在且當其在無D1D2域下合成時以單體形式存在。
流體動力學注射後血漿中之鼠類FVIII活性增加量度VWF片段之FVIII保護效應。如表8及第10A-B圖中所示,D’D3片段之前27 aa 6個胺基酸不具有FVIII保護活性,如藉由類似注射前/後FVIII血漿含量所證明(第10A圖)。然而,引入其他VWF片段會誘導FVIII血漿含量顯著增加,從而指示彼等VWF片段可保護FVIII免遭其清除路徑。
Figure 107124686-A0101-12-0218-425
注射後血漿FVIII活性之比率及含有全長VWF之D’D3域之VWF片段的血漿抗原含量列於表8中。自全長VWF及VWF片段之兩種二聚體形式觀測到類似注射後 FVIII/VWF比率,意謂這兩種VWF片段二聚體提供與全長VWF相同之FVIII保護。此外,相較於VWF片段二聚體同功異型物之相應單體,自該等同功異型物觀測到FVIII/VWF比率高三倍:D’D3(477aa)二聚體具有FVIII/VWF比率38.7mIU/nmol;D'D3(477aa)單體具有FVIII/VWF比率11.6mIU/nmol;D'D3A1(511aa)二聚體具有FVIII/VWF比率32.9mIU/nmol;且D'D3(511aa)單體具有FVIII/VWF比率13.8mIU/nmol,從而指示相較於VWF片段之二聚體同功異型物之相應單體,該等同功異型物提供更佳FVIII保護。
Figure 107124686-A0101-12-0219-426
流體動力學注射:
流體動力學注射為一種在諸如小鼠及大鼠之小動物中高效且安全地向肝傳遞非病毒基因之方法。其最初被描述為在約5-7秒內在動物體重之十分之一體積下快速注射不含內毒素之裸露質體DNA/生理食鹽水溶液。裸露質體 DNA含有相關基因且肝產生之由注射DNA獲得之目標蛋白質可在注射後24小時內偵測到。接著收集血漿樣品以研究所表現蛋白質之治療性質。
在本專利申請案中,對於本文進行之所有流體動力學注射,在約4-7秒內經由靜脈內尾部靜脈注射將2ml於0.9%無菌生理食鹽水溶液中之質體DNA傳遞至稱重為20-35公克之小鼠中。持續前2小時密切監測小鼠直至恢復正常活動。在經由眶後血液收集法收集血液樣品之後,接著獲得血漿樣品且儲存在-80℃下以供進一步分析。
VWF ELISA:
山羊抗人類VWF抗體(經親和純化,affinity biological,GAVWF-AP)在0.5μg/孔下用作捕捉抗體且VWF-EIA-D(Affinity Biologicals,VWF-EIA-D,1:100稀釋)用作供VWF ELISA用之偵測抗體。遵循標準ELISA程序進行ELISA分析,TMB用作HRP受質,PBST/1.5% BSA/0.5M NaCl緩衝液用作阻斷及結合緩衝液。分析標準範圍為100ng至0.78ng,且分析之定量下限(LLOQ)為7.8ng/mL。
實例9:共投與全長VWF D’D3片段會延長rBDD-FVIII在FVIII-VWF DKO小鼠中之半衰期(第11圖)
實例8已證明全長D’D3片段可保護內源性FVIII免遭其清除路徑。為進一步評估D’D3蛋白質之FVIII保護 活性,經由靜脈內注射在200IU/kg(rBDD-FVIII)、770μg/kg(D’D3二聚體)及590μg/kg(D’D3單體)下對FVIII-VWF DKO小鼠共投與B域缺失之FVIII(rBDD-FVIII)及D’D3二聚體(VWF-010)或rBDD-FVIII及D’D3單體(VWF-002)。接著藉由rBDD-FVIII之注射後血漿活性來監測rBDD-FVIII之PK概況。由於D’D3片段之活體內半衰期較短,在初始共注射後三小時,經由相同途徑投與另一劑量之D’D3以維持合乎需要之D’D3血漿含量。
對於PK分析,經由眶後血液收集法在注射後5分鐘、30分鐘、1小時、2小時、4小時及6小時獲得血漿樣品,藉由FVIII顯色分析及VWF ELISA來分析血漿FVIII活性及D’D3抗原含量。
如第11圖及表10中所示,D’D3單體使rBDD-FVIII半衰期延長2.5倍且使其回收率改良1.8倍。D’D3二聚體使rBDD-FVIII半衰期延長4.1倍且使其回收率改良3.5倍。亦自兩種D’D3同功異型物觀測到改良之平均滯留時間、清除率及AUC。然而,相較於D’D3二聚體之單體形式,D’D3二聚體在所有PK參數方面皆達成更佳結果。
總之,共注射全長D’D3會保護FVIII免遭其清除路徑,如rBDD-FVIII之改良PK概況中所示。此研究結果之潛在臨床價值需要進一步評估。
Figure 107124686-A0101-12-0222-427
實例10. 合成之具有D1D2域之D’D3單體及其二聚體同功異型物具有相同FVIII保護活性且進一步使FVIIIFc在FVIII-VWF DKO小鼠中之半衰期延長約4倍(第12圖)
為定量D’D3域之FVIII保護能力且確定D’D3二聚化是否為其FVIII保護活性所必需,藉由流體動力學注射將兩種DNA構築體(亦即VWF-025(含有編碼D1D2D’D3之DNA序列)及VWF-029(含有具有C336A及C379A突變之D1D2D’D3密碼子DNA))各自投與至FVIII/VWF DKO小鼠中。此注射導致D’D3二聚體(VWF-025)或單體(VWF-029)在FVIII/VWF DKO小鼠中表現。在流體動力學注射後第5天,在200IU/kg下投與單次靜脈內劑量之rFVIIIFc,且在rFVIIIFc IV注射後5分鐘、4、8、16、24、31、40、55、66小時收集血漿樣品。在相同劑量下在未處理FVIII-VWF DKO小鼠中進行之rFVIIIFc PK研究用作rFVIIIFc半衰期基線。藉由FVIII顯色分析來分析血漿FVIII活性。藉由VWF ELISA量測血漿D’D3含量, 且使用WinNonlin程式分析rFVIIIFc PK概況。
如表11及第12圖中所示,在循環中存在VWF D’D3片段下,rFVIIIFc之初始回收率自42%增加至75%(D’D3二聚體)及60%(D’D3單體)。rFVIIIFc之T1/2亦自2.5小時分別增加至9.3小時及9.2小時。與T1/2類似,亦自表現D’D3單體及二聚體之小鼠觀測到改良之平均滯留時間、清除率及體積分佈。總體而言,吾人觀察到在表現D’D3單體之小鼠與表現D’D3二聚體之小鼠兩者中,rFVIIIFc之半衰期改良約8倍且AUC改良約6倍。與D’D3單體之二聚體同功異型物相同,全長VWF之合成具有VWF之肽原(D1D2)的D’D3單體足以提供如同全長VWF分子之完全FVIII保護效應。
在FVIII/VWF DKO小鼠中,WT-FVIII具有0.25小時T1/2。Fc融合技術使FVIII T1/2增加至1.2小時,此為約4.8倍增加。當Fc融合技術與D’D3域組合時,FVIII T1/2增加至9.3小時(D’D3二聚體)及9.2小時(D’D3單體),此為總計約37倍增加。(表10)此結果證明Fc融合物及D’D3 VWF片段對FVIII半衰期延長具有協同效應。
Figure 107124686-A0101-12-0224-428
實例11:FVIII-VWF雜二聚體在HemA小鼠中之PK
將在HemA小鼠中測試FVIII-VWF雜二聚體之先導候選物(諸如FVIII-155/VWF-031)之PK概況以評估其遮蔽FVIII以免與內源性VWF結合之能力及其延長FVIII半衰期之能力。
HemA小鼠將用單次靜脈內劑量之先導候選物在200IU/kg下處理,血漿樣品將接著在5分鐘、4小時、8小時、24小時、48小時、72小時、96小時及120小時收集,血漿活性將藉由FVIII顯色分析加以測試,且FVIII變化形式半衰期將藉由WinNonlin程式加以計算。
在一最佳FVIII/VWF雜二聚體組態中,FVIII結合內源性VWF將被完全抑制,因此,rFVIII之基線半衰期將自7.6小時降低至0.25小時,如實例7中所示。當D’D3片段與FVIII非共價締合時,觀測到約8倍半衰期益處(實例9)。在FVIII/VWF雜二聚體之先導候選物中,VWF片段與FVIII分子共價締合,可能能夠達成較佳FVIII保護 。本申請案之發明物導致進一步延長FVIII半衰期超過兩倍上限,在可用半衰期延長技術之組合下,HemA患者可預期在不久的將來會有更佳長效FVIII變化形式。
在HemA及FVIII/VWF DKO小鼠中測試FVIII-155/VWF-031之PK概況以評估D’D3片段遮蔽FVIII部分以免與內源性VWF結合之能力。HemA或FVIII/VWF DKO小鼠用單次靜脈內劑量之FVIII-155/VWF-031在200IU/kg下處理,接著在給藥後5分鐘、8小時、24小時及48小時收集血漿樣品。藉由FVIII顯色分析測試血漿樣品之FVIII活性,且使用WinNonlin程式計算FVIII-155/VWF-031之半衰期。
對於FVIII-155/VWF-031相較於rFVIIIFc及rFVIII而言,藉由生物層干涉量測術偵測到與固定VWF之結合嚴重減損(第15圖,Octet;ForteBio公司,Menlo Park,CA)。此顯示分子中之D’D3域已成功阻斷FVIII結合原生VWF分子。因此,預期rFVIII-155/VWF-031在兩種不同小鼠品系中之半衰期類似。研究結果列於第16圖及表12A中。如所預測,在HemA小鼠與FVIII/VWF DKO小鼠兩者中,rFVIII-155/VWF-031具有類似PK概況,從而指示FVIIIFc/VWF雜二聚體之半衰期不依賴於內源性VWF之半衰期。結果顯示藉由VWF D'D3域抑制rFVIIIFc與內源性VWF之間的相互作用可以允許消除FVIII半衰期上限且開闢延長FVIII半衰期超過可在無VWF D'D3域下達成之半衰期(野生型FVIII之約兩倍)的 可能性。
Figure 107124686-A0101-12-0226-429
藉由比較FVIII-155/VWF-031與FVIIIFc在FVIII/VWF DKO小鼠中之t1/2來評估D’D3域之FVIII保護能力。在單次IV投藥之後,對於FVIII-155/VWF-031,在5分鐘、8小時、24小時及48小時收集血液樣品,且對於FVIIIFc,在5分鐘、1小時、2小時、4小時、6小時及8小時收集血液樣品。藉由FVIII顯色分析測試血漿樣品之FVIII活性,且使用WinNonlin程式計算FVIII-155/VWF-031之半衰期。
第16B圖及表12B顯示FVIII-155/VWF-031相較於rFVIIIFc在DKO小鼠中之PK概況顯著改良:t1/2增加約6倍;且清除率及AUC增加約5倍。此結果證明FVIIIFc/VWF雜二聚體中之D’D3域保護FVIII部分免遭一些清除路徑,因此提供通常由全長VWF提供之一些保護。此結論亦在HemA小鼠中得以確認。當相較於HemA小鼠中之rFVIIIFc時,rFVIII-155/VWF-031已顯示較短 t1/2及較小AUC,意謂在此組態中,D’D3域(VWF-031)成功防止FVIII蛋白質(rFVIII-155)結合內源性VWF,內源性VWF在某種程度上具有半衰期延長性質、以及FVIII半衰期限制性質。全長VWF為250kDa,且形成多聚體以致內源性VWF可多達2MDa,且因此與此假設一致的是VWF之55kDa D’D3區域不提供通常由大得多之內源性VWF在此情形下提供之相同保護。因為VWF片段防止內源性VWF結合rFVIII-155/VWF-031,所以在此特定構築體中,在HemA小鼠中之半衰期降低。因此,表12B中之結果指示rFVIII-155/VWF-031分子能夠防止FVIII半衰期延長劑(內源性VWF)結合rFVIII-155/VWF-031。然而,實驗顯示移除FVIII半衰期限制因素已開闢延長FVIII蛋白質之半衰期超過先前所示之1.5倍或2倍的可能性。當FVIII與如第4圖中所示之其他半衰期延長元件組合時,可突破FVIII之2倍半衰期延長上限。
Figure 107124686-A0101-12-0228-430
實例12:FVIII/D’D3雜二聚體之D’D3-Fc連接子之最佳化(第13圖)
為使rFVIIIFc逃脫VWF清除路徑且消除2倍FVIII半衰期延長上限,已將VWF D’D3片段併入rFVIIIFc分子中(第2圖),從而產生FVIIIFc/VWF雜二聚體。為消除rFVIIIFc與內源性VWF之間的相互作用且使D’D3 FVIII保護潛力最大化,調整D’D3域與Fc區之間的連接子以允許最佳FVIII/D’D3結合。最佳性更大之連接子將使D’D3域對FVIII之保護大於最佳性較小之連接子構築體所達成之保護。此可藉由在FVIII/VWF DKO小鼠中流體動力學注射DNA構築體來測試。最佳性更大之構築體將產生FVIIIFc/D’D3雜二聚體之較高穩定狀態蛋白質表現。
對三種不同FVIIIFc/D’D3雜二聚體(第3圖,實例3)進行工程改造以選擇最佳連接子。D’D3域與Fc區之間可 能存在之連接子列於表13中。藉由流體動力學注射(「HDI」)在100μg/小鼠下將彼等DNA構築體投與至FVIII/VWF DKO小鼠中,且在HDI後48小時收集血漿樣品。藉由FVIII顯色分析來分析循環FVIIIFc/D’D3雜二聚體活性。
研究結果展示於第13圖中。在HDI後48小時,由FVIII-064及FVIII-159達到類似表現量,指示20aa連接子及35aa連接子促進類似之FVIII/D’D3相互作用程度。另一方面,FVIII-160顯示顯著高於FVIII-064之表現,意謂相較於20aa及35aa連接子,48aa連接子允許較佳FVIII/D’D3結合。
VWF片段與Fc區之間的最佳連接子為FVIIIFc/VWF雜二聚體之一個關鍵元件。發現最佳連接子將使FVIII與VWF片段之間的相互作用最佳化,防止FVIII結合內源性VWF,使FVIII能夠逃脫VWF清除路徑,且延長FVIII半衰期超過血漿VWF半衰期。
Figure 107124686-A0101-12-0229-431
實例13:單鏈FVIII穩定性
單鏈FVIII蛋白質可能比其雙鏈同功異型物更穩定。為測試此假設,製備兩種DNA構築體:FVIII-136(具有D’D3域之可加工FVIIIFc)及FVIII-148(具有D’D3域之單鏈(SC)FVIIIFc,其含有R1645A/R1648A突變以防止FVIII重鏈與輕鏈之間的裂解)。
藉由流體動力學注射將兩種質體投與至FVIII/VWF DKO小鼠中。在注射後24小時及48小時收集血漿樣品以量測兩種FVIIIFc/D’D3同功異型物之表現量。如第14圖中所示,在兩個時間點,藉由SC-FVIIIFc/D’D3構築體(FVIII-148)觀測到更佳表現趨勢(p=0.12,p=0.19),指示單鏈FVIII可能比其雙鏈同功異型物(FVIII-136)更穩定或更佳表現。將進一步研究兩種FVIII同功異型物之PK概況及其細胞培養表現量。單鏈FVIII同功異型物可潛在用於置換習知雙鏈同功異型物以達成更佳蛋白質產生及更佳活體內FVIII半衰期。
實例14. 聚乙二醇化
一或多個聚乙二醇(PEG)分子可連接在FVIII蛋白質之任何區域、VWF片段或兩者內。因為FVIII在其基於晶體結構之表面處不具有游離半胱胺酸(PDB:2R7E,Shen等人,Blood 111:1240(2008);PDB:3CDZ,Ngo,Structure,16:597-606(2008)),一種方法在於將含半胱胺酸肽(例如GGGSGCGGGS)(SEQ ID NO:107)插入FVIII蛋白質、VWF片段或兩者中或將該肽連接於FVIII蛋白質、VWF 片段或兩者。含有順丁烯二醯亞胺之PEG分子可接著特異性結合於在重組FVIII蛋白質上引入之半胱胺酸。簡言之,含有Cys插入物之重組FVIII蛋白質可藉由標準分子技術構築,且在哺乳動物表現系統(例如HEK293、CHO、BHK21、PER.C6及CAP細胞)中表現之重組FVIII蛋白質可經由親和層析及離子交換層析加以純化。純化之重組FVIII蛋白質藉由Tris(2-羧乙基)膦(TCEP)還原以暴露所引入半胱胺酸之硫醇基且接著與順丁烯二醯亞胺PEG反應。測試所得重組FVIII蛋白質之促凝血活性及延長半衰期。
PEG連接於以全文引用的方式併入本文中之美國申請案第61/670,553號中揭露之至少一個位置或其他適合插入位點。使用FVIII顯色分析來分析聚乙二醇化重組FVIII蛋白質之FVIII活性。如上所述分析聚乙二醇化重組FVIII蛋白質在HemA小鼠及FVIII-VWF DKO小鼠中之PK。
實例15:FVIII在HemA及FVIII/VWF雙重基因剔除(DKO)血漿中之穩定性
測試不同FVIIIFc融合物在HemA或FVIII/VWF雙重基因剔除(DKO)血漿中之血漿穩定性。對於穩定性分析,5IU/ml之各種FVIIIFc蛋白質在37℃下與小鼠HemA或DKO血漿一起培育。在不同時間點收集等分試樣以藉由FVIII顯色分析量測活性。一式兩份量測在各時間點之活 性且將平均活性隨時間變化繪圖。
對於FVIIIFc免疫沈澱分析,5μg FVIIIFc與250μl PBS或小鼠DKO血漿一起在37℃下培育24小時。藉由添加5μg綿羊抗FVIII多株抗體(ab61370)(在室溫下持續1小時)及100μl蛋白質A珠粒來使FVIIIFc免疫沈澱。在4×1ml PBS洗滌之後,將珠粒再懸浮於50μl 1×還原性SDS-PAGE緩衝液中。在沸騰之後,將20μl樣品(亦即約1μg FVIIIFc)裝載於4-15% Bio-Rad無染色劑凝膠上。凝膠藉由Bio-rad系統成像,隨後用FVIII抗重鏈抗體(GMA012)進行西方分析。
FVIIIFc(雙鏈FVIII分子,其具有藉由非共價相互作用結合在一起之各別FVIII重鏈及輕鏈)在HemA血漿與DKO血漿兩者中之活性均隨時間降低(第18A圖)。由於缺乏VWF介導之保護,FVIIIFc在DKO血漿中之活性損失更顯著。此FVIII活性損失主要歸因於FVIII重鏈(HC)解離或降解。在於DKO血漿中培育24小時之後觀測到FVIIIFc重鏈減少約75%(第18B圖)。未觀測到輕鏈(LC)(資料未展示)或非加工/單鏈FVIIIFc(亦即輕鏈與重鏈仍然共價結合在一起之FVIII分子-凝膠照片中之頂部色帶)有顯著減少(第18B圖)。
因為提出VWF會增加FVIII在活體內之穩定性,所以吾人測試是否嵌合蛋白-FVIII-VWF雜二聚體(FVIII155:VWF31,其具有經由Fc共價連接於FVIII之VWF D’D3)在Hem A及DKO血漿中更穩定。根據第19 圖中所示之血漿穩定性資料,D’D3之存在使FVIIIFc在HemA血漿與DKO血漿兩者中之穩定性均增加。無D’D3之單鏈FVIIIFc用作此等實驗中之對照(scFVIII)。根據第19圖,單鏈FVIII比雙鏈FVIIIFc更穩定;然而,D’D3之存在進一步顯著增加單鏈FVIIIFc分子之血漿穩定性。此表明D’D3不僅藉由將重鏈與輕鏈結合在一起而且亦經由一些其他未知機制來使FVIII穩定化。
實例16:使用弗林蛋白酶/PACE進行VWF加工
VWF在其含有極大肽原(亦即VWF之D1D2域,約85kDa)之意義上為一種獨特蛋白質。VWF肽原充當用於VWF分子之適當折疊之內部伴隨蛋白。測試兩種酶之VWF加工-PC5及弗林蛋白酶(PACE)。VWF031構築體(D1D2D’D3Fc)與各種濃度之PC5或PACE短暫共轉染於HEK293細胞中。在四天之後,收集組織培養基且使其經受蛋白質A下拉(pull down)。即使在較低濃度(2.5%)下,弗林蛋白酶(PACE)亦比10% PC5更高效自D’D3Fc移除肽原(D1D2)(第20圖)。移除D1D2為重要的,因為D1D2之存在已牽涉於妨礙D’D3與FVIII之相互作用。
實例17:FVIII-VWF雜二聚體中之VWF片段防止FVIII與全長VWF相互作用
ForteBio octet儀器用於測試FVIII構築體155/VWF31雜二聚體與全長VWF之結合(第21A圖)。對 於結合分析,藉由使用APS感測器捕捉全長VWF,隨後用1% BSA阻斷。在阻斷之後,測試不同FVIII構築體之VWF結合。如所預測,野生型FVIII及FVIIIFc強烈結合VWF感測器。已知對VWF具有較低或不具有親和力之FVIII Y1680F突變體顯示顯著降低之VWF結合。FVIII155/VWF31雜二聚體完全不結合全長VWF,從而確認FVIII受FVIII-VWF雜二聚體中之D’D3遮蔽。
以相反定向進行相同實驗以確定FVIII-VWF雜二聚體中之D’D3部分是否可與未共價連接於D’D3之其他FVIII分子相互作用。如第21B圖中所示,當固定於蛋白質G感測器上時,單獨VWF31(D’D3Fc)構築體可強烈結合FVIII,然而,FVIII155:VWF31雜二聚體中之D’D3對FVIII不顯示任何結合。具有FVIII之單獨蛋白質G用作對照。此等結合實驗確認雜二聚體中之D’D3可僅與一個與其共價連接之FVIII分子相互作用且防止FVIII與全長野生型VWF分子相互作用。
為測定VWF D’D3對FVIII分子之精確結合親和力,用VWF031進行表面電漿共振實驗(第22圖)。藉由使用抗人類IgG捕捉VWF031構築體(D’D3Fc)且使B域缺失之FVIII穿過含D’D3Fc晶片。觀測到FVIII之KD為約10nM。相較於全長野生型VWF分子,此親和力低約25倍且類似於先前在文獻中所報導者。
實例18:D’D3與Fc之間的不同連接子長度對雜二聚體 活性及PK之影響
為檢查改變D’D3與Fc之間的凝血酶可裂解連接子之長度是否對FVIII-VWF雜二聚體之PK及活性具有任何影響,使不同VWF構築體連同FVIII 155一起共表現。測試列於表14A中之三種不同連接子長度構築體(VWF031、VWF035及VWF036)。各質體與FVIII155質體(實例5)混合且轉染入HEK293細胞中。在轉染後第四天,收集細胞培養基且濃縮至10IU/ml FVIII顯色活性。
接著在100IU/10mL/kg劑量下將濃縮細胞培養基投與至8-12週齡之FVIII/VWF DKO小鼠中。在給藥後5分鐘、8小時、16小時、24小時、32小時及48小時收集血漿樣品。藉由FVIII顯色分析來分析血漿樣品之FVIII活性且使用WinNonlin-Phoenix程式計算半衰期。
如第23圖中所示,當D’D3與Fc片段之間的連接子長度自48 aa增加至73 aa或98 aa時,相應FVIIIFc/VWF雜二聚體之半衰期增加且分別達到12.2小時及13.3小時。此表示超過48 aa長度之變異體增加1.5至1.6倍。迄今為止,98 aa連接子為用以利用D’D3片段之FVIII保護活性之最佳連接子,且其將併入FVIIIFc/VWF雜二聚體中以進一步改良其半衰期。
為比較連接子對FVIII活性之影響,對表現不同FVIII-VWF雜二聚體之細胞之組織培養基進行FVIII顯色分析及aPTT分析。儘管aPTT活性相較於雜二聚體構築體之顯色活性降低2倍,但在各種連接子之間未見顯著差 異,除當連接子亦緊接於凝血酶位點含有PAR1位點時之外(表14B)。
Figure 107124686-A0101-12-0236-432
Figure 107124686-A0101-12-0236-433
實例19:使用分選酶連接FVIII與VWF片段
在另一態樣中,藉由使用分選酶介導之活體外蛋白質連接方法將VWF片段(例如D1D2D’D3或D’D3域)連接於FVIII。在一個實例中,將金黃色葡萄球菌(Staphylococcus aureus)分選酶A(LPXTG)識別基元引入VWF片段之C末端處及在FVIII之N末端處之Gly(n)殘基處(其中甘胺酸殘基之數目可變)。所用FVIII分子可為單鏈或雙鏈。分選酶催化之轉肽反應將使VWF片段共價連接於FVIII。識別基元之相反定向亦可用於連接此兩種蛋白質,其中吾人使FVIII在N末端具有LPXTG基元且使VWF片段在C末端具有Gly(n)(參見第24圖-供參考之分選酶連接之實例)。LPXTG基元及甘胺酸殘基可經其他分選酶識別序列置換。
亦製備含有分選酶A識別序列之VWF片段Fc融合蛋白。對於Fc融合構築體,VWF D1D2D’D3片段經由含有分選酶識別序列及凝血酶裂解位點之GS連接子與IgG之Fc區融合(表15及16)。一旦表現且在蛋白質A管柱上純化蛋白質,Fc區即可藉由凝血酶裂解加以移除。所得具有分選酶A識別位點之VWF片段可接著用於與FVIII分子連接(第24圖-供參考之分選酶連接之實例-E列)。
pSYN-VWF-051在VWF片段與Fc區之間具有含54個胺基酸之具有分選酶及凝血酶位點之連接子。編碼含54個胺基酸之連接子(ISGGGGSGGG GSGGGGSGGG GSGGGGSGGG GSLPETGALR PRVVGGGGSG GGGS)(SEQ ID NO:98)及一部分Fc區之DNA片段的合成被外包(Genewiz序列編號10-210746313,以下顯示)。將Genewiz構築體之片段次選殖入經EcoRV/RsRII消化之pSYN-VWF-031中。
Genewiz序列編號10-210746313(SEQ ID NO:99)
Figure 107124686-A0101-12-0238-434
含有N末端五甘胺酸之單鏈FVIII之序列展示於表17及18中。
表15:pSYN-VWF051(在VWF片段與Fc之間具有分選酶A識別基元及凝血酶可裂解連接子之VWF D1D2D’D3Fc)之核苷酸序列(SEQ ID NO:100)
Figure 107124686-A0101-12-0239-435
Figure 107124686-A0101-12-0240-436
Figure 107124686-A0101-12-0241-437
表16:VWF051(在VWF片段與Fc之間具有分選酶A識別基元及凝血酶可裂解連接子之VWF D1D2D’D3Fc;分選酶A位點用粗體顯示)之蛋白質序列(SEQ ID NO:101)
Figure 107124686-A0101-12-0242-438
表17:FVIII 265(在N末端具有五甘胺酸之FVIII單鏈分子)之核苷酸序列(SEQ ID NO:102)
Figure 107124686-A0101-12-0243-439
Figure 107124686-A0101-12-0244-440
Figure 107124686-A0101-12-0245-441
Figure 107124686-A0101-12-0245-442
實例20:FVIII198在HemA及FVIII/VWF雙重基因剔除(DKO)血漿中之血漿穩定性及PK
比較FVIII 198(其為含有部分B域之單鏈FVIIIFc分子-226N6;其中226表示FVIII B域之N末端226個胺基酸且N6表示B域中之六個N-糖基化位點)與單鏈FVIIIFc(FVIII 155/Fc)在FVIII/VWF雙重基因剔除(DKO)血漿中之血漿穩定性。FVIII155及FVIII198之圖解表示可見於第25圖中。
對於穩定性分析,5IU/ml之FVIII 198或FVIIIFc蛋白質在37℃下與小鼠或DKO血漿一起培育。在不同時間點收集等分試樣以藉由FVIII顯色分析進行活性量測。一式兩份量測在各時間點之活性且將平均活性隨時間變化繪圖。在穩定性分析中,部分B域之存在使單鏈FVIIIFc之穩定性增加(第26A圖)。
亦在DKO小鼠中比較FVIII 198(單鏈-B226N6)與FVIII155(單鏈B域缺失之FVIII)之半衰期。相較於FVIII155,FVIII 198之半衰期長至少約1.5倍(第26B圖)。此等實驗表明FVIII穩定性與其活體內半衰期之間可能存在關連。
FVIII198核苷酸序列(具有部分B域之FVIIIFc,226N6)(SEQ ID NO:104)
Figure 107124686-A0101-12-0246-443
Figure 107124686-A0101-12-0247-444
Figure 107124686-A0101-12-0248-445
Figure 107124686-A0101-12-0249-446
FVIII 198蛋白質序列(SEQ ID NO:105)
Figure 107124686-A0101-12-0249-447
Figure 107124686-A0101-12-0250-448
實例21. 表現VWF之D1D2蛋白質
D’D3域之適當折疊為其結合FVIII所必需。VWF肽原(D1D2-胺基酸1-763)為高效二硫鍵形成及D’D3折疊所需。其充當D’D3折疊之內部伴隨蛋白。製備VWF片段之VWF構築體可經表現,其中VWF肽原(亦即D1D2域)直接連接於D’D3域且在D’D3之常規細胞內加工期間經移除(亦即以順式);或其可自其他質體表現,亦即以反式。吾人以D1D2可以順式或反式表現之方式設計FVIII-VWF雜二聚體。
選殖VWF 053:VWF 053純系表現VWF肽原(D1D2域)以便以反式表現D1D2。使用ESC 54及ESC124自全長PCR擴增VWF肽原。
ESC54-VWF(正向),具有BsiW1位點(SEQ ID NO:111) (CGCTTCGCGACGTACGGCCGCCACCATGATTCCTGCCAGATTTGCCGGGGTGCTGCTTGCTC)
ESC 124-D1D2選殖寡聚物,具有Not1位點-反向(SEQ ID NO:112) (CTAGACTCGAGCGGCCGCTCACCTTTTGCTGCGATGAGACAGGGGACTGCTGAGGACAGC)
PCR產物用BsiW1及Not1消化且連接入經BsiW1/Not1消化之pCDNA 4中。
VWF 053(VWF D1D2肽原)之核苷酸序列(SEQ ID NO:113)
Figure 107124686-A0101-12-0252-449
Figure 107124686-A0101-12-0253-450
VWF 053(VWF D1D2肽原)之蛋白質序列(SEQ ID NO:114)
Figure 107124686-A0101-12-0253-451
對特定實施例之上文描述將充分揭示本發明之一般特性以致他人可在不脫離本發明之一般概念下,在不進行過度實驗下,藉由應用此項技術之技能內之知識而容易地修改及/或改適以達成此等特定實施例之各種應用。因此,此等改適及修改意欲在基於本文呈現之教示及指導所揭露之實施例之等效物的含義及範圍內。應瞭解本文之措辭或術語係出於描述而非限制目的,因此本說明書之術語或措辭應由熟練技術人員根據教示及指導加以解釋。
本發明之其他實施例將為熟習此項技術者藉由考慮本文揭露之本發明之說明書及實施而顯而易知。意欲說明書及實例被視為僅具有示範性,且本發明之真實範疇及精神由以下申請專利範圍指示。
本文引用之所有專利及公開案皆以全文引用的方式併入本文中。
<110> 美商百歐維拉提夫治療公司 (Bioverativ Therapeutics Inc)
<120> 嵌合因子VIII多肽及其用途
<140>
<141> 2013-01-13
<150> US 61/586,099
<151> 2012-01-12
<150> US 61/586,654
<151> 2012-01-13
<150> US 61/667,901
<151> 2012-07-03
<150> US 61/734,954
<151> 2012-12-07
<160> 114
<170> PatentIn 3.5版
<210> 1
<211> 16842
<212> DNA
<213> 智人
<400> 1
Figure 107124686-A0101-12-0255-452
Figure 107124686-A0101-12-0256-453
Figure 107124686-A0101-12-0257-454
Figure 107124686-A0101-12-0258-455
Figure 107124686-A0101-12-0259-456
Figure 107124686-A0101-12-0260-457
Figure 107124686-A0101-12-0261-458
Figure 107124686-A0101-12-0262-459
Figure 107124686-A0101-12-0263-460
Figure 107124686-A0101-12-0264-461
Figure 107124686-A0101-12-0265-462
Figure 107124686-A0101-12-0266-463
Figure 107124686-A0101-12-0267-464
Figure 107124686-A0101-12-0268-465
<210> 2
<211> 2813
<212> PRT
<213> 智人
<220>
<221> misc_feature
<222> (1)..(22)
<223> VWF信號肽
<220>
<221> misc_feature
<222> (23)..(763)
<223> VWF D1D2區域
<220>
<221> misc_feature
<222> (764)..(866)
<223> VWF D’域
<220>
<221> misc_feature
<222> (867)..(1240)
<223> VWF D3域
<220>
<221> misc_feature
<222> (1241)..(1479)
<223> VWF A1域
<220>
<221> misc_feature
<222> (2016)..(2016)
<223> Xaa可為任何天然存在之胺基酸
<400> 2
Figure 107124686-A0101-12-0269-466
Figure 107124686-A0101-12-0270-467
Figure 107124686-A0101-12-0271-468
Figure 107124686-A0101-12-0272-469
Figure 107124686-A0101-12-0273-470
Figure 107124686-A0101-12-0274-471
Figure 107124686-A0101-12-0275-472
Figure 107124686-A0101-12-0276-473
Figure 107124686-A0101-12-0277-474
Figure 107124686-A0101-12-0278-475
Figure 107124686-A0101-12-0279-476
Figure 107124686-A0101-12-0280-477
Figure 107124686-A0101-12-0281-478
Figure 107124686-A0101-12-0282-479
Figure 107124686-A0101-12-0283-480
Figure 107124686-A0101-12-0284-481
Figure 107124686-A0101-12-0285-482
Figure 107124686-A0101-12-0286-483
<210> 3
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 多肽
<400> 3
Figure 107124686-A0101-12-0286-484
<210> 4
<211> 7
<212> PRT
<213> 人工
<220>
<223> 多肽
<400> 4
Figure 107124686-A0101-12-0286-485
<210> 5
<211> 8
<212> PRT
<213> 人工
<220>
<223> 多肽
<400> 5
Figure 107124686-A0101-12-0287-486
<210> 6
<211> 8
<212> PRT
<213> 人工
<220>
<223> 多肽
<400> 6
Figure 107124686-A0101-12-0287-487
<210> 7
<211> 8
<212> PRT
<213> 人工
<220>
<223> 多肽
<400> 7
Figure 107124686-A0101-12-0287-488
<210> 8
<211> 20
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 8
Figure 107124686-A0101-12-0288-489
<210> 9
<211> 20
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 9
Figure 107124686-A0101-12-0288-490
<210> 10
<211> 20
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 10
Figure 107124686-A0101-12-0288-491
<210> 11
<211> 19
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 11
Figure 107124686-A0101-12-0289-492
<210> 12
<211> 20
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 12
Figure 107124686-A0101-12-0289-493
<210> 13
<211> 24
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 13
Figure 107124686-A0101-12-0290-494
<210> 14
<211> 20
<212> PRT
<213> 人工
<220>
<223> PAS序列
<400> 14
Figure 107124686-A0101-12-0290-495
<210> 15
<211> 19
<212> PRT
<213> 人工
<220>
<223> FVIII信號肽
<400> 15
Figure 107124686-A0101-12-0290-496
<210> 16
<211> 2332
<212> PRT
<213> 智人
<400> 16
Figure 107124686-A0101-12-0291-497
Figure 107124686-A0101-12-0292-498
Figure 107124686-A0101-12-0293-499
Figure 107124686-A0101-12-0294-500
Figure 107124686-A0101-12-0295-501
Figure 107124686-A0101-12-0296-502
Figure 107124686-A0101-12-0297-503
Figure 107124686-A0101-12-0298-504
Figure 107124686-A0101-12-0299-505
Figure 107124686-A0101-12-0300-506
Figure 107124686-A0101-12-0301-507
Figure 107124686-A0101-12-0302-508
Figure 107124686-A0101-12-0303-509
Figure 107124686-A0101-12-0304-510
<210> 17
<211> 7053
<212> DNA
<213> 智人
<400> 17
Figure 107124686-A0101-12-0305-511
Figure 107124686-A0101-12-0306-512
Figure 107124686-A0101-12-0307-513
Figure 107124686-A0101-12-0308-514
Figure 107124686-A0101-12-0309-515
Figure 107124686-A0101-12-0310-516
<210> 18
<211> 1438
<212> PRT
<213> 人工
<220>
<223> BDD FVIII
<400> 18
Figure 107124686-A0101-12-0310-517
Figure 107124686-A0101-12-0311-518
Figure 107124686-A0101-12-0312-519
Figure 107124686-A0101-12-0313-520
Figure 107124686-A0101-12-0314-521
Figure 107124686-A0101-12-0315-522
Figure 107124686-A0101-12-0316-523
Figure 107124686-A0101-12-0317-524
Figure 107124686-A0101-12-0318-525
Figure 107124686-A0101-12-0319-526
<210> 19
<211> 4371
<212> DNA
<213> 人工
<220>
<223> BDD FVIII
<400> 19
Figure 107124686-A0101-12-0319-527
Figure 107124686-A0101-12-0320-528
Figure 107124686-A0101-12-0321-529
Figure 107124686-A0101-12-0322-530
<210> 20
<211> 500
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 20
Figure 107124686-A0101-12-0322-531
Figure 107124686-A0101-12-0323-532
Figure 107124686-A0101-12-0324-533
Figure 107124686-A0101-12-0325-534
<210> 21
<211> 800
<212> PRT
<213> 人工
<220>
<223> 連接子
<220>
<221> 重複序列
<222> (1)..(300)
<223> Gly-Gly-Ser重複1至100次
<220>
<221> 重複序列
<222> (301)..(800)
<223> Gly-Gly-Gly-Gly-Ser重複1至100次
<400> 21
Figure 107124686-A0101-12-0326-535
Figure 107124686-A0101-12-0327-536
Figure 107124686-A0101-12-0328-160
Figure 107124686-A0101-12-0329-161
Figure 107124686-A0101-12-0330-162
<210> 22
<211> 7
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 22
Figure 107124686-A0101-12-0331-163
<210> 23
<211> 15
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 23
Figure 107124686-A0101-12-0331-164
<210> 24
<211> 16
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 24
Figure 107124686-A0101-12-0331-165
<210> 25
<211> 18
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 25
Figure 107124686-A0101-12-0332-166
<210> 26
<211> 15
<212> PRT
<213> 人工
<220>
<223> 連接子
<220>
<221> 重複序列
<222> (1)..(15)
<223> Gly-Gly-Gly-Gly-Ser重複1至3次
<400> 26
Figure 107124686-A0101-12-0332-167
<210> 27
<211> 100
<212> PRT
<213> 人工
<220>
<223> 連接子
<220>
<221> 重複序列
<222> (1)..(100)
<223> Gly-Gly-Gly-Gly-Ser重複1至20次
<400> 27
Figure 107124686-A0101-12-0333-168
<210> 28
<211> 15
<212> PRT
<213> 人工
<220>
<223> 連接子
<220>
<221> 重複序列
<222> (1)..(15)
<223> Gly-Gly-Gly-Gly-Ser重複1至3次
<400> 28
Figure 107124686-A0101-12-0334-169
<210> 29
<211> 7
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FXIa裂解位點
<400> 29
Figure 107124686-A0101-12-0334-170
<210> 30
<211> 7
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FXIa裂解位點
<400> 30
Figure 107124686-A0101-12-0334-171
<210> 31
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FXIIa裂解位點
<400> 31
Figure 107124686-A0101-12-0335-172
<210> 32
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> 胰舒血管素裂解位點
<400> 32
Figure 107124686-A0101-12-0335-173
<210> 33
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FVIIa裂解位點
<400> 33
Figure 107124686-A0101-12-0336-174
<210> 34
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FIXa裂解位點
<400> 34
Figure 107124686-A0101-12-0336-175
<210> 35
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FXa裂解位點
<400> 35
Figure 107124686-A0101-12-0337-176
<210> 36
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> FIIa(凝血酶)裂解位點
<400> 36
Figure 107124686-A0101-12-0337-177
<210> 37
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> 彈性蛋白酶-2裂解位點
<400> 37
Figure 107124686-A0101-12-0338-178
<210> 38
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> 粒酶-B裂解位點
<400> 38
Figure 107124686-A0101-12-0338-179
<210> 39
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> MMP-12裂解位點
<400> 39
Figure 107124686-A0101-12-0339-180
<210> 40
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> MMP-13裂解位點
<400> 40
Figure 107124686-A0101-12-0339-181
<210> 41
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> MMP-17裂解位點
<400> 41
Figure 107124686-A0101-12-0339-182
<210> 42
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> MMP-20裂解位點
<400> 42
Figure 107124686-A0101-12-0340-183
<210> 43
<211> 7
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (6)..(7)
<223> TEV裂解位點
<400> 43
Figure 107124686-A0101-12-0340-184
<210> 44
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> 腸激酶裂解位點
<400> 44
Figure 107124686-A0101-12-0341-185
<210> 45
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (6)..(7)
<223> 蛋白酶C(PRESCISSION)裂解位點
<400> 45
Figure 107124686-A0101-12-0341-186
<210> 46
<211> 8
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<220>
<221> misc_feature
<222> (4)..(5)
<223> 分選酶A
<400> 46
Figure 107124686-A0101-12-0342-187
<210> 47
<211> 9
<212> PRT
<213> 人工
<220>
<223> 可裂解連接子
<400> 47
Figure 107124686-A0101-12-0342-188
<210> 48
<211> 10
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 48
Figure 107124686-A0101-12-0342-189
<210> 49
<211> 10
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 49
Figure 107124686-A0101-12-0343-190
<210> 50
<211> 7
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 50
Figure 107124686-A0101-12-0343-191
<210> 51
<211> 10
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 51
Figure 107124686-A0101-12-0343-192
<210> 52
<211> 4
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 52
Figure 107124686-A0101-12-0344-193
<210> 53
<211> 6
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 53
Figure 107124686-A0101-12-0344-194
<210> 54
<211> 5
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 54
Figure 107124686-A0101-12-0344-195
<210> 55
<211> 5
<212> PRT
<213> 人工
<220>
<223> 裂解位點
<400> 55
Figure 107124686-A0101-12-0345-196
<210> 56
<211> 25
<212> PRT
<213> 人工
<220>
<223> 裂解及連接子位點
<400> 56
Figure 107124686-A0101-12-0345-197
<210> 57
<211> 99
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-001之具有VIII信號及BsiW1位點之ESC48-Fwd-VWF-D’D3
<400> 57
Figure 107124686-A0101-12-0345-198
<210> 58
<211> 68
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-001之具有6 His及Not1位點之ESC50-Rev-VWF-部分D’D3(1-276胺基酸)
<400> 58
Figure 107124686-A0101-12-0346-199
<210> 59
<211> 99
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-002之具有VIII信號及BsiW1位點之ESC48-Fwd-VWF-D’D3
<400> 59
Figure 107124686-A0101-12-0346-200
<210> 60
<211> 71
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-002之具有6His及Not 1位點之ESC51-Rev-VWF D’D3(1-477胺基酸)
<400> 60
Figure 107124686-A0101-12-0346-201
<210> 61
<211> 99
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-003之具有VIII信號及BsiW1位點之ESC48-Fwd-VWF-D’D3
<400> 61
Figure 107124686-A0101-12-0347-202
<210> 62
<211> 65
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-003之具有6His及Not1位點之ESC52-Rev-VWF-D’D3部分A1(1-511胺基 酸)
<400> 62
Figure 107124686-A0101-12-0347-203
<210> 63
<211> 99
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-004之具有VIII信號及BsiW1位點之ESC48-Fwd-VWF-D’D3
<400> 63
Figure 107124686-A0101-12-0347-204
<210> 64
<211> 65
<212> DNA
<213> 人工
<220>
<223> pSYN VWF-004之具有6His及Not1位點之ESC53-Rev-VWF-D’D3A1(1-716胺基酸)
<400> 64
Figure 107124686-A0101-12-0348-205
<210> 65
<211> 1313
<212> DNA
<213> 人工
<220>
<223> 選殖載體
<400> 65
Figure 107124686-A0101-12-0348-206
Figure 107124686-A0101-12-0349-207
<210> 66
<211> 32
<212> DNA
<213> 人工
<220>
<223> 具有Nhe1位點之ESC 89-fwd
<400> 66
Figure 107124686-A0101-12-0349-208
<210> 67
<211> 43
<212> DNA
<213> 人工
<220>
<223> 具有Sal1之ESC 91-rev
<400> 67
Figure 107124686-A0101-12-0349-209
<210> 68
<211> 92
<212> DNA
<213> 人工
<220>
<223> 具有FVIII信號序列及BsiW1位點之LW 22-FWD-VWF-D’D3
<400> 68
Figure 107124686-A0101-12-0350-210
<210> 69
<211> 47
<212> DNA
<213> 人工
<220>
<223> 具有終止密碼子及Not1位點之LW 23-Rev-Fc
<400> 69
Figure 107124686-A0101-12-0350-211
<210> 70
<211> 41
<212> DNA
<213> 人工
<220>
<223> 具有BsiW1位點之LW24-Fwd-VWF D1D2D’D3選殖寡聚物
<400> 70
Figure 107124686-A0101-12-0350-212
<210> 71
<211> 41
<212> DNA
<213> 人工
<220>
<223> 具有EcoRV之LW27-Rev-VWF D’D3寡聚物
<400> 71
Figure 107124686-A0101-12-0351-213
<210> 72
<211> 1240
<212> PRT
<213> 人工
<220>
<223> VWF-D1D2D’D3
<400> 72
Figure 107124686-A0101-12-0351-214
Figure 107124686-A0101-12-0352-215
Figure 107124686-A0101-12-0353-216
Figure 107124686-A0101-12-0354-217
Figure 107124686-A0101-12-0355-218
Figure 107124686-A0101-12-0356-219
Figure 107124686-A0101-12-0357-220
Figure 107124686-A0101-12-0358-221
<210> 73
<211> 477
<212> PRT
<213> 人工
<220>
<223> VWF-D’D3
<400> 73
Figure 107124686-A0101-12-0358-222
Figure 107124686-A0101-12-0359-223
Figure 107124686-A0101-12-0360-224
Figure 107124686-A0101-12-0361-225
<210> 74
<211> 30
<212> PRT
<213> 人工
<220>
<223> VWF-D’D3域(1-477aa;C336A/C379A突變)
<220>
<221> 重複序列
<222> (1)..(30)
<223> Gly-Gly-Gly-Gly-Ser重複6次
<400> 74
Figure 107124686-A0101-12-0361-226
<210> 75
<211> 5
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 75
Figure 107124686-A0101-12-0362-227
<210> 76
<211> 6
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 76
Figure 107124686-A0101-12-0362-228
<210> 77
<211> 24
<212> DNA
<213> 人工
<220>
<223> 具有Cla1之ESC17-Fwd-VWF選殖寡聚物
<400> 77
Figure 107124686-A0101-12-0362-229
<210> 78
<211> 31
<212> DNA
<213> 人工
<220>
<223> 具有EcoRV之ESC41-Rev-VWF
<400> 78
Figure 107124686-A0101-12-0363-230
<210> 79
<211> 105
<212> DNA
<213> 人工
<220>
<223> 具有EcoRV位點之ESC78-Fwd
<400> 79
Figure 107124686-A0101-12-0363-231
<210> 80
<211> 107
<212> DNA
<213> 人工
<220>
<223> 具有RsRII位點之ESC79-Rev
<400> 80
Figure 107124686-A0101-12-0363-232
<210> 81
<211> 48
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 81
Figure 107124686-A0101-12-0364-233
<210> 82
<211> 1781
<212> DNA
<213> 人工
<220>
<223> pSYN-FVIII-049,其為在兩個Fc域之間具有可裂解連接子之FVIII-Fc構築體; Genscript序列編號103069
<400> 82
Figure 107124686-A0101-12-0364-234
Figure 107124686-A0101-12-0365-235
<210> 83
<211> 220
<212> DNA
<213> 人工
<220>
<223> 將Genscript構築體之片段次選殖入經EcoRV/RsRII消化之pSYN-FVIII-0159 中;Genscript序列編號132601
<400> 83
Figure 107124686-A0101-12-0366-236
<210> 84
<211> 73
<212> PRT
<213> 人工
<220>
<223> pSYN-VIII-178在VWF片段與Fc區域之間具有含73個胺基酸之連接子;編碼含73 個胺基酸之連接子之DNA片段的合成
<400> 84
Figure 107124686-A0101-12-0366-237
Figure 107124686-A0101-12-0367-238
<210> 85
<211> 299
<212> DNA
<213> 人工
<220>
<223> Genscript序列編號144849
<400> 85
Figure 107124686-A0101-12-0367-239
<210> 86
<211> 98
<212> PRT
<213> 人工
<220>
<223> 連接子
<400> 86
Figure 107124686-A0101-12-0367-240
Figure 107124686-A0101-12-0368-241
<210> 87
<211> 380
<212> DNA
<213> 人工
<220>
<223> Genscript序列編號144849
<400> 87
Figure 107124686-A0101-12-0368-242
<210> 88
<211> 2449
<212> PRT
<213> 人工
<220>
<223> FVIII-VWF-Fc雜二聚體
<400> 88
Figure 107124686-A0101-12-0369-243
Figure 107124686-A0101-12-0370-244
Figure 107124686-A0101-12-0371-245
Figure 107124686-A0101-12-0372-246
Figure 107124686-A0101-12-0373-247
Figure 107124686-A0101-12-0374-248
Figure 107124686-A0101-12-0375-249
Figure 107124686-A0101-12-0376-250
Figure 107124686-A0101-12-0377-251
Figure 107124686-A0101-12-0378-252
Figure 107124686-A0101-12-0379-253
Figure 107124686-A0101-12-0380-254
Figure 107124686-A0101-12-0381-255
Figure 107124686-A0101-12-0382-256
Figure 107124686-A0101-12-0383-257
<210> 89
<211> 48
<212> PRT
<213> 人工
<220>
<223> 含48個胺基酸之連接子
<400> 89
Figure 107124686-A0101-12-0383-258
Figure 107124686-A0101-12-0384-259
<210> 90
<211> 1665
<212> PRT
<213> 人工
<220>
<223> pSYN-FVIII-155成熟蛋白質
<400> 90
Figure 107124686-A0101-12-0384-260
Figure 107124686-A0101-12-0385-261
Figure 107124686-A0101-12-0386-262
Figure 107124686-A0101-12-0387-263
Figure 107124686-A0101-12-0388-264
Figure 107124686-A0101-12-0389-265
Figure 107124686-A0101-12-0390-266
Figure 107124686-A0101-12-0391-267
Figure 107124686-A0101-12-0392-268
Figure 107124686-A0101-12-0393-269
Figure 107124686-A0101-12-0394-270
<210> 91
<211> 5052
<212> DNA
<213> 人工
<220>
<223> pSYN-FVIII-155
<400> 91
Figure 107124686-A0101-12-0394-271
Figure 107124686-A0101-12-0395-272
Figure 107124686-A0101-12-0396-273
Figure 107124686-A0101-12-0397-274
Figure 107124686-A0101-12-0398-275
<210> 92
<211> 19
<212> PRT
<213> 人工
<220>
<223> GFVIII-159
<400> 92
Figure 107124686-A0101-12-0398-276
<210> 93
<211> 34
<212> PRT
<213> 人工
<220>
<223> GFVIII-160
<400> 93
Figure 107124686-A0101-12-0398-277
Figure 107124686-A0101-12-0399-278
<210> 94
<211> 48
<212> PRT
<213> 人工
<220>
<223> FVIII-064
<400> 94
Figure 107124686-A0101-12-0399-279
<210> 95
<211> 48
<212> PRT
<213> 人工序列
<220>
<223> VWF031
<400> 95
Figure 107124686-A0101-12-0399-280
Figure 107124686-A0101-12-0400-281
<210> 96
<211> 73
<212> PRT
<213> 人工序列
<220>
<223> VWF035
<400> 96
Figure 107124686-A0101-12-0400-282
<210> 97
<211> 98
<212> PRT
<213> 人工序列
<220>
<223> VWF036
<400> 97
Figure 107124686-A0101-12-0401-283
<210> 98
<211> 54
<212> PRT
<213> 人工序列
<220>
<223> pSYN-VWF-051連接子
<400> 98
Figure 107124686-A0101-12-0401-284
Figure 107124686-A0101-12-0402-285
<210> 99
<211> 232
<212> DNA
<213> 人工序列
<220>
<223> Genewiz序列編號10-210746313
<400> 99
Figure 107124686-A0101-12-0402-286
<210> 100
<211> 4566
<212> DNA
<213> 人工序列
<220>
<223> pSYN-VWF051
<400> 100
Figure 107124686-A0101-12-0402-287
Figure 107124686-A0101-12-0403-288
Figure 107124686-A0101-12-0404-289
Figure 107124686-A0101-12-0405-290
Figure 107124686-A0101-12-0406-291
<210> 101
<211> 1521
<212> PRT
<213> 人工序列
<220>
<223> VWF051
<400> 101
Figure 107124686-A0101-12-0406-292
Figure 107124686-A0101-12-0407-293
Figure 107124686-A0101-12-0408-294
Figure 107124686-A0101-12-0409-295
Figure 107124686-A0101-12-0410-296
Figure 107124686-A0101-12-0411-297
Figure 107124686-A0101-12-0412-298
Figure 107124686-A0101-12-0413-299
Figure 107124686-A0101-12-0414-300
Figure 107124686-A0101-12-0415-301
<210> 102
<211> 4389
<212> DNA
<213> 人工序列
<220>
<223> FVIII 265
<400> 102
Figure 107124686-A0101-12-0415-302
Figure 107124686-A0101-12-0416-303
Figure 107124686-A0101-12-0417-304
Figure 107124686-A0101-12-0418-305
Figure 107124686-A0101-12-0419-306
<210> 103
<211> 1462
<212> PRT
<213> 人工序列
<220>
<223> FVIII 265
<400> 103
Figure 107124686-A0101-12-0419-307
Figure 107124686-A0101-12-0420-308
Figure 107124686-A0101-12-0421-309
Figure 107124686-A0101-12-0422-310
Figure 107124686-A0101-12-0423-311
Figure 107124686-A0101-12-0424-312
Figure 107124686-A0101-12-0425-313
Figure 107124686-A0101-12-0426-314
Figure 107124686-A0101-12-0427-315
<210> 104
<211> 5691
<212> DNA
<213> 人工序列
<220>
<223> FVIII198
<400> 104
Figure 107124686-A0101-12-0428-316
Figure 107124686-A0101-12-0429-317
Figure 107124686-A0101-12-0430-318
Figure 107124686-A0101-12-0431-319
Figure 107124686-A0101-12-0432-320
<210> 105
<211> 1896
<212> PRT
<213> 人工序列
<220>
<223> FVIII 198
<400> 105
Figure 107124686-A0101-12-0432-321
Figure 107124686-A0101-12-0433-322
Figure 107124686-A0101-12-0434-323
Figure 107124686-A0101-12-0435-324
Figure 107124686-A0101-12-0436-325
Figure 107124686-A0101-12-0437-326
Figure 107124686-A0101-12-0438-327
Figure 107124686-A0101-12-0439-328
Figure 107124686-A0101-12-0440-329
Figure 107124686-A0101-12-0441-330
Figure 107124686-A0101-12-0442-331
Figure 107124686-A0101-12-0443-332
<210> 106
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 分選酶識別基元
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa可為任何天然存在之胺基酸
<400> 106
Figure 107124686-A0101-12-0444-333
<210> 107
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 含有半胱胺酸之肽
<400> 107
Figure 107124686-A0101-12-0444-334
<210> 108
<211> 4548
<212> DNA
<213> 人工序列
<220>
<223> VWF 031
<400> 108
Figure 107124686-A0101-12-0444-335
Figure 107124686-A0101-12-0445-336
Figure 107124686-A0101-12-0446-337
Figure 107124686-A0101-12-0447-338
Figure 107124686-A0101-12-0448-339
<210> 109
<211> 1515
<212> PRT
<213> 人工序列
<220>
<223> VWF 031
<400> 109
Figure 107124686-A0101-12-0448-340
Figure 107124686-A0101-12-0449-341
Figure 107124686-A0101-12-0450-342
Figure 107124686-A0101-12-0451-343
Figure 107124686-A0101-12-0452-344
Figure 107124686-A0101-12-0453-345
Figure 107124686-A0101-12-0454-346
Figure 107124686-A0101-12-0455-347
Figure 107124686-A0101-12-0456-348
Figure 107124686-A0101-12-0457-349
<210> 110
<211> 40
<212> PRT
<213> 人工序列
<220>
<223> 連接子
<220>
<221> 重複序列
<222> (1)..(5)
<223> Gly-Gly-Gly-Gly-Ser重複序列
<400> 110
Figure 107124686-A0101-12-0457-350
<210> 111
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 具有BsiW1位點之ESC54-VWF(正向)
<400> 111
Figure 107124686-A0101-12-0458-351
<210> 112
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 具有Not1位點之ESC 124-D1D2選殖寡聚物-反向
<400> 112
Figure 107124686-A0101-12-0458-352
<210> 113
<211> 2289
<212> DNA
<213> 人工序列
<220>
<223> VWF 053(VWF D1D2肽原)
<400> 113
Figure 107124686-A0101-12-0458-353
Figure 107124686-A0101-12-0459-354
Figure 107124686-A0101-12-0460-355
<210> 114
<211> 763
<212> PRT
<213> 人工序列
<220>
<223> VWF 053(VWF D1D2肽原)
<400> 114
Figure 107124686-A0101-12-0460-356
Figure 107124686-A0101-12-0461-357
Figure 107124686-A0101-12-0462-358
Figure 107124686-A0101-12-0463-359
Figure 107124686-A0101-12-0464-360
Figure 107124686-A0101-12-0465-361

Claims (60)

  1. 一種嵌合蛋白,包含第一多肽鏈及第二多肽鏈,其中該第一多肽鏈包含:(a)因子VIII(“FVIII”)蛋白質;及(b)第一免疫球蛋白恆定區;其中該第二多肽鏈包含:(a)范威爾邦德因子(von Willebrand Factor,VWF)片段,其包含VWF的D’域及D3域;(b)可裂解連接子;及(c)第二免疫球蛋白恆定區,其中該第一多肽鏈與該第二多肽鏈係藉由共價鍵連接,且其中該VWF片段抑制或防止內源性VWF結合該FVIII蛋白質。
  2. 如申請專利範圍第1項之嵌合蛋白,其中該共價鍵為二硫鍵。
  3. 如申請專利範圍第1項之嵌合蛋白,其中該第一多肽鏈與該第二多肽鏈係藉由兩個二硫鍵連接。
  4. 如申請專利範圍第1項之嵌合蛋白,其中除該共價鍵之外,該VWF片段亦藉由非共價鍵與該FVIII蛋白質締合。
  5. 如申請專利範圍第1項之嵌合蛋白,其中該可裂解連接子係在該VWF片段與該第二免疫球蛋白恆定區之間。
  6. 如申請專利範圍第5項之嵌合蛋白,其中該可裂 解連接子為凝血酶可裂解連接子。
  7. 如申請專利範圍第1項之嵌合蛋白,其包含下式:V-L-H1:C-H2;其中V為包含VWF之D’域及D3域之VWF片段;L為可裂解連接子;H1為第一免疫球蛋白恆定區,其包含IgG1的Fc區;H2為第二免疫球蛋白恆定區,其包含IgG1的Fc區;C為FVIII蛋白質;(-)為肽鍵或一或多個胺基酸;且(:)為該第一多肽鏈之該H1與該第二多肽鏈之該H2之間的共價二硫鍵。
  8. 如申請專利範圍第1項之嵌合蛋白,其中該可裂解連接子包含在該連接子之N末端區域之第一裂解位點(P1)、在該連接子之C末端區域之第二裂解位點(P2)或兩者。
  9. 如申請專利範圍第1項之嵌合蛋白,其中該可裂解連接子係由選自由以下組成之群之蛋白酶所裂解:因子XIa、因子XIIa、胰舒血管素、因子VIIa、因子IXa、因子Xa、因子IIa(凝血酶)、彈性蛋白酶-2、粒酶-B、TEV、腸激酶、蛋白酶3C、分選酶A、MMP-12、MMP-13、MMP-17及MMP-20。
  10. 如申請專利範圍第1項之嵌合蛋白,其中該VWF片段之該D’域之胺基酸序列與SEQ ID NO:2之胺基 酸764至866具有至少95%一致性。
  11. 如申請專利範圍第1項之嵌合蛋白,其中該VWF片段之該D3域之胺基酸序列與SEQ ID NO:2之胺基酸867至1240具有至少95%一致性。
  12. 如申請專利範圍第10項之嵌合蛋白,其中該VWF片段在對應於SEQ ID NO:2之殘基1099、殘基1142或殘基1099與1142兩者之殘基處含有至少一個胺基酸取代。
  13. 如申請專利範圍第10項之嵌合蛋白,其中在該VWF片段之序列中,除半胱胺酸以外之胺基酸取代對應於SEQ ID NO:2之殘基1099、殘基1142或殘基1099與1142兩者之殘基。
  14. 如申請專利範圍第1項之嵌合蛋白,其中該VWF片段之序列包含SEQ ID NO:2之胺基酸764至1240。
  15. 如申請專利範圍第1項之嵌合蛋白,其中該VWF片段之序列包含SEQ ID NO:2之胺基酸764至1240,且在殘基1099與1142處有丙胺酸取代。
  16. 一種嵌合蛋白,包含第一多肽鏈及第二多肽鏈,該第一多肽鏈,從其N末端至其C末端,係包含因子VIII(“FVIII”)蛋白質及第一Fc區;其中該FVIII蛋白質包含成熟人類FVIII(SEQ ID NO:16)之胺基酸1至743及胺基酸1649至2332; 其中該FVIII蛋白質包含部分缺失的B域,其中該FVIII蛋白質為單鏈FVIII;其中該第二多肽鏈,從其N末端至其C末端,係包含范威爾邦德因子(von Willebrand Factor,VWF)片段、可裂解連接子及第二Fc區,該VWF片段包含VWF的D’域及D3域;其中該VWF片段之該D’域的胺基酸序列包含SEQ ID NO:2的胺基酸764至866,其中該VWF片段之該D3域的胺基酸序列與SEQ ID NO:2的胺基酸867至1240為至少99%一致,且其中該VWF片段在對應人類VWF(SEQ ID NO:2)的殘基1099及1142處之殘基包含丙胺酸;其中該第一多肽鏈與該第二多肽鏈在該第一Fc區及該第二Fc區之間係藉由二硫鍵連接。
  17. 如申請專利範圍第16項之嵌合蛋白,其中對應於全長FVIII(SEQ ID NO:16)之胺基酸殘基1648的胺基酸殘基係經缺失或取代。
  18. 如申請專利範圍第16項之嵌合蛋白,其中該第一多肽鏈與該第二多肽鏈在該第一Fc區及該第二Fc區之間係藉由兩個二硫鍵連接。
  19. 如申請專利範圍第16項之嵌合蛋白,其中該VWF片段的序列包含SEQ ID NO:2的胺基酸764至1240 ,且在殘基1099及1142處包含丙胺酸取代。
  20. 如申請專利範圍第19項之嵌合蛋白,其中該FVIII蛋白質,從其N末端至其C末端,係包含人類FVIII的A1域、A2域、a3酸性區、A3域、C1域、及C2域;其中該A1域包含殘基Ala1至Arg372;其中該A2域包含殘基Ser373至Arg740;其中該a3酸性區包含殘基Glu1649至Arg1689;其中該A3域包含殘基Ser1690至Asn2019;其中該C1域包含殘基Lys2020至Asn2172;且其中該C2域包含殘基Ser2173至Tyr2332。
  21. 如申請專利範圍第1或16項之嵌合蛋白,其中該VWF片段進一步包含VWF之該D1域、該D2域或該等D1及D2域。
  22. 如申請專利範圍第21項之嵌合蛋白,其中該VWF片段進一步包含選自由以下組成之群之VWF域:A1域、A2域、A3域、D4域、B1域、B2域、B3域、C1域、C2域、CK域、其一或多個片段及其任何組合。
  23. 如申請專利範圍第1或16項之嵌合蛋白,其中該VWF片段基本上由以下組成或由以下組成:(1)VWF之該等D'及D3域或其片段;(2)VWF之該等D1、D'及D3域或其片段;(3)VWF之該等D2、D'及D3域或其片段;(4)VWF之該等D1、D2、D'及D3域或其片段;或(5)VWF之該等D1、D2、D'、D3及A1域或其片段。
  24. 如申請專利範圍第21項之嵌合蛋白,其進一步包含VWF之信號肽。
  25. 如申請專利範圍第1或16項之嵌合蛋白,其中該VWF片段經聚乙二醇化、糖基化、羥乙基澱粉化或聚唾液酸化。
  26. 如申請專利範圍第1項之嵌合蛋白,其中該FVIII蛋白質包含FVIII之一或多個選自由以下組成之群之域:該A1域、該A2域、該B域、該A3域、該C1域、該C2域、其一或多個片段及其任何組合。
  27. 如申請專利範圍第26項之嵌合蛋白,其中該FVIII蛋白質包含該A1域、該A2域、該A3域、該C1域及該視情況選用之C2域。
  28. 如申請專利範圍第1項之嵌合蛋白,其中該FVIII蛋白質包含該B域或其部分。
  29. 如申請專利範圍第1項之嵌合蛋白,其中該FVIII蛋白質包含與SEQ ID NO:16或SEQ ID NO:18具有至少80%一致性之胺基酸序列。
  30. 如申請專利範圍第1項之嵌合蛋白,其中該FVIII蛋白質係為單鏈FVIII。
  31. 如申請專利範圍第30項之嵌合蛋白,其中該單鏈FVIII在對應於全長成熟因子VIII多肽(SEQ ID NO:16)之殘基1648、殘基1645或兩者、或SQ BDD因子VIII(SEQ ID NO:18)之殘基754、殘基751或兩者之殘基處含有至少一個胺基酸取代。
  32. 如申請專利範圍第31項之嵌合蛋白,其中該胺基酸取代為除精胺酸以外之胺基酸。
  33. 一種聚核苷酸或一組聚核苷酸,其編碼如申請專利範圍第21項之嵌合蛋白。
  34. 如申請專利範圍第33項之聚核苷酸或該組聚核苷酸,其進一步包含編碼PC5、PC7或弗林蛋白酶之另一聚核苷酸序列。
  35. 一種載體,其包含如申請專利範圍第34項之聚核苷酸或該組聚核苷酸,該聚核苷酸或該組聚核苷酸係可操作地連接於一或多個啟動子。
  36. 一種宿主細胞,其包含如申請專利範圍第33項之聚核苷酸或該組聚核苷酸。
  37. 一種宿主細胞,其包含如申請專利範圍第34項之聚核苷酸或該組聚核苷酸。
  38. 一種宿主細胞,其包含如申請專利範圍第35項之載體。
  39. 如申請專利範圍第38項之宿主細胞,其為哺乳動物細胞。
  40. 如申請專利範圍第39項之宿主細胞,其中該哺乳動物細胞係選自由HEK293細胞、CHO細胞及BHK細胞組成之群。
  41. 一種醫藥組合物,其包含如申請專利範圍第1或16項之嵌合蛋白及醫藥學上可接受之載劑。
  42. 如申請專利範圍第41項之組合物,其係藉由選 自由以下組成之群之途徑加以投與:局部投與、眼內投與、非經腸投與、鞘內投與、硬膜下投與及經口投與。
  43. 如申請專利範圍第42項之組合物,其中該非經腸投與為靜脈內投與。
  44. 如申請專利範圍第42項之組合物,其中該非經腸投與為皮下投與。
  45. 如申請專利範圍第41項之組合物,其用於治療有需要之個體之流血疾病或病狀。
  46. 如申請專利範圍第45項之組合物,其中該流血疾病或病狀包含:關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血、髂腰肌鞘中流血或其任何組合。
  47. 如申請專利範圍第45或46項之組合物,其中該個體預定經歷手術。
  48. 如申請專利範圍第45或46項之組合物,其中該治療為防治性或間斷性的。
  49. 如申請專利範圍第45之組合物,其中該個體為人類。
  50. 如申請專利範圍第49之組合物,其中該流血疾病或病狀為A型血友病。
  51. 一種如申請專利範圍第1或16項之嵌合蛋白用於製備治療有需要之個體之流血疾病或病狀的藥物之用途 ,其中該流血疾病或病症包含:關節積血、肌肉流血、口腔流血、出血、向肌肉中出血、口腔出血、創傷、頭創傷、胃腸流血、顱內出血、腹內出血、胸內出血、骨折、中樞神經系統流血、咽後間隙中流血、腹膜後隙中流血、髂腰肌鞘中流血或其任何組合。
  52. 如申請專利範圍第51項之用途,其中該嵌合蛋白係供防治性的或按需要(間斷性)使用。
  53. 如申請專利範圍第51項之用途,其中該嵌合蛋白係用於藉由選自由以下組成之群之途徑的投與:局部投與、眼內投與、非經腸投與、鞘內投與、硬膜下投與及經口投與。
  54. 如申請專利範圍第53項之用途,其中該非經腸投與係靜脈內投與。
  55. 如申請專利範圍第53項之用途,其中該非經腸投與係皮下投與。
  56. 如申請專利範圍第47項之用途,其中該個體為人類。
  57. 如申請專利範圍第56項之用途,其中該流血疾病或病症係為A型血友病。
  58. 如申請專利範圍第56項之用途,其中該流血疾病或病症係為范威爾邦德病(von Willebrand Disease,VWD)。
  59. 如申請專利範圍第58項之用途,其中該流血疾病或病症係為2N型VWD。
  60. 一種製備嵌合蛋白之方法,其包含用如申請專利範圍第34項之聚核苷酸或該組聚核苷酸轉染一或多種宿主細胞,及在該宿主細胞中表現該VWF片段或該嵌合蛋白。
TW107124686A 2012-01-12 2013-01-14 嵌合因子viii多肽及其用途 TWI727187B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261586099P 2012-01-12 2012-01-12
US61/586,099 2012-01-12
US201261586654P 2012-01-13 2012-01-13
US61/586,654 2012-01-13
US201261667901P 2012-07-03 2012-07-03
US61/667,901 2012-07-03
US201261734954P 2012-12-07 2012-12-07
US6//734,954 2012-12-07

Publications (2)

Publication Number Publication Date
TW201839011A TW201839011A (zh) 2018-11-01
TWI727187B true TWI727187B (zh) 2021-05-11

Family

ID=48781968

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102101337A TW201348253A (zh) 2012-01-12 2013-01-14 嵌合因子viii多肽及其用途
TW110112317A TWI826778B (zh) 2012-01-12 2013-01-14 嵌合因子 viii 多肽及其用途
TW107124686A TWI727187B (zh) 2012-01-12 2013-01-14 嵌合因子viii多肽及其用途

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW102101337A TW201348253A (zh) 2012-01-12 2013-01-14 嵌合因子viii多肽及其用途
TW110112317A TWI826778B (zh) 2012-01-12 2013-01-14 嵌合因子 viii 多肽及其用途

Country Status (29)

Country Link
US (2) US11370827B2 (zh)
EP (2) EP2804623B1 (zh)
JP (4) JP6255630B2 (zh)
KR (1) KR102212098B1 (zh)
CN (4) CN109111526A (zh)
AU (2) AU2016202875B2 (zh)
BR (1) BR112014017165B1 (zh)
CA (1) CA2863328A1 (zh)
CO (1) CO7010788A2 (zh)
CY (1) CY1122509T1 (zh)
DK (1) DK2804623T3 (zh)
EA (2) EA035323B1 (zh)
ES (1) ES2753124T3 (zh)
HK (1) HK1202799A1 (zh)
HR (1) HRP20191920T1 (zh)
HU (1) HUE046396T2 (zh)
IL (2) IL233463B (zh)
LT (1) LT2804623T (zh)
MX (1) MX357403B (zh)
MY (1) MY201293A (zh)
NZ (1) NZ626945A (zh)
PH (2) PH12014501602A1 (zh)
PL (1) PL2804623T3 (zh)
PT (1) PT2804623T (zh)
RS (1) RS59670B1 (zh)
SG (2) SG11201403764XA (zh)
SI (1) SI2804623T1 (zh)
TW (3) TW201348253A (zh)
WO (1) WO2013106787A1 (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256062A1 (en) 2004-12-06 2010-10-07 Howard Tommy E Allelic Variants of Human Factor VIII
KR101507718B1 (ko) 2008-06-24 2015-04-10 체에스엘 베링 게엠베하 연장된 생체내 반감기를 갖는 인자 viii, 폰 빌레브란트 인자 또는 이들의 복합체
EP2470559B1 (en) 2009-08-24 2017-03-22 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
LT2804623T (lt) 2012-01-12 2019-12-10 Bioverativ Therapeutics Inc Chimeriniai viii faktoriaus polipeptidai ir jų panaudojimas
WO2013123457A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
RS63870B1 (sr) 2012-02-15 2023-01-31 Bioverativ Therapeutics Inc Sastavi faktora viii i postupci za pravljenje i upotrebu istih
CN104519897A (zh) 2012-06-08 2015-04-15 比奥根艾迪克Ma公司 促凝血化合物
US10202595B2 (en) 2012-06-08 2019-02-12 Bioverativ Therapeutics Inc. Chimeric clotting factors
EP3404105A1 (en) * 2012-07-06 2018-11-21 Bioverativ Therapeutics Inc. Cell line expressing single chain factor viii polypeptides and uses thereof
ES2770501T3 (es) * 2012-07-11 2020-07-01 Bioverativ Therapeutics Inc Complejo del factor VIII con XTEN y proteína del factor de Von Willebrand y sus usos
BR112015013311A2 (pt) 2012-12-07 2017-11-14 Haplomics Inc indução de tolerancia e reparação de mutação do fator 8
HRP20231183T1 (hr) 2013-02-15 2024-01-05 Bioverativ Therapeutics Inc. Optimizirani gen faktora viii
TWI683666B (zh) 2013-03-15 2020-02-01 美商百歐維拉提夫治療公司 因子ix多肽調配物
EP2796145B1 (en) * 2013-04-22 2017-11-01 CSL Ltd. A covalent complex of von willebrand factor and faktor viii linked by a disulphide bridge
US20160229903A1 (en) * 2013-06-28 2016-08-11 Biogen Ma Inc. Thrombin cleavable linker
EP4368194A3 (en) * 2013-06-28 2024-07-31 Bioverativ Therapeutics Inc. Thrombin cleavable linker with xten and its uses thereof
EP3875106A1 (en) * 2013-08-08 2021-09-08 Bioverativ Therapeutics Inc. Purification of chimeric fviii molecules
TWI667255B (zh) 2013-08-14 2019-08-01 美商生物化學醫療公司 因子viii-xten融合物及其用途
WO2015048330A2 (en) 2013-09-25 2015-04-02 Biogen Idec Ma Inc. On-column viral inactivation methods
SG11201605242YA (en) * 2014-01-10 2016-07-28 Biogen Ma Inc Factor viii chimeric proteins and uses thereof
BR112016030950A2 (pt) * 2014-07-02 2018-03-27 Csl Ltd polipeptídeo modificado que se liga ao fator viii, complexo, composição farmacêutica, métodos para tratar uma coagulopatia, para produzir um polipeptídeo que compreende um vwf modificado e para aumentar a afinidade de ligação ao fator viii do vwf e a meia-vida do fator viii, uso de um polipeptídeo modificado ou de um complexo, polinucleotídeo, plasmídeo ou vetor, e, célula hospedeira.
US10626164B2 (en) 2014-07-25 2020-04-21 Csl Limited Purification of VWF
KR102554850B1 (ko) * 2015-02-06 2023-07-13 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 최적화된 인간 응고 인자 viii 유전자 발현 카세트 및 그의 용도
AU2016266627A1 (en) 2015-05-22 2018-01-18 CSL Behring Lengnau AG Truncated von Willebrand Factor polypeptides for treating hemophilia
CA2986625A1 (en) 2015-05-22 2016-12-01 Csl Behring Recombinant Facility Ag Methods for preparing modified von willebrand factor
UA126016C2 (uk) 2015-08-03 2022-08-03 Біовератів Терапеутікс Інк. Злитий білок фактора іх
WO2017027545A1 (en) 2015-08-12 2017-02-16 Cell Machines, Inc. Methods and compositions related to long half-life coagulation complexes
PE20181206A1 (es) 2015-10-28 2018-07-23 Sangamo Therapeutics Inc Construcciones especificas del higado, casetes de expresion del factor viii y metodos de uso de estos
BR112018009717B1 (pt) 2015-11-13 2021-12-14 Takeda Pharmaceutical Company Limited Polinucleotídeo, vetor de vírus adeno-associado, partícula de um vírus adeno-associado, métodos para produzir uma partícula de vírus adeno-associado e para transduzir uma célula hospedeira, e, uso de uma partícula de vírus adeno-associado
WO2017112895A1 (en) * 2015-12-23 2017-06-29 Haplomics, Inc. F8 gene repair
RU2018128582A (ru) 2016-01-07 2020-02-11 Цсл Беринг Ленгнау Аг Мутированный укороченный фактор фон виллебранда
EP3411478B1 (en) 2016-02-01 2022-06-08 Bioverativ Therapeutics Inc. Optimized factor viii genes
WO2017143026A1 (en) * 2016-02-16 2017-08-24 Research Development Foundation Sortase-modified molecules and uses thereof
CN109152817A (zh) * 2016-05-20 2019-01-04 瑞士奥克特珐玛公司 具有改进的药代动力学的糖基化vwf融合蛋白
JP7235511B2 (ja) * 2016-06-24 2023-03-08 モガム・インスティテュート・フォー・バイオメディカル・リサーチ 組換え型一本鎖fviiiおよびその化学コンジュゲート
WO2017222337A1 (ko) * 2016-06-24 2017-12-28 재단법인 목암생명과학연구소 Fviii 및 vwf 인자를 포함하는 키메라 단백질 및 그 용도
US10738338B2 (en) 2016-10-18 2020-08-11 The Research Foundation for the State University Method and composition for biocatalytic protein-oligonucleotide conjugation and protein-oligonucleotide conjugate
DK3538133T3 (da) 2016-11-11 2021-04-19 CSL Behring Lengnau AG Trunkeret von willebrand faktor polypeptider til behandling af hæmofili
EP3538134B1 (en) 2016-11-11 2021-12-29 CSL Behring Lengnau AG Truncated von willebrand factor polypeptides for extravascular administration in the treatment or prophylaxis of a blood coagulation disorder
US20200085915A1 (en) 2016-12-02 2020-03-19 Bioverativ Therapeutics Inc. Methods of inducing immune tolerance to clotting factors
EP3548066A1 (en) 2016-12-02 2019-10-09 Bioverativ Therapeutics Inc. Methods of treating hemophilic arthropathy using chimeric clotting factors
US11192933B2 (en) * 2017-02-27 2021-12-07 Shattuck Labs, Inc. VSIG8-based chimeric proteins
CA3068098A1 (en) 2017-06-22 2018-12-27 CSL Behring Lengnau AG Modulation of fviii immunogenicity by truncated vwf
KR20200035130A (ko) 2017-08-09 2020-04-01 바이오버라티브 테라퓨틱스 인크. 핵산 분자 및 이의 용도
CA3090136A1 (en) 2018-02-01 2019-08-08 Bioverativ Therapeutics, Inc. Use of lentiviral vectors expressing factor viii
TW202015723A (zh) 2018-05-18 2020-05-01 美商百歐維拉提夫治療公司 治療a型血友病的方法
CN117467019A (zh) * 2018-05-18 2024-01-30 郑州晟斯生物科技有限公司 改进的fviii融合蛋白及其应用
CN113166271A (zh) * 2018-05-18 2021-07-23 郑州晟斯生物科技有限公司 具有延长半衰期的融合多肽缀合物
WO2020006576A1 (en) * 2018-06-29 2020-01-02 City Of Hope Compositions and methods for treating autoimmune diseases
WO2020018419A1 (en) 2018-07-16 2020-01-23 Baxalta Incorporated Gene therapy of hemophilia a using viral vectors encoding recombinant fviii variants with increased expression
MX2021001599A (es) 2018-08-09 2021-07-02 Bioverativ Therapeutics Inc Moleculas de acido nucleico y sus usos para la terapia genica no viral.
WO2020150375A1 (en) 2019-01-16 2020-07-23 Baxalta Incorporated Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a
US10654911B1 (en) * 2019-04-02 2020-05-19 Beijing Neoletix Biological Technology Co., Ltd. Vector co-expressing truncated von Willebrand factor and factor VIII
EP3736286A1 (en) 2019-05-09 2020-11-11 Biotest AG Single chain factor viii molecule
CN112175088B (zh) * 2019-07-02 2023-03-28 江苏晟斯生物制药有限公司 改进的fix融合蛋白、缀合物及其应用
WO2021001522A1 (en) 2019-07-04 2021-01-07 CSL Behring Lengnau AG A truncated von willebrand factor (vwf) for increasing the in vitro stability of coagulation factor viii
WO2021043757A1 (en) * 2019-09-02 2021-03-11 Biotest Ag Factor viii protein with increased half-life
EP3785726A1 (en) * 2019-09-02 2021-03-03 Biotest AG Factor viii protein with increased half-life
US20210113634A1 (en) 2019-09-30 2021-04-22 Bioverativ Therapeutics Inc. Lentiviral vector formulations
US20220348637A1 (en) 2019-11-11 2022-11-03 CSL Behring Lengnau AG Polypeptides for inducing tolerance to factor viii
FI4073098T3 (fi) * 2019-12-19 2023-11-15 Akston Biosciences Corp Ultrapitkävaikutteiset insuliini-Fc-fuusioproteiinit ja niiden käyttömenetelmät
CN113087803B (zh) * 2021-05-12 2022-10-14 苏州大学附属第一医院 抗人血管性血友病因子前导肽单克隆抗体sz176及其应用
WO2023159135A2 (en) * 2022-02-16 2023-08-24 University Of Miami Il-2 and tl1a fusion proteins and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023270A2 (en) * 2007-08-15 2009-02-19 Amunix, Inc. Compositions and methods for modifying properties of biologically active polypeptides
WO2011060242A2 (en) * 2009-11-13 2011-05-19 Talecris Biotherapeutics, Inc. Von willebrand factor (vwf)-containing preparations, and methods, kits, and uses related thereto

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4215051A (en) 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4713339A (en) 1983-01-19 1987-12-15 Genentech, Inc. Polycistronic expression vector construction
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
US4970300A (en) 1985-02-01 1990-11-13 New York University Modified factor VIII
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5981216A (en) 1985-04-01 1999-11-09 Alusuisse Holdings A.G. Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
EP0218712B1 (en) 1985-04-12 1992-02-26 Genetics Institute, Inc. Novel procoagulant proteins
KR910006424B1 (ko) 1985-08-21 1991-08-24 인코텍스 비.브이 편성브리프(brief) 제조방법
JP2525022B2 (ja) 1986-01-03 1996-08-14 ジェネティックス・インスチチュ−ト・インコ−ポレ−テッド ▲VIII▼:c因子型タンパク質の改良生産方法
US5595886A (en) 1986-01-27 1997-01-21 Chiron Corporation Protein complexes having Factor VIII:C activity and production thereof
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5422260A (en) * 1986-05-29 1995-06-06 Genetics Institute, Inc. -Legal Affairs Human factor VIII:c muteins
US5543502A (en) 1986-06-24 1996-08-06 Novo Nordisk A/S Process for producing a coagulation active complex of factor VIII fragments
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
CA1331157C (en) 1987-04-06 1994-08-02 Randal J. Kaufman Method for producing factor viii:c-type proteins
US6060447A (en) 1987-05-19 2000-05-09 Chiron Corporation Protein complexes having Factor VIII:C activity and production thereof
US6346513B1 (en) 1987-06-12 2002-02-12 Baxter Trading Gmbh Proteins with factor VIII activity: process for their preparation using genetically-engineered cells and pharmaceutical compositions containing them
IL86693A (en) 1987-06-12 1994-06-24 Stichting Centraal Lab Proteins that have the activity IIIV of the blood, a process for their preparation that uses cells are produced through genetic engineering and pharmaceutical preparations that contain them
DE3720246A1 (de) 1987-06-19 1988-12-29 Behringwerke Ag Faktor viii:c-aehnliches molekuel mit koagulationsaktivitaet
FR2619314B1 (fr) 1987-08-11 1990-06-15 Transgene Sa Analogue du facteur viii, procede de preparation et composition pharmaceutique le contenant
US4994371A (en) 1987-08-28 1991-02-19 Davie Earl W DNA preparation of Christmas factor and use of DNA sequences
US6780613B1 (en) 1988-10-28 2004-08-24 Genentech, Inc. Growth hormone variants
US5004803A (en) 1988-11-14 1991-04-02 Genetics Institute, Inc. Production of procoagulant proteins
SE465222C5 (sv) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab Ett rekombinant, humant faktor VIII-derivat och förfarande för dess framställning
US5846951A (en) 1991-06-06 1998-12-08 The School Of Pharmacy, University Of London Pharmaceutical compositions
MX9204374A (es) 1991-07-25 1993-03-01 Idec Pharma Corp Anticuerpo recombinante y metodo para su produccion.
US6376463B1 (en) 1992-04-07 2002-04-23 Emory University Modified factor VIII
US5364771A (en) 1992-04-07 1994-11-15 Emory University Hybrid human/porcine factor VIII
US5859204A (en) 1992-04-07 1999-01-12 Emory University Modified factor VIII
US6037452A (en) 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
US5563045A (en) 1992-11-13 1996-10-08 Genetics Institute, Inc. Chimeric procoagulant proteins
SE504074C2 (sv) 1993-07-05 1996-11-04 Pharmacia Ab Proteinberedning för subkutan, intramuskulär eller intradermal administrering
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
GB9422383D0 (en) 1994-11-05 1995-01-04 Wellcome Found Antibodies
US6818439B1 (en) 1994-12-30 2004-11-16 Chiron Corporation Methods for administration of recombinant gene delivery vehicles for treatment of hemophilia and other disorders
US6086875A (en) 1995-01-17 2000-07-11 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of immunogens
US6030613A (en) 1995-01-17 2000-02-29 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6485726B1 (en) 1995-01-17 2002-11-26 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6096871A (en) 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
SE9503380D0 (sv) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
US6458563B1 (en) 1996-06-26 2002-10-01 Emory University Modified factor VIII
DE69738522T2 (de) 1996-08-02 2009-04-02 Bristol-Myers Squibb Co. Ein verfahren zur inhibierung immunglobulininduzierter toxizität aufgrund von der verwendung von immunoglobinen in therapie und in vivo diagnostik
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
US20020019036A1 (en) * 1996-12-13 2002-02-14 Hans-Peter Schwarz Von willebrand factor derivatives and methods of isolating proteins that bind to von willebrand factor
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
CA2225189C (en) 1997-03-06 2010-05-25 Queen's University At Kingston Canine factor viii gene, protein and methods of use
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6242195B1 (en) 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
DE69937291T2 (de) 1998-04-02 2008-07-10 Genentech, Inc., South San Francisco Antikörpervarianten und fragmente davon
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
AU770555B2 (en) 1998-08-17 2004-02-26 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
US6927044B2 (en) 1998-09-25 2005-08-09 Regeneron Pharmaceuticals, Inc. IL-1 receptor based cytokine traps
EP1006183A1 (en) 1998-12-03 2000-06-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Recombinant soluble Fc receptors
US6358703B1 (en) 1998-12-10 2002-03-19 Bayer Corporation Expression system for factor VIII
KR20060067983A (ko) 1999-01-15 2006-06-20 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7829085B2 (en) * 1999-07-14 2010-11-09 Life Sciences Research Partners Vzw Methods of treating hemostasis disorders using antibodies binding the C1 domain of factor VIII
US6926898B2 (en) 2000-04-12 2005-08-09 Human Genome Sciences, Inc. Albumin fusion proteins
EP1335931B1 (en) 2000-05-16 2005-12-21 Lipoxen Technologies Limited Derivatisation of proteins in aqueous solution
GB0029407D0 (en) 2000-12-01 2001-01-17 Affitech As Product
ATE489395T1 (de) 2000-12-12 2010-12-15 Medimmune Llc Moleküle mit längeren halbwertszeiten, zusammensetzungen und deren verwendung
EP1377306A1 (en) 2001-03-09 2004-01-07 Dyax Corp. Serum albumin binding moieties
EP1397496A2 (en) * 2001-06-15 2004-03-17 Andre Schuh Gene therapy for hemophilia a
ES2500918T3 (es) 2001-12-21 2014-10-01 Human Genome Sciences, Inc. Proteínas de fusión de albúmina e interferón beta
US20080194481A1 (en) 2001-12-21 2008-08-14 Human Genome Sciences, Inc. Albumin Fusion Proteins
KR101271635B1 (ko) 2001-12-21 2013-06-12 휴먼 게놈 사이언시즈, 인코포레이티드 알부민 융합 단백질
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
AU2003209446B2 (en) 2002-03-01 2008-09-25 Immunomedics, Inc. Bispecific antibody point mutations for enhancing rate of clearance
EP1487992A4 (en) 2002-03-15 2007-10-31 Brigham & Womens Hospital CENTRAL AIRWAY DELIVERY FOR SYSTEMIC DRUG DELIVERY
DK1534335T4 (en) 2002-08-14 2015-10-05 Macrogenics Inc FCGAMMARIIB-SPECIFIC ANTIBODIES AND PROCEDURES FOR USE THEREOF
WO2004027901A2 (en) 2002-09-17 2004-04-01 Diffusion Science, Inc. Electrochemical generation, storage and reaction of hydrogen and oxygen using gas permeable catalyst-coated hollow microspheres
EP3502133A1 (en) 2002-09-27 2019-06-26 Xencor, Inc. Optimized fc variants and methods for their generation
AU2003286467B2 (en) 2002-10-15 2009-10-01 Abbvie Biotherapeutics Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
GB2395337B (en) 2002-11-14 2005-12-28 Gary Michael Wilson Warning Unit
EP2368578A1 (en) 2003-01-09 2011-09-28 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7041635B2 (en) * 2003-01-28 2006-05-09 In2Gen Co., Ltd. Factor VIII polypeptide
LT1596887T (lt) 2003-02-26 2022-04-25 Nektar Therapeutics Polimero-faktoriaus viii fragmento konjugatai
WO2004076522A1 (ja) 2003-02-28 2004-09-10 Kuraray Co., Ltd. 硬化性樹脂組成物
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
ES2333598T5 (es) 2003-05-06 2013-09-04 Biogen Idec Hemophilia Inc Proteinas quimericas del factor de coagulacion fc para tratar la hemofilia.
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
US7348004B2 (en) 2003-05-06 2008-03-25 Syntonix Pharmaceuticals, Inc. Immunoglobulin chimeric monomer-dimer hybrids
RU2333223C2 (ru) 2003-08-12 2008-09-10 Лайпоксен Текнолоджиз Лимитед Альдегидные производные сиаловой кислоты, способы их получения, конъюгаты альдегидных производных сиаловой кислоты и фармацевтическая композиция на их основе
GB0324368D0 (en) 2003-10-17 2003-11-19 Univ Cambridge Tech Polypeptides including modified constant regions
US7211559B2 (en) 2003-10-31 2007-05-01 University Of Maryland, Baltimore Factor VIII compositions and methods
CA2545603A1 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. Neonatal fc receptor (fcrn)-binding polypeptide variants, dimeric fc binding proteins and methods related thereto
US20050249723A1 (en) 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
CN1918178B (zh) 2004-01-12 2012-08-22 应用分子进化公司 Fc区变体
EP1737890A2 (en) 2004-03-24 2007-01-03 Xencor, Inc. Immunoglobulin variants outside the fc region
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2006085967A2 (en) 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
EP2471813B1 (en) 2004-07-15 2014-12-31 Xencor, Inc. Optimized Fc variants
US7566701B2 (en) 2004-09-07 2009-07-28 Archemix Corp. Aptamers to von Willebrand Factor and their use as thrombotic disease therapeutics
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
US7884075B2 (en) * 2004-12-27 2011-02-08 Baxter International Inc. Polymer-factor VIII-von Willebrand factor-conjugates
JP2009504157A (ja) 2005-08-12 2009-02-05 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド アルブミン融合タンパク質
US7855279B2 (en) * 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof
EP1996220B2 (en) * 2006-03-06 2023-08-16 Amunix Operating Inc. Unstructured recombinant polymers and uses thereof
US7846445B2 (en) 2005-09-27 2010-12-07 Amunix Operating, Inc. Methods for production of unstructured recombinant polymers and uses thereof
CN101415445A (zh) * 2006-03-31 2009-04-22 巴克斯特国际公司 聚乙二醇化的因子ⅷ
EP1867660A1 (en) 2006-06-14 2007-12-19 CSL Behring GmbH Proteolytically cleavable fusion protein comprising a blood coagulation factor
WO2007144173A1 (en) 2006-06-14 2007-12-21 Csl Behring Gmbh Proteolytically cleavable fusion protein comprising a blood coagulation factor
EP2049144B8 (en) * 2006-07-21 2015-02-18 ratiopharm GmbH Glycosylation of peptides via o-linked glycosylation sequences
JP2010503396A (ja) 2006-09-14 2010-02-04 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド アルブミン融合タンパク質
US20100075375A1 (en) 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
LT2068907T (lt) 2006-10-04 2018-01-10 Novo Nordisk A/S Glicerolio sujungti pegilinti sacharidai ir glikopeptidai
WO2008077616A1 (en) 2006-12-22 2008-07-03 Csl Behring Gmbh Modified coagulation factors with prolonged in vivo half-life
EP1935430A1 (en) * 2006-12-22 2008-06-25 CSL Behring GmbH Modified coagulation factors with prolonged in vivo half-life
CN103451172A (zh) * 2007-04-13 2013-12-18 催化剂生物科学公司 修饰的因子vii多肽及其应用
EP2162535A4 (en) 2007-06-04 2011-02-23 Novo Nordisk As O-linked glycosylation using N-acetylglucosamine transferases
DK2173890T3 (da) 2007-06-21 2011-06-27 Univ Muenchen Tech Biologisk aktive proteiner med forhøjet stabilitet in vivo og/eller in vitro
JP2011502478A (ja) 2007-11-01 2011-01-27 ユニバーシティー オブ ロチェスター 安定性が増大した組換え型第viii因子
EP2222329A1 (en) 2007-11-09 2010-09-01 Baxter International Inc. Modified recombinant factor viii and von willebrand factor and methods of use
EP3936116A1 (en) 2007-12-28 2022-01-12 Takeda Pharmaceutical Company Limited Rrecombinant vwf containing formulations
ES2298096B1 (es) * 2008-01-08 2009-01-01 Grifols, S.A. Procedimiento para la obtencion de un concentrado de factor von willebrand o del complejo de factor viii/factor von willebrand y utilizacionde los mismos.
KR101507718B1 (ko) 2008-06-24 2015-04-10 체에스엘 베링 게엠베하 연장된 생체내 반감기를 갖는 인자 viii, 폰 빌레브란트 인자 또는 이들의 복합체
DE102008032361A1 (de) * 2008-07-10 2010-01-21 Csl Behring Gmbh Der Einsatz von Faktor VIII und vWF bzw. vWF-enthaltenden Konzentraten zur Therapie der durch Thrombocyten-Inhibitoren induzierte Koagulopathie
EP2310509B1 (en) 2008-07-21 2015-01-21 Apogenix GmbH Tnfsf single chain molecules
CA2744340A1 (en) 2008-11-24 2010-05-27 Bayer Healthcare Llc Method of determining pegylated blood coagulation factor activity in a silica-based activated partial thromboplastin time assay
LT2393828T (lt) 2009-02-03 2017-01-25 Amunix Operating Inc. Prailginti rekombinantiniai polipeptidai ir juos apimančios kompozicijos
US8703717B2 (en) 2009-02-03 2014-04-22 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
US8680050B2 (en) 2009-02-03 2014-03-25 Amunix Operating Inc. Growth hormone polypeptides fused to extended recombinant polypeptides and methods of making and using same
JP5739865B2 (ja) * 2009-03-24 2015-06-24 バイエル・ヘルスケア・エルエルシー 第viii因子変異体および使用の方法
AU2010233089B2 (en) 2009-04-10 2016-05-26 Tufts Medical Center, Inc. Par-1 activation by metalloproteinase-1 (MMP-1)
AU2010258898B8 (en) 2009-06-08 2015-02-05 Amunix Operating Inc. Glucose-regulating polypeptides and methods of making and using same
PE20121539A1 (es) 2009-06-08 2012-12-06 Amunix Operating Inc Polipeptidos de la hormona de crecimiento y metodos de preparacion
AU2010284977A1 (en) * 2009-08-20 2012-03-29 Csl Behring Gmbh Albumin fused coagulation factors for non-intravenous administration in the therapy and prophylactic treatment of bleeding disorders
EP2470559B1 (en) 2009-08-24 2017-03-22 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
WO2011028344A2 (en) 2009-08-25 2011-03-10 Amunix Operating Inc. Interleukin-1 receptor antagonist compositions and methods of making and using same
MX336830B (es) * 2009-12-06 2016-02-03 Biogen Hemophilia Inc Polipeptidos hibridos y quimericos del factor viii-fc, y metodos de uso de los mismos.
CN102770449B (zh) * 2010-02-16 2016-02-24 诺沃—诺迪斯克有限公司 具有降低的vwf结合的因子viii分子
EP2977055A1 (en) * 2010-02-16 2016-01-27 Novo Nordisk A/S Factor viii fusion protein
WO2011123830A2 (en) 2010-04-02 2011-10-06 Amunix Operating Inc. Alpha 1-antitrypsin compositions and methods of making and using same
EP2650003B1 (en) 2010-05-20 2016-07-27 Allergan, Inc. Degradable clostridial toxins
WO2012006623A1 (en) 2010-07-09 2012-01-12 Biogen Idec Hemophilia Inc. Systems for factor viii processing and methods thereof
WO2012006635A1 (en) 2010-07-09 2012-01-12 Biogen Idec Hemophilia Inc. Processable single chain molecules and polypeptides made using same
US20130017997A1 (en) 2010-08-19 2013-01-17 Amunix Operating Inc. Factor VIII Compositions and Methods of Making and Using Same
LT2804623T (lt) 2012-01-12 2019-12-10 Bioverativ Therapeutics Inc Chimeriniai viii faktoriaus polipeptidai ir jų panaudojimas
WO2013123457A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
RS63870B1 (sr) 2012-02-15 2023-01-31 Bioverativ Therapeutics Inc Sastavi faktora viii i postupci za pravljenje i upotrebu istih
ES2770501T3 (es) 2012-07-11 2020-07-01 Bioverativ Therapeutics Inc Complejo del factor VIII con XTEN y proteína del factor de Von Willebrand y sus usos
US20160229903A1 (en) 2013-06-28 2016-08-11 Biogen Ma Inc. Thrombin cleavable linker
EP4368194A3 (en) 2013-06-28 2024-07-31 Bioverativ Therapeutics Inc. Thrombin cleavable linker with xten and its uses thereof
SG11201605242YA (en) 2014-01-10 2016-07-28 Biogen Ma Inc Factor viii chimeric proteins and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023270A2 (en) * 2007-08-15 2009-02-19 Amunix, Inc. Compositions and methods for modifying properties of biologically active polypeptides
WO2011060242A2 (en) * 2009-11-13 2011-05-19 Talecris Biotherapeutics, Inc. Von willebrand factor (vwf)-containing preparations, and methods, kits, and uses related thereto

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Powell JS et al., "Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients", Blood, vol.119, no.13, p.3031-3037,2012/01/05
Powell JS et al., "Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients", Blood, vol.119, no.13, p.3031-3037,2012/01/05 Proft T, "Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation", Biotechnology Letters, vol.32, no.1, p.1-10, 2009/09/01 *
Proft T, "Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation", Biotechnology Letters, vol.32, no.1, p.1-10, 2009/09/01

Also Published As

Publication number Publication date
JP2020078338A (ja) 2020-05-28
SI2804623T1 (sl) 2020-02-28
AU2018201163B2 (en) 2020-07-30
HK1202799A1 (zh) 2015-10-09
CO7010788A2 (es) 2014-07-31
PH12014501602B1 (en) 2014-10-08
JP2018057388A (ja) 2018-04-12
AU2016202875B2 (en) 2018-03-08
AU2018201163A1 (en) 2018-03-08
TWI826778B (zh) 2023-12-21
US20230011438A1 (en) 2023-01-12
WO2013106787A1 (en) 2013-07-18
EP2804623A1 (en) 2014-11-26
CN111499760A (zh) 2020-08-07
MX2014008512A (es) 2014-11-25
CA2863328A1 (en) 2013-07-18
NZ626945A (en) 2016-10-28
EA201491186A1 (ru) 2015-05-29
US20150023959A1 (en) 2015-01-22
JP6255630B2 (ja) 2018-01-10
US11370827B2 (en) 2022-06-28
AU2013205647A8 (en) 2016-03-17
HUE046396T2 (hu) 2020-02-28
AU2016202875A1 (en) 2016-05-26
EP2804623B1 (en) 2019-08-07
EP2804623A4 (en) 2015-12-02
EA201791134A1 (ru) 2018-02-28
PH12018501250A1 (en) 2019-02-27
RS59670B1 (sr) 2020-01-31
BR112014017165A2 (pt) 2017-06-13
IL261632B (en) 2021-09-30
BR112014017165A8 (pt) 2018-05-15
CN104271150A (zh) 2015-01-07
JP6728121B2 (ja) 2020-07-22
SG10201610193RA (en) 2017-01-27
JP7113860B2 (ja) 2022-08-05
TW201839011A (zh) 2018-11-01
IL233463A0 (en) 2014-08-31
PL2804623T3 (pl) 2020-03-31
IL233463B (en) 2020-03-31
EP3505179A1 (en) 2019-07-03
BR112014017165B1 (pt) 2023-05-02
HRP20191920T1 (hr) 2020-01-10
ES2753124T3 (es) 2020-04-07
KR102212098B1 (ko) 2021-02-03
EA028309B1 (ru) 2017-11-30
KR20140115347A (ko) 2014-09-30
LT2804623T (lt) 2019-12-10
DK2804623T3 (da) 2019-11-11
MX357403B (es) 2018-07-09
MY201293A (en) 2024-02-15
TW201348253A (zh) 2013-12-01
TW202204392A (zh) 2022-02-01
EA035323B1 (ru) 2020-05-28
JP7475613B2 (ja) 2024-04-30
IL261632A (en) 2018-10-31
JP2022159331A (ja) 2022-10-17
CY1122509T1 (el) 2021-01-27
SG11201403764XA (en) 2014-07-30
CN109111526A (zh) 2019-01-01
JP2015504679A (ja) 2015-02-16
PH12014501602A1 (en) 2014-10-08
PT2804623T (pt) 2019-11-18
AU2013205647B2 (en) 2016-02-04
AU2013205647A1 (en) 2013-08-01
CN111499761A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
TWI727187B (zh) 嵌合因子viii多肽及其用途
JP7022165B2 (ja) XTENおよびvon Willebrand因子タンパク質を有する第VIII因子の複合体、および、その使用
JP7297837B2 (ja) Xtenを有するトロンビン切断可能リンカー及びその使用
EP4176894B1 (en) Factor viii chimeric proteins and uses thereof
TWI667255B (zh) 因子viii-xten融合物及其用途
TW201542596A (zh) 凝血酶可裂解連接子
JP2023101713A (ja) 血友病aを処置する方法