TWI554829B - 光阻組成物,光阻圖型之形成方法 - Google Patents

光阻組成物,光阻圖型之形成方法 Download PDF

Info

Publication number
TWI554829B
TWI554829B TW101134749A TW101134749A TWI554829B TW I554829 B TWI554829 B TW I554829B TW 101134749 A TW101134749 A TW 101134749A TW 101134749 A TW101134749 A TW 101134749A TW I554829 B TWI554829 B TW I554829B
Authority
TW
Taiwan
Prior art keywords
group
atom
alkyl group
acid
component
Prior art date
Application number
TW101134749A
Other languages
English (en)
Other versions
TW201329619A (zh
Inventor
清水宏明
中村剛
橫谷次朗
仁藤豪人
Original Assignee
東京應化工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011207773A external-priority patent/JP5789461B2/ja
Priority claimed from JP2011211472A external-priority patent/JP5816506B2/ja
Application filed by 東京應化工業股份有限公司 filed Critical 東京應化工業股份有限公司
Publication of TW201329619A publication Critical patent/TW201329619A/zh
Application granted granted Critical
Publication of TWI554829B publication Critical patent/TWI554829B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

光阻組成物,光阻圖型之形成方法
本發明為有關經由鹼顯影液進行顯影時,形成負型光阻圖型之光阻圖型之形成方法。
本案為基於2011年9月22日於日本提出申請之特願2011-207773號及2011年9月27日於日本提出申請之特願2011-211472號為基礎主張優先權,其內容係援用於本發明之內容。
於基板上形成微細之圖型,再將其作為遮罩進行蝕刻之方式,以對該圖型之下層進行加工之技術(圖型形成技術;Patterning),已廣泛地被採用於半導體元件或液晶顯示元件之製造中。微細圖型,通常為由有機材料所形成,例如使用微影蝕刻法或奈米植入法等技術予以形成。例如,於微影蝕刻法中,於基板等支撐體上,使用含有樹脂等基材成份的光阻材料形成光阻膜,對該光阻膜,以光、電子線等輻射線進行選擇性曝光、施以顯影處理之方式,而於前述光阻膜上形成特定形狀之光阻圖型等步驟之方式進行。隨後,將上述光阻圖型作為遮罩,經由對基板蝕刻等加工步驟而製造半導體元件等。
前述光阻材料分為正型與負型,曝光部份增大對顯影液之溶解性的光阻材料稱為正型、曝光部份降低對顯影液之溶解性的光阻材料稱為負型。
前述顯影液通常為使用氫氧化四甲基銨(TMAH)水溶液等鹼水溶液(鹼顯影液)。又,芳香族系溶劑、脂肪族烴系溶劑、醚系溶劑、酮系溶劑、酯系溶劑、醯胺系溶劑、醇系溶劑等有機溶劑亦被作為顯影液使用(例如,參考專利文獻1、2)。
近年來,伴隨微影蝕刻技術之進步,而使圖型急速地邁向微細化。
微細化之方法,一般為使曝光光源予以短波長化(高能量化)之方式進行。具體而言,以往為使用以g線、i線為代表之紫外線,但目前則開始使用KrF準分子雷射,或ArF準分子雷射等進行半導體元件之量產。又,對於較該些準分子雷射為更短波長(高能量)之EB(電子線)、EUV(極紫外線)或X線等亦已開始進行研究。
伴隨曝光光源之短波長化,光阻材料中,則尋求可提高重現對曝光光源之感度、微細尺寸之圖型之解析性等微影蝕刻特性。可滿足該些要求之光阻材料,已知為化學增幅型光阻。
化學增幅型光阻,一般而言為,使用含有經由酸之作用而對顯影液之溶解性產生變化之基材成份,與經由曝光而產生酸之酸產生劑成份之組成物。例如,顯影液為鹼顯影液(鹼顯影製程)之情形,基材成份為使用經由酸之作用而增大對鹼顯影液之溶解性的成份。
以往,化學增幅型光阻組成物之基材成份主要為使用樹脂(基礎樹脂)。目前,ArF準分子雷射微影蝕刻等中所 使用之化學增幅型光阻組成物之基礎樹脂,就於193nm附近具有優良透明性等觀點,以主鏈具有(甲基)丙烯酸酯(meta)acrylic acid ester)所衍生之結構單位的樹脂(丙烯酸(Acryl)系樹脂)為主流。
其中,「(甲基)丙烯酸」係指,α位鍵結氫原子所得之丙烯酸,與α位鍵結甲基所得之甲基丙烯酸之一或二者之意。「(甲基)丙烯酸酯;(meta)acrylic acid ester)」係指,α位鍵結氫原子所得之丙烯酸酯,與α位鍵結甲基所得之甲基丙烯酸酯之一或二者之意。「(甲基)丙烯酸酯;(meta)acrylate」係指,α位鍵結氫原子所得之丙烯酸酯,與α位鍵結甲基所得之甲基丙烯酸酯之一或二者之意。
該基礎樹脂,一般而言,就提升微影蝕刻特性等目的,可含有複數之結構單位。例如,具有經由酸產生劑所產生之酸的作用而分解,而生成鹼可溶性基的酸分解性基的結構單位的同時,可使用具有內酯結構之結構單位、具有羥基等極性基之結構單位等(例如,參考專利文獻3)。基礎樹脂為丙烯酸(Acryl)系樹脂之情形,前述酸分解性基,一般而言為使用(甲基)丙烯酸等中之羧基被三級烷基、縮醛基等酸解離性基所保護者。
使解析性更向上提升之方法之一,已知為曝光機之對物透鏡與樣品之間,介由折射率較空氣為高折射率之液體(浸潤介質)進行曝光(浸潤曝光)之微影蝕刻法,即所謂浸潤式微影蝕刻(Liquid Immersion Lithography。以下亦稱為「浸潤式曝光」)(例如,參考非專利文獻1)。
依浸潤式曝光之方法,即使使用相同曝光波長之光源,也可達成與使用更短波長之光源的情形或使用高NA透鏡之情形為相同之高解析性,且焦點景深寬度也不會降低。又,浸潤式曝光,可以應用現有之曝光裝置進行。因此,浸潤式曝光預期可實現以低費用、高解析性、且具有優良焦點景深寬度之光阻圖型的形成,於必須進行大量設備投資之半導體元件的製造中,無論於費用、解析度等微影蝕刻特性之觀點,對於半導體產業就賦予巨大之效果等,皆受到極大之注目。
浸潤式曝光,已知對所有的圖型形狀之形成為有效者,此外,其亦推測可與目前研究之相位位移法、變形照明法等超解析技術進行組合。目前,浸潤式曝光技術,主要對於ArF準分子雷射作為光源之技術展開極活躍之研究。又,目前,浸潤介質,主要為對於水進行研究。
最近提案之微影蝕刻技術之一,例如進行2次以上圖形成形(Patterning),以形成光阻圖型之重複圖形成形(Patterning)製程(例如,參考非專利文獻2、3)。重複圖形成形製程為具有數種方法,例如,(1)微影蝕刻步驟(由塗佈光阻組成物至曝光、顯影為止)及重複2次以上之蝕刻步驟以形成圖型之方法、(2)持續重複2次以上之微影蝕刻步驟之方法等。使用重複圖形成形製程時,即使使用相同曝光波長之光源,又,即使使用相同之光阻組成物時,相較於使用1次之微影蝕刻步驟進行圖型形成之情形(單次圖形成形),可形成具有更高解析性之光阻圖型。 又,重複圖形成形製程,可使用現有之曝光裝置進行。
又,亦有提出於形成光阻膜後,對該光阻膜進行2次以上之曝光、顯影,以形成光阻圖型之雙重曝光法(例如,參考專利文獻4)。此雙重曝光法,與上述之重複圖形成形製程相同般,可形成高解析性之光阻圖型,又,且與重複圖形成形相比較時,具有較少步驟數之優點。
正型之化學增幅型光阻組成物,即於由經由曝光而增大對鹼顯影液之溶解性之化學增幅型光阻組成物與鹼顯影液組合所得之正型顯影製程中,如上所述般,光阻膜之曝光部被鹼顯影液而溶解、去除,而形成光阻圖型。正型之化學增幅型光阻組成物與鹼顯影液組合所得之正型顯影製程,與負型之化學增幅型光阻組成物與鹼顯影液組合所得之負型顯影製程相比較時,具有可使光遮罩之結構更單純,而容易得到圖像形成所需之充分之反差,使所形成之圖型具有優良特性等優點。因此,目前,微細之光阻圖型之形成中,一般主要使用由正型之化學增幅型光阻組成物與鹼顯影液組合所得之正型顯影製程。
先前技術文獻 [專利文獻]
[專利文獻1]特開平06-194847號公報
[專利文獻2]特開2009-025723號公報
[專利文獻3]特開2003-241385號公報
[專利文獻4]特開2010-040849號公報
[非專利文獻]
[非專利文獻1]Proceedings of SPIE,第5754卷,第119-128頁(2005年).
[非專利文獻2]Proceedings of SPIE,第5256卷,第985~994頁(2003年).
[非專利文獻3]Proceedings of SPIE,第6153卷,第615301-1~19頁(2006年).
於微影蝕刻技術更為進步、應用區域更加擴大等過程中,即使正型之化學增幅型光阻組成物與鹼顯影液組合所得之正型顯影製程,也將更尋求對於各種微影蝕刻特性之改善。但是,使用該正型顯影製程形成獨立槽狀圖型或具有微細且密集之接觸孔穴圖型等微細圖型等情形中,特別是膜厚方向中光學強度較弱區域所產生之光阻圖型的解析性容易降低,使得圖型難以高解析化,容易產生形狀不良等。
因此,於上述微細圖型之形成中,以將光學強度較弱區域予以選擇性溶解去除以形成光阻圖型(負型圖型)之形成方法為有效者。使用主流之正型顯影製程所使用之化學增幅型光阻組成物形成負型圖型之方法,已知有與含有有機溶劑的顯影液(有機系顯影液)組合所得之負型顯影製程。但是,使用該有機系顯影液之負型顯影製程,於環境面、裝置.費用面中,相較於與鹼顯影液組合之正型顯影製程為不佳。
基於此點,目前則尋求一種可形成高解析性之負型圖型,且可以良好形狀形成之新穎光阻圖型之形成方法。
對於前述之需求,本發明者們,發明一種經由鹼顯影而可以形成高解析性之負型圖型之方法,其為將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份的光阻組成物所形成之光阻膜之未曝光部以鹼顯影液溶解去除,曝光部形成殘膜之負型圖型之形成方法,而提出專利申請(特願2011-106577)。該負型圖型之形成方法中,為將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份的光阻組成物塗佈於支撐體上而形成光阻膜,對前述光阻膜進行曝光、燒焙(Post Exposure Bake(PEB))。此時,前述光阻膜之曝光部中,因預先供應於前述光阻膜之酸,與經由前述曝光而由前述光鹼產生劑成份所產生之鹼進行反應而中和,另一方面,前述光阻膜之未曝光部中,經由前述酸之作用,而使基材成份增大對鹼顯影液之溶解性。因此,PEB後,將光阻膜進行鹼顯影時,前述光阻膜之未曝光部被溶解去除,而形成負型圖型。
但是,該方法中,會有造成感度劣化之狀況。感度劣化,將會導致產率下降等,因此極尋求其之改善。
本發明為鑑於上述情事所提出者,而以提供一種於鹼顯影製程中,可以高解析性且高感度形成負型光阻圖型之光阻圖型之形成方法及適合其使用的光阻組成物為目的。
本發明者們,經過重複深入研究結果,發明一種將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份的光阻組成物形成光阻膜後,使曝光部形成殘膜,未曝光部以「鹼顯影液」溶解去除之形成負型圖型之方法(特願2011-106577)。
本發明者們,經過重複深入研究結果,得到以下之見解。
正型之化學增幅型光阻組成物與鹼顯影液之組合以形成正型圖型之通常之正型顯影製程中,PEB為使用酸以充分增大基材成份對鹼顯影液之溶解性之方式進行,PEB不足時,將會造成解析性或感度劣化等狀況。但上述負型圖型之形成方法中,與一般不同者為,PEB溫度超過100℃時,感度將會急遽地劣化。
因此,再經研究結果,得知選用特定之光鹼產生劑成份時,即可解決前述問題,因而完成本發明。
本發明為基於上述見解所提出者,其具有以下之態樣。
即,本發明之第一態樣中之光阻組成物為,包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C)的光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部 中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的光阻圖型之形成方法中,其特徵為,前述步驟(1)所使用之前述光阻組成物中,前述光鹼產生劑成份(C)為,含有下述通式(C1-1-1)所表示之化合物。
[式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基。R1與R2可與式中之氮原子共同形成環]。
又,本發明之第二態樣中之光阻圖型之形成方法為,包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基 材成份(A),與經由曝光產生鹼,且,含有下述通式(C1-1-1)所表示之化合物的光鹼產生劑成份(C)之光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)。
[式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基。R1與R2可與式中之氮原子共同形成環]。
本發明之第三態樣中之光阻圖型之形成方法為,包含 將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C)的光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的光阻圖型之形成方法中,其特徵為,前述步驟(3)中之前述燒焙為於100℃以下進行。
本說明書及本申請專利範圍中,「曝光」為包含輻射線之全面照射之概念。
「脂肪族」為相對於芳香族之相對性概念,定義為不具有芳香族性之基、化合物等意義之物。
「烷基」,於無特別限定時,係指包含直鏈狀、支鏈狀及環狀之1價之飽和烴基之內容。烷氧基中之烷基亦為相同之內容。
「伸烷基」,於無特別限定時,係指包含直鏈狀、支鏈狀及環狀之2價之飽和烴基之內容。
「鹵化烷基」為,烷基之氫原子的一部份或全部被鹵素原子所取代之基,「鹵化伸烷基」係指,伸烷基之氫原子的一部份或全部被鹵素原子所取代之基,該鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等。
「羥烷基」為,烷基之氫原子的一部份或全部被羥基所取代之基。
「結構單位」為具有,構成高分子化合物(樹脂、聚合物、共聚物)之單體單位(monomer unit)之意義。
依本發明之內容,可提供一種於鹼顯影製程中,以具有高解析性且具有高感度之方式,可以形成更良好之形狀形成負型光阻圖型之光阻圖型之形成方法,及適合其使用的光阻組成物。
[發明之實施形態] 《光阻組成物》
本發明之第一態樣中之光阻組成物為,包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C)的光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻 膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的光阻圖型之形成方法中,於前述步驟(1)所使用者。
即,本發明之光阻組成物為含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A)(以下,亦稱為「(A)成份」),與經由曝光而產生鹼之光鹼產生劑成份(C)(以下,亦稱為「(C)成份」),且為前述步驟(1)所使用者。
又,包含前述步驟(1)~(4)之光阻圖型之形成方法,將於後敘述。
本發明中之「負型光阻圖型」,光阻膜之未曝光部被鹼顯影液所溶解去除,使曝光部以圖型方式殘留之光阻圖型,形成該形成負型光阻圖型之光阻組成物亦有稱為「負型光阻組成物」之情形。即,本發明之光阻組成物為負型光阻組成物。
「預先供應於光阻膜之酸」為包含,預先添加於該形成光阻膜之光阻組成物中的酸供應成份所產生之酸,及步驟(3)中之燒焙前與該光阻膜接觸之酸供應成份所產生之酸。
酸供應成份(以下,其亦稱為「(Z)成份」),例如,酸性化合物成份(以下,其亦稱為「(G)成份」)、酸產生劑 成份(以下,其亦稱為「(B)成份」)等。
酸性化合物為,其成份本身具有酸性之化合物,即,具有作為質子供應體之作用的化合物之意。
酸產生劑例如,經由加熱產生酸之熱酸產生劑、經由曝光而產生酸之光酸產生劑等。
(Z)成份,可單獨使用任何1種或將2種以上合併使用亦可。例如,可將酸性化合物與酸產生劑合併使用亦可、熱酸產生劑與光酸產生劑合併使用亦可。(Z)成份之具體例將於後詳細說明。
本發明之第三態樣中之光阻圖型之形成方法中,為使用至少含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(以下,亦稱為「(A)成份」),與經由曝光而產生鹼之光鹼產生劑成份(以下,亦稱為「(C)成份」)之光阻組成物。
上述之第一實施形態所使用之光阻組成物,除(A)成份及(C)成份以外,尚含有酸供應成份(以下,亦稱為「(Z)成份」)。上述之第二實施形態所使用之光阻組成物,可含有或不含有(Z)成份皆可。
(Z)成份,例如,酸性化合物成份(以下,亦稱為「(G)成份」)、酸產生劑成份(以下,亦稱為「(B)成份」)等。又,(G)成份及/或(B)成份,與酸增殖劑成份(以下,亦稱為「(H)成份」)可合併使用。
以下,將對各成份進行說明。
<基材成份;(A)成份>
(A)成份為,經由酸之作用而增大對鹼顯影液之溶解性的基材成份。
「基材成份」係指,具有膜形成能之有機化合物,較佳為使用分子量為500以上之有機化合物。該有機化合物之分子量為500以上時,可提高膜形成能,又,容易形成奈米程度之光阻圖型。
作為基材成份使用之有機化合物,可大致區分為非聚合物與聚合物。
非聚合物,通常為使用分子量為500以上、未達4000者。以下,稱為「低分子化合物」之情形,係指分子量為500以上、未達4000之非聚合物。
聚合物通常為使用分子量為1000以上者。本說明書及申請專利範圍中,稱為「樹脂」之情形,係指分子量為1000以上之聚合物。
聚合物之分子量,為使用GPC(凝膠滲透色層分析儀)之聚苯乙烯換算的質量平均分子量者。
(A)成份,較佳為使用經由酸之作用而增大極性之基材成份(以下,亦稱為「(A0)成份」)。
本發明中,於使用(A0)成份時,因(A0)成份於步驟(3)之燒焙前後,對使未曝光部之極性產生變化,故經由鹼顯影,而可得到良好之顯影反差。
該(A0)成份,可為經由酸之作用而增大極性之樹脂成份亦可、經由酸之作用而增大極性之低分子化合物成份亦可,或該些混合物亦可。
(A0)成份,以經由酸之作用而增大極性之樹脂成份為佳,特別是以含有,具有含有經由酸之作用而增大極性之酸分解性基的結構單位(a1)的高分子化合物(A1)(以下,亦稱為「(A1)成份」)者為佳。
(A1)成份,除前述結構單位(a1)以外,以再具有含有含-SO2-之環式基的結構單位(a0)及含有含內酯之環式基的結構單位(a2)所成群所選出之至少一種之結構單位者為佳。
又,(A1)成份,除前述結構單位(a1)以外,或,前述結構單位(a0)及結構單位(a2)所成群所選出之至少一種之結構單位與前述結構單位(a1)以外,以再具有含有含極性基之脂肪族烴基的結構單位(a3)者為佳。
又,(A1)成份,除前述結構單位(a1)以外,或,結構單位(a1)與結構單位(a0)以外,以再具有α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有含內酯之環式基的結構單位(a2)所成群所選出之至少一種之結構單位者為佳。
又,(A1)成份,除前述結構單位(a1)以外,或,結構單位(a0)及結構單位(a2)之至少一者與前述結構單位(a1)以外,以再具有α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有含極性基之脂肪族烴基的結構單位(a3)者為佳。
其中,本說明書及本申請專利範圍中,「丙烯酸酯所衍生之結構單位」為具有,丙烯酸酯之乙烯性雙鍵經開裂 所構成之結構單位之意。
「丙烯酸酯」為,丙烯酸(CH2=CH-COOH)之羧基末端的氫原子被有機基所取代之化合物。
丙烯酸酯中,α位之碳原子所鍵結之氫原子可被取代基所取代。取代該α位之碳原子所鍵結之氫原子的取代基為,氫原子以外之原子或基,例如,碳數1~5之烷基、碳數1~5之鹵化烷基、羥烷基等。又,丙烯酸酯之α位之碳原子,於無特別限定時,係指羰基所鍵結之碳原子之意。
以下,α位之碳原子所鍵結之氫原子被取代基所取代之丙烯酸、丙烯酸酯,亦分別稱為α取代丙烯酸、α取代丙烯酸酯。
又,包括丙烯酸與α取代丙烯酸,亦稱為「(α取代)丙烯酸」、包括丙烯酸酯與α取代丙烯酸酯,亦稱為「(α取代)丙烯酸酯」。
α取代丙烯酸酯中,作為α位之取代基的烷基,以直鏈狀或支鏈狀之烷基為佳,具體而言,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基等。
又,作為α位之取代基的鹵化烷基,具體而言,例如,上述「作為α位之取代基的烷基」中之氫原子的一部份或全部被鹵素原子所取代之基等。該鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,特別是以氟原子為佳。
鍵結於α取代丙烯酸酯之α位之基,以氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基為佳,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為較佳,就工業上取得之容易性等觀點,以氫原子或甲基為最佳。
[結構單位(a1)]
結構單位(a1)為,含有經由酸之作用而增大極性之酸分解性基的結構單位。
「酸分解性基」為,經由酸之作用,使該酸分解性基的結構中之至少一部份鍵結經開裂而得之具有酸分解性之基。
經由酸之作用而增大極性之酸分解性基,例如,經由酸之作用而分解產生極性基之基等。
極性基,例如,羧基、羥基、胺基、磺基(-SO3H)等。該些之中,又以結構中含有-OH之極性基(以下,亦稱為「含有OH之極性基」)為佳,以羧基或羥基為佳,以羧基為特佳。
酸分解性基,更具體而言,例如前述極性基被酸解離性基所保護之基(例如,含有OH之極性基之氫原子被酸解離性基所保護之基)等。
「酸解離性基」為,經由酸之作用,而至少使該酸解離性基與該酸解離性基鄰接之原子之間的鍵結產生開裂而得之具有酸解離性之基。構成酸分解性基之酸解離性基,必須為具有較該酸解離性基經由解離所生成之極性基為更低的極性之基,如此,經由酸之作用而使該酸解離性基解 離之際,可生成較該酸解離性基為更高極性之極性基,而使極性增大。其結果,將會增大(A1)成份全體之極性。極性增大時,對顯影液之溶解性會產生相對的變化,於顯影液為鹼顯影液之情形時,將會增大溶解性。
酸解離性基,並未有特別之限定,其可使用目前為止被提案作為化學增幅型光阻用之基礎樹脂的酸解離性基者。一般而言,廣為已知者例如,與(甲基)丙烯酸等中之羧基形成環狀或鏈狀之三級烷酯之基;烷氧烷基等縮醛型酸解離性基等。
其中,「三級烷酯」係指,羧基之氫原子,被鏈狀或環狀之烷基所取代而形成酯,其羰氧基(-C(=O)-O-)的末端之氧原子上,鍵結前述鏈狀或環狀之烷基中之三級碳原子所得之結構之意。此三級烷酯中,經由酸之作用時,使氧原子與三級碳原子之間的鍵結被切斷,而形成羧基。
前述鏈狀或環狀之烷基,可具有取代基。
以下,經由羧基與三級烷酯之構成,而形成酸解離性之基,於方便上,將其稱為「三級烷酯型酸解離性基」。
三級烷酯型酸解離性基,例如,含有脂肪族支鏈狀酸解離性基、脂肪族環式基之酸解離性基等。
其中,「脂肪族支鏈狀」係指,不具有芳香族性之具有支鏈狀結構者之意。「脂肪族支鏈狀酸解離性基」之結構,只要為由碳及氫所形成之基(烴基)時,並未有特別之限定,又以烴基為佳。又,「烴基」可為飽和或不飽和之任一者皆可,通常以飽和者為佳。
脂肪族支鏈狀酸解離性基,例如,-C(R71)(R72)(R73)所表示之基等。式中,R71~R73為各自獨立之碳數1~5之直鏈狀烷基。-C(R71)(R72)(R73)所表示之基,以碳數4~8為佳,具體而言,例如,tert-丁基、2-甲基-2-丁基、2-甲基-2-戊基、3-甲基-3-戊基等。
特別是以tert-丁基為佳。
「脂肪族環式基」係指,不具有芳香族性之單環式基或多環式基之意。
「含有脂肪族環式基之酸解離性基」中之脂肪族環式基,可具有取代基,或不具有取代基皆可。取代基例如,碳數1~5之烷基、碳數1~5之烷氧基、氟原子、被氟原子所取代之碳數1~5之氟化烷基、氧原子(=O)等。
該脂肪族環式基之去除取代基的基本之環結構,只要為由碳及氫所形成之基(烴基)時,並未有特別之限定,又以烴基為佳。又,該烴基,可為飽和或不飽和之任一者皆可,通常以飽和者為佳。
脂肪族環式基,可為單環式亦可、多環式亦可。
脂肪族環式基,例如,由可被碳數1~5之烷基、氟原子或氟化烷基所取代亦可、未被取代亦可之單環鏈烷去除1個以上之氫原子所得之基;由二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等。更具體而言,例如,由環戊烷、環己烷等單環鏈烷去除1個以上之氫原子所得之基;由金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個以上之氫原子 所得之基等脂環式烴基等。又,構成該些脂環式烴基的環之碳原子中之一部份可被醚基(-O-)所取代。
含有脂肪族環式基之酸解離性基,例如,(i)1價之脂肪族環式基之環骨架上、鍵結與酸解離性基相鄰接之原子(例如,-C(=O)-O-中之-O-)所鍵結之碳原子鍵結取代基(氫原子以外之原子或基)而形成三級碳原子之基;(ii)具有1價之脂肪族環式基,與,與其鍵結之具有三級碳原子之支鏈狀伸烷基之基等。
前述(i)之基中,於脂肪族環式基之環骨架上,鍵結與該酸解離性基相鄰接之原子之碳原子的取代基,例如,烷基等。該烷基,例如與後述式(1-1)~(1-9)中之R14為相同之內容等。
前述(i)之基之具體例,例如,下述通式(1-1)~(1-9)所表示之基等。
前述(ii)之基之具體例,例如,下述通式(2-1)~(2-6)所表示之基等。
[式中,R14為烷基,g為0~8之整數]。
[式中,R15及R16各自獨立為烷基]。
式(1-1)~(1-9)中,R14之烷基,可為直鏈狀、支鏈狀、環狀之任一者皆可,又以直鏈狀或支鏈狀為佳。
該直鏈狀烷基,以碳數1~5為佳,以1~4為較佳,以1或2為更佳。具體而言,例如,甲基、乙基、n-丙 基、n-丁基、n-戊基等。該些之中,又以甲基、乙基或n-丁基為佳,以甲基或乙基為更佳。
該支鏈狀之烷基,以碳數3~10為佳,以3~5為更佳。具體而言,例如,異丙基、異丁基、tert-丁基、異戊基、新戊基等,又以異丙基為最佳。
g為0~3之整數為佳,以1~3之整數為較佳,以1或2為更佳。
式(2-1)~(2-6)中,R15~R16之烷基,與前述R14之烷基為相同之內容等。
上述式(1-1)~(1-9)、(2-1)~(2-6)中,構成環之碳原子的一部份可被醚性氧原子(-O-)所取代。
又,式(1-1)~(1-9)、(2-1)~(2-6)中,鍵結於構成環之碳原子的氫原子可被取代基所取代。該取代基例如,碳數1~5之烷基、氟原子、氟化烷基等。
「縮醛型酸解離性基」,一般而言,為鍵結於取代羧基、羥基等含有OH之極性基末端的氫原子之氧原子上。隨後,受到酸之作用,使縮醛型酸解離性基,與該縮醛型酸解離性基鍵結之氧原子之間的鍵結被切斷,而形成羧基、羥基等含有OH之極性基。
縮醛型酸解離性基,例如,下述通式(p1)所表示之基等。
[式中,R1’,R2’各自獨立表示氫原子或碳數1~5之烷基,n表示0~3之整數,Y表示碳數1~5之烷基或脂肪族環式基]。
式(p1)中,n,以0~2之整數為佳,以0或1為較佳,以0為最佳。
R1’,R2’之烷基,與上述α取代丙烯酸酯之說明中,被列舉作為可鍵結於α位的碳原子之取代基的烷基為相同之內容等,以甲基或乙基為佳,以甲基為最佳。
本發明中,R1’,R2’中之至少1個為氫原子為佳。即,酸解離性基(p1)以下述通式(p1-1)所表示之基為佳。
[式中,R1’、n、Y與上述為相同之內容]。
Y之烷基,與上述α取代丙烯酸酯之說明中,被列舉 作為可鍵結於α位的碳原子之取代基的烷基為相同之內容等。
Y之脂肪族環式基,可由以往ArF光阻等中,被多數提案之單環或多環式之脂肪族環式基之中適當地選擇使用,例如,與上述「含有脂肪族環式基之酸解離性基」所列舉之脂肪族環式基為相同之內容等。
縮醛型酸解離性基,又例如下述通式(p2)所示之基。
[式中,R17、R18為各自獨立之直鏈狀或支鏈狀之烷基或氫原子;R19為直鏈狀、支鏈狀或環狀之烷基。或,R17及R19為各自獨立之直鏈狀或支鏈狀之伸烷基,又R17的末端與R19的末端可鍵結形成環]。
R17、R18中,烷基之碳數,較佳為1~15,其可為直鏈狀、支鏈狀之任一者,又以乙基、甲基為佳,以甲基為最佳。
特別是以R17、R18之一者為氫原子,另一者為甲基為佳。
R19為直鏈狀、支鏈狀或環狀之烷基,碳數較佳為1~15,可為直鏈狀、支鏈狀或環狀之任一者皆可。
R19為直鏈狀、支鏈狀之情形,以碳數1~5為佳,以乙基、甲基為更佳,以乙基為最佳。
R19為環狀之情形,以碳數4~15為佳,以碳數4~12為更佳,以碳數5~10為最佳。具體而言,例如由可被氟原子或氟化烷基所取代,或未被取代之單環鏈烷、二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等例示。具體而言,例如,由環戊烷、環己烷等單環鏈烷,或金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個以上之氫原子所得之基等。其中又以由金剛烷去除1個以上之氫原子所得之基為佳。
又,上述式(p2)中,R17及R19為各自獨立之直鏈狀或支鏈狀之伸烷基(較佳為碳數1~5之伸烷基),又R19的末端與R17的末端可形成鍵結。
該情形中,R17,與R19,與R19鍵結之氧原子,與該氧原子及R17鍵結之碳原子可形成環式基。該環式基,以4~7員環為佳,以4~6員環為更佳。該環式基之具體例、四氫吡喃基、四氫呋喃基等。
結構單位(a1)為,α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有經由酸之作用而增大極性之酸分解性基的結構單位;羥基苯乙烯或羥基苯乙烯衍生物所衍生之結構單位之羥基中之氫原子的至少一部份被前述含有酸分解性基之取代基所保護之結構單位;乙烯基苯甲酸或乙烯基苯甲酸衍生物所衍生之 結構單位之-C(=O)-OH中之氫原子的至少一部份被前述含有酸分解性基之取代基所保護之結構單位等。
含有酸分解性基之取代基,以上述所說明之三級烷酯型酸解離性基、縮醛型酸解離性基為較佳之例示。
其中,本說明書及本申請專利範圍中,「丙烯酸酯所衍生之結構單位」為具有,丙烯酸酯之乙烯性雙鍵經開裂所構成之結構單位之意。
「丙烯酸酯」為,丙烯酸(CH2=CH-COOH)之羧基末端的氫原子被有機基所取代之化合物。
丙烯酸酯中,α位之碳原子所鍵結之氫原子可被取代基所取代。取代該α位之碳原子所鍵結之氫原子的取代基為,氫原子以外之原子或基,例如,碳數1~5之烷基、碳數1~5之鹵化烷基、羥烷基等。又,丙烯酸酯之α位之碳原子,於無特別限定時,係指羰基所鍵結之碳原子之意。
以下,α位之碳原子所鍵結之氫原子被取代基所取代之丙烯酸酯亦稱為α取代丙烯酸酯。又,包括丙烯酸酯與α取代丙烯酸酯,亦稱為「(α取代)丙烯酸酯」。
α取代丙烯酸酯中,作為α位之取代基的烷基,以直鏈狀或支鏈狀之烷基為佳,具體而言,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基等。
又,作為α位之取代基的鹵化烷基,具體而言,例如,上述「作為α位之取代基的烷基」中之氫原子的一部 份或全部被鹵素原子所取代之基等。該鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,特別是以氟原子為佳。
又,作為α位之取代基的羥烷基,具體而言,例如,上述「作為α位之取代基的烷基」之氫原子的一部份或全部被羥基所取代之基等。該羥烷基中之羥基數,以1~5為佳,以1為最佳。
鍵結於α取代丙烯酸酯之α位之基,以氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基為佳,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為較佳,就工業上取得之容易性等觀點,以氫原子或甲基為最佳。
「羥基苯乙烯或羥基苯乙烯衍生物所衍生之結構單位」係指,羥基苯乙烯或羥基苯乙烯衍生物之乙烯性雙鍵經開裂所構成之結構單位之意。
「羥基苯乙烯衍生物」為包含,羥基苯乙烯之α位的氫原子被烷基、鹵化烷基等其他取代基所取代者,及該些衍生物之概念。該些衍生物例如,α位之氫原子可被取代基所取代的羥基苯乙烯之羥基中的氫原子被有機基所取代者、α位之氫原子可被取代基所取代之羥基苯乙烯的苯環上,鍵結羥基以外之取代基者等。又,α位(α位之碳原子),於無特別限定時,係指苯環所鍵結之碳原子之意。
取代羥基苯乙烯之α位的氫原子之取代基,與前述α取代丙烯酸酯中,α位之取代基所列舉者為相同之內容等。該些之中,又以氫原子、碳數1~5之烷基或碳數1 ~5之鹵化烷基為佳,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為較佳,就工業上取得之容易性等觀點,以氫原子或甲基為最佳。
鍵結於α位之氫原子可被取代基所取代之羥基苯乙烯的苯環上之羥基以外之取代基,例如,鹵素原子、碳數1~5之烷基、碳數1~5之鹵化烷基、-COOXe(Xe為氫原子或有機基)等。鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為特佳。
「乙烯基苯甲酸或乙烯基苯甲酸衍生物所衍生之結構單位」係指,乙烯基苯甲酸或乙烯基苯甲酸衍生物之乙烯性雙鍵經開裂所構成之結構單位之意。
「乙烯基苯甲酸衍生物」為包含,乙烯基苯甲酸之α位的氫原子被烷基、鹵化烷基等其他取代基所取代者,及該些衍生物之概念。該些衍生物例如,α位之氫原子可被取代基所取代的乙烯基苯甲酸的羧基之氫原子被有機基所取代者、α位之氫原子可被取代基所取代的乙烯基苯甲酸之苯環上,鍵結羥基及羧基以外之取代基者等。又,α位(α位之碳原子),於無特別限定時,係指苯環所鍵結之碳原子之意。
取代乙烯基苯甲酸之α位之氫原子的取代基,與前述α取代丙烯酸酯中,α位之取代基所列舉者為相同之內容等。該些之中,又以氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基為佳,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為較佳,就工業上取得之容易性等觀 點,以氫原子或甲基為最佳。
可鍵結於α位之氫原子可被取代基所取代的乙烯基苯甲酸之苯環上之羥基及羧基以外之取代基,例如,鹵素原子、碳數1~5之烷基、碳數1~5之鹵化烷基等。鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為特佳。
結構單位(a1),於上述之中,又以α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位為佳。
結構單位(a1),更具體而言,例如下述通式(a1-0-1)所表示之結構單位、下述通式(a1-0-2)所表示之結構單位等。
[式中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基;X1為酸解離性基;Y2為2價之鍵結基;X2 為酸解離性基]。
通式(a1-0-1)中,R之烷基、鹵化烷基,分別與上述α取代丙烯酸酯之說明中,α位之碳原子所可鍵結的取代基所列舉之烷基、鹵化烷基為相同之內容等。R,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為佳,以氫原子或甲基為最佳。
X1,只要為酸解離性基時,並未有特別之限定,可例如,上述三級烷酯型酸解離性基、縮醛型酸解離性基等,又以三級烷酯型酸解離性基為佳。
通式(a1-0-2)中,R與上述為相同之內容。
X2,與式(a1-0-1)中之X1為相同之內容。
Y2之2價之鍵結基,並未有特別之限定,例如可具有取代基之2價烴基、含雜原子之2價之鍵結基等為較佳之例示。
烴基為「具有取代基」係指,該烴基中之氫原子的一部份或全部被取代基(氫原子以外之基或原子)所取代之意。
該烴基可為脂肪族烴基亦可、芳香族烴基亦可。
脂肪族烴基為表示不具有芳香族性之烴基之意。
前述Y2中,作為2價烴基之脂肪族烴基,可為飽和者亦可、不飽和者亦可,通常以飽和者為佳。
該脂肪族烴基,更具體而言,例如,直鏈狀或支鏈狀之脂肪族烴基、結構中含有環之脂肪族烴基等。
前述直鏈狀或支鏈狀之脂肪族烴基,以碳數1~10為 佳,以1~6為較佳,以1~4為更佳,以1~3為最佳。
直鏈狀之脂肪族烴基,以直鏈狀之伸烷基為佳,具體而言,例如伸甲基[-CH2-]、伸乙基[-(CH2)2-]、伸三甲基[-(CH2)3-]、伸四甲基[-(CH2)4-]、伸五甲基[-(CH2)5-]等。
支鏈狀之脂肪族烴基,以支鏈狀之伸烷基為佳,具體而言,例如-CH(CH3)-、-CH(CH2CH3)-、-C(CH3)2-、-C(CH3)(CH2CH3)-、-C(CH3)(CH2CH2CH3)-、-C(CH2CH3)2-等烷基伸甲基;-CH(CH3)CH2-、-CH(CH3)CH(CH3)-、-C(CH3)2CH2-、-CH(CH2CH3)CH2-、-C(CH2CH3)2-CH2-等烷基伸乙基;-CH(CH3)CH2CH2-、-CH2CH(CH3)CH2-等烷基伸三甲基;-CH(CH3)CH2CH2CH2-、-CH2CH(CH3)CH2CH2-等烷基伸四甲基等烷基伸烷基等。烷基伸烷基中之烷基,以碳數1~5之直鏈狀烷基為佳。
前述直鏈狀或支鏈狀之脂肪族烴基,可具有取代基亦可、不具有亦可。該取代基例如,氟原子、被氟原子所取代之碳數1~5之氟化烷基、氧原子(=O)等。
前述結構中含有環之脂肪族烴基,例如,脂環式烴基(由脂肪族烴環去除2個氫原子所得之基)、脂環式烴基鍵結於直鏈狀或支鏈狀之脂肪族烴基的末端之基、脂環式烴基介於直鏈狀或支鏈狀之脂肪族烴基之中途之基等。前述直鏈狀或支鏈狀之脂肪族烴基例如與前述為相同之內容等。
前述脂環式烴基,以碳數3~20為佳,以3~12為更 佳。
前述脂環式烴基,可為多環式亦可、單環式亦可。單環式之脂環式烴基,以由單環鏈烷去除2個氫原子所得之基為佳。該單環鏈烷以碳數3~6者為佳,具體言,例如,環戊烷、環己烷等。多環式之脂環式烴基,以由多環鏈烷去除2個氫原子所得之基為佳,該多環鏈烷以碳數7~12者為佳,具體而言,例如,金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等。
前述脂環式烴基,可具有取代基,或不具有取代基皆可。取代基例如,碳數1~5之烷基、氟原子、被氟原子所取代之碳數1~5之氟化烷基、氧原子(=O)等。
芳香族烴基為具有芳香環之烴基。
前述Y2中作為2價烴基之芳香族烴基,以碳數5~30為較佳,以5~20為更佳,以6~15為特佳,以6~10為最佳。但,該碳數中,為不包含取代基中之碳數者。
芳香族烴基所具有之芳香環,具體而言,例如苯、聯苯基、茀、萘、蒽、菲等芳香族烴環;構成前述芳香族烴環之碳原子的一部份被雜原子所取代之芳香族雜環;等。芳香族雜環中之雜原子,例如,氧原子、硫原子、氮原子等。
該芳香族烴基,具體而言,例如由前述芳香族烴環去除2個氫原子所得之基(伸芳基);由前述芳香族烴環去除1個氫原子所得之基(芳基)中之1個氫原子被伸烷基所取代之基(例如,苄基、苯基乙基、1-萘基甲基、2-萘基甲 基、1-萘基乙基、2-萘基乙基等芳烷基中,由芳基再去除1個氫原子所得之基);等。前述伸烷基(芳烷基中之烷基鏈)之碳數,以1~4為佳,以1~2為較佳,以1為特佳。
前述芳香族烴基,可具有取代基,或不具有取代基皆可。例如,該芳香族烴基所具有之芳香族烴環所鍵結之氫原子可被取代基所取代。該取代基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)等。
前述作為取代基之烷基,以碳數1~5之烷基為佳,以甲基、乙基、丙基、n-丁基、tert-丁基為最佳。
前述作為取代基之烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為佳,以甲氧基、乙氧基為最佳。
前述作為芳香族烴基之取代基的鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
前述作為取代基之鹵化烷基,例如,前述烷基之氫原子的一部份或全部被前述鹵素原子所取代之基等。
前述Y2之「含雜原子之2價之鍵結基」中之雜原子,係指碳原子及氫原子以外之原子,例如,氧原子、氮原子、硫原子、鹵素原子等。
含雜原子之2價之鍵結基,例如,-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-(H可被烷基、醯基等取代基所取代)、-S-、-S(=O)2-、-S(=O)2-O-、-NH-C(=O)-、=N-、通式-Y21-O-Y22-、 -[Y21-C(=O)-O]m’-Y22-或-Y21-O-C(=O)-Y22-所表示之基[式中,Y21及Y22為各自獨立之可具有取代基之2價烴基,O為氧原子,m’為0~3之整數]等。
Y2為-NH-之情形中,該H可被烷基、芳基(芳香族基)等取代基所取代。該取代基(烷基、芳基等)中,碳數以1~10為佳,以1~8為更佳,以1~5為特佳。
式-Y21-O-Y22-、-[Y21-C(=O)-O]m’-Y22-或-Y21-O-C(=O)-Y22-中,Y21及Y22為各自獨立之可具有取代基之2價烴基。該2價烴基,與前述之Y2中之「可具有取代基之2價烴基」所列舉者為相同之內容等。
Y21,以直鏈狀之脂肪族烴基為佳,以直鏈狀之伸烷基為較佳,以碳數1~5之直鏈狀之伸烷基為更佳,以伸甲基或伸乙基為特佳。
Y22,以直鏈狀或支鏈狀之脂肪族烴基為佳,以伸甲基、伸乙基或烷基伸甲基為更佳。該烷基伸甲基中之烷基,以碳數1~5之直鏈狀烷基為佳,以碳數1~3之直鏈狀烷基為佳,以甲基為最佳。
式-[Y21-C(=O)-O]m’-Y22-所表示之基中,m’為0~3之整數,以0~2之整數為佳,以0或1為較佳,以1為特佳。即,式-[Y21-C(=O)-O]m’-Y22-所表示之基,以式-Y21-C(=O)-O-Y22-所表示之基為特佳。其中,又以式-(CH2)a’-C(=O)-O-(CH2)b’-所表示之基為佳。該式中,a’為1~10之整數,以1~8之整數為佳,以1~5之整數為較佳,以1或2為更佳,以1為最佳。b’為1~10之整 數,以1~8之整數為佳,以1~5之整數為較佳,以1或2為更佳,以1為最佳。
含雜原子之2價之鍵結基,以具有氧原子作為雜原子之直鏈狀之基,例如以含有醚鍵結或酯鍵結之基為佳,以前述式-Y21-O-Y22-、-[Y21-C(=O)-O]m’-Y22-或-Y21-O-C(=O)-Y22-所表示之基為更佳。
上述之中,Y2之2價之鍵結基,特別是以直鏈狀或支鏈狀之伸烷基、2價之脂環式烴基,或含雜原子之2價之鍵結基為佳。該些之中,又以直鏈狀或支鏈狀之伸烷基,或含雜原子之2價之鍵結基為佳。
結構單位(a1),更具體而言,例如下述通式(a1-1)~(a1-4)所表示之結構單位等。
[式中,R、R1’、R2’、n、Y及Y2分別與前述為相同之內容,X’表示三級烷酯型酸解離性基]。
式中,X’,與前述三級烷酯型酸解離性基為相同之內容等。
R1’、R2’、n、Y,分別與上述「縮醛型酸解離性基」之說明中所列舉之通式(p1)中之R1’、R2’、n、Y為相同之內容等。
Y2,與上述之通式(a1-0-2)中之Y2為相同之內容等。
以下為上述通式(a1-1)~(a1-4)所表示之結構單位之具體例示。
以下各式中,Rα表示氫原子、甲基或三氟甲基。
本發明中,結構單位(a1),以至少具有由下述通式(a1-0-11)所表示之結構單位、下述通式(a1-0-12)所表示之結構單位、下述通式(a1-0-13)所表示之結構單位、下述通式(a1-0-14)所表示之結構單位、下述通式(a1-0-15)所表示之結構單位,及下述通式(a1-0-2)所表示之結構單位所成群所選出之至少1種者為佳。
其中,又以由下述通式(a1-0-11)所表示之結構單位、下述通式(a1-0-12)所表示之結構單位、下述通式(a1-0-13)所表示之結構單位、下述通式(a1-0-14)所表示之結構單位,及下述通式(a1-0-15)所表示之結構單位所成群所選出 之至少1種者為更佳。
[式中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基,R21為烷基;R22為,與該R22鍵結之碳原子共同形成脂肪族單環式基之基;R23為支鏈狀之烷基;R24為,與該R24鍵結之碳原子共同形成脂肪族多環式基之基;R25為碳數1~5之直鏈狀烷基。R15及R16各自獨立為烷基。Y2為2價之鍵結基,X2為酸解離性基]。
各式中,R、Y2、X2之說明與前述為相同之內容。
式(a1-0-11)中,R21之烷基,與前述式(1-1)~(1-9)中之R14之烷基為相同之內容等,以甲基、乙基或異丙基為佳。
R22,與該R22鍵結之碳原子共同形成之脂肪族單環式基,例如,與前述三級烷酯型酸解離性基中所列舉之脂肪族環式基中,作為單環式基之基為相同之內容等。具體而言,例如由單環鏈烷去除1個以上之氫原子所得之基等。該單環鏈烷,以3~11員環為佳,以3~8員環為較佳,以4~6員環為更佳,以5或6員環為特佳。
該單環鏈烷中,構成環之碳原子的一部份可被醚基(-O-)所取代,或未被取代亦可。
又,該單環鏈烷中,取代基可具有碳數1~5之烷基、氟原子或碳數1~5之氟化烷基。
構成脂肪族單環式基之R22,例如,碳原子間可介有醚基(-O-)之直鏈狀之伸烷基等。
式(a1-0-11)所表示之結構單位之具體例,例如,前述式(a1-1-16)~(a1-1-23)、(a1-1-27)、(a1-1-31)所表示之結構單位等。該些之中,又以包括式(a1-1-16)~(a1-1-17)、(a1-1-20)~(a1-1-23)、(a1-1-27)、(a1-1-31)、(a1-1-32)、(a1-1-33)所表示之結構單位的下述(a1-1-02)所表示之結構單位為佳。又,下述(a1-1-02’)所表示之結構單位亦佳。
各式中,h為1~4之整數,又以1或2為佳。
[式中,R、R21分別與前述為相同之內容,h為1~4之整數]。
式(a1-0-12)中,R23之支鏈狀之烷基,與前述式(1-1)~(1-9)中之R14之烷基所列舉之支鏈狀之烷基為相同之內容等,又以異丙基為最佳。
R24,與該R24鍵結之碳原子共同形成之脂肪族多環式基,與前述三級烷酯型酸解離性基中所列舉之脂肪族環式基中,作為多環式基之基為相同之內容等。
式(a1-0-12)所表示之結構單位之具體例,例如,前述式(a1-1-26)、(a1-1-28)~(a1-1-30)所表示之結構單位等。
式(a1-0-12)所表示之結構單位中,以R24,與該R24鍵結之碳原子共同形成之脂肪族多環式基為2-金剛烷基者為佳,特別是以前述式(a1-1-26)所表示之結構單位為佳。
式(a1-0-13)中,R及R24分別與前述為相同之內容。
R25之直鏈狀烷基,與前述式(1-1)~(1-9)中之R14之烷基所列舉之直鏈狀烷基為相同之內容等,以甲基或乙基為最佳。
式(a1-0-13)所表示之結構單位,具體而言,例如,前述通式(a1-1)之具體例中所例示之式(a1-1-1)~(a1-1-2)、(a1-1-7)~(a1-1-15)所表示之結構單位等。
式(a1-0-13)所表示之結構單位中,以R24,與該R24鍵結之碳原子共同形成之脂肪族多環式基為2-金剛烷基者為佳,特別是以前述式(a1-1-1)或(a1-1-2)所表示之結構單位為佳。
式(a1-0-14)中,R及R22分別與前述為相同之內容。R15及R16,分別與前述通式(2-1)~(2-6)中之R15及R16為相同之內容。
式(a1-0-14)所表示之結構單位,具體而言,例如,前述通式(a1-1)之具體例所例示之式(a1-1-35)、(a1-1-36)所表示之結構單位等。
式(a1-0-15)中,R及R24分別與前述為相同之內容。R15及R16,分別與前述通式(2-1)~(2-6)中之R15及R16為相同之內容。
式(a1-0-15)所表示之結構單位,具體而言,例如,前述通式(a1-1)之具體例所例示之式(a1-1-4)~(a1-1-6)、(a1-1-34)所表示之結構單位等。
式(a1-0-2)所表示之結構單位,例如前述式(a1-3)或 (a1-4)所表示之結構單位,特別是以式(a1-3)所表示之結構單位為佳。
式(a1-0-2)所表示之結構單位,特別是以式中之Y2為前述-Y21-O-Y22-或-Y21-C(=O)-O-Y22-所表示之基者為佳。
該結構單位中,較佳者例如下述通式(a1-3-01)所表示之結構單位;下述通式(a1-3-02)所表示之結構單位;下述通式(a1-3-03)所表示之結構單位等。
[式中,R與前述為相同之內容,R13為氫原子或甲基,R14為烷基,e為1~10之整數,n’為0~3之整數]。
[式中,R與前述為相同之內容,Y2’及Y2”為各自獨立之2價之鍵結基,X’為酸解離性基,w為0~3之整數]。
式(a1-3-01)~(a1-3-02)中,R13以氫原子為佳。
R14,與前述式(1-1)~(1-9)中之R14為相同之內容。
e,以1~8之整數為佳,以1~5之整數為較佳,以1或2為最佳。
n’,以1或2為佳,以2為最佳。
式(a1-3-01)所表示之結構單位之具體例,例如,前述式(a1-3-25)~(a1-3-26)所表示之結構單位等。
式(a1-3-02)所表示之結構單位之具體例,例如,前述式(a1-3-27)~(a1-3-28)所表示之結構單位等。
式(a1-3-03)中,Y2’、Y2”中之2價之鍵結基,例如與前述通式(a1-3)中之Y2為相同之內容等。
Y2’,以可具有取代基之2價烴基為佳,以直鏈狀之脂肪族烴基為較佳,以直鏈狀之伸烷基為更佳。其中又以碳數1~5之直鏈狀之伸烷基為佳,以伸甲基、伸乙基為 最佳。
Y2”,以可具有取代基之2價烴基為佳,以直鏈狀之脂肪族烴基為較佳,以直鏈狀之伸烷基為更佳。其中又以碳數1~5之直鏈狀之伸烷基為佳,以伸甲基、伸乙基為最佳。
X’中之酸解離性基,與前述為相同之內容,又以三級烷酯型酸解離性基為佳,以上述(i)1價之脂肪族環式基之環骨架上,該酸解離性基所鄰接之原子所鍵結之碳原子鍵結取代基而形成之三級碳原子之基為較佳,其中又以前述通式(1-1)所表示之基為佳。
w為0~3之整數,w,以0~2之整數為佳,以0或1為較佳,以1為最佳。
式(a1-3-03)所表示之結構單位,以下述通式(a1-3-03-1)或(a1-3-03-2)所表示之結構單位為佳,其中又以式(a1-3-03-1)所表示之結構單位為佳。
[式中,R及R14分別與前述為相同之內容,a’為1~10之整數,b’為1~10之整數,t為0~3之整數]。
式(a1-3-03-1)~(a1-3-03-2)中,a’與前述為相同之內容,以1~8之整數為佳,以1~5之整數為較佳,以1或2為特佳。
b’與前述為相同之內容,以1~8之整數為佳,以1~5之整數為佳,以1或2為特佳。
t為1~3之整數為佳,以1或2為特佳。
式(a1-3-03-1)或(a1-3-03-2)所表示之結構單位之具體例,例如,前述式(a1-3-29)~(a1-3-32)所表示之結構單位等。
(A1)成份所含之結構單位(a1)可為1種,或2種以上皆可。
(A1)成份中,結構單位(a1)之比例,相對於構成(A1)成份之全結構單位,以15~70莫耳%為佳,以15~60莫耳%為較佳,以20~55莫耳%為更佳。
結構單位(a1)之比例為下限值以上時,作為光阻組成物之際,可容易得到圖型,且亦可提高感度、解析性、LWR等微影蝕刻特性。又,於上限值以下時,可容易取得與其他結構單位之平衡。
[結構單位(a0)]
結構單位(a0)為,含有含-SO2-之環式基的結構單位。
結構單位(a0)為,含有含-SO2-之環式基時,可提高使用含有(A1)成份之光阻組成物所形成之光阻膜對基板之密著性。又,可期待感度、解析性、曝光寬容度(EL寬容度)、LWR(線寬粗糙度)、LER(線路邊緣粗糙度)、遮罩重現性等微影蝕刻特性之提升。
此處之「含-SO2-之環式基」係指,該環骨架中含有含-SO2-之環的環式基之意,具體而言,為-SO2-中之硫原子(S)形成為環式基之環骨架中的一部份之環式基。
含-SO2-之環式基中,以該環骨架中含有-SO2-之環作為1個單位之環的方式計數,僅為該環之情形稱為單環式基,再具有其他環結構的情形,無論其結構為何,皆稱為多環式基。
含-SO2-之環式基,可為單環式亦可、多環式亦可。
含-SO2-之環式基,特別是該環骨架中含有-O-SO2-之環式基,即,以-O-SO2-中之-O-S-形成為環式基之環骨架的一部份的磺內酯(sultone)環為佳。
含-SO2-之環式基,以碳數3~30為佳,以4~20為佳,以4~15為較佳,以4~12為特佳。但,該碳數為構成環骨架之碳原子的數目,為不包含取代基中之碳數者。
含-SO2-之環式基,可為-SO2-之脂肪族環式基亦可、含有-SO2-之芳香族環式基亦可。較佳為含有-SO2-之脂肪族環式基。
含-SO2-之脂肪族環式基,例如由構成其環骨架之碳原子中之一部份被-SO2-或-O-SO2-所取代之脂肪族烴環去除至少1個氫原子所得之基等。更具體而言,例如由構成其環骨架之-CH2-被-SO2-所取代之脂肪族烴環去除至少1個氫原子所得之基、由構成其環之-CH2-CH2-被-O-SO2-所取代之脂肪族烴環去除至少1個氫原子所得之基等。
該脂環式烴基,以碳數3~20為佳,以3~12為更佳。
該脂環式烴基,可為多環式亦可、單環式亦可。單環式之脂環式烴基,以由碳數3~6之單環鏈烷去除2個之氫原子所得之基為佳,該單環鏈烷,例如環戊烷、環己烷等例示。多環式之脂環式烴基,以由碳數7~12之多環鏈烷去除2個之氫原子所得之基為佳,該多環鏈烷,具體而言,例如金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等。
含-SO2-之環式基,可具有取代基。該取代基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)、-COOR”、-OC(=O)R”(R”為氫原子或烷基)、羥烷基、氰基等。
作為該取代基之烷基,以碳數1~6之烷基為佳。該烷基以直鏈狀或支鏈狀為佳。具體而言,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基、己基等。該些之中,又以甲基或乙基為佳,以甲基為特佳。
作為該取代基之烷氧基,以碳數1~6之烷氧基為佳。該烷氧基以直鏈狀或支鏈狀為佳。具體而言,例如前述作為取代基之烷基所列舉之烷基鍵結氧原子(-O-)所得之基等。
作為該取代基之鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
該取代基之鹵化烷基,例如,前述烷基之氫原子的一部份或全部被前述鹵素原子所取代之基等。
作為該取代基之鹵化烷基,例如前述作為取代基之烷基所列舉之烷基中的一部份或全部氫原子被前述鹵素原子所取代之基等。該鹵化烷基以氟化烷基為佳,特別是以全氟烷基為佳。
前述-COOR”、-OC(=O)R”中之R”,無論任一者皆為氫原子或碳數1~15之直鏈狀、支鏈狀或環狀之烷基為佳。
R”為直鏈狀或支鏈狀之烷基之情形,其碳數以1~10為佳,以碳數1~5為更佳,以甲基或乙基為特佳。
R”為環狀之烷基之情形,其碳數以3~15為佳,以碳數4~12為更佳,以碳數5~10為最佳。具體而言,例如由可被氟原子或氟化烷基所取代,或未被取代之單環鏈烷、二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等例示。更具體而言,例如,由環戊烷、環己烷等單環鏈烷,或金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個以上之氫原子所得之基等。
作為該取代基之羥烷基,以碳數為1~6者為佳,具體而言,例如由前述作為取代基之烷基所列舉之烷基中之至少1個氫原子被羥基所取代之基等。
含-SO2-之環式基,更具體而言,例如下述通式(3-1)~(3-4)所表示之基等。
[式中,A’為可含有氧原子或硫原子之碳數1~5之伸 烷基、氧原子或硫原子,z為0~2之整數,R6為烷基、烷氧基、鹵化烷基、羥基、-COOR”、-OC(=O)R”、羥烷基或氰基,R”為氫原子或烷基]。
前述通式(3-1)~(3-4)中,A’為可含有氧原子(-O-)或硫原子(-S-)之碳數1~5之伸烷基、氧原子或硫原子。
A’中之碳數1~5之伸烷基,以直鏈狀或支鏈狀之伸烷基為佳,以伸甲基、伸乙基、n-伸丙基、異伸丙基等。
該伸烷基含有氧原子或硫原子之情形,其具體例如,前述伸烷基的末端或碳原子間介有-O-或-S-所得之基等,例如,-O-CH2-、-CH2-O-CH2-、-S-CH2-、-CH2-S-CH2-等。
A’,以碳數1~5之伸烷基或-O-為佳,以碳數1~5之伸烷基為較佳,以伸甲基為最佳。
z可為0~2之任一者皆可,又以0為最佳。
z為2之情形,複數之R6可分別為相同亦可、相異者亦可。
R6中之烷基、烷氧基、鹵化烷基、-COOR”、-OC(=O)R”、羥烷基,分別與前述含-SO2-之環式基所可具有之取代基中所列舉之烷基、烷氧基、鹵化烷基、-COOR”、-OC(=O)R”、羥烷基為相同之內容等。
以下為前述通式(3-1)~(3-4)所表示之環式基之具體例示。又,式中之「Ac」表示乙醯基。
含-SO2-之環式基,於上述之中,又以前述通式(3-1)所表示之基為佳,以使用由以前述化學式(3-1-1)、(3-1-18)、(3-3-1)及(3-4-1)之任一者所表示之基所成群所選出之至少一種為較佳,以前述化學式(3-1-1)所表示之基為最佳。
結構單位(a0)中,只要為含-SO2-之環式基者,並未有特別之限定,而可使用任意之內容。
結構單位(a0)中,以α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有含-SO2-之環式基的結構單位為佳。
結構單位(a0)之例示,更具體而言,例如下述通式(a0-0)所表示之結構單位等。
[式中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基,R39為-O-或-NH-,R30為含-SO2-之環式基,R29’為單鍵或2價之鍵結基]。
式(a0-0)中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基。
R中之碳數1~5之烷基,以碳數1~5之直鏈狀或支鏈狀之烷基為佳,具體而言,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基等。
R中之鹵化烷基,例如前述碳數1~5之烷基中之氫原子的一部份或全部被鹵素原子所取代之基。該鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,特別是以氟原子為佳。
R,以氫原子、碳數1~5之烷基或碳數1~5之氟化烷基為佳,就工業上取得之容易性等觀點,以氫原子或甲基為最佳。
前述式(a0-0)中,R39為-O-,或,-NH-。
前述式(a0-0)中,R30,與前述所列舉之含-SO2-之環式基為相同之內容。
前述式(a0-0)中,R29’可為單鍵或2價之鍵結基之任一者皆可。就本發明具有優良之效果、微影蝕刻特性等觀點,以2價之鍵結基為佳。
R29’中之2價之鍵結基,例如與上述結構單位(a1)之說明中所列舉之通式(a1-0-2)中之Y2中之2價之鍵結基所列舉之內容為相同之內容等。
R29’之2價之鍵結基,以伸烷基、2價之脂環式烴基或含雜原子之2價之鍵結基為佳。該些之中,又以含有伸烷基、酯鍵結(-C(=O)-O-)者為佳。
該伸烷基,以直鏈狀或支鏈狀之伸烷基為佳。具體而言,與前述Y2中之脂肪族烴基所列舉之直鏈狀之伸烷基、支鏈狀之伸烷基為相同之內容等。
含有酯鍵結之2價之鍵結基,特別是以通式:-R20-C(=O)-O-[式中,R20為2價之鍵結基]所表示之基為佳。即,結構單位(a0)以下述通式(a0-0-1)所表示之結構單位為佳。
[式中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基,R39為-O-或-NH-,R20為2價之鍵結基,R30為含-SO2-之環式基]。
R20,並未有特別之限定,例如與上述通式(a0-0)中之R29’中之2價之鍵結基所列舉之內容為相同之內容等。
R20之2價之鍵結基,以直鏈狀或支鏈狀之伸烷基、2價之脂環式烴基,或含雜原子之2價之鍵結基為佳。
該直鏈狀或支鏈狀之伸烷基、2價之脂環式烴基、含雜原子之2價之鍵結基,分別與前述之R29’所列舉之較佳內容之直鏈狀或支鏈狀之伸烷基、2價之脂環式烴基、含雜原子之2價之鍵結基為相同之內容等。
上述之中,又以直鏈狀或支鏈狀之伸烷基,或含有作為雜原子之氧原子的2價之鍵結基為佳。
直鏈狀之伸烷基,以伸甲基或伸乙基為佳,以伸甲基為特佳。
支鏈狀之伸烷基,以烷基伸甲基或烷基伸乙基為佳,以-CH(CH3)-、-C(CH3)2-或-C(CH3)2CH2-為特佳。
含有氧原子之2價之鍵結基,以含有醚鍵結或酯鍵結之2價之鍵結基為佳,以前述之式-Y21-O-Y22-、式-[Y21-C(=O)-O]m’-Y22-或式-Y21-O-C(=O)-Y22-所表示之基為更佳。Y21、Y22、m’,分別與前述為相同之內容。
其中,又以式-Y21-O-C(=O)-Y22-所表示之基為佳,以式-(CH2)c-O-C(=O)-(CH2)d-所表示之基為特佳。c為1~5之整數,以1~3之整數為佳,以1或2為更佳。d為1~5之整數,以1~3之整數為佳,以1或2為更佳。
結構單位(a0),特別是以下述通式(a0-0-11)或(a0-0-12)所表示之結構單位為佳,以式(a0-0-12)所表示之結構單位為更佳。
[式中,R、A’、R6、z、R39及R20分別與前述為相同之內容]。
式(a0-0-11)中,A’以伸甲基、伸乙基、氧原子(-O-)或硫原子(-S-)為佳。
式(a0-0-12)中,R20,以直鏈狀或支鏈狀之伸烷基,或含有氧原子之2價之鍵結基為佳。R20中之直鏈狀或支鏈狀之伸烷基、含有氧原子之2價之鍵結基,分別與前述所列舉之直鏈狀或支鏈狀之伸烷基、含有氧原子之2價之鍵結基為相同之內容等。
式(a0-0-12)所表示之結構單位,特別是以下述通式(a0-0-12a)或(a0-0-12b)所表示之結構單位為佳。
[式中,R、R39及A’分別與前述為相同之內容,c及d分別與前述為相同之內容,f為1~5之整數(較佳為1~3之整數)]。
(A1)成份所含之結構單位(a0)可為1種,或2種以上皆可。
(A1)成份中之結構單位(a0)之比例,當就使用該含有(A1)成份之光阻組成物所形成之光阻圖型形狀為良好、EL寬容度、LWR、遮罩重現性等微影蝕刻特性亦為優良等觀點,相對於構成(A1)成份之全結構單位之合計,以1~60莫耳%為佳,以5~55莫耳%為較佳,以10~50莫耳%為 更佳,以15~45莫耳%為最佳。
[結構單位(a2)]
結構單位(a2)為,含有含內酯之環式基的結構單位。
其中,含內酯之環式基係指,含有-O-C(=O)-結構之一個之環(內酯環)的環式基。以內酯環作為一個孔之環進行計數時,僅為內酯環之情形稱為單環式基,再具有其他環結構的情形,無論其結構為何,皆稱為多環式基。
結構單位(a2)之內酯環式基,於(A1)成份使用於形成光阻膜之情形,就提高光阻膜對基板之密著性、提高與含有水之顯影液(特別是鹼顯影製程之情形)的親和性等方面為有效者。
內酯環式基,並未有特別之限定,而可使用任意之內容。
具體而言,含內酯之單環式基,為由4~6員之環內酯去除1個氫原子所得者,例如,由β-丙內酯去除1個氫原子所得者、由γ-丁內酯去除1個氫原子所得者、由δ-戊內酯去除1個氫原子所得者等。又,含內酯之多環式基,例如由具有內酯環之二環鏈烷、三環鏈烷、四環鏈烷去除1個氫原子所得者等。
結構單位(a2),只要為含有含內酯之環式基者之情形,並未有特別之限定,而可使用任意之內容。
結構單位(a2)中,以α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有含內酯之環式基的結構單位(a2’)為佳。
結構單位(a2’)之例示,更具體而言,例如下述通式(a2-1)~(a2-5)所表示之結構單位等。
[式中,R為氫原子、碳數1~5之烷基或碳數1~5之鹵化烷基;R’為各自獨立之氫原子、烷基、烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)、-COOR”、-OC(=O)R”、羥烷基或氰基,R”為氫原子或烷基;R29為單鍵或2價之鍵結基,s”為0或1~2之整數;A”為可含有氧原子或硫原子之碳數1~5之伸烷基、氧原子或硫原 子;m為0或1之整數]。
通式(a2-1)~(a2-5)中之R,與前述結構單位(a1)中之R為相同之內容。
R’之烷基、烷氧基、鹵素原子、鹵化烷基、-COOR”、-OC(=O)R”、羥烷基,分別與含-SO2-之環式基所可具有之取代基中所列舉之烷基、烷氧基、鹵素原子、鹵化烷基、-COOR”、-OC(=O)R”、羥烷基、-COOR”、-OC(=O)R”(R”與前述為相同之內容)為相同之內容等。
A”,以碳數1~5之伸烷基或-O-為佳,以碳數1~5之伸烷基為較佳,以伸甲基為最佳。
R29為單鍵或2價之鍵結基。2價之鍵結基,與前述通式(a1-0-2)中之Y2所說明之2價之鍵結基為相同之內容,該些之中,又以伸烷基、酯鍵結(-C(=O)-O-),或該些之組合為佳。R29中作為2價鍵結基之伸烷基,以直鏈狀或支鏈狀之伸烷基為更佳。具體而言,前述Y2中之脂肪族烴基所列舉之直鏈狀之伸烷基、支鏈狀之伸烷基為相同之內容等。
s”以1~2之整數為佳。
以下為分別表示前述通式(a2-1)~(a2-5)所表示之結構單位的具體例示。
以下各式中,Rα表示氫原子、甲基或三氟甲基。
(A1)成份所含之結構單位(a2)可為1種,或2種以上皆可。
結構單位(a2),以由前述通式(a2-1)~(a2-5)所表示之結構單位所成群所選出之至少1種為佳,以由通式(a2-1)~(a2-3)所表示之結構單位所成群所選出之至少1種為更佳。其中,又以使用由化學式(a2-1-1)、(a2-1-2)、(a2-2-1)、(a2-2-7)、(a2-3-1)及(a2-3-5)所表示之結構單位所成群所選出之至少1種為佳。
(A1)成份中之結構單位(a2)之比例,相對於構成(A1)成份之全結構單位之合計,以5~60莫耳%為佳,以10~50莫耳%為較佳,以10~45莫耳%為更佳。
結構單位(a2)之比例於下限值以上時,含有結構單位(a2)時,可得到充分之效果,於上限值以下時,可容易取得與其他結構單位之平衡。
[結構單位(a3)]
結構單位(a3)為,含有含極性基之脂肪族烴基的結構單位(但,相當於上述結構單位(a1)、(a0)、(a2)者除外)。
(A1)成份具有結構單位(a3)時,可提高(A)成份之親水性、提升解析性等。
極性基例如,羥基、氰基、羧基、烷基之氫原子中之一部份被氟原子所取代之羥烷基等,特別是以羥基為佳。
脂肪族烴基,例如,碳數1~10之直鏈狀或支鏈狀之烴基(較佳為伸烷基),或環狀之脂肪族烴基(環式基)等。該環式基,可為單環式基亦可、多環式基亦可,例如可由ArF準分子雷射用光阻組成物用之樹脂中,被多數提案之基中適當地選擇使用。該環式基以多環式基為佳,以碳數7~30為更佳。
其中,又以含有含羥基、氰基、羧基,或烷基之氫原子的一部份被氟原子所取代之羥烷基的脂肪族多環式基之丙烯酸酯所衍生之結構單位為更佳。該多環式基例如,由二環鏈烷、三環鏈烷、四環鏈烷等去除2個以上之氫原子所得之基等例示。具體而言,例如,由金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除2個以上之氫原子所得之基等。該些多環式基之中,又以由金剛烷去除2個以上之氫原子所得之基、由降莰烷去除2個以上之氫原子所得之基、由四環十二烷去除2個以上之氫原子所得之基就工業上為更佳。
結構單位(a3),只要為含有含極性基之脂肪族烴基者 之情形,並未有特別之限定,而可使用任意之內容。
結構單位(a3)中,以α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有含極性基之脂肪族烴基的結構單位(a3’)為佳。
結構單位(a3)中,含極性基之脂肪族烴基中之烴基為碳數1~10之直鏈狀或支鏈狀之烴基時,以丙烯酸之羥乙基酯所衍生之結構單位為佳,該烴基為多環式基時,以下述之式(a3-1)所表示之結構單位、式(a3-2)所表示之結構單位、式(a3-3)所表示之結構單位為較佳之例示。
(式中,R與前述為相同之內容,j為1~3之整數,k為1~3之整數,t’為1~3之整數,l為1~5之整數,s為1~3之整數)。
式(a3-1)中,j以1或2為佳,以1為更佳。j為2之情形,羥基以鍵結於金剛烷基之3位與5位所得者為佳。j為1之情形,羥基以鍵結於金剛烷基之3位所得者為 佳。
j以1為佳,特別是,羥基以鍵結於金剛烷基之3位所得者為佳。
式(a3-2)中,k以1為佳。氰基以鍵結於降莰基之5位或6位者為佳。
式(a3-3)中,t’以1為佳。l以1為佳。s以1為佳。該些之中,以丙烯酸之羧基的末端,鍵結2-降莰基或3-降莰基者為佳。氟化烷醇以鍵結於降莰基之5或6位者為佳。
(A1)成份所含之結構單位(a3)可為1種,或2種以上皆可。
(A1)成份中,結構單位(a3)之比例,當相對於構成(A1)成份之全結構單位之合計,以5~50莫耳%為佳,以5~40莫耳%為較佳,以5~25莫耳%為更佳。
結構單位(a3)之比例於下限值以上時,含有結構單位(a3)時,可得到充分之效果,於上限值以下時,可容易取得與其他結構單位之平衡。
[其他結構單位]
(A1)成份,於無損本發明效果之範圍,可含有上述之結構單位(a1)、結構單位(a0)、結構單位(a2)及結構單位(a3)以外之其他結構單位。
該其他結構單位,只要未分類於上述之結構單位的結構單位者,並未有特別之限定內容,其可使用ArF準分子雷射用、KrF準分子雷射用(較佳為ArF準分子雷射用)等 光阻用樹脂所使用之以往已知之多數結構單位。
該其他結構單位,例如,α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有非酸解離性之脂肪族多環式基的結構單位(a4)、α位之碳原子所鍵結之氫原子可被取代基所取代之羥基苯乙烯所衍生之結構單位(a5)、α位之碳原子所鍵結之氫原子可被取代基所取代之苯乙烯所衍生之結構單位(a6)等。
(結構單位(a4))
結構單位(a4)中,α位之碳原子所鍵結之氫原子可被取代基所取代之丙烯酸酯所衍生之結構單位,且含有非酸解離性之脂肪族多環式基的結構單位。
結構單位(a4)中,該多環式基,可例如與前述之結構單位(a1)之情形所例示之多環式基為相同之例示,其可使用以往已知之ArF準分子雷射用、KrF準分子雷射用(較佳為ArF準分子雷射用)等光阻組成物的樹脂成份所使用之多數成份。
特別是由三環癸基、金剛烷基、四環十二烷基、異莰基、降莰基所選出之至少1種,就工業上容易取得等觀點而言為較佳。該些多環式基,可具有碳數1~5之直鏈狀或支鏈狀之烷基作為取代基。
結構單位(a4),具體而言,可例如下述通式(a4-1)~(a4-5)所表示之結構者。
(式中,R與前述為相同之內容)。
(A1)成份中含有該結構單位(a4)之際,相對於構成(A1)成份之全結構單位之合計,結構單位(a4)以含有1~30莫耳%為佳,以含有10~20莫耳%為更佳。
(結構單位(a5))
結構單位(a5)中,α位之碳原子所鍵結之氫原子可被取代基所取代羥基苯乙烯所衍生之結構單位。
「羥基苯乙烯所衍生之結構單位」係指,羥基苯乙烯之乙烯性雙鍵經開裂所形成之結構單位之意。
可取代羥基苯乙烯之α位的氫原子之取代基,例如與前述結構單位(a1)之說明中,「羥基苯乙烯或羥基苯乙烯衍生物所衍生之結構單位」中,取代羥基苯乙烯之α位的氫原子之取代基所列舉者為相同之內容等。具體而言,例如,碳數1~5之烷基、碳數1~5之鹵化烷基、羥烷基等,該些之中,又以氫原子或碳數1~5之烷基為佳。
羥基苯乙烯之苯環上,可鍵結羥基以外之取代基。該 取代基,例如,鹵素原子、碳數1~5之烷基、碳數1~5之鹵化烷基等。鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為特佳。該取代基,於上述之中,又以碳數1~5之烷基為佳。
結構單位(a5),就對有機溶劑具有良好之溶解性,又,對鹼顯影液具有溶解性,且具有優良之蝕刻耐性等觀點,以下述通式(a5-1)所表示之結構單位為較佳之例示。
[式中,R60為氫原子或碳數1~5之烷基;R61為碳數1~5之烷基;p為1~3之整數;q為0~2之整數]。
前述式(a5-1)中,R60中之碳數1~5之烷基,具體而言,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基等直鏈狀或支鏈狀之烷基等。R60,以氫原子或甲基為特佳。
p為1~3之整數,較佳為1。
羥基之鍵結位置,可為苯基之o-位、m-位、p-位之任一者皆可。p為1之情形,就容易取得,與價格低廉等觀 點,以p-位為佳。p為2或3之情形,可為任意之取代位置的組合。
q為0~2之整數。該些之中,q以0或1為佳,特別是工業上而言,以0為佳。
R61之烷基,與R60之烷基為相同之內容等。
R61之取代位置,於q為1之情形,可為o-位、m-位、p-位之任一者皆可。
q為2之情形,可為任意之取代位置的組合。此時,複數之R61,可分別為相同者亦可、相異者亦可。
(A1)成份中含有該結構單位(a5)之際,相對於構成(A1)成份之全結構單位之合計,結構單位(a5)以含有50~90莫耳%者為佳,以含有55~85莫耳%者為較佳,以含有60~80莫耳%者為更佳。
(結構單位(a6))
結構單位(a6)中,α位之碳原子所鍵結之氫原子可被取代基所取代苯乙烯所衍生之結構單位。
「苯乙烯所衍生之結構單位」係指,苯乙烯之乙烯性雙鍵經開裂所形成之結構單位之意。
可取代苯乙烯之α位的氫原子之取代基,例如與前述結構單位(a5)之說明中,可取代羥基苯乙烯之α位的氫原子之取代基所列舉者為相同之內容等。該些之中,又以氫原子或碳數1~5之烷基為佳。
苯乙烯之苯環上,可鍵結取代基。該取代基,例如與前述結構單位(a5)之說明中,可鍵結於羥基苯乙烯之苯環 上之取代基所列舉者為相同之內容等。該些之中,又以碳數1~5之烷基為佳。
結構單位(a6),就可調整對鹼顯影液之溶解性,又,可提高耐熱性或耐乾蝕刻性等觀點,例如以下述通式(a6-1)所表示之結構單位為較佳之例示。
[式中,R60為氫原子或碳數1~5之烷基;R62為碳數1~5之烷基;x為0~3之整數]。
前述通式(a6-1)中,R60與上述通式(a5-1)中之R60為相同之內容。
前述式(a6-1)中,R62之烷基與上述通式(a5-1)中之R61之烷基為相同之內容等。
x為0~3之整數,0或1為佳,於工業上以0為特佳。
x為1之情形,R62之取代位置,可為苯基之o-位、m-位、p-位之任一者皆可。x為2或3之情形,可為任意之取代位置的組合。此時,複數之R62,可分別為相同者亦可、相異者亦可。
(A1)成份含有該結構單位(a6)之際,相對於構成(A1)成份之全結構單位之合計,以含有10~50莫耳%結構單位(a6)者為佳,以含有15~45莫耳%為較佳,以含有20~40莫耳%為更佳。
(A1)成份,以具有結構單位(a1)之聚合物為佳,以具有結構單位(a1),與由結構單位(a0)及(a2)所成群中所選出之至少一種的結構單位所得之共聚物為更佳。
(A1)成份,具體而言,例如,由結構單位(a1)及結構單位(a2)之重複構造所形成之共聚物;結構單位(a1)及結構單位(a0)之重複構造所形成之共聚物;結構單位(a1)、結構單位(a2)及結構單位(a3)之重複構造所形成之共聚物;結構單位(a1)、結構單位(a0)及結構單位(a3)之重複構造所形成之共聚物;結構單位(a1)、結構單位(a0)、結構單位(a2)及結構單位(a3)之重複構造所形成之共聚物等。
(A1)成份之質量平均分子量(Mw)(凝膠滲透色層分析儀(GPC)之聚苯乙烯換算基準),並未有特別之限定範圍,一般以1000~50000為佳,以1500~30000為較佳,以2000~20000為最佳。於此範圍之上限值以下時,作為光阻使用時,對光阻溶劑可得到充分之溶解性,於此範圍之下限值以上時,可得到良好之耐乾蝕刻性或光阻圖型之截面形狀。
分散度(Mw/Mn),並未有特別之限定,以1.0~5.0為佳,以1.0~3.0為較佳,以1.0~2.5為最佳。又,Mn表 示數平均分子量。
(A1)成份,可將衍生各結構單位之單體,例如使用偶氮二異丁腈(AIBN)等自由基聚合起始劑,依公知之自由基聚合等予以聚合而製得。
又,(A1)成份中,於上述聚合之際,例如可併用HS-CH2-CH2-CH2-C(CF3)2-OH等鏈移轉劑,以於末端導入-C(CF3)2-OH基亦可。如此,於烷基中之氫原子的一部份導入被氟原子所取代之羥烷基所得之共聚物時,於顯影中可有效降低缺陷或降低LER(線路邊緣粗糙度:線路側壁之不均勻凹凸)。
衍生各結構單位之單體,可使用市售者亦可、利用公知之方法予以合成者亦可。
(A1)成份,可單獨使用1種亦可,或將2種以上合併使用亦可。
(A)成份中之(A1)成份之比例,相對於(A)成份之總質量,以25質量%以上為佳,以50質量%為較佳,以75質量%為更佳,以100質量%亦可。該比例為25質量%以上時,MEF、真圓性(Circularity)、降低更能提高粗糙度等微影蝕刻特性。
(A)成份,於無損本發明效果之範圍,可含有(A1)成份以外之經由酸之作用而增大極性之基材成份(以下,亦稱為「(A2)成份」)。
(A2)成份,例如,分子量為500以上、未達4000之具有上述(A1)成份之說明所例示之酸解離性基,與親水性 基之低分子化合物等。具體而言,具有複數之酚骨架的化合物之羥基中的氫原子的一部份或全部被上述酸解離性基所取代之化合物等。
該低分子化合物,例如,以已知作為非化學增幅型之g線或i線光阻中之增感劑,或作為耐熱性提升劑之低分子量酚化合物之羥基中之氫原子的一部份被上述酸解離性基所取代者為佳,只要為該些成份時,則可任意地使用。
該低分子量酚化合物,例如,雙(4-羥基苯基)甲烷、雙(2,3,4-三羥基苯基)甲烷、2-(4-羥基苯基)-2-(4’-羥基苯基)丙烷、2-(2,3,4-三羥基苯基)-2-(2’,3’,4’-三羥基苯基)丙烷、三(4-羥基苯基)甲烷、雙(4-羥-3,5-二甲基苯基)-2-羥基苯基甲烷、雙(4-羥-2,5-二甲基苯基)-2-羥基苯基甲烷、雙(4-羥-3,5-二甲基苯基)-3,4-二羥基苯基甲烷、雙(4-羥-2,5-二甲基苯基)-3,4-二羥基苯基甲烷、雙(4-羥-3-甲基苯基)-3,4-二羥基苯基甲烷、雙(3-環己基-4-羥-6-甲基苯基)-4-羥基苯基甲烷、雙(3-環己基-4-羥-6-甲基苯基)-3,4-二羥基苯基甲烷、1-[1-(4-羥基苯基)異丙基]-4-[1,1-雙(4-羥基苯基)乙基]苯、酚、m-甲酚、p-甲酚或二甲酚等酚類的福馬林縮合物之2~6核體等。當然並不僅限定於該些內容。特別是,具有2~6個三苯基甲烷骨架之酚化合物,可使解析性、線路邊緣粗糙度(LWR)更為優良,而為更佳。該酸解離性基也未有特別之限定,可例如上述之內容。
本發明所使用光阻組成物中,(A)成份之含量,可配 合所欲形成之光阻膜厚度等作適當之調整即可。
<光鹼產生劑成份;(C)成份>
本發明之光阻圖型之形成方法中,(C)成份受到步驟(2)之曝光能量而分解產生鹼,而可得到良好之溶解反差。
(C)成份,只要為受到輻射線之照射而分解產生鹼之成份即可,例如,含有胺基甲酸酯基(胺基甲酸乙酯鍵結)者、含有醯氧基亞胺基者、離子系者(陰離子-陽離子複合物)、含有胺甲醯氧基亞胺基者等,又以含有胺基甲酸酯基(胺基甲酸乙酯鍵結)者、含有醯氧基亞胺基者、離子系者(陰離子-陽離子複合物)為佳。
又,以分子內具有環結構者為佳,例如,具有環結構為苯、萘、蒽、氧葱酮、硫代氧葱酮、蒽菎、茀等環骨架者等。
其中,(C)成份,就光分解性之觀點,又以下述通式(C1)所表示之化合物(以下,亦稱為「(C1)成份」)為特佳。對該化合物照射輻射線時,至少會使該式(C1)中之氮原子,與該氮原子鄰接之羰基的碳原子間之鍵結被切斷,而生成胺或氨,與二氧化碳。分解後,以具有-N(R1)(R2)之產物具有高沸點而為較佳。又,具有-N(R1)(R2)之產物的分子量越大時,或具有高體積密度骨架時,就於PEB時可控制擴散等觀點而為更佳。
[式中,R1及R2為各自獨立之可含有氫原子或雜原子之1價之烴基,R1及R2可相互鍵結並與鄰接之氮原子共同形成環式基;R3為1價之光官能基]。
式(C1)中,R1、R2中之可具有烴基之雜原子,為碳原子及氫原子以外之原子,例如,氧原子、氮原子、硫原子、鹵素原子等。鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等。
該烴基可為芳香族烴基或脂肪族烴基皆可,又以脂肪族烴基為佳。
式(C1)中,R1、R2中之芳香族烴基為具有芳香環之烴基。
R1、R2中之芳香族烴基之碳數,以5~30為較佳,以5~20為更佳,以6~15為特佳,以6~12為最佳。但,該碳數中,為不包含取代基中之碳數者。
該芳香族烴基,具體而言,例如,由苯基、聯苯(biphenyl)基、茀(fluorenyl)基、萘基、蒽(anthryl)基、菲基等芳香族烴環去除1個氫原子所得之芳基;苄基、苯基乙基、1-萘基甲基、2-萘基甲基、1-萘基乙基、2-萘基乙基等芳烷基;等。前述芳烷基中之烷基鏈之碳數,以1~ 4為佳,以1~2為較佳,以1為特佳。
該芳香族烴基,可具有取代基。例如,構成該芳香族烴基所具有之芳香環的碳原子之一部份可被雜原子所取代、鍵結於該芳香族烴基所具有之芳香環的氫原子可被取代基所取代等。
又,該芳香族烴基為,具有鍵結於芳香環之脂肪族烴基之情形,構成該脂肪族烴基之碳原子的一部份可被含雜原子之2價鍵結基所取代,構成該脂肪族烴基之氫原子的一部份或全部可被取代基所取代。該脂肪族烴基、含雜原子之2價之鍵結基,分別如後所示般,與R1、R2中之脂肪族烴基之說明所列舉之脂肪族烴基、含雜原子之2價之鍵結基為相同之內容等。
構成前述芳香環之碳原子的一部份被雜原子所取代之芳香族烴基,例如,構成前述芳基之環的碳原子之一部份被氧原子、硫原子、氮原子等雜原子所取代之雜芳基、構成前述芳烷基中之芳香族烴之環的碳原子之一部份被前述雜原子所取代之雜芳烷基等。
取代前述芳香族烴基之芳香環所鍵結之氫原子的取代基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥烷基、羥基、氧原子(=O)、-COOR”、-OC(=O)R”、氰基、硝基、-NR”2、-R9’-N(R10’)-C(=O)-O-R5’、含氮雜環式基等。
作為該取代基之烷基,以碳數1~6之烷基為佳。該烷基以直鏈狀或支鏈狀為佳。具體而言,例如,甲基、乙 基、丙基、異丙基、n-丁基、異丁基、tert-丁基、戊基、異戊基、新戊基、己基等。該些之中,又以甲基或乙基為佳,以甲基為特佳。
作為該取代基之烷氧基,以碳數1~6之烷氧基為佳。該烷氧基以直鏈狀或支鏈狀為佳。具體而言,例如前述作為取代基之烷基所列舉之烷基鍵結氧原子(-O-)所得之基等。
作為該取代基之鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
作為該取代基之鹵化烷基,例如前述作為取代基之烷基所列舉之烷基中的一部份或全部氫原子被前述鹵素原子所取代之基等。該鹵化烷基以氟化烷基為佳,特別是以全氟烷基為佳。
作為該取代基之羥烷基,以碳數為1~6者為佳,具體而言,例如前述作為取代基之烷基所列舉之烷基中之至少1個氫原子被羥基所取代之基等。
前述-COOR”、-OC(=O)R”、-NR”2中之R”,無論任一者皆為氫原子或碳數1~15之直鏈狀、支鏈狀或環狀之烷基。
R”為直鏈狀或支鏈狀之烷基之情形,其碳數以1~10為佳,以碳數1~5為更佳,以甲基或乙基為特佳。
R”為環狀之烷基之情形,其碳數以3~15為佳,以碳數4~12為更佳,以碳數5~10為最佳。具體而言,例如由可被氟原子或氟化烷基所取代,或未被取代之單環鏈 烷、二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等例示。更具體而言,例如,由環戊烷、環己烷等單環鏈烷,或金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個以上之氫原子所得之基等。
-NR”2中之2個的R”,可為相同者亦可、相異者亦可。
-R9’-N(R10’)-C(=O)-O-R5’中,R9’為可含有雜原子之2價烴基,R10’為可含有氫原子或雜原子之1價之烴基,R5’為具有脂肪族環或芳香族環之1價之有機基。
R9’中之烴基,例如,式(C1)中之R1中之烴基去除1個氫原子所得之基等。
R10’、R5’,分別與式(C1)中之R2、R3為相同之內容等。
其中,R5’又以上述R1及R2中之環狀烷基之說明中的具有環結構之基;苯、聯苯基、茚、萘、茀、蒽、菲、氧葱酮、硫代氧葱酮、蒽菎等具有芳香族環之環骨架之基為較佳之例示。又,該些環結構或環骨架可具有取代基,該取代基,就鹼之產生效率等觀點,以硝基為特佳。
-R9’-N(R10’)-C(=O)-O-R5’中,R10’,可與R9’鍵結形成環。
式(C1)中之R1及R2之中,例如,R1具有作為取代基之-R9’-N(R10’)-C(=O)-O-R5’之情形,該式中之R10’可與式(C1)中之R2鍵結形成環。
式(C1)中之R1及R2之中,R1具有作為取代基之-R9’-N(R10’)-C(=O)-O-R5’之情形,式(C1)所表示之化合物,以下述通式:R5’-O-C(=O)-N(R10’)-R4-N(R2)-C(=O)-O-R3[式中,R2~R3、R10’、R5’分別與前述為相同之內容,R4為2價之脂肪族烴基]所表示之化合物為佳。
R4之2價之脂肪族烴基,例如,如後所示般,由R1、R2中之脂肪族烴基去除1個氫原子所得之基等。
作為前述取代基之「含氮雜環式基」為,由環骨架含有氮原子之含氮雜環式化合物去除1個以上之氫原子所得之基。含氮雜環式化合物,於其環骨架上,可具有碳原子及氮原子以外之雜原子(例如,氧原子、硫原子等)。
含氮雜環式化合物,可為芳香族亦可、脂肪族亦可。又,脂肪族之情形,可為飽和亦可、不飽和亦可。又,含氮雜環式化合物,可為單環式亦可、多環式亦可。
含氮雜環式化合物之碳數,以3~30為佳,以5~30為較佳,以5~20為更佳。
單環式之含氮雜環式化合物之具體例、吡咯、吡啶、咪唑、吡唑、1,2,3-三唑、1,2,4-三唑、嘧啶、吡嗪、1,3,5-三嗪、四唑、哌啶、六氫吡嗪、吡咯啶、嗎啉等。
多環式之含氮雜環式化合物之具體例、喹啉、異喹啉、吲哚、吡咯[2,3-b]吡啶、吲唑、苯併咪唑(benzimidazole)、苯併三唑、咔唑、吖啶、1,5-二氮雜二環[4.3.0]-5-壬烯、1,8-二氮雜二環[5.4.0]-7-十一烯、六亞甲四胺、1,4-二氮雜二環[2.2.2]辛烷等。
該含氮雜環式基,可具有取代基。該取代基,例如,與可取代前述芳香族烴基所具有之芳香環上所鍵結之氫原子的取代基所列舉者為相同之內容等。例如,與前述烷基、烷氧基、鹵素原子、鹵化烷基、羥烷基、羥基、氧原子(=O)、-COOR”、-OC(=O)R”、氰基、硝基、-N(R”)2、-R9’-N(R10’)-C(=O)-O-R5’為相同之內容等。
式(C1)中,R1、R2中之脂肪族烴基為表示不具有芳香族性之烴基之意。
R1、R2中之脂肪族烴基,可為飽和(烷基)者亦可、不飽和亦可。通常以飽和者為佳。又,該脂肪族烴基,分別可為直鏈狀、支鏈狀、環狀之任一者皆可,或該些之組合亦可。該組合,例如,環狀之脂肪族烴基鍵結於直鏈狀或支鏈狀之脂肪族烴基的末端之基、環狀之脂肪族烴基介於直鏈狀或支鏈狀之脂肪族烴基之中途之基等。
直鏈狀或支鏈狀之烷基,其碳數以1~20為佳,以1~15為較佳,以1~10為更佳。
直鏈狀烷基,具體而言,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、異十三烷基、十四烷基、十五烷基、十六烷基、異十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基等。
支鏈狀之烷基,具體而言,例如,1-甲基乙基(iso-丙基)、1-甲基丙基、2-甲基丙基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丁基、2-乙基丁基、tert-丁基、 1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基等。
環狀之烷基,可為單環式基亦可、多環式基亦可。其碳數以3~30為佳,以5~30為較佳,以5~20為更佳,以6~15為特佳,以6~12為最佳。具體而言,例如,由單環鏈烷去除1個氫原子所得之基;由二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個氫原子所得之基等。更具體而言,由單環鏈烷去除1個氫原子所得之基,例如,環戊基、環己基等。又,由多環鏈烷去除1個氫原子所得之基,例如,金剛烷基、降莰基、異莰基、三環癸基、四環十二烷基等。
該脂肪族烴基,可具有取代基。例如,構成該脂肪族烴基之碳原子的一部份,可被含雜原子之2價之鍵結基所取代、構成該脂肪族烴基之氫原子的一部份或全部可被取代基所取代。
含雜原子之2價之鍵結基中,雜原子,與取代前述芳香族烴基所具有之構成芳香環之碳原子的一部份的雜原子所列舉者為相同之內容等。含雜原子之2價之鍵結基,例如,-O-、-C(=O)-、-C(=O)-O-、碳酸酯鍵結(-O-C(=O)-O-)、-S-、-S(=O)2-、-S(=O)2-O-、-NH-、-NR04-(R04為烷基、醯基等取代基)、-NH-C(=O)-、=N-等含雜原子之2價之非烴基等。又,例如,該些「含雜原子之2價之非烴基」與2價之脂肪族烴基之組合等。2價之脂肪族烴基,可例如由上述脂肪族烴基去除1個氫原子所得之基等,又以直鏈狀或支鏈狀之脂肪族烴基為佳。
後者之例中之脂肪族烴基之取代基,例如,與可取代前述芳香族烴基所具有之芳香環上所鍵結之氫原子的取代基所列舉者為相同之內容等。
前述通式(C1)中,R1及R2可相互鍵結,並與鄰接之氮原子共同形成環式基。
該環式基可為芳香族環式基亦可、脂肪族環式基亦可。脂肪族環式基之情形,可為飽和亦可、不飽和亦可。通常,以飽和者為佳。
該環式基,於其環骨架上,可具有R1及R2鍵結之氮原子以外的氮原子。又,環骨架上,可具有碳原子及氮原子以外之雜原子(例如,氧原子、硫原子等)。
該環式基,可為單環式亦可、多環式亦可。
單環式之情形,構成該環式基之骨架的原子之數目,以4~7為佳,以5~6為更佳。即,該環式基以4~7員環為佳,以5~6員環為更佳。單環式之環式基之具體例,例如由哌啶、吡咯啶、嗎啉、吡咯、咪唑、吡唑、1,2,3-三唑、1,2,4-三唑、四唑、六氫吡嗪等環結構中具有-NH-的雜單環式化合物,並由該-NH-去除氫原子所得之基等。
多環式之情形,該環式基以二環式、三環式或四環式為佳,又,構成該環式基之骨架的原子之數目,以7~12為佳,以7~10為更佳。多環式之含氮雜環式基之具體例,例如由吲哚、異吲哚、咔唑、苯併咪唑、吲唑、苯併三唑等環結構中具有-NH-之雜多環式化合物,並由該 -NH-去除氫原子所得之基等。
該環式基,可具有取代基。該取代基,例如,與可取代前述芳香族烴基所具有之芳香環上所鍵結之氫原子的取代基所列舉者為相同之內容等。
R1及R2相互鍵結,並與鄰接之氮原子共同形成之環式基,特別是以下述通式(II)所表示之基為佳。
[式中,R5及R6為各自獨立之氫原子或烷基;R7為,碳原子可被氧原子或氮原子所取代、氫原子可被取代基所取代之碳數1~3之直鏈狀之伸烷基]。
式(II)中,R5、R6中之烷基,與前述R1、R2中之脂肪族烴基之說明所列舉之烷基為相同之內容等,又以直鏈狀或支鏈狀之烷基為佳,以甲基為特佳。
R7中,碳原子可被氧原子或氮原子所取代之伸烷基,例如,-CH2-、-CH2-O-、-CH2-NH-、-CH2-CH2-、-CH2-O-CH2-、-CH2-NH-CH2-、-CH2-CH2-CH2-、-CH2-CH2-O-CH2-、-CH2-CH2-NH-CH2-等。
取代該伸烷基之氫原子的取代基,與取代前述芳香族烴基所具有之芳香環上所鍵結之氫原子的取代基所列舉者 為相同之內容等。該取代基所取代之氫原子,可為鍵結於碳原子之氫原子亦可、鍵結於氮原子之氫原子亦可。
上述之中,又以R1、R2為,至少任一者為可具有取代基之烷基,或,式中之氮原子與R1與R2所形成之環式基為佳。
具體而言,R1及R2例如,任一者皆為單環式基、R1及R2之任一者皆為碳原子的一部份被-O-所取代之直鏈狀或支鏈狀之烷基、一者為氫原子且另一者為單環式基、一者為氫原子且另一者為多環式基、式中之氮原子與R1與R2所形成之6員環之環式基(該環式基可具有取代基)、一者為氫原子且另一者為苯基等例示。
式(C1)中,R3為1價之光官能基。
此處所稱「光官能基」,係指能吸收步驟(2)中所進行之曝光的曝光能量之基。
該光官能基,以含有環之基為佳,其可為烴環亦可、雜環亦可,較佳為上述R1及R2之說明中的具有環結構之基、具有其他芳香族環之基等。含有環之基的環骨架,具體而言,例如,苯、聯苯基、茚、萘、茀、蒽、菲、氧葱酮、硫代氧葱酮、蒽菎等為較佳之例示。
又,該些環骨架可具有取代基,取代基,就鹼產生效率之觀點,以硝基為特佳。
(C1)成份,特別是以由下述通式(C1-11)或(C1-12)之任一者所表示之化合物所選出者為佳。
[式中,R4a~R4b為各自獨立之可具有取代基之由苯、聯苯基、茚、萘、茀、蒽、菲、氧葱酮、硫代氧葱酮及蒽菎所選出之環骨架,R1a及R2a為各自獨立之碳數1~15之烷基或環烷基,R11a為碳數1~5之烷基,m”為0或1,n”為0~3,p”分別為0~3]。
式(C1-11)、(C1-12)中,R4a~R4b於取代基於具有硝基時,就鹼發產生效率之觀點而言為較佳,以鄰位被取代者為特佳。
R1a、R2a,分別為碳數5~10之環烷基,其就可控制所產生之鹼的擴散長度之觀點而言為較佳。
m”以1為佳。n”以0~2為佳。p”以0或1為佳。
對式(C1-11)、(C1-12)所表示之化合物照射輻射線時,至少會使該些式中之氮原子,與該氮原子鄰接之羰基的碳原子間之鍵結被切斷,而生成胺,與二氧化碳。分解後,以所生成之胺具有高沸點而為佳。又,該胺之分子量 更大時,或具有高體積密度骨架時,就於PEB時可控制擴散等觀點而為更佳。
式(C1-11)或(C1-12)所表示之化合物之中,以下述式(C1-1-1)所表示之化合物為更佳。
[式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基。R1與R2可與式中之氮原子共同形成環]。
[(C1-1-1)成份]
對(C1-1-1)成份照射(曝光)輻射線時,至少會使該式(C1-1-1)中之氮原子,與該氮原子所鄰接之羰基(C=O)的碳原子之間的鍵結被切斷,而生成胺,與二氧化碳。
前述式(C1-1-1)中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基。
但,R1、R2之至少任一者為,可具有取代基之烷基或可具有取代基之苯基。
R1、R2中之烷基,與前述式(C1)中,R1、R2所列舉之烷基為相同之內容等。
前述式(C1-1-1)中,R1、R2中之苯基,可具有取代 基。
例如,構成該苯基之碳原子的一部份可被雜原子所取代、該苯基中之氫原子可被取代基所取代。
構成該苯基之碳原子的一部份被雜原子所取代者之例如,構成苯基之碳原子的一部份被氧原子、硫原子、氮原子等雜原子所取代之基等。
取代該苯基中之氫原子的取代基,例如,前述「取代構成該烷基之氫原子的一部份或全部的取代基」所列舉之基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥烷基、羥基、氧原子(=O)、-COOR”、-OC(=O)R”、氰基、硝基、-N(R”)2、-R9’-N(R10’)-C(=O)-O-R5’、含氮雜環式基等。
前述式(C1-1-1)中,R1與R2,可與式中之氮原子共同形成環。可與該氮原子共同形成之環式基,例如與式(C1)中,可與R1、R2、式中之氮原子共同形成之環式基所列舉者為相同之內容等。
以下為(C1)成份之具體例示。
(C1)成份,可單獨使用1種亦可、將2種以上組合使用亦可。
光阻組成物中,(C)成份中之(C1)成份之含有比例,以50質量%以上為佳,以75質量%以上為較佳,亦可為100質量%。(C1)成份之含有比例於前述範圍之下限值以上時,可使所形成之光阻圖型的解析性、圖型形狀更為良好。
光阻組成物中,(C1)成份之含量,相對於(A)成份100質量份,以0.05~50質量份為佳,以1~30質量份為較佳,以5~20質量份為特佳。
(C1)成份之含量為下限值以上時,可使光阻膜之曝光部的殘膜性更為良好,可使所形成之光阻圖型的解析性、圖型形狀更為良好。另一方面,(C1)成份之含量為上限值以下時,可容易維持光阻膜之透明性。
[(C2)成份]
本發明之光阻組成物,於不損害本發明之效果的範圍,亦可含有不相當於前述之(C1)成份,且經由曝光而產生鹼之光鹼產生劑(以下,此光鹼產生劑亦稱為「(C2)成份」)。
(C2)成份,只要為照射(曝光)輻射線而分解產生鹼之成份即可,例如,含有胺基甲酸酯基(胺基甲酸乙酯鍵結)者、含有醯氧基亞胺基者、離子系者(陰離子-陽離子複合物)、含有胺甲醯氧基亞胺基者等,又以含有胺基甲酸酯基(胺基甲酸乙酯鍵結)者、含有醯氧基亞胺基者、離子系 者(陰離子-陽離子複合物)等。
又,以分子內具有環結構者為佳,該環結構例如具有苯、萘、蒽、氧葱酮、硫代氧葱酮、蒽菎、茀等環骨架者等。
又,(C)成份中之較適合者,又例如下述通式(C2)所表示之化合物(以下,亦稱為「(C2)成份」)。
(C2)成份,於步驟(2)中,經由曝光而吸收曝光能量之後,(-CH=CH-C(=O)-)部份轉變為順式與異構化,再經由加熱而環化,而生成鹼(NHR1R2)。
(C2)成份,於產生鹼之同時,以於步驟(4)中,對鹼顯影液容易得到難溶化之效果而為更佳。
[式(C2)中,R1及R2,與上述式(C1)中之R1及R2為相同之內容,R3’為鄰位具有羥基之芳香族環式基]。
前述式(C2)中,R1及R2,以可相互鍵結,並與鄰接之氮原子共同形成前述式(II)所表示之環式基而為佳。或,R1及R2,較佳為與前述式(C1-12)中之R1a及R2a為相同之內容等。
R3’中之芳香族環式基,與上述式(C1)中之R3所例示之具有芳香族環之基為相同之內容等,該環骨架以苯、聯 苯基、茚、萘、茀、蒽、菲為佳,以苯環為更佳。
R3’之芳香族環式基,除鄰位之羥基以外,亦可具有取代基,該取代基例如,鹵素原子、羥基、巰基、硫醚基、矽基、矽醇基、硝基、亞硝基、亞磺酸基、磺基、磺酸根基、膦基、氧膦基、膦醯基、膦醯氧基(phosphonato)基、胺基、銨基、其他烷基等1價之有機基等。
以下為(C2)成份之具體例示。
又,(C)成份中之較適合者,又例如下述通式(C3)所表示之化合物(以下,亦稱為「(C3)成份」)。
(C3)成份為,於步驟(2)中,經由曝光而吸收曝光能量之後,經去碳酸後,與水反應而生成胺(鹼基)者。
[式中,Ra及Rd為氫原子或可具有取代基之碳數1~ 30之烴基(但,Ra及Rd皆為可具有取代基之碳數1~30之烴基時,視為相互鍵結而形成環者);Rb為可具有取代基之芳基或脂肪族環式基]。
前述式(C3)中,Ra為氫原子或可具有取代基之碳數1~30之烴基。
Ra之可具有取代基之碳數1~30之烴基,可為芳香族烴基亦可、脂肪族烴基亦可。
芳香族烴基為具有芳香環之烴基。該芳香族烴基之碳數以5~30為較佳,以5~20為更佳,以6~15為特佳,以6~12為最佳。但,該碳數中,為不包含取代基中之碳數者。
芳香族烴基,具體而言,例如,由苯基、聯苯(biphenyl)基、茀(fluorenyl)基、萘基、蒽(anthryl)基、菲基等芳香族烴環去除1個氫原子所得之芳基、苄基、苯基乙基、1-萘基甲基、2-萘基甲基、1-萘基乙基、2-萘基乙基等芳烷基等。前述芳烷基中之烷基鏈之碳數,以1~4為佳,以1~3為較佳,以1~2為特佳。
該芳香族烴基,可具有取代基。例如,構成該芳香族烴基所具有之芳香環的碳原子之一部份可被雜原子所取代、鍵結於該芳香族烴基所具有之芳香環的氫原子可被取代基所取代等。
前者之例如,構成前述芳基之環的碳原子之一部份被氧原子、硫原子、氮原子等雜原子所取代之雜芳基、構成前述芳烷基中之芳香族烴之環的碳原子之一部份被前述雜 原子所取代之雜芳烷基等。
後者例示中之芳香族烴基之取代基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)等。
作為前述芳香族烴基之取代基的烷基,以碳數1~5之烷基為佳,以甲基、乙基、丙基、n-丁基、tert-丁基為最佳。
作為前述芳香族烴基之取代基的烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為佳,以甲氧基、乙氧基為最佳。
前述作為芳香族烴基之取代基的鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
作為前述芳香族烴基之取代基的鹵化烷基為,碳數1~5之烷基,例如,甲基、乙基、丙基、n-丁基、tert-丁基等烷基中之氫原子的一部份或全部被前述鹵素原子所取代之基等。
前述式(C3)中之Ra中之脂肪族烴基,可為飽和脂肪族烴基亦可、不飽和脂肪族烴基亦可。又,脂肪族烴基,可為直鏈狀、支鏈狀、環狀之任一者皆可。
前述式(C3)中之Ra中,脂肪族烴基中,構成該脂肪族烴基之碳原子的一部份可被含雜原子之取代基所取代、構成該脂肪族烴基之氫原子的一部份或全部被含雜原子之取代基所取代亦可。
前述式(C3)中之Ra中之「雜原子」,只要為碳原子 及氫原子以外之原子時,並未有特別之限定,例如,鹵素原子、氧原子、硫原子、氮原子等。鹵素原子,例如,氟原子、氯原子、碘原子、溴原子等。
含雜原子之取代基,可為僅由前述雜原子所構成者亦可、含有前述雜原子以外之基或原子之基亦可。
取代一部份碳原子之取代基,具體而言,例如,-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-(H可被烷基、醯基等取代基所取代)、-S-、-S(=O)2-、-S(=O)2-O-等。脂肪族烴基為環狀之情形,該些取代基可包含於環結構中亦可。
取代一部份或全部氫原子之取代基,具體而言,例如,烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)、氰基等。
前述烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為佳,以甲氧基、乙氧基為最佳。
前述鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
前述鹵化烷基為,碳數1~5之烷基,例如,甲基、乙基、丙基、n-丁基、tert-丁基等烷基中之氫原子的一部份或全部被前述鹵素原子所取代之基等。
脂肪族烴基,以直鏈狀或支鏈狀之飽和烴基、直鏈狀或支鏈狀之1價之不飽和烴基,或環狀之脂肪族烴基(脂肪族環式基)為佳。
直鏈狀之飽和烴基(烷基),以碳數1~20為佳,以1~15為較佳,以1~10為最佳。具體而言,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、異十三烷基、十四烷基、十五烷基、十六烷基、異十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基等。
支鏈狀之飽和烴基(烷基),其碳數以3~20為佳,以3~15為較佳,以3~10為最佳。具體而言,例如,1-甲基乙基、1-甲基丙基、2-甲基丙基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丁基、2-乙基丁基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基等。
不飽和烴基,其碳數以2~10為佳,以2~5為佳,以2~4為佳,以3為特佳。直鏈狀之1價之不飽和烴基,例如,乙烯基、丙烯基(烯丙基)、丁烯基等。支鏈狀之1價之不飽和烴基,例如,1-甲基丙烯基、2-甲基丙烯基等。
不飽和烴基,於上述之中特別是以丙烯基為佳。
前述式(C3)中之Ra中之環狀脂肪族烴基(脂肪族環式基)為可具有取代基之碳數3~30之脂肪族環式基。
前述式(C3)中之Ra中,脂肪族環式基可為,構成該脂肪族環式基之碳原子的一部份被含雜原子之取代基所取代者亦可、構成該脂肪族環式基之氫原子的一部份或全部可被含雜原子之取代基所取代者亦可。
前述式(C3)中之Ra中之「雜原子」,只要為碳原子及氫原子以外之原子時,並未有特別之限定,例如,鹵素原子、氧原子、硫原子、氮原子等。鹵素原子,例如,氟原子、氯原子、碘原子、溴原子等。
含雜原子之取代基,可為僅由前述雜原子所構成者亦可、含有前述雜原子以外之基或原子之基亦可。
取代一部份碳原子之取代基,具體而言,例如,-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-(H可被烷基、醯基等取代基所取代)、-S-、-S(=O)2-、-S(=O)2-O-等。該些取代基亦可包含於環結構中。
取代一部份或全部氫原子之取代基,具體而言,例如,烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)、氰基等。
前述烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為佳,以甲氧基、乙氧基為最佳。
前述鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
前述鹵化烷基為,碳數1~5之烷基,例如,甲基、乙基、丙基、n-丁基、tert-丁基等烷基中之氫原子的一部份或全部被前述鹵素原子所取代之基等。
脂肪族環式基,可為單環式基亦可、多環式基亦可。其碳數為3~30,以5~30為佳,以5~20為較佳,以6~15為更佳,以6~12為特佳。
具體而言,例如,由單環鏈烷去除1個以上之氫原子所得之基;由二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等。更具體而言,例如,由環戊烷、環己烷等單環鏈烷去除1個以上之氫原子所得之基;由金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個以上之氫原子所得之基等。
脂肪族環式基,其環結構中不含有含雜原子之取代基之情形,該脂肪族環式基,以多環式基為佳,以由多環鏈烷去除1個以上之氫原子所得之基為佳,以由金剛烷去除1個以上之氫原子所得之基為最佳。
脂肪族環式基,其環結構中含有含雜原子之取代基之情形,該含雜原子之取代基,以-O-、-C(=O)-O-、-S-、-S(=O)2-、-S(=O)2-O-為佳。該脂肪族環式基之具體例,例如,下述式(L1)~(L6)、(S1)~(S4)所表示之基等。
[式中,Q”為碳數1~5之伸烷基、-O-、-S-、-O-R94-或-S-R95-,R94及R95為各自獨立之碳數1~5之伸烷基,m為0或1之整數]。
前述式中,Q”、R94及R95中之伸烷基,以分別為直鏈狀或支鏈狀之伸烷基為佳,該伸烷基之碳數為1~5,又以1~3為佳。
該伸烷基,具體而言,例如,伸甲基[-CH2-];-CH(CH3)-、-CH(CH2CH3)-、-C(CH3)2-、-C(CH3)(CH2CH3)-、-C(CH3)(CH2CH2CH3)-、-C(CH2CH3)2-等烷基伸甲基;伸乙基[-CH2CH2-];-CH(CH3)CH2-、-CH(CH3)CH(CH3)-、-C(CH3)2CH2-、-CH(CH2CH3)CH2-、-CH(CH2CH3)CH2-等烷基伸乙基;伸三甲基(n-伸丙基)[-CH2CH2CH2-];-CH(CH3)CH2CH2-、-CH2CH(CH3)CH2-等烷基伸三甲基;伸四甲基[-CH2CH2CH2CH2-];-CH(CH3)CH2CH2CH2-、-CH2CH(CH3)CH2CH2-等烷基伸四甲基;伸五甲基[-CH2CH2CH2CH2CH2-]等。
該些脂肪族環式基中,構成該環結構之碳原子所鍵結之氫原子的一部份可被取代基所取代。該取代基,例如,烷基、烷氧基、鹵素原子、鹵化烷基、羥基、氧原子(=O)等。
前述烷基,以碳數1~5之烷基為佳,以甲基、乙基、丙基、n-丁基、tert-丁基為特佳。
前述烷氧基、鹵素原子分別與前述取代一部份或全部 氫原子之取代基所列舉之內容為相同之內容等。
前述式(C3)中之Ra之可具有取代基之脂肪族環式基,以可具有取代基之多環式之脂肪族環式基為佳。該多環式之脂肪族環式基,例如以由前述多環鏈烷去除1個以上之氫原子所得之基、前述(L2)~(L6)、(S3)~(S4)所表示之基等為佳。
前述式(C3)中之Ra為可具有取代基之碳數1~30之烴基之情形,可與鄰接之碳原子形成環。所形成之環,可為單環或多環皆可。其碳數(包含鍵結之碳原子)以5~30為佳,以5~20為更佳。
具體而言,(鍵結之碳原子亦視為環之一部份)上述Ra中之環狀脂肪族烴基(脂肪族環式基)中,例如碳數5~30之脂肪族環式基等。
前述式(C3)中之Ra以氫原子或可具有取代基之環式基為佳。該環式基為,可具有取代基之芳香族烴基亦可、可具有取代基之脂肪族環式基亦可。
可具有取代基之脂肪族環式基,以可具有取代基之多環式之脂肪族環式基為佳。該多環式之脂肪族環式基,例如以由前述多環鏈烷去除1個以上之氫原子所得之基、前述(L2)~(L6)、(S3)~(S4)所表示之基等為佳。
可具有取代基之芳香族烴基,以可具有取代基之萘基,或可具有取代基之苯基為更佳。
前述式(C3)中之Rb中,芳基例如由前述式(C3)中之Ra中之芳香族烴基所列舉之內容中,去除芳烷基所得者 等。Rb中之芳基,以苯基為更佳。
前述式(C3)中之Rb中,脂肪族環式基與前述式(C3)中之Ra中之脂肪族環式基為相同之內容。Rb中之脂肪族環式基,較佳為脂肪族多環式基,更佳為由多環鏈烷去除1個以上之氫原子所得之基,特佳為由金剛烷去除1個以上之氫原子所得之基。
Rb之芳香族烴基或脂肪族環式基所可具有之取代基,與前述式(C3)中之Ra中所列舉之取代基為相同之內容等。
前述式(C3)中之Rd,與前述式(C3)中之Ra為相同之內容等。
前述式(C3)中之Rd,以可具有取代基之環式基為佳。
該環式基為,可具有取代基之芳香族烴基亦可、可具有取代基之脂肪族環式基亦可,又以可具有取代基之芳香族烴基為佳。
可具有取代基之脂肪族環式基,以可具有取代基之多環式之脂肪族環式基為佳。該多環式之脂肪族環式基,例如以由前述多環鏈烷去除1個以上之氫原子所得之基、前述(L2)~(L6)、(S3)~(S4)所表示之基等為佳。
前述式(C3)中之Rd,以可具有取代基之萘基或可具有取代基之苯基為較佳,以可具有取代基之苯基為最佳。
前述式(C3)中之Ra及Rd皆為可具有取代基之碳數1~30之烴基時,其為相互鍵結形成環。所形成之環,可 為單環或多環皆可。其碳數以於前述式(C3)中,包含Ra及Rd所鍵結之碳原子,以5~30為佳,以5~20為更佳。
具體而言,前述式(C3)中,Ra及Rd所鍵結之碳原子亦視為該所形成之環的一部份時,上述Ra中之環狀脂肪族烴基(脂肪族環式基)中,例如碳數5~30之脂肪族環式基等。
以下為(C3)成份之具體例示。
又,(C)成份中之較適合者,又例如,含有醯氧基亞胺基之光鹼產生劑成份(以下,亦稱為「(C4)成份」)等。(C4)成份,例如,以下所示通式(C4-1)所表示之化合物、 (C4-2)所表示之化合物等。
[式中,R11、R12、R43、R44各自獨立表示氫原子或碳數1~5之烷基,n7~n10為各自獨立之0~3]。
又,(C)成份,除上述所例示之內容以外之成份,例如可使用目前為止被提案作為化學增幅型光阻用之光鹼產生劑的成份。
該些光鹼產生劑,例如,離子系者(陰離子-陽離子複合物)、三苯基鋶化合物、三苯基甲醇;苄胺基甲酸酯及苯偶因胺基甲酸酯等具光活性之胺基甲酸酯;o-胺甲醯基羥基醯胺、o-胺甲醯基肟、芳香族磺醯胺、α-內酯及N-(2-烯丙基乙炔基)醯胺等醯胺;肟酯、α-胺基乙醯苯、鈷錯合物等;特開2007-279493號公報所記載之內容等。
(C)成份,可單獨使用1種,或將2種以上組合使用亦可。
上述之中,(C)成份,又以(C1)成份為較佳,以由前述通式(C1-11)或(C1-12)之任一者所表示之化合物所選出 之1種以上為更佳。其中又以式(C1-1-1)所表示之化合物為特佳。
光阻組成物中,(C)成份之含量,相對於(A)成份100質量份,以0.05~50質量份為佳,以1~30質量份為較佳,以5~20質量份為特佳。(C)成份之含量為下限值以上時,可使光阻膜之曝光部的殘膜性更為良好,使本發明之效果更為提高。另一方面,(C)成份之含量為上限值以下時,可維持光阻膜之透明性。
<酸供應成份;(Z)成份>
本發明中之光阻圖型之形成方法之步驟(1)中,為使用含有「酸供應成份」之光阻組成物,該「酸供應成份」係作為供應光阻膜的酸之成份。
本發明中,「酸供應成份」係指,該成份本身為具有酸性之成份,即具有作為質子供應體作用之成份(以下,亦稱為「酸性化合物成份」或(G)成份);亦包含經由熱或光等而分解,產生作為酸之機能的成份(以下,亦稱為「酸產生劑成份」或(B)成份)。
‥酸性化合物成份;(G)成份
本發明中,(G)成份可使用,具有使基材成份(A)增大對鹼顯影液之溶解性的酸強度的酸性之鹽(以下,亦稱為「(G1)成份」),或可使用酸性之鹽以外之酸(未形成鹽之成份、非離子性之成份;以下,亦稱為「(G2)成份」)。
「具有使基材成份(A)增大對鹼顯影液之溶解性的酸強度之成份」,例如,包含使用具有前述結構單位(a1)的 高分子化合物(A1)之情形中,前述於步驟(3)之施以燒焙(PEB)處理,可使結構單位(a1)中之酸分解性基的結構中之至少一部份之鍵結形成開裂之酸。
[(G1)成份]
(G1)成份例如,由含氮陽離子與對陰離子所形成之離子性化合物(鹽化合物)等。(G1)成份,即使於形成鹽之狀態下,(G1)成份本身因具有酸性,故具有作為質子供應體之作用。
以下,將分別說明(G1)成份之陽離子部與陰離子部。
((G1)成份之陽離子部)
(G1)成份之陽離子部,只要為含有氮原子之成份時,並未有特別之限定,例如下述通式(G1c-1)所表示之陽離子為適當之例示。
[式中,R101d、R101e、R101f、R101g分別表示氫原子、碳數1~12之直鏈狀、支鏈狀或環狀之烷基、烯基、酮烷基或酮烯基、碳數6~20之芳基或芳烷基、碳數7~12之芳烷基,或芳基酮烷基,該些基之氫原子的一部份或全部可被鹵素原子、烷氧基,或硫原子所取代。R101d與R101e,或,R101d與R101e與R101f,可分別與該些所鍵結 之式中的氮原子共同形成環,形成環之情形,R101d與R101e,或,R101d與R101e與R101f,分別為碳數3~10之伸烷基,或形成環中具有式中之氮原子的雜芳香族環]。
式(G1c-1)中,R101d、R101e、R101f、R101g,分別表示氫原子、碳數1~12之直鏈狀、支鏈狀或環狀之烷基、烯基、酮烷基或酮烯基、碳數6~20之芳基或芳烷基、碳數7~12之芳烷基,或芳基酮烷基。
R101d~R101g之烷基,與上述R1、R2之烷基為相同之內容等,其碳數以1~10為佳,以甲基、乙基、丙基,或丁基為特佳。
R101d~R101g之烯基,其碳數以2~10為佳,以2~5為較佳,以2~4為更佳。具體而言,例如,乙烯基、丙烯基(烯丙基)、丁烯基、1-甲基丙烯基、2-甲基丙烯基等。
R101d~R101g之酮烷基,其碳數以2~10為佳,以2-酮乙基、2-酮丙基、2-酮環戊基、2-酮環己基等。
R101d~R101g之酮烯基,例如,酮-4-環己烯基、2-酮-4-丙烯基等。
R101d~R101g之芳基,與上述R1、R2之芳香族烴基中之芳基為相同之內容等,以苯基或萘基為佳。芳烷基例如,該芳基中之1個以上之氫原子被烷基(較佳為碳數1~5之烷基)所取代者等。
R101d~R101g之芳烷基、芳基酮烷基,分別為苄基、苯基乙基、苯基乙基等、2-苯基-2-酮乙基、2-(1-萘基)-2- 酮乙基、2-(2-萘基)-2-酮乙基等。
R101d~R101g之烷基、烯基、酮烷基、酮烯基、芳基、芳烷基、芳烷基、芳基酮烷基中之氫原子,可被氟原子等鹵素原子、烷氧基,或硫原子所取代亦可、未被取代亦可。
R101d~R101g為僅由烷基及氫原子之組合所構成之情形,以該烷基之至少一部份氫原子被氟原子等鹵素原子、烷氧基、硫原子所取代者,就保存安定性、微影蝕刻特性等觀點而為較佳。
又,R101d與R101e,或,R101d與R101e與R101f,該些可鍵結並與式中之氮原子共同形成環。所形成之環,例如,哌啶環、六亞甲基亞胺環、偶氮環、吡啶環、嘧啶環、氮呯環、吡嗪環、喹啉環、苯併喹啉環等。
又,該環骨架中亦可含有氧原子,具體而言,噁唑環、異噁唑環為較佳之例示。
其中,上述式(G1c-1)所表示之陽離子部,又以pKa為7以下之含氮陽離子為佳。
本發明中之pKa為酸解離常數,一般為使用作為標示對象物質之酸強度的指標。(G1)成份之陽離子之pKa值可依一般方法予以測定得知。又,亦可使用「ACD/Labs」(商品名、Advanced Chemistry Development公司製)等公知之軟體予以計算而推定。
(G1)成份之pKa,以7以下者為佳,以對陰離子為相對弱鹼基之方式,配合對陰離子之種類或pKa而作適當之 決定,具體而言,以pKa-2~7為佳,以-1~6.5為較佳,以0~6為更佳。pKa於前述範圍之上限值以下時,可作為陽離子之鹼性為極弱之成份,而可使(G1)成份本身作為酸性化合物。又,pKa於前述範圍之下限值以上時,可使對陰離子更容易形成鹽,而可使(G1)成份作為具有適當酸性度之成份,而可防止因(G1)成份過度酸性所造成之保存安定性劣化。
具有充份的上述pKa之陽離子,又以下述通式(G1c-11)~(G1c-13)之任一者所表示之陽離子為特佳。
[式中,Rfg1為碳數1~12之氟化烷基。Rng1、Rg2為各自獨立之氫原子或碳數1~5之烷基,Rng1與Rg2可相互鍵結形成環。Qa~Qc為各自獨立之碳原子或氮原子,Rng3為氫原子或甲基。Rng4、Rng5為各自獨立之芳香族烴基或碳數1~5之烷基。Rg1、Rg2為各自獨立之烴基。n15、n16分別為0~4之整數。n15、n16為2以上之情形,取代相鄰接之碳原子上的氫原子之複數之Rg1、Rg2 可鍵結形成環]。
式(G1c-11)中,Rfg1為,碳數1~12之氟化烷基,又以烷基之氫原子的50%以上被氟化之碳數1~5之氟化烷基為佳。
式(G1c-11)中,Rng1、Rng2為,各自獨立之氫原子或碳數1~5之烷基,且該烷基與上述(G1c-1)中所說明之烷基中,碳數1~5者為相同之內容。又,Rng1、Rng2之雙方為烷基之情形,Rng1、Rng2之烷基可相互鍵結,並與式中之NH+共同形成環亦可。
式(G1c-13)中,Rng4、Rng5為各自獨立之芳香族烴基或碳數1~5之烷基。芳香族烴基、烷基,分別與上述(G1c-1)中之R101d、R101e、R101f、R101g之說明所例示之芳基、碳數1~5之烷基為相同之內容等。
式(G1c-12)~(G1c-13)中,n15、n16為0~4之整數,以0~2之整數為佳,以0為更佳。
式(G1c-12)~(G1c-13)中,Rg1、Rg2為各自獨立之烴基,以碳數1~12之烷基或烯基為佳。烷基、烯基,與上述式(G1c-1)中所說明者為相同之內容。
n15、n16為2以上之情形,複數之Rg1、Rg2可分別為相同或相異皆可。又,n15、n16為2以上之情形,取代相鄰接之碳原子上的氫原子之複數之Rg1、Rg2可鍵結形成環。所形成之環,例如,苯環、萘環等。即,式(G1c-12)~(G1c-13)之任一者所表示之化合物,可為2個以上之環經縮合所形成之縮合環化合物。
以下為上述式(G1c-11)~(G1c-13)之任一者所表示之化合物之具體例示。
((G1)成份之陰離子部)
(G1)成份之陰離子部,並未有特別之限定內容,通常,可由光阻組成物所使用之鹽的陰離子部之中,適當地選擇使用。
其中,(G1)成份之陰離子部,又以與上述(G1)成份之陽離子部形成鹽作為(G1)成份之際,該(G1)成份可增大上述(A)成份對鹼顯影液之溶解性者為佳。
此處所稱「可增大上述(A)成份對鹼顯影液之溶解性」,係指例如,使用具有前述結構單位(a1)之(A1)成份之情形,前述於步驟(3)之施以燒焙處理,可使結構單位 (a1)中之酸分解性基之結構中的至少一部份之鍵結產生開裂之意。
即,(G1)之陰離子部,以強酸性為佳。具體而言,陰離子部之pKa以0以下為較佳,以pKa-15~-1為更佳,以-13~-3為特佳。陰離子部之pKa為0以下時,相對於pKa7以下之陽離子,其為形成具有極強酸性度之陰離子成份,而可使(G1)成份本身作為酸性化合物。另一方面,陰離子部之pKa為-15以上時,而可防止因(G1)成份過度酸性所造成之保存安定性劣化。
(G1)成份之陰離子部,以具有由磺酸陰離子、羧酸陰離子、磺醯基醯亞胺陰離子、雙(烷基磺醯基)醯亞胺陰離子,及三(烷基磺醯基)甲基金屬(Methide)陰離子所成群所選出之至少一種之陰離子基者為佳。
具體而言,例如,通式「R4”SO3 -(R4”表示可具有取代基之直鏈狀、支鏈狀或環狀之烷基、鹵化烷基、芳基,或烯基)」所表示之陰離子等。
前述通式「R4”SO3 -」中,R4”表示可具有取代基之直鏈狀、支鏈狀或環狀之烷基、鹵化烷基、芳基,或烯基。
前述R4”之直鏈狀或支鏈狀之烷基,以碳數1~10為佳,以碳數1~8為更佳,以碳數1~4為最佳。
前述R4”之環狀之烷基,以碳數4~15為佳,以碳數4~10為更佳,以碳數6~10為最佳。
R4”為烷基之情形中之「R4”SO3 -」,例如,甲烷磺酸酯、n-丙烷磺酸酯、n-丁烷磺酸酯、n-辛烷磺酸酯、1-金 剛烷磺酸酯、2-降莰烷磺酸酯、d-莰烷-10-磺酸酯等烷基磺酸酯等。
前述R4”之鹵化烷基為,烷基中之氫原子的一部份或全部被鹵素原子所取代者,該烷基以碳數1~5之烷基為佳,又以直鏈狀或支鏈狀之烷基為較佳,以甲基、乙基、丙基、異丙基、n-丁基、tert-丁基、tert-戊基,或異戊基為更佳。又,取代氫原子之鹵素原子,例如,氟原子、氯原子、碘原子、溴原子等。
鹵化烷基中,以烷基(鹵化前之烷基)之氫原子的全部個數之50~100%被鹵素原子所取代者為佳,以氫原子全部被鹵素原子所取代者為更佳。
其中,該鹵化烷基,以氟化烷基為佳。氟化烷基,以碳數1~10為佳,以碳數1~8為更佳,以碳數1~4為最佳。
又,該氟化烷基之氟化率,較佳為10~100%,更佳為50~100%,特別是全部氫原子被氟原子所取代者,以可增強酸之強度而為更佳。
該些較佳之氟化烷基,具體而言,例如,三氟甲基、七氟-n-丙基、九氟-n-丁基等。
前述R4”之芳基,以碳數6~20之芳基為佳。
前述R4”之烯基,以碳數2~10之烯基為佳。
前述R4”中,「可具有取代基」係指,前述直鏈狀、支鏈狀或環狀之烷基、鹵化烷基、芳基,或烯基中之氫原子的一部份或全部可被取代基(氫原子以外之其他原子或 基)所取代之意。
R4”中之取代基之數,可為1個亦可、2個以上亦可。
前述取代基,例如,鹵素原子、雜原子、烷基、式:X3-Q’-[式中,Q’為含有氧原子之2價之鍵結基,X3為可具有取代基之碳數3~30之烴基]所表示之基等。
前述鹵素原子、烷基,與R4”中,鹵化烷基中之鹵素原子、烷基所列舉之內容為相同之內容等。
前述雜原子,例如,氧原子、氮原子、硫原子等。
X3-Q’-所表示之基中,Q’為含有氧原子之2價之鍵結基。
Q’,可含有氧原子以外之原子。氧原子以外之原子,例如,碳原子、氫原子、氧原子、硫原子、氮原子等。
含有氧原子之2價之鍵結基,例如,氧原子(醚鍵結:-O-)、酯鍵結(-C(=O)-O-)、醯胺鍵結(-C(=O)-NH-)、羰基(-C(=O)-)、碳酸酯鍵結(-O-C(=O)-O-)等非烴系的含氧原子之鍵結基;該非烴系的含氧原子之鍵結基與伸烷基之組合等。該組合中,可再鍵結磺醯基(-SO2-)。
該組合,例如,-R91-O-、-R92-O-C(=O)-、-C(=O)-O-R93-O-C(=O)-、-SO2-O-R94-O-C(=O)-、-R95-SO2-O-R94-O-C(=O)-(式中,R91~R95為各自獨立之伸烷基)等。
R91~R95中之伸烷基,以直鏈狀或支鏈狀之伸烷基為佳,該伸烷基之碳數以1~12為佳,以1~5為較佳,以1~3為特佳。
該伸烷基,具體而言,例如,伸甲基[-CH2-];-CH(CH3)-、-CH(CH2CH3)-、-C(CH3)2-、-C(CH3)(CH2CH3)-、-C(CH3)(CH2CH2CH3)-、-C(CH2CH3)2-等烷基伸甲基;伸乙基[-CH2CH2-];-CH(CH3)CH2-、-CH(CH3)CH(CH3)-、-C(CH3)2CH2-、-CH(CH2CH3)CH2-等烷基伸乙基;伸三甲基(n-伸丙基)[-CH2CH2CH2-];-CH(CH3)CH2CH2-、-CH2CH(CH3)CH2-等烷基伸三甲基;伸四甲基[-CH2CH2CH2CH2-];-CH(CH3)CH2CH2CH2-、-CH2CH(CH3)CH2CH2-等烷基伸四甲基;伸五甲基[-CH2CH2CH2CH2CH2-]等。
Q’,以含有酯鍵結或醚鍵結之2價之鍵結基為佳,其中又以-R91-O-、-R92-O-C(=O)-或-C(=O)-O-R93-O-C(=O)-為佳。
X3-Q’-所表示之基中,X3之烴基,與上述式(C3)中之Ra之碳數1~30之烴基為相同之內容等。
其中,X3又以可具有取代基之直鏈狀烷基,或,可具有取代基之環式基為佳。該環式基為,可具有取代基之芳香族烴基亦可、可具有取代基之脂肪族環式基亦可,又以可具有取代基之脂肪族環式基為佳。
前述芳香族烴基,以可具有取代基之萘基,或可具有取代基之苯基為佳。
可具有取代基之脂肪族環式基,以可具有取代基之多環式之脂肪族環式基為佳。該多環式之脂肪族環式基,例如以由前述多環鏈烷去除1個以上之氫原子所得之基、前 述式(L2)~(L6)、(S3)~(S4)之任一者所表示之基等為佳。
上述之中,前述R4”,以具有鹵化烷基,或作為取代基之X3-Q’-為佳。
取代基為具有X3-Q’-之情形,R4”以X3-Q’-Y3-[式中,Q’及X3與前述為相同之內容,Y3為可具有取代基之碳數1~4之伸烷基或可具有取代基之碳數1~4之氟化伸烷基]所表示之基為佳。
X3-Q’-Y3-所表示之基中,Y3之伸烷基,例如與前述Q’所列舉之伸烷基中之碳數1~4之內容為相同之內容等。
氟化伸烷基,例如該伸烷基之一部份或全部之氫原子被氟原子所取代之基等。
Y3,具體而言,例如-CF2-、-CF2CF2-、-CF2CF2CF2-、-CF(CF3)CF2-、-CF(CF2CF3)-、-C(CF3)2-、-CF2CF2CF2CF2-、-CF(CF3)CF2CF2-、-CF2CF(CF3)CF2-、-CF(CF3)CF(CF3)-、-C(CF3)2CF2-、-CF(CF2CF3)CF2-、-CF(CF2CF2CF3)-、-C(CF3)(CF2CF3)-;-CHF-、-CH2CF2-、-CH2CH2CF2-、-CH2CF2CF2-、-CH(CF3)CH2-、-CH(CF2CF3)-、-C(CH3)(CF3)-、-CH2CH2CH2CF2-、-CH2CH2CF2CF2-、-CH(CF3)CH2CH2-、-CH2CH(CF3)CH2-、-CH(CF3)CH(CF3)-、-C(CF3)2CH2-;-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH(CH3)CH2-、-CH(CH2CH3)-、-C(CH3)2-、-CH2CH2CH2CH2-、-CH(CH3)CH2CH2-、 -CH2CH(CH3)CH2-、-CH(CH3)CH(CH3)-、-C(CH3)2CH2-、-CH(CH2CH3)CH2-、-CH(CH2CH2CH3)-、-C(CH3)(CH2CH3)-等。
Y3,以氟化伸烷基為佳,特別是以鄰接之硫原子所鍵結之碳原子被氟化所得之氟化伸烷基為佳。該些氟化伸烷基,例如,-CF2-、-CF2CF2-、-CF2CF2CF2-、-CF(CF3)CF2-、-CF2CF2CF2CF2-、-CF(CF3)CF2CF2-、-CF2CF(CF3)CF2-、-CF(CF3)CF(CF3)-、-C(CF3)2CF2-、-CF(CF2CF3)CF2-;-CH2CF2-、-CH2CH2CF2-、-CH2CF2CF2-;-CH2CH2CH2CF2-、-CH2CH2CF2CF2-、-CH2CF2CF2CF2-等。
該些之中,又以-CF2-、-CF2CF2-、-CF2CF2CF2-,或CH2CF2CF2-為佳,以-CF2-、-CF2CF2-或-CF2CF2CF2-為較佳,以-CF2-為特佳。
前述伸烷基或氟化伸烷基,可具有取代基。伸烷基或氟化伸烷基為「具有取代基」係指,該伸烷基或氟化伸烷基中之氫原子或氟原子的一部份或全部被氫原子及氟原子以外之原子或基所取代之意。
伸烷基或氟化伸烷基可具有之取代基,例如,碳數1~4之烷基、碳數1~4之烷氧基、羥基等。
R4”為X3-Q’-Y3-所表示之基的R4”SO3 -之具體例,例如,下述式(b1)~(b9)之任一者所表示之陰離子等。
[式中,q1~q2為各自獨立之1~5之整數,q3為1~12之整數,t3為1~3之整數,r1~r2為各自獨立之0~3之整數,g為1~20之整數,R7為取代基,n1~n6為各自獨立之0或1,v0~v6為各自獨立之0~3之整數,w1~w6為各自獨立之0~3之整數,Q”與前述為相同之內容]。
R7之取代基,例如與前述式(C3)中之Ra中,脂肪族烴基所可具有之取代基、芳香族烴基所可具有之取代基所列舉者為相同之內容等。
R7所附之符號(r1~r2、w1~w6)為2以上之整數的情形,該化合物中之複數之R7可分別為相同亦可、相異者亦可。
又,(G1)成份之陰離子部,例如,下述通式(G1a-3)所表示之陰離子、下述通式(G1a-4)所表示之陰離子亦為較佳之例示。
[式中,X”表示,至少1個之氫原子被氟原子所取代之碳數2~6之伸烷基;Y”、Z”表示各自獨立之至少1個氫原子被氟原子所取代之碳數1~10之烷基]。
式(G1a-3)中,X”為,至少1個氫原子被氟原子所取代之直鏈狀或支鏈狀之伸烷基,該伸烷基之碳數,較佳為2~6,更佳為碳數3~5,最佳為碳數3。
式(G1a-4)中,Y”、Z”為,各自獨立之至少1個氫原子被氟原子所取代之直鏈狀或支鏈狀之烷基,該烷基之碳數,較佳為1~10,更佳為碳數1~7,最佳為碳數1~3。
X”之伸烷基之碳數或Y”、Z”之烷基之碳數,於上述碳數之範圍內時,就對光阻溶劑之溶解性更為良好等理由,以越小越好。
又,X”之伸烷基或Y”、Z”之烷基中,被氟原子所取 代之氫原子的數目越多時,酸之強度越強,且可提高對於200nm以下之高能量光或電子線之透明性等觀點,而為較佳。
該伸烷基或烷基之氟化率,較佳為70~100%,更佳為90~100%,最佳為全部氫原子被氟原子所取代之全氟伸烷基或全氟烷基。
(G1)成份之陰離子部,以上述式「R4”SO3 -」所表示之陰離子(特別是R4”為「X3-Q’-Y3-」所表示之基的上述式(b1)~(b9)之任一者所表示之陰離子),或,上述式(G1a-3)所表示之陰離子為特佳。
(G1)成份,可單獨使用1種,或將2種以上組合使用亦可。
光阻組成物中,(G)成份中之(G1)成份之含有比例,以40質量%以上為佳,以70質量%以上為較佳,亦可為100質量%。(G1)成份之含有比例於前述範圍之下限值以上時,保存安定性,及具有優良微影蝕刻特性。
又,光阻組成物中之(G1)成份之含量,相對於(A)成份100質量份,以0.5~30質量份為佳,以1~20質量份為較佳,以2~15質量份為更佳。(G1)成份之含量於上述範圍內時,具有優良微影蝕刻特性。
[(G2)成份]
(G2)成份為,不相當於上述(G1)成份,且該(G2)成份本身具有酸性,具有作為質子供應體作用之成份。該些(G2)成份,例如,不形成鹽之非離子性之酸等。
(G2)成份,只要為具有可增大基材成份(A)對鹼顯影液之溶解性的酸強度之酸時,並未有特別之限定,(G2)成份中之較適合者,例如,就對基材成份之酸解離性基之反應性,或可增大光阻膜對鹼顯影液之溶解性等觀點,以亞胺系之酸或磺酸系之化合物為佳,例如,磺醯基醯亞胺、雙(烷基磺醯基)醯亞胺、三(烷基磺醯基)甲基金屬(Methide),或該些中具有氟原子者等。
特別是,下述通式(G2-1)~(G2-3)之任一者所表示之化合物(其中又以通式(G2-2)所表示之化合物為佳)、前述通式(b1)~(b9)之任一者所表示之陰離子的「-SO3 -」形成「-SO3H」之化合物、前述通式(G1a-3)或(G1a-4)所表示之陰離子的「N-」形成「NH」之化合物、莰烷磺酸等為佳。其他例如,含有氟化烷基之羧酸、高級脂肪酸、高級烷基磺酸、高級烷基芳基磺酸等酸成份等。
[式(G2-1)中,w’為1~5之整數。式(G2-2)中,Rf表示氫原子或烷基(但,該烷基中之氫原子的一部份或全部 可被氟原子、羥基、烷氧基、羧基或胺基之任一者所取代),y’為2~3之整數。式(G2-3)中,Rf與前述為相同之內容,z’為2~3之整數]。
前述式(G2-1)所表示之化合物,例如,(C4F9SO2)2NH、(C3F7SO2)2NH等。
前述式(G2-2)中,Rf中之烷基之碳數,以1~2為佳,以1為更佳。
可取代該烷基中之氫原子的烷氧基,以甲氧基、乙氧基為佳。
前述式(G2-2)所表示之化合物,例如,下述化學式(G2-21)所表示之化合物等。
前述式(G2-3)中,Rf與前述式(G2-2)中之Rf為相同之內容。
前述式(G2-3)所表示之化合物,例如,下述化學式(G2-31)所表示之化合物等。
含有氟化烷基之羧酸,例如,C10F21COOH等。
高級脂肪酸,例如,碳數8~20之具有烷基的高級脂肪酸等,具體而言,十二烷酸、十四烷酸、十六烷酸等。
上述碳數8~20之烷基,可為直鏈狀或支鏈狀之任一者皆可,其鏈中可介有伸苯基或氧原子等亦可、烷基中之氫原子的一部份可被羥基或羧基所取代亦可。
高級烷基磺酸,較佳為平均碳數9~21,更佳為12~18之具有烷基的磺酸等,具體而言,癸烷磺酸、十二烷磺酸、十四烷磺酸、十五烷磺酸、十六烷酸磺酸等。
高級烷基芳基磺酸,例如平均碳數較佳為6~18,更佳為9~15之具有烷基的烷基苯磺酸、烷基萘磺酸等,又具體而言,十二烷基苯磺酸、癸基萘磺酸等。
其他酸成份例如,平均碳數較佳為6~18,更佳為9~15之具有烷基的烷基二苯醚二磺酸等,具體而言,十二烷基二苯醚二磺酸等。
又,上述以外之(G2)成份,又例如有機羧酸,及,磷之含氧酸及其衍生物等。
有機羧酸,例如,以乙酸、丙二酸、檸檬酸、蘋果 酸、琥珀酸、苯甲酸、水楊酸等為較佳。
磷之含氧酸,例如,磷酸、膦酸、次膦酸等,該些之中又特別是以膦酸為佳。
磷之含氧酸的衍生物,例如,上述含氧酸之氫原子被烴基所取代之酯等,又以該烴基為,碳數1~5之烷基、碳數6~15之芳基等。
磷酸之衍生物,例如,磷酸二-n-丁酯、磷酸二苯酯等磷酸酯等。
膦酸之衍生物,例如,膦酸二甲酯、膦酸-二-n-丁酯、苯基膦酸、膦酸二苯酯、膦酸二苄酯等膦酸酯等。
次膦酸之衍生物,例如,苯基次膦酸等次膦酸酯等。
(G)成份含有(G2)成份之情形,(G2)成份,可單獨使用1種,或將2種以上組合使用亦可。上述之中,(G2)成份,又以使用由磺醯基醯亞胺、雙(烷基磺醯基)醯亞胺、三(烷基磺醯基)甲基金屬(Methide)及該些中具有氟原子者所成群所選出之1種以上為較佳,以使用1種以上該些中具有氟原子者為特佳。
又,光阻組成物含有(G2)成份之情形,光阻組成物中之(G2)成份之含量,相對於(A)成份100質量份,以0.5~20質量份為佳,以1~15質量份為較佳,以1~10質量份為更佳。(G2)成份之含量為下限值以上時,可容易增大光阻膜對鹼顯影液之溶解性。另一方面,(G2)成份之含量為上限值以下時,可容易得到良好之感度。
‥酸產生劑成份;(B)成份
本發明中,酸供應成份(Z),可使用經由熱或光等而分解,而具有作為酸之機能的酸產生劑成份(以下,亦稱為「(B)成份」)。
(B)成份為,與上述(G)成份相異,為於步驟(2)中經曝光,或步驟(3)中經燒焙(PEB)後產生酸之成份。(B)成份,其本身並不必要具有酸性。
(B)成份,並未有特別之限定,其可使用目前被提案作為化學增幅型光阻用之酸產生劑之成份。
該些酸產生劑,例如,經由加熱而產生酸之熱酸產生劑、經由曝光而產生酸之光酸產生劑等,目前為止,已知有錪鹽或鋶鹽等鎓鹽系酸產生劑、肟磺酸酯系酸產生劑、雙烷基或雙芳基磺醯基重氮甲烷類、聚(雙磺醯基)重氮甲烷類等重氮甲烷系酸產生劑、硝基苄磺酸酯系酸產生劑、亞胺基磺酸酯系酸產生劑、二碸系酸產生劑等多種成份。
該些酸產生劑成份,一般而言,已知有被稱為光酸產生劑(PAG)者,亦具有熱酸產生劑(TAG)之機能。因此,於本發明中所可使用之酸產生劑成份,可利用以往已知被作為化學增幅型光阻組成物用之酸產生劑使用之公知成份中的任意內容。
「經由加熱產生酸之熱酸產生劑」係指,較佳為於步驟(3)中之PEB溫度以下,具體而言,為經由200℃以下,較佳為100℃以下,更佳為50~150℃加熱而產生酸之成份之意。於選擇加熱溫度為PEB溫度以下之酸產生劑時,可使操作更為簡便。又,更容易對於不同溫度下所進 行之使熱酸產生劑產生酸與基材成份之去保護反應等進行控制。較佳為選擇經由50℃以上,更佳為50~100℃之加熱所產生酸之成份時,可使光阻組成物具有良好之安定性。
(B)成份之作為鎓鹽系酸產生劑之陰離子部,以具有由磺酸陰離子、羧酸陰離子、磺醯基醯亞胺陰離子、雙(烷基磺醯基)醯亞胺陰離子,及三(烷基磺醯基)甲基金屬(Methide)陰離子所成群所選出之至少一種之陰離子基者為佳。更具體而言,例如與上述(G1)所列舉者為相同之陰離子等。
又,陽離子部中,例如為下述之通式(b-c1)或通式(b-c2)所表示者等。
[式中,R1”~R3”,R5”~R6”表示各自獨立之可具有取代基之芳基、烷基或烯基。式(b-c1)中之R1”~R3”之中,任意之二個可相互鍵結,並與式中之硫原子共同形成環亦可]。
式(b-c1)中,R1”~R3”,表示各自獨立之可具有取代 基之芳基、烷基或烯基。R1”~R3”之中,任意之二個可相互鍵結,並與式中之硫原子共同形成環亦可。
R1”~R3”之芳基可為,碳數6~20之無取代之芳基;該無取代之芳基之氫原子的一部份或全部被烷基、烷氧基、鹵素原子、羥基、酮基(=O)、芳基、烷氧烷基氧基、烷氧羰基烷基氧基、-C(=O)-O-R6’、-O-C(=O)-R7’、-O-R8’等所取代之取代芳基等。R6’、R7’、R8’,各自表示碳數1~25之直鏈狀、支鏈狀或碳數3~20之環狀之飽和烴基,或,碳數2~5之直鏈狀或支鏈狀之脂肪族不飽和烴基。
R1”~R3”中,無取代之芳基,就可廉價合成等觀點,以碳數6~10之芳基為佳。具體而言,例如,苯基、萘基等。
R1”~R3”之取代芳基中作為取代基之烷基,以碳數1~5之烷基為佳,以甲基、乙基、丙基、n-丁基、tert-丁基為最佳。
取代芳基中作為取代基之烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為最佳。
取代芳基中作為取代基之鹵素原子,以氟原子為佳。
取代芳基中作為取代基之芳基,例如與前述R1”~R3”之芳基為相同之內容等。
取代芳基中之烷氧烷基氧基,例如,通式:-O-C(R47)(R48)-O-R49
[式中,R47、R48為各自獨立之氫原子或直鏈狀或支鏈狀之烷基,R49為烷基]所表示之基等。
R47、R48中,烷基之碳數較佳為1~5,其可為直鏈狀、支鏈狀之任一者,又以乙基、甲基為佳,以甲基為最佳。
R47、R48,以至少一者為氫原子為佳。特別是一者為氫原子,另一者為氫原子或甲基為更佳。
R49之烷基,較佳為碳數為1~15者,其可為直鏈狀、支鏈狀、環狀之任一者。
R49中之直鏈狀、支鏈狀之烷基,以碳數為1~5者為佳,例如,甲基、乙基、丙基、n-丁基、tert-丁基等。
R49中之環狀之烷基,以碳數4~15為佳,以碳數4~12為更佳,以碳數5~10為最佳。具體而言,例如,由可被碳數1~5之烷基、氟原子或氟化烷基所取代,或未被取代之單環鏈烷、二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個以上之氫原子所得之基等。單環鏈烷例如,環戊烷、環己烷等。多環鏈烷例如,金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等。其中又以由金剛烷去除1個以上之氫原子所得之基為佳。
取代芳基中之烷氧羰基烷基氧基,例如,通式:-O-R50-C(=O)-O-R56
[式中,R50為直鏈狀或支鏈狀之伸烷基,R56為三級烷基]所表示之基等。
R50中之直鏈狀、支鏈狀之伸烷基,其碳數以1~5為 佳,例如,伸甲基、伸乙基、伸三甲基、伸四甲基、1,1-二甲基伸乙基等。
R56中之三級烷基,例如,2-甲基-2-金剛烷基、2-乙基-2-金剛烷基、1-甲基-1-環戊基、1-乙基-1-環戊基、1-甲基-1-環己基、1-乙基-1-環己基、1-(1-金剛烷基)-1-甲基乙基、1-(1-金剛烷基)-1-甲基丙基、1-(1-金剛烷基)-1-甲基丁基、1-(1-金剛烷基)-1-甲基戊基;1-(1-環戊基)-1-甲基乙基、1-(1-環戊基)-1-甲基丙基、1-(1-環戊基)-1-甲基丁基、1-(1-環戊基)-1-甲基戊基;1-(1-環己基)-1-甲基乙基、1-(1-環己基)-1-甲基丙基、1-(1-環己基)-1-甲基丁基、1-(1-環己基)-1-甲基戊基、tert-丁基、tert-戊基、tert-己基等。
此外,又例如前述通式:-O-R50-C(=O)-O-R56中之R56被R56’所取代之基等。R56’為,可含有氫原子、烷基、氟化烷基,或雜原子之脂肪族環式基。
R56’中之烷基,例如與前述R49之烷基為相同之內容等。
R56’中之氟化烷基為,前述R49之烷基中之氫原子的一部份或全部被氟原子所取代之基等。
R56’中,可含有雜原子之脂肪族環式基,例如,不含有雜原子之脂肪族環式基、環結構中含有雜原子之脂肪族環式基、脂肪族環式基中之氫原子被雜原子所取代者等。
R56’中,不含有雜原子之脂肪族環式基,例如,由單環鏈烷、由二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去 除1個以上之氫原子所得之基等。單環鏈烷例如,環戊烷、環己烷等。多環鏈烷例如,金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等。其中又以由金剛烷去除1個以上之氫原子所得之基為佳。
R56’中,環結構中含有雜原子之脂肪族環式基,具體而言,例如,前述之式(L1)~(L6)、(S1)~(S4)所表示之基等。
R56’中,脂肪族環式基中之氫原子被雜原子所取代者,具體而言,例如,脂肪族環式基中之氫原子被氧原子(=O)所取代者等。
-C(=O)-O-R6’、-O-C(=O)-R7’、-O-R8’中之R6’、R7’、R8’,各自表示碳數1~25之直鏈狀、支鏈狀或碳數3~20之環狀之飽和烴基,或,碳數2~5之直鏈狀或支鏈狀之脂肪族不飽和烴基。
直鏈狀或支鏈狀之飽和烴基之碳數為1~25,以碳數1~15為佳,以4~10為更佳。
直鏈狀之飽和烴基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基等。
支鏈狀之飽和烴基,除三級烷基以外,例如,1-甲基乙基、1-甲基丙基、2-甲基丙基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丁基、2-乙基丁基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基等。
前述直鏈狀或支鏈狀之飽和烴基,可具有取代基。該取代基,例如,烷氧基、鹵素原子、鹵化烷基、羥基、氧 原子(=O)、氰基、羧基等。
作為前述直鏈狀或支鏈狀之飽和烴基之取代基的烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基、n-丙氧基、iso-丙氧基、n-丁氧基、tert-丁氧基為佳,以甲氧基、乙氧基為最佳。
作為前述直鏈狀或支鏈狀之飽和烴基之取代基的鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,又以氟原子為佳。
作為前述直鏈狀或支鏈狀之飽和烴基之取代基的鹵化烷基,例如,前述直鏈狀或支鏈狀之飽和烴基之氫原子的一部份或全部被前述鹵素原子所取代之基等。
R6’、R7’、R8’中之碳數3~20之環狀之飽和烴基,可為多環式基、單環式基之任一者皆可,例如,由單環鏈烷去除1個氫原子所得之基;由二環鏈烷、三環鏈烷、四環鏈烷等多環鏈烷去除1個氫原子所得之基等。更具體而言,例如,由環戊烷、環己烷、環庚烷、環辛烷等單環鏈烷,或金剛烷、降莰烷、異莰烷、三環癸烷、四環十二烷等多環鏈烷去除1個氫原子所得之基等。
該環狀之飽和烴基,可具有取代基。例如,構成該環狀之烷基所具有之環之碳原子的一部份可被雜原子所取代,鍵結於該環狀之烷基所具有之環的氫原子可被取代基所取代。
前者之例,例如,由構成前述單環鏈烷或多環鏈烷之環之碳原子的一部份被氧原子、硫原子、氮原子等雜原子 所取代之雜環鏈烷去除1個以上之氫原子所得之基等。又,前述環之結構中,可具有酯鍵結(-C(=O)-O-)。具體而言,例如,由γ-丁內酯去除1個氫原子所得之基等含內酯之單環式基,或由具有內酯環之二環鏈烷、三環鏈烷、四環鏈烷去除1個氫原子所得之基等含內酯之多環式基等。
後者之例中之取代基,與上述直鏈狀或支鏈狀之烷基所可具有之取代基所列舉之取代基為相同者,可例如低級烷基等。
又,R6’、R7’、R8’可為直鏈狀或支鏈狀之烷基,與環狀烷基之組合。
直鏈狀或支鏈狀之烷基與環狀烷基之組合,例如,直鏈狀或支鏈狀之烷基鍵結作為取代基之環狀之烷基所得之基、環狀之烷基鍵結作為取代基之直鏈狀或支鏈狀之烷基所得之基等。
R6’、R7’、R8’中之直鏈狀之脂肪族不飽和烴基,例如,乙烯基、丙烯基(烯丙基)、丁烯基等。
R6’、R7’、R8’中之支鏈狀之脂肪族不飽和烴基,例如,1-甲基丙烯基、2-甲基丙烯基等。
該直鏈狀或支鏈狀之脂肪族不飽和烴基可具有取代基。該取代基與前述直鏈狀或支鏈狀之烷基所可具有之取代基所列舉者為相同之內容等。
R7’、R8’中,於上述之中,就使微影蝕刻特性、光阻圖型形狀更為良好之觀點,以碳數1~15之直鏈狀或支鏈 狀之飽和烴基,或碳數3~20之環狀之飽和烴基為佳。
R1”~R3”之烷基,例如,碳數1~10之直鏈狀、支鏈狀或環狀之烷基等。其中,就具有優良解析性之觀點,以碳數1~5者為佳。具體而言,例如,甲基、乙基、n-丙基、異丙基、n-丁基、異丁基、n-戊基、環戊基、己基、環己基、壬基、癸基等,又就具有優良解析性,或可廉價合成等觀點之較佳取代基,可列舉如甲基。
R1”~R3”之烯基,例如,碳數2~10為佳,以2~5為較佳,以2~4為更佳。具體而言,例如,乙烯基、丙烯基(烯丙基)、丁烯基、1-甲基丙烯基、2-甲基丙烯基等。
R1”~R3”之中,任意2個相互鍵結,並與式中之硫原子共同形成環之情形,包含硫原子,以形成3~10員環為佳,以形成5~7員環為特佳。
前述式(b-c1)所表示之化合物中的陽離子部中之較適合者,具體而言,例如以下所示內容等。
[式中,g1表示重複單位,1~5之整數]。
[式中,g2、g3表示重複單位,g2為0~20之整數,g3為0~20之整數]。
式(b-1-42)中,RC為取代基。該取代基例如為上述取代芳基之說明中所例示之取代基(烷基、烷氧基、烷氧烷基氧基、烷氧羰基烷基氧基、鹵素原子、羥基、酮基(=O)、芳基、-C(=O)-O-R6”、-O-C(=O)-R7”、-O-R8”)等。
前述式(b-c2)中,R5”~R6”,表示各自獨立之可具有取代基之芳基、烷基或烯基。
R5”~R6”之芳基,與R1”~R3”之芳基為相同之內容等。
R5”~R6”之烷基,與R1”~R3”之烷基為相同之內容等。
R5”~R6”之烯基,與R1”~R3”之烯基為相同之內容 等。
前述式(b-c2)所表示之化合物中的陽離子部之具體例如,二苯基錪、雙(4-tert-丁基苯基)錪等。
本說明書中,肟磺酸酯系酸產生劑為,至少具有1個下述通式(B-1)所表示之基的化合物,且具有經由輻射線之照射(曝光)而產生酸之特性者。該些肟磺酸酯系酸產生劑,已廣泛地使用於化學增幅型光阻組成物中,而可由其中任意地選擇使用。
(式(B-1)中,R31、R32表示各自獨立之有機基)。
R31、R32之有機基為含有碳原子之基,其亦可具有碳原子以外之原子(例如,氫原子、氧原子、氮原子、硫原子、鹵素原子(氟原子、氯原子等)等)。
R31之有機基,以直鏈狀、支鏈狀或環狀之烷基或芳基為佳。該些烷基、芳基為可具有取代基。該取代基並未有特別限制,例如,氟原子、碳數1~6之直鏈狀、支鏈狀或環狀之烷基等。其中,「具有取代基」為表示烷基或芳基中之氫原子的一部份或全部被取代基所取代之意。
烷基,以碳數1~20為佳,以碳數1~10為較佳,以碳數1~8為更佳,以碳數1~6為特佳,以碳數1~4為 最佳。烷基,特別是以部份或完全被鹵化之烷基(以下,亦稱為鹵化烷基)為佳。又,部份被鹵化之烷基表示,氫原子中之一部份被鹵素原子所取代之烷基之意,完全被鹵化之烷基表示,全部氫原子被鹵素原子所取代之烷基之意。鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,特別是以氟原子為佳。即,鹵化烷基以氟化烷基為佳。
芳基,以碳數4~20為佳,以碳數4~10為較佳,以碳數6~10為最佳。芳基,特別是以部份或完全被鹵化之芳基為佳。又,部份被鹵化之芳基表示,氫原子之一部份被鹵素原子所取代之芳基之意,完全被鹵化之芳基表示,全部氫原子被鹵素原子所取代之芳基之意。
R31,特別是以不具有取代基之碳數1~4之烷基,或碳數1~4之氟化烷基為佳。
R32之有機基,以直鏈狀、支鏈狀或環狀之烷基、芳基或氰基為佳。R32之烷基、芳基,與前述R31所列舉之烷基、芳基為相同之內容等。
R32,特別是以氰基、不具有取代基之碳數1~8之烷基,或碳數1~8之氟化烷基為佳。
肟磺酸酯系酸產生劑,更佳者例如,下述通式(B-2)或(B-3)所表示之化合物等。
[式(B-2)中,R33為氰基、不具有取代基之烷基或鹵化烷基。R34為芳基。R35為不具有取代基之烷基或鹵化烷基]。
[式(B-3)中,R36為氰基、不具有取代基之烷基或鹵化烷基。R37為2或3價之芳香族烴基。R38為不具有取代基之烷基或鹵化烷基。p”為2或3]。
前述通式(B-2)中,R33之不具有取代基之烷基或鹵化烷基,以碳數1~10為佳,以碳數1~8為較佳,以碳數1~6為最佳。
R33,以鹵化烷基為佳,以氟化烷基為更佳。
R33中之氟化烷基,以烷基中之氫原子被50%以上氟化者為佳,以70%以上被氟化者為較佳,以90%以上被氟化者為特佳。
R34之芳基,例如,由苯基、聯苯(biphenyl)基、茀 (fluorenyl)基、萘基、蒽(anthryl)基、菲基等芳香族烴之環去除1個氫原子所得之基,及構成該些基之環的碳原子之一部份被氧原子、硫原子、氮原子等雜原子所取代之雜芳基等。該些之中,又以茀基為佳。
R34之芳基,可具有碳數1~10之烷基、鹵化烷基、烷氧基等取代基。該取代基中之烷基或鹵化烷基,以碳數1~8為佳,以碳數1~4為更佳。又,該鹵化烷基以氟化烷基為佳。
R35之不具有取代基之烷基或鹵化烷基,以碳數1~10為佳,以碳數1~8為較佳,以碳數1~6為最佳。
R35,以鹵化烷基為佳,以氟化烷基為更佳。
R35中之氟化烷基,以烷基中之氫原子被50%以上氟化者為佳,以70%以上被氟化者為較佳,以90%以上被氟化者,以可提高所產生之酸的強度,而為特佳。最佳者為,氫原子被100%氟取代之全氟化烷基。
前述通式(B-3)中,R36之不具有取代基之烷基或鹵化烷基,與上述R33之不具有取代基之烷基或鹵化烷基為相同之內容等。
R37之2或3價之芳香族烴基,例如由上述R34之芳基再去除1或2個氫原子所得之基等。
R38之不具有取代基之烷基或鹵化烷基,與上述R35之不具有取代基之烷基或鹵化烷基為相同之內容等。
p”,較佳為2。
肟磺酸酯系酸產生劑之具體例,例如,α-(p-甲苯磺 醯氧亞胺基)-苄氰化物(cyanide)、α-(p-氯基苯磺醯氧亞胺基)-苄氰化物(cyanide)、α-(4-硝基苯磺醯氧亞胺基)-苄氰化物(cyanide)、α-(4-硝基-2-三氟甲基苯磺醯氧亞胺基)-苄氰化物(cyanide)、α-(苯磺醯氧亞胺基)-4-氯基苄氰化物(cyanide)、α-(苯磺醯氧亞胺基)-2,4-二氯基苄氰化物(cyanide)、α-(苯磺醯氧亞胺基)-2,6-二氯基苄氰化物(cyanide)、α-(苯磺醯氧亞胺基)-4-甲氧基苄氰化物(cyanide)、α-(2-氯基苯磺醯氧亞胺基)-4-甲氧基苄氰化物(cyanide)、α-(苯磺醯氧亞胺基)-噻嗯-2-基乙腈、α-(4-十二烷基苯磺醯氧亞胺基)-苄氰化物(cyanide)、α-[(p-甲苯磺醯氧亞胺基)-4-甲氧基苯基]乙腈、α-[(十二烷基苯磺醯氧亞胺基)-4-甲氧基苯基]乙腈、α-(甲苯磺醯氧基亞胺基)-4-噻嗯基氰化物(cyanide)、α-(甲基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(甲基磺醯氧亞胺基)-1-環己烯基乙腈、α-(甲基磺醯氧亞胺基)-1-環庚烯基乙腈、α-(甲基磺醯氧亞胺基)-1-環辛烯基乙腈、α-(三氟甲基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(三氟甲基磺醯氧亞胺基)-環己基乙腈、α-(乙基磺醯氧亞胺基)-乙基乙腈、α-(丙基磺醯氧亞胺基)-丙基乙腈、α-(環己基磺醯氧亞胺基)-環戊基乙腈、α-(環己基磺醯氧亞胺基)-環己基乙腈、α-(環己基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(乙基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(異丙基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(n-丁基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(乙基磺醯氧亞胺基)-1-環己烯基乙腈、α-(異丙基磺醯氧亞胺基)-1-環己烯 基乙腈、α-(n-丁基磺醯氧亞胺基)-1-環己烯基乙腈、α-(甲基磺醯氧亞胺基)-苯基乙腈、α-(甲基磺醯氧亞胺基)-p-甲氧基苯基乙腈、α-(三氟甲基磺醯氧亞胺基)-苯基乙腈、α-(三氟甲基磺醯氧亞胺基)-p-甲氧基苯基乙腈、α-(乙基磺醯氧亞胺基)-p-甲氧基苯基乙腈、α-(丙基磺醯氧亞胺基)-p-甲基苯基乙腈、α-(甲基磺醯氧亞胺基)-p-溴苯基乙腈等。
又,特開平9-208554號公報(段落[0012]~[0014]之[化18]~[化19])所揭示之肟磺酸酯系酸產生劑、國際公開第04/074242號(65~85頁次之實施例1~40)所揭示之肟磺酸酯系酸產生劑亦適合使用。
又,較佳者例如以下所例示之內容。
重氮甲烷系酸產生劑之中,雙烷基或雙芳基磺醯基重氮甲烷類之具體例,例如,雙(異丙基磺醯基)重氮甲烷、雙(p-甲苯磺醯基)重氮甲烷、雙(1,1-二甲基乙基磺醯基)重氮甲烷、雙(環己基磺醯基)重氮甲烷、雙(2,4-二甲基苯基磺醯基)重氮甲烷等。
又,特開平11-035551號公報、特開平11-035552號公報、特開平11-035573號公報所揭示之重氮甲烷系酸產生劑亦適合使用。
又,聚(雙磺醯基)重氮甲烷類,又例如,特開平11-322707號公報所揭示般,1,3-雙(苯基磺醯基重氮甲基磺醯基)丙烷、1,4-雙(苯基磺醯基重氮甲基磺醯基)丁烷、1,6-雙(苯基磺醯基重氮甲基磺醯基)己烷、1,10-雙(苯基磺醯基重氮甲基磺醯基)癸烷、1,2-雙(環己基磺醯基重氮甲基磺醯基)乙烷、1,3-雙(環己基磺醯基重氮甲基磺醯基)丙烷、1,6-雙(環己基磺醯基重氮甲基磺醯基)己烷、1,10-雙(環己基磺醯基重氮甲基磺醯基)癸烷等。
(B)成份,可單獨使用1種上述酸產生劑亦可,或將2種以上組合使用亦可。
光阻組成物於含有(B)成份之情形,光阻組成物中之(B)成份之含量,相對於(A)成份100質量份,以、於(B)成份為熱酸產生劑之情形,以0.5~30質量份為佳,以1~20質量份為更佳。於(B)成份為光酸產生劑之情形,以0.5~30質量份為佳,以1~20質量份為更佳。於上述範圍內時,可充分進行圖型之形成。又,(B)成份之含量為下限值以上時,可容易增大光阻膜對鹼顯影液之溶解性,可使解析性再向上提升。另一方面,於上限值以下時,以其可得到良好之感度而為較佳。又,於光酸產生劑之情形,於上限值以下時,可使光阻膜之透明性良好。
光阻組成物於含有(B)成份之情形,相對於(G)成份與 (B)成份之合計,(B)成份之含有比例,以50質量%以下為佳,以20質量%以上為更佳。
<其他成份>
本發明之光阻圖型之形成方法所使用之光阻組成物中,亦可添加前述之成份以外之成份,例如,酸增殖劑成份、氟添加劑、胺等。
‥酸增殖劑成份;(H)成份
本發明之光阻圖型之形成方法中,(H)成份為經由酸而分解,生成游離酸,此游離酸,使(H)成份再分解生成游離酸。如此,經由酸之作用,使(H)成份產生連續性分解,而生成多數之游離酸分子。
(H)成份,只要為可經由酸之作用而分解,由其本身產生新的酸,再以自己作為觸媒再增殖新的酸之成份即可,例如,以具有交聯碳環骨架結構之化合物為較佳之例示。
其中,「具有交聯碳環骨架結構之化合物」係指,其分子內的複數之碳環間形成橋鍵所得之結構(以下亦僅稱為「交聯碳環」)的化合物。
該具有交聯碳環骨架結構之化合物,因具有橋鍵,故分子形成剛直化,而可提高該化合物之熱安定性。
碳環之個數,以2~6個為佳,較佳為2~3個。
交聯碳環中,其氫原子的一部份或全部可被烷基、烷氧基等所取代。該烷基,以碳數1~6為佳,以1~3為較佳,具體而言,例如甲基、乙基、丙基等。該烷氧基,以 碳數1~6為佳,以1~3為較佳,具體而言,例如甲氧基、乙氧基等。又,交聯碳環亦可具有雙鍵等不飽和鍵結。
本發明中,交聯碳環,以於該環上具有羥基,與該羥基鍵結之碳原子的鄰位之碳原子上,具有下述通式(Hs)所表示之磺酸酯基者為特佳。
【化84】-OSO2-R0…(Hs)
[式中,R0表示脂肪族基、芳香族基或雜環式基]。
前述式(Hs)中,R0為脂肪族基、芳香族基或雜環式基。
R0中,脂肪族基,例如,鏈狀或環狀之烷基或烯基等,其碳數以1~12為佳,較佳為1~10。
芳香族基,可為單環式基亦可、可為多環式基亦可,具體而言,例如,芳基等。
雜環式基,可為單環式基亦可、可為多環式基亦可、以往公知之各種的雜環式化合物所衍生者等。
上述之脂肪族基、芳香族基及雜環式基,亦可具有取代基,該取代基例如,鹵素原子、烷基、烷氧基、胺基、取代胺基、氧原子(=O)等。
前述脂肪族基及前述芳香族基,具體而言,例如,甲基、乙基、丙基、丁基、醯基、己基、乙烯基、伸丙基、烯丙基、環己基、環辛基、二環烴基、三環烴基、苯基、 甲苯基、苄基、苯基乙基、萘基、萘基甲基或該些之取代物等。
前述雜環式基,例如各種雜環式化合物,例如,呋喃、噻吩、吡咯、苯併呋喃、苯并噻吩(Thionaphthene)、吲哚、咔唑等含1個雜原子之五員環化合物或其縮合環化合物;噁唑、噻唑、吡唑等含2個雜原子之五員環化合物或其縮合環化合物;吡喃、哌哢(Pyrone)、香豆素(Coumarin)、吡啶、喹啉、異喹啉、吖啶等含有1個雜原子之六員環化合物或其縮合環化合物;嗒嗪、嘧啶、吡嗪、酞嗪(phthalazine)等含有2個雜原子之六員環化合物或其縮合環化合物等所衍生之各種化合物等。
本發明中,(H)成份,於其交聯碳環上,具有羥基,與前述通式(Hs)所表示之磺酸酯基之情形,該(H)成份,會經由酸之作用而分解,而產生新的酸(R0SO3H)。
如此,經由一次之反應而增加1個之酸,隨後,伴隨反應之進行,而更加速進行反應,使(H)成份產生連續性分解。
該情形中,對於所產生之酸的強度,以酸解離常數(pKa)為3以下為佳,以2以下為特佳。pKa為3以下時,所產生之酸本身將更容易誘發自我分解。相反地,若為較其為更弱之酸,將不容易引起自我分解。
經上述反應而形成游離之酸(R0SO3H),例如,甲烷磺酸、乙烷磺酸、丙烷磺酸、丁烷磺酸、戊烷磺酸、己烷磺酸、庚烷磺酸、辛烷磺酸、環己烷磺酸、莰烷磺酸、三氟 甲烷磺酸、2,2,2-三氟乙烷磺酸、苯磺酸、p-甲苯磺酸、p-溴苯磺酸、p-硝基苯磺酸、2-噻吩磺酸、1-萘磺酸、2-萘磺酸等。
(H)成份,更具體而言,例如下述通式(H1)~(H4)所表示之化合物(以下,對應於各個通式之化合物,分別稱為化合物(H1)~(H4))等。
[式中,R51表示氫原子、脂肪族基或芳香族基;R52表示脂肪族基、芳香族基或雜環式基]。
前述通式(H1)~(H3)中,R51表示氫原子、脂肪族基或芳香族基。R51中,脂肪族基及芳香族基,分別與上述R0之脂肪族基、芳香族基為相同之內容等。R51,其中又以脂肪族基或芳香族基為佳,以脂肪族基為較佳,以低級烷基為特佳,以甲基為最佳。
前述通式(H1)~(H4)中,R52表示脂肪族基、芳香族基或雜環式基,其與上述R0為相同之內容等。R52,其中又以脂肪族基或芳香族基為佳,以脂肪族基為更佳。
化合物(H1)~(H4)中,化合物(H1)於二環化合物之1、3位具有交聯鍵結,化合物(H2)及化合物(H3)於二環化 合物之1、4位具有交聯鍵結,化合物(H4)於二環化合物(十氫萘(Decalin))之1、6位具有交聯鍵結。
因此,化合物(H1)~(H4)中,該環己烷環之立體構形(conformation)變化將受到極大抑制,而使該環結構顯示出剛直性。
該(H)成份中,例如,化合物(H1)~(H4)等,於交聯碳環上具有羥基,與該羥基鍵結之碳原子的鄰位之碳原子上具有前述通式(Hs)所表示之磺酸酯基的化合物,可使二醇化合物與磺酸之鹵化物作用而容易合成。該二醇化合物中,為存在順式、反式2種異構物,以順式異構物對於熱更為穩定起見,而更適合使用。又,該化合物,只要不與酸共存之情形,即可安定地保存。
(H)成份之較佳具體例示,如以下所示。
(H)成份,於上述之中,又以本發明之效果(解析性)、微影蝕刻特性更為優良之觀點,以化合物(H1)或化合物(H2)為佳,以化合物(H1)為更佳。具體而言,以使用由化學式(H1-1)~(H1-9)所表示之化合物所選出之至少1種為佳,其中又以化學式(H1-9)所表示之化合物為最佳。
(H)成份,可單獨使用1種亦可、將2種以上組合使用亦可。
本發明之光阻組成物含有(H)成份之情形,(H)成份之含量,相對於(A)成份100質量份,以0.1~30質量份為 佳,以1~20質量份為更佳。(H)成份之含量為下限值以上時,可使解析性再向上提升。另一方面,(H)成份之含量為上限值以下時,可使感度更為良好。
(H)成份與(G)成份合併使用之情形,(H)成份與(G)成份之混合比例,以莫耳比9:1~1:9為佳,以9:1~5:5為較佳,以9:1~6:4為特佳。(H)成份之比例於前述範圍之下限值以上時,可使解析性再向上提升。另一方面,(H)成份之比例於前述範圍之上限值以下時,可使感度更為良好。
又,(H)成份與(B)成份合併使用之情形,(H)成份與(B)成份之混合比例,以莫耳比9:1~1:9為佳,以9:1~5:5為較佳,以9:1~6:4為特佳。(H)成份之比例於前述範圍之下限值以上時,可使解析性再向上提升。另一方面,(H)成份之比例於前述範圍之上限值以下時,可使感度更為良好。
‥氟添加劑;(F)成份
本發明之光阻圖型之形成方法中,光阻組成物中,就賦予光阻膜撥水性等目的,可添加氟添加劑(以下,亦稱為「(F)成份」)。
(F)成份,例如,可使用特開2010-002870號公報所記載之含氟高分子化合物。
(F)成份,更具體而言,例如,具有下述式(f1-1)所表示之結構單位(f1)的聚合物等。該聚合物,例如,僅由結構單位(f1)所形成之聚合物(均聚物);由下述式(f1-1)所表 示之結構單位,與前述結構單位(a1)所形成之共聚物;由下述式(f1-1)所表示之結構單位,與丙烯酸或甲基丙烯酸所衍生之結構單位,與前述結構單位(a1)所形成之共聚物為佳。其中,可與下述式(f1-1)所表示之結構單位進行共聚之前述結構單位(a1),前述式(a1-0-11)所表示之結構單位為佳,以(a1-1-02)所表示之結構單位為較佳,以前述式(a1-1-32)所表示之結構單位為特佳。
[式中,R與前述為相同之內容,R45及R46表示各自獨立之氫原子、鹵素原子、碳數1~5之烷基,或碳數1~5之鹵化烷基,複數之R45或R46可為相同或相異皆可。a1為1~5之整數,R7”為含有氟原子之有機基]。
式(f1-1)中,R與前述為相同之內容。R,以氫原子或甲基為佳。
式(f1-1)中,R45、R46之鹵素原子,例如,氟原子、 氯原子、溴原子、碘原子等,特別是以氟原子為佳。R45、R46之碳數1~5之烷基,例如與上述R之碳數1~5之烷基為相同之內容等,以甲基或乙基為佳。R45、R46之碳數1~5之鹵化烷基,具體而言,例如,上述碳數1~5之烷基中之氫原子的一部份或全部被鹵素原子所取代之基等。該鹵素原子,例如,氟原子、氯原子、溴原子、碘原子等,特別是以氟原子為佳。其中,R45、R46又以氫原子、氟原子,或碳數1~5之烷基為佳,以氫原子、氟原子、甲基,或乙基為佳。
式(f1-1)中,a1為1~5之整數,以1~3之整數為佳,以1或2為更佳。
式(f1-1)中,R7”為含有氟原子之有機基,以含有氟原子之烴基為佳。
含有氟原子之烴基,可為直鏈狀、支鏈狀或環狀之任一者皆可,其碳數以1~20為佳,以碳數1~15為較佳,以碳數1~10為特佳。
又,含有氟原子之烴基,以該烴基中之氫原子之25%以上被氟化者為佳,以50%以上被氟化者為較佳,以60%以上被氟化者,以其可提高浸潤曝光時的光阻膜之疏水性,而為特佳。
其中,R7”,又以碳數1~5之氟化烴基為特佳,以甲基、-CH2-CF3、-CH2-CF2-CF3、-CH(CF3)2、-CH2-CH2-CF3、-CH2-CH2-CF2-CF2-CF2-CF3為最佳。
(F)成份之質量平均分子量(Mw)(凝膠滲透色層分析儀 之聚苯乙烯換算基準),以1000~50000為佳,以5000~40000為較佳,以10000~30000為最佳。於此範圍之上限值以下時,作為光阻使用時,對光阻溶劑可得到充分之溶解性,於此範圍之下限值以上時,可得到良好之耐乾蝕刻性或光阻圖型之截面形狀。
(F)成份之分散度(Mw/Mn),以1.0~5.0為佳,以1.0~3.0為較佳,以1.2~2.5為最佳。
(F)成份,可單獨使用1種亦可,或將2種以上合併使用亦可。
本發明之光阻組成物含有(F)成份之情形,相對於(A)成份100質量份,為使用0.5~10質量份之比例。
‥胺;(D)成份
本發明之光阻圖型之形成方法中,光阻組成物中,可添加含氮有機化合物成份(D)(以下亦稱為「(D)成份」)。
光阻組成物,於含有作為酸供應成份之(G)成份之情形,光阻組成物溶液中,會有因該(G)成份等作用而使(A)成份增加對鹼顯影液之溶解性的疑慮。此種現象雖然可以將(G)成份等調整為具有適當之酸性度的成份而予以抑制,但也可以添加(D)成份,而降低光阻組成物液中之(G)成份之酸性度之方式予以抑制。因此,只要使用(D)成份之情形,即可提高(G)成份等材料選擇的自由度,而為更佳。
此外,於光阻組成物之保存中,於存在(D)成份時,即可提高光阻組成物液調製後之保存安定性。又,因於步 驟(3)中之中和前可由光阻膜去除(D)成份,故於步驟(3)中,因(C)成份所產生之鹼與來自(Z)成份之酸產生中和反應,故不會對(D)成份造成妨礙,故特別是可得到良好之微影蝕刻特性或圖型形狀。
(D)成份,目前已有各式各樣之提案,故可由公知成份中任意選擇使用即可。其中,(D)成份,又以其pKa與上述(G1)成份之陽離子的pKa為相等或其以下者為佳。即,(D)成份之pKa,以7以下為佳,以6以下為更佳。
本發明之光阻組成物含有(G1)成份之情形,就為不使(G1)成份之陽離子與(D)成份引起鹼交換之觀點,(D)成份,以與(G1)成份之陽離子的pKa為相等或其以下為更佳。
本發明之光阻組成物含有(G2)成份之情形,為防止(G2)成份之酸性度極度降低,(D)成份之鹼性以較低者為佳,以其之pKa為7以下為佳,以6以下為更佳。
具有上述充足pKa之(D)成份,例如,由上述(G1)成份之說明所例示之式(G1c-1)中,去除1個鍵結於氮原子(N)的「H+」所得之胺等。具體而言,上述之式(G1c-11)及(G1c-13)所列舉之具體例中,末端之「NH3 +」形成「NH2」之化合物;又以上述之式(G1c-12)所列舉之具體例中,環中之「NH+」形成「N」之化合物為佳。
此外,(D)成份,以具有較低沸點之胺為佳。於使用具有較低沸點之胺時,於步驟(1)之於支撐體上形成光阻膜之際,可將(D)成份容易由光阻膜中去除。
該具有充足沸點之(D)成份,以沸點為130℃以下之胺為佳,以100℃以下之胺為較佳,以90℃以下之胺為特佳。
具有上述充足之pKa及沸點之(D)成份之特佳具體例如,三氟乙胺(2,2,2-三氟乙胺)、五氟丙胺(2,2,3,3,3-五氟丙胺)、七氟丁胺(1H,1H-七氟丁胺)、九氟戊胺(1H,1H-九氟戊胺)、十一氟己胺(1H,1H-十一氟己胺)、雙(2,2,2-三氟乙基)胺、雙(2,2,3,3,3-五氟丙基)胺、1-(2,2,2-三氟乙基)吡咯啶等具有氟化烷基之脂肪族胺化合物;吡啶、五氟吡啶等吡啶系化合物;噁唑、異噁唑等噁唑系化合物;等。
(D)成份,可單獨使用一種亦可,將2種以上組合使用亦可。
本發明之光阻組成物含有(D)成份之情形,(D)成份之比例,相對於(A)成份100質量份,以0.01~20.0質量份為佳,以1~15質量份為較佳,以2~10質量份為特佳。於上述範圍內時,可提高保存安定性,且亦可提高所得微影蝕刻特性或光阻圖型形狀。
本發明所使用光阻組成物中,可再配合所期待之目的,具有混和性之添加劑,例如改善光阻膜之性能所添加之樹脂、提高塗佈性之目的所添加之界面活性劑、溶解抑制劑、可塑劑、安定劑、著色劑、抗暈劑、染料、增感 劑、鹼增殖劑等。
增感劑,具體而言,例如,可使用二苯甲酮、p,p’-四甲基二胺基二苯甲酮等苯併二苯甲酮系增感劑;咔唑系增感劑、苯乙酮系增感劑、萘系增感劑、酚系增感劑、9-乙氧基蒽等蒽系增感劑、雙二醯、酸性曙紅(Eosine)、玫瑰紅(rose bengal)、芘、啡噻嗪(Phenothiazine)、蔥酮等公知之增感劑。光阻組成物中之增感劑之含量,相對於(A)成份100質量份,以0.5~20質量份為佳。
鹼增殖劑為,經由鹼之作用而產生分解之連鎖反應,由少量之鹼產生多量之鹼之成份。因此,添加鹼增殖劑時,可使光阻組成物之感度向上提高。鹼增殖劑,例如,可使用特開2000-330270號公報,或特開2008-174515號公報所記載之內容。
<有機溶劑>
本發明所使用光阻組成物,可將材料溶解於有機溶劑(以下,亦稱為「(S)成份」)中而可製得。
(S)成份,只要可溶解所使用之各成份,形成均勻之溶液者即可,其可由以往作為化學增幅型光阻之溶劑的公知成份中,適當地選擇使用1種或2種以上任意之成份。
例如,γ-丁內酯等內酯類;丙酮、甲基乙基酮、環己酮、甲基-n-己酮、甲基異己酮、2-庚酮等酮類;乙二醇、二乙二醇、丙二醇、二丙二醇等多元醇類;乙二醇單乙酸酯、二乙二醇單乙酸酯、丙二醇單乙酸酯,或二丙二醇單乙酸酯等具有酯鍵結之化合物、前述多元醇類或前述 具有酯鍵結之化合物之單甲醚、單乙基醚、單丙基醚、單丁基醚等單烷基醚或單苯醚等具有醚鍵結之化合物等多元醇類之衍生物[該些之中,又以丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單甲醚(PGME)為佳];二噁烷等環式醚類,或乳酸甲酯、乳酸乙酯(EL)、乙酸甲酯、乙酸乙酯、乙酸丁酯、丙酮酸甲酯、丙酮酸乙酯、甲氧基丙酸甲酯、乙氧基丙酸乙酯等酯類;茴香醚、乙基苄醚、甲苯酚基甲醚、二苯醚、二苄醚、苯乙醚、丁基苯醚、乙基苯、二乙基苯、戊基苯、異丙基苯、甲苯、二甲苯、異丙苯、三甲苯等芳香族系有機溶劑等。
該些有機溶劑可單獨使用亦可,或以2種以上之混合溶劑之方式使用亦可。
其中,又以丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單甲醚(PGME)、環己酮、EL為佳。
又,PGMEA與極性溶劑混合所得之混合溶劑亦佳。其添加比(質量比),可於考慮PGMEA與極性溶劑之相溶性等後,作適當之決定即可,較佳為1:9~9:1,更佳為使其於2:8~8:2之範圍內為宜。例如,添加作為極性溶劑之EL的情形,PGMEA:EL之質量比,較佳為1:9~9:1,更佳為2:8~8:2。又,添加作為極性溶劑之PGME的情形,PGMEA:PGME之質量比,較佳為1:9~9:1,更佳為2:8~8:2,更佳為3:7~7:3。又,添加作為極性溶劑之PGME及環己酮之情形,PGMEA:(PGME+環己酮)之質量比,較佳為1:9~9:1,更佳為 2:8~8:2,更佳為3:7~7:3。
又,(S)成份,於其他情形中,以PGMEA、EL,或前述PGMEA與極性溶劑之混合溶劑,與γ-丁內酯之混合溶劑亦為較佳。該情形中,混合比例較佳為,前者與後者之質量比為70:30~95:5。
(S)成份之使用量,並未有特別之限定,其可考慮可塗佈於基板等濃度下,配合塗佈膜厚度作適當之設定即可,一般而言,為使光阻組成物之固形分濃度為1~20質量%,較佳為於2~15質量%之範圍內使用。
如以上說明般,本發明之光阻組成物,適合使用於以鹼顯影製程形成負型圖型之製程。
該負型圖型之形成方法中,包含將經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份的光阻組成物,塗佈於支撐體上以形成光阻膜、對該光阻膜進行曝光、燒焙(Post Exposure Bake(PEB))。此時,於前述光阻膜之曝光部中,該預先供應於光阻膜之酸,與經由前述曝光而由前述光鹼產生劑成份所產生之鹼經反應而中和,另一方面,前述光阻膜之未曝光部中,經由前述酸之作用,而使基材成份增大對鹼顯影液之溶解性。因此,PEB後,將光阻膜進行鹼顯影時,前述光阻膜之未曝光部被溶解去除,而形成負型圖型。
該負型圖型之形成方法中,預先供應於光阻膜之酸於曝光前未失去活性,經由燒焙(PEB)而於未曝光部中有效作用於基材成份之部份為重要之事項。
本發明中所選擇之光鹼產生劑成份,即通式(C1-1-1)所表示之化合物((C1-1-1)成份),因具有特定之結構,故於曝光前,或未於曝光部中,並不具有作為可捕集(Trap)預先供應於光阻膜之酸的抑制劑(Quencher)之作用。另一方面,於曝光部中,產生具有可與該酸得到充分中和程度之強度的鹼,或基於該酸而抑制(A)成份之去保護反應,而產生具有可使未曝光部與曝光部具有反差程度之強度的鹼。如此,即可以高解析度形成負型圖型。
此外,式(C1-1-1)中之R1、R2之至少一者為烷基之情形,(C1-1-1)成份之光吸收性受到適度的抑制,故於曝光之際,可提高光阻膜之曝光部的光透過性,而提高支撐體近傍的鹼基發生效率,使光阻圖型形狀之矩形性提高。
又,式(C1-1-1)中之R1、R2之至少一者為苯基之情形,可抑制經由曝光而由(C1-1-1)成份產生之鹼向光阻膜未曝光部擴散,而降低未曝光部之溶解殘留,可使未曝光部側之捲曲(光阻圖型形狀形成燭台形狀之意)受到抑制。
如此,於使用含有含(C1-1-1)成份之光鹼產生劑成份的光阻組成物時,依該負型圖型之形成方法,可以高解析性,且良好形狀形成負型圖型。
又,本發明之光阻組成物適合作為後述之包含步驟(1)~(4)的光阻圖型之形成方法中之步驟(1)所使用的光阻組成物。
《光阻圖型之形成方法》
本發明之第二態樣及第三態樣中之光阻圖型之形成方法為包含,將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C)之光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)。
「負型光阻圖型」為,使光阻膜之未曝光部被鹼顯影液所溶解去除,使曝光部以圖型方式殘留之光阻圖型。
「預先供應於光阻膜之酸」為包含,預先添加於該形成光阻膜之光阻組成物中的酸供應成份所產生之酸,及步驟(3)中之燒焙前與該光阻膜接觸之酸供應成份所產生之酸。
基材成份,與前述基材成份((A)成份)之說明中所例示者為相同之內容等。
酸供應成份係指,酸性化合物成份、酸產生劑成份 等。酸性化合物為,其成份本身具有酸性之化合物,即,具有作為質子供應體之作用的化合物之意。酸性化合物,與前述酸性化合物成份((G)成份)之說明中所例示者為相同之內容等。
酸產生劑例如,經由加熱產生酸之熱酸產生劑、經由曝光而產生酸之光酸產生劑等。酸產生劑,例如,與前述酸產生劑成份((B)成份)之說明中所例示者為相同之內容等。
酸供應成份,可單獨使用任何1種或將2種以上合併使用亦可。例如,可將酸性化合物與酸產生劑合併使用亦可、熱酸產生劑與光酸產生劑合併使用亦可。
酸供應成份之具體例,例如,與前述酸供應成份((Z)成份)之說明中所例示者為相同之內容等。
光鹼產生劑成份之具體例,例如,與前述光鹼產生劑成份((C)成份)之說明中所例示者為相同之內容等。
又,第二態樣中,前述光鹼產生劑成份(C)為包含下述通式(C1-1-1)所表示之化合物。通式(C1-1-1)所表示之化合物之具體例,例如,與前述光鹼產生劑成份(C)之說明中所例示者為相同之內容等。
[式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基。R1與R2可與式中之氮原子共同形成環]。
本發明之光阻圖型之形成方法中,前述步驟(1)所使用之光阻組成物,例如與前述本發明之光阻組成物為相同之內容等。
通式(C1-1-1)所表示之化合物,例如與前述之(C1-1-1)成份之說明為相同之內容。
以下,本發明之光阻圖型之形成方法,將於參考圖式中,說明其實施形態。但,本發明並不僅限定於此內容。
<第一實施形態>
圖1為,本發明之光阻圖型之形成方法之一實施形態例。此實施形態為使用,含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份((A)成份),與經由曝光而產生鹼之光鹼產生劑成份((C)成份),與酸性化合物成份((G)成份)之光阻組成物。
本實施形態為使用含有,經由酸之作用而增大對鹼顯影液之溶解性的基材成份((A)成份),與包含前述通式(C1-1-1)所表示之化合物((C1-1-1)成份)的光鹼產生劑成份((C)成份),與酸供應成份(作為(Z)成份)之酸性化合物成份((G)成份)的光阻組成物。
首先,如圖1(a)所示般,將該光阻組成物塗佈於支撐體1上以形成光阻膜2(步驟(1);圖1(a))。
其次,前述所形成之光阻膜2,如圖1(b)所示般,介由形成有特定圖型之光遮罩3進行曝光。如此,光阻膜2之中,受到曝光之區域(曝光部)中,將經由曝光而由光鹼產生劑成份產生鹼(步驟(2);圖1(b))。
其次,曝光後燒焙(Post Exposure Bake(PEB))為於100℃以下進行。經由PEB處理,於光阻膜2之中,未曝光部2b則受到光阻膜中之酸性化合物成份之作用,而增大基材成份對對鹼顯影液之溶解性。另一方面,於曝光部2a中,經由曝光而由光鹼產生劑成份所產生之鹼,因與光阻膜中之酸性化合物成份進行中和反應,因而基材成份對鹼顯影液之溶解性為未有變化,或即使有變化,其變化量亦極微小。如此,曝光部2a與未曝光部2b之間,對鹼顯影液將會產生溶解速度差(溶解反差)(步驟(3);圖1(c))。
其後,以鹼顯影液進行顯影結果。如此,光阻膜2之曝光部2a會殘留,未曝光部2b則被鹼顯影液所溶解去除結果,如圖1(d)所示般,於支撐體1上,形成有由曝光部2a所構成之光阻圖型(步驟(4);圖1(d))。
以下,將對各步驟進行更詳細之說明。
[步驟(1)]
本實施形態中,為將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份,與酸性化合物成份的光阻組成物塗佈於支撐體1上以形成光阻膜2。
該光阻組成物中,酸供應成份,除酸性化合物以外,亦可含有酸產生劑成份(光酸產生劑、熱酸產生劑)。熱酸產生劑、光酸產生劑,可使用任何一種或將兩者合併使用亦可。
該光阻組成物之具體例將於後詳細說明。
支撐體1,並未有特別之限定,其可使用以往公知之物質,例如電子部品用之基板,或於其上形成特定配線圖型者等例示。更具體而言,例如,矽晶圓、銅、鉻、鐵、鋁等金屬製之基板,或玻璃基板等。配線圖型之材料,例如可使用銅、鋁、鎳、金等。
又,支撐體1,可於上述之基板上,設置有無機系及/或有機系之膜者皆可,又以設置有機系之膜者為佳。無機系之膜,例如,無機抗反射膜(無機BARC)等。有機系之膜,例如,有機抗反射膜(有機BARC)或多層光阻法中之下層膜等。特別是,設置有機膜時,於基板上容易形成高長徑比之圖型,而適合使用於半導體之製造等。
其中,多層光阻法係指,於基板上,設置至少一層之有機膜(下層膜),與至少一層之光阻膜,以形成於上層之光阻膜上的光阻圖型作為遮罩,以對下層進行圖形成形(Patterning)之方法,而可形成具有高長徑比之圖型。多層光阻法中,基本而言,可區分為上層之光阻膜與下層膜之二層結構之方法,與於該些光阻膜與下層膜之間設置一層以上之中間層(金屬薄膜等)的三層以上之多層結構之方法。依多層光阻法時,經以下層膜確保所需之厚度,使光 阻膜薄膜化,而形成高長徑比之微細圖型。
無機系之膜,例如,將矽系材料等無機系抗反射膜組成物塗佈於基板上,經燒結(sintering)等而可形成。
有機系之膜,例如,將構成該膜之樹脂成份等溶解於有機溶劑所得之有機膜形成用材料,使用旋轉塗佈器等塗佈於基板上,較佳為於200~300℃,較佳為於30~300秒鐘,更佳為於60~180秒鐘之加熱條件進行燒焙處理之方式予以形成。此時所使用之有機膜形成用材料,並非需如光阻膜般,必須對於光或電子線具有感受性之物質,其可為具有該感受性之物質亦可、不具有者亦可。具體而言,例如可使用半導體元件或液晶表示元件之製造中,一般常使用之光阻或樹脂。
又,使用光阻圖型對有機膜進行蝕刻結果,可將光阻圖型轉印於有機膜,而可形成有機膜圖型,有機膜形成用材料,以可形成適合蝕刻,特別是乾蝕刻之有機膜的材料為佳。其中又以可形成適合氧電漿蝕刻等蝕刻的有機膜材料為佳。該些有機膜形成用材料,例如,以往被使用作為形成有機BARC等有機膜之材料即可。例如,普力瓦科技公司製之ARC系列、羅門哈斯公司製之AR系列、東京應化工業公司製之SWK系列等。
本實施形態中,光阻組成物所含之酸性化合物,於後述之步驟(3)中,經由燒焙(PEB)而具有作為酸之作用。
隨後,該酸(酸性化合物),於光阻膜2之曝光部2a中,則與經由曝光而由光鹼產生劑成份所產生之鹼中和, 未曝光部2b中,則對基材成份進行作用,而增大基材成份對鹼顯影液之溶解性。
此外,光鹼產生劑成份含有(C1)成份(特別是(C1-1-1)成份)時,於曝光前,前述酸(酸性化合物)將不容易受到光鹼產生劑成份之影響而失去活性。
因此,經由步驟(3)之燒焙,可使存在於未曝光部之前述酸(酸性化合物)有效地對基材成份產生作用。
該光阻組成物之詳細內容,與前述本發明之光阻組成物為相同之內容。
將光阻組成物塗佈於支撐體1上,以形成光阻膜2方法,並未有特別之限定,可依以往公知之方法予以形成。
例如,於支撐體1上,使用旋轉塗佈器之旋轉塗佈法、使用條狀塗佈器之條狀塗佈法法等以往公知之方法塗佈光阻組成物以形成塗膜,使其乾燥結果,而可形成光阻膜2。
塗膜之乾燥方法,只要可使塗膜中所含有之有機溶劑(光阻溶劑)揮發之方法即可,例如,預燒焙(PAB)之方法、置於冷卻板(cooling plate)上等使其於常溫下乾燥之方法等。
本發明中,「預燒焙」係指,將光阻組成物塗佈於支撐體上之後、至進行曝光為止之間所進行之以熱板等進行70℃以上之加熱處理之意。
預燒焙溫度,以80~150℃為佳,以80~100℃為更佳。
預燒焙時間,以40~120秒鐘為佳,以60~90秒鐘為更佳。
上述之中,於進行預燒焙時,即使光阻膜厚度設定為厚膜之情形,也容易使有機溶劑易於揮發。另一方面,光阻組成物之乾燥為於常溫下進行,而不進行預燒焙處理時,可縮減光阻圖型形成之步驟數,且,可提高所得光阻圖型之解析性。
有關需否進行預燒焙,可依所使用之光阻組成物之材料,或所形成之圖型標靶等,配合上述所述優點等,而作適當之決定即可。
步驟(1)所形成之光阻膜2之厚度,較佳為50~500nm,更佳為50~450nm。於此範圍內時,可以高解析度形成光阻圖型,對蝕刻可得到充分之耐性等效果。
又,於不進行預燒焙之情形,步驟(1)所形成之光阻膜2之膜厚,以300nm以下為佳,以200nm以下為較佳,以50~150nm以下為特佳。光阻膜2之膜厚為300nm以下時,即使不進行預燒焙,經於常溫下使用旋轉塗佈等塗佈方法,不易殘留有機溶劑且容易乾燥,而可提高光阻膜2之膜厚均勻性(支撐體1面內均勻性)。
此不進行預燒焙情形所產生之效果,於形成薄膜之光阻膜時將更為顯著。
[步驟(2)]
本實施形態中,為將前述步驟(1)所形成之光阻膜2,介由光遮罩3進行選擇性曝光。
如此,經由曝光而於曝光部2a中由光鹼產生劑成份產生鹼。
又,光阻組成物中,酸供應成份,除酸性化合物成份以外,只要含有光酸產生劑成份之情形,於曝光部2a中,該光酸產生劑成份將會產生酸。
曝光量,只要為可使光鹼產生劑成份產生可與存在於曝光部2a中之酸形成中和之必要之鹼量的程度即可。
曝光所使用之波長,並未有特別之限定,其可使用KrF準分子雷射、ArF準分子雷射、F2準分子雷射、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等輻射線進行。就容易形成微細之光阻圖型之觀點,以ArF準分子雷射、EUV,或EB為佳,以ArF準分子雷射為特佳。
光遮罩3,並未有特別之限定,其可利用公知之物,例如,可使用遮光部之穿透率為0%之二進制遮罩(Binary mask)(Binary-Mask),或遮光部之穿透率為6%之半色調(Halftone)型相位位移遮罩(HT-Mask)。又,亦可使用半色調(Halftone)型相位位移遮罩選擇性地形成未曝光部亦可。
二進制遮罩(Binary mask),一般為使用於石英玻璃基板上,形成作為遮光部之鉻膜、氧化鉻膜等物。
相位位移遮罩設置有使可使光之相位產生變化之部份(位移裝置(Shifter))的光遮罩。因此,使用相位位移遮罩時,可抑制射入未曝光部之光線,而使未曝光部與曝光部 之間對對鹼顯影液之溶解反差提高。相位位移遮罩,除半色調(Halftone)型相位位移遮罩以外,又例如萊斯恩(Levenson)型相位位移遮罩等。該些相位位移遮罩可利用各種市售之產品。
半色調(Halftone)型相位位移遮罩,具體而言,一般為於石英玻璃基板上,形成有穿透率為數~10%程度(一般為6%)之遮光部(位移裝置(Shifter)膜)等之MoSi(Molybdenum.Silicided)膜、鉻膜、氧化鉻膜、酸氮化矽膜等之膜等。
又,本實施形態中,雖為介由光遮罩3進行曝光,但本發明並不僅限定於此,亦可為不使用光遮罩之曝光,例如,使用EB等描繪方式進行選擇性曝光亦可。
光阻膜2之曝光,可於空氣或氮氣等惰性氣體中進行之一般曝光(乾式曝光)方式進行亦可、介由浸潤介質之曝光(浸潤式曝光)之方式進行亦可。
其中,本步驟(2),就可形成更高解析性之光阻圖型之觀點,以介由浸潤介質進行曝光之步驟為佳。
浸潤式曝光,係如上述般,於曝光時,在以往充滿空氣或氮氣等惰性氣體之透鏡與支撐體1上之光阻膜2之間的部份,充滿具有折射率較空氣之折射率為大之溶劑(浸潤介質)的狀態下進行曝光。
更具體而言,浸潤式曝光為,於依上述方法所得之光阻膜2與曝光裝置之最下位置的透鏡之間,使其充滿折射率較空氣之折射率為更大之溶劑(浸潤介質),並於該狀態 下,介由所期待之光遮罩3進行曝光(浸潤曝光)之方式而可實施。
浸潤介質,以具有較空氣之折射率為大,且較該浸潤曝光進行曝光之光阻膜2所具有之折射率為小之折射率的溶劑為佳。該溶劑之折射率,只要為前述範圍內時,並未有特別之限制。
具有較空氣之折射率為大,且較光阻膜2之折射率為小之折射率的溶劑,例如,水、氟系惰性液體、矽系溶劑、烴系溶劑等。
氟系惰性液體之具體例,例如,以C3HCl2F5、C4F9OCH3、C4F9OC2H5、C5H3F7等氟系化合物為主成份之液體等,又以沸點為70~180℃者為佳,以80~160℃者為佳。氟系惰性液體為具有上述範圍之沸點之液體時,於曝光結束後,浸潤用之介質可以簡便之方法去除,而為較佳。
氟系惰性液體,特別是以烷基之全部氫原子被氟原子所取代之全氟烷基化合物為佳。全氟烷基化合物,具體而言,可例如全氟烷基醚化合物或全氟烷胺化合物等。
更具體而言,前述全氟烷基醚化合物,可例如全氟(2-丁基-四氫呋喃)(沸點102℃),前述全氟烷胺化合物,可例如全氟三丁胺(沸點174℃)。
本步驟(2)中,為以介由光遮罩3對光阻膜2進行第一曝光、形成第一線路與空間圖型之潛像後,介由光遮罩3進行第二曝光,以使前述第一線路與空間圖型之潛像形 成交差之方式,形成第二之線路與空間之圖型的潛像之操作(雙重曝光法)等方式進行。
「潛像」係指,輻射線透過光遮罩之透過部而照射到光阻膜上之區域(曝光部)之意。
進行上述之操作時,可於光阻膜2上,形成第一線路與空間之圖型的線路狀潛像與第二線路與空間之圖型的線路狀潛像形成交差格子狀之潛像。對該光阻膜2,進行後述之步驟(3)、步驟(4)之操作時,可溶解去除未形成潛像之區域(未曝光部),另一方面,曝光部則未被去除而形成殘膜,其結果,可形成微細且密集之孔穴圖型。
[步驟(3)]
本步驟中,為對前述步驟(2)所曝光之光阻膜,進行曝光後燒焙(PEB)。
進行PEB時,於光阻膜2全體中,為受到添加於光阻組成物中之酸性化合物產生酸之作用,於未曝光部2b中,經由酸性化合物成份之作用,而增大基材成份對對鹼顯影液之溶解性。另一方面,於曝光部2a中,因經由曝光而由光鹼產生劑成份所產生之鹼,與酸性化合物成份等進行中和反應,而降低對基材成份作用之酸,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,曝光部2a與未曝光部2b對鹼顯影液會產生溶解速度差(溶解反差)。
光阻組成物中,酸供應成份,除酸性化合物成份以外,於含有熱酸產生劑成份之情形,於本步驟中,經由 PEB而使該熱酸產生劑成份對光阻膜2全體產生酸。該酸,於曝光部中,與前述內容相同般,經由光鹼產生劑成份所產生之鹼而被中和,故即使有變化,其變化量亦極微小。如此,曝光部2a與未曝光部2b對鹼顯影液會產生溶解速度差(溶解反差)。
經產生此溶解反差,於隨後之步驟(4)進行鹼顯影之際,可形成高解析性之負型光阻圖型。
因此,於本發明之第三態樣中,上述PEB為於100℃以下進行之方式,與PEB溫度為超過100℃之情形相比較時,可使感度向上提升。又,亦可提高解析性。提高解析性,推測應為光阻膜中之酸的擴散被抑制至適度之範圍所得之效果。
本發明之第二態樣中之光阻圖型之形成方法中,其燒焙溫度條件較佳為50~200℃左右,更佳為80~150℃左右、最佳為90~130℃左右;燒焙時間較佳為於10~300秒鐘,更佳為40~120秒鐘、最佳為60~90秒鐘進行者為佳。
本發明之第三態樣中之光阻圖型之形成方法中,PEB溫度以60~100℃為佳,以70~100℃為更佳。PEB於60℃以上進行時,可充分進行去保護,而使圖型粗糙度特別良好。
本發明之第三態樣中之光阻圖型之形成方法中,PEB時間,並未有特別限定,以10~300秒鐘為佳,以40~120秒鐘為較佳,以60~90秒鐘為更佳。
又,本步驟(3)中之燒焙,並非必須控制於前述中和反應開始之前。
[步驟(4)]
本實施形態中,為於前述步驟(3)後,經進行鹼顯影結果,使光阻膜2之未曝光部2b被溶解去除,使曝光部2a形成殘膜,而形成負型光阻圖型。
鹼顯影液,具體而言,可使用氫氧化鈉、氫氧化鉀、碳酸鈉、矽酸鈉、甲矽酸鈉、氨水等無機鹼類;乙胺、n-丙胺等一級胺類;二乙胺、二-n-丁胺等二級胺類;三乙胺、甲基二乙胺等三級胺類;二甲基乙醇胺、三乙醇胺等醇胺類;氫氧化四甲基銨、氫氧化四乙基銨等四級銨鹽;吡咯、哌啶等環狀胺類等鹼性水溶液。
其中,鹼顯影液,又以含有由一級胺類、二級胺類、三級胺類及四級銨鹽所成群所選出之至少1種類之鹼性水溶液為佳,該些之中又以使用氫氧化四甲基銨(TMAH)之水溶液為特佳。
此外,亦可使用於上述鹼性水溶液中添加適當量之醇類、界面活性劑所得之溶液。
鹼顯影液之鹼濃度(顯影液中之無機鹼、四級銨鹽或胺化合物之濃度,以顯影液之全質量為基準),通常0.01~20質量%。
鹼顯影處理,可使用公知之方法實施。
上述鹼顯影之後,亦可使用純水等進行洗滌處理。
又,上述鹼顯影之後,可再進行燒焙(後燒焙;Post Bake)。後燒焙(以去除鹼顯影或洗滌處理後之水分為目的所進行之處理)通常於100℃左右之條件下進行,燒焙時間,較佳為30~90秒鐘。
上述第一實施形態中,一般為使用含有作為酸供應成份之酸性化合物所得之光阻組成物,但亦可使用含有以酸產生劑成份(熱酸產生劑、光酸產生劑等)替代酸性化合物,或同時含有酸產生劑成份與酸性化合物之光阻組成物。又,於施以上述PEB等燒焙處理之時,為提高酸之濃度等目的,可將酸性化合物及酸產生劑成份中之至少一種以上與酸增殖劑成份併用。
該酸產生劑成份,可使用經由加熱產生酸者(熱酸產生劑)、經由曝光而產生酸者(光酸產生劑)之一者,或兩者。
使用含有熱酸產生劑作為酸產生劑成份的光阻組成物之情形,經由上述步驟(3)之燒焙(PEB),於光阻膜2全體中,熱酸產生劑會產生酸。隨後,於光阻膜2之未曝光部2b中,受到經由該燒焙(PEB)而由熱酸產生劑所產生之酸之作用,而使基材成份增大對鹼顯影液之溶解性。另一方面,於光阻膜2之曝光部2a中,經由該燒焙(PEB)而由熱酸產生劑產生之酸,與於上述步驟(2)中之經由曝光而由光鹼產生劑成份所產生之鹼進行中和反應,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,曝光部2a與未曝光部2b對鹼顯影液會產生溶解速度差(溶解反差)。
使用含有熱酸產生劑之光阻組成物之情形,如前所述,以不進行預燒焙者為佳。因未進行預燒焙,故於將該光阻組成物塗佈於支撐體之後至曝光為止之間,由熱酸產生劑所產生之酸不會對基材成份產生作用,而使光阻膜2之曝光部2a與未曝光部2b之反差提升,而容易形成具有高解析性之負型光阻圖型。
又,經由適當選擇光遮罩、基材成份、光鹼產生劑成份等種類,而可將光酸產生劑作為酸產生劑成份使用。例如,使用含有具有較長相對性擴散長度的光酸產生劑,與具有較短相對性擴散長度的光鹼產生劑的光阻組成物,使用具有穿透性之光遮罩(半色調(Halftone)型相位位移遮罩等)作為光遮罩之實施形態等。酸或鹼之擴散長度,於酸中,可調整光酸產生劑中之陰離子部的骨架或極性等,於鹼中,可以調整光鹼產生劑中之光分解後的鹼之分子量或骨架等方式予以調整。
該實施形態中,經由上述步驟(2)之曝光,於曝光部2a中,光鹼產生劑成份會產生鹼,與光酸產生劑會產生酸。隨後,於未曝光部2b中,經由上述步驟(3)之燒焙,受到由曝光部2a所產生而擴散至未曝光部2b為止之酸的作用,使基材成份之保護基解離(進行脫保護反應),而使基材成份增大對鹼顯影液之溶解性。另一方面,於曝光部2a中,步驟(2)所產生之鹼與酸進行中和反應,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,曝光部2a與未曝光部2b對鹼顯影液 會產生溶解速度差(溶解反差)。
<第二實施形態>
圖2為,本發明之光阻圖型之形成方法之其他實施形態之例示。該實施形態中,為使用含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份,與經由曝光而產生鹼之光鹼產生劑成份的光阻組成物,及含有酸性化合物成份之有機膜形成用組成物。
首先,如圖2(a)所示般,為將該光阻組成物塗佈於支撐體1上以形成光阻膜2’(步驟(1);圖2(a))。
其次,將光阻膜2’依圖2(b)所示般,可介由形成特定圖型之光遮罩3進行曝光。如此,光阻膜2’之中,受到曝光之區域(曝光部),經由曝光而由光鹼產生劑成份產生鹼(步驟(2);圖2(b))。
曝光之後,將前述有機膜形成用組成物塗佈於光阻膜2’上(步驟(5);圖2(c))。
隨後,進行燒焙(PEB)。如此,於形成有機膜4之同時,經由有機膜4所含之酸性化合物由有機膜4向光阻膜2’之擴散,而將酸供應於光阻膜2’。隨後,於光阻膜2’之曝光部2’c中,經由曝光而由光鹼產生劑成份所產生之鹼,與由有機膜4所供應之酸產生中和。因此,基材成份對鹼顯影液之溶解性為未有變化,或即使有變化,其變化量亦極微小。另一方面,未曝光部2’d中,經由有機膜4所供應之酸的作用,而增大基材成份對對鹼顯影液之溶解 性。如此,曝光部2’c與未曝光部2’d之間對鹼顯影液將會產生溶解速度差(溶解反差)(步驟(3);圖2(d))。第三態樣之光阻圖型之形成方法中,燒焙(PEB)為於100℃進行。
其後,以鹼顯影液進行顯影結果。如此,光阻膜2’之曝光部2’c殘留,而未曝光部2’d則被鹼顯影液所溶解去除,其結果,如圖2(e)所示般,於支撐體1上,形成隔離配置之由複數之光阻圖型2c所構成之光阻圖型(步驟(4);圖2(e))。
[步驟(1)、步驟(2)]
本實施形態中之步驟(1)、步驟(2),可分別依上述第一實施形態中之步驟(1)、步驟(2)相同操作之方式予以實施。但,本實施形態中所使用之光阻組成物,亦可不含有酸性化合物成份。
[步驟(5)]
本實施形態中,於步驟(2)之後,為使用旋轉塗佈器等,依以往公知之方法將含有酸供應成份之有機膜形成用組成物塗佈於光阻膜2’上。如此,可於後述之步驟(3)為更前段之步驟中,將有機膜形成用組成物塗佈於光阻膜2’上,使其與酸供應成份接觸之方式,可經由步驟(3)之燒焙,而將酸供應於光阻膜2’中。
又,本實施形態中,為使用含有酸性化合物成份之有機膜形成用組成物,但可使用含有酸產生劑成份之有機膜形成用組成物代替酸性化合物成份,或與酸性化合物成份共同使用亦可。但,使用光酸產生劑成份作為酸產生劑成 份之情形,步驟(5)為於步驟(1)與步驟(2)之間進行。如此,於步驟(2)之曝光時,光酸產生劑成份會產生酸,該酸經由步驟(3)之燒焙而供應於光阻膜2’。
該有機膜形成用組成物中,酸供應成份,除酸性化合物以外,亦可含有酸產生劑成份(光酸產生劑、熱酸產生劑)。熱酸產生劑、光酸產生劑,可使用任何一種或將兩者合併使用亦可。
該有機膜形成用組成物之具體例將於後詳細說明。
有機膜形成用組成物之塗佈條件,可配合所欲形成之有機膜4的厚度(膜厚)進行設定。
有機膜4之厚度,可配合添加於有機膜形成用組成物之酸供應成份之種類,或浸潤式曝光等製程條件等作適當設定即可,較佳為10~300nm,更佳為20~200nm,更佳為30~150nm。於此範圍內時,可將充分量之酸供應於光阻膜2’,而容易形成高解析性之光阻圖型。
[步驟(3)]
本實施形態中,前述步驟(5)之後,燒焙(Post Exposure Bake(PEB))為於100℃以下進行。
本實施形態中之步驟(3),可以與上述第一實施形態中之步驟(3)為相同操作之方式而可實施。
進行PEB時,除於光阻膜2’上形成有機膜4的同時,經由將有機膜4所含之酸性化合物成份由有機膜4向光阻膜2’擴散之方式,將酸供應於光阻膜2’中。隨後,於光阻膜2’之未曝光部2’d中,經由有機膜4所供應之酸 的作用,而增大基材成份對對鹼顯影液之溶解性。另一方面,曝光部2’c中,則因經由曝光而由光鹼產生劑成份所產生之鹼,與有機膜4所供應之酸進行中和反應,而降低對基材成份作用之酸,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,曝光部2’c與未曝光部2’d之間對鹼顯影液將會產生溶解速度差(溶解反差)。
有機膜形成用組成物,其酸供應成份,除酸性化合物成份以外,也含有光酸產生劑成份,故於進行步驟(2)前之步驟(5)之情形,經由步驟(2)之曝光,而由該光酸產生劑成份產生酸。該酸,與前述酸性化合物成份相同般,於步驟(3)中,供應於光阻膜2’中,曝光部,經由光鹼產生劑成份所產生之鹼而中和,或經由PEB而由曝光部2c’擴散至未曝光部2d’,對基材成份進行作用,而增大該基材成份對鹼顯影液之溶解性。
光阻組成物中,酸供應成份,除酸性化合物成份以外,於含有熱酸產生劑成份之情形,於本步驟中,經由PEB而由該熱酸產生劑成份產生酸。該酸,與前述酸性化合物成份相同般,於步驟(3)中,供應於光阻膜2’中,曝光部,經由光鹼產生劑成份所產生之鹼而中和,或經由PEB而由曝光部2c’擴散至未曝光部2d’,對基材成份進行作用,而增大該基材成份對鹼顯影液之溶解性。
經產生此溶解反差,於隨後之步驟(4)進行鹼顯影之際,可形成高解析性之負型光阻圖型。
又,本步驟(3)中之燒焙,並非必須控制於前述中和反應開始之前。
[步驟(4)]
本實施形態中,於前述步驟(3)後,經進行鹼顯影結果,使光阻膜2’之未曝光部2’d被溶解去除,曝光部2’c形成殘膜而形成負型光阻圖型。
鹼顯影液可使用與上述內容為相同者。
鹼顯影,較佳為使用例如濃度0.1~10質量%之氫氧化四甲基銨(TMAH)水溶液,其可以公知之方法而可實施。
上述鹼顯影之後,亦可使用純水等進行洗滌處理。
又,上述鹼顯影之後,可再進行燒焙(後燒焙;Post Bake)。後燒焙(以去除鹼顯影或洗滌處理後之水分為目的所進行之處理)通常於100℃左右之條件下進行,燒焙時間,較佳為30~90秒鐘。
又,光阻膜2’上所形成之有機膜4,可以選擇形成有機膜4之材料(鹼可溶性樹脂等),以於步驟(4)中經由鹼顯影處理予以溶解去除者為佳。此外,於步驟(3)與步驟(4)之間,亦可使用公知之方法將有機膜4去除。
以上,為以實施形態表示本發明之光阻圖型之形成方法,但本發明並不僅限定於此內容。
例如,上述第一實施形態~第二實施形態中,為使用含有作為酸供應成份之酸性化合物的光阻組成物或有機膜形成用組成物之例示,但也可以使用酸產生劑(熱酸產生 劑、光酸產生劑)替代酸性化合物,或與酸性化合物共同使用。熱酸產生劑、光酸產生劑,可使用任何一種或將兩者合併使用亦可。但,使用光酸產生劑成份作為酸產生劑成份之情形,步驟(5)為於步驟(1)與步驟(2)之間進行。如此,於步驟(2)之曝光時,光酸產生劑成份會產生酸,該酸經由步驟(3)之燒焙而供應於光阻膜2’。又,為進行上述PEB等燒焙處理時,為提高酸之濃度等目的,於使用酸性化合物及/或酸產生劑的同時,亦可併用酸增殖劑成份。
使用含有熱酸產生劑作為酸產生劑成份的光阻組成物之情形,經由上述步驟(3)之燒焙(PEB),於光阻膜2全體中,熱酸產生劑會產生酸。隨後,於光阻膜2之未曝光部2b中,受到經由該燒焙(PEB)而由熱酸產生劑所產生之酸之作用,而使基材成份增大對鹼顯影液之溶解性。另一方面,於光阻膜2之曝光部2a中,經由該燒焙(PEB)而由熱酸產生劑產生之酸,與於上述步驟(2)中之經由曝光而由光鹼產生劑成份所產生之鹼進行中和反應,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,曝光部2a與未曝光部2b對鹼顯影液會產生溶解速度差(溶解反差)。
因此,即使使用熱酸產生劑代替酸性化合物使用之情形,因未進行預燒焙,故於塗佈後至曝光為止之間,由熱酸產生劑所產生之酸不會對基材成份產生作用,而可提高光阻膜2之曝光部2a,與未曝光部2b之反差,而形成具 有高解析性之負型圖型。
又,經由適當選擇光遮罩、基材成份、光鹼產生劑成份等種類,亦可使用光酸產生劑替代酸性化合物使用。
例如,使用含有具有較長相對性擴散長度的光酸產生劑,與具有較短相對性擴散長度的光鹼產生劑的光阻組成物,使用具有穿透性之光遮罩(半色調(Halftone)型相位位移遮罩等)作為光遮罩之實施形態等。酸或鹼之擴散長度,於酸中,可調整光酸產生劑中之陰離子部的骨架或極性等,於鹼中,可以調整光鹼產生劑中之光分解後的鹼之分子量或骨架等方式予以調整。
該實施形態中,經由上述步驟(2)之曝光,於曝光部2a中,光鹼產生劑成份會產生鹼,與光酸產生劑會產生酸。隨後,於未曝光部2b中,經由上述步驟(3)之燒焙,受到由曝光部2a所產生而擴散至未曝光部2b為止之酸的作用,使基材成份之保護基解離(進行脫保護反應),而使基材成份增大對鹼顯影液之溶解性。另一方面,於曝光部2a中,步驟(2)所產生之鹼與酸進行中和反應,使得基材成份對鹼顯影液之溶解性呈無變化,或即使變化其變化量亦極為輕微。如此,可使曝光部2a與未曝光部2b之間產生對鹼顯影液之溶解速度差(溶解反差),而可形成高解析性之負型圖型。
上述第一實施形態之變形例,例如包含於上述之步驟(2)與步驟(3)之間,將含有酸供應成份之有機膜形成用組成物塗佈於光阻膜上以形成有機膜之步驟(5)之方法等。 曝光之後,於光阻膜上塗佈前述有機膜形成用組成物,隨後,經進行燒焙(PEB)處理結果,於光阻膜上形成有機膜的同時,該有機膜中所含之由酸供應成份所產生之酸,會由該有機膜擴散至光阻膜,而將酸再度供應於該光阻膜。
其後,以鹼顯影液進行顯影結果,而形成具有高反差之負型光阻圖型。
步驟(5)之內容,係如第二實施形態所說明之內容。
使用光酸產生劑作為酸供應成份之情形,步驟(5)為設置於步驟(1)與步驟(2)之間。
上述第二實施形態,或第一實施形態之變形例中,例如,為將酸供應於光阻膜2’之目的,可將有機膜形成用組成物塗佈於光阻膜2’上,以形成有機膜4,或,僅進行將酸性之活性洗滌液塗佈於光阻膜2’之操作予以替代之實施形態亦可。酸性之活性洗滌液,例如,使用後述含有(G2)成份之水溶液等即可。
本發明之光阻圖型之形成方法中,如上述般,於形成負型光阻圖型之後,可再將該負型光阻圖型作為遮罩使用,進行對支撐體1之蝕刻。經由該蝕刻將光阻圖型轉印於支撐體1之方式,即可製造半導體裝置等。
蝕刻可利用公知之方法。例如,支撐體1為基板上具有有機膜者之情形,該有機膜之蝕刻以乾蝕刻為佳。特別是就生產效率等觀點,以使用氧電漿蝕刻,或CF4氣體或CHF3氣體之蝕刻為佳,其中又以氧電漿蝕刻為更佳。
基板之蝕刻,以使用鹵素氣體之蝕刻為佳,以使用氟 化碳系氣體之蝕刻為較佳,以使用CF4氣體或CHF3氣體之蝕刻為特佳。
上述依本發明之光阻圖型之形成方法,可於目前為止由作為正型之化學增幅型光阻組成物與鹼顯影液組合所得之顯影製程中,形成高解析性之負型光阻圖型。
因此,依本發明之光阻圖型之形成方法,可以高解析性形成於膜厚方向中,光學強度較弱區域所容易生成之光阻圖型(獨立槽狀圖型、微細且密集之接觸孔穴圖型等)。
又,依本發明之光阻圖型之形成方法,亦可使該光阻圖型高密度化,例如,可使孔穴間之距離為30~50nm左右之方式,以良好之形狀形成各個孔穴極為接近之接觸孔穴圖型。
又,本發明之光阻圖型之形成方法,可使用現有之曝光裝置或現有之化學增幅型光阻組成物而可實施。
此外,本發明之光阻圖型之形成方法,因將步驟(3)中之燒焙(PEB)溫度設定為100℃以下,故也可形成高感度化。
<有機膜形成用組成物>
本發明之光阻圖型之形成方法中,如前述第二實施形態所示般,為將酸供應於光阻膜等目的,可使用含有酸供應成份之有機膜形成用組成物。
有機膜形成用組成物中,除酸供應成份以外,其他成份,例如,可含有樹脂、有機溶劑等。
有機膜形成用組成物中之酸供應成份,例如與前述光阻組成物之說明所列舉之(Z)成份為相同之內容等。
酸供應成份,可單獨使用1種亦可,或將2種以上合併使用亦可。
有機膜形成用組成物為含有酸供應成份與樹脂與有機溶劑之情形,酸供應成份之含量,相對於樹脂100質量份,以0.1~60質量份為佳。酸供應成份為酸性化合物成份之情形,相對於樹脂100質量份,以0.1~50質量份為較佳,以1~20質量份為更佳。酸供應成份為酸產生劑成份之情形,相對於樹脂100質量份,以1~60質量份為較佳,以1~50質量份為更佳。酸供應成份之含量為下限值以上時,可對光阻膜供應充分量之酸,於未曝光部中,可增大對鹼顯影液之溶解性,而使解析性再向上提升。另一方面,酸供應成份之含量為上限值以下時,可使感度變得良好。又,各成份溶解於有機溶劑之際,可得到均勻之溶液,且具有良好之保存安定性。
[樹脂]
樹脂,只要可形成有機膜之成分時,並未有特別之限定,其可利用公知之樹脂。
其中,又以於步驟(4)中,在經由鹼顯影而形成光阻圖型的同時,可去除所形成之有機膜等觀點,以使用鹼可溶性樹脂為佳。
鹼可溶性樹脂,只要為具有鹼可溶性基之樹脂即可,例如,以往公知之線性樹脂(酚醛清漆樹脂)、羥基苯乙烯 系樹脂、丙烯酸(Acryl)系樹脂、多環烯烴系樹脂等。
鹼可溶性基,具體而言,例如,酚性羥基、羧基、氟化醇基、磺酸基、磺醯胺基、磺醯基醯亞胺基、(烷基磺醯基)(烷基羰基)伸甲基、(烷基磺醯基)(烷基羰基)醯亞胺基、雙(烷基羰基)伸甲基、雙(烷基羰基)醯亞胺基、雙(烷基磺醯基)伸甲基、雙(烷基磺醯基)醯亞胺基、三(烷基羰基)伸甲基、三(烷基磺醯基)伸甲基,或具有該些任意之基的基等例示。
鹼可溶性樹脂,舉例而言,例如,可使用具有多環烯烴所衍生之結構單位(以下,該結構單位亦稱為「結構單位(a’1)」)之聚合物(A’)為佳。
結構單位(a’1),以具有下述通式(a’1-0)所表示之基本骨架的結構單位為佳。
[式中,a’為0或1]。
式(a’1-0)中,a’為0或1,於考慮工業上之容易取得性等觀點,以0為佳。
又,本說明書中,「具有通式(a’1-0)所表示之基本骨 架的結構單位」可為,通式(a’1-0)所表示之結構單位(即二環[2.2.1]-2-庚烯(降莰烯)所衍生之結構單位,或四環[4.4.0.12.5.1.7.10]-3-十二烯所衍生之結構單位)亦可,又,其環骨架上具有取代基者亦可。即,包含「具有通式(a’1-0)所表示之基本骨架的結構單位」中,構成該環骨架(二環[2.2.1]-2-庚烷或四環[4.4.0.12.5.1.7.10]-3-十二烷)之碳原子所鍵結之氫原子的一部份或全部,被氫原子以外之原子或取代基所取代之結構單位者。
結構單位(a’1),特別可例如下述之通式(a’1-1)所表示之結構單位。
式(a’1-1)中,a’之任一者皆與上述式(a’1-0)中之a’為相同之內容。
c為1~5之整數,以1~3之整數為佳,以1為最 佳。
b為1~5之整數,以1~3之整數為佳,以1為最佳。
結構單位(a’1),可單獨使用1種亦可,將2種以上組合使用亦可。
聚合物(A’)中之結構單位(a’1)之比例,相對於構成聚合物(A’)之全結構單位之合計,以1莫耳%以上為佳,以1~50莫耳%為佳,以1~45莫耳%為較佳,以5~35莫耳%為更佳。結構單位(a’1)之比例於前述範圍時,可更容易得到特定之鹼溶解性。
衍生結構單位(a’1)之單體,例如,可依美國專利第6420503號公報所揭示之方法予以合成。
又,聚合物(A’),除結構單位(a’1)以外,又如取代基為具有氟化烷基之多環烯烴所衍生之結構單位(以下,該結構單位亦稱「結構單位(a’2)」),具體而言,例如可具有下述通式(a’2-1)所表示之結構單位。
[式中,R27為氟化烷基;a為0或1]。
前述式(a’2-1)中,a為0或1,於考慮工業上之容易取得性等觀點,以0為佳。
前述式(a’2-1)中,R27為氟化烷基,直鏈狀、支鏈狀或環狀之烷基之氫原子的一部份或全部被氟原子所取代之基。
直鏈狀或支鏈狀之烷基,以碳數1~10之烷基為佳,以碳數1~8之烷基為較佳,以碳數1~5之烷基為更佳。該烷基,例如,甲基、乙基、丙基、異丙基、n-丁基、異丁基、戊基、異戊基、新戊基等,又以丙基為特佳。
前述環狀之烷基,以碳數4~12為佳,以碳數5~10為更佳,以碳數6~10為最佳。
上述之中,R27之氟化烷基,又以直鏈狀或支鏈狀之烷基中之1個氫原子被全氟烷基所取代之基(全氟烷基鍵結伸烷基所得之基)為較佳之例示,又以-(CH2)f-CF3、-(CH2)f-C2F5[f=1~3]為較佳,以-CH2-CF3、-CH2-C2F5為特佳。
氟化烷基,特別是以氟化率(相對於氟化烷基中之氫原子與氟原子之合計數,氟原子數之比例(%)),以30~90%者為佳,以50~80%為更佳。氟化率為30%以上時,浸潤式曝光條件下,具有優良之提高有機膜表面之疏水性的效果。又,氟化率為90%以下時,可提高顯影特性。
又,前述式(a’2-1)所表示之結構單位中,構成主鏈之環結構之環上可具有取代基。該取代基例如,碳數1~5 之烷基、氟原子,或氟化烷基等。
聚合物(A’)中含有前述結構單位(a’2)之際,相對於構成聚合物(A’)之全結構單位之合計,結構單位(a’2)以含有5~75莫耳%者為佳,以含有10~70莫耳%者為較佳,以含有15~60莫耳%者為更佳。於上述範圍內時,可提高有機膜表面之疏水性,對鹼顯影液具有優良之溶解速度控制性。
前述式(a’2-1)所表示之衍生結構單位之單體,例如,可使用特開2000-235263號公報所揭示之手法[(甲基)丙烯酸之氟化烷酯,與環戊二烯或二環戊二烯,以公知反應之Diels-Alder反應進行反應之方法]予以合成。
聚合物(A’),可單獨使用一種亦可、將二種以上合併使用亦可。
本發明中,聚合物(A’),特別是具有下述結構單位之組合者為佳。
[式中,b、c,分別與上述為相同之內容。R27’為碳數1~5之氟化烷基]。
c為1~3之整數為佳,以1為最佳。
b為1~3之整數為佳,以1為最佳。
R27’,以-CH2-CF3、-CH2-C2F5為特佳。
聚合物(A’)之質量平均分子量(Mw)(凝膠滲透色層分析儀(GPC)之聚苯乙烯換算基準),並未有特別之限定範圍,一般以1000~50000為佳,以1500~30000為較佳,以2000~20000為最佳。於此範圍內時,作為形成有機膜之樹脂成份使用時,對有機溶劑具有充分之溶解性,除具有良好之鹼顯影特性的同時,亦具有良好之成膜性。
又,聚合物(A’)之分散度(Mw/Mn),並未有特別之限定,以1.0~5.0為佳,以1.0~3.0為較佳,以1.0~2.5為最佳。
聚合物(A’),例如,可將衍生各結構單位之單體,使用偶氮二異丁腈(AIBN)等自由基聚合起始劑,依公知之自由基聚合等方式進行聚合而可製得。
又,具有主鏈環狀型結構單位之情形,聚合物(A’),例如,可依特開2006-291177號公報所記載之方法予以合成。
[有機溶劑]
有機膜形成用組成物所添加之有機溶劑,只要可溶解所使用之各成份,形成均勻之溶液之溶劑即可。例如,其 可由以往作為化學增幅型光阻之溶劑的公知成份中,適當地選擇使用1種或2種以上任意之成份。該有機溶劑,例如,γ-丁內酯等內酯類;丙酮、甲基乙基酮、環己酮、甲基-n-己酮、甲基異己酮、2-庚酮等酮類;乙二醇、二乙二醇、丙二醇、二丙二醇等多元醇類;乙二醇單乙酸酯、二乙二醇單乙酸酯、丙二醇單乙酸酯,或二丙二醇單乙酸酯等具有酯鍵結之化合物、前述多元醇類或前述具有酯鍵結之化合物之單甲醚、單乙基醚、單丙基醚、單丁基醚等單烷基醚或單苯醚等具有醚鍵結之化合物等多元醇類之衍生物[該些之中,又以丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單甲醚(PGME)為佳];二噁烷等環式醚類,或乳酸甲酯、乳酸乙酯(EL)、乙酸甲酯、乙酸乙酯、乙酸丁酯、丙酮酸甲酯、丙酮酸乙酯、甲氧基丙酸甲酯、乙氧基丙酸乙酯等酯類;茴香醚、乙基苄醚、甲苯酚基甲醚、二苯醚、二苄醚、苯乙醚、丁基苯醚、乙基苯、二乙基苯、戊基苯、異丙基苯、甲苯、二甲苯、異丙苯、三甲苯等芳香族系有機溶劑等。
有機膜形成用組成物所添加之有機溶劑亦可使用醇系有機溶劑、氟系有機溶劑、不具有羥基之醚系有機溶劑等。該些有機溶劑,因不易溶解上述光阻組成物所形成之光阻膜,故以有機膜形成用組成物較適合作為有機溶劑使用。
以下所列舉之有機溶劑,任一種皆可單獨使用1種,或將2種以上混合使用亦可。就塗佈性、樹脂成份等 材料之溶解性的觀點,以醇系有機溶劑為佳。
其中,「醇系有機溶劑」係指,脂肪族烴之至少1個氫原子被羥基取代所得之化合物,且常溫、常壓下為液體之化合物。構成前述脂肪族烴主鏈之結構,可為鏈狀結構亦可、環狀結構亦可、該鏈狀結構中具有環狀結構亦可,又,該鏈狀結構中含有醚鍵結者亦可。
「氟系有機溶劑」係指,含有氟原子之化合物,且常溫、常壓下為液體之化合物。
「不具有羥基之醚系有機溶劑」係指,其結構中具有醚鍵結(C-O-C)、不具有羥基,且常溫常壓下為液體之化合物。該不具有羥基之醚系有機溶劑又以羥基以外,也不具有羰基者為佳。
醇系有機溶劑,以一元醇、二元醇、二元醇之衍生物等為佳。
一元醇,依碳數亦有所不同,一般以一級或二級之一元醇為佳,其中又以一級之一元醇為最佳。
此處所稱之一元醇係指,僅由碳及氫所構成之烴化合物的1個氫原子被羥基所取代之化合物之意,並不含2價以上之多元醇之衍生物。該烴化合物,可為鏈狀結構者亦可、具有環狀結構者亦可。
二元醇係指,前述烴化合物之2個氫原子被羥基所取代之化合物之意,其並不含3價以上之多元醇之衍生物。
二元醇之衍生物,例如二元醇之羥基中之1個被取代基(烷氧基、烷氧烷基氧基等)所取代之化合物等。
醇系有機溶劑之沸點以80~160℃為佳,以90~150℃為更佳,以100~135℃時,就塗佈性、保存時之組成的安定性,及加熱溫度之觀點而言為最佳。
該醇系有機溶劑,具體而言,鏈狀結構者例如,丙二醇(PG);1-丁氧基-2-丙醇(BP)、n-己醇、2-庚醇、3-庚醇、1-庚醇、5-甲基-1-己醇、6-甲基-2-庚醇、1-辛醇、2-辛醇、3-辛醇、4-辛醇、2-乙基-1-己醇、2-(2-丁氧基乙氧基)乙醇、n-戊基醇、s-戊基醇、t-戊基醇、異戊基醇、異丁醇(亦稱為異丁基醇或2-甲基-1-丙醇)、異丙基醇、2-乙基丁醇、新戊基醇、n-丁醇、s-丁醇、t-丁醇、1-丙醇、2-甲基-1-丁醇、2-甲基-2-丁醇、4-甲基-2-戊醇等。
又,具有環狀結構者例如,環戊烷甲醇、1-環戊基乙醇、環己醇、環己烷甲醇(CM)、環己烷乙醇、1,2,3,6-四氫苄醇、exo-降莰醇、2-甲基環己醇、環庚醇、3,5-二甲基環己醇、苄醇等。
醇系有機溶劑之中,又以鏈狀結構之一元醇或二元醇之衍生物為佳,以1-丁氧基-2-丙醇(BP);異丁醇(2-甲基-1-丙醇)、4-甲基-2-戊醇、n-丁醇為較佳,以異丁醇(2-甲基-1-丙醇)、1-丁氧基-2-丙醇(BP)為特佳。
氟系有機溶劑,例如,全氟-2-丁基四氫呋喃等。
不具有羥基之醚系有機溶劑,以下述通式(s-1)所表示之化合物為較佳之例示。
R40-O-R41...(s-1)[式中,R40、R41為各自獨立之1價之烴基,R40與R41可鍵結形成環。-O-表示醚鍵結]。
前述式中,R40、R41之烴基,例如,烷基、芳基等,又以烷基為佳。其中,又以R40、R41之任一者皆為烷基為佳,以R40與R41同為烷基者為更佳。
R40、R41之各烷基並未有特別限制,例如,碳數1~20之直鏈狀、支鏈狀或環狀之烷基等。該烷基中,其氫原子的一部份或全部可被鹵素原子等所取代亦可、未被取代亦可。
該烷基,就於光阻膜上具有良好之塗佈性等觀點,以碳數1~15為佳,以碳數1~10為更佳。具體而言,以乙基、丙基、異丙基、n-丁基、異丁基、n-戊基、異戊基、環戊基、己基等,又以n-丁基、異戊基為特佳。
可取代前述烷基之氫原子的鹵素原子,以氟原子為佳。
R40、R41之各芳基並未有特別限制,例如,碳數6~12之芳基,且該芳基中,其氫原子的一部份或全部可被烷基、烷氧基、鹵素原子等所取代亦可、未被取代亦可。
該芳基,就可廉價合成等觀點,以碳數6~10之芳基為佳。具體而言,例如,苯基、苄基、萘基等。
可取代前述芳基之氫原子的烷基,以碳數1~5之烷基為佳,以甲基、乙基、丙基、n-丁基、tert-丁基為更佳。
可取代前述芳基之氫原子的烷氧基,以碳數1~5之烷氧基為佳,以甲氧基、乙氧基為更佳。
可取代前述芳基之氫原子的鹵素原子,例如,氟原子 為佳。
又,上述式中,R40與R41可鍵結形成環。
R40及R41,為各自獨立之直鏈狀或支鏈狀之伸烷基(較佳為碳數1~10之伸烷基),又R40的末端,與R41的末端為鍵結形成環。又,伸烷基之碳原子可被氧原子所取代。
該醚系有機溶劑之具體例,例如,1,8-桉樹腦、四氫呋喃、二噁烷等。
不具有羥基之醚系有機溶劑之沸點(常壓下)以30~300℃為佳,以100~200℃為較佳,以140~180℃為更佳。於該溫度範圍之下限值以上時,於塗佈時之旋轉塗佈中,因不易蒸發故可使塗佈斑被抑制,而提高塗佈性。另一方面,於上限值以下時,經由燒焙可將該有機溶劑由有機膜中充分去除,而提高有機膜之形成性。又,於該溫度範圍時,可更提升保存時之組成安定性。又,就加熱溫度之觀點而言亦為佳。
不具有羥基之醚系有機溶劑之具體例,例如,1,8-桉樹腦(沸點176℃)、二丁基醚(沸點142℃)、二異戊基醚(沸點171℃)、二噁烷(沸點101℃)、茴香醚(沸點155℃)、乙基苄醚(沸點189℃)、二苯醚(沸點259℃)、二苄醚(沸點297℃)、苯乙醚(沸點170℃)、丁基苯醚、四氫呋喃(沸點66℃)、乙基丙基醚(沸點63℃)、二異丙基醚(沸點69℃)、二己基醚(沸點226℃)、二丙基醚(沸點91℃)等。
不具有羥基之醚系有機溶劑,以環狀或鏈狀之醚系有 機溶劑為佳,其中又以1,8-桉樹腦、二丁基醚及二異戊基醚所成群所選出之至少1種為佳。
有機膜形成用組成物所添加之有機溶劑之使用量,並未有特別之限定,其可依塗佈於光阻膜上之濃度,配合塗佈膜厚度作適當之設定即可。例如,使用含有酸或酸產生劑成份,與樹脂,與有機溶劑之有機膜形成用組成物之情形,有機溶劑之含量,以樹脂濃度達0.2~10質量%之量為佳,以達1~5質量%之量為更佳。
有機膜形成用組成物中,可再配合所期待之目的,適當添加界面活性劑、增感劑、交聯劑、抗暈劑、保存安定化劑、著色劑、可塑劑、消泡劑等。
界面活性劑,例如,非離子界面活性劑、陰離子界面活性劑、陽離子界面活性劑、兩性界面活性劑、矽氧系界面活性劑、聚環氧烷系界面活性劑、含氟界面活性劑等。使用界面活性劑之情形,其含量,相對於樹脂100質量份,以0.01~0.5質量份為佳,較佳為0.02~0.1質量份。
依本發明之光阻圖型之形成方法,於目前為止由作為正型之化學增幅型光阻組成物與鹼顯影液組合所得之顯影製程中,可以高解析性,形成良好形狀之負型圖型。
又,依本發明之光阻圖型之形成方法,於膜厚方向中光學強度較弱之區域中所容易生成之光阻圖型(獨立槽狀圖型、微細且密集之接觸孔穴圖型等)具有良好之解析性。
此外,依本發明之光阻圖型之形成方法,亦可使該光阻圖型高密度化,例如,可使孔穴間之距離為30~50nm左右之方式,以良好之形狀形成各個孔穴極為接近之接觸孔穴圖型。
此外,本發明之光阻圖型之形成方法,亦可使用現有之曝光裝置或現有之設備等予以實施。
本發明之光阻圖型之形成方法中,利用雙重曝光法時,與至少分別重複2次微影蝕刻步驟及圖形成形(Patterning)步驟之方式的重複圖形成形(Patterning)相比較時,可降低其步驟數。
實施例
以下,將以實施例對本發明作更詳細之說明,但本發明並非受該些例示所限定者。
<光阻組成物之製作1> [製造例1A~5A]
將表1所示各成份混合、溶解,以製作光阻組成物A~E。
表1中,[ ]內之數值為添加量(質量份),各簡稱分別具有以下之意義。
(A)-1A:下述化學式(A)-1A所表示之共聚物[Mw=7000、Mw/Mn=1.57。l/m/n=35/45/20(共聚合組成比(莫耳比))]。
(A)-2A:下述化學式(A)-2A所表示之共聚物[Mw=7000、Mw/Mn=1.56。l/m/n/o/p=35/25/20/15/5(共聚合組成比(莫耳比))]。
(A)-3A:下述化學式(A)-3A所表示之共聚物[Mw=10000、Mw/Mn=1.61。l/m/n=40/40/20(共聚合組成比(莫耳比))]。
(A)-4A:下述化學式(A)-4A所表示之共聚物[Mw=7000、Mw/Mn=1.87。l/m/n=40/40/20(共聚合組成比(莫耳比))]。
(C)-1A~(C)-2A:下述化學式(C)-1A~(C)-2A所表示之化合物。
(G)-1:下述化學式(G)-1所表示之化合物(pKa= -11.55)。
(G)-2:下述化學式(G)-2所表示之化合物(陽離子pKa=5.7、陰離子pKa=-3.36)。
(G)-3:下述化學式(G)-3所表示之化合物(陽離子pKa=5.7、陰離子pKa=-11.55)
(D)-1:七氟丁胺(CF3CF2CF2CH2NH2、沸點=69℃、pKa=5.6)。
(F)-1:下述化學式(F)-1所表示之化合物[Mw=24000、Mw/Mn=1.38。1=100(聚合組成比(莫耳比))]。
(S)-1:PGMEA/PGME=6/4(質量比)之混合溶劑。
(S)-2:PGMEA/PGME/環己酮=45/30/25(質量比)。
[實施例1A~9A、比較例1A~10A] <光阻圖型之形成1> (步驟(1))
將有機系抗反射膜組成物「ARC29」(商品名、普力瓦科技公司製),使用旋轉塗佈器塗佈於8英吋之矽晶圓 上,於熱板上,進行205℃、60秒鐘之燒結(sintering)、乾燥結果,形成膜厚79nm之有機系抗反射膜。
其次,將前述所製得之光阻組成物A~E分別使用旋轉塗佈器塗佈於其上,依表2所示溫度進行60秒鐘之預燒焙(PAB),經乾燥結果,形成膜厚100nm之光阻膜。又,PAB溫度為23℃,係指於冷卻板(cooling plate)上僅靜置60秒鐘,而未進行實質的燒焙之意。
(步驟(2))
其次,對該光阻膜,使用ArF曝光裝置NSR-S302(Nikon公司製;NA(開口數)=0.60、2/3Annular),介由以空間寬140nm、間距280nm之空間與線路(SL)圖型作為標靶之光遮罩(半色調(Halftone)),照射ArF準分子雷射(193nm)。
(步驟(3))
其次,依表2所示溫度進行60秒鐘之曝光後加熱(PEB)處理。
(步驟(4))
其次,於23℃下,使用2.38質量%氫氧化四甲基銨(TMAH)水溶液「NMD-3」(商品名、東京應化工業公司製)進行30秒鐘之鹼顯影。
其結果得知,實施例1A~9A、比較例1A~5A中,於前述光阻膜上,形成空間寬140nm、間距280nm之SL圖型。另一方面,比較例6A~10A則未產生SL圖型之解像。
<感度評估>
求取形成前述空間寬140nm、間距280nm之SL圖型的最佳曝光量Eop(mJ/cm2)。其結果以「感度」標示於表2中。
<解析性評估>
使用掃瞄型電子顯微鏡S-9380(日立高科技公司製),求取於前述Eop中所形成之SL圖型的臨界解析度(nm)。其結果以「解析性」標示於表2中。
如上述結果所示般,PEB溫度為100℃以下之實施例 1A~9A中,可形成高解析性之負型圖型,此外,形成該負型圖型之際的感度也為50mJ/cm2以下之優良結果。另一方面,PEB溫度為110℃之比較例1A~5A,與實施例1A~9A相比較時,其感度較低,PEB溫度為120℃之比較例6A~10A,其負型圖型則未產生解像。
<光阻組成物之製作2> (實施例1B~7B、比較例1B~3B)
將表3所示各成份混合、溶解,以製作光阻組成物。
表3中,[ ]內之數值為添加量(質量份),各簡稱分別具有以下之意義。
(A)-1B:下述化學式(A1-1)所表示之共聚物。Mw7000,Mw/Mn1.56。該化學式中,結構單位( )之右下數值為表示該結構單位之比例(莫耳%)。
(C)-1B~(C)-10B:下述化學式(C)-1B~(C)-10B所分別表示之化合物。
(G)-3:下述化學式(G)-3所表示之化合物。
(D)-1:七氟丁胺(CF3CF2CF2CH2NH2、沸點=69℃、 pKa=5.6)。
(F)-1:下述化學式(F)-1所表示之聚合物。Mw24000,Mw/Mn1.38。該化學式中,結構單位( )之右下數值為表示該結構單位之比例(莫耳%)。
(S)-1:丙二醇單甲醚乙酸酯/丙二醇單甲醚=6/4(質量比)之混合溶劑。
<光阻圖型形成2> .步驟(1)
將有機系抗反射膜組成物「ARC29」(商品名、普力瓦科技公司製),使用旋轉塗佈器塗佈於8英吋之矽晶圓上,於熱板上,進行205℃、60秒鐘之燒結(sintering)、乾燥結果,形成膜厚79nm之有機系抗反射膜。
其次,將各例之光阻組成物分別旋轉塗佈於該有機系 抗反射膜上,形成膜厚100nm之光阻膜。
.步驟(2)
其次,前述所形成之光阻膜於不進行預燒焙(PAB)下,於23℃,於冷卻板(cooling plate)上靜置60秒鐘後,對該光阻膜,使用ArF曝光裝置NSR-S302(Nikon公司製;NA(開口數)=0.60、2/3Annular),介由以空間寬140nm、間距280nm之SL圖型作為標靶之光遮罩(6%半色調(Halftone)),照射ArF準分子雷射(193nm)。
.步驟(3)
其次,進行90℃、60秒鐘之燒焙(曝光後加熱,PEB)處理。
.步驟(4)
隨後,於23℃,使用2.38質量%氫氧化四甲基銨(TMAH)水溶液「NMD-3」(商品名、東京應化工業公司製)進行30秒鐘之鹼顯影。
[感度之評估]
求取形成前述空間寬140nm、間距280nm之SL圖型的最佳曝光量Eop(mJ/cm2)。其結果標記如表4所示。
[解析性之評估]
依下述之評估基準,評估空間寬140nm、間距280nm之SL圖型作為標靶尺寸以形成上述光阻圖型製程中之解析性。其結果標記如表4所示。
(評估基準)
○:光阻膜之未曝光部被溶解去除、得到高反差之圖像,形成高解析性之LS圖型。
△:光阻圖型上發現所形成物質之殘膜,解析性不佳。
×:未產生解像。
[光阻圖型形狀之評估]
使用掃瞄型電子顯微鏡(商品名:SU-8000、日立高科技公司製),觀察於前述[解析性之評估]中所形成之圖型的截面形狀,以下述之評估基準評估其形狀。其結果標記如表4所示。
(評估基準)
○:高度矩形性、良好。
△:略呈T-top形狀。
×:頂部形狀為圓形。
<有無殘膜之之評估>
於前述<光阻圖型形成2>中,除於步驟(1)中形成膜厚100nm之光阻膜、步驟(2)中不實施ArF準分子雷射(193nm)照射以外,其他皆與前述<光阻圖型形成2>相同,進行步驟(1)~(4)之操作,依下述評估基準評估存在 支撐體上之光阻膜「有無殘膜」。其結果標記如表4所示。
(評估基準)
○:無殘膜。
×:有殘膜。
<(C)成份之光吸收性之評估>
光鹼產生劑成份之光吸收性,依下述順序進行評估。
順序(1):將上述之實施例或比較例之光阻組成物,及,上述之實施例或比較例之光阻組成物中未添加(C)成份之光阻組成物,使用旋轉塗佈器分別塗佈於8英吋之矽晶圓上,以形成光阻膜。
順序(2):使用分光橢圓偏光計(J.A.Woollam公司製、製品名VUV-VASE VU-302),測定波長193nm中之衰減係數。
順序(3):由該測定結果,計算各實施例及比較例中,(C)成份之有無所產生之衰減係數之差。
將計算後之各例中之值,以實施例1B之值為100%之方式予以換算。其結果以「(C)成份之吸光度」標記於表4之中。
此「(C)成份之吸光度」之值,其數值越大時,表示光阻膜之透明性越低之意。
由表4所示結果得知,實施例1B~7B之光阻組成物,無論任一者皆可以高解析性,且以良好形狀形成負型圖型。
將實施例1B~6B與實施例7B對比時,得知通式(C1-1-1)中之R1、R2之一側具有烷基之(C)成份((C)-1~(C)-6),相較於R1、R2之一側具有苯基之(C)成份((C)-7),其光吸收性被抑制至較低之程度。因此,實施例1B~6B之光阻組成物,與實施例7B之光阻組成物相比較時,其光阻圖型之矩形性更為良好。
實施例7B與比較例2B對比時,由曝光所產生之鹼的特性得知,R1、R2之一側為具有較苯基為更多芳香環數之萘基((C)-9)之情形,因經由曝光所產生之鹼量並不充 份,故比較例2B之光阻組成物中,故光阻圖型無法產生解像。
又,比較例3B之光阻組成物中,其與比較例2B之光阻組成物相同般,因經由曝光所產生之鹼量並不充分,故光阻圖型無法產生解像。如此,(C)成份中,即使為鄰位為包含具有硝基之苯環之情形,因具有其他取代基(比較例3B之情形為2個烷氧基),故經由曝光其會使鹼之發生效率產生變化,而確認無法得到本發明之效果。
使用比較例1B之光阻組成物之情形,確認出光阻膜之殘膜,推測應為曝光前酸性化合物成份((G)-3)部份失去活性,使得解析性降低所造成之結果。
以上為說明本發明之較佳實施例,但本發明並不受該些實施例所限定。於不超出本發明之主旨之範圍,皆可進行構成內容之附加、省略、取代,及其他變更。本發明並不受前述之說明所限定,僅受所附申請專利範圍之限定。
1‧‧‧支撐體
2‧‧‧光阻膜
2a‧‧‧曝光部
2b‧‧‧未曝光部
3‧‧‧光遮罩
2’‧‧‧光阻膜
2’c‧‧‧曝光部
2’d‧‧‧未曝光部
3‧‧‧光遮罩
4‧‧‧有機膜
[圖1]說明本發明之光阻圖型之形成方法的實施形態例之概略步驟圖。
[圖2]說明本發明之光阻圖型之形成方法的實施形態例之概略步驟圖。
1‧‧‧支撐體
2‧‧‧光阻膜
3‧‧‧光遮罩
2a‧‧‧曝光部
2b‧‧‧未曝光部

Claims (6)

  1. 一種光阻組成物,其為包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C),與由酸性化合物及經由加熱產生酸之熱酸產生劑所成群所選出之至少一種酸供應成份之光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與酸供應成份所產生之酸進行中和,於前述光阻膜之未於曝光部中,經由酸供應成份所產生之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的光阻圖型之形成方法中,前述步驟(1)所使用之前述光阻組成物,其特徵為,前述光鹼產生劑成份(C)為,含有下述通式(C1-1-1)所表示之化合物, [式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基;R1與R2可與式中之氮原子共同形成環]。
  2. 一種光阻圖型之形成方法,其特徵為包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光產生鹼,且,含有下述通式(C1-1-1)所表示之化合物的光鹼產生劑成份(C),與由酸性化合物及經由加熱產生酸之熱酸產生劑所成群所選出之至少一種酸供應成份之光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與酸供應成份所產生之酸進行中和,於前述光阻膜之未於曝光部中,經由酸供應成份所產生之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的方法, [式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基;R1與R2可與式中之氮原子共同形成環]。
  3. 一種光阻圖型之形成方法,其為包含將含有經由酸之作用而增大對鹼顯影液之溶解性的基材成份(A),與經由曝光而產生鹼之光鹼產生劑成份(C)之光阻組成物,塗佈於支撐體上以形成光阻膜之步驟(1),與使前述光阻膜曝光之步驟(2),與於前述步驟(2)後進行燒焙,前述光阻膜之於曝光部中,經由前述曝光而由前述光鹼產生劑成份(C)產生之鹼,與預先供應於前述光阻膜之酸進行中和,於前述光阻膜之未於曝光部中,經由預先供應於前述光阻膜之酸的作用,而增大前述基材成份(A)對鹼顯影液之溶解性的步驟(3),與使前述光阻膜進行鹼顯影,將前述光阻膜之未曝光部溶解去除,以形成負型光阻圖型之步驟(4)的光阻圖型之形成方法,其特徵為,前述步驟(3)中之前述燒焙為於100℃以下進行。
  4. 如申請專利範圍第3項之光阻圖型之形成方法,其中,前述步驟(3)中之前述燒焙為於60~100℃間進行。
  5. 如申請專利範圍第3或4項之光阻圖型之形成方法,其中,前述光阻組成物為含有酸供應成份。
  6. 如申請專利範圍第3項之光阻圖型之形成方法, 其中,前述(C)為含有下述通式(C1-1-1)所表示之化合物, [式中,R1、R2為各自獨立之氫原子、可具有取代基之烷基,或可具有取代基之苯基,其中至少任一者為該烷基或該苯基;R1與R2可與式中之氮原子共同形成環]。
TW101134749A 2011-09-22 2012-09-21 光阻組成物,光阻圖型之形成方法 TWI554829B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207773A JP5789461B2 (ja) 2011-09-22 2011-09-22 レジスト組成物、レジストパターン形成方法
JP2011211472A JP5816506B2 (ja) 2011-09-27 2011-09-27 レジスト組成物及びレジストパターン形成方法

Publications (2)

Publication Number Publication Date
TW201329619A TW201329619A (zh) 2013-07-16
TWI554829B true TWI554829B (zh) 2016-10-21

Family

ID=47911639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101134749A TWI554829B (zh) 2011-09-22 2012-09-21 光阻組成物,光阻圖型之形成方法

Country Status (3)

Country Link
US (1) US9377685B2 (zh)
KR (1) KR101936435B1 (zh)
TW (1) TWI554829B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061333B2 (en) 2017-11-13 2021-07-13 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacturing method of semiconductor device and semiconductor processing system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898985B2 (ja) 2011-05-11 2016-04-06 東京応化工業株式会社 レジストパターン形成方法
US8968990B2 (en) 2011-09-15 2015-03-03 Tokyo Ohka Kogyo Co., Ltd. Method of forming resist pattern
TWI575319B (zh) 2011-09-22 2017-03-21 東京應化工業股份有限公司 光阻組成物及光阻圖型之形成方法
JP5933364B2 (ja) 2011-11-09 2016-06-08 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP5820719B2 (ja) 2011-12-21 2015-11-24 東京応化工業株式会社 レジストパターン形成方法
JP5898962B2 (ja) * 2012-01-11 2016-04-06 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP6809843B2 (ja) * 2015-08-20 2021-01-06 国立大学法人大阪大学 パターン形成方法
US10429738B2 (en) * 2015-09-30 2019-10-01 Tokyo Ohka Kogyo Co., Ltd. Filtration filter, filtration method, production method of purified liquid chemical product for lithography, and method of forming resist pattern
US11054742B2 (en) * 2018-06-15 2021-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. EUV metallic resist performance enhancement via additives
JP2021182042A (ja) * 2020-05-18 2021-11-25 東京応化工業株式会社 化学増幅型感光性組成物、感光性ドライフィルム、パターン化されたレジスト膜の製造方法、めっき造形物の製造方法、化合物、及び化合物の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091812A1 (en) * 2009-10-16 2011-04-21 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650261A (en) * 1989-10-27 1997-07-22 Rohm And Haas Company Positive acting photoresist comprising a photoacid, a photobase and a film forming acid-hardening resin system
JPH0555102A (ja) 1991-08-26 1993-03-05 Fujitsu Ltd 半導体装置の製造方法
JP3281053B2 (ja) 1991-12-09 2002-05-13 株式会社東芝 パターン形成方法
DE69324942T2 (de) 1992-02-14 1999-10-07 Shipley Co Strahlungsempfindliche Zusammensetzungen und Verfahren
JPH06186754A (ja) 1992-12-17 1994-07-08 Mitsubishi Electric Corp 微細レジストパターンの形成方法
JPH06194847A (ja) 1992-12-22 1994-07-15 Tokuyama Sekiyu Kagaku Kk ネガ型フォトレジスト用現像液
JPH07253676A (ja) 1994-03-16 1995-10-03 Fujitsu Ltd レジストパターン形成方法
JPH07261393A (ja) * 1994-03-25 1995-10-13 Toshiba Corp ネガ型レジスト組成物
JPH0895246A (ja) 1994-09-29 1996-04-12 Nitto Denko Corp 耐熱性フォトレジスト組成物および感光性基材、ならびにネガパターン形成方法
JP3157692B2 (ja) 1995-02-14 2001-04-16 日東電工株式会社 耐熱性フォトレジスト組成物およびネガ型パターン形成方法
JP3798458B2 (ja) 1996-02-02 2006-07-19 東京応化工業株式会社 オキシムスルホネート化合物及びレジスト用酸発生剤
JP3980124B2 (ja) 1997-07-24 2007-09-26 東京応化工業株式会社 新規ビススルホニルジアゾメタン
JP3865473B2 (ja) 1997-07-24 2007-01-10 東京応化工業株式会社 新規なジアゾメタン化合物
US5945517A (en) 1996-07-24 1999-08-31 Tokyo Ohka Kogyo Co., Ltd. Chemical-sensitization photoresist composition
JP3854689B2 (ja) 1997-07-24 2006-12-06 東京応化工業株式会社 新規な光酸発生剤
JPH1077264A (ja) 1996-09-05 1998-03-24 Shin Etsu Chem Co Ltd N−(2−ニトロベンジルオキシカルボニル)環状アミン類およびその製造方法
JP4023003B2 (ja) * 1998-04-23 2007-12-19 住友化学株式会社 化学増幅型ポジ型フォトレジスト組成物
US6153733A (en) 1998-05-18 2000-11-28 Tokyo Ohka Kogyo Co., Ltd. (Disulfonyl diazomethane compounds)
JP3935267B2 (ja) 1998-05-18 2007-06-20 東京応化工業株式会社 新規なレジスト用酸発生剤
JP4307663B2 (ja) 1998-12-16 2009-08-05 東京応化工業株式会社 ポジ型レジスト組成物およびそれに用いる重合体、並びにレジストパターン形成方法
US6420503B1 (en) 1999-02-05 2002-07-16 Sumitomo Bakelite Co. Ltd. Norbornene sulfonamide polymers
JP2000267298A (ja) 1999-03-12 2000-09-29 Nec Corp 化学増幅系レジストのパターン形成方法
JP2000330270A (ja) 1999-05-24 2000-11-30 Kunihiro Ichimura 塩基増殖剤、塩基増殖剤組成物、塩基反応性組成物及びパターン形成方法
US6653043B1 (en) 1999-11-01 2003-11-25 Kansai Research Institute, Inc. Active particle, photosensitive resin composition, and process for forming pattern
DE19958966A1 (de) 1999-12-07 2001-06-13 Infineon Technologies Ag Erzeugung von Resiststrukturen
JP2001189253A (ja) 1999-12-28 2001-07-10 Mitsubishi Electric Corp レジストパターン形成方法、レジストパターン形成方法に使用する上層材および半導体装置
US6951705B2 (en) 2000-05-05 2005-10-04 E. I. Du Pont De Nemours And Company Polymers for photoresist compositions for microlithography
DE10120676B4 (de) 2001-04-27 2005-06-16 Infineon Technologies Ag Verfahren zur Strukturierung einer Photolackschicht
DE10120673B4 (de) * 2001-04-27 2007-01-25 Infineon Technologies Ag Verfahren zur Strukturierung einer Photolackschicht
DE10120660B8 (de) 2001-04-27 2006-09-28 Infineon Technologies Ag Verfahren zur Strukturierung einer Photolackschicht
JP3895224B2 (ja) 2001-12-03 2007-03-22 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
CN105541659A (zh) 2003-02-19 2016-05-04 西巴特殊化学品控股有限公司 卤代肟衍生物和其作为潜在的酸的用途
US7799883B2 (en) 2005-02-22 2010-09-21 Promerus Llc Norbornene-type polymers, compositions thereof and lithographic process using such compositions
US20070105040A1 (en) 2005-11-10 2007-05-10 Toukhy Medhat A Developable undercoating composition for thick photoresist layers
JP4746979B2 (ja) 2005-12-19 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
TWI475323B (zh) 2006-03-14 2015-03-01 Fujifilm Corp 正型光阻組成物及使用它之圖案形成方法
JP2007279493A (ja) 2006-04-10 2007-10-25 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物およびレジストパターン形成方法
JP2007334036A (ja) 2006-06-15 2007-12-27 Sekisui Chem Co Ltd 感光性樹脂組成物、これを用いた薄膜パターンの製造方法、電子機器用保護膜、トランジスタ、カラーフィルタ、有機el素子、ゲート絶縁膜及び薄膜トランジスタ
JP4355725B2 (ja) 2006-12-25 2009-11-04 信越化学工業株式会社 ポジ型レジスト材料及びパターン形成方法
JP5185538B2 (ja) 2007-01-22 2013-04-17 積水化学工業株式会社 塩基増殖剤及び感光性樹脂組成物
US8877421B2 (en) 2007-03-28 2014-11-04 Fujifilm Corporation Positive resist composition and pattern-forming method
JP5386789B2 (ja) 2007-03-29 2014-01-15 大日本印刷株式会社 光塩基発生剤、感光性樹脂組成物、及びネガ型パターン形成方法
JP2009002999A (ja) 2007-06-19 2009-01-08 Tokyo Ohka Kogyo Co Ltd レジストパターン形成方法、表面改質材料
JP2009025723A (ja) 2007-07-23 2009-02-05 Fujifilm Corp ネガ型現像用レジスト組成物及びこれを用いたパターン形成方法
JP5071803B2 (ja) 2007-09-03 2012-11-14 学校法人東京理科大学 感光性樹脂組成物
US7838200B2 (en) 2007-12-13 2010-11-23 International Business Machines Corporation Photoresist compositions and method for multiple exposures with multiple layer resist systems
US7838198B2 (en) 2007-12-13 2010-11-23 International Business Machines Corporation Photoresist compositions and method for multiple exposures with multiple layer resist systems
US7968276B2 (en) 2008-01-15 2011-06-28 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
JP5398248B2 (ja) 2008-02-06 2014-01-29 東京応化工業株式会社 液浸露光用レジスト組成物およびそれを用いたレジストパターン形成方法
JP4703674B2 (ja) 2008-03-14 2011-06-15 富士フイルム株式会社 レジスト組成物及びそれを用いたパターン形成方法
JP5172494B2 (ja) 2008-06-23 2013-03-27 東京応化工業株式会社 液浸露光用レジスト組成物、レジストパターン形成方法、含フッ素高分子化合物
JP5449909B2 (ja) 2008-08-04 2014-03-19 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法
JP2010040849A (ja) 2008-08-06 2010-02-18 Tokyo Ohka Kogyo Co Ltd レジストパターン形成方法
JP5401086B2 (ja) 2008-10-07 2014-01-29 東京応化工業株式会社 液浸露光用レジスト組成物、レジストパターン形成方法および含フッ素樹脂
JP5115752B2 (ja) * 2008-11-21 2013-01-09 信越化学工業株式会社 パターン形成方法
EP2368875B1 (en) 2008-12-02 2014-09-03 Wako Pure Chemical Industries, Ltd. Photobase generator
JP5398272B2 (ja) 2009-01-09 2014-01-29 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JP4826841B2 (ja) 2009-01-15 2011-11-30 信越化学工業株式会社 パターン形成方法
JP5232675B2 (ja) 2009-01-26 2013-07-10 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法、並びに高分子化合物
JP5238529B2 (ja) 2009-01-26 2013-07-17 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法
JP5244657B2 (ja) * 2009-03-10 2013-07-24 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5573356B2 (ja) 2009-05-26 2014-08-20 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP5386236B2 (ja) 2009-06-01 2014-01-15 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法
JP5500884B2 (ja) 2009-06-25 2014-05-21 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
JP5568258B2 (ja) 2009-07-03 2014-08-06 東京応化工業株式会社 ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素高分子化合物
JP5516195B2 (ja) 2009-08-04 2014-06-11 信越化学工業株式会社 パターン形成方法及びレジスト材料
JP5401218B2 (ja) * 2009-09-03 2014-01-29 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法
JP5446793B2 (ja) 2009-12-04 2014-03-19 大日本印刷株式会社 感光性樹脂組成物、およびこれを用いた物品、及びネガ型パターン形成方法
JP5439154B2 (ja) 2009-12-15 2014-03-12 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法
JP5470053B2 (ja) * 2010-01-05 2014-04-16 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法
JP5681942B2 (ja) 2010-04-15 2015-03-11 学校法人東京理科大学 水系エポキシ樹脂硬化用微粒子及び水系エポキシ樹脂硬化用微粒子の製造方法
KR20120001609A (ko) * 2010-06-29 2012-01-04 후지필름 가부시키가이샤 반도체용 레지스트 조성물, 및 이 조성물을 사용한 레지스트막과 패턴 형성 방법
JP5556451B2 (ja) 2010-07-06 2014-07-23 信越化学工業株式会社 パターン形成方法
US8507191B2 (en) 2011-01-07 2013-08-13 Micron Technology, Inc. Methods of forming a patterned, silicon-enriched developable antireflective material and semiconductor device structures including the same
JP5884521B2 (ja) 2011-02-09 2016-03-15 信越化学工業株式会社 パターン形成方法
JP5898985B2 (ja) * 2011-05-11 2016-04-06 東京応化工業株式会社 レジストパターン形成方法
JP5871591B2 (ja) 2011-11-30 2016-03-01 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP5820719B2 (ja) 2011-12-21 2015-11-24 東京応化工業株式会社 レジストパターン形成方法
JP5851277B2 (ja) 2012-02-23 2016-02-03 東京応化工業株式会社 レジストパターン形成方法
JP6046549B2 (ja) 2013-04-25 2016-12-14 東洋紡Stc株式会社 伸縮性編地

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091812A1 (en) * 2009-10-16 2011-04-21 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061333B2 (en) 2017-11-13 2021-07-13 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacturing method of semiconductor device and semiconductor processing system

Also Published As

Publication number Publication date
US20130078572A1 (en) 2013-03-28
TW201329619A (zh) 2013-07-16
KR101936435B1 (ko) 2019-01-08
KR20130032829A (ko) 2013-04-02
US9377685B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
TWI554829B (zh) 光阻組成物,光阻圖型之形成方法
TWI575319B (zh) 光阻組成物及光阻圖型之形成方法
KR101925154B1 (ko) 레지스트 조성물 및 레지스트 패턴 형성 방법
TWI591428B (zh) 光阻組成物及光阻圖型之形成方法
TWI557507B (zh) 光阻圖型之形成方法
TWI541606B (zh) 抗蝕圖型之形成方法及圖型微細化處理劑
TWI523873B (zh) 光阻圖型之形成方法,及負型顯影用光阻組成物
TW201312277A (zh) 光阻圖型之形成方法
JP5871591B2 (ja) レジスト組成物及びレジストパターン形成方法
TWI575309B (zh) 光阻圖型之形成方法及光阻組成物
TWI554831B (zh) 光阻圖型之形成方法
JP5789460B2 (ja) レジスト組成物及びレジストパターン形成方法
JP5871577B2 (ja) レジストパターン形成方法
TWI554832B (zh) 光阻圖型之形成方法
JP5764478B2 (ja) レジストパターン形成方法
JP5816502B2 (ja) レジスト組成物及びレジストパターン形成方法
JP5789461B2 (ja) レジスト組成物、レジストパターン形成方法
JP5783861B2 (ja) レジストパターン形成方法
JP5816506B2 (ja) レジスト組成物及びレジストパターン形成方法
JP5715917B2 (ja) レジスト組成物、レジストパターン形成方法