TWI274735B - Bulk single crystal production facility employing supercritical ammonia - Google Patents

Bulk single crystal production facility employing supercritical ammonia Download PDF

Info

Publication number
TWI274735B
TWI274735B TW091136024A TW91136024A TWI274735B TW I274735 B TWI274735 B TW I274735B TW 091136024 A TW091136024 A TW 091136024A TW 91136024 A TW91136024 A TW 91136024A TW I274735 B TWI274735 B TW I274735B
Authority
TW
Taiwan
Prior art keywords
region
autoclave
single crystal
crystallization
nitride
Prior art date
Application number
TW091136024A
Other languages
English (en)
Other versions
TW200306945A (en
Inventor
Robert Dwilinski
Roman Doradzinski
Jerzy Garczynski
Leszek P Sierzputowski
Yasuo Kanbara
Original Assignee
Ammono Sp Zoo
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002143449A external-priority patent/JP2003040699A/ja
Application filed by Ammono Sp Zoo, Nichia Corp filed Critical Ammono Sp Zoo
Publication of TW200306945A publication Critical patent/TW200306945A/zh
Application granted granted Critical
Publication of TWI274735B publication Critical patent/TWI274735B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/08Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by cooling of the solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/102Apparatus for forming a platelet shape or a small diameter, elongate, generally cylindrical shape [e.g., whisker, fiber, needle, filament]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

1274735 ⑼
玖、發明說明 (發明說明應敘明:發明所屬之技術區域、先前技術、内容、實施方式及圖式簡單說明) 技術領域 本發明係關於製造氮化物塊狀單晶之生產設備之改良 ,其係藉由超臨界溶液於晶種形成結晶。 先前技術 採用藉由自超臨界氨溶液之再結晶獲得氮化物塊狀單 晶之方法,已見於特願2002-143449。該利用超臨界氨溶液 製得氮化物塊狀單晶之生產設備,係一種具有生成超臨界 溶媒之高壓釜之設備,而該高壓釜不僅具備對流控制設 備,並具備包含加熱裝置及冷卻裝置之爐體。 上述爐體係藉由加熱裝置及/或冷卻裝置,調整於保持 一定溫度梯度。 上述對流控制裝置係以1片或數片之與中心及/或高壓 釜内壁之間有間隙之橫型擋板構成,並在擋板上方形成配 置原料之溶解區域,及在擋板下方形成配置晶種之結晶化 區域。 但是,本發明人等發現,如上構成尚未完善,需再藉由 上述控制裝置之開度及依據上述溶解區域與結晶化區域 之溫差等設定上述溶解區域與上述結晶化區域間之超臨 界溶液之對流速度。 因此本發明人等悉心研究結果發現,為工業上量產氮化 物,其結晶成長速度需為10 //m/h以上,為達成此目標, 氮化物須溶解於含有氨及至少有鹼金屬離子之超臨界溶
1274735 ⑴ 液中,而當由上述溶解區域藉著上述對流控制裝置供給溶 解度為負溫度係數之超臨界溶液時,將溫度提昇至特定溫 度,超臨界溶液溶解度調整對晶種呈過飽和域以防自動結 晶化之濃度以下,方能使氮化物結晶選擇性成長於配置於 高壓釜内之晶種面。 發明内容 本發明之目的為提供一種高壓釜,其為可控制高壓釜内 之對流速度以利氮化物塊狀單晶之成長者。 本發明之另一目的為提供一種高壓釜,其係可抑制來自 高壓釜壁面之雜質混進者。 本發明之另一目的為提供一種高壓釜,其係可達成工業 上有價值之成長速度者。 為達成上述目的,本發明係根據氨驗性(ammono-basic) 結晶成長技術;則在含有可對氨鹼性之一種或多種礦化劑 (mineralizer)之超臨界氣媒中發生化學輸送,由此得氮化物 早晶之成長。 其係具有可生成超臨界溶媒之高壓釜1之設備,且在該 高壓釜設置對流控制裝置2,具備包含加熱裝置5及冷卻裝 置6之爐體4。 該爐體4係藉由加熱裝置5及/或冷卻裝置6調整為保持 特定溫度梯度。 上述對流控制裝置2係由1至數片與中心及/或高壓釜内 壁之間有空隙之橫型擋板1 2構成,擋板上方則形成配置原 料1 6之溶解區域1 3,擋板下方則形成配置晶種1 7之結晶化 1274735 變_趣_: (2) 區域。 而將上述溶解區域1 3與上述結晶化區域1 4之間之超臨 界溶液對流速度,藉由上述控制裝置2之開度及上述溶解 區域1 3與結晶化區域1 4間之溫差設定所構成。
由此提供一種高壓釜,其中為將氮化物溶解於含有氨及 至少有鹼金屬離子之超臨界溶媒中,而其溶解度為負溫度 係數之超臨界溶液,藉著上述對流控制裝置2,由上述溶 解區域1 3供給於配置晶種之結晶化區域1 4,以提昇至特定 溫度,使超臨界溶液溶解度成為對晶種過飽和域,並調整 為不致於產生自動成長之濃度以下,由此使氮化物結晶能 在配置於高壓釜内之晶種面進行選擇性成長。
於上述氨驗性結晶成長技術中,已知超臨界氨液之組成 及濃度、溶解區域與結晶區域之溫差、依溫差控制對流速 度之擋板之位置及面積、氨充填率、晶種與原料之表面積 比率等,對結晶之成長均產生影響,但若根據本發明,由 於可藉由上述控制裝置2及上述溫差,設定上述溶解區域 1 3與上述結晶化區域1 4間之超臨界溶液對流速度,可將結 晶化區域之超臨界溶液之溶解度調整為對晶種成過飽 和,且不致於產生自動結晶化之濃度以下,以利氮化物結 晶在晶種面進行選擇性成長。 此外,由於含鹼金屬離子之超臨界氨溶液具有良好溶解 性,因此若在高壓釜内壁施加由Ag、Mo、Fe或Ta構成之 金屬或合金襯裏,則可抑制來自壁面之雜質摻雜,其效果
1274735 (3) 較佳。
上述對流控制裝置係扮演對溶解區域及結晶化區域賦 予階梯性溫差之角色,儘管其形狀及面積因高壓釜内容積 之大小及内徑與長度之比率而異,以内剖面積之7 0 %至 9 0 %為宜,而擋板之開口率則以3 0 %以下為宜。擋板之位 置應配合成長之結晶量而上下變動,宜設置於高壓釜内部 全長之1/3至2/3部位,並能配合需求調整上述溶解區域與 結晶化區域之比率為宜。設置於上述溶解區域之原料之充 填量,宜在溶解區域之一半以下,若以鎵金屬為原料時, 由於鎵金屬在柑堝内將成為氮化鎵(GaN)而增加體積,其 充填量應為溶解區域之約1 /4。 設置上述對流控制裝置2之區域,若配置冷卻用冷卻裝 置6,則較易在上述溶解區域1 3與結晶化區域1 4之間形成 溫差,同時宜在上述結晶化區域之底部流域配置冷卻用冷 卻裝置1 8,以利於結晶化結束後急速冷卻。
如上構成之高壓爸,可提昇晶種上之成長速度,其最佳 數據為高壓蒼之直徑/全長比率為1/15〜7/15,其剖面積在 上述橫型擋板之開口率為3 0 %以下,而其在晶種上之成長 速度為10 /zm/hr以上。 圖式簡單說明 圖1係於T = 400°C及T = 500°C時,壓力與含氨化鉀(KNH2 : ΝΗ3 = 0.07)之超臨界氨於GaN溶解度之關係圖表。 圖2係本發明中p = const.時,隨著時間經過於高壓釜内產 生之溫度變化及溶解工序與結晶化工序之變化之相關關 -10-
1274735 (4) 係圖表。 圖3係本發明中T = const.時,隨著時間經過於高壓釜内產 生之壓力變化及溶解工序與結晶化工序之變化之相關關 係圖表。 圖4係本發明使用之高壓釜及爐體之剖面圖。 圖5係生產氮化物塊狀單晶之設備概要圖。
圖6係實施例中,隨伴時間經過於高壓釜内產生之溫度 變化與溶解工序及結晶化工序之變化之相關關係圖表。 實施方式 生產氮化物單晶之設備,係由具備對流控制裝置2之生 成超臨界溶媒之高壓釜1及配置於高壓爸之具備加熱裝置 5及冷卻裝置6之1至數部爐體4構成,該爐體具備相當於高 壓釜之結晶化區域之加熱裝置4之高溫區域1 4,及相當於 高壓釜之溶解區域之備有加熱裝置之低溫區域1 3。亦可使 用具備有加熱、冷卻裝置之高溫區域,與具備加熱,冷卻 裝置之有低溫區域之爐體。與上述對流控制裝置之間,得 用中心部或周邊部有空隙之橫型擋板1片至數片區隔結晶 化區域與溶解區域。高壓釜内則將原料配置於溶解區域, 而晶種則配置於結晶化區域。溶解區域與結晶化區域間之 超臨界溶液之對流,係藉由上述裝置控制。溶解區域之位 置係在橫型擋板之上方,而結晶化區域則橫型擋板之下方 -11 -
1274735 (5)
本發明之塊狀單晶生產設備如圖4及圖5。該設備之主要 部分係由生成超臨界溶媒之高壓釜1,及可執行高壓釜1 中之超臨界溶液内化學移動之控制裝置2構成。將上述高 壓釜1投進具備加熱裝置5或冷卻裝置6之爐體4(2部)之室 内3,而以螺釘固定裝置7固定,以對爐體4保持一定位置。 爐體4係設置於爐底8,以繞圍爐體4及爐底8周圍之鋼帶9 固定。將爐底8及爐體4設置於旋轉台10,依特定角度,用 銷固定裝置1 1固定,則可控制高壓釜1内之對流種類及對 流速度。將投進於爐體4之高壓釜1内超臨界溶液之對流, 區隔為結晶化區域1 4與溶解區域1 3,藉由面積約有高壓釜 剖面積之7 0 %之橫型擋板1 2構成之對流控制裝置2設定。 設定位置係在全長之約一半部位。高壓釜1内之兩區域之 溫度,則藉由設置於爐體4内之控制裝置1 5,設定於100 °C〜800°C範圍内。相當於爐體4之低溫區域之高壓釜1内溶 解區域1 3之位置,係置於橫型擋板1 2之上方,而原料1 6 則配置於該區域1 3内。其充填量應為溶解區域之約一半程 度。若使用鎵金屬,坩堝容積應為溶解區域之約1 /2。相 當於爐體4之高溫區域之高壓釜内結晶化區域1 4之位置係 置於橫型擋板1 2之下方。晶種1 7係配置於此區域1 4,其配 置位置則設定於對流之上游與下游交差部位之下方而爐 底部之稍上方。設置上述對流控制裝置2之區域,則配置 可執行冷卻之冷卻裝置6 -1。如此配置則可在上述溶解區 域1 3與結晶化區域1 4之間形成所需溫差。上述結晶化區域 之底部流域則配置可執行冷卻之冷卻裝置6-1,以利結晶 -12-
1274735 , 化結束後急速冷卻,防止結晶成長後冷卻爐内時結晶再度 溶解。 據本發明人實施之研究結果,氮化鎵(GaN)對含有鹼金 屬或其化合物(如KNH2)等之氨,有較佳溶解度。圖1之圖 表中,超臨界溶媒内之GaN溶解度係以400°C與500°C之溫 度壓力之函數表示,該溶解度係以莫耳% : S m三{ GaN溶液: (KNH2+NH3)} X 100%定義。此時,該溶媒係指莫耳比χ Ξ KNH2 : ΝΗ3為0.07之超臨界氨溶液。溶解度sm係溫度、壓 力及礦化物之莫耳比函數’以Sm三Sm(T,p,X)表示,微小 _ 變化△ S m則以下式表示。 Δ Sm^(5Sm/0T)p5xA T+(SSm/βΡ)τ,χΔ P+(0Sm/5X)T XA χ 式中,(3Sm/3T)P,x等係數係表示溶解度之溫度、壓力及 礦化之莫耳比係數(coefficient)。 根據上述圖表,溶解度是一種壓力之增加函數而是溫度 之減少函數,利用該關係,以溶解度較高條件進行氮化物 之溶解,而以溶解度較低條件結晶化,則可使GaN之塊狀 單晶成長。此種負溫度梯度表示,當產生溫差時氮化物之 鲁 化學輸送係由低溫之溶解區域向高溫之結晶化區域進 订。此外’本發明人亦獲悉’其他嫁化合物及金屬錄亦可 作為GaN配位化合物之供給源。 、於疋’可將最簡單之金屬鎵或其他鎵配位化合物投進於 、上述成刀,、且口之/合媒’然後藉由加熱等條件變化,形成 對氮化物之過飽和溶液’則可使結晶成長於晶種面。因 此,本發明可在晶種成長氮化物之塊狀單晶,結果可在 -13 - 1274735 __/ ‘ (7)
GaN結晶所成之晶種上達成GaN之化學量論成長,製得GaN 之塊狀單晶層。 由於該單晶係成長於含鹼金屬離子之超臨界溶液内,製 得之單晶亦含〇· 1 ppm以上之驗金屬。此外,為保持防止設 備之腐蝕之超臨界溶液之鹼性,對溶媒則故意不加鹵素化 合物。本發明之方法,得用入丨或In取代〇〇5〜〇·5之鎵。運 用此種成分變更可調整製得之氮化物之晶格常數。此外, 亦可對GaN塊狀單晶添補濃度i〇i7〜1〇2i/cm3之予體(d〇nor ; ^
Si ’ Ο 等)’受體(acceptor ; Mg,Zn等),磁性物質(Mn,Cr 等)。添補可改變氮化物之光學、電氣、磁氣特性。至於 其他物理特性,成長後之GaN塊狀單晶表面之缺陷密度應 為106/cm2以下,宜為l〇5/cm2以下,以i〇4/cm2以下更佳。 此外,對於(0002)面之X光半值寬度應為600 arcsec以下, 宜為300 arcsec以下,以60 arcsec以下更佳。最佳塊狀GaN 單晶,可在缺陷密度約104/cm2以下,表面(0002)之X光測 定半值寬度60 arcsec以下成長。 (結晶化區域與溶解區域間之溫差) 馨 根據上述構成,欲在高壓釜内同時形成溶解區域及結晶 化區域兩種區域時,宜藉由溶解溫度及結晶化溫度之調整 實施對晶種之超臨界溶液之過飽和控制。此時將結晶化區 域設定於400〜600°C,而將高壓釜内之溶解區域與結晶化 區域之溫差保持於15CTC以下則更容易控制,若保持於1〇〇 C以下更佳。此外’對晶種之超6¾界溶液之過飽和調整, 則宜藉由在高壓釜内設置區分低溫之溶解區域與高溫之 •14- 1274735 ⑻ 結晶化區域之擋板1至數片,以調整溶解區域與結晶化區 域之對流量進行。此外,若欲在高壓釜内形成有特定溫差 之溶解區域及結晶化區域二種區域時’對晶種之超臨界溶 液之過飽和調整,則宜利用其總面積大於晶種總面積之 GaN結晶形態之含鎵原料投進。
本發明係利用一種氨鹼性結晶成長技術,亦則在含可付 予一種或數種礦化物質之超臨界氨溶媒中引發化學輸送 以達成氮化物單晶之成長者,本發明所用下列用詞,均依 下列說明中定義之意義。 (氮化物) 氮化物是一種含以氮原子為構成要素之化合物,可以式 AlxGabx.ylnyNfOS xS 1、0$ yS 1、0$ x + yS 1)表示,並至 少得含二元化合物GaN、AIN,三元化合物AlGaN、InGaN 及四元化合物AlInGaN。最好以AlxGa^x.yNCiXxcl)為對象。 配合用途得含有予體,受體或磁性添補劑。
氮化物之塊狀單晶係指,藉由MOCVD或HVPE等差向成 長方法能形成LED或LD等光及電子元件之氮化物單晶基 板而言。 (先質(precurser)) 氮化物之先質係指,一種至少含鎵或鋁,最好含鹼金 屬,XIII族元素,氮及/或氫之物質或其混合物,而為金 屬鎵或鋁,其合金或金屬間化合物,其氫化物,醯胺類, 亞醯胺類,醯胺-亞醯胺類,迭氮基類,且可形成可溶於 下列定義之超臨界氨溶媒之鎵化合物或鋁化合物而言。 -15-
1274735 (9) (原料)(Feed stock) 原料係指含鎵氮化物或含紹氮化物或其先質。本發明方 法係根據氨鹼性反應,但即使採用之原料為依H VPE形成 之GaN,Α1Ν或依化學反應形成之GaN,Α1Ν而原本已含氣 者,祇要不妨礙氨鹼性超臨界反應,使用上並無問題。亦 可採用對超臨界氨溶媒依平衡反應溶解之氮化物與對超 臨界氨溶媒以不可逆反應之鎵或鋁金屬之組合。
上述氮化物中,若用氮化鎵,其結晶化反應控制較容 易。此時,晶種宜用GaN單晶。GaN用原料可使用依焊劑 法製得之GaN,在鎵金屬超臨界氨中多晶化之聚氮化鎵 (polygallium nitride)等均可使用。 (超臨界氨溶媒) 超臨界氨溶媒係如下定義,而含有NH3或其衍生物,且 至少含鈉或鉀離子等金屬離子礦物質。超臨界氨溶媒係指 至少含氨,而含有為溶解氮化物之一種至數種鹼金屬離 子。
(礦化劑:mineralizer) 礦化劑係指,為使氮化物溶解於超臨界氨溶媒而供給一 種或數種驗金屬離子之化合物而言。礦化劑係以在超臨界 氨溶媒中給予鹼金屬或鹼金屬離子之鹼金屬化合物形態 供給,從純度觀點而言,以鹼金屬迭氮化物(NaN3,KN3, LiN3),驗金屬(Na,K,Li)形態供給為宜,但若有需要可 與鹼金屬醯胺併用。超臨界溶媒中之鹼金屬離子濃度,係 調整為能確保原料及氮化物之特定溶解度,其在超臨界溶 -16- 1274735
(10) 液中之對其他成分之鹼金屬離子莫耳比為1 : 200〜1 : 2, 但宜為1 : 100〜1 : 5,若控制於1 : 20〜1 : 8範圍内更佳。 鹼金屬離子若混合2種以上使用,則可提昇較單獨使用時 為佳之結晶成長速度或結晶品質。此外,若有需要可併用 Mg,Zn,Cd等鹼土族金屬。此外,只要不阻礙在超臨界 氨中之鹼性反應,亦可併用中性物質(鹵化鹼金屬鹽),酸 性物質(i化銨)等。
(原料溶解) 原料溶解係指上述原料對超臨界溶媒形成溶解性氮化 化合物,如鎵或鋁錯體化合物形態之可逆性或非可逆性過 程而言。鎵錯體化合物是一種NH3或其衍生物ΝΗ2·,NH2 以鎵為位向中心圍繞而成之錯體化合物。 (超臨界氨溶液)
超臨界氨溶液係指由上述超臨界氨溶媒與原料溶解產 生溶解性鎵或鋁化合物之現象。本發明人等經實驗發現, 在十分高溫高壓下,固體金屬氮化物與超臨界溶液之間有 一平衡關係存在,因此,溶解性氮化物之溶解度可定義為 在固體氮化物存在下之上述溶解性鎵或鋁化合物之平衡 濃度。在該工序,該項平衡可藉由溫度及/或壓力變化移 動。 (溶解度) 溶解度之負溫度係數係指,將其他全部參數保持一定 時,溶解度可用溫度減少函數(monotonically decreasing function)表示之意,同樣,溶解度之正壓力係數係指,將 -17- 1274735 _懿__ (η) 其他全部參數固定時,溶解度係以壓力之增加函數表示之 意。據本發明人等之研究,在超臨界氨溶媒中之氮化物之 溶解度,至少在300至550°C之溫度區域以及1至5.5 kbar壓 力範圍内,以負溫度係數及正壓力係數表現。因此,如圖 2所示,將爐内溫度保持於400°C 8天,溶解原料(溶解工 序)後,將爐内溫度保持於500°C,則可使溶解之氮化鎵析 出結晶(結晶化工序)。
(過飽和:oversaturation) 對氮化物之超臨界氨溶液之過飽和係指,在上述超臨界 氨溶液中之可溶性鎵或鋁化合物之濃度高於平衡狀態濃 度則溶解度之狀態。於密閉系中,氮化物溶解時,此過飽 和係從負溫度係數成正壓力係數,可藉由溫度增加或壓力 減少而達成。 (化學輸送:chemical transport)
在超臨界氨溶液中之氮化物之化學輸送,係指含原料之 溶解,可溶性氮化物透過超臨界氨溶液之移動以及氮化物 從過飽和臨界氨溶液之結晶化之連續過程,一般而言,化 學輸送過程係藉由溫度差距,壓力差距,濃度差距及已溶 解之原料與結晶化生成物間之化學或物理上之不同性質 等驅動力進行。本發明方法雖可製得氮化物之塊狀單晶, 但以分別在不同區域進行溶解過程與結晶化過程,亦則將 結晶化區域溫度保持於高於溶解區域溫度而進行上述化 學輸送之方式較有利。 (晶種:seed) •18- 1274735 (12) 晶種已在本發明内容中屢次舉例說明,係提供進行氮化 物結晶化之區域者,由於其係支配結晶之成長品質,應選 自與擬成長之結晶同質且品質良好,而缺陷密度l〇5/cm2 以下者為宜。此外,亦可使用依焊劑法、高壓法製得之天 然晶種,由塊狀單晶截取之A面、Μ面、R面晶種。亦可 利用添補S i而呈η型導電性之晶種面之晶種。此種晶種係 藉由HVPE或MOCVD等氣相成長法成長氮化物,而於成長 中添補Si 1016〜1021/cm3,賦予η型導電性者。可使用在SiC 等導電性基板上成長A1N或GaN之層疊晶種。 (自發成長:spontaneous crystallization) 自發成長(自發性結晶化)係指,在高壓釜中之任何部位 均可能發生之由過飽和超臨界氨溶液形成氮化物核及成 長之不宜工序,含晶種表面之各向異性成長(disoriented growth) 〇 (選擇性析出:selective crystallization)
對晶種之選擇性結晶析出係指,實質上無自發成長而在 晶種上進行結晶化之工序。該工序是塊狀單晶成長上不可 或缺之工序,亦是本發明方法之一。 (原料:feedstock) 本發明使用之片(pellet)係指,將粉末成形,燒成,使密 度達7 0 %以上者,密度愈高愈佳。 (反應溫度及壓力) 本發明之實施例中所述高壓釜内溫度分布,係在不存在 超臨界氨之下測定空高壓釜之數據,並非實際超臨界溫 -19-
1274735 (13) 度。至於壓力則為直接測定結果,或根據當初引進之氨量 及高壓釜溫度、容積計算而決定者。 (實施例) 於直徑40 mm,長480 mm(D/L=l/12),内容積585 cm3之高 壓高壓釜1(圖9)之溶解區域13,置容於坩堝之GaN原料30 g,並於結晶化區域1 4置依HVPE法製得之Φ 1英寸之GaN晶 種。另添補純度6N之金屬鎵1.2 g及純度3N之金屬鈉23 g 作礦化劑,再加5N氨液238 g,密封高壓釜1。將該高壓釜 1放進爐體4内,以3天時間加熱至200°C。 然後將溶解區域1 3之溫度提昇至425°C,並將結晶化區 域14之溫度提高至525°C。得壓力約2.5 kbar。將此狀態之 高壓釜再放置28日(圖6)。經此工序後,溶解區域13中之 部分原料乃溶解,而結晶化區域1 4之HVPE · GaN晶種上則 成長GaN,雙面單晶層之厚度為約3 mm。 對如上製得之結晶施加下列處理,以便用於基板。
1) 將成長於HVPE · GaN晶種上之厚3 mm單晶置於加熱爐 内,在600〜900°C,含少量氧氣之氮氣環境中進行退火處 理1 - 5小時。 2) 將樣品設置於TAKATORI公司製鋼索鋸。設置時樣品係 傾斜1 °以下,以形成離角(off angle)。使用鑽石切片機,將 檢品截成5片,得離角0.05-0.2 °之樣品。 3) 將截成之樣品置於加熱爐内,在600〜900°C,含少量氧 氣之氮氣環境内,再進行退火處理1 - 5小時。如此處理者 -20- 1274735 mmmw (14) 稱為GaN基板。 4) 用接著劑將GaN基板黏附於研磨用滑塊上,將該滑塊 設置於Logitech公司製研磨機’分別研磨一面。研磨條件 為使用鑽石漿及PH3-6或PH9-11之膠狀矽或氧化鋁溶液, 研磨到最後粗細度1 0 Λ以下。 5) 然後,依HVPE法,並依下列條件在GaN基板表面形成 數//m以下之GaN或AlGaN膜層,作為型板(template)。 6) 此外,在具有上述膜層之〇aN基板及不具該膜層之GaN 基板上’依HVPE法形成約3 mm之GaN層,以上述方法戴片 ,研磨,製成約0_5 mm之發光元件用型板。 HVPE條件:反應溫度:1〇5〇°c,反應壓力:常壓。 氨分壓 0.3 atm,GaCl分壓 ixio·3 atm。 氫氣載體氣體 視需要’於6)之研磨後保持於2 〇 °c,不含礦化劑之超臨 界氣中1天’以去除表面雜質。 產業上利用領域 得由超臨界氨溶液製造高品質氮化物塊狀單晶。 圖式代表符號說明 1 局壓爸 2 對流控制裝置 3 室内 4 爐體 5 加熱裝置 6 冷卻裝置 -21 -
1274735 (15) 7 固定裝置 8 爐底 9 鋼帶 10 旋轉台 11 鎖固定裝置 12 橫型擋板 13 溶解區域 14 結晶化區域 15 控制裝置 16 原料 17 晶種 18 冷卻裝置
-22-

Claims (1)

1274m.- r - ..
拾、申請專利範圍 1. 一種塊狀單晶生產設備,其係具備生成超臨界溶媒之 高壓釜者,於該高壓釜中設置有對流控制裝置,並具 有包含加熱裝置及冷卻裝置之爐體, 該爐體係藉由加熱裝置及/或冷卻裝置被調整到可 保持特定之溫度梯度, 上述對流控制裝置係由與中心及/或高壓釜内壁之 間具有空隙之1片或數片橫型擋板所構成,並以於該擋 板上方形成配置原料之溶解區域,及於擋板下方形成 配置晶種之結晶化區域之方式配置,
並以藉由上述控制裝置之開度及上述溶解區域與結 晶化區域之溫差設定上述溶解區域與結晶化區域之間 之超臨界溶液之對流速度的方式構成, 並將氮化物溶解於含有氨及至少含鹼金屬離子之超 臨界溶液中,將溶解度為負溫度係數之超臨界溶液, 由上述溶解區域藉著上述對流控制裝置供給於配置晶 種之結晶化區域,昇溫至特定溫度,且將超臨界溶液 之溶解度調整為對晶種呈過飽和區域但不致產生自發 成長之濃度以下,以使氮化物結晶選擇性成長於配置 在高壓爸内之晶種表面。 2.如申請專利範圍第1項之塊狀單晶生產設備,其中以冷 -23 - 1274735
卻上述對流控制裝置所在區域之方式配置冷卻裝置, 並於上述溶解區域與結晶化區域之間形成特定溫度 差。 3 .如申請專利範圍第1項之塊狀單晶生產設備,其中配置 冷卻裝置以冷卻上述結晶化區域之底部流域,以便結 晶化結束後能迅速冷卻該流域。 4 .如申請專利範圍第1項之塊狀單晶生產設備,該高壓蚤 内壁係加附有由Ag,Mo,Fe或Ta所構成之金屬或合金 襯裏者。 5 .如申請專利範圍第1項之塊狀單晶生產設備,其中上述 對流控制裝置係設置於高壓釜内部全長之1 /3至1 /2位 置,而上述溶解區域與結晶化區域之比率係可隨需要 調整。 6.如申請專利範圍第1項之塊狀單晶生產設備,其設置於 上述溶解區域之原料係鎵金屬且其充填量為溶解區域 之一半以下。 7 .如申請專利範圍第1項之塊狀單晶生產設備,其中該高 壓釜之直徑/全長比為1/15至7/15,且其於剖面積之上 述橫型擋板之開口率為3 0 %以下,而於晶種上之成長速 度為10 //m/hr以上。 •24- 1274735 陸、(一)、本案指定代表圖為:第m (二)、本代表圖之元件代表符號簡單說明: 1 高 壓 釜 3 室 内 4 爐 體 7 固 定 裝 置 8 爐 底 9 鋼 帶 10 旋 轉 台 11 銷 固 定 裝置 15 控 制 裝 置 染、本案若有化學式時’請揭不最能顯不發明特巍的化學式·
TW091136024A 2002-05-17 2002-12-11 Bulk single crystal production facility employing supercritical ammonia TWI274735B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143449A JP2003040699A (ja) 2001-06-06 2002-05-17 ガリウム含有窒化物のバルク単結晶の製造法

Publications (2)

Publication Number Publication Date
TW200306945A TW200306945A (en) 2003-12-01
TWI274735B true TWI274735B (en) 2007-03-01

Family

ID=29545018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091136024A TWI274735B (en) 2002-05-17 2002-12-11 Bulk single crystal production facility employing supercritical ammonia

Country Status (6)

Country Link
US (1) US7335262B2 (zh)
EP (1) EP1514958B1 (zh)
JP (1) JP4403067B2 (zh)
AU (1) AU2002354463A1 (zh)
TW (1) TWI274735B (zh)
WO (1) WO2003097906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618916A (zh) * 2012-03-29 2012-08-01 江南大学 一种晶体培养连续过滤自动控制方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI277666B (en) * 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
PL214287B1 (pl) * 2001-10-26 2013-07-31 Ammono Spolka Z Ograniczona Odpowiedzialnoscia Struktura urzadzenia emitujacego swiatlo z monokrystaliczna objetosciowa warstwa azotku
IL161420A0 (en) * 2001-10-26 2004-09-27 Ammono Sp Zoo Substrate for epitaxy
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
PL225427B1 (pl) * 2002-05-17 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Struktura urządzenia emitującego światło, zwłaszcza do półprzewodnikowego urządzenia laserowego
WO2004053206A1 (en) * 2002-12-11 2004-06-24 Ammono Sp. Z O.O. Process for obtaining bulk monocrystalline gallium-containing nitride
DE60331245D1 (de) 2002-12-11 2010-03-25 Ammono Sp Zoo Substrat für epitaxie und verfahren zu seiner herstellung
US9279193B2 (en) * 2002-12-27 2016-03-08 Momentive Performance Materials Inc. Method of making a gallium nitride crystalline composition having a low dislocation density
JP4622447B2 (ja) * 2004-01-23 2011-02-02 住友電気工業株式会社 Iii族窒化物結晶基板の製造方法
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
PL371405A1 (pl) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku
US7558631B2 (en) * 2004-12-21 2009-07-07 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
JP2007277074A (ja) * 2006-01-10 2007-10-25 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法及び窒化アルミニウム単結晶
US9783910B2 (en) 2006-04-07 2017-10-10 Sixpoint Materials, Inc. High pressure reactor and method of growing group III nitride crystals in supercritical ammonia
US9803293B2 (en) * 2008-02-25 2017-10-31 Sixpoint Materials, Inc. Method for producing group III-nitride wafers and group III-nitride wafers
US8458262B2 (en) * 2006-12-22 2013-06-04 At&T Mobility Ii Llc Filtering spam messages across a communication network
TWI460323B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
WO2009149299A1 (en) 2008-06-04 2009-12-10 Sixpoint Materials Methods for producing improved crystallinty group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
US9157167B1 (en) 2008-06-05 2015-10-13 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8871024B2 (en) 2008-06-05 2014-10-28 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8097081B2 (en) * 2008-06-05 2012-01-17 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
EP2286007B1 (en) 2008-06-12 2018-04-04 SixPoint Materials, Inc. Method for testing gallium nitride wafers and method for producing gallium nitride wafers
US8303710B2 (en) * 2008-06-18 2012-11-06 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
US20090320745A1 (en) * 2008-06-25 2009-12-31 Soraa, Inc. Heater device and method for high pressure processing of crystalline materials
US20100003492A1 (en) * 2008-07-07 2010-01-07 Soraa, Inc. High quality large area bulk non-polar or semipolar gallium based substrates and methods
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US8124996B2 (en) * 2008-08-04 2012-02-28 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8021481B2 (en) * 2008-08-07 2011-09-20 Soraa, Inc. Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US20100031873A1 (en) * 2008-08-07 2010-02-11 Soraa, Inc. Basket process and apparatus for crystalline gallium-containing nitride
US8323405B2 (en) * 2008-08-07 2012-12-04 Soraa, Inc. Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8430958B2 (en) * 2008-08-07 2013-04-30 Soraa, Inc. Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride
US8979999B2 (en) * 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8148801B2 (en) 2008-08-25 2012-04-03 Soraa, Inc. Nitride crystal with removable surface layer and methods of manufacture
US8354679B1 (en) 2008-10-02 2013-01-15 Soraa, Inc. Microcavity light emitting diode method of manufacture
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture
WO2010045567A1 (en) * 2008-10-16 2010-04-22 Sixpoint Materials, Inc. Reactor design for growing group iii nitride crystals and method of growing group iii nitride crystals
US8455894B1 (en) 2008-10-17 2013-06-04 Soraa, Inc. Photonic-crystal light emitting diode and method of manufacture
KR20110097813A (ko) * 2008-11-07 2011-08-31 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Ⅲ족 질화물 결정들의 암모노열 성장을 위한 신규한 용기 설계 및 소스 물질과 씨드 결정들의 상기 용기에 대한 상대적인 배치
WO2010060034A1 (en) * 2008-11-24 2010-05-27 Sixpoint Materials, Inc. METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH
US9543392B1 (en) 2008-12-12 2017-01-10 Soraa, Inc. Transparent group III metal nitride and method of manufacture
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US8461071B2 (en) * 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8878230B2 (en) * 2010-03-11 2014-11-04 Soraa, Inc. Semi-insulating group III metal nitride and method of manufacture
US8987156B2 (en) 2008-12-12 2015-03-24 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
WO2010079814A1 (ja) * 2009-01-08 2010-07-15 三菱化学株式会社 窒化物結晶の製造方法、窒化物結晶およびその製造装置
US20110100291A1 (en) * 2009-01-29 2011-05-05 Soraa, Inc. Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
WO2010129718A2 (en) 2009-05-05 2010-11-11 Sixpoint Materials, Inc. Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
US8306081B1 (en) 2009-05-27 2012-11-06 Soraa, Inc. High indium containing InGaN substrates for long wavelength optical devices
US8435347B2 (en) 2009-09-29 2013-05-07 Soraa, Inc. High pressure apparatus with stackable rings
US9175418B2 (en) 2009-10-09 2015-11-03 Soraa, Inc. Method for synthesis of high quality large area bulk gallium based crystals
KR20120127397A (ko) * 2009-11-27 2012-11-21 미쓰비시 가가꾸 가부시키가이샤 질화물 결정의 제조 방법, 제조 용기 및 부재
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
CN102011192B (zh) * 2010-09-21 2013-01-02 南京航空航天大学 载有功能基团的GaN纳米线阵列及其制法和用途
US8729559B2 (en) 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
WO2013010117A1 (en) * 2011-07-13 2013-01-17 The Regents Of The University Of California Growing a group-iii nitride crystal using a flux growth and then using the group-iii nitride crystal as a seed for an ammonothermal re-growth
US8482104B2 (en) 2012-01-09 2013-07-09 Soraa, Inc. Method for growth of indium-containing nitride films
US9976229B2 (en) 2012-03-29 2018-05-22 Mitsubishi Chemical Corporation Method for producing nitride single crystal
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US10094017B2 (en) 2015-01-29 2018-10-09 Slt Technologies, Inc. Method and system for preparing polycrystalline group III metal nitride
JP6474920B2 (ja) * 2015-06-25 2019-02-27 シックスポイント マテリアルズ, インコーポレイテッド 高圧反応器および超臨界アンモニア中のiii族窒化物結晶の成長方法
US11466384B2 (en) 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
CN111020708A (zh) * 2019-12-16 2020-04-17 上海玺唐半导体科技有限公司 热等静压晶体生长装置
US11721549B2 (en) 2020-02-11 2023-08-08 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
JP2023513570A (ja) 2020-02-11 2023-03-31 エスエルティー テクノロジーズ インコーポレイテッド 改善されたiii族窒化物基板、その製造方法、並びにその使用方法

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722692B2 (ja) 1988-08-05 1995-03-15 株式会社日本製鋼所 水熱合成用容器
JPH02137287A (ja) 1988-11-17 1990-05-25 Sanyo Electric Co Ltd 半導体レーザ装置
CN1014535B (zh) 1988-12-30 1991-10-30 中国科学院物理研究所 利用改进的矿化剂生长磷酸钛氧钾单晶的方法
US5096860A (en) * 1990-05-25 1992-03-17 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride
CN1065289A (zh) 1992-04-28 1992-10-14 抚顺石油学院 洁厕灵
US5456204A (en) * 1993-05-28 1995-10-10 Alfa Quartz, C.A. Filtering flow guide for hydrothermal crystal growth
JP3184717B2 (ja) 1993-10-08 2001-07-09 三菱電線工業株式会社 GaN単結晶およびその製造方法
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JPH07249830A (ja) 1994-03-10 1995-09-26 Hitachi Ltd 半導体発光素子の製造方法
DE69511995T2 (de) 1994-04-08 2000-04-20 Japan Energy Corp Verfahren zum züchten von galliumnitridhalbleiterkristallen und vorrichtung
US5599520A (en) * 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JPH08250802A (ja) 1995-03-09 1996-09-27 Fujitsu Ltd 半導体レーザ及びその製造方法
US5679965A (en) * 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP3728332B2 (ja) * 1995-04-24 2005-12-21 シャープ株式会社 化合物半導体発光素子
WO1997011518A1 (en) * 1995-09-18 1997-03-27 Hitachi, Ltd. Semiconductor material, method of producing the semiconductor material, and semiconductor device
JPH09134878A (ja) 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化ガリウム系化合物半導体の製造方法
JP3778609B2 (ja) 1996-04-26 2006-05-24 三洋電機株式会社 半導体素子の製造方法
JPH107496A (ja) 1996-06-25 1998-01-13 Hitachi Cable Ltd 窒化物結晶の製造方法およびその装置
JP3179346B2 (ja) 1996-08-27 2001-06-25 松下電子工業株式会社 窒化ガリウム結晶の製造方法
JPH1084161A (ja) * 1996-09-06 1998-03-31 Sumitomo Electric Ind Ltd 半導体レーザ及びその製造方法
WO1998019375A1 (fr) 1996-10-30 1998-05-07 Hitachi, Ltd. Machine de traitement optique de l'information et dispositif a semi-conducteur emetteur de lumiere afferent
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
CN1297016C (zh) * 1997-01-09 2007-01-24 日亚化学工业株式会社 氮化物半导体元器件
US5868837A (en) * 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
PL184902B1 (pl) * 1997-04-04 2003-01-31 Centrum Badan Wysokocisnieniowych Pan Sposób usuwania nierówności i obszarów silnie zdefektowanych z powierzchni kryształów i warstw epitaksjalnych GaN i Ga AL In N
JP3491492B2 (ja) * 1997-04-09 2004-01-26 松下電器産業株式会社 窒化ガリウム結晶の製造方法
US5888389A (en) * 1997-04-24 1999-03-30 Hydroprocessing, L.L.C. Apparatus for oxidizing undigested wastewater sludges
PL186905B1 (pl) 1997-06-05 2004-03-31 Cantrum Badan Wysokocisnieniow Sposób wytwarzania wysokooporowych kryształów objętościowych GaN
PL183687B1 (pl) * 1997-06-06 2002-06-28 Centrum Badan Sposób wytwarzania półprzewodnikowych związków grupy A-B o przewodnictwie elektrycznym typu p i typu n
GB2333520B (en) 1997-06-11 2000-04-26 Hitachi Cable GaN crystal growth method
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
TW519551B (en) 1997-06-11 2003-02-01 Hitachi Cable Methods of fabricating nitride crystals and nitride crystals obtained therefrom
JP3239812B2 (ja) 1997-08-07 2001-12-17 日本電気株式会社 InGaN層を含む窒化ガリウム系半導体層の結晶成長方法および窒化ガリウム系発光素子およびその製造方法
JP3234799B2 (ja) 1997-08-07 2001-12-04 シャープ株式会社 半導体レーザ素子の製造方法
US6593589B1 (en) * 1998-01-30 2003-07-15 The University Of New Mexico Semiconductor nitride structures
JPH11307813A (ja) 1998-04-03 1999-11-05 Hewlett Packard Co <Hp> 発光装置、その製造方法およびディスプレイ
US6249534B1 (en) 1998-04-06 2001-06-19 Matsushita Electronics Corporation Nitride semiconductor laser device
JPH11340576A (ja) 1998-05-28 1999-12-10 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体デバイス
JP3727187B2 (ja) 1998-07-03 2005-12-14 日亜化学工業株式会社 窒化物半導体レーザ素子の製造方法
JP2000031533A (ja) 1998-07-14 2000-01-28 Toshiba Corp 半導体発光素子
TW413956B (en) * 1998-07-28 2000-12-01 Sumitomo Electric Industries Fluorescent substrate LED
JP2000082863A (ja) 1998-09-04 2000-03-21 Sony Corp 半導体発光素子の製造方法
US6423984B1 (en) * 1998-09-10 2002-07-23 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US6252261B1 (en) * 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
US6372041B1 (en) * 1999-01-08 2002-04-16 Gan Semiconductor Inc. Method and apparatus for single crystal gallium nitride (GaN) bulk synthesis
JP2000216494A (ja) 1999-01-20 2000-08-04 Sanyo Electric Co Ltd 半導体発光素子およびその製造方法
US6177057B1 (en) * 1999-02-09 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Process for preparing bulk cubic gallium nitride
WO2000052796A1 (fr) * 1999-03-04 2000-09-08 Nichia Corporation Element de laser semiconducteur au nitrure
JP3957918B2 (ja) 1999-05-17 2007-08-15 独立行政法人科学技術振興機構 窒化ガリウム単結晶の育成方法
FR2796657B1 (fr) * 1999-07-20 2001-10-26 Thomson Csf Procede de synthese de materiaux massifs monocristallins en nitrures d'elements de la colonne iii du tableau de la classification periodique
JP2001085737A (ja) 1999-09-10 2001-03-30 Sharp Corp 窒化物半導体発光素子
WO2001024284A1 (en) 1999-09-27 2001-04-05 Lumileds Lighting, U.S., Llc A light emitting diode device that produces white light by performing complete phosphor conversion
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
CN1113988C (zh) 1999-09-29 2003-07-09 中国科学院物理研究所 一种氮化镓单晶的热液生长方法
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
JP2001339121A (ja) * 2000-05-29 2001-12-07 Sharp Corp 窒化物半導体発光素子とそれを含む光学装置
JP2002016285A (ja) 2000-06-27 2002-01-18 National Institute Of Advanced Industrial & Technology 半導体発光素子
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
JP4154558B2 (ja) 2000-09-01 2008-09-24 日本電気株式会社 半導体装置
WO2002021604A1 (fr) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Dispositif emetteur de lumiere a semi-conducteurs au nitrure
JP4416297B2 (ja) * 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
US6936488B2 (en) * 2000-10-23 2005-08-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
ATE528421T1 (de) 2000-11-30 2011-10-15 Univ North Carolina State Verfahren zur herstellung von gruppe-iii- metallnitrid-materialien
PL207400B1 (pl) * 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
TWI277666B (en) 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
US6488767B1 (en) * 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
JP2005531154A (ja) * 2002-06-26 2005-10-13 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 窒化物半導体レーザ素子及びその性能を向上させる方法
US7364619B2 (en) * 2002-06-26 2008-04-29 Ammono. Sp. Zo.O. Process for obtaining of bulk monocrystalline gallium-containing nitride
WO2004053206A1 (en) * 2002-12-11 2004-06-24 Ammono Sp. Z O.O. Process for obtaining bulk monocrystalline gallium-containing nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618916A (zh) * 2012-03-29 2012-08-01 江南大学 一种晶体培养连续过滤自动控制方法

Also Published As

Publication number Publication date
EP1514958B1 (en) 2014-05-14
EP1514958A1 (en) 2005-03-16
WO2003097906A1 (fr) 2003-11-27
US7335262B2 (en) 2008-02-26
TW200306945A (en) 2003-12-01
US20060191472A1 (en) 2006-08-31
AU2002354463A8 (en) 2003-12-02
JP4403067B2 (ja) 2010-01-20
AU2002354463A1 (en) 2003-12-02
JPWO2003097906A1 (ja) 2005-09-15
EP1514958A4 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
TWI274735B (en) Bulk single crystal production facility employing supercritical ammonia
JP4113837B2 (ja) ガリウム含有窒化物単結晶の異種基板上の成長方法
KR101088991B1 (ko) 벌크 단결정 갈륨-함유 질화물의 제조공정
CN100339512C (zh) 获得大单晶含镓氮化物的方法的改进
KR100848380B1 (ko) 갈륨 함유 질화물의 벌크 단결정 및 그의 어플리케이션
JPWO2002101125A1 (ja) 窒化ガリウムのバルク単結晶の製造法
US7314517B2 (en) Process for obtaining bulk mono-crystalline gallium-containing nitride
PL232212B1 (pl) Sposób otrzymywania objętościowego monokrystalicznego azotku zawierającego gal w środowisku nadkrytycznego rozpuszczalnika amoniakalnego
PL225423B1 (pl) Sposób wytwarzania podłoża standaryzowanego warstwą epitaksjalną ( podłoża typu template), z objętościowego monokrystalicznego azotku zawierającego gal
PL221055B1 (pl) Sposób wytwarzania objętościowego monokrystalicznego azotku zawierającego gal
PL225425B1 (pl) Sposób wytwarzania złożonego podłoża standaryzowanego warstwą epitaksjalną (podłoża typu template) z objętościowego monokrystalicznego azotku zawierającego gal
PL225424B1 (pl) Sposób wytwarzania podłoża typu template z objętościowego monokrystalicznego azotku zawierającego gal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees