TWI260776B - Epitaxially deposited source/drain - Google Patents

Epitaxially deposited source/drain Download PDF

Info

Publication number
TWI260776B
TWI260776B TW093132256A TW93132256A TWI260776B TW I260776 B TWI260776 B TW I260776B TW 093132256 A TW093132256 A TW 093132256A TW 93132256 A TW93132256 A TW 93132256A TW I260776 B TWI260776 B TW I260776B
Authority
TW
Taiwan
Prior art keywords
gate electrode
transistor
source
forming
thickness
Prior art date
Application number
TW093132256A
Other languages
English (en)
Other versions
TW200515596A (en
Inventor
Nick Lindert
Anand Murthy
Justin Brask
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200515596A publication Critical patent/TW200515596A/zh
Application granted granted Critical
Publication of TWI260776B publication Critical patent/TWI260776B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

1260776 (υ 九、發明說明 t發明所屬之技術領域】 本發明係關於一種金屬氧化半導體場效電晶體。 【先前技術】 金屬氧化半導體場效電晶體包括一閘極,該閘極自動 對齊一源/汲極。此源/汲極可包括一較深或重摻雜區和一 較淺和輕摻雜區,有時稱其爲一尖塞端或源/汲極延伸。 閘極下疊爲在離子植入和後續熱處理後,在閘極下方 ’源/汲極材料擴散的量。在植入後.,所植入的材料曝露 至熱’而此熱會使材料向下和些微程度的側向至閘極下方 的基底。因此,在使用離子植入源/汲極延伸的系統中, 下擴散的量受決定當成接面深度的函數。 於此所需的是源/汲極延伸具有相當淺的接面深度以 支持較小電晶體尺寸。通常,在源/汲極延伸植入技術中 ,極小尖塞端接面深度乃由必需的閘極下疊所決定。 一般而言,源/汲極延伸愈淺,可使用而不會增加關 斷狀態漏電流的閘極長度愈短。在閘極邊緣下方的延伸摻 雜需用以確保介於在閘極下方的相反層和高摻雜源/汲極 延伸區間的低電阻路徑。對於高電路開關速度相當重要的 高驅動電流而言,需要低電阻。 因此,於此需要較佳的方式以製造場效電晶體的源/ 汲極接面。 (2) 1260776 【發明內容和實施方式】 參考圖1,一重摻雜半導體基底12可由一犧牲、未 摻雜、或輕摻雜磊晶矽層1 8所覆蓋。在一實施例中,此 層1 8可小於5 00A厚。包括形成在一閘極介電14上的閘 極1 6的閘極電極構造可界定在磊晶矽層1 8上。 犧牲磊晶矽層1 8的選擇性沉積可使用、例如、二氯 矽烷基化學物在一單晶圓化學蒸氣沉積處理器、如 Epsilon3 000 磊晶處理器、由荷蘭 ASM International NV, Bilthoven,所製造,而執行。此膜可以1 5 0-200 seem的 二氯矽烷,1 00- 1 5 0 seem的HC1,20 slm的H2的氣體流 量,在8 3 5 °C,在20 Torr的處理壓力下沉積。在此處理 條件下,可在曝露基底上達成用於矽的每分鐘10-15奈米 的沉積速率,並達成對間隙壁和氧化區的選擇性。於此亦 可使用其他的沉積技術。 如圖1所示的構造有時稱爲一 δ摻雜電晶體。因此有 相當高的摻雜在磊晶層18下方,因此在介於基底12和磊 晶矽層1 8間的介面上會發生濃度上的大量δ變化或改變。 如圖1所不的構造可由一間隙壁材料所覆蓋,而後各 向異性蝕刻以形成如圖2所示的側壁間隙壁2 8。依照對 間隙壁蝕刻的選擇性,於此亦可能同時發生磊晶矽層18 的部份限制蝕刻。 在間隙壁形成後,一選擇性濕蝕刻可移除磊晶矽層 1 8的曝露部份,且可在閘極1 6下方持續蝕刻以達成如圖 3所示的下切構造。閘極1 6的下切程度可藉由調整蝕刻 -6 - (3) 1260776 時間而控制。 磊晶矽層1 8可以、例如、各種氫氧基溶液選擇性蝕 刻。但是,對於未摻雜或輕摻雜層]8對重摻雜基底1 2的 高選擇性,亦可使用相當溫和的處理條件。 在一實施例中,可和音波一起使用在2 0 °C下、濃度 範圍爲2至1 0%重量百分比的氫氧化胺水溶液。在本發明 的一實施例中,可藉由散佈具有每平方公分(cm2) 0.5至5 瓦功率的超或兆音波能量的換能器而提供此音波。由於δ 摻雜電晶體在未摻雜區下方具有一重摻雜區,其可當成用 於濕蝕刻的鈾刻阻止層。 在濕蝕刻下切後,可成長摻雜的選擇性磊晶矽層50 。一淺、重摻雜源/汲極延伸50a側向的延伸所需的距離 在閘極1 6邊緣和側壁間隙壁2 8下方,如圖4所示。一較 厚源/汲極區5 Ob對齊間隙壁2 8的邊緣,且延伸離開間隙 壁28。間隙壁28使延伸50a的長度受到修剪,且使層50 的厚度擴展而不會短於閘極16。此較厚區50b降低區50 的電阻和使較低電阻區接近閘極1 6的邊緣。 在形成P型MOS(PMOS)電晶體時,源/汲極延伸50a 和源/汲極5 Ob可藉由、例如、選擇性沉積磊晶硼摻雜矽 或鍺濃度高達 30%的鍺化矽而形成。在處理條件爲100 seem 的二氯石夕院,20 slm 的 H2,750-800 °C,20Torr, 1 5 0 - 2 0 0 s c c m 的 H C 1,1 5 0 - 2 0 0 s c c m 的乙硼烷流,和 1 5 0 - 2 00 seem的GeH4流下,可達成在一實施例中具有每分鐘 20奈米沉積速率的高摻雜鍺化矽膜,1E20 的硼濃度 1260776 (4) ’和20%的鍺濃度。從膜的高硼濃度可導致ο.? _〇9m Ω · c m的低電阻率。 在部份實施例中,低電阻率提供在延伸和源/汲極區 中的高導電率的優點。此較低的電阻率可降低外部電阻。 在部份實施例中,在源/汲極區5〇b中呈現的鍺化矽的較 大單元胞會對通道作用壓力應變,而其隨後會導致增強移 動率和電晶體效能。 在N型電晶體(NMOS)中,源/汲極50b和源/汲極延 伸5 0a可使用沉積在一實施例中的磷摻雜矽而形成在原處 。此矽可選擇.性沉積在1 00 seem的二氯矽烷,25 -5 0 seem 的 HC1,以 20 $1111的 H2 氣體載流的 200-300 seem 的 1°/。 PH3,在7 5 0 °C,20 Torr壓力的處理條件下。在一實施例 中,在沉積膜中可達成具有 0.4-0.6 mQ-cm的電阻率的 2E20 cnT3的磷濃度。 而後,如圖5所示,使用習知技藝而形成第二薄間隙 壁3 4。藉由離子植入,使用間隙壁2 8和3 4和閘極1 6當 成掩模,可形成一深源/汲極32。以和降低或減少包括在 層5 0中的摻雜劑的摻雜劑擴散的方式,可達成深源/汲極 3 2的退火。 淺源/汲極延伸5 0a的特性和它們下疊閘極1 6的程度 可和深源/汲極接面32的特性無關。源/汲極延伸50a的 閘極1 6的延伸下疊的程度可依需要受到控制。 本發明並不限於上述之實施例,且於此仍可達成各種 改變和修飾,但其仍屬本發明之精神和範疇。因此,本發 -8- (5) 1260776 明之精神和範疇應由下述申請專利範圍界定之。 【圖式簡單說明】 圖1爲在一製造階段上的較大擴大橫截面圖; 圖2爲在依照本發明的一實施例的一後續製造階段上 的擴大橫截面圖; 圖3爲在依照本發明的一實施例的又一後續製造階段 上的擴大橫截面圖; 圖4爲在依照本發明的一實施例的一後續製造階段上 的擴大橫截面圖;和 圖5爲在依照本發明的一實施例的又一後續製造階段 上的擴大橫截面圖。 【主要元件符號說明】 12 半導體基底 18 磊晶矽層 16 閘極 14 閘極介電層 28 側壁間隙壁 5 0 嘉晶砂層 5 0 a 延伸 5 0 b厚區 3 4 第二薄間隙壁 32 深源/汲極 -9-

Claims (1)

  1. (1) 1260776 十、申請專利範圍 1 · 一種場效電晶體的形成方法,包含: 形成一金屬氧化半導體場效電晶體,該金屬氧化半導 體場效電晶體具有一磊晶沉積源/汲極以延伸在一閘極電 極之邊緣下方, 其中該電晶體爲一 δ摻雜電晶體。 2 ·如申請專利範圍第1項的方法,該方法包括形成一 源/汲極延伸以延伸在一閘極電極之邊緣下方。 3 .如申請專利範圍第〗項的方法,該方法包括形成一 犧牲嘉晶沉積材料在一基底上,和形成一閘極電極在該磊 晶丨几積層上。 4.如申請專利範圍第3項的方法,其中形成一犧牲磊 晶沉積材料包括磊晶沉積一矽材料。 5·如申請專利範圍第3項的方法,該方法包括選擇性 的蝕刻該磊晶沉積材料。 6.如申請專利範圍第5項的方法,該方法包括使用音 波以選擇性的鈾刻該材料。 7·如申請專利範圍第3項的方法,該方法包括形成一 側壁間隙壁在該閘極電極上和在該側壁間隙壁下方鈾刻。 8 .如申Μ專利範圍第5項的方法,該方法包括選擇性 的鈾刻該磊晶沉積材料以下切該閘極電極。 9.如申請專利範圍第8項的方法,該方法包括沉積一 嘉晶材料在該基底上和在該閘極電極下方延伸。 1 〇.如申請專利範圍第9項的方法,該方法包括形成 -10 - 1260776 (2) 一丨爹雜嘉晶材料。 1 1 ·如申請專利範圍第8項的方法,該方法包括形成 6亥嘉晶材料在接近閘極電極處較薄和隔開該閘極電極處較 厚。 12·一種場效電晶體,包含: 一基底; -ί參雜嘉晶半導體材料形成在該基底上;和 -鬧極電極形成在該摻雜磊晶半導體材料上,該摻雜 嘉晶半導體材料在該閘極電極下方延伸, 其中該電晶體爲一 δ摻雜電晶體。 1 3 .如申請專利範圍第1 2項的電晶體,該電晶體包括 一源/汲極具有一源/汲極延伸,該源/汲極延伸以該摻雜磊 晶半導體材料形成且在閘極電極之邊緣下方延伸。 1 4 ·如申請專利範圍第1 3項的電晶體,其中該材料在 接近該閘極電極處具有第一厚度和隔開該閘極電極處具有 第二厚度,該第二厚度大於第一厚度。 1 5 ·如申請專利範圍第1 4項的電晶體,該電晶體包括 一側壁間隙壁,該材料在該側壁間隙壁下方延伸。 1 6 ·如申請專利範圍第1 5項的電晶體,其中該第二厚 度對齊該側壁間隙壁。 1 7 .如申請專利範圍第1 2項的電晶體,該電晶體包括 一離子植入源/汲極在該摻雜磊晶半導體材料下方。 -11 - 1260776 (3) 18.—種場效電晶體的形成方法,包含: 形成一磊晶半導體層在一半導體基底上,其中該磊晶 半導體層具有比基底低的摻雜濃度; 形成一閘極構造,包括一閘極電極和一側壁間隙壁在 該磊晶半導體層上方;和 選擇性蝕刻該磊晶半導體層的曝露部份以及在閘極電 極下方的該磊晶半導體層的部份。 1 9·如申請專利範圍第1 8項的方法,該方法包括磊晶 沉積一摻雜半導體材料在該基底上以充塡在該閘極電極下 方和該側壁間隙壁下方的區域。 20.如申請專利範圍第19項的方法,其中該磊晶半導 體層在閘極電極下方具有第一厚度和與閘極電極隔開處具 有第二厚度。 2 1 .如申請專利範圍第20項的方法,該方法包括形成 第二厚度對齊該間隙壁。 22.如申請專利範圍第1 8項的方法,該方法包括以離 子植入形成一深源/汲極區。 23 ·如申請專利範圍第1 8項的方法,該方法包括形成 該磊晶半導體層延伸在該閘極電極下方,且在該閘極電極 外側具有較大厚度,而在閘極電極下方具有較小厚度。 -12 - 1260776 七、指定代表圖 (一)、本案指定代表圖為:第(5)圖 (二) 、本代表圖之元件代表符號簡單說明: 12 半導體基底 16 閘極 28 側壁間隙壁 32 深源/汲極 3 4 第二薄間隙壁 5 0 聶晶砂層 5 0 a延伸 50b厚區 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無
TW093132256A 2003-10-24 2004-10-22 Epitaxially deposited source/drain TWI260776B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/692,696 US7060576B2 (en) 2003-10-24 2003-10-24 Epitaxially deposited source/drain

Publications (2)

Publication Number Publication Date
TW200515596A TW200515596A (en) 2005-05-01
TWI260776B true TWI260776B (en) 2006-08-21

Family

ID=34522194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093132256A TWI260776B (en) 2003-10-24 2004-10-22 Epitaxially deposited source/drain

Country Status (6)

Country Link
US (2) US7060576B2 (zh)
KR (1) KR100841806B1 (zh)
CN (1) CN1898785B (zh)
DE (1) DE112004002017B4 (zh)
TW (1) TWI260776B (zh)
WO (1) WO2005041288A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994104B2 (en) 1999-09-28 2015-03-31 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
TWI463526B (zh) * 2004-06-24 2014-12-01 Ibm 改良具應力矽之cmos元件的方法及以該方法製備而成的元件
US7122435B2 (en) * 2004-08-02 2006-10-17 Texas Instruments Incorporated Methods, systems and structures for forming improved transistors
US7332439B2 (en) * 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7247535B2 (en) * 2004-09-30 2007-07-24 Texas Instruments Incorporated Source/drain extensions having highly activated and extremely abrupt junctions
US20060151808A1 (en) * 2005-01-12 2006-07-13 Chien-Hao Chen MOSFET device with localized stressor
US7579617B2 (en) * 2005-06-22 2009-08-25 Fujitsu Microelectronics Limited Semiconductor device and production method thereof
JP4984665B2 (ja) * 2005-06-22 2012-07-25 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US7494858B2 (en) 2005-06-30 2009-02-24 Intel Corporation Transistor with improved tip profile and method of manufacture thereof
US7525160B2 (en) * 2005-12-27 2009-04-28 Intel Corporation Multigate device with recessed strain regions
KR100764058B1 (ko) * 2006-09-20 2007-10-09 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 형성방법
US7943456B2 (en) * 2008-12-31 2011-05-17 Texas Instruments Incorporated Selective wet etch process for CMOS ICs having embedded strain inducing regions and integrated circuits therefrom
US9318571B2 (en) * 2009-02-23 2016-04-19 United Microelectronics Corp. Gate structure and method for trimming spacers
US8455334B2 (en) 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US8143113B2 (en) * 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8129247B2 (en) 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8722492B2 (en) 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
US8324940B2 (en) 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
US20120126341A1 (en) * 2010-11-23 2012-05-24 Microchip Technology Incorporated Using low pressure epi to enable low rdson fet
US8901537B2 (en) 2010-12-21 2014-12-02 Intel Corporation Transistors with high concentration of boron doped germanium
US9484432B2 (en) 2010-12-21 2016-11-01 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
US8466502B2 (en) 2011-03-24 2013-06-18 United Microelectronics Corp. Metal-gate CMOS device
US8445363B2 (en) 2011-04-21 2013-05-21 United Microelectronics Corp. Method of fabricating an epitaxial layer
US8324059B2 (en) 2011-04-25 2012-12-04 United Microelectronics Corp. Method of fabricating a semiconductor structure
US8426284B2 (en) 2011-05-11 2013-04-23 United Microelectronics Corp. Manufacturing method for semiconductor structure
US8481391B2 (en) 2011-05-18 2013-07-09 United Microelectronics Corp. Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure
US8431460B2 (en) 2011-05-27 2013-04-30 United Microelectronics Corp. Method for fabricating semiconductor device
CN102891178A (zh) 2011-07-19 2013-01-23 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
CN102891176B (zh) * 2011-07-19 2016-06-01 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
US9263566B2 (en) 2011-07-19 2016-02-16 Semiconductor Manufacturing International (Beijing) Corporation Semiconductor device and manufacturing method thereof
CN102891175B (zh) * 2011-07-19 2016-03-16 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
US8716750B2 (en) 2011-07-25 2014-05-06 United Microelectronics Corp. Semiconductor device having epitaxial structures
US8575043B2 (en) 2011-07-26 2013-11-05 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8647941B2 (en) 2011-08-17 2014-02-11 United Microelectronics Corp. Method of forming semiconductor device
US8674433B2 (en) 2011-08-24 2014-03-18 United Microelectronics Corp. Semiconductor process
US8476169B2 (en) 2011-10-17 2013-07-02 United Microelectronics Corp. Method of making strained silicon channel semiconductor structure
US8691659B2 (en) 2011-10-26 2014-04-08 United Microelectronics Corp. Method for forming void-free dielectric layer
US8754448B2 (en) 2011-11-01 2014-06-17 United Microelectronics Corp. Semiconductor device having epitaxial layer
US8647953B2 (en) 2011-11-17 2014-02-11 United Microelectronics Corp. Method for fabricating first and second epitaxial cap layers
US8709930B2 (en) 2011-11-25 2014-04-29 United Microelectronics Corp. Semiconductor process
CN103247530B (zh) * 2012-02-10 2015-12-16 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制作方法
US20130214358A1 (en) 2012-02-17 2013-08-22 International Business Machines Corporation Low external resistance etsoi transistors
US9136348B2 (en) 2012-03-12 2015-09-15 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
US9202914B2 (en) 2012-03-14 2015-12-01 United Microelectronics Corporation Semiconductor device and method for fabricating the same
US8664069B2 (en) 2012-04-05 2014-03-04 United Microelectronics Corp. Semiconductor structure and process thereof
US8866230B2 (en) 2012-04-26 2014-10-21 United Microelectronics Corp. Semiconductor devices
US8835243B2 (en) 2012-05-04 2014-09-16 United Microelectronics Corp. Semiconductor process
US8951876B2 (en) 2012-06-20 2015-02-10 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8796695B2 (en) 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
CN103578987B (zh) * 2012-07-19 2016-08-24 中国科学院微电子研究所 半导体器件及其制造方法
US8710632B2 (en) 2012-09-07 2014-04-29 United Microelectronics Corp. Compound semiconductor epitaxial structure and method for fabricating the same
US9117925B2 (en) 2013-01-31 2015-08-25 United Microelectronics Corp. Epitaxial process
US8753902B1 (en) 2013-03-13 2014-06-17 United Microelectronics Corp. Method of controlling etching process for forming epitaxial structure
US9034705B2 (en) 2013-03-26 2015-05-19 United Microelectronics Corp. Method of forming semiconductor device
US9064893B2 (en) 2013-05-13 2015-06-23 United Microelectronics Corp. Gradient dopant of strained substrate manufacturing method of semiconductor device
US8853060B1 (en) 2013-05-27 2014-10-07 United Microelectronics Corp. Epitaxial process
US9076652B2 (en) 2013-05-27 2015-07-07 United Microelectronics Corp. Semiconductor process for modifying shape of recess
US8765546B1 (en) 2013-06-24 2014-07-01 United Microelectronics Corp. Method for fabricating fin-shaped field-effect transistor
US9412842B2 (en) 2013-07-03 2016-08-09 Samsung Electronics Co., Ltd. Method for fabricating semiconductor device
US8895396B1 (en) 2013-07-11 2014-11-25 United Microelectronics Corp. Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures
US8981487B2 (en) 2013-07-31 2015-03-17 United Microelectronics Corp. Fin-shaped field-effect transistor (FinFET)
US9324830B2 (en) * 2014-03-27 2016-04-26 International Business Machines Corporation Self-aligned contact process enabled by low temperature
US9831341B2 (en) * 2014-06-16 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for integrated circuit
US9627512B2 (en) * 2014-08-13 2017-04-18 Taiwan Semiconductor Manufacturing Company Ltd. Field effect transistor with non-doped channel
US20160056261A1 (en) * 2014-08-22 2016-02-25 Globalfoundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors
KR102326316B1 (ko) * 2015-04-10 2021-11-16 삼성전자주식회사 반도체 소자의 제조 방법
US9805989B1 (en) 2016-09-22 2017-10-31 International Business Machines Corporation Sacrificial cap for forming semiconductor contact
CN112582476B (zh) * 2020-12-09 2022-05-06 全芯智造技术有限公司 半导体器件及其形成方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313379A (ja) 1986-07-04 1988-01-20 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法
US5384497A (en) * 1992-11-04 1995-01-24 At&T Corp. Low-skew signal routing in a programmable array
JP3761918B2 (ja) 1994-09-13 2006-03-29 株式会社東芝 半導体装置の製造方法
KR980005893A (ko) * 1996-06-21 1998-03-30 김주용 반도체 소자의 트랜지스터 제조 방법
US6159815A (en) * 1996-09-27 2000-12-12 Siemens Aktiengesellschaft Method of producing a MOS transistor
US6015740A (en) * 1997-02-10 2000-01-18 Advanced Micro Devices, Inc. Method of fabricating CMOS devices with ultra-shallow junctions and reduced drain area
JP2967477B2 (ja) * 1997-11-26 1999-10-25 日本電気株式会社 半導体装置の製造方法
US5998835A (en) * 1998-02-17 1999-12-07 International Business Machines Corporation High performance MOSFET device with raised source and drain
KR20010080432A (ko) 1998-11-12 2001-08-22 피터 엔. 데트킨 계단식 소스/드레인 접합을 갖는 전계 효과 트랜지스터 구조
US6887762B1 (en) * 1998-11-12 2005-05-03 Intel Corporation Method of fabricating a field effect transistor structure with abrupt source/drain junctions
US6403433B1 (en) * 1999-09-16 2002-06-11 Advanced Micro Devices, Inc. Source/drain doping technique for ultra-thin-body SOI MOS transistors
US6214679B1 (en) 1999-12-30 2001-04-10 Intel Corporation Cobalt salicidation method on a silicon germanium film
US7391087B2 (en) * 1999-12-30 2008-06-24 Intel Corporation MOS transistor structure and method of fabrication
US6720632B2 (en) * 2000-06-20 2004-04-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device having diffusion layer formed using dopant of large mass number
KR100416686B1 (ko) * 2000-10-12 2004-01-31 주식회사 메디슨 의료용 초음파 진단 시스템에 사용되는 집적된 고전압펄스 발생 회로
US6403434B1 (en) * 2001-02-09 2002-06-11 Advanced Micro Devices, Inc. Process for manufacturing MOS transistors having elevated source and drain regions and a high-k gate dielectric
US6406951B1 (en) * 2001-02-12 2002-06-18 Advanced Micro Devices, Inc. Fabrication of fully depleted field effect transistor with raised source and drain in SOI technology
CN100401528C (zh) * 2002-01-23 2008-07-09 斯平内克半导体股份有限公司 具有与应变半导体基片形成肖特基或肖特基类接触的源极和/或漏极的场效应晶体管
US6605498B1 (en) * 2002-03-29 2003-08-12 Intel Corporation Semiconductor transistor having a backfilled channel material
US7166528B2 (en) * 2003-10-10 2007-01-23 Applied Materials, Inc. Methods of selective deposition of heavily doped epitaxial SiGe

Also Published As

Publication number Publication date
WO2005041288A1 (en) 2005-05-06
US7060576B2 (en) 2006-06-13
US20050087801A1 (en) 2005-04-28
KR20060060058A (ko) 2006-06-02
TW200515596A (en) 2005-05-01
US20060197164A1 (en) 2006-09-07
CN1898785A (zh) 2007-01-17
DE112004002017B4 (de) 2009-03-05
DE112004002017T5 (de) 2006-08-31
KR100841806B1 (ko) 2008-06-26
CN1898785B (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
TWI260776B (en) Epitaxially deposited source/drain
TWI272681B (en) Metal gate transistors with epitaxial source and drain regions
EP1897130B1 (en) Transistor with improved tip profile and method of manufacture thereof
US7538387B2 (en) Stack SiGe for short channel improvement
EP2517231B1 (en) Method of forming a multi-gate transistor
JP4945900B2 (ja) 絶縁ゲート電界効果トランジスタおよびその製造方法
US20120199849A1 (en) Method of fabrication of metal oxide semiconductor field effect transistor
US7582535B2 (en) Method of forming MOS transistor having fully silicided metal gate electrode
JPH06163571A (ja) 絶縁ゲート電界効果トランジスタ及びその製造方法
TW201242022A (en) Transistors with high concentration of boron doped germanium
JP2009060104A (ja) ピン電界効果トランジスタ及びその製造方法
TW200423400A (en) Schottky barrier transistor and method of manufacturing the same
JP2010520620A (ja) ソース/ドレイン・ストレッサーおよびそのための方法
TWI739152B (zh) 具有增強局部等向性之磊晶半導體材料生長
US6294415B1 (en) Method of fabricating a MOS transistor
US6924182B1 (en) Strained silicon MOSFET having reduced leakage and method of its formation
KR20020091886A (ko) 실리콘-게르마늄 선택적 에피택셜 성장을 이용한 샬로우정션 형성 방법
JPH07245397A (ja) 半導体装置の製造方法
WO2005067035A1 (en) Method for forming non-amorphous, ultra-thin semiconductor devices using sacrificial implantation layer
JP2733082B2 (ja) Mos装置の製法
TW432457B (en) Semiconductor device with selective epitaxial growth layer
KR100286903B1 (ko) 모스 트랜지스터 제조 방법
KR100665796B1 (ko) 얕은 접합 깊이를 가지는 모스 소자 및 그 제조 방법
JP4133852B2 (ja) バイポーラトランジスタおよびその製造方法
KR20030050196A (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees