TW589660B - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device Download PDF

Info

Publication number
TW589660B
TW589660B TW091125022A TW91125022A TW589660B TW 589660 B TW589660 B TW 589660B TW 091125022 A TW091125022 A TW 091125022A TW 91125022 A TW91125022 A TW 91125022A TW 589660 B TW589660 B TW 589660B
Authority
TW
Taiwan
Prior art keywords
film
semiconductor device
aforementioned
manufacturing
region
Prior art date
Application number
TW091125022A
Other languages
English (en)
Inventor
Kazuhiro Eguchi
Seiji Inumiya
Yoshitaka Tsunashima
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Application granted granted Critical
Publication of TW589660B publication Critical patent/TW589660B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

589660 ⑴ 玖、發明說明 (發明說日聽敘日I·發賴狀技術倾、杨技術、喊、實施方式及圖式簡單說明) [發明之技術領域] 本發明係關於半導體裝置及半導體裝置的製造方法,特 別是半導體裝置所使用的絕緣膜。 [先前技術] 伴隨著金屬氧化物半導體電場效應電晶體m〇sfet的微 細::將要求閘極絕緣膜的薄膜化。⑨先前所使用的氧;匕 石夕膜或氮氧化石夕膜,因直接隧道電流的增加,其約為2 _ 且將達到薄膜化的極限。 於此,提案適用於閘極絕緣膜的含金屬之氧化矽膜(有担 2稱為金屬矽酸鹽膜或矽酸鹽膜)。此金屬矽酸鹽膜,其泛 介電率比氧化矽膜高,且結晶化溫度亦較高,所以與多' ^ 矽(多晶矽化鍺)閘極電極處理的整合性高。 曰 為抑制來自閘極電極的石朋擴散,亦提案含氣的金屬 切膜(特開2_- 49349)。但是,並無法得到具有良好名 面特性的金屬氮氧化矽膜。另外,因金屬氮化物為導電相 界流多’電荷陷位密度亦高。再者’於閘極電相 ;'形成金屬矽化物,將降低絕緣特性。 ⑺金::夕酸鹽膜的形成方法,可列舉出使用有機矽烷^ ',(化學氣相沉積法)。即使有機矽烷之中,叙 :=卿1(0咖)4’,侧因分解、:度高, 所以方;使用熱CVD法之情形, ,因m、… ㈣而要7⑼C以上的溫度。於此 乂 -溫進行成膜,所以使用與TEOS同時利用臭氧 ' 方法、或使用電裝CVD法。 (2)589660 發明·繽翼 '—--- 但是,使用臭氧或電漿之情形,於成膜環境將形 或氧離子等氧的活性種。因活性氧的反應性高,所以^ 生底層軋化之問題。另外,使用電裝之情形, 將產生底層損傷之問題。 ^破壞 對於金屬矽酸鹽膜的形成方法之相關公開技術,复 如下技術。 …、有 之=^平5 — 239650號公報,揭示以烧氧基秒燒作為源極 日 添加鈦族元素的醇鹽或烷基胺化合物之方法。 =法因使用臭氧或電漿’所以基本上為使用氧的活性種 於特開平6 - i 6 〇 6 5 7號公報’亦為使用臭氧 使用氧的活性種之方法。 去且為 物ΓΓ::!”11—111715號公報’揭示利用含燒氧基的化合 H,二午所產生的生成物’添加至源極氣體的方法。但 疋,亚無記載關於混合矽源極與金屬源極之内交。 全=1 广226608號公報’揭示金屬㈣鹽膜所含有的 之技術。但是’含鈦之金屬-酸鹽,其具有 … 良好特性’且難以適用於半導體裝置之問題。 [毛明所欲解決之課題] 、 膜:ΐ:述:先前存在無法得到具優良特性的金屬梦酸鹽 到且有Η 層造成不良影響之問題。因此,難以得 /、有坆良特性或可靠度之半導體裝置。 本务明係針對上述的先前課題進盖, 金屬元素㈣切膜之半導體〖 = 6、在於以含 衣置麩升其特性或可靠度。 (3)589660
[課題之解決手段] 有關本發明之半導體裝置,係_ 、♦ 為包含半導體基板;與:種半導體裝置,其特徵 屬元素的氧化.膜之問極絕緣:迷基板上,且含金 -近的第一區域;與上面膜,有下 及罘二區域間的第三區域, °°或,與罘一區機 士 ¥述氧化矽膜所人古— 兀乐厚度方向的濃度分佈,於 、斤3有之金屬 的:關本發明之半導體裝置的製=具=。 的弟一區域、與上面附近 "有下面附近 區域間的第三區域,且金屬元c-區域及第二 第—區域或第三區域具有最大向的漠度分佈,於 参之北a新 ”” 其特徵為包含具金屬_ π之非日日貝、矽膜於半導體基 -屬凡 有前述金屬元f之非日形成的步驟’·與氧化含 氧化矽膜之步驟。 之有刖述金屬元素之 鲁 另外,有關本發明之半導體裝置的 於包含矽的有機化合物;與 ::法Ά徵在 (La)群中所馮擇人 ’、、’ Γ銓(Hf)、鋁(Αί)及綱 六: 金屬元素的有機化合物,供給於 子放谷态之步驟;與藉由不使用 土斤 前述基板上形成含前 二、:"重之熱㈣,於 〜 蜀兀恭的乳化矽膜之步驟。 ^:有關本發明之半導體裝置的製造方法,係含金屬 兀素的氧化矽膜葬ώ Γνη ^ 鸯 半導體裝置的製^方法,成於t導體基板上的步驟之 存放的容器供Μ石夕^有:寸被在於開始對半導體基板所 口夕之有機化合物的步驟;與開始供給含
(4) 發_钥績頁 所述矽之有機化合物後,開始對前述容器供給含金屬元素 之有機化合物的步驟;與對前述容器增加含前述金屬元素 <有機化合物供給量的步驟。 [發明之實施形態] 以下,參照圖面說明本發明之實施形態 (第一實施形態)
以下’參照圖面說明本發明之第一實施形態。 圖1為模式顯示有關第一實施形態之MIS (M〇s)型電場效 應% b曰體,於閘極絕緣膜所使用的金屬矽酸鹽膜(含矽之氧 化矽膜)中的金屬元素之膜厚方向的濃度分布。於此,金屬 凡素雖使用Zr(錯),但藉由Hf(铪)、A1(銘)、La(鑭)等添加 於氧化矽膜,相較於氧化矽膜使用增加介電率之元素,可 侍到與使用Zr之情形同樣效果的濃度分布。 口 士圖1所不,於金屬矽酸鹽膜的中央附近,Zr的濃度最 。此外,濃度峰值,其未必於金屬矽酸鹽膜的中央,
於金屬矽酸鹽膜的下面附近區域(金屬矽酸鹽膜*矽美 =界面附近區域)、與上面附近區域(金屬料鹽膜^ 電極的界面附忻萨#、 、/、甲1 - 域)即可。〜)、與上面附近區域所夹區域(内部 币日 ,料得到特性或可靠度佳的MIS型電"广 兒曰曰體。亦即,於半導體基板側的^患 密度低,將抑制^、胃@ ”面的固定電荷 才”制通逼移動度的低下。另外,於 的界面,閘極電極 、甲亟乾極侧 使用夕日日矽或多晶矽化鍺之愔 抑制界面的石夕化物g 形’將可 物反應,防止可靠度的低下。 (5) (5)明說明繽頁 圖2 ίτ、針對如上述之構造,模 - ^ Γχη , 、飞”、、員不另外於閘極電極侧導 入虱(Ν)時之Zl^N的濃度分 的灭二, ’圖2所示,於閘極電極側 的界面附近,>4的濃度為最大。 如此’因於金屬矽酸鹽膜的 所以門# ^ 面侧有陡峭的N濃度峰值, 拍^丨焕^ 飞夕日日矽化鍺之情形,將可有效 卞作貝擴政至閘極絕緣膜中,甚至 擴月欠至半導體基板。另外,因抑 心μ、 P別Zl與氮的反應,所以可 抑制漏電流的增加或可靠度的低下雨土 .^ 又刃低下。再者,於上面側因存 在鼠’所以將抑制基板側界 n w W町迎的固定電荷密度增加, 可抑制通道移動度的低下。 另外,金屬錢鹽膜中所含有的金屬元素’未必為-種 ,亦可含有Zr、Hf、A1&La中兩種以上之元素。 其次,有關本實施形離的制 4貝她小心、的衣w方法,參照圖 做說明。 首先,如圖3⑷所示’準備設置一般的元件分離區域(不 圖不)之矽基板11。 其次,如圖3(b)所示,於石夕基板丨丨的表面上,堆積約2咖 扣之非日日日質賴12。此非晶”膜12,耗由如使用四 氯化結(ZrCl4)、四氫化石夕(SlH4)及氫(h2)之低壓化學氣相沉 積LPCVD法所形成。典型的成膜條件為5⑽。c、Q 5 丁⑽。 藉由控制ZrCU與SlH4的流量比,將可使含&的非晶質矽膜 1 2中之Zr濃度峰值位於膜厚方向的中央附近。 非曰曰Η夕膜12,亦可使用Zr革巴物與s 1革巴物之潑鑛法進行 堆積。此情形,藉由控制Zr濺鍍與Si濺鍍的電力比,將可 -10- (6)5S9660 月繽頁 使Zr濃度峰值位於膜厚方向的中央附近。 此外,Z r濃度峰俏,並^_ v ^ 未必位於非晶質矽膜丨2的中央。 亦可位於非晶質石夕膜]2的πτ & ^ < 、 胰12的下面附近區域與上面附近區域所 夾之區域(内部區域)。另外’於非晶質石夕膜12的下 區域亦可具有Zr濃度峰值。
其^ ’如圖3⑷所示’設定基板溫度40Gt,使用氧氣(〇2) 电水氧化法氧化含Zr的非晶質矽膜12,形成Zr矽酸隨膜 (含Zr之氧化石夕膜)13。々石夕酸鹽膜13,其反映非晶質石夕二12 的&濃度分布,具有如圖1所示之Zr濃度分布。於此,藉由 可較低溫氧化之電t氧化法,抑制氧化時的結晶化,將可 防止伴隨結晶化之形態皺裂。 另外於非曰日貝矽膜12的下面附近區域具有Zr濃度峰值 之情形,於上述氧化步驟,因矽基板n的表面區域亦氧化 ,所以於Ζι’矽酸鹽膜13的内部亦存在Zr濃度峰值。
其次,如圖3(d)所示,設定晶圓溫度400°C,使用氮氣(N2) 電漿氮化法,氮化Ζγ矽酸鹽膜13的表面,氮化表面形成心 矽I鹽膜1 4。此氮化表面的Zr矽酸鹽膜丨4,其將為如圖2 所示之氮氣濃度分布。 其次’如圖3 (e)所示,閘極電極之多晶矽化鍺膜(多晶矽 膜亦可)15,使用LPCVD法堆積約150 nm ◦於此,於堆積多 晶石夕化鍺膜15之前,進行例如9〇0〇c、10秒的退火,亦可進 行所導入氮氣的安定化。 之後’經過光蝕刻步驟、閘極電極蝕刻步驟、離子植入 步驟、活性化退火步驟等,形成MIS型電晶體(不圖示)。再 589660
⑺ 者,經過配線步驟,完成半導體裝置(不圖示)。 如上所述,根據本實施形態,藉由最佳化金屬矽酸鹽膜 中的金屬元素之濃度分布,可得到良好的界面特性,同時 可控制閘極電極界面的反應。另外,藉由最佳化I氣的濃 度分布,可抑制金屬矽酸鹽膜中的陷位增加,同時可抑制 來自閘極電極的雜質擴散。因此,可實現高性能且高可靠 度的半導體裝置。
此外,金屬元素使用Zr、Hf、A^La,將可增加金 酸鹽膜的有效介電率。目此,物理上膜厚厚的金屬石夕酸鹽 膜可作為閘極絕緣膜使用,可實現高性能且高可靠度的半 稭由堆積金屬與矽之兩元奇 成非晶質石夕膜’將容易控制組合,可用低成本製造高性 的+導體裳置。另外,抑制部分金屬氧化物 可:現特性不均-較小料導體裝置。再者,藉由與ί
U別:入鼠氣’可容易地實現最佳的膜組合。 此外错由使用金屬源極與矽源極之C 石夕膜,例如於局部 ^成非日日 ,可實現高可靠度的半丄:=均一地ι 屬元素的_化物,娜#:另外,金屬源極使心 膜的控制性並以較低進1的氫化物’將可確保極$ 此外,藉由。2電漿二::;膜/可提高良率。 種進行氧化,將可抑制^ 1 ㈣使用活性氧^丨 金屬矽酸鹽膜的表:*矽酸鹽膜的多結晶化。再者’ 的表面以電襞進行氮化,具陡峭濃度分布纪 -12- ⑻ 丨發明繽買. 氮氣將可用低溫導入金屬矽酸鹽膜。 (弟一貫施形態) 以下,參照圖面,說明本發明的第二實施形態。本實施 形恶’金屬矽酸鹽膜(含金屬元素之氧化矽膜)不使用氧的 活性種,而藉由熱CVD法形成。氣體源,係使用含矽的有 機化合物、與含金屬元素(Zr、Hf、A1或La)的有機化合物。 (實施形態二一 A) 本實施形態,金屬矽酸鹽膜,係使用四乙氧基矽燒 (S1(0C2H5)4: TEOS)與特丁 氧化锆(Zr(0t-C4H9)4: ZTB), 並以熱C V D法堆積之實施例。 圖4為顯不一種於本實施形態所使用的LpCvD裝置之實 施例。以下,一邊參照圖4,一邊說明製造方法。 首先’準備八英吋的矽基板,並使用純水稀釋的氟酸, 去除於矽基板表面所形成的自然氧化膜。稀氟酸處理後, 矽基板1 Oj立即搬送至反應容器丨〇 i内所設置的放置台丨〇4 上。再者,反應容器101内以真空泵1〇7進行排氣。 反應容器ιοί内的壓力達到10-2 T〇rr以下後,藉由流量控 制的124及125,没定流量為3〇〇 sccm之氬&氣體導入反應 合為内。其次,藉由與壓力計1〇8連動的壓力調整閥, 控制反應容器ι〇1内的壓力為10 T〇rr。反應容器ι〇ι内的壓 力安定後,藉由基板加熱…5,開始加熱基板1Q3。基板 10^的級度,係使用連接放置台104所配置的熱電對與溫度 调節器(不圖示),控制於5 9 5 °C。 基板/凰度安疋後,氧氣(〇2氣體)以流量控制器丨23調整流 (9) (9)589660 發明钥.繽翼 量為200 sccm,通過閥143,不經過反應容器ι〇1流通。此 外’氬氣體以流量控制器12丨及122分別調整為1〇〇 seem, 藉由飢入原料容器11 1及112,開始原料的反應。此些氣體 亦分別通過閥14 1及142,不經過反應容器10 1流通。 於原料容器111内充填TEOS,於原料容器112内充填ZTB 。原料容器11 1及112皆控制溫度為7〇ΐ ^另外,使用壓力 計15 1及152與壓力調整閥13 132,原料容器η丨及112内 的壓力分別調整為丨00 T〇rr。以此般條件,推測Te〇s的流 量為56 SCCm,ZTB的流量為1 6 sccm。 因原料的溫度為7(TC,較室溫高,所以對反應容器! 〇 j輸 送原料氣體之配管及閥收藏於加熱爐内,並加熱至2〇〇ΐ左 右,以防止凝聚。另外,蓮蓬頭102,亦使用油加熱至2〇〇t 左右,以防止蓮蓬頭内原料的凝聚。至此為開始成膜的前 段。 事先流入的氧氣與原料氣體,藉由閥14][、142及143同時 切換為閥144、I45及丨46,經由蓮蓬頭102導入反應容器1〇1 内,開始成膜。成膜時間為丨〇分。 經過1〇分後,藉由閥144、145及M6切換為閥141、142及 143,停止對反應容器内之TE〇S、ZTB及氧氣的供給。停 止氣體的供給後,立即停止基板加熱器1〇5之供電,冷卻基 板103。基板溫度降低至2〇(rc後,基板1〇3從反應容器 取出。 此般所形成的薄膜膜厚使用膜厚計測定之結果,形成237 nm的心矽酸鹽膜。此外,基板溫度設為55〇t、57〇。〇,進 -14 - 589660
發明_勞續頁 行同樣的成膜。改變基板溫度之外,其他同上述條件。其 結果,550°C為191 nm,570°C為176 nm。圖5為此些資料變 換為成膜速度之結果。
為做比較,只使用T E 0 S進行成膜。成膜的順序與上述完 全相同。但是,不供給ZTB。基板溫度設為57〇°c及590°C 。其結果’基板溫度570C為0·7ηηι’ 59〇C為0.9nm的膜厚 。圖6為此些資料變換為成膜速度之結果。 此外,只使用ZTB以595 t進行成膜之結果,成膜速度為 0. 1 nm/分以下。 從此些結果,得知只限於同時供給TEOS與ZTB兩者之情 形,將增加成膜速度。 如上所述,藉由同時供給TEOS流量(供給量)的1/10以下 之微量ZTB,相較於只有te〇S之情形,可得到1〇〇倍以上 的成膜速度,可以實用的成膜速度形成金屬矽酸鹽膜。
另外,即使不使用對底層基板造成不良影響的電漿或臭 氧等化學上活性的氧氣,以600qc以下的比較低溫,藉由熱 CVD法可形成金屬矽酸鹽膜。此係因ZTB促進了 TEOS的分 解反應。
Zr矽酸鹽膜所含有Zr原子數與Si原子數的和對Zr原子數 的比率(組合比),利用螢光X線測定做調查。上述比率於此 以Zr/(Zr+ Si)表示。其結果,同時供給ZTB與TEOS所成膜 之試料,Zr/(Zr + Si)為12〜30%。另外,藉由控制ZTB與 TEOS的流量,得知可控制z^Zr+Si)於5〜30%之範圍。 Zr/(Zr + Si)變大時,所得到的zr石夕酸鹽膜的比介電率將 -15 -
589660 '’艾n。換吕之,藉由控制Zr與Si的比率,將可控制Zr矽酸 鹽膜的比介電率。此結果對應用於半導體裝置時相當重要 。亦即,層間絕緣膜或隔層膜等,對於希望比介電率低之 情形,調整ZTB與TEOS的供給量,使Zr/(Zr+Si)變小。另 一方面,如閘極絕緣膜,對於希望比介電率高之情形,則 调整ZTB與TEOS的供給量,使Zr/(Zr+Si)變大。 (實施形態二一 B) 本實施形態,係金屬矽酸鹽膜使用TE〇S與特丁氧化铪 (Hf(Ot-C4H9)4 : HTB),並以熱CVD法堆積之實施例。本實 施形態,亦與上述的實施形態二一 A同樣,使用圖4所示之 LPCVD裝置。 首先,準備八英吋的石夕基板,使用純水稀釋的氟酸,去 除於碎基板表面所形成的自然氧化膜。稀氟酸處理後,矽 基板103立即搬送至反應容器1 〇 1内所設置的放置台1 〇4上 。再者’反應容器101内以真空泵1〇7進行排氣。 反應谷态1 0 1内的壓力達到1 〇-2 T〇rr以下後,藉由流量控 制态124及125’設定流量為3〇〇似瓜之^氣體導入反應容 器内。其次,藉由與壓力計1 08連動的壓力調整閥丨〇6,控 制反應容器Η) 1内的壓力為1 T〇rr。反應容器1 〇丨内的壓力安 定後’藉由基板加熱器1〇5,開始加熱基板1〇3。基板1〇3 的溫度,係使用連接放置台1〇4所配置的熱電對與溫度調節 器(不圖示),控制於570。(:。 基板溫度安定後’氧氣(〇2氣體)以流量控制器123調整流 置為200 seem,經由閥143,不經過反應容器流通。此 -16 - 589660
奪明說钥繽頁 外’氬氣體以流量控制器121及122分別調整為100 seem, 藉由流入原料容器1 1 1及1 1 2,開始原料的反應。此些氣體 亦分別經由閥丨4 1及142,不經過反應容器1 〇 1流通。 ’ 於原料容器1 1 1内充填TEOS,於原料容器Π2内充填HTB 。原料容器11 1及112分別控制溫度為4〇t:及45°C。另外, 使用壓力計15 1及152與壓力調整閥π 1及132,原料容器111 及112内的壓力分別調整為1〇〇 τ〇η,。以此般條件,推測 _ TEOS的流量為12 sccm,HTB的流量為〇,3 1 sccm。 因原料的溫度較室溫高,所以對反應容器1〇1輸送原料氣 - 脰之配官及閥收藏於加熱爐内,並加熱至2〇〇它左右,以防 止凝聚。另外,蓮蓬頭1〇2,亦使用油加熱至2〇〇〇c左右, 以防止蓮蓬頭内原料的凝聚。至此為開始成膜的前段。 事先流入的氧氣與原料氣體,藉由閥141、142及143同時 切換為閥:U4、145及146,經由蓮蓬頭1〇2導入反應容器1〇1 内’開始成膜。成膜時間為丨〇分。 、二過刀後,籍由閥144、145及146切換為閥141、142及 籲 143/,停止對反應容器内之TE〇S、HTB及氧氣的供給。停 止氣體的供給後,立即停止基板加熱器105之供電,冷卻基 板1〇3。基板溫度降低至200。〇後,基板1〇3從反應容器ι〇ι 取出。 此般所形成的薄膜膜厚使用膜厚計測定之結果,形成4〇 · nm的Hf石夕酸鹽膜。 為做比較,只使用丁則進行成膜。成膜的順序與上诚完 全相同。但是’不供給HTB。其結果,膜厚為〇nm,並無 -17 - 589660
發_說朝繽翼 形成金屬石夕酸鹽膜。 此外,只使用HTB以57(TC進行成膜之結果,成膜速度為 0.1 nm/分以下。 從此些結果,得知只限於同時供給TEOS與HTB兩者之情 形,將增加成膜速度。 如上所述,藉由同時供給TEOS流量(供給量)的1/1〇以下 之微量HTB,相較於只有TEOS之情形,可大幅增加成膜速 度,可以實用的成膜速度形成金屬矽酸鹽膜。 另外,即使不使用對底層基板造成不良影響的電漿或臭 氧等化學上活性的氧氣,以60CTC以下的比較低溫,藉由熱 CVD法可形成金屬矽酸鹽膜。此係因HTB促進了 TEOS的分 解反應。
Hf矽酸鹽膜所含有Hf原子數與Sl原子數的和對Hf原子數 的比率(組合比),利用螢光X線測定做調查。上述比率於此 以Hf/(Hf+Si)表示。其結果,同時供給]91[^與丁£;〇8所成膜 之试料,+ Si)為23%。另外,藉由控制htb與丁β〇§ 的流量,得知可控制Hf/(Hf+SiL)於5〜30%之範圍。 S;i)變大時,所得到的Hf矽酸鹽膜的比介電率將 、交咼。換吕之,藉由控制Hf與Si的比率,將可控制Hf矽酸 鹽膜的比介電率。此結果對應用於半導體裝置時相當重要 。亦即,層間絕緣膜或隔層膜等,對於希望比介電率低之 十月形,调整HTB與TE〇S的供給量,使+ Si)變小。另 一方面,如閘極絕緣膜,對於希望比介電率高之情形,則 调整HTB與TEOS的供給量,使Hf/(Hf+Si)變大。 (14)589660 發明說_繽買 皆為 本K ^形恶所進行的成膜結果顯示於圖7。基板溫度 C反應至内的壓力為i T〇rr ’成膜時間為⑺分。 (實施形態二〜C) B之方法形成具金屬 本實施形態,係關於以實施形態二 矽酸鹽膜的MOS電容器。 如圖8所示,於=型矽基板以上,藉由實施形態二一 b之方 =成厚度4 _的金屬石夕酸鹽膜22。膜厚的控制係改變成 膜時間。所形成的金屬矽酸鹽膜22, ϋ由螢光χ線測定, Uf/(Hf+Si)為1〇%。此外,於金屬矽酸鹽膜η上,形 成白金電極23。白金電極23,係經由遮罩以濺鍍法形成。 使用如上述製作的MOS電容器,利用容量—電壓法(c — v 法)’測置界面準位密度。其結果,矽的頻帶間隔中所形成 的界面準位密度最低值為2x 1011 cm-2eV-i。 為進行比較,金屬矽酸鹽膜22,以使fflTE〇s與氧氣之電 漿CVD法形成。設定基板溫度4〇〇t:,使用13 % ^^2的無 、泉包y員率兒漿。膜厚為4 nm。電極23,係使用以錢鍍法 所形成的白金。測量如上述所形成的M〇s電容器界面準位 岔度之結果,為lx 1〇13 cm-2 eV」。 其他的比較實施例,金屬矽酸鹽膜22,係以使用TEOS — 〇3之熱CVD法形成,製作與先前同樣的M〇s電容器。金屬 石夕I鹽膜22 ’係使用熱璧型cvd裝置,於常壓、400°C下形 成。膜厚為4 nm。上端電極23為白金。使用此MOS電容器 之測量結果,界面準位密度為5χ 1〇ι2 crn-2 eV-i。 圖9為總結上述的各測量結果。 589660
以電漿CVD法形成金屬矽酸鹽膜之情形,界面準位密度 變南,係於金屬矽酸鹽膜形成時,因電漿使矽基板表面受 J損^使用TEOS —〇3之熱CVD法形成金屬石夕酸鹽膜之情 形,界面準位密度變高,係因〇3的化學反應性高,致使矽 基板表面無法維持良好的狀態。 對於上述,本實施形態’因不使用氣氣的活性種,所以
可形成缺陷少的氧化膜/矽界面。其結果,將可得到低界面 準位密度。 如上所述’根據本實施形態’藉切源極與金屬源極的 相互:用’促進源極氣體的分解。因此’即使如6峨以下 的低/皿’不使用氧氣的活性種’冑由熱cvd法將可形成良 質的金屬㈣鹽膜。另彳,因不使用氧氣的活性種,所以 於金屬矽酸鹽膜與半導體基板間的界面,可得到良好的界 另^金屬元素,除上述的之外,亦可使用A]
二由使用此些金屬元素,可增加金屬矽酸鹽膜的有 甩〜目此,物理上膜厚厚的金屬石夕酸鹽膜可 絕緣膜使用,並可實現高性能且可靠度高的半導體裝二 此外,於金屬矽酸鹽膜中所含有的金屬元二= e 木必為一 ,「使^有心、财、A1&La中的兩種以上之元 到同樣的效果。 ’、守口 另外’矽源極,可使用含矽的有機化合物,而金屬原 ’則可使用含zr、Hf、A1及以中至少 屬 有機化合物。 。產屬兀素 -20 - 589660
特別是,含矽的有機化合物,最好為TE〇s等,使用矽的 醇鹽化合物。此外,含金屬元素的有機化合物,最好使用 特丁氧基化合物等(M(〇t-c4H9)4 :其中,“為Zr、Hf、A1 或La)金屬元素之醇鹽化合物。此些化合物,因蒸氣壓高 所以將提升CVD的控制性。其結果,將可形成膜厚均一性 或組合控制性佳的金屬石夕酸鹽膜。
另外,反應容益所供給的金屬源之流量(供給量)大於矽源 之流量(供給量)的1/10時,雖難以得到石夕酸鹽膜成膜速度增 大之效果,但是於1/10以下將可使成膜速度大幅增加。 此外,金屬㈣鹽膜所含有的金屬S素之原子數假設為 NM ’梦之原子數假設為Nsi時,最好為 0<NM/(NM+NSl)<0.5。 $屬兀素的比率太高時,將造成金屬矽酸鹽膜之熱性不穩 定特別是比率為G.5以上時,其傾向將更為顯著。 (第二實施形態)
以下’芩照圖面’說明本發明之第三實施形態。本實施 形態,係有關使金屬矽酸鹽膜所含有的金屬元素(zr、Hf 或La)具有濃度分布之方法。 八圖為顯示如第二實施形態所說明之使用cvd裝置形成 二屬石夕酸鹽膜時的氣體供給程序之圖。於此,石夕源使用 二,金屬源使用ZTB(或HTB)。另夕卜,有關基本的成膜 、,等,其與第二貫施形態同樣,於此省略說明。 、’先開士口對存放石夕基板的反應容器内供給TEOS。TEOS 、。L疋後’開女° <共給ZTB ’並漸漸地增加ZTB的供給量 -21 - (17) 發明.說ft繽買 經過所定時間後,漸漸
圖3(a)至圖3(e)所說明之步驟, 。之後,ZTB的供給量保持一定, 地減少Z T B的供給量。之後,停止 之供給。如此’於矽其祐μ脸取Λ 膜’金屬元素及氮氣的濃度 施形態。因此,藉由減少如 將可得到具有與第一實施形 態所述貫施例同樣效果之半導體裝置。 另外,對於矽源及金屬源,其除了 te〇s&ztb之外,同 樣可適用第二實施形態所詳述之材料。因此,藉由使用如 與第二實施形態同樣不使用氧氣的活性種之熱cvd法,將 可得到具有與第二實施形態所述實施例同樣效果之半導體 裝置。 如上所述,根據本實施形態,可最佳化金屬矽酸鹽膜中 的金屬元素或氮氣之濃度分布,可實現高性能且高可靠度 之半導體裝置。另外,因利用不使用氧氣之活性種之熱cVD 法,將可實現更高性能且高可靠度之半導體裝置。 以上’雖說明本發明之實施形態,但本發明並不限定於 上述實施形態,於不脫離其主旨的範圍内,可實施各種變 形。再者’於上述貫施形態’其包含各種階段的發明,夢 由適當組合所揭示的構成要素,將可粹取出各種發明。例 如,即使從所揭示的構成要素刪除幾個構成要素,只要能 得到所定的效果,將能粹取為發明。 [發明之效果] -22 - (18)589660
根據本發明,將可提升含金屬元素的氧切膜之半導轉 裝置的特性或可靠度。 、 [圖式之簡要說明] 圖1為有關本發明之第一實施形態’模式顯示金屬石夕酸趨 膜中的金屬元素之膜厚方向的濃度分布。 凰 /2為有關本發明之第—實施形態,模式顯示金“㈣ 朕中的金屬兀素及氮氣之膜厚方向的濃度分布。 、,圖3⑷,⑻,⑷,⑷,⑷為顯示有關本發明第—實施形 半導體裝置製造方法的刮面圖。 〜 圖4為顯示有關本發明第-奋 个〜月弟一貝鈀形恶之CVD裝置的構诰 圖 。 圖5為顯示有關本發明第二實施形態之金屬石夕酸鹽 膜速度與基板溫度的關係圖。 、 :為有關本發明第二實施形態的比較例,顯示金屬石夕酸 1 ^成膜速度與基板溫度的關係圖。 圖7為有關本發明第—墙 、 个〜月乐一貝靶形態,顯示當改變HTB與 〇S的"IL i日守之金屬石夕酸鹽膜的測定結果。 構 圖8為顯示有關本發明第一每 Λ1乐一男、施形悲之+導體裝置 造之剖面圖。 的 圖9為顯示有關本發明第二實施形態之界 低減效果。 千1 *度 圖10為顯示有關本發明第二麻 弗一貝、施形悲之乳體供給程序圖 圖式代表符號說明 11 · · · ^夕基板 -23 589660 (19) • •非晶質矽膜 • . Zr矽酸鹽膜 ••表面氮化之Zr矽酸鹽膜 ••多晶矽化鍺膜 • · η型砍基板 •.金屬砍酸鹽膜 •白金電極 • · ·反應容器 .·.蓮蓬頭 ..·破基板 • ·.放置台 • .·基板加熱器 、13 1、13 2 . · •壓力調整閥 • · •真空泵 、151 、 152 · · ·壓力計 • . •加熱爐 、1 12 · ·.原料容器 、122、123、124、125 ...流量控制器 、142 、 143 、 144 、 145 、 146 · ••閥
12 · 13 · 14 · 15 · 21 · 22 · 23 · 101 102 103 104 105 106 107 108 109 111 12 1 141
-24 -

Claims (1)

  1. 拾、申請專利範圍 4種半辱體裝置,其特徵為包含:半導體基板;形成於 =述半導體基板上,且含金屬元素的氧化矽膜之問極絕 緣獏;及形成於前述閘極絕緣膜上的電極;且 :有刖述金屬兀素的氧化矽膜,其具有下面附近的第 區域,及上面附近的第二區域;及第一區域與第二區 域間的第三區域;且
    4. 別述氧化矽膜所含有之金屬元素厚度方向的濃度分佈 ,於丽述第三區域具有最大點。 如申請專利範圍第丨項之半導體裝置,其中前述的氧化 石夕膜另外含氮,且 —別述氧化矽膜所含氤的厚度方向之濃度分布,於前述 弟二區域具有最大點。 %寻扪乾圍第1項之半導體裝置,其中前述氧化矽 σ负灸至屬兀素,係從Zi*、Hf、A1及La群中選擇。 申明寸利範圍第丨項之半導體裝置,其中前述的 石,另外含其他金屬元素,且 一剐述其他金屬元素,係從Zr、Hf、A1及La群中選擇。 種半導體裝置的製造方〉去,其特徵為包含 基柄卜# a、人A τ v體 九成3孟屬元素的非晶質矽膜之步驟,复1 面附诉Μ结 r~ /、/、$下 與/ 區域、上面附近的第二區域、及第一區域 二:一區域間的第三區$,且金屬元素厚度方向的❹ 4於:二區域或第三區域具有最大點;及以 一 t化含前述金屬元素的非晶質矽膜,形成含前I严 几素的氡切膜之步驟。 589660
    . 叫專利靶圍第5項之半導體裝置的製造方法,复 另外含氮化前述氧化矽膜表面之步驟。 ’、 7.範圍第5項之半導體裝置的製造方法,其 8 IΪ靖I:t:,係由使用金屬源與發源之C VD所形成 祀圍乐7項之半導體裝置的製造方法,复 月处h屬源係前述金屬元素的_ 矽的氫化物。 引連的石夕源 m::利範圍第5項之半導體裝置的製造方法,复 非晶質矽膜’係使用活性的氧化種進行,仆、 .二申-專利乾圍第6項之半導體裝置的韋 刖逑氧化石夕膜的表面,係使用 、 η. -種半導體裝置的製造方法,並特慢:二。 板的容器供給含倾機化合物=二對存放基 群中選擇之含 、r、Hf、A:[及 藉由不你用的有機化合物之步驟;及 、使用乳的活性種之熱CVD, 含前述金屬元素的氧化石夕膜之步驟。 基板上 12. =請專利範㈣U項之半導體裝 對可述容器另外供給氧氣。 U表 13. 如申請專利範圍第u項之半 含前述金屬元素的氧化石夕膜為門^置的製造方法, 如申請專利範圍第u項之半緣膜。 含前述金屬元素的有機化合物,c方法, ,且前述其他的金屬元素係從Zr、Hf、3及=、金屬 K如中請專利範圍第Μ 认一中選 <干♦脰I置的製造方法 中 中 為 中 中 La 形成 其中 其中 其中 元素 擇。 其中
    -2 - 申•專繼聰徵薦 H::供給含前述金屬元素的有機化合物之供給 Μ; '1述合益供給含前述矽的有機化合物之供給量 白勺1 /10以下。 I 1 6.如申請專利笳 I、+、— 圍弟1 1項之半導體裝置的製造方法,其中 刖返氧化石夕腹祐人― τ 、斤s有的金屬元素之原子數假設為nm,矽 17 ^ 设為 Nsi時’為 0<NM/(NM+NSl)<0.5。 i /. 一種半導體梦 具有金屬元:方法’其特徵為包含藉由CVD將 , $之乳化矽膜形成於半導體基板上的步驟 -EL 包含:開始對存放半導體基板的容 化合物之步驟; ^ 於開始供給含前述石夕的有機化合物後,開 器供:含金屬元素的有機化合物之步驟;1 ^ 之::述容器增加含前述金屬元素的有機化合物供給量 18. 如申請專利範圍第17項之半導體裳置的製造方法 另外包含增加含前述金屬元素的有機化合物之卜旦 後,對前述容器減少含前述金屬元素的有機化合物^ 量之步驟; U… 對前述容器停止供仏人二、+、人ρ 步驟;及 3 屬元素的有機化合物之 停止供給含前述金屬元素的有機化合物後,域交 器停止供給含前述矽的有機化合物之步驟。 〜奋 19. 如申請專利範圍第18項之半導體裝置的製造方法,其中 589660 申諝導«範圜繽買 於停止供給含前述矽的有機化合物後,另外包含氮化所 得到的前述金屬元素之氧化矽膜表面的步驟。 20.如申請專利範圍第1 1或17項之半導體裝置的製造方法 ,其中含前述$夕的有機化合物為石夕的醇鹽化合物。 2 1.如申請專利範圍第20項之半導體裝置的製造方法,其中 前述矽的醇鹽化合物為四乙氧基矽烷。 22. 如申請專利範圍第11或17項之半導體裝置的製造方法 ,其中含前述金屬元素的有機化合物,係前述金屬元素 的醇鹽化合物。 23. 如申請專利範圍第22項之半導體裝置的製造方法,其中 前述金屬元素的醇鹽化合物為特丁氧基化合物。
TW091125022A 2002-01-08 2002-10-25 Semiconductor device and method of manufacturing semiconductor device TW589660B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001546A JP4102072B2 (ja) 2002-01-08 2002-01-08 半導体装置

Publications (1)

Publication Number Publication Date
TW589660B true TW589660B (en) 2004-06-01

Family

ID=19190630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091125022A TW589660B (en) 2002-01-08 2002-10-25 Semiconductor device and method of manufacturing semiconductor device

Country Status (5)

Country Link
US (4) US6844234B2 (zh)
JP (1) JP4102072B2 (zh)
KR (2) KR100502381B1 (zh)
CN (1) CN1431716A (zh)
TW (1) TW589660B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679148B2 (en) 2002-07-16 2010-03-16 Nec Corporation Semiconductor device, production method and production device thereof
JP2004193150A (ja) * 2002-12-06 2004-07-08 Toshiba Corp 半導体装置および半導体装置の製造方法
JP4112404B2 (ja) * 2003-03-13 2008-07-02 株式会社東芝 半導体装置の製造方法
JP4051063B2 (ja) * 2003-03-13 2008-02-20 富士通株式会社 半導体装置の製造方法
US20040237889A1 (en) * 2003-05-28 2004-12-02 Winbond Electronics Corporation Chemical gas deposition process and dry etching process and apparatus of same
JP2005079223A (ja) 2003-08-29 2005-03-24 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP3790242B2 (ja) * 2003-09-26 2006-06-28 株式会社東芝 半導体装置及びその製造方法
JP4059183B2 (ja) 2003-10-07 2008-03-12 ソニー株式会社 絶縁体薄膜の製造方法
CN101300026A (zh) 2003-10-15 2008-11-05 得克萨斯系统大学评议会 电子、光、磁、半导体和生物技术应用中作为支架的多功能生物材料
JP4629325B2 (ja) * 2003-10-17 2011-02-09 東京エレクトロン株式会社 トランジスタの製造方法
TW200526804A (en) * 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
JP2005191482A (ja) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc 半導体装置及びその製造方法
KR100886029B1 (ko) * 2004-01-28 2009-02-26 도쿄엘렉트론가부시키가이샤 기판 처리 장치의 처리실 청정화 방법, 기판 처리 장치 및기판 처리 방법
JP4542807B2 (ja) * 2004-03-31 2010-09-15 東京エレクトロン株式会社 成膜方法および成膜装置、ならびにゲート絶縁膜の形成方法
GB0412790D0 (en) * 2004-06-08 2004-07-14 Epichem Ltd Precursors for deposition of silicon nitride,silicon oxynitride and metal silicon oxynitrides
JP4550507B2 (ja) * 2004-07-26 2010-09-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4563113B2 (ja) * 2004-08-26 2010-10-13 株式会社日立国際電気 シリコン酸化膜の形成方法、半導体デバイスの製造方法および基板処理装置
JP4564310B2 (ja) * 2004-09-01 2010-10-20 株式会社日立国際電気 半導体装置の製造方法
JP4028538B2 (ja) * 2004-09-10 2007-12-26 株式会社東芝 半導体装置の製造方法およびその製造装置
US7563727B2 (en) * 2004-11-08 2009-07-21 Intel Corporation Low-k dielectric layer formed from aluminosilicate precursors
KR100648632B1 (ko) 2005-01-25 2006-11-23 삼성전자주식회사 높은 유전율을 갖는 유전체 구조물의 제조 방법 및 이를 포함하는 반도체 소자의 제조 방법
US20060228898A1 (en) * 2005-03-30 2006-10-12 Cory Wajda Method and system for forming a high-k dielectric layer
US7517814B2 (en) * 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
US7501352B2 (en) * 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
JP4689324B2 (ja) * 2005-04-04 2011-05-25 東京エレクトロン株式会社 成膜装置、成膜方法および記録媒体
JP2006310601A (ja) * 2005-04-28 2006-11-09 Toshiba Corp 半導体装置およびその製造方法
KR100608453B1 (ko) * 2005-04-30 2006-08-02 주식회사 아이피에스 HfSiN 박막증착방법
US20070066084A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Method and system for forming a layer with controllable spstial variation
US20070065593A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Multi-source method and system for forming an oxide layer
WO2007040057A1 (ja) 2005-10-04 2007-04-12 Nec Corporation 半導体装置
US8053849B2 (en) * 2005-11-09 2011-11-08 Advanced Micro Devices, Inc. Replacement metal gate transistors with reduced gate oxide leakage
JP4413858B2 (ja) 2005-12-13 2010-02-10 株式会社東芝 乱数検定回路
JP2007235093A (ja) * 2006-01-31 2007-09-13 Toshiba Corp 半導体装置の製造方法
US8148275B2 (en) * 2007-12-27 2012-04-03 Canon Kabushiki Kaisha Method for forming dielectric films
US8012822B2 (en) * 2007-12-27 2011-09-06 Canon Kabushiki Kaisha Process for forming dielectric films
JP5286052B2 (ja) 2008-11-28 2013-09-11 株式会社東芝 半導体装置及びその製造方法
KR101584100B1 (ko) 2009-10-29 2016-01-13 삼성전자주식회사 금속 실리케이트 막의 형성 방법 및 이를 이용한 반도체 소자의 형성 방법
JP6142300B2 (ja) * 2013-12-02 2017-06-07 株式会社Joled 薄膜トランジスタの製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US500113A (en) * 1893-06-27 harrison
US64970A (en) * 1867-05-21 graham
US23120A (en) * 1859-03-01 Washing-machine
US3796182A (en) * 1971-12-16 1974-03-12 Applied Materials Tech Susceptor structure for chemical vapor deposition reactor
JPS5661165A (en) 1979-10-24 1981-05-26 Fujitsu Ltd Control of threshold voltage of transistor
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US6444137B1 (en) * 1990-07-31 2002-09-03 Applied Materials, Inc. Method for processing substrates using gaseous silicon scavenger
JPH04221822A (ja) * 1990-12-21 1992-08-12 Kazuo Tsubouchi 堆積膜形成法
JPH05226608A (ja) 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd 薄膜高誘電率体およびその製造方法
JPH05239650A (ja) 1992-02-27 1993-09-17 Kojundo Chem Lab Co Ltd シリコン酸化膜の製造法
JP2900732B2 (ja) 1992-11-24 1999-06-02 三菱電機株式会社 光導波路の製造方法
KR100291971B1 (ko) * 1993-10-26 2001-10-24 야마자끼 순페이 기판처리장치및방법과박막반도체디바이스제조방법
US6159854A (en) * 1994-08-22 2000-12-12 Fujitsu Limited Process of growing conductive layer from gas phase
KR100272259B1 (ko) * 1996-10-23 2000-12-01 김영환 반도체소자의실리사이드막의형성방법
JPH10308361A (ja) 1997-05-07 1998-11-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP3406811B2 (ja) 1997-09-17 2003-05-19 株式会社東芝 半導体装置及びその製造方法
KR19990014155A (ko) 1997-07-24 1999-02-25 윌리엄 비. 켐플러 고 유전율 실리케이트 게이트 유전체
US6451686B1 (en) * 1997-09-04 2002-09-17 Applied Materials, Inc. Control of semiconductor device isolation properties through incorporation of fluorine in peteos films
JPH11111715A (ja) 1997-10-03 1999-04-23 Hitachi Ltd 半導体集積回路装置の製造方法
US6146938A (en) * 1998-06-29 2000-11-14 Kabushiki Kaisha Toshiba Method of fabricating semiconductor device
JP2000049349A (ja) 1998-07-15 2000-02-18 Texas Instr Inc <Ti> 集積回路に電界効果デバイスを製造する方法
JP2000188400A (ja) * 1998-11-09 2000-07-04 Texas Instr Inc <Ti> 半導体デバイスを形成する方法
JP3415496B2 (ja) 1999-07-07 2003-06-09 Necエレクトロニクス株式会社 半導体装置及びその製造方法
US6399208B1 (en) * 1999-10-07 2002-06-04 Advanced Technology Materials Inc. Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films
WO2001054200A1 (en) * 2000-01-19 2001-07-26 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors and methods of fabricating same
JP2001257344A (ja) 2000-03-10 2001-09-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2001291865A (ja) 2000-04-10 2001-10-19 Sharp Corp 絶縁ゲート型トランジスタ及びその製造方法
US7141278B2 (en) 2000-06-08 2006-11-28 Asm Genitech Korea Ltd. Thin film forming method
KR100721503B1 (ko) 2000-06-08 2007-05-23 에이에스엠지니텍코리아 주식회사 박막 형성 방법
JP2002076336A (ja) * 2000-09-01 2002-03-15 Mitsubishi Electric Corp 半導体装置およびsoi基板
US6486080B2 (en) * 2000-11-30 2002-11-26 Chartered Semiconductor Manufacturing Ltd. Method to form zirconium oxide and hafnium oxide for high dielectric constant materials
US6566147B2 (en) * 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6844604B2 (en) * 2001-02-02 2005-01-18 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US7005392B2 (en) * 2001-03-30 2006-02-28 Advanced Technology Materials, Inc. Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same
US6642131B2 (en) * 2001-06-21 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US20030013241A1 (en) * 2001-07-16 2003-01-16 Motorola, Inc. Structure and method for fabricating vertical fet semiconductor structures and devices
CN1261986C (zh) 2001-08-23 2006-06-28 日本电气株式会社 含高介电常数绝缘膜的半导体设备和该设备的制造方法

Also Published As

Publication number Publication date
US7282774B2 (en) 2007-10-16
US7101775B2 (en) 2006-09-05
US6844234B2 (en) 2005-01-18
KR20050011003A (ko) 2005-01-28
KR100502381B1 (ko) 2005-07-19
US20060244083A1 (en) 2006-11-02
US7858536B2 (en) 2010-12-28
US20080242115A1 (en) 2008-10-02
US20030127640A1 (en) 2003-07-10
CN1431716A (zh) 2003-07-23
KR20030060804A (ko) 2003-07-16
JP2003204061A (ja) 2003-07-18
JP4102072B2 (ja) 2008-06-18
KR100512824B1 (ko) 2005-09-07
US20050006674A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
TW589660B (en) Semiconductor device and method of manufacturing semiconductor device
TWI462298B (zh) A semiconductor device, a semiconductor device manufacturing method, and a substrate processing system
TWI464802B (zh) 藉由化學氣相沉積之低溫介電膜形成
TWI250583B (en) Manufacturing method for semiconductor integrated circuit device
JP4850871B2 (ja) 絶縁膜の形成方法
US20030185980A1 (en) Thin film forming method and a semiconductor device manufacturing method
CN101523593B (zh) 半导体装置制造方法以及半导体装置
KR101286309B1 (ko) 게이트 산화물 누설 전류가 감소된 대체 금속 게이트 트랜지스터
US20100187644A1 (en) Manufacturing method of semiconductor device
TWI535881B (zh) 形成矽氧碳氮化物薄膜之方法
US20020142624A1 (en) Method of forming dielectric films
JP2007194582A (ja) 高誘電体薄膜の改質方法及び半導体装置
JP2003008005A (ja) 高誘電率絶縁膜を有する半導体装置
JP2003069011A (ja) 半導体装置とその製造方法
TW201041037A (en) Method for forming a high-k gate stack with reduced effective oxide thickness
CN106653588A (zh) 制造半导体装置中的栅极结构的方法
CN101986421B (zh) 介电膜、使用该介电膜的半导体器件的制造方法和半导体制造设备
US20150140838A1 (en) Two Step Deposition of High-k Gate Dielectric Materials
TW200414355A (en) Oxide film forming method, oxide film forming apparatus and electronic device material
TWI838267B (zh) 薄膜及沉積薄膜的方法
JP4372021B2 (ja) 半導体装置の製造方法
JP4584356B2 (ja) 基板処理方法、基板処理装置、mos−fetの製造方法、不揮発メモリの製造方法、およびコンピュータ読み取り可能な記録媒体
TWI377619B (en) Low-temperature dielectric formation for devices with strained germanium-containing channels
JP4224044B2 (ja) 半導体装置の製造方法
JP2008235397A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees