TW201826355A - 成膜裝置、成膜方法及其記憶媒體 - Google Patents

成膜裝置、成膜方法及其記憶媒體 Download PDF

Info

Publication number
TW201826355A
TW201826355A TW106135851A TW106135851A TW201826355A TW 201826355 A TW201826355 A TW 201826355A TW 106135851 A TW106135851 A TW 106135851A TW 106135851 A TW106135851 A TW 106135851A TW 201826355 A TW201826355 A TW 201826355A
Authority
TW
Taiwan
Prior art keywords
gas
film
nitriding
chamber
flushing
Prior art date
Application number
TW106135851A
Other languages
English (en)
Inventor
小田桐正彌
桑田拓岳
江原寬貴
田部井幸寬
高橋毅
中村秀雄
山崎和良
出野由和
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201826355A publication Critical patent/TW201826355A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供一種技術,係即使膜厚較薄仍可得到膜中氯較少之良好的TiN膜。
藉由ALD法來將TiN膜形成於晶圓之成膜裝置係具備有:腔室,係收容晶圓;氣體供給機構,係對腔室內供給由TiCl4氣體所構成之鈦原料氣體、由NH3氣體所構成之氮化氣體以及沖洗氣體;排氣機構,係將腔室內予以排氣;以及,控制部,係以將TiCl4氣體與NH3氣體交互地供給至晶圓的方式來控制氣體供給機構,氣體供給機構係具有加熱NH3氣體來改變狀態之NH3氣體加熱單元,且會將以NH3氣體加熱單元來改變狀態後之NH3氣體供給至腔室內。

Description

成膜裝置、成膜方法及其記憶媒體
本發明係關於一種藉由原子層沉積法(Atomic Layer Deposition;ALD法)來成膜出TiN膜之成膜裝置以及成膜方法。
在半導體元件之製造中,TiN膜係被使用於鎢膜之屏蔽膜、高介電率膜(High-k膜)之電極層等的各種用途上。
另一方面,對應於近年來元件之微細化,在TiN膜之成膜做法上係使用階梯覆蓋良好的ALD法。在利用ALD法之TiN膜之成膜中,係交互地供給做為原料氣體之四氯化鈦(TiCl4)氣體以及做為氮化氣體之氨(NH3)氣體,並藉由將其反覆既定次數,來形成既定膜厚之TiN膜(例如專利文獻1)。
近年來,TiN膜係被要求為2~3nm以下之極薄膜,而在使用TiCl4氣體與NH3氣體,並以ALD法來成膜出TiN膜的情況,會有膜厚愈薄則膜中氯濃度變得愈高之傾向。這應該是因為膜厚愈薄則殘留氯濃度相對於膜厚的比例相對變高之故。受此殘留氯之比例較高的影響,便會使得薄TiN膜的比電阻會較厚TiN膜要大,尤其是,在膜厚1.5nm以下之極薄膜中,殘留氯便會成為問題。
在降低膜中氯濃度來抑制成膜後之氧化並降低比電阻之方法上,雖有將成膜溫度設定為550~600℃之高溫來進行成膜之方法,然由於一旦成膜溫度變成高溫時,則要能得到膜之連續性為止的膜厚便會變厚,故難以用此方法來得到薄膜之TiN膜,而為了得到薄膜之TiN膜,就不得不以400~550℃之低溫來進行成膜。
又,雖可藉由增加NH3氣體之流量來降低殘留氯濃度,但藉由排氣泵之能力所流動之流量是有極限的,而難以得到充分的殘留氯濃度降低效 果。
【先前技術文獻】
【專利文獻】
專利文獻1:日本特開2015-214730號公報
如此般,在膜厚較薄的TiN膜中,膜中氯濃度會變多,而使得比電阻會變高。
又,在膜厚薄的TiN膜中,由於膜中氯較多,故難以得到具有良好連續性之膜。
從而,本發明之課題在於提供一種技術,係即使膜厚較薄仍可得到膜中氯較少之良好的TiN膜。
為了解決上述課題,本發明之第1觀點係提供一種成膜裝置,係藉由ALD法來將TiN膜形成於被處理基板的成膜裝置,具備:腔室,係收容被處理基板;氣體供給機構,係對該腔室內供給由含氯之鈦化合物氣體所構成之鈦原料氣體、由含氮與氫之化合物氣體所構成之氮化氣體以及沖洗氣體;排氣機構,係將該腔室內予以排氣;以及控制部,係以將該鈦原料氣體與該氮化氣體交互地供給至該被處理基板的方式來控制該氣體供給機構;該氣體供給機構係具有加熱該氮化氣體來改變狀態之氮化氣體加熱單元,且會將以該氮化氣體加熱單元來改變狀態後之該氮化氣體供給至該腔室內。
上述成膜裝置中,該鈦原料氣體可適當地使用TiCl4氣體,該氮化氣體可適當地使用NH3氣體。較佳地,該氮化氣體加熱單元會將NH3氣體加熱至100℃以上。
該氮化氣體加熱單元係於內部具有彎曲之氣體流道並內藏有加熱器,可藉由將該加熱器加熱至既定設定溫度來將流通於氣體流道之氮化氣體以熱交換來加以加熱。
該氣體供給機構係構成為具有:Ti原料氣體供給源,係供給該Ti原料氣體;氮化氣體供給源,係供給該氮化氣體;第1沖洗氣體供給源以及第2沖洗氣體供給源,係供給該沖洗氣體;第1氣體供給配管,係連接於該Ti原 料氣體供給源,而用以對該腔室供給該Ti原料氣體;第2氣體供給配管,係連接於該氮化氣體供給源,而用以對腔室供給該氮化氣體;第3氣體供給配管,係連接於該第1沖洗氣體供給源,並匯流至該第1氣體供給配管;第4氣體供給配管,係連接於該第2沖洗氣體供給源,並匯流至該第2氣體供給配管;以及,開閉閥,係分別設置於該第1~第4氣體供給配管,該氮化氣體加熱單元係設置於較該第2氣體供給配管匯流有該第4氣體供給配管之部分要靠下游側;該控制部係於成膜中開啟該第3氣體供給配管以及該第4氣體供給配管之該開閉閥來恆定流通沖洗氣體,並交互地間歇性開閉該第1氣體供給配管以及該第2氣體供給配管之該開閉閥;對該氮化氣體加熱單元係恆定供給該沖洗氣體並加熱,進而一同地間歇性地供給該沖洗氣體與該氮化氣體,而使得該氮化氣體與該沖洗氣體一同被加熱。
較佳地,進而具備加熱該被處理基板的加熱機構,該控制部係以該被處理基板之溫度會成為400~550℃範圍內的溫度之方式來控制該加熱機構。
本發明之第2觀點係提供一種成膜方法,係對收容著被處理基板而保持在減壓下的腔室內,交互地間歇性供給由含氯之鈦化合物氣體所構成之鈦原料氣體以及由含氮與氫之化合物氣體所構成之氮化氣體,而藉由ALD法來將TiN膜成膜於被處理基板之成膜方法;加熱該氮化氣體來改變狀態,而將狀態改變後之該氮化氣體供給至該腔室內。
上述成膜方法中,該鈦原料氣體可適當地使用TiCl4氣體,該氮化氣體可適當地使用NH3氣體。在加熱為氮化氣體之NH3氣體時,以加熱至100℃以上為佳。
較佳地,於該鈦原料氣體之供給與該氮化氣體之供給之間,對該腔室內供給沖洗氣體來沖洗該腔室內。於此情況,可於成膜中對該腔室內恆定供給該沖洗氣體,並與該沖洗氣體一同地交互間歇性供給該Ti原料氣體與該氮化氣體,於該氮化氣體與該沖洗氣體匯流之配管中來恆定加熱該沖洗氣體,並於供給該氮化氣體時一同地加熱該氮化氣體與該沖洗氣體。
較佳地,將該被處理基板之溫度控制在400~550℃範圍內的溫度。
本發明之第3觀點係提供一種記憶媒體,係於電腦上作動,並記憶著用 以控制成膜裝置的程式之記憶媒體;該程式係於實行時以進行第2觀點之成膜方法的方式來讓電腦控制該成膜裝置。
依據本發明,在對收容被處理基板的腔室內交互地間歇供給由含氯之鈦化合物氣體所構成之鈦原料氣體與由含氮與氫之化合物氣體所構成之氮化氣體,而藉由ALD法來成膜出TiN膜時,由於會加熱氮化氣體來改變狀態,並將狀態改變過的該氮化氣體供給於該腔室內,故可提高氮化氣體與膜中之氯的反應性,而即使膜厚較薄仍可得到膜中氯含量較少之良好的TiN膜。
1‧‧‧腔室
2‧‧‧晶座
3‧‧‧氣體導入部
4‧‧‧排氣部
5‧‧‧氣體供給機構
6‧‧‧控制部
31‧‧‧氣體導入塊體
32‧‧‧本體部
33‧‧‧淋灑板
51‧‧‧TiCl4氣體供給源
52‧‧‧NH3氣體供給源
53‧‧‧第1N2氣體供給源
54‧‧‧第2N2氣體供給源
61~64‧‧‧氣體供給配管
65‧‧‧NH3氣體加熱單元
71b,72b,73b,74b‧‧‧開閉閥
100‧‧‧成膜裝置
W‧‧‧半導體晶圓(被處理基板)
圖1係顯示本發明一實施形態相關之成膜裝置的截面圖。
圖2係顯示圖1之成膜裝置的氣體供給機制之圖式。
圖3係顯示未充分進行膜中的Cl去除之情況下,利用XRF所得之TiN膜之膜厚與利用XPS所得之膜中Cl濃度(Cl 2p/Ti 2p)之關係的圖式。
圖4係顯示NH3之熱平衡的圖式。
圖5係顯示加熱NH3氣體後之情況與未加熱之情況中,NH3氣體之流量與比電阻之關係的圖式。
圖6係顯示加熱NH3氣體後之情況與未進行加熱之情況下,利用XRF所得之膜厚與利用XPS所得之膜中Cl濃度(Cl 2p/Ti 2p)的關係圖。
以下,參見附加圖式來針對本發明實施形態做具體說明。
<成膜裝置之例>
圖1係顯示本發明一實施形態相關之成膜裝置的截面圖。
成膜裝置100係使用為原料氣體之TiCl4氣體與為氮化氣體之NH3氣體並藉由ALD法來成膜出TiN膜者,具有:腔室1;晶座2,係用以在腔室1內將為被處理基板之半導體晶圓(以下簡記為晶圓)W水平支撐;氣體導入部3,係用以對腔室1內導入處理氣體;排氣部4,係將腔室1內部加以排氣;處理氣體供給機構5,係對氣體導入部3供給處理氣體;以及,控制部6。
腔室1係由鋁等金屬所構成,具有略圓筒狀。腔室1之側壁係形成有用 以將晶圓W搬出入的搬出入口11,搬出入口11能以閘閥12來加以開閉。腔室1之本體上係設有截面為矩形狀之圓環狀的排氣導管13。排氣導管13係沿著內周面形成有狹縫13a。又,排氣導管13之外壁係形成有排氣口13b。排氣導管13上面係設有頂壁14。頂壁14中央係形成有用以插入下述氣體導入塊體的開口部14a,頂壁14與排氣導管13之間係以密封環15來被氣密地密封。
晶座2呈現對應於晶圓W大小的圓板狀,且會被支撐構件23所支撐。此晶座2係以氮化鋁(AlN)等陶瓷材料或鋁、鎳基合金等金屬材料所構成,並於內部埋設有用以加熱晶圓W的加熱器21。加熱器21係從加熱器電源(未圖示)受到供電而發熱。然後,藉由晶座2上面之晶圓載置面附近所設的熱電偶(未圖示)之溫度訊號來控制加熱器21之輸出,便會將晶圓W控制在既定溫度。
晶座2係以覆蓋晶圓載置面之外周區域以及晶座2側面的方式來設有由氧化鋁等陶瓷所構成之覆蓋構件22。
支撐晶座2的支撐構件23係從晶座2之底面中央貫通在腔室1底壁所形成的孔部而延伸至腔室1之下方,其下端會連接於升降機構24,晶座2會藉由升降機構24透過支撐構件23而可於圖1所示處理位置與其下方以一點鏈線所示之可搬送晶圓的搬送位置之間進行升降。又,支撐構件23在腔室1之下方位置處係安裝有軸環部25,於腔室1之底面與軸環部25之間係設有區劃出腔室1內之氛圍與外部空氣,並伴隨著晶座2之升降動作來伸縮的波紋管26。
腔室1底面附近係以從升降板27a往上方突出的方式來設有3根(僅圖示出2根)的晶圓支撐銷27。晶圓支撐銷27可藉由在腔室1下方所設的銷升降機構28而透過升降板27a來進行升降,並可插通位於搬送位置的晶座2所設之貫通孔2a而相對於晶座2之上面來出沒。如此般藉由升降晶圓支撐銷27,來在晶圓搬送機構(未圖示)與晶座2之間進行晶圓W之收授。
氣體導入部3係以對向於晶座2的方式來加以設置,並具有:氣體導入塊體31,係插入於頂壁14中央的開口部14a;本體部32,係支撐氣體導入塊體31並密合於頂壁14下面而呈現圓板狀;以及淋灑板33,係連接於本體部32之下。本體部32與淋灑板33之間係形成有氣體擴散空間34。淋灑板33下 面係形成有複數的氣體噴出孔35。在晶座2存在於處理位置之狀態下,會於淋灑板33與晶座2之間形成處理空間S。
氣體導入塊體31係形成有第1氣體導入孔31a與第2氣體導入孔31b。該等第1氣體導入孔31a與第2氣體導入孔31b會連接於本體部32上面的氣體擴散部36。從氣體擴散部36往下方延伸出複數的氣體供給流道37,氣體供給流道37前端係以面對氣體擴散空間34的方式來連接著氣體噴出構件38(具有複數的噴出口)。
排氣部4係具備有:排氣配管41,係連接於排氣導管13之排氣口13b;以及排氣機構42,係連接於排氣配管41並具有真空泵、壓力控制閥等。在進行處理時,腔室1內之氣體會透過狹縫13a而到達排氣導管13,而藉由排氣部4之排氣機構42來從排氣導管13通過排氣配管41受到排氣。
處理氣體供給機構5係具有:TiCl4氣體供給源51,係供給為Ti原料氣體之TiCl4氣體;NH3氣體供給源52,係供給為氮化氣體之NH3氣體;第1N2氣體供給源53以及第2N2氣體供給源54,係供給為沖洗氣體之N2氣體;第1氣體供給配管61,係延伸自TiCl4氣體供給源51;第2氣體供給配管62,係延伸自NH3氣體供給源52;第3氣體供給配管63,係延伸自第1N2氣體供給源53;第4氣體供給配管64,係延伸自第2N2氣體供給源54;以及NH3氣體加熱單元65。
第1氣體供給配管61會連接於氣體導入塊體31之第1氣體導入孔31a,第2氣體供給配管62係透過NH3氣體加熱單元65來連接於氣體導入塊體31之第2氣體導入孔31b。第3氣體供給配管63係連接於第1氣體供給配管61。第4氣體供給配管64係連接於第2氣體供給配管62。
第1氣體供給配管61係設有為流量控制器之質流控制器71a以及開閉閥71b,第2氣體供給配管62係設有質流控制器72a以及開閉閥72b,第3氣體供給配管63係設有質流控制器73a以及開閉閥73b,第4氣體供給配管64係設有質流控制器74a以及開閉閥74b。
導入到第1氣體導入孔31a、第2氣體導入孔31b的氣體會透過氣體擴散部36、氣體供給流道37、氣體噴出構件38來擴散至氣體擴散空間34,而從淋灑板33之氣體噴出孔35噴出到處理空間S來供給至晶圓W。
ALD程序中係恆定開啟開閉閥73b、74b,並恆定流通為沖洗氣體之N2氣體,且藉由交互地間歇性開閉開閉閥71b、72b,來夾帶著腔室1之沖洗而交互供給TlCl4氣體以及NH3氣體於腔室1內,並如下述般藉由ALD法來進行TiN膜之成膜。
NH3氣體加熱單元65係設置於較第2氣體供給配管62匯流有第4氣體供給配管64之部分要靠下游側。藉此,在ALD程序中,NH3氣體加熱單元65便會恆定供給為沖洗氣體之N2氣體並加熱,且於該處間歇地供給有NH3氣體。
NH3氣體加熱單元65係於內部具有彎曲的氣體流道並內藏有加熱器,藉由將加熱器加熱至既定設定溫度,來使得和N2氣體一同流動於氣體流道的NH3氣體藉由熱交換而被加熱。
控制部6係具有:主控制部,係具有控制各構成部(具體而言為質流控制器71a,72a,73a,74a、開閉閥71b,72b,73b,74b、NH3氣體加熱單元65、加熱器21之電源、升降機構24、銷升降機構28、排氣機構42等)之電腦(CPU);輸入裝置;輸出裝置;顯示裝置;以及記憶裝置。記憶裝置係設定有記憶媒體,係記憶著成膜裝置100所實行之各種處理的參數,又,儲存有用以控制成膜裝置100所實行之處理的程式(亦即處理配方)。主控制部係以叫出記憶媒體所記憶的既定處理配方,並基於該處理配方而藉由成膜裝置1進行既定處理的方式來加以控制。
如此般所構成之成膜裝置100中,首先,會開啟閘閥12並藉由搬送裝置(未圖示)來讓晶圓W透過搬出入口11而搬入至腔室1內,並載置於晶座2上,再讓搬送裝置退離,而將晶座2上升至處理位置。然後,關閉閘閥12,將腔室1內保持在既定減壓狀態,而藉由加熱器21來將晶座2之溫度控制在400~550℃之既定溫度。
於此狀態下,從第1N2氣體供給源53以及第2N2氣體供給源54經過氣體導入部3之淋灑板33來將為沖洗氣體之N2氣體連續地供給於處理空間S,藉由持續地供給此N2氣體,並交互地間歇性開閉第1氣體供給配管61之開閉閥71b以及第2氣體供給配管62之開閉閥72b,來將TiCl4氣體以及NH3氣體交互地間歇性供給於處理空間S,如圖2所示般,依序進行N2氣體+TiCl4氣體之 供給期間(T1)、僅N2氣體之供給期間(T2)、N2氣體+NH3氣體之供給期間(T3)、僅N2氣體之供給期間(T4),而反覆該等。亦即,以TiCl4氣體之供給→腔室內之沖洗→NH3氣體之供給→腔室內之沖洗為1循環,而反覆此循環並藉由熱ALD來於晶圓W上成膜出TiN膜。
此時,於供給期間T1所供給之TiCl4氣體會被吸附於基底(例如Si),在供給期間T2之沖洗後,會與於供給期間T3所供給之NH3氣體起反應。藉此,便會生成HCl而去除氯(Cl)並且生成TiN。此時,若未充分進行Cl之去除的話,便會使得所成膜出之TiN膜中殘存的Cl濃度變高,而讓膜之比電阻變高。尤其是,會有膜厚變得愈薄則殘留Cl濃度變高之傾向。圖3係顯示利用XRF所得之TiN膜的膜厚與利用XPS所得之膜中Cl濃度(Cl 2p/Ti 2p)之關係的圖式,得知膜厚愈薄則膜中Cl濃度會變得愈高,尤其是在膜厚成為0.5nm以下時,則膜中Cl濃度會急遽變高。
膜中Cl濃度雖可藉由將成膜溫度成為550~600℃之高溫來降低,但由於在成膜溫度成為高溫時,可得到膜之連續性為止的膜厚會變厚,故難以此方法來得到薄膜,為了得到薄膜之TiN膜,不得不以400~550℃之低溫來加以成膜。又,雖可藉由增加NH3氣體之流量來降低殘留氯濃度,但藉由排氣泵之能力所產生流動之流量是有極限的,而難以得到充分的殘留氯濃度降低效果。
又,在成膜過程中,於存在有殘留Cl之情況,由於在殘留Cl與TiCl4之間會產生電性斥力,故薄膜之TiN膜會出現難以充分提高膜之連續性的情況。
是以,本實施形態中,為了不產生如此之問題而成膜出薄膜之TiN膜,係藉由於NH3氣體之供給流道設置NH3氣體加熱單元65來加熱NH3氣體,以提高NH3氣體和殘留Cl之反應性,而促使Cl自膜中脫離。
為在燃料電池生成氫之技術之一的氨分解法係利用圖4所示之熱平衡狀態來以高溫分解(解離)NH3(出處:Reaction Design公司技術情報「利用氨分解法之氫生成反應」2012年)。如圖4所示,NH3係有愈高溫則有愈促進分解之傾向,在400℃以上時大部分的NH3會分解。本實施形態中係利用此現象,藉由加熱NH3氣體來使得NH3形成至少會部分性地解離之高反應性狀態, 來促進讓Cl脫離之反應。雖NH3氣體被導入腔室1時溫度會降低至常溫附近,但仍會被維持在和Cl之反應性高的狀態。
藉此,便無須將成膜溫度成為高溫,且無需增加NH3氣體流量,便可發揮高Cl去除效果,即使是薄膜之TiN膜仍可降低膜中Cl濃度。因此,便可降低薄膜之TiN膜的比電阻。又,相較於以往,可減少用以得到同等比電阻之NH3氣體流量。
又,藉由更適當地控制NH3氣體之加熱條件,便可更加降低膜中Cl濃度,而可提高膜之連續性。藉此,便可更加降低漏電流等而可期待特性進一步的提升。
如圖4所示,NH3氣體之溫度即使在100℃仍會出現40%左右的分解,故NH3氣體之加熱溫度較佳地係100℃以上。基於分解比率為50%以上之觀點,更佳地係120℃以上,最佳地係150℃以上,甚至是200℃以上。
本實施形態中,NH3氣體加熱單元65係設置於較第2氣體供給配管62匯流有第4氣體供給配管64之部分要靠下游側,於ALD程序中,NH3氣體加熱單元65係恆定供給為沖洗氣體之N2氣體並加熱,進而一同地間歇性供給NH3氣體與N2氣體,並一同地加熱NH3氣體與N2氣體。因此,可較高地維持NH3氣體之溫度安定性。
又,本實施形態中,NH3氣體加熱單元65在構造上,係於內部具有彎曲的氣體流道且內藏有加熱器,藉由將加熱器加熱至既定設定溫度來將與N2氣體一同流動於氣體流道的NH3氣體以熱交換來加熱,藉由此般構造,便可將既定流量之NH3氣體效率良好地加熱至既定溫度。
實際針對加熱NH3氣體之情況與不加熱之情況,來比較膜中之氯濃度與膜之比電阻。在處,成膜溫度(晶圓溫度):400~550℃,TiCl4氣體流量:20~150sccm(ml/min),N2氣體流量(合計):7000~20000sccm(mL/min),壓力:2~10Torr(267~1333Pa),並使得NH3氣體流量改變為1000sccm(mL/min)、2500sccm(mL/min)、4000sccm(mL/min),來測定膜厚15nm時的膜之比電阻。此時,NH3氣體加熱單元之設定溫度為400℃。NH3氣體加熱單元正後方的氣體溫度之實測值應為約200℃,NH3氣體加熱單元內之加熱溫度應為400℃左右。
圖5係顯示加熱NH3氣體之情況與未加熱之情況中,NH3氣體流量與比電阻之關係的圖式。如此圖所示,確認了NH3氣體不論是在何種流量下,都可藉由加熱NH3氣體來降低5~6%的比電阻。
其次,掌握在加熱NH3氣體之情況與未加熱之情況下,利用XRF所得之膜厚與利用XPS所得之膜中Cl濃度(Cl 2p/Ti 2p)之關係。此時之NH3氣體流量為4000sccm(mL/min)。將其結果顯示於圖6。如圖6所示,確認了在膜厚0.1nm左右之極薄膜中,藉由加熱NH3氣體會使得Cl濃度降低30%左右。
此外,在利用本條件之NH3氣體的加熱中,雖關於膜之連續性並未見到與未加熱之情況明確的差異,但藉由進而提高NH3氣體之加熱溫度,便可期待膜之連續性的提高。
本實施形態中除了成膜出TiN膜時的NH3氣體加熱溫度以外,其他處理條件的較佳範圍係彙整顯示如下。
壓力:2~10Torr(267~1333Pa)
成膜溫度(晶圓溫度):400~550℃
TiCl4氣體流量:20~150sccm(mL/min)
NH3氣體流量:1000~10000sccm(mL/min)
N2氣體流量(合計):7000~20000sccm(mL/min)
T1之時間(每1次):0.01~1.0sec
T3之時間(每1次):0.1~1.0sec
T2(沖洗)之時間(每1次):0.1~1.0sec
T4(沖洗)之時間(每1次):0.1~1.0sec
如上述般,在藉由ALD法來成膜出TiN膜後,便對腔室1內進行沖洗,而使得晶座2下降,並開啟閘閥12,來搬出晶圓W。
<其他之適用>
以上,雖已針對本發明之實施形態做了說明,但本發明並不限定於上述實施形態,而可在本發明之思想範圍內做各種變形。例如,上述實施形態中,雖Ti原料氣體係使用了TiCl4,但只要是含有Cl的Ti化合物的話皆可適用。又,雖氮化氣體係使用了NH3氣體,但只要是含有N與H之化合物的話皆可適用。再者,上述實施形態中,雖沖洗氣體係使用了N2氣體,但亦可 使用Ar氣體等其他的非活性氣體。
再者,上述實施形態中,雖NH3氣體加熱單元所具構造為:於內部具有彎曲之氣體流道且內藏有加熱器,藉由將加熱器加熱至既定設定溫度,來使得流動於氣體流道的NH3氣體藉由熱交換來加熱;但並不限於此。
又,上述實施形態中,雖被處理基板係以半導體晶圓為例來加以說明,但半導體晶圓亦可為矽,亦可為GaAs、SiC、GaN等化合物半導體,再者,不限定於半導體晶圓,即使是液晶顯示裝置等的FPD(平板顯示器)所使用之玻璃基板或是陶瓷基板等亦可適用本發明。

Claims (15)

  1. 一種成膜裝置,係藉由ALD法來將TiN膜形成於被處理基板之成膜裝置,具備:腔室,係收容被處理基板;氣體供給機構,係對該腔室內供給由含氯之鈦化合物氣體所構成之鈦原料氣體、由含氮與氫之化合物氣體所構成之氮化氣體以及沖洗氣體;排氣機構,係將該腔室內予以排氣;以及控制部,係以將該鈦原料氣體與該氮化氣體交互地供給至該被處理基板的方式來控制該氣體供給機構;該氣體供給機構係具有加熱該氮化氣體來改變狀態之氮化氣體加熱單元,且會將以該氮化氣體加熱單元來改變狀態之該氮化氣體供給至該腔室內。
  2. 如申請專利範圍第1項之成膜裝置,其中該鈦原料氣體為TiCl 4氣體。
  3. 如申請專利範圍第1或2項之成膜裝置,其中該氮化氣體為NH 3氣體。
  4. 如申請專利範圍第3項之成膜裝置,其中該氮化氣體加熱單元係將NH 3氣體加熱至100℃以上。
  5. 如申請專利範圍第1或2項之成膜裝置,其中該氮化氣體加熱單元係於內部具有彎曲之氣體流道並內藏有加熱器,藉由將該加熱器加熱至既定設定溫度而將流通於氣體流道之氮化氣體以熱交換來加以加熱。
  6. 如申請專利範圍第1或2項之成膜裝置,其中該氣體供給機構係具有:Ti原料氣體供給源,係供給該Ti原料氣體;氮化氣體供給源,係供給該氮化氣體;第1沖洗氣體供給源以及第2沖洗氣體供給源,係供給該沖洗氣體;第1氣體供給配管,係連接於該Ti原料氣體供給源,而用以對該腔室供給該Ti原料氣體;第2氣體供給配管,係連接於該氮化氣體供給源,而用以對腔室供給該氮化氣體;第3氣體供給配管,係連接於該第1沖洗氣體供給源,並匯流至該第1氣體供給配管;第4氣體供給配管,係連接於該第2沖洗氣體供給源,並匯流至該第2氣體供給配管;以及開閉閥,係分別設置於該第1~第4氣體供給配管;該氮化氣體加熱單元係設置於較該第2氣體供給配管匯流有該第4氣體 供給配管之部分要靠下游側;該控制部係在成膜中開啟該第3氣體供給配管以及該第4氣體供給配管之該開閉閥來恆定流通沖洗氣體,並交互地間歇性開閉該第1氣體供給配管以及該第2氣體供給配管之該開閉閥;對該氮化氣體加熱單元恆定供給該沖洗氣體並加熱,進而一同間歇性地供給該氮化氣體與該沖洗氣體而使得該氮化氣體與該沖洗氣體一同地被加熱。
  7. 如申請專利範圍第1或2項之成膜裝置,係進而具備加熱該被處理基板的加熱機構,該控制部係以讓該被處理基板之溫度成為400~550℃範圍內的溫度之方式來控制該加熱機構。
  8. 一種成膜方法,係對於收容著被處理基板而保持在減壓下的腔室內交互地間歇性供給由含氯之鈦化合物氣體所構成之鈦原料氣體以及由含氮與氫之化合物氣體所構成之氮化氣體,而藉由ALD法來將TiN膜成膜於被處理基板的成膜方法;加熱該氮化氣體來改變狀態,而將狀態改變後之該氮化氣體供給至該腔室內。
  9. 如申請專利範圍第8項之成膜方法,其中該鈦原料氣體為TiCl 4氣體。
  10. 如申請專利範圍第8或9項之成膜方法,其中該氮化氣體為NH 3氣體。
  11. 如申請專利範圍第10項之成膜方法,其係將該NH 3氣體加熱至100℃以上。
  12. 如申請專利範圍第8或9項之成膜方法,其係於該鈦原料氣體之供給與該氮化氣體之供給之間,對該腔室內供給沖洗氣體來沖洗該腔室內。
  13. 如申請專利範圍第12項之成膜方法,其係在成膜中對該腔室內恆定供給該沖洗氣體,並與該沖洗氣體一同地交互間歇性供給該Ti原料氣體與該氮化氣體;於該氮化氣體與該沖洗氣體會匯流之配管中,恆定加熱該沖洗氣體,並在供給該氮化氣體時一同地加熱該氮化氣體與該沖洗氣體。
  14. 如申請專利範圍第8或9項之成膜方法,其係將該被處理基板之溫度 控制在400~550℃範圍內的溫度。
  15. 一種記憶媒體,係於電腦上作動,且記憶著用以控制成膜裝置的程式的記憶媒體;該程式係在實行時係以進行如申請專利範圍第8至14項中任一項之成膜方法的方式來讓電腦控制該成膜裝置。
TW106135851A 2016-10-21 2017-10-19 成膜裝置、成膜方法及其記憶媒體 TW201826355A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016206730A JP6851173B2 (ja) 2016-10-21 2016-10-21 成膜装置および成膜方法
JP2016-206730 2016-10-21

Publications (1)

Publication Number Publication Date
TW201826355A true TW201826355A (zh) 2018-07-16

Family

ID=61969484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135851A TW201826355A (zh) 2016-10-21 2017-10-19 成膜裝置、成膜方法及其記憶媒體

Country Status (5)

Country Link
US (1) US20180112312A1 (zh)
JP (1) JP6851173B2 (zh)
KR (1) KR102029538B1 (zh)
CN (1) CN107978541A (zh)
TW (1) TW201826355A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825129B (zh) * 2018-07-20 2023-12-11 日商東京威力科創股份有限公司 成膜裝置、原料供應裝置及成膜方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225599B2 (ja) * 2018-08-10 2023-02-21 東京エレクトロン株式会社 成膜装置
CN111218668B (zh) * 2018-11-27 2023-09-08 北京北方华创微电子装备有限公司 半导体处理设备及薄膜沉积方法
CN109518164A (zh) * 2018-12-20 2019-03-26 北京北方华创微电子装备有限公司 原子层沉积设备及方法
CN111575675A (zh) * 2019-02-15 2020-08-25 北京北方华创微电子装备有限公司 一种半导体设备
JP7330035B2 (ja) 2019-09-25 2023-08-21 東京エレクトロン株式会社 半導体装置の製造方法及び成膜装置
US11236424B2 (en) * 2019-11-01 2022-02-01 Applied Materials, Inc. Process kit for improving edge film thickness uniformity on a substrate
US11862482B2 (en) * 2021-03-11 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor substrate bonding tool and methods of operation
KR20220152934A (ko) * 2021-05-10 2022-11-17 도쿄엘렉트론가부시키가이샤 질화티타늄막의 성막 방법, 및 질화티타늄막을 성막하는 장치

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119941B (fi) * 1999-10-15 2009-05-15 Asm Int Menetelmä nanolaminaattien valmistamiseksi
US4524718A (en) * 1982-11-22 1985-06-25 Gordon Roy G Reactor for continuous coating of glass
US5656338A (en) * 1994-12-13 1997-08-12 Gordon; Roy G. Liquid solution of TiBr4 in Br2 used as a precursor for the chemical vapor deposition of titanium or titanium nitride
US6364954B2 (en) * 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
JP4209563B2 (ja) * 1999-09-17 2009-01-14 東京エレクトロン株式会社 窒化シリコン膜の形成方法
US6451692B1 (en) * 2000-08-18 2002-09-17 Micron Technology, Inc. Preheating of chemical vapor deposition precursors
US7005372B2 (en) * 2003-01-21 2006-02-28 Novellus Systems, Inc. Deposition of tungsten nitride
JP4938962B2 (ja) * 2001-09-14 2012-05-23 エーエスエム インターナショナル エヌ.ヴェー. ゲッタリング反応物を用いるaldによる金属窒化物堆積
JP3670628B2 (ja) * 2002-06-20 2005-07-13 株式会社東芝 成膜方法、成膜装置、および半導体装置の製造方法
US20050136657A1 (en) * 2002-07-12 2005-06-23 Tokyo Electron Limited Film-formation method for semiconductor process
JP4130380B2 (ja) * 2003-04-25 2008-08-06 東京エレクトロン株式会社 熱処理方法及び熱処理装置
WO2004112114A1 (ja) * 2003-06-16 2004-12-23 Tokyo Electron Limited 成膜方法、半導体装置の製造方法、半導体装置および成膜装置
KR100527048B1 (ko) * 2003-08-29 2005-11-09 주식회사 아이피에스 박막증착방법
JP4583764B2 (ja) * 2004-01-14 2010-11-17 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN100474517C (zh) * 2004-04-09 2009-04-01 东京毅力科创株式会社 Ti膜及TiN膜的成膜方法
KR100629172B1 (ko) * 2004-11-08 2006-09-27 삼성전자주식회사 막 형성 장치
JP4947922B2 (ja) * 2005-05-23 2012-06-06 東京エレクトロン株式会社 成膜方法およびコンピュータにより読み取り可能な記憶媒体
JP4803578B2 (ja) * 2005-12-08 2011-10-26 東京エレクトロン株式会社 成膜方法
JP5036354B2 (ja) * 2006-04-04 2012-09-26 東京エレクトロン株式会社 成膜装置の排気系構造、成膜装置、および排ガスの処理方法
WO2008007675A1 (fr) * 2006-07-11 2008-01-17 Tokyo Electron Limited procédé de formation de film, procédé de nettoyage, et dispositif de formation de film
JP4245012B2 (ja) * 2006-07-13 2009-03-25 東京エレクトロン株式会社 処理装置及びこのクリーニング方法
JP5144295B2 (ja) * 2007-02-28 2013-02-13 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
US7928019B2 (en) * 2007-08-10 2011-04-19 Micron Technology, Inc. Semiconductor processing
JP5423205B2 (ja) * 2008-08-29 2014-02-19 東京エレクトロン株式会社 成膜装置
JP5384291B2 (ja) * 2008-11-26 2014-01-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP5520552B2 (ja) * 2009-09-11 2014-06-11 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
WO2011125395A1 (ja) * 2010-04-09 2011-10-13 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP5765154B2 (ja) * 2011-09-12 2015-08-19 東京エレクトロン株式会社 基板処理装置及び成膜装置
JP6022228B2 (ja) * 2011-09-14 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5869923B2 (ja) * 2012-03-09 2016-02-24 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6125247B2 (ja) * 2012-03-21 2017-05-10 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6030378B2 (ja) * 2012-08-14 2016-11-24 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6007031B2 (ja) * 2012-08-23 2016-10-12 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6009870B2 (ja) * 2012-09-11 2016-10-19 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6022274B2 (ja) * 2012-09-18 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6022276B2 (ja) * 2012-09-20 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US20150325447A1 (en) * 2013-01-18 2015-11-12 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and substrate processing apparatus
JP6199570B2 (ja) * 2013-02-07 2017-09-20 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6129573B2 (ja) * 2013-02-13 2017-05-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6035166B2 (ja) * 2013-02-26 2016-11-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6111097B2 (ja) * 2013-03-12 2017-04-05 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6111106B2 (ja) * 2013-03-19 2017-04-05 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6124724B2 (ja) * 2013-07-25 2017-05-10 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置およびプログラム
JP5788448B2 (ja) * 2013-09-09 2015-09-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
JP6426893B2 (ja) * 2013-12-25 2018-11-21 東京エレクトロン株式会社 コンタクト層の形成方法
WO2015097871A1 (ja) * 2013-12-27 2015-07-02 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
JP6342670B2 (ja) * 2014-02-17 2018-06-13 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置及びプログラム
JP5855691B2 (ja) * 2014-02-25 2016-02-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP6259073B2 (ja) * 2014-03-28 2018-01-10 株式会社日立製作所 相変化薄膜気相成長方法
JP6396670B2 (ja) * 2014-04-15 2018-09-26 東京エレクトロン株式会社 成膜装置ならびに排気装置および排気方法
JP6294151B2 (ja) 2014-05-12 2018-03-14 東京エレクトロン株式会社 成膜方法
JP6347543B2 (ja) * 2014-06-30 2018-06-27 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置およびプログラム
JP6446881B2 (ja) * 2014-07-17 2019-01-09 東京エレクトロン株式会社 ガス供給装置及びバルブ装置
JP6164775B2 (ja) * 2014-08-21 2017-07-19 株式会社日立国際電気 半導体デバイスの製造方法、基板処理装置およびプログラム
JP6386901B2 (ja) * 2014-12-17 2018-09-05 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法
JP6490470B2 (ja) * 2015-03-27 2019-03-27 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6416031B2 (ja) * 2015-03-30 2018-10-31 株式会社Kokusai Electric 半導体デバイスの製造方法、基板処理装置およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825129B (zh) * 2018-07-20 2023-12-11 日商東京威力科創股份有限公司 成膜裝置、原料供應裝置及成膜方法

Also Published As

Publication number Publication date
US20180112312A1 (en) 2018-04-26
JP6851173B2 (ja) 2021-03-31
KR20180044192A (ko) 2018-05-02
JP2018066050A (ja) 2018-04-26
CN107978541A (zh) 2018-05-01
KR102029538B1 (ko) 2019-10-07

Similar Documents

Publication Publication Date Title
TW201826355A (zh) 成膜裝置、成膜方法及其記憶媒體
TWI717341B (zh) 鎢膜之成膜方法
KR101912995B1 (ko) 금속막의 스트레스 저감 방법 및 금속막의 성막 방법
JP6270575B2 (ja) 反応管、基板処理装置及び半導体装置の製造方法
US10400330B2 (en) Tungsten film forming method and storage medium
TW201715084A (zh) 金屬膜之成膜方法
TW201133626A (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
KR102202989B1 (ko) 성막 방법
TWI827770B (zh) RuSi膜之形成方法及成膜裝置
KR20200097646A (ko) 기판 처리 방법 및 성막 시스템
TW201920754A (zh) 氣體供給裝置及成膜裝置
TWI743313B (zh) 成膜方法
JP2013147708A (ja) TiSiN膜の成膜方法および記憶媒体
KR20210020796A (ko) 성막 방법 및 성막 장치
JP2018021244A (ja) 成膜方法および成膜システム、ならびに表面処理方法
JP7233188B2 (ja) 成膜方法及び成膜装置
JP5568342B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理システム
KR102607054B1 (ko) 성막 방법 및 성막 장치
TW201943887A (zh) 鎢膜之成膜方法、成膜系統及記憶媒體