TW201427014A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW201427014A
TW201427014A TW102139950A TW102139950A TW201427014A TW 201427014 A TW201427014 A TW 201427014A TW 102139950 A TW102139950 A TW 102139950A TW 102139950 A TW102139950 A TW 102139950A TW 201427014 A TW201427014 A TW 201427014A
Authority
TW
Taiwan
Prior art keywords
film
oxide
oxide semiconductor
transistor
oxide film
Prior art date
Application number
TW102139950A
Other languages
Chinese (zh)
Other versions
TWI600157B (en
Inventor
Takahiro Sato
Yasutaka Nakazawa
Takayuki Cho
Shunsuke Koshioka
Hajime Tokunaga
Masami Jintyou
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201427014A publication Critical patent/TW201427014A/en
Application granted granted Critical
Publication of TWI600157B publication Critical patent/TWI600157B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Abstract

A transistor includes a multilayer film in which an oxide semiconductor film and an oxide film are stacked, a gate electrode, and a gate insulating film. The multilayer film overlaps with the gate electrode with the gate insulating film interposed therebetween. The multilayer film has a shape having a first angle between a bottom surface of the oxide semiconductor film and a side surface of the oxide semiconductor film and a second angle between a bottom surface of the oxide film and a side surface of the oxide film. The first angle is acute and smaller than the second angle. Further, a semiconductor device including such a transistor is manufactured.

Description

半導體裝置 Semiconductor device

本發明係關於一種半導體裝置及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same.

此外,在本說明書中半導體裝置是指能夠藉由利用半導體特性而發揮功能的所有裝置,電光裝置、半導體電路以及電子裝置等都是半導體裝置。 Further, in the present specification, the semiconductor device refers to all devices that can function by utilizing semiconductor characteristics, and the electro-optical device, the semiconductor circuit, and the electronic device are all semiconductor devices.

使用形成在具有絕緣表面的基板上的半導體膜構成電晶體的技術受到關注。該電晶體被廣泛地應用於如積體電路或顯示裝置等的半導體裝置。作為可應用於電晶體的半導體膜,已知矽膜。 A technique of forming a crystal using a semiconductor film formed on a substrate having an insulating surface has been attracting attention. This transistor is widely used in semiconductor devices such as integrated circuits or display devices. As a semiconductor film which can be applied to a transistor, a ruthenium film is known.

關於用於電晶體的半導體膜的矽膜,根據用途分別使用非晶體矽膜或多晶矽膜。例如,當應用於構成大型的顯示裝置的電晶體時,較佳為使用已確立了向大面積基板上進行成膜的技術的非晶體矽膜。另一方面,當應用於構成一體地形成有驅動電路的高功能的顯示裝置的電晶體時,較佳為使用可以製造具有高場效移動率的電晶體 的多晶矽膜。關於多晶矽膜,已知藉由對非晶體矽膜進行高溫下的加熱處理或雷射處理來形成的方法。 Regarding the ruthenium film used for the semiconductor film of the transistor, an amorphous ruthenium film or a polycrystalline ruthenium film is used depending on the application. For example, when applied to a transistor constituting a large-sized display device, it is preferable to use an amorphous germanium film in which a technique of forming a film on a large-area substrate has been established. On the other hand, when applied to a transistor constituting a highly functional display device in which a driving circuit is integrally formed, it is preferable to use a transistor capable of manufacturing a high field-effect mobility. Polycrystalline tantalum film. Regarding the polycrystalline ruthenium film, a method of forming an amorphous ruthenium film by heat treatment at a high temperature or laser treatment is known.

進一步地,近年來氧化物半導體膜受到關注。例如,公開了一種使用載子密度低於1018/cm3的包含銦、鎵及鋅的氧化物半導體膜的電晶體(參照專利文獻1)。 Further, oxide semiconductor films have been attracting attention in recent years. For example, a transistor using an oxide semiconductor film containing indium, gallium, and zinc having a carrier density of less than 10 18 /cm 3 is disclosed (refer to Patent Document 1).

氧化物半導體膜可以利用濺射法形成,所以可以應用於構成大型的顯示裝置的電晶體。另外,使用氧化物半導體膜的電晶體具有高場效移動率,因而可以實現一起形成有驅動電路的高功能的顯示裝置。另外,因為可以改良使用非晶體矽膜的電晶體的生產裝置的一部分而利用,所以在可以抑制設備投資的方面上優勢。 Since the oxide semiconductor film can be formed by a sputtering method, it can be applied to a transistor constituting a large display device. In addition, the transistor using the oxide semiconductor film has a high field-effect mobility, and thus it is possible to realize a highly functional display device in which a driving circuit is formed together. In addition, since it can be utilized by improving a part of the production apparatus of the transistor using the amorphous germanium film, it is advantageous in that it can suppress equipment investment.

並且,已知使用氧化物半導體膜的電晶體在截止狀態下,其洩漏電流(也稱為關態電流(off-state current))極小。例如,公開了一種應用了使用氧化物半導體膜的電晶體的低洩漏特性的低耗電的CPU等(參照專利文獻2)。 Further, it is known that a transistor using an oxide semiconductor film has an extremely small leakage current (also referred to as an off-state current) in an off state. For example, a low-power CPU or the like to which a low leakage characteristic of a transistor using an oxide semiconductor film is applied is disclosed (see Patent Document 2).

[專利文獻1]日本專利申請公開第2006-165528號公報 [Patent Document 1] Japanese Patent Application Publication No. 2006-165528

[專利文獻2]美國專利申請公開第2012/0032730號說明書 [Patent Document 2] US Patent Application Publication No. 2012/0032730

使用氧化物半導體膜的電晶體由於在氧化物半導體膜中產生的缺陷、以及氧化物半導體膜與所接觸的 絕緣膜之間的介面處產生的缺陷,電晶體的電氣特性變得不良。另外,隨著使用氧化物半導體膜的電晶體的應用範圍擴大,對於可靠性的要求也多樣化了。 A transistor using an oxide semiconductor film is defective in the oxide semiconductor film, and the oxide semiconductor film is in contact with Defects generated at the interface between the insulating films, the electrical characteristics of the transistors become poor. In addition, as the application range of the transistor using the oxide semiconductor film is expanded, the requirements for reliability are also diversified.

於是,本發明的一個方式要解決的問題之一是賦予使用氧化物半導體膜的電晶體穩定的電氣特性。另外,本發明的一個方式要解決的問題之一是賦予使用氧化物半導體膜的電晶體優良的電氣特性。另外,本發明的一個方式要解決的問題之一是提供具有該電晶體的高可靠性的半導體裝置。 Thus, one of the problems to be solved by one embodiment of the present invention is to impart stable electrical characteristics to a transistor using an oxide semiconductor film. Further, one of the problems to be solved by one embodiment of the present invention is to impart excellent electrical characteristics to a transistor using an oxide semiconductor film. Further, one of the problems to be solved by one aspect of the present invention is to provide a highly reliable semiconductor device having the transistor.

本發明的一個方式是一種半導體裝置,其特徵在於,具有:層疊有氧化物半導體膜及氧化物膜的多層膜;閘極電極;以及閘極絕緣膜,多層膜經由閘極絕緣膜而與所述閘極電極重疊地設置,多層膜具有如下形狀,該形狀具有氧化物半導體膜的下表面與氧化物半導體膜的側面所呈的第一角度以及氧化物膜的下表面與氧化物膜的側面所呈的第二角度,並且,第一角度小於第二角度且第一角度為銳角。 One aspect of the invention is a semiconductor device comprising: a multilayer film in which an oxide semiconductor film and an oxide film are laminated; a gate electrode; and a gate insulating film, the multilayer film is bonded via a gate insulating film The gate electrode is provided in an overlapping manner, and the multilayer film has a shape having a first angle of a lower surface of the oxide semiconductor film and a side surface of the oxide semiconductor film, and a lower surface of the oxide film and a side surface of the oxide film. The second angle is presented, and the first angle is less than the second angle and the first angle is an acute angle.

在上述半導體裝置中,在多層膜中氧化物半導體膜的上端與所述氧化物膜的下端大致一致。另外,在多層膜中,既可以在氧化物半導體膜之上層疊有氧化物膜,又可以在氧化物半導體膜的上下都層疊有氧化物膜。 In the above semiconductor device, the upper end of the oxide semiconductor film substantially coincides with the lower end of the oxide film in the multilayer film. Further, in the multilayer film, an oxide film may be laminated on the oxide semiconductor film, or an oxide film may be laminated on both the upper and lower sides of the oxide semiconductor film.

在上述半導體裝置中,第一角度及第二角度 較佳為10°以上且小於90°。 In the above semiconductor device, the first angle and the second angle It is preferably 10° or more and less than 90°.

在上述半導體裝置中,較佳的是氧化物膜包含與氧化物半導體膜共同的元素,且氧化物膜的導帶底的能量比氧化物半導體膜更接近於真空能階。例如,較佳的是,氧化物半導體膜及氧化物膜是In-M-Zn氧化物(M為Al、Ga、Ge、Y、Zr、Sn、La、Ce或Nd),並且,氧化物膜的In對M的原子個數比小於氧化物半導體膜。 In the above semiconductor device, it is preferable that the oxide film contains an element common to the oxide semiconductor film, and the energy of the conduction band bottom of the oxide film is closer to the vacuum level than the oxide semiconductor film. For example, it is preferable that the oxide semiconductor film and the oxide film are In-M-Zn oxide (M is Al, Ga, Ge, Y, Zr, Sn, La, Ce or Nd), and the oxide film The atomic ratio of In to M is smaller than that of the oxide semiconductor film.

在上述半導體裝置中,較佳的是,氧化物膜為非晶質的,氧化物半導體膜為結晶質的,並且,氧化物半導體膜所包括的結晶部的c軸平行於氧化物半導體膜的表面的法向量。 In the above semiconductor device, it is preferable that the oxide film is amorphous, the oxide semiconductor film is crystalline, and the c-axis of the crystal portion included in the oxide semiconductor film is parallel to the oxide semiconductor film. The normal vector of the surface.

在上述半導體裝置中,源極電極及汲極電極以接觸於多層膜的方式設置,並且,在多層膜與源極電極和汲極電極相接觸的介面附近的區域中設置低電阻區。 In the above semiconductor device, the source electrode and the drain electrode are provided in contact with the multilayer film, and a low resistance region is provided in a region in the vicinity of the interface in which the multilayer film is in contact with the source electrode and the drain electrode.

此外,在上述半導體裝置中,具有與氧化物膜相同或不同的組成的氧化物膜也可以以接觸於源極電極和汲極電極以及多層膜的上表面的方式設置。 Further, in the above semiconductor device, an oxide film having the same or different composition as that of the oxide film may be provided in contact with the source electrode and the drain electrode and the upper surface of the multilayer film.

根據本發明的一個方式,藉由使用包含氧化物膜和氧化物半導體膜的多層膜,可以賦予電晶體穩定的電氣特性。 According to one aspect of the present invention, it is possible to impart stable electrical characteristics to a transistor by using a multilayer film including an oxide film and an oxide semiconductor film.

另外,藉由將該多層膜的形狀設為至少具有第一角度和大於該第一角度的第二角度的錐形狀,可以增大作為通道區的氧化物半導體膜與源極電極及汲極電極之間的接觸面積,並可以使電晶體的通態電流(on-state current)增大。 Further, by setting the shape of the multilayer film to a tapered shape having at least a first angle and a second angle larger than the first angle, the oxide semiconductor film as the channel region and the source electrode and the drain electrode can be enlarged. Contact area between and can make the on-state current of the transistor (on-state Current) increases.

另外,根據本發明的一個方式,可以提供具有上述電晶體的高可靠性的半導體裝置。 Further, according to an aspect of the present invention, it is possible to provide a semiconductor device having high reliability of the above-described transistor.

100‧‧‧基板 100‧‧‧Substrate

104‧‧‧閘極電極 104‧‧‧gate electrode

106‧‧‧多層膜 106‧‧‧Multilayer film

106a‧‧‧氧化物半導體膜 106a‧‧‧Oxide semiconductor film

106b‧‧‧氧化物膜 106b‧‧‧Oxide film

106c‧‧‧低電阻區 106c‧‧‧low resistance zone

106d‧‧‧低電阻區 106d‧‧‧Low resistance zone

107‧‧‧氧化物膜 107‧‧‧Oxide film

112‧‧‧閘極絕緣膜 112‧‧‧gate insulating film

113‧‧‧步階 113‧‧‧ steps

116a‧‧‧源極電極 116a‧‧‧Source electrode

116b‧‧‧汲極電極 116b‧‧‧汲electrode

117‧‧‧氧化物膜 117‧‧‧Oxide film

118‧‧‧保護絕緣膜 118‧‧‧Protective insulation film

118a‧‧‧氧化矽膜 118a‧‧‧Oxide film

118b‧‧‧氧化矽膜 118b‧‧‧Oxide film

118c‧‧‧氮化矽膜 118c‧‧‧ nitride film

126a‧‧‧氧化物半導體膜 126a‧‧‧Oxide semiconductor film

126b‧‧‧氧化物膜 126b‧‧‧Oxide film

200‧‧‧基板 200‧‧‧Substrate

202‧‧‧基底絕緣膜 202‧‧‧Base insulating film

204‧‧‧閘極電極 204‧‧‧gate electrode

206‧‧‧多層膜 206‧‧‧Multilayer film

206a‧‧‧氧化物半導體膜 206a‧‧‧Oxide semiconductor film

206b‧‧‧氧化物膜 206b‧‧‧Oxide film

206c‧‧‧氧化物膜 206c‧‧‧Oxide film

206d‧‧‧低電阻區 206d‧‧‧low resistance zone

206e‧‧‧低電阻區 206e‧‧‧Low resistance zone

207‧‧‧氧化物膜 207‧‧‧Oxide film

212‧‧‧閘極絕緣膜 212‧‧‧Gate insulation film

212a‧‧‧源極電極 212a‧‧‧ source electrode

212b‧‧‧汲極電極 212b‧‧‧汲electrode

213‧‧‧步階 213‧‧ steps

214‧‧‧步階 214‧‧‧ steps

216a‧‧‧源極電極 216a‧‧‧ source electrode

216b‧‧‧汲極電極 216b‧‧‧汲electrode

216c‧‧‧電極 216c‧‧‧electrode

218‧‧‧保護絕緣膜 218‧‧‧Protective insulation film

226a‧‧‧氧化物半導體膜 226a‧‧‧Oxide semiconductor film

226b‧‧‧氧化物膜 226b‧‧‧Oxide film

226c‧‧‧氧化物膜 226c‧‧‧Oxide film

260‧‧‧半導體膜 260‧‧‧Semiconductor film

401‧‧‧半導體基板 401‧‧‧Semiconductor substrate

403‧‧‧元件分離區 403‧‧‧Component separation zone

407‧‧‧閘極絕緣膜 407‧‧‧gate insulating film

409‧‧‧閘極電極 409‧‧‧gate electrode

411a‧‧‧雜質區 411a‧‧‧ impurity area

411b‧‧‧雜質區 411b‧‧‧ impurity area

415‧‧‧絕緣膜 415‧‧‧Insulation film

417‧‧‧絕緣膜 417‧‧‧Insulation film

419‧‧‧電晶體 419‧‧‧Optoelectronics

419a‧‧‧接觸插頭 419a‧‧‧Contact plug

419b‧‧‧接觸插頭 419b‧‧‧Contact plug

420‧‧‧絕緣膜 420‧‧‧Insulation film

421‧‧‧絕緣膜 421‧‧‧Insulation film

422‧‧‧絕緣膜 422‧‧‧Insulation film

423a‧‧‧佈線 423a‧‧‧Wiring

423b‧‧‧佈線 423b‧‧‧Wiring

424‧‧‧電極 424‧‧‧electrode

425‧‧‧絕緣膜 425‧‧‧Insulation film

445‧‧‧絕緣膜 445‧‧‧Insulation film

449‧‧‧佈線 449‧‧‧Wiring

456‧‧‧佈線 456‧‧‧Wiring

500‧‧‧微型電腦 500‧‧‧Microcomputer

501‧‧‧直流電源 501‧‧‧DC power supply

502‧‧‧匯流排 502‧‧ ‧ busbar

503‧‧‧電源閘控制器 503‧‧‧Power Gate Controller

504‧‧‧電源閘 504‧‧‧Power Gate

505‧‧‧CPU 505‧‧‧CPU

506‧‧‧揮發性記憶部 506‧‧‧Volatile Memory Department

507‧‧‧非揮發性記憶部 507‧‧‧ Non-volatile memory

508‧‧‧介面 508‧‧" interface

509‧‧‧檢測部 509‧‧‧Detection Department

511‧‧‧光感測器 511‧‧‧Light sensor

512‧‧‧放大器 512‧‧Amplifier

513‧‧‧AD轉換器 513‧‧‧AD converter

514‧‧‧光電轉換元件 514‧‧‧ photoelectric conversion components

517‧‧‧電晶體 517‧‧‧Optoelectronics

519‧‧‧電晶體 519‧‧‧Optoelectronics

530‧‧‧發光元件 530‧‧‧Lighting elements

700‧‧‧基板 700‧‧‧Substrate

719‧‧‧發光元件 719‧‧‧Lighting elements

720‧‧‧絕緣膜 720‧‧‧Insulation film

721‧‧‧絕緣膜 721‧‧‧Insulation film

731‧‧‧端子 731‧‧‧ terminals

732‧‧‧FPC 732‧‧‧FPC

733a‧‧‧佈線 733a‧‧‧Wiring

733b‧‧‧佈線 733b‧‧‧Wiring

733c‧‧‧佈線 733c‧‧‧Wiring

734‧‧‧密封材料 734‧‧‧ Sealing material

735‧‧‧驅動電路 735‧‧‧Drive circuit

736‧‧‧驅動電路 736‧‧‧Drive circuit

737‧‧‧像素 737‧‧ ‧ pixels

741‧‧‧電晶體 741‧‧‧Optoelectronics

742‧‧‧電容器 742‧‧‧ capacitor

743‧‧‧切換元件 743‧‧‧Switching elements

744‧‧‧信號線 744‧‧‧ signal line

750‧‧‧像素 750 ‧ ‧ pixels

751‧‧‧電晶體 751‧‧‧Optoelectronics

752‧‧‧電容器 752‧‧‧ capacitor

753‧‧‧液晶元件 753‧‧‧Liquid Crystal Components

754‧‧‧掃描線 754‧‧‧ scan line

755‧‧‧信號線 755‧‧‧ signal line

781‧‧‧電極 781‧‧‧electrode

782‧‧‧發光層 782‧‧‧Lighting layer

783‧‧‧電極 783‧‧‧electrode

784‧‧‧分隔壁 784‧‧‧ partition wall

785a‧‧‧中間層 785a‧‧‧ middle layer

785b‧‧‧中間層 785b‧‧‧ middle layer

785c‧‧‧中間層 785c‧‧‧ middle layer

785d‧‧‧中間層 785d‧‧‧ middle layer

786a‧‧‧發光層 786a‧‧‧Lighting layer

786b‧‧‧發光層 786b‧‧‧Lighting layer

786c‧‧‧發光層 786c‧‧‧Lighting layer

791‧‧‧電極 791‧‧‧electrode

792‧‧‧絕緣膜 792‧‧‧Insulation film

793‧‧‧液晶層 793‧‧‧Liquid layer

794‧‧‧絕緣膜 794‧‧‧Insulation film

795‧‧‧隔離物 795‧‧‧Separators

796‧‧‧電極 796‧‧‧electrode

797‧‧‧基板 797‧‧‧Substrate

801‧‧‧玻璃基板 801‧‧‧ glass substrate

803‧‧‧In-Ga-Zn氧化物膜 803‧‧‧In-Ga-Zn oxide film

805‧‧‧In-Ga-Zn氧化物膜 805‧‧‧In-Ga-Zn oxide film

807‧‧‧光阻劑 807‧‧‧ photoresist

811‧‧‧玻璃基板 811‧‧‧ glass substrate

813‧‧‧In-Ga-Zn氧化物膜 813‧‧‧In-Ga-Zn oxide film

815‧‧‧In-Ga-Zn氧化物膜 815‧‧‧In-Ga-Zn oxide film

817‧‧‧光阻劑 817‧‧‧ photoresist

821‧‧‧氮化矽膜 821‧‧‧ nitride film

823‧‧‧氧氮化矽膜 823‧‧‧Oxynitride film

825‧‧‧氧化物半導體膜 825‧‧‧Oxide semiconductor film

826‧‧‧膜 826‧‧‧ film

827‧‧‧氧氮化矽膜 827‧‧‧Oxynitride film

829‧‧‧低密度區 829‧‧‧Low-density area

831‧‧‧玻璃基板 831‧‧‧ glass substrate

833‧‧‧氧氮化矽膜 833‧‧‧Oxynitride film

835‧‧‧氧化物半導體膜 835‧‧‧Oxide semiconductor film

837‧‧‧氧氮化矽膜 837‧‧‧Oxynitride film

1141‧‧‧切換元件 1141‧‧‧Switching components

1142‧‧‧記憶單元 1142‧‧‧ memory unit

1143‧‧‧記憶單元組 1143‧‧‧Memory unit group

1189‧‧‧ROM介面 1189‧‧‧ROM interface

1190‧‧‧基板 1190‧‧‧Substrate

1191‧‧‧ALU 1191‧‧‧ALU

1192‧‧‧ALU控制器 1192‧‧‧ALU controller

1193‧‧‧指令解碼器 1193‧‧‧ instruction decoder

1194‧‧‧中斷控制器 1194‧‧‧Interrupt controller

1195‧‧‧時序控制器 1195‧‧‧ Timing controller

1196‧‧‧暫存器 1196‧‧‧ register

1197‧‧‧暫存器控制器 1197‧‧‧ register controller

1198‧‧‧匯流排介面 1198‧‧‧ bus interface

1199‧‧‧ROM 1199‧‧‧ROM

8100‧‧‧警報裝置 8100‧‧‧ alarm device

8101‧‧‧微型電腦 8101‧‧‧Microcomputer

8200‧‧‧室內機 8200‧‧‧ indoor unit

8201‧‧‧外殼 8201‧‧‧Shell

8202‧‧‧送風口 8202‧‧‧Air outlet

8203‧‧‧CPU 8203‧‧‧CPU

8204‧‧‧室外機 8204‧‧‧Outdoor machine

8300‧‧‧電冷藏冷凍箱 8300‧‧‧Electric refrigerator

8301‧‧‧外殼 8301‧‧‧Shell

8302‧‧‧冷藏室用門 8302‧‧‧ refrigerator door

8303‧‧‧冷凍室用門 8303‧‧‧Freezer door

8304‧‧‧CPU 8304‧‧‧CPU

9700‧‧‧電動汽車 9700‧‧‧Electric car

9701‧‧‧二次電池 9701‧‧‧Secondary battery

9702‧‧‧控制電路 9702‧‧‧Control circuit

9703‧‧‧驅動裝置 9703‧‧‧ drive

9704‧‧‧處理裝置 9704‧‧‧Processing device

在圖式中:圖1A至圖1D是說明電晶體的俯視圖及剖面圖;圖2是說明電晶體的剖面圖;圖3是說明多層膜的能帶結構的圖;圖4是說明多層膜的能帶結構的圖;圖5A至圖5C是說明電晶體的製造方法的剖面圖;圖6A和圖6B是說明電晶體的製造方法的剖面圖;圖7A至圖7D是說明電晶體的俯視圖及剖面圖;圖8A至圖8C是說明電晶體的俯視圖及剖面圖;圖9是說明電晶體的剖面圖;圖10A至圖10C是說明多層膜的能帶結構的圖;圖11A至圖11C是說明電晶體的製造方法的剖面圖;圖12A和圖12B是說明電晶體的製造方法的剖面圖;圖13A至圖13C是說明電晶體的俯視圖及剖面圖;圖14A至圖14C是說明電晶體的俯視圖及剖面圖;圖15是示出EL顯示裝置的一個例子的電路圖;圖16A至圖16C是示出EL顯示裝置的一個例子的俯 視圖及剖面圖;圖17A和圖17B是示出EL顯示裝置的一個例子的剖面圖;圖18是示出液晶顯示裝置的一個例子的電路圖;圖19A至圖19C是示出液晶顯示裝置的一個例子的剖面圖;圖20是示出半導體裝置的一個例子的方塊圖;圖21是示出半導體裝置的一個例子的剖面圖;圖22A至圖22C是示出CPU的一個例子的方塊圖;圖23A至圖23C是示出電子裝置的一個例子的圖;圖24是說明蝕刻劑與蝕刻速度的關係的圖;圖25A和圖25B是說明STEM影像的圖;圖26是說明STEM影像的圖;圖27A和圖27B是說明STEM影像的圖;圖28A和圖28B是說明STEM影像的圖;圖29A和圖29B是說明STEM影像的圖;圖30A和圖30B是說明STEM影像的圖;圖31A和圖31B是說明多層膜的結構的圖;圖32A和圖32B是說明多層膜的結構的圖。 1A to 1D are a plan view and a cross-sectional view illustrating a transistor; Fig. 2 is a cross-sectional view illustrating the transistor; Fig. 3 is a view illustrating an energy band structure of the multilayer film; and Fig. 4 is a view illustrating a multilayer film 5A to 5C are cross-sectional views illustrating a method of fabricating a transistor; FIGS. 6A and 6B are cross-sectional views illustrating a method of fabricating a transistor; and FIGS. 7A to 7D are plan views illustrating a transistor; FIG. 8A to FIG. 8C are plan views and cross-sectional views illustrating the transistor; FIG. 9 is a cross-sectional view illustrating the transistor; FIGS. 10A to 10C are diagrams illustrating the energy band structure of the multilayer film; FIGS. 11A to 11C are views A cross-sectional view illustrating a method of fabricating a transistor; FIGS. 12A and 12B are cross-sectional views illustrating a method of fabricating a transistor; FIGS. 13A to 13C are a plan view and a cross-sectional view illustrating a transistor; and FIGS. 14A to 14C are diagrams illustrating a transistor Top view and cross-sectional view; Fig. 15 is a circuit diagram showing an example of an EL display device; and Figs. 16A to 16C are views showing an example of the EL display device. 17A and 17B are cross-sectional views showing an example of an EL display device; Fig. 18 is a circuit diagram showing an example of a liquid crystal display device; and Figs. 19A to 19C are diagrams showing a liquid crystal display device. FIG. 20 is a block diagram showing an example of a semiconductor device; FIG. 21 is a cross-sectional view showing an example of a semiconductor device; and FIGS. 22A to 22C are block diagrams showing an example of a CPU; 23A to 23C are diagrams showing an example of an electronic device; FIG. 24 is a view for explaining a relationship between an etchant and an etching rate; FIGS. 25A and 25B are diagrams for explaining a STEM image; and FIG. 26 is a view for explaining a STEM image; 27A and 27B are diagrams for explaining STEM images; Figs. 28A and 28B are diagrams for explaining STEM images; Figs. 29A and 29B are diagrams for explaining STEM images; and Figs. 30A and 30B are diagrams for explaining STEM images; Fig. 31A And FIG. 31B is a view for explaining the structure of the multilayer film; and FIGS. 32A and 32B are views for explaining the structure of the multilayer film.

下面,參照圖式對本發明的實施方式進行詳細說明。但是,本發明不侷限於以下說明,只要是本領域技術人員就可以很容易地理解其實施方式和詳細內容可以 進行各種變換。另外,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。此外,當利用圖式說明發明的結構時,表示相同目標的元件符號在不同的圖式中共同使用。另外,在表示相同的目標時,有時使用相同的陰影圖案,而不特別附加標記。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and as long as it is a person skilled in the art, the embodiment and details can be easily understood. Make various transformations. Further, the present invention should not be construed as being limited to the contents described in the embodiments described below. Further, when the structure of the invention is illustrated by the drawings, the component symbols representing the same object are used in common in different drawings. In addition, when representing the same target, the same hatching pattern is sometimes used, and no special mark is attached.

作為第一、第二等而附上的序數詞是為了方便而使用的,並不表示製程順序或層疊順序。此外,在本說明書中,不表示作為用於特定發明的事項的固有名稱。 The ordinal numbers attached as the first, second, etc. are used for convenience, and do not indicate a process sequence or a stacking order. Further, in the present specification, the inherent name as a matter for a specific invention is not indicated.

另外,電壓大多指某個電位與標準電位(例如,接地電位(GND)或源極電位)之間的電位差。由此,可以將電壓改稱為電位。 In addition, the voltage mostly refers to a potential difference between a certain potential and a standard potential (for example, a ground potential (GND) or a source potential). Thus, the voltage can be changed to a potential.

另外,即使在記載為“電連接”的情況下,也有時在現實的電路中沒有物理連接的部分而只是佈線延伸。 Further, even when it is described as "electrical connection", there is a case where there is no physically connected portion in the actual circuit, and only the wiring is extended.

另外,在電路動作中電流方向發生變化等的情況下,源極及汲極的功能有時互相調換。因此,在本說明書中,源極及汲極這樣的術語可以互相調換而使用。 Further, when the current direction changes during the operation of the circuit or the like, the functions of the source and the drain may be interchanged. Therefore, in the present specification, terms such as a source and a drain may be interchanged and used.

在本說明書中,“平行”是指兩條直線以所呈的角度為-10°以上且10°以下的方式配置的狀態,因此也包括角度為-5°以上且5°以下的情況。另外,“垂直”是指兩條直線以所呈的角度為80°以上且100°以下的方式配置的狀態,因此也包括角度為85°以上且95°以下的情況。 In the present specification, "parallel" means a state in which two straight lines are arranged such that the angle formed is −10° or more and 10° or less. Therefore, the angle is also −5° or more and 5° or less. In addition, "vertical" means a state in which the two straight lines are arranged such that the angle is 80° or more and 100° or less, and therefore the angle is 85° or more and 95° or less.

另外,在本說明書中,在結晶為三方晶或菱 方晶的情況下,以六方晶系來表示。 In addition, in this specification, the crystal is trigonal or diamond. In the case of a square crystal, it is represented by a hexagonal system.

此外,在本說明書等中,各實施方式及各實施例所記載的結構及內容可以適當地組合。 Further, in the present specification and the like, the configurations and contents described in the respective embodiments and the respective embodiments can be combined as appropriate.

實施方式1 Embodiment 1

在本實施方式中,說明本發明的一個方式的電晶體。 In the present embodiment, a transistor of one embodiment of the present invention will be described.

1-1.電晶體結構(1) 1-1. Crystal structure (1)

圖1A至圖1D示出BGTC結構的電晶體的俯視圖及剖面圖。圖1A示出電晶體的俯視圖。圖1B示出對應於圖1A所示的點劃線A1-A2的剖面圖。圖1C示出對應於圖1A所示的點劃線A3-A4的剖面圖。另外,在圖1A中,為了使圖式清楚,省略了該電晶體的構成要素的一部分(閘極絕緣膜及保護絕緣膜等)。 1A to 1D are a plan view and a cross-sectional view showing a transistor of a BGTC structure. FIG. 1A shows a top view of a transistor. Fig. 1B shows a cross-sectional view corresponding to the chain line A1-A2 shown in Fig. 1A. Fig. 1C shows a cross-sectional view corresponding to the chain line A3-A4 shown in Fig. 1A. In addition, in FIG. 1A, in order to make the drawing clear, a part of the constituent elements of the transistor (a gate insulating film, a protective insulating film, etc.) is omitted.

在本項中說明底閘極型電晶體。在此,使用圖1A至圖1D說明作為一種底閘極型電晶體的底閘極頂接觸結構(BGTC結構)的電晶體。圖1B所示的電晶體包括:設置在基板100上的閘極電極104;設置在閘極電極104上的閘極絕緣膜112;設置在閘極絕緣膜112上的包含氧化物半導體膜106a以及設置在氧化物半導體膜106a上的氧化物膜106b的多層膜106;設置在閘極絕緣膜112和多層膜106上的源極電極116a及汲極電極116b;設置在多層膜106、源極電極116a以及汲極電極116b上的保護絕緣膜118。 The bottom gate type transistor is described in this section. Here, a transistor as a bottom gate top contact structure (BGTC structure) of a bottom gate type transistor will be described using FIGS. 1A to 1D. The transistor shown in FIG. 1B includes: a gate electrode 104 disposed on the substrate 100; a gate insulating film 112 disposed on the gate electrode 104; an oxide semiconductor film 106a including the oxide semiconductor film 106a disposed on the gate insulating film 112, and a multilayer film 106 of an oxide film 106b disposed on the oxide semiconductor film 106a; a source electrode 116a and a drain electrode 116b disposed on the gate insulating film 112 and the multilayer film 106; and a multilayer film 106 and a source electrode 116a and a protective insulating film 118 on the drain electrode 116b.

另外,根據用於源極電極116a及汲極電極116b的導電膜的種類,有時藉由從多層膜106的一部分奪取氧或者形成混合層,而在多層膜106中形成低電阻區106c及低電阻區106d。在圖1B中,低電阻區106c及低電阻區106d是多層膜106中的與源極電極116a及汲極電極116b接觸的介面附近的區域(多層膜106的虛線與源極電極116a及汲極電極116b之間的區域)。低電阻區106c及低電阻區106d的一部或全部作為源極區及汲極區發揮功能。 Further, depending on the type of the conductive film used for the source electrode 116a and the gate electrode 116b, the low resistance region 106c and the low portion are formed in the multilayer film 106 by taking oxygen from a portion of the multilayer film 106 or forming a mixed layer. Resistor region 106d. In FIG. 1B, the low-resistance region 106c and the low-resistance region 106d are regions in the vicinity of the interface of the multilayer film 106 in contact with the source electrode 116a and the drain electrode 116b (dashed line of the multilayer film 106 and the source electrode 116a and the drain electrode) The area between the electrodes 116b). One or all of the low resistance region 106c and the low resistance region 106d function as a source region and a drain region.

在圖1A中的重疊於閘極電極104的區域中,將源極電極116a和汲極電極116b之間的間隔稱為通道長度。但是,在電晶體包括源極區和汲極區的情況下,在重疊於閘極電極104的區域中,也可以將低電阻區106c與低電阻區106d之間的間隔稱為通道長度。 In the region overlapping the gate electrode 104 in FIG. 1A, the interval between the source electrode 116a and the drain electrode 116b is referred to as a channel length. However, in the case where the transistor includes the source region and the drain region, the interval between the low resistance region 106c and the low resistance region 106d may also be referred to as a channel length in a region overlapping the gate electrode 104.

此外,通道形成區是指在多層膜106中重疊於閘極電極104並且夾在源極電極116a和汲極電極116b的區域(參照圖1B)。另外,通道區是指在通道形成區中的電流主要流過的區域。在此,通道區是通道形成區中的氧化物半導體膜106a的一部分。 Further, the channel formation region refers to a region overlapping the gate electrode 104 in the multilayer film 106 and sandwiched between the source electrode 116a and the drain electrode 116b (refer to FIG. 1B). In addition, the channel region refers to a region where the current mainly flows in the channel formation region. Here, the channel region is a part of the oxide semiconductor film 106a in the channel formation region.

此外,如圖1A所示那樣,在上表面形狀中以多層膜106包含於閘極電極104的內側的方式設置閘極電極104。藉由這樣設置,當光從基板100一側入射時,可以抑制在多層膜106中因光而產生載子。就是說,閘極電極104具有作為遮光膜的功能。但是,也可以形成多層膜 106直到閘極電極104的外側為止。 Further, as shown in FIG. 1A, the gate electrode 104 is provided in such a manner that the multilayer film 106 is included inside the gate electrode 104 in the upper surface shape. With this arrangement, when light is incident from the side of the substrate 100, generation of carriers due to light in the multilayer film 106 can be suppressed. That is, the gate electrode 104 has a function as a light shielding film. However, it is also possible to form a multilayer film 106 until the outside of the gate electrode 104.

氧化物半導體膜106a的下表面是指,相當於氧化物半導體膜106a的基板100一側的表面或氧化物半導體膜106a的與閘極絕緣膜112接觸的表面。氧化物膜106b的下表面是指,相當於氧化物膜106b的基板100一側的表面或氧化物膜106b與氧化物半導體膜106a之間的邊界面。此外,多層膜106的層疊結構藉由使用STEM(Scanning Transmission Electron Microscopy:掃描透射電子顯微術)觀察,可以確認出邊界。但是,根據用於氧化物半導體膜106a及氧化物膜106b的材料,有時不能明確地確認出該邊界。 The lower surface of the oxide semiconductor film 106a corresponds to the surface of the oxide semiconductor film 106a on the substrate 100 side or the surface of the oxide semiconductor film 106a that is in contact with the gate insulating film 112. The lower surface of the oxide film 106b is a surface corresponding to the surface of the oxide film 106b on the substrate 100 side or a boundary surface between the oxide film 106b and the oxide semiconductor film 106a. Further, the laminated structure of the multilayer film 106 was observed by STEM (Scanning Transmission Electron Microscopy), and the boundary was confirmed. However, depending on the materials used for the oxide semiconductor film 106a and the oxide film 106b, the boundary may not be clearly confirmed.

1-1-1.多層膜 1-1-1. Multilayer film

以下,參照圖1A至圖2說明多層膜106和構成多層膜106的氧化物半導體膜106a及氧化物膜106b。 Hereinafter, the multilayer film 106 and the oxide semiconductor film 106a and the oxide film 106b constituting the multilayer film 106 will be described with reference to FIGS. 1A to 2 .

圖2是圖1B的由虛線圍繞的區域的放大圖。 Fig. 2 is an enlarged view of a region surrounded by a broken line of Fig. 1B.

在多層膜106中,至少氧化物半導體膜106a具有錐形狀。較佳的是,氧化物膜106b也具有錐形狀。另外,氧化物半導體膜106a的錐形狀與氧化物膜106b的錐形狀不同。 In the multilayer film 106, at least the oxide semiconductor film 106a has a tapered shape. Preferably, the oxide film 106b also has a tapered shape. Further, the tapered shape of the oxide semiconductor film 106a is different from the tapered shape of the oxide film 106b.

明確而言,在氧化物半導體膜106a中,將氧化物半導體膜106a的下表面與氧化物半導體膜106a的側面所呈的角度稱為第一角度θ1,並且在氧化物膜106b中,將氧化物膜106b的下表面與氧化物膜106b的側面所 呈的角度稱為第二角度θ2。在這種情況下,第一角度θ1可以為銳角,第二角度θ2可以為銳角或垂直。 Specifically, in the oxide semiconductor film 106a, the angle between the lower surface of the oxide semiconductor film 106a and the side surface of the oxide semiconductor film 106a is referred to as a first angle θ1, and in the oxide film 106b, oxidation is performed. The lower surface of the film 106b and the side surface of the oxide film 106b The angle presented is referred to as the second angle θ2. In this case, the first angle θ1 may be an acute angle, and the second angle θ2 may be an acute angle or a vertical direction.

較佳的是,第一角度θ1及第二角度θ2都是銳角,並且第一角度θ1小於第二角度θ2。 Preferably, the first angle θ1 and the second angle θ2 are both acute angles, and the first angle θ1 is smaller than the second angle θ2.

另外,第一角度θ1為10°以上且小於90°,較佳為30°以上且70°以下。第二角度θ2為10°以上且小於90°,較佳為30°以上且70°以下。 Further, the first angle θ1 is 10° or more and less than 90°, preferably 30° or more and 70° or less. The second angle θ2 is 10° or more and less than 90°, preferably 30° or more and 70° or less.

如上所述,藉由將多層膜106的形狀設為具有不同的錐角的錐形狀,可以得到下述效果。關於多層膜106,藉由將其設為具有不同的錐角的錐形狀,與具有恆定的錐角的錐形狀相比,可以擴大它與源極電極116a及汲極電極116b之間的接觸面積。由此,可以降低多層膜106與源極電極116a以及汲極電極116b之間的接觸電阻並使電晶體的通態電流增大。 As described above, by setting the shape of the multilayer film 106 to a tapered shape having different taper angles, the following effects can be obtained. Regarding the multilayer film 106, by making it a tapered shape having a different taper angle, the contact area with the source electrode 116a and the drain electrode 116b can be enlarged as compared with the tapered shape having a constant taper angle. . Thereby, the contact resistance between the multilayer film 106 and the source electrode 116a and the drain electrode 116b can be lowered and the on-state current of the transistor can be increased.

另外,藉由使第二角度θ2大於第一角度θ1,可以減小氧化物膜106b與源極電極116a及汲極電極116b之間的接觸面積,從而可以減小形成在氧化物膜106b中的低電阻區。由此,可以抑制氧化物膜106b的低電阻化,並抑制在源極電極116a與汲極電極116b之間產生的洩漏路徑,同時能夠在作為通道區發揮功能的氧化物半導體膜106a中有效地形成低電阻區,從而可以同時實現電晶體的通態電流的增大和電晶體的關態電流的降低。 In addition, by making the second angle θ2 larger than the first angle θ1, the contact area between the oxide film 106b and the source electrode 116a and the drain electrode 116b can be reduced, so that the formation in the oxide film 106b can be reduced. Low resistance zone. Thereby, it is possible to suppress the reduction in resistance of the oxide film 106b and suppress the leakage path generated between the source electrode 116a and the gate electrode 116b, and at the same time, effectively in the oxide semiconductor film 106a functioning as the channel region. A low resistance region is formed so that an increase in the on-state current of the transistor and a decrease in the off-state current of the transistor can be simultaneously achieved.

另外,氧化物半導體膜106a的上端與氧化物膜106b的下端大致一致(參照圖2)。就是說,多層膜 106沒有由氧化物半導體膜106a和氧化物膜106b形成的大的步階113(參照圖31A和圖31B)。因此,可以抑制設置在多層膜106上的膜(例如,被加工成源極電極116a及汲極電極116b的導電膜)的斷開,而可以製造電氣特性良好的電晶體。此外,“氧化物半導體膜106a的上端與氧化物膜106b的下端大致一致”是指氧化物膜106b的下端與氧化物半導體膜106a的上端之間的距離L1為30nm以下,較佳為10nm以下(參照圖31A和圖31B)。 Further, the upper end of the oxide semiconductor film 106a substantially coincides with the lower end of the oxide film 106b (see FIG. 2). That is, the multilayer film The 106 has no large step 113 formed by the oxide semiconductor film 106a and the oxide film 106b (refer to FIGS. 31A and 31B). Therefore, it is possible to suppress the disconnection of the film (for example, the conductive film processed into the source electrode 116a and the drain electrode 116b) provided on the multilayer film 106, and it is possible to manufacture a transistor having excellent electrical characteristics. In addition, "the upper end of the oxide semiconductor film 106a substantially coincides with the lower end of the oxide film 106b" means that the distance L1 between the lower end of the oxide film 106b and the upper end of the oxide semiconductor film 106a is 30 nm or less, preferably 10 nm or less. (Refer to FIG. 31A and FIG. 31B).

在藉由蝕刻來形成多層膜106時,利用氧化物半導體膜106a與氧化物膜106b之間的蝕刻速度的差異,可以形成上述錐形狀。尤其是,藉由使氧化物半導體膜106a的蝕刻速度低於氧化物膜106b的蝕刻速度,可以形成上述錐形狀。 When the multilayer film 106 is formed by etching, the above-described tapered shape can be formed by the difference in etching speed between the oxide semiconductor film 106a and the oxide film 106b. In particular, the above-described tapered shape can be formed by making the etching rate of the oxide semiconductor film 106a lower than the etching rate of the oxide film 106b.

例如,藉由作為蝕刻劑使用包含磷酸的溶液的濕蝕刻,可以形成上述錐形狀。 For example, the above-described tapered shape can be formed by wet etching using a solution containing phosphoric acid as an etchant.

藉由濕蝕刻形成多層膜106的優點是如下。例如,在被加工成多層膜106的氧化物半導體膜及氧化物膜具有針孔等缺陷的情況下,如果藉由乾蝕刻對該氧化物半導體膜及該氧化物膜進行加工的話,有時藉由該針孔對設置在該氧化物半導體膜及該氧化物膜下的絕緣膜(閘極絕緣膜等)也進行蝕刻。由此,在該絕緣膜中,有時形成了直到設置在該絕緣膜之下的電極(閘極電極等)的開口。如果在這種狀況下製造電晶體的話,有時會製造出在 該電極與形成在多層膜106上的電極(源極電極及汲極電極等)之間產生短路等特性不良的電晶體。就是說,如果藉由乾蝕刻形成多層膜106的話,有時關係到電晶體的良率的下降。因此,藉由利用濕蝕刻形成多層膜106,可以高生產率地製造電氣特性良好的電晶體。 The advantage of forming the multilayer film 106 by wet etching is as follows. For example, when the oxide semiconductor film and the oxide film processed into the multilayer film 106 have defects such as pinholes, the oxide semiconductor film and the oxide film may be processed by dry etching. The insulating film (gate insulating film or the like) provided under the oxide semiconductor film and the oxide film is also etched by the pinhole. Thus, in the insulating film, an opening of an electrode (gate electrode or the like) provided under the insulating film may be formed. If a transistor is fabricated under such conditions, it will sometimes be manufactured. This electrode generates a transistor having a characteristic defect such as a short circuit between the electrode formed on the multilayer film 106 (source electrode, drain electrode, etc.). That is, if the multilayer film 106 is formed by dry etching, it sometimes affects the decrease in the yield of the transistor. Therefore, by forming the multilayer film 106 by wet etching, it is possible to manufacture a transistor having excellent electrical characteristics with high productivity.

另外,由於濕蝕刻的蝕刻速度根據蝕刻劑的濃度及蝕刻劑的溫度等而變化,所以較佳為將氧化物半導體膜106a的蝕刻速度適當地調整為低於氧化物膜106b的蝕刻速度的速度。另外,藉由使第二角度θ2大於第一角度θ1,可以盡可能地減小在該濕蝕刻中暴露於蝕刻劑的面積。另外,藉由使第二角度θ2大於第一角度θ1,可以減小因為由蝕刻劑所引起的污染或缺陷的產生而形成在氧化物膜106b中的低電阻區。 In addition, since the etching rate of the wet etching varies depending on the concentration of the etchant and the temperature of the etchant, etc., it is preferable to appropriately adjust the etching rate of the oxide semiconductor film 106a to be lower than the etching rate of the oxide film 106b. . In addition, by making the second angle θ2 larger than the first angle θ1, the area exposed to the etchant in the wet etching can be reduced as much as possible. In addition, by making the second angle θ2 larger than the first angle θ1, the low-resistance region formed in the oxide film 106b due to the occurrence of contamination or defects caused by the etchant can be reduced.

例如,作為上述蝕刻劑,可以舉出調整為85%左右的磷酸水溶液或混合了磷酸(72%)、硝酸(2%)及醋酸(9.8%)的混合溶液(也稱為混合酸鋁溶液)。另外,蝕刻劑的溫度較佳為20刻至35刻左右的室溫或常溫。此外,還可以使用上述以外的蝕刻劑。 For example, the etchant may be a phosphoric acid aqueous solution adjusted to about 85% or a mixed solution of phosphoric acid (72%), nitric acid (2%), and acetic acid (9.8%) (also referred to as a mixed aluminum acid solution). . Further, the temperature of the etchant is preferably room temperature or normal temperature of about 20 to 35 minutes. Further, an etchant other than the above may also be used.

氧化物半導體膜106a是至少包含銦的氧化物半導體膜。例如,除了銦之外還可以包含鋅。另外,氧化物半導體膜106a除錮之外,較佳為還包含元素M(M是Al、Ga、Ge、Y、Zr、Sn、La、Ce或Nd)。 The oxide semiconductor film 106a is an oxide semiconductor film containing at least indium. For example, zinc may be contained in addition to indium. Further, the oxide semiconductor film 106a preferably further contains an element M (M is Al, Ga, Ge, Y, Zr, Sn, La, Ce or Nd) in addition to ruthenium.

氧化物膜106b是這樣的氧化物膜:由構成氧化物半導體膜106a的元素中的一種以上構成,並且,其 導帶底的能量相比氧化物半導體膜106a更接近於真空能階0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上且2eV以下、1eV以下、0.5eV以下或0.4eV以下。此時,當對閘極電極104施加電場,通道形成於多層膜106中導帶底的能量較低的氧化物半導體膜106a。就是說,藉由在氧化物半導體膜106a與保護絕緣膜118之間具有氧化物膜106b,可以將電晶體的通道形成在不與保護絕緣膜118接觸的氧化物半導體膜106a。另外,由構成氧化物半導體膜106a的元素中的一種以上構成氧化物膜106b,所以在氧化物半導體膜106a與氧化物膜106b之間不容易產生介面散射。因此,在氧化物半導體膜106a與氧化物膜106b之間不阻礙載子的移動,從而提高電晶體的場效移動率。另外,在氧化物半導體膜106a與氧化物膜106b之間不容易形成介面能階。當在氧化物半導體膜106a與氧化物膜106b之間存在介面能階,有時會形成將該介面作為通道的臨界電壓不同的第二電晶體,使得電晶體的外觀上的臨界電壓發生變動。因此,藉由設置氧化物膜106b,可以降低電晶體的臨界電壓等電氣特性的不均勻。 The oxide film 106b is an oxide film composed of one or more of the elements constituting the oxide semiconductor film 106a, and The energy of the conduction band bottom is closer to the vacuum energy level than the oxide semiconductor film 106a by 0.05 eV or more, 0.07 eV or more, 0.1 eV or more, 0.15 eV or more, 2 eV or less, 1 eV or less, 0.5 eV or less, or 0.4 eV or less. At this time, when an electric field is applied to the gate electrode 104, the channel is formed in the oxide semiconductor film 106a having a lower energy at the bottom of the conduction band in the multilayer film 106. In other words, by having the oxide film 106b between the oxide semiconductor film 106a and the protective insulating film 118, the channel of the transistor can be formed in the oxide semiconductor film 106a which is not in contact with the protective insulating film 118. In addition, since the oxide film 106b is formed of one or more of the elements constituting the oxide semiconductor film 106a, interface scattering is less likely to occur between the oxide semiconductor film 106a and the oxide film 106b. Therefore, the movement of the carrier is not hindered between the oxide semiconductor film 106a and the oxide film 106b, thereby increasing the field effect mobility of the transistor. Further, the interface level is not easily formed between the oxide semiconductor film 106a and the oxide film 106b. When an interface level exists between the oxide semiconductor film 106a and the oxide film 106b, a second transistor having a different threshold voltage with the interface as a channel is sometimes formed, so that the threshold voltage in the appearance of the transistor fluctuates. Therefore, by providing the oxide film 106b, it is possible to reduce unevenness in electrical characteristics such as a critical voltage of the transistor.

例如,氧化物膜106b以比氧化物半導體膜106a高的原子個數比來包含Al、Ga、Ge、Y、Zr、Sn、La、Ce、Nd或Hf(尤其是Al或Ga)即可。具體地,作為氧化物膜106b,使用以比氧化物半導體膜106a高1.5倍以上、較佳為2倍以上、更佳為3倍以上的原子個數比 來包含上述元素的氧化物膜。上述元素與氧堅固地鍵合,所以具有抑制在氧化物膜中產生氧空位的功能。就是說,與氧化物半導體膜106a相比,氧化物膜106b不容易產生氧空位。 For example, the oxide film 106b may contain Al, Ga, Ge, Y, Zr, Sn, La, Ce, Nd or Hf (especially Al or Ga) at a higher atomic ratio than the oxide semiconductor film 106a. Specifically, as the oxide film 106b, a ratio of atoms which is 1.5 times or more, preferably 2 times or more, more preferably 3 times or more higher than that of the oxide semiconductor film 106a is used. An oxide film containing the above elements. Since the above elements are strongly bonded to oxygen, they have a function of suppressing generation of oxygen vacancies in the oxide film. That is, the oxide film 106b is less likely to generate oxygen vacancies than the oxide semiconductor film 106a.

例如,在氧化物半導體膜106a是In-M-Zn氧化物並且將氧化物膜106b也設為In-M-Zn氧化物的時候,當將氧化物膜106b設定為In:M:Zn=x2:y2:z2[原子個數比]並且將氧化物半導體膜106a設定為In:M:Zn=x1:y1:z1[原子個數比],選擇y1/x1比y2/x2大的氧化物膜106b及氧化物半導體膜106a。此外,元素M是與氧的鍵合力比In與氧的鍵合力大的金屬元素,例如可以舉出Al、Ga、Ge、Y、Zr、Sn、La、Ce或Nd(尤其是Al或Ga)等。較佳的是,選擇y1/x1比y2/x2大1.5倍以上的氧化物膜106b及氧化物半導體膜106a。更佳的是,選擇y1/x1比y2/x2大2倍以上的氧化物膜106b及氧化物半導體膜106a。進一步較佳的是,選擇y1/x1比y2/x2大3倍以上的氧化物膜106b及氧化物半導體膜106a。此時,在氧化物膜106b中,如果y2為x2以上就可以賦予電晶體穩定的電氣特性,所以是較佳的。但是,如果y2為x2的3倍以上,則電晶體的場效移動率變低,所以較佳y2不到x2的3倍。 For example, when the oxide semiconductor film 106a is an In-M-Zn oxide and the oxide film 106b is also set to an In-M-Zn oxide, when the oxide film 106b is set to In:M:Zn=x 2 : y 2 : z 2 [atomic ratio] and the oxide semiconductor film 106a is set to In: M: Zn = x 1 : y 1 : z 1 [atomic ratio], and y 1 / x 1 ratio is selected The oxide film 106b and the oxide semiconductor film 106a having a large y 2 /x 2 . Further, the element M is a metal element having a bonding strength with oxygen larger than that of In and oxygen, and examples thereof include Al, Ga, Ge, Y, Zr, Sn, La, Ce or Nd (especially Al or Ga). Wait. Preferably, the oxide film 106b and the oxide semiconductor film 106a which are y 1 /x 1 larger than y 2 /x 2 by 1.5 times or more are selected. More preferably, the choice y 1 / x 1 y 2 / x 2 2 times larger than the oxide film 106b and the oxide semiconductor film 106a ratio. Further preferred, the choice y 1 / x 1 2 3 times greater than the oxide film 106b and the oxide semiconductor film 106a than y 2 / x. At this time, in the oxide film 106b, if y 2 is x 2 or more, it is preferable to impart stable electrical characteristics to the transistor. However, if y 2 is three times or more of x 2 , the field effect mobility of the transistor becomes low, so that y 2 is preferably less than three times x 2 .

另外,在氧化物膜106b緻密時,不容易因用於電晶體的製程的電漿等而產生損傷,由此可以賦予電晶體穩定的電氣特性,所以是較佳的。 Further, when the oxide film 106b is dense, it is less likely to be damaged by plasma or the like used in the process of the transistor, and thus it is preferable to impart stable electrical characteristics to the transistor.

將氧化物膜106b的厚度設定為3nm以上且100nm以下,較佳為3nm以上且50nm以下。另外,將氧化物半導體膜106a的厚度設定為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。 The thickness of the oxide film 106b is set to 3 nm or more and 100 nm or less, preferably 3 nm or more and 50 nm or less. In addition, the thickness of the oxide semiconductor film 106a is set to 3 nm or more and 200 nm or less, preferably 3 nm or more and 100 nm or less, and more preferably 3 nm or more and 50 nm or less.

以下說明氧化物半導體膜106a及氧化物膜106b的矽濃度。此外,為了使電晶體的電氣特性穩定,降低氧化物半導體膜106a中的雜質濃度而實現本質或實質上本質是有效的。具體地,將氧化物半導體膜的載子密度設為低於1×1017/cm3、低於1×1015/cm3或低於1×1013/cm3即可。另外,在氧化物半導體膜中,除了主成分以外(低於1原子%)的輕元素、半金屬元素及金屬元素等都是雜質。例如,在氧化物半導體膜中,氫、氮、碳、矽、鍺、鈦及鉿成為雜質。為了降低氧化物半導體膜中的雜質濃度,較佳為還降低相接近的閘極絕緣膜112及氧化物膜106b中的雜質濃度。 The germanium concentration of the oxide semiconductor film 106a and the oxide film 106b will be described below. Further, in order to stabilize the electrical characteristics of the transistor, it is effective to achieve an essential or substantially essential reduction in the concentration of impurities in the oxide semiconductor film 106a. Specifically, the carrier density of the oxide semiconductor film may be set to be less than 1 × 10 17 /cm 3 , less than 1 × 10 15 /cm 3 or less than 1 × 10 13 /cm 3 . Further, in the oxide semiconductor film, light elements, semimetal elements, metal elements and the like other than the main component (less than 1 atom%) are impurities. For example, in the oxide semiconductor film, hydrogen, nitrogen, carbon, ruthenium, osmium, titanium, and ruthenium become impurities. In order to reduce the impurity concentration in the oxide semiconductor film, it is preferable to lower the impurity concentration in the gate insulating film 112 and the oxide film 106b which are close to each other.

例如,在氧化物半導體膜106a包含矽的情況下,形成雜質能階。尤其是,當在氧化物半導體膜106a與氧化物膜106b之間存在矽,該雜質能階就成為陷阱。因此,將氧化物半導體膜106a和氧化物膜106b之間的矽濃度設定為低於1×1019atoms/cm3、較佳低於5×1018atoms/cm3,更佳低於2×1018atoms/cm3For example, in the case where the oxide semiconductor film 106a contains germanium, an impurity level is formed. In particular, when germanium is present between the oxide semiconductor film 106a and the oxide film 106b, the impurity level becomes a trap. Therefore, the germanium concentration between the oxide semiconductor film 106a and the oxide film 106b is set to be lower than 1 × 10 19 atoms / cm 3 , preferably lower than 5 × 10 18 atoms / cm 3 , more preferably lower than 2 × 10 18 atoms/cm 3 .

另外,在氧化物半導體膜106a中,氫及氮形成施體能階,使得載子密度增大。氧化物半導體膜106a 的氫濃度在二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)中為2×1020atoms/cm3以下,較佳為5×1019atoms/cm3以下,更佳為1×1019atoms/cm3以下,進一步較佳為5×1018atoms/cm3以下。另外,氮濃度在SIMS中低於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。 Further, in the oxide semiconductor film 106a, hydrogen and nitrogen form a donor energy level, so that the carrier density is increased. The hydrogen concentration of the oxide semiconductor film 106a is 2 × 10 20 atoms / cm 3 or less, preferably 5 × 10 19 atoms / cm 3 or less, more preferably 5 × 10 19 atoms / cm 3 or less, in the secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry). It is 1 × 10 19 atoms / cm 3 or less, and more preferably 5 × 10 18 atoms / cm 3 or less. Further, the nitrogen concentration is less than 5 × 10 19 atoms/cm 3 in the SIMS, preferably 5 × 10 18 atoms / cm 3 or less, more preferably 1 × 10 18 atoms / cm 3 or less, still more preferably 5 ×. 10 17 atoms/cm 3 or less.

另外,為了降低氧化物半導體膜106a的氫濃度及氮濃度,較佳為降低氧化物膜106b的氫濃度及氮濃度。氧化物膜106b的氫濃度在SIMS中為2×1020atoms/cm3以下,較佳為5×1019atoms/cm3以下,更佳為1×1019atoms/cm3以下,進一步較佳為5×1018atoms/cm3以下。另外,氮濃度在SIMS中低於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。 Moreover, in order to reduce the hydrogen concentration and the nitrogen concentration of the oxide semiconductor film 106a, it is preferable to reduce the hydrogen concentration and the nitrogen concentration of the oxide film 106b. The hydrogen concentration of the oxide film 106b is 2 × 10 20 atoms/cm 3 or less in the SIMS, preferably 5 × 10 19 atoms / cm 3 or less, more preferably 1 × 10 19 atoms / cm 3 or less, further preferably It is 5 × 10 18 atoms / cm 3 or less. Further, the nitrogen concentration is less than 5 × 10 19 atoms/cm 3 in the SIMS, preferably 5 × 10 18 atoms / cm 3 or less, more preferably 1 × 10 18 atoms / cm 3 or less, still more preferably 5 ×. 10 17 atoms/cm 3 or less.

氧化物半導體膜106a及氧化物膜106b為非晶質或結晶質。作為該結晶質,可以舉出多晶結構、單晶結構及微晶結構等。另外,氧化物半導體膜106a及氧化物膜106b也可以是晶粒分散在非晶區中的混合結構。此外,微晶結構的各晶粒的面方位隨機,並且微晶結構或混合結構所包含的晶粒的粒徑為0.1nm以上且10nm以下,較佳為1nm以上且10nm以下,更佳為2nm以上且4nm以下。 The oxide semiconductor film 106a and the oxide film 106b are amorphous or crystalline. Examples of the crystal form include a polycrystalline structure, a single crystal structure, and a crystallite structure. Further, the oxide semiconductor film 106a and the oxide film 106b may be a mixed structure in which crystal grains are dispersed in an amorphous region. Further, the crystal orientation of each crystal grain of the crystallite structure is random, and the crystal grain size of the crystallite or the mixed structure includes 0.1 nm or more and 10 nm or less, preferably 1 nm or more and 10 nm or less, more preferably 2 nm. Above and below 4 nm.

關於氧化物半導體膜106a及氧化物膜106b,較佳的是,氧化物半導體膜106a為結晶質,氧化物膜106b為非晶質或結晶質。由於形成通道的氧化物半導體膜106a為結晶質,所以可以賦予電晶體穩定的電氣特性。另外,結晶質的氧化物半導體膜106a較佳為CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向晶體氧化物半導體)。 In the oxide semiconductor film 106a and the oxide film 106b, it is preferable that the oxide semiconductor film 106a is crystalline, and the oxide film 106b is amorphous or crystalline. Since the oxide semiconductor film 106a forming the channel is crystalline, it is possible to impart stable electrical characteristics to the transistor. Further, the crystalline oxide semiconductor film 106a is preferably CAAC-OS (C Axis Aligned Crystalline Oxide Semiconductor).

此外,氧化物半導體膜106a較佳為在非晶膜上形成。例如,可以舉出在非晶絕緣膜的表面上或非晶半導體膜的表面上等。藉由使用後述成膜方法可以在非晶膜上形成CAAC-OS的氧化物半導體膜106a。 Further, the oxide semiconductor film 106a is preferably formed on the amorphous film. For example, it may be on the surface of the amorphous insulating film or on the surface of the amorphous semiconductor film. The oxide semiconductor film 106a of CAAC-OS can be formed on the amorphous film by using a film formation method described later.

CAAC-OS膜是具有多個結晶部的氧化物半導體膜之一,大部分的結晶部的尺寸為能夠容納於一邊短於100nm的立方體內的尺寸。因此,也包含這樣的情況:包括在CAAC-OS膜中的結晶部的尺寸為能夠容納於一邊短於10nm、短於5nm或短於3nm的立方體內的尺寸。CAAC-OS膜的缺陷能階密度低。下面,對CAAC-OS膜進行詳細的說明。 The CAAC-OS film is one of oxide semiconductor films having a plurality of crystal portions, and most of the crystal portions have a size that can be accommodated in a cube shorter than 100 nm on one side. Therefore, a case is also included in which the size of the crystal portion included in the CAAC-OS film is a size that can be accommodated in a cube shorter than 10 nm, shorter than 5 nm, or shorter than 3 nm. The CAAC-OS film has a low defect energy density. The CAAC-OS film will be described in detail below.

當用TEM觀察CAAC-OS膜,無法確認出結晶部與結晶部之間的明確的邊界,即晶界(也稱為grain boundary)。因此,可以說,CAAC-OS膜不容易發生起因於晶界的電子移動率的降低。 When the CAAC-OS film was observed by TEM, a clear boundary between the crystal portion and the crystal portion, that is, a grain boundary (also referred to as a grain boundary) could not be confirmed. Therefore, it can be said that the CAAC-OS film is less likely to cause a decrease in the electron mobility due to the grain boundary.

當從大致平行於樣本面的方向藉由TEM觀察CAAC-OS膜(剖面TEM影像),則在結晶部中可以確認 出金屬原子排列為層狀。金屬原子的各層為反映了形成CAAC-OS膜的有面(也稱為被形成面)或CAAC-OS膜的上表面的凸凹的形狀,並以平行於CAAC-OS膜的被形成面或上表面的方式排列。 When the CAAC-OS film (cross-sectional TEM image) is observed by TEM from a direction substantially parallel to the sample surface, it can be confirmed in the crystal portion. The metal atoms are arranged in a layered shape. Each layer of the metal atom is a convex-concave shape reflecting the surface (also referred to as a formed surface) of the CAAC-OS film or the upper surface of the CAAC-OS film, and is formed on the surface or upper side parallel to the CAAC-OS film. The way the surface is arranged.

另一方面,當從大致垂直於樣本面的方向藉由TEM觀察CAAC-OS膜(平面TEM影像),則在結晶部中可以確認出金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間金屬原子的排列沒有發現規律性。 On the other hand, when the CAAC-OS film (planar TEM image) was observed by TEM from a direction substantially perpendicular to the sample surface, it was confirmed that the metal atoms were arranged in a triangular shape or a hexagonal shape in the crystal portion. However, no regularity was found in the arrangement of metal atoms between different crystal parts.

由剖面TEM影像及平面TEM影像可知,CAAC-OS膜的結晶部具有配向性。 It can be seen from the cross-sectional TEM image and the planar TEM image that the crystal portion of the CAAC-OS film has an alignment property.

當使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析,則在例如具有InGaZnO4的結晶的CAAC-OS膜的out-of-plane法的分析中,有時在繞射角(2θ)為31°附近出現峰值。由於該峰值歸屬於InGaZnO4結晶的(009)面,由此可以確認出CAAC-OS膜中的結晶具有c軸配向性,並且c軸朝向大致垂直於CAAC-OS膜的被形成面或上表面的方向。 When the CAAC-OS film is subjected to structural analysis using an X-ray diffraction (XRD) device, for example, in the analysis of the out-of-plane method of the CAAC-OS film having crystals of InGaZnO 4 , sometimes A peak appears near the diffraction angle (2θ) of 31°. Since the peak is attributed to the (009) plane of the InGaZnO 4 crystal, it can be confirmed that the crystal in the CAAC-OS film has c-axis orientation, and the c-axis is oriented substantially perpendicular to the formed or upper surface of the CAAC-OS film. The direction.

另一方面,在藉由使X線從大致垂直於c軸的方向入射到樣本的in-plane法對CAAC-OS膜的分析中,有時在2θ為56°附近出現峰值。該峰值歸屬於InGaZnO4結晶的(110)面。只要是InGaZnO4的單晶氧化物半導體膜,當將2θ固定為56°附近並在以樣本面的法向量為軸(軸)旋轉樣本並且進行分析(掃描),則會觀 察到六個歸屬於與(110)面等價的結晶面的峰值。與此相對地,在CAAC-OS膜的情況下,即使在將2θ固定為56°附近地進行掃描的情況下,也不會出現明顯的峰值。 On the other hand, in the analysis of the CAAC-OS film by the in-plane method in which the X-ray is incident on the sample from the direction substantially perpendicular to the c-axis, a peak appears in the vicinity of 2θ of 56°. This peak is attributed to the (110) plane of the InGaZnO 4 crystal. As long as it is a single crystal oxide semiconductor film of InGaZnO 4 , when 2θ is fixed at around 56° and is on the normal vector of the sample surface ( Axis) rotate the sample and analyze it ( Scanning, six peaks attributed to the crystal faces equivalent to the (110) plane are observed. On the other hand, in the case of the CAAC-OS film, even when 2θ is fixed at around 56° In the case of scanning, there is no obvious peak.

由以上敍述可知,在CAAC-OS膜中,雖然在結晶部之間a軸及b軸的配向的不規則的,但是具有c軸配向,並且c軸朝向平行於被形成面或上表面的法向量的方向。因此,在上述剖面TEM觀察中確認出的排列為層狀的金屬原子的各層是與結晶的ab面平行的面。 As described above, in the CAAC-OS film, although the alignment of the a-axis and the b-axis is irregular between the crystal portions, the c-axis is aligned, and the c-axis is oriented parallel to the surface to be formed or the upper surface. The direction of the vector. Therefore, each layer of the metal atoms arranged in a layer shape confirmed by the cross-sectional TEM observation is a surface parallel to the ab plane of the crystal.

此外,結晶部在形成CAAC-OS膜或進行加熱處理等晶體化處理時形成。如上所述,結晶的c軸在平行於CAAC-OS膜的被形成面或上表面的法向量的方向上配向。由此,例如,在CAAC-OS膜的形狀因蝕刻等而發生改變的情況下,結晶的c軸有時不平行於CAAC-OS膜的被形成面或上表面的法向量。 Further, the crystal portion is formed when a CAAC-OS film is formed or a crystallization treatment such as heat treatment is performed. As described above, the c-axis of the crystal is aligned in a direction parallel to the normal vector of the formed surface or the upper surface of the CAAC-OS film. Thus, for example, when the shape of the CAAC-OS film is changed by etching or the like, the c-axis of the crystal may not be parallel to the normal vector of the formed surface or the upper surface of the CAAC-OS film.

另外,CAAC-OS膜中的晶體化度也可以不均勻。例如,在CAAC-OS膜的結晶部藉由來自CAAC-OS膜的上表面附近的晶體生長而形成的情況下,有時上表面附近的區域相比被形成面附近的區域而晶體化度變高。另外,在對CAAC-OS膜添加雜質的情況下,被添加了雜質的區域的晶體化度改變,有時也部分地形成晶體化度不同的區域。 In addition, the degree of crystallinity in the CAAC-OS film may also be uneven. For example, when the crystal portion of the CAAC-OS film is formed by crystal growth from the vicinity of the upper surface of the CAAC-OS film, the region near the upper surface may be changed in crystallinity compared to the region near the surface to be formed. high. Further, when an impurity is added to the CAAC-OS film, the degree of crystallization of the region to which the impurity is added changes, and a region having a different degree of crystallization may be partially formed.

此外,在具有InGaZnO4結晶的CAAC-OS膜的out-of-pLane法的分析中,除了在2θ為31°附近的峰值 之外,有時還在2θ為36°附近出現峰值。2θ為36°附近的峰值表示在CAAC-OS膜中的一部分中含有不具有c軸配向性的結晶。較佳的是,在CAAC-OS膜中在2θ為31°附近示出峰值而在2θ為36°附近時不示出峰值。 Further, in the analysis of the out-of-pLane method of the CAAC-OS film having InGaZnO 4 crystal, in addition to the peak near 2θ of 31°, a peak appeared in the vicinity of 2θ of 36°. A peak in the vicinity of 2θ of 36° indicates that a part of the CAAC-OS film contains crystals having no c-axis alignment property. Preferably, the peak is shown in the CAAC-OS film at around 2θ of 31° and the peak is not shown when 2θ is around 36°.

在使用CAAC-OS的電晶體中,因照射可見光或紫外光而產生的電氣特性變動小。因此,該電晶體具有穩定的電氣特性。 In a transistor using CAAC-OS, variations in electrical characteristics due to irradiation of visible light or ultraviolet light are small. Therefore, the transistor has stable electrical characteristics.

另外,由於氧化物半導體膜106a包含高濃度的矽及碳,有時使得氧化物半導體膜106a的結晶性降低。為了不使氧化物半導體膜106a的結晶性降低,將氧化物半導體膜106a的矽濃度設為低於1×1019atoms/cm3、較佳低於5×1018atoms/cm3,更佳低於2×1018atoms/cm3即可。另外,為了不使氧化物半導體膜106a的結晶性降低,將氧化物半導體膜106a的碳濃度設為低於1×1019atoms/cm3、較佳低於5×1018atoms/cm3,更佳低於2×1018atoms/cm3In addition, since the oxide semiconductor film 106a contains a high concentration of germanium and carbon, the crystallinity of the oxide semiconductor film 106a may be lowered. In order not to lower the crystallinity of the oxide semiconductor film 106a, the germanium concentration of the oxide semiconductor film 106a is set to be less than 1 × 10 19 atoms / cm 3 , preferably less than 5 × 10 18 atoms / cm 3 , more preferably It is less than 2 × 10 18 atoms/cm 3 . In addition, in order not to lower the crystallinity of the oxide semiconductor film 106a, the carbon concentration of the oxide semiconductor film 106a is set to be less than 1 × 10 19 atoms / cm 3 , preferably less than 5 × 10 18 atoms / cm 3 , More preferably, it is less than 2 × 10 18 atoms / cm 3 .

這樣地,在形成有通道的氧化物半導體膜106a具有高結晶性並且起因於雜質或缺陷等的能階密度少的情況下,使用多層膜106的電晶體具有穩定的電氣特性。 In this way, in the case where the oxide semiconductor film 106a having the channel formed has high crystallinity and the energy density due to impurities or defects is small, the transistor using the multilayer film 106 has stable electrical characteristics.

以下說明多層膜106中的局部能階。藉由降低多層膜106中的局部能階密度,可以賦予使用多層膜106的電晶體穩定的電氣特性。可以利用恆定光電流測定法(CPM:Constant Photocurrent Method)對多層膜106的 局部能階進行評價。 The local energy level in the multilayer film 106 will be described below. By reducing the local energy density in the multilayer film 106, it is possible to impart stable electrical characteristics to the transistor using the multilayer film 106. The multilayer photo film 106 can be utilized by a constant photocurrent method (CPM: Constant Photocurrent Method). The local energy level is evaluated.

為了賦予電晶體穩定的電氣特性,將由CPM測定獲得的多層膜106中的局部能階的吸收係數設定為小於1×10-3cm-1,較佳為小於3×10-4cm-1即可。另外,藉由將由CPM測定獲得的多層膜106中的局部能階的吸收係數設定為小於1×10-3cm-1,較佳為小於3×10-4cm-1,可以提高電晶體的場效移動率。此外,為了將由CPM測定獲得的多層膜106中的局部能階的吸收係數設定為小於1×10-3cm-1,較佳為小於3×10-4cm-1,將作為在氧化物半導體膜106a中形成局部能階的元素的矽、鍺、碳、鉿或鈦等的濃度設定為低於2×1018atoms/cm3,較佳為低於2×1017atoms/cm3即可。 In order to impart stable electrical characteristics to the transistor, the absorption coefficient of the local energy level in the multilayer film 106 obtained by the CPM measurement is set to be less than 1 × 10 -3 cm -1 , preferably less than 3 × 10 -4 cm -1 . can. Further, by setting the absorption coefficient of the local energy level in the multilayer film 106 obtained by the CPM measurement to be less than 1 × 10 -3 cm -1 , preferably less than 3 × 10 -4 cm -1 , the crystal can be improved. Field efficiency movement rate. Further, in order to set the absorption coefficient of the local energy level in the multilayer film 106 obtained by the CPM measurement to be less than 1 × 10 -3 cm -1 , preferably less than 3 × 10 -4 cm -1 , it will be used as an oxide semiconductor The concentration of lanthanum, cerium, carbon, lanthanum or titanium or the like which forms a local energy element in the film 106a is set to be less than 2 × 10 18 atoms / cm 3 , preferably less than 2 × 10 17 atoms / cm 3 .

此外,在CPM測定中,在各波長上進行:調整照射到端子之間的樣本表面的光量以使得在對與作為樣本的多層膜106接觸地設置的電極和電極之間施加電壓的狀態下光電流值恆定,並且根據照射光量導出吸收係數。在CPM測定中,當樣本有缺陷時,對應於存在缺陷的能階的能量(根據波長換算)的吸收係數增加。藉由用常數乘以該吸收係數的增加相當量,可以導出樣本的缺陷密度。 Further, in the CPM measurement, at each wavelength: the amount of light irradiated to the surface of the sample between the terminals is adjusted so that light is applied in a state where a voltage is applied between the electrode and the electrode provided in contact with the multilayer film 106 as a sample The current value is constant, and the absorption coefficient is derived based on the amount of illumination light. In the CPM measurement, when the sample is defective, the absorption coefficient corresponding to the energy of the energy level in which the defect exists (in terms of wavelength) increases. The defect density of the sample can be derived by multiplying the constant by the equivalent of the increase in the absorption coefficient.

可以認為,由CPM測定得到的局部能階是起因於雜質或缺陷的能階。就是說,可知,使用由CPM測定得到的局部能階的吸收係數小的多層膜106的電晶體具有穩定的電氣特性。 It can be considered that the local energy level measured by CPM is an energy level resulting from impurities or defects. That is, it is understood that the transistor of the multilayer film 106 having a small absorption coefficient of the local energy level obtained by the CPM has stable electrical characteristics.

以下,參照圖3說明多層膜106的能帶結構。 Hereinafter, the energy band structure of the multilayer film 106 will be described with reference to Fig. 3 .

作為例子,使用能隙為3.15eV的In-Ga-Zn氧化物作為氧化物半導體膜106a,使用能隙為3.5eV的In-Ga-Zn氧化物作為氧化物膜106b。利用光譜橢圓偏光計(HORIBA JOBIN YVON公司的UT-300)測定能隙。 As an example, an In-Ga-Zn oxide having an energy gap of 3.15 eV is used as the oxide semiconductor film 106a, and an In-Ga-Zn oxide having an energy gap of 3.5 eV is used as the oxide film 106b. The energy gap was measured using a spectral ellipsometer (UT-IB JOBIN YVON UT-300).

氧化物半導體膜106a及氧化物膜106b的真空能階與價帶上端之間的能量差(也稱為游離電位)分別為8eV及8.2eV。此外,關於真空能階和價帶頂端之間的能量差,利用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置(PHI公司的VersaProbe)進行測定。 The energy difference (also referred to as free potential) between the vacuum energy level of the oxide semiconductor film 106a and the oxide film 106b and the upper end of the valence band is 8 eV and 8.2 eV, respectively. Further, the energy difference between the vacuum level and the valence band tip was measured by an ultraviolet photoelectron spectroscopy (UPS: Versa Probe).

因此,氧化物半導體膜106a及氧化物膜106b的真空能階和導帶底的能量之間的能量差(也稱為電子親和力)分別為4.85eV及4.7eV。 Therefore, the energy difference (also referred to as electron affinity) between the vacuum energy level of the oxide semiconductor film 106a and the oxide film 106b and the energy of the conduction band bottom is 4.85 eV and 4.7 eV, respectively.

圖3示意性地示出多層膜106的能帶結構的一部分。圖3是對應於圖2的點劃線A5-A6的能帶結構。明確而言,說明了與氧化物半導體膜106a以及氧化物膜106b的每一個接觸地設置氧化矽膜(閘極絕緣膜112及保護絕緣膜118)的情況。在此,EcI1表示氧化矽膜的導帶底的能量,EcS1表示氧化物半導體膜106a的導帶底的能量,EcS2表示氧化物膜106b的導帶底的能量,EcI2表示氧化矽膜的導帶底的能量。 FIG. 3 schematically illustrates a portion of the energy band structure of the multilayer film 106. Fig. 3 is an energy band structure corresponding to the chain line A5-A6 of Fig. 2. Specifically, a case where the tantalum oxide film (the gate insulating film 112 and the protective insulating film 118) is provided in contact with each of the oxide semiconductor film 106a and the oxide film 106b has been described. Here, EcI1 represents the energy of the conduction band bottom of the ruthenium oxide film, EcS1 represents the energy of the conduction band bottom of the oxide semiconductor film 106a, EcS2 represents the energy of the conduction band bottom of the oxide film 106b, and EcI2 represents the conduction band of the ruthenium oxide film. The energy of the bottom.

如圖3所示,在氧化物半導體膜106a及氧化 物膜106b中,導帶底的能量沒有位壘而平緩地變化。換而言之,也可以說是連續地變化。這可以說是因為氧化物膜106b包含與氧化物半導體膜106a共同的元素,並且藉由在氧化物半導體膜106a和氧化物膜106b之間氧相互移動而形成有混合層。 As shown in FIG. 3, in the oxide semiconductor film 106a and oxidation In the film 106b, the energy of the bottom of the conduction band changes gently without a barrier. In other words, it can be said that it changes continuously. This can be said that the oxide film 106b contains an element common to the oxide semiconductor film 106a, and a mixed layer is formed by the mutual movement of oxygen between the oxide semiconductor film 106a and the oxide film 106b.

從圖3可知,多層膜106的氧化物半導體膜106a成為阱(well),在使用多層膜106的電晶體中通道區形成於氧化物半導體膜106a。此外,由於多層膜106的導帶底的能量連續地變化,所以也可以說氧化物半導體膜106a與氧化物膜106b連續地接合。 As is clear from FIG. 3, the oxide semiconductor film 106a of the multilayer film 106 is a well, and a channel region is formed in the oxide semiconductor film 106a in the transistor using the multilayer film 106. Further, since the energy of the conduction band bottom of the multilayer film 106 is continuously changed, it can be said that the oxide semiconductor film 106a and the oxide film 106b are continuously joined.

此外,如圖4所示那樣,雖然在氧化物膜106b與保護絕緣膜118之間的介面附近有可能形成起因於雜質或缺陷的陷阱能階,但是藉由設置氧化物膜106b,可以使氧化物半導體膜106a與該陷阱能階遠離。但是,當EcS1和EcS2之間的能量差小時,有時氧化物半導體膜106a的電子會越過該能量差而到達陷阱能階。電子被陷阱能階捕獲,使得在絕緣膜的介面產生負的固定電荷,這導致電晶體的臨界電壓向正的方向移動。 Further, as shown in FIG. 4, although a trap level due to impurities or defects may be formed in the vicinity of the interface between the oxide film 106b and the protective insulating film 118, oxidation may be performed by providing the oxide film 106b. The semiconductor film 106a is away from the trap level. However, when the energy difference between EcS1 and EcS2 is small, the electrons of the oxide semiconductor film 106a sometimes cross the energy difference to reach the trap level. The electrons are trapped by the trap level, causing a negative fixed charge at the interface of the insulating film, which causes the critical voltage of the transistor to move in a positive direction.

因此,當將EcS1與EcS2之間的能量差設為0.1eV以上,較佳為0.15eV以上,則可減少電晶體的臨界電壓的變動而得到穩定的電氣特性,所以是較佳的。 Therefore, when the energy difference between EcS1 and EcS2 is 0.1 eV or more, preferably 0.15 eV or more, it is preferable to reduce the variation of the threshold voltage of the transistor and obtain stable electrical characteristics.

1-1-2.源極電極及汲極電極 1-1-2. Source electrode and drain electrode

作為源極電極116a及汲極電極116b,可以以單層或 層疊的方式使用包含鋁、鈦、鉻、鈷、鎳、銅、釔、鋯、鉬、釕、銀、鉭以及鎢中的一種以上的導電膜。較佳的是,源極電極116a及汲極電極116b為具有包含銅的層的多層膜。藉由將具有包含銅的層的多層膜用作源極電極116a及汲極電極116b,當在與源極電極116a及汲極電極116b相同的層中形成佈線的情況下,可以降低佈線電阻。另外,源極電極116a及汲極電極116b可以為相同的組成,也可以為不同的組成。 As the source electrode 116a and the drain electrode 116b, it may be a single layer or As the method of lamination, a conductive film containing one or more of aluminum, titanium, chromium, cobalt, nickel, copper, cerium, zirconium, molybdenum, niobium, silver, lanthanum, and tungsten is used. Preferably, the source electrode 116a and the drain electrode 116b are multilayer films having a layer containing copper. By using a multilayer film having a layer containing copper as the source electrode 116a and the drain electrode 116b, when wiring is formed in the same layer as the source electrode 116a and the drain electrode 116b, wiring resistance can be reduced. In addition, the source electrode 116a and the drain electrode 116b may have the same composition or different compositions.

並且,在將具有包含銅的層的多層膜用作源極電極116a及汲極電極116b的情況下,由於銅的影響,有時在氧化物膜106b與保護絕緣膜118之間的介面形成如圖4所示那樣的陷阱能階。在這種情況下,由於具有氧化物膜106b,所以可以抑制電子被該陷阱能階捕獲。因此,可以賦予電晶體穩定的電氣特性並降低佈線電阻。 Further, in the case where a multilayer film having a layer containing copper is used as the source electrode 116a and the drain electrode 116b, an interface between the oxide film 106b and the protective insulating film 118 is sometimes formed due to the influence of copper, for example. The trap level as shown in Figure 4. In this case, since the oxide film 106b is provided, it is possible to suppress electrons from being trapped by the trap level. Therefore, it is possible to impart stable electrical characteristics to the transistor and reduce wiring resistance.

1-1-3.保護絕緣膜 1-1-3. Protective insulating film

作為保護絕緣膜118,以單層或層疊的方式使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿以及氧化鉭中的一種以上的絕緣膜即可。 As the protective insulating film 118, a single layer or a stacked layer is used, including alumina, magnesia, cerium oxide, cerium oxynitride, cerium oxynitride, cerium nitride, gallium oxide, cerium oxide, cerium oxide, zirconium oxide, and oxidation. One or more insulating films of cerium, cerium oxide, cerium oxide, and cerium oxide may be used.

例如,保護絕緣膜118採用使用將氧化矽膜設為第一層並將氮化矽膜設為第二層的多層膜即可。在這種情況下,氧化矽膜也可以為氧氮化矽膜。另外,氮化矽膜也可以為氮氧化矽膜。氧化矽膜較佳為使用缺陷密度小 的氧化矽膜。明確而言,使用如下氧化矽膜:在電子自旋共振(ESR:Electron Spin Resonance)測定中,來源於g值為2.001的信號的自旋的密度為3×1017spins/cm3以下,較佳為5×1016spins/cm3以下。氮化矽膜使用氫氣及氨氣的釋放量少的氮化矽膜。氫氣及氨氣的釋放量藉由熱脫附譜(TDS:Thermal Desorption Spectroscopy)分析進行測定即可。另外,氮化矽膜使用使氫、水及氧不透過或幾乎不透過的氮化矽膜。 For example, the protective insulating film 118 may be a multilayer film in which a hafnium oxide film is used as the first layer and a tantalum nitride film is used as the second layer. In this case, the hafnium oxide film may also be a hafnium oxynitride film. Further, the tantalum nitride film may also be a hafnium oxynitride film. The hafnium oxide film is preferably a hafnium oxide film having a small defect density. Specifically, the following ruthenium oxide film is used: in the measurement of Electron Spin Resonance (ESR), the density of the spin derived from the signal having a g value of 2.001 is 3 × 10 17 spins/cm 3 or less. Preferably, it is 5 x 10 16 spins/cm 3 or less. As the tantalum nitride film, a tantalum nitride film having a small amount of hydrogen gas and ammonia gas released is used. The amount of hydrogen and ammonia released can be measured by thermal desorption spectroscopy (TDS). Further, as the tantalum nitride film, a tantalum nitride film which does not transmit or hardly permeate hydrogen, water, and oxygen is used.

另外,例如,保護絕緣膜118採用將第一氧化矽膜118a設為第一層,將第二氧化矽膜118b設為第二層並將氮化矽膜118c設為第三層的多層膜即可(參照圖1D)。在這種情況下,第一氧化矽膜118a和第二氧化矽膜118b中的一個或兩個也可以為氧氮化矽膜。另外,氮化矽膜也可以為氮氧化矽膜。第一氧化矽膜118a較佳為使用缺陷密度小的氧化矽膜。明確而言,使用如下氧化矽膜:在ESR測定中,來源於g值為2.001的信號的自旋的密度為3×1017spins/cm3以下,較佳為5×1016spins/cm3以下。第二氧化矽膜118b使用包含過量氧的氧化矽膜。氮化矽膜118c使用氫氣及氨氣的釋放量少的氮化矽膜。另外,氮化矽膜使用使氫、水及氧不透過或幾乎不透過的氮化矽膜。 Further, for example, the protective insulating film 118 is a multilayer film in which the first hafnium oxide film 118a is the first layer, the second hafnium oxide film 118b is the second layer, and the tantalum nitride film 118c is the third layer. (Refer to Figure 1D). In this case, one or both of the first hafnium oxide film 118a and the second hafnium oxide film 118b may also be a hafnium oxynitride film. Further, the tantalum nitride film may also be a hafnium oxynitride film. The first hafnium oxide film 118a is preferably a hafnium oxide film having a small defect density. Specifically, the following cerium oxide film is used: in the ESR measurement, the density of the spin derived from the signal having a g value of 2.001 is 3 × 10 17 spins / cm 3 or less, preferably 5 × 10 16 spins / cm 3 the following. The second hafnium oxide film 118b uses a hafnium oxide film containing excess oxygen. The tantalum nitride film 118c is a tantalum nitride film having a small amount of hydrogen gas and ammonia gas released. Further, as the tantalum nitride film, a tantalum nitride film which does not transmit or hardly permeate hydrogen, water, and oxygen is used.

包含過量氧的氧化矽膜是指藉由加熱處理等可以釋放氧的氧化矽膜。另外,包含過量氧的絕緣膜是具有藉由加熱處理可以釋放氧的功能的絕緣膜。 The ruthenium oxide film containing excess oxygen means a ruthenium oxide film which can release oxygen by heat treatment or the like. Further, the insulating film containing excess oxygen is an insulating film having a function of releasing oxygen by heat treatment.

包含過量氧的絕緣膜可以降低氧化物半導體膜106a中的氧空位。氧化物半導體膜106a中的氧空位形成缺陷能階,並且其一部分成為施體能階。因此,藉由降低氧化物半導體膜106a中的氧空位(尤其是通道區的氧空位),可以降低氧化物半導體膜106a(尤其是通道區)的載子密度,從而可以賦予電晶體穩定的電氣特性。 The insulating film containing excess oxygen can reduce oxygen vacancies in the oxide semiconductor film 106a. The oxygen vacancies in the oxide semiconductor film 106a form a defect level, and a part thereof becomes a donor energy level. Therefore, by reducing the oxygen vacancies in the oxide semiconductor film 106a (especially the oxygen vacancies in the channel region), the carrier density of the oxide semiconductor film 106a (especially the channel region) can be lowered, thereby making it possible to impart stable electrical properties to the transistor. characteristic.

在此,藉由加熱處理釋放氧的膜有時也釋放出藉由TDS分析的量為1×1018atoms/cm3以上、1×1019atoms/cm3以上或1×1020atoms/cm3以上的氧(換算為氧原子)。 Here, the film which releases oxygen by heat treatment may also release the amount analyzed by TDS to be 1 × 10 18 atoms / cm 3 or more, 1 × 10 19 atoms / cm 3 or more, or 1 × 10 20 atoms / cm. 3 or more oxygen (converted to oxygen atoms).

另外,藉由加熱處理釋放氧的膜有時包含過氧化自由基。明確而言,上述情況是指起因於過氧化自由基的自旋密度為5×1017spins/cm3以上。另外,在ESR中,包含過氧化自由基的膜有時也在g值為2.01附近具有非對稱性的信號。 Further, the film which releases oxygen by heat treatment sometimes contains peroxidic radicals. Specifically, the above case means that the spin density due to the peroxy radical is 5 × 10 17 spins/cm 3 or more. Further, in the ESR, a film containing a peroxy radical may have a signal having an asymmetry in the vicinity of a g value of 2.01.

另外,包含過量氧的絕緣膜也可以是氧過量的氧化矽(SiOX(X>2))。在氧過量的氧化矽(SiOX(X>2))中,每單位體積中含有的氧原子數多於矽原子數的2倍。每單位體積的矽原子數及氧原子數為藉由拉塞福背散射光譜學法(RBS:Rutherford Backscattering Spectrometry)測定的值。 Further, the insulating film containing excess oxygen may also be an excess of cerium oxide (SiO X (X>2)). In an oxygen-excess cerium oxide (SiO X (X>2)), the number of oxygen atoms per unit volume is more than twice that of erbium atoms. The number of germanium atoms per unit volume and the number of oxygen atoms are values measured by RBS (Rutherford Backscattering Spectrometry).

1-1-4.閘極絕緣膜 1-1-4. Gate insulating film

閘極絕緣膜112以單層或層疊的方式使用包含氧化 鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿以及氧化鉭中的一種以上的絕緣膜即可。 The gate insulating film 112 is used in a single layer or in a stacked manner to contain oxidation More than one of aluminum, magnesium oxide, cerium oxide, cerium oxynitride, cerium oxynitride, cerium nitride, gallium oxide, cerium oxide, cerium oxide, zirconium oxide, cerium oxide, cerium oxide, cerium oxide, and cerium oxide. The film can be.

例如,閘極絕緣膜採用將氮化矽膜設為第一層並且將氧化矽膜設為第二層的多層膜即可。在這種情況下,氧化矽膜也可以為氧氮化矽膜。另外,氮化矽膜也可以為氮氧化矽膜。氧化矽膜較佳為使用缺陷密度小的氧化矽膜。明確而言,使用如下氧化矽膜:在ESR中,來源於g值為2.001的信號的自旋的密度為3×1017spins/cm3以下,較佳為5×1016spins/cm3以下。氧化矽膜較佳為使用包含過量氧的氧化矽膜。氮化矽膜使用氫氣及氨氣的釋放量少的氮化矽膜。氫氣及氨氣的釋放量藉由TDS分析進行測定即可。 For example, the gate insulating film may be a multilayer film in which a tantalum nitride film is used as the first layer and a hafnium oxide film is used as the second layer. In this case, the hafnium oxide film may also be a hafnium oxynitride film. Further, the tantalum nitride film may also be a hafnium oxynitride film. The hafnium oxide film is preferably a hafnium oxide film having a small defect density. Specifically, the following cerium oxide film is used: in the ESR, the density of the spin derived from the signal having a g value of 2.001 is 3 × 10 17 spins/cm 3 or less, preferably 5 × 10 16 spins/cm 3 or less. . The hafnium oxide film is preferably a hafnium oxide film containing an excess of oxygen. As the tantalum nitride film, a tantalum nitride film having a small amount of hydrogen gas and ammonia gas released is used. The amount of hydrogen and ammonia released can be measured by TDS analysis.

當閘極絕緣膜112及保護絕緣膜118中的至少一個包括包含過量氧的絕緣膜的情況下,可以減少氧化物半導體膜106a的氧空位而賦予電晶體穩定的電氣特性。 When at least one of the gate insulating film 112 and the protective insulating film 118 includes an insulating film containing excess oxygen, the oxygen vacancies of the oxide semiconductor film 106a can be reduced to impart stable electrical characteristics to the transistor.

1-1-5.閘極電極 1-1-5. Gate electrode

閘極電極104以單層或層疊的方式使用包含鋁、鈦、鉻、鈷、鎳、銅、釔、鋯、鉬、釕、銀、鉭以及鎢中的一種以上的導電膜即可。 The gate electrode 104 may be a single layer or a laminated film containing one or more of aluminum, titanium, chromium, cobalt, nickel, copper, lanthanum, zirconium, molybdenum, niobium, silver, lanthanum, and tungsten.

1-1-6.基板 1-1-6. Substrate

對於基板100沒有大的限制。例如,作為基板100,也可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,作為基板100,也可以應用矽或碳化矽等的單晶半導體基板、多晶半導體基板、矽鍺等的化合物半導體基板、SOI(Silicon On Insulator:絕緣體上矽晶片)基板等,並且也可以使用在這些基板上設置有半導體元件的基板。 There is no major limitation on the substrate 100. For example, as the substrate 100, a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used. In addition, as the substrate 100, a single crystal semiconductor substrate such as tantalum or niobium carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as tantalum, an SOI (Silicon On Insulator) substrate, or the like may be used. A substrate on which semiconductor elements are provided on these substrates is used.

另外,作為基板100而使用第五代(1000mm×1200mm或1300mm×1500mm)、第六代(1500mm×1800mm)、第七代(1870mm×2200mm)、第八代(2200mm×2500mm)、第九代(2400mm×2800mm)、第十代(2880mm×3130mm)等大型玻璃基板的情況下,由於半導體裝置的製程中的加熱處理等所導致的基板100的收縮,有時難以進行精細加工。因此,在作為基板100使用上述大型玻璃基板的情況下,較佳為使用由加熱處理導致的收縮少的基板。例如,作為基板100使用在400℃、較佳為450℃、更佳為500為的溫度下進行1小時的加熱處理之後的收縮量為10ppm以下、較佳為5ppm以下、更佳為3ppm以下的大型玻璃基板。 In addition, the fifth generation (1000 mm × 1200 mm or 1300 mm × 1500 mm), the sixth generation (1500 mm × 1800 mm), the seventh generation (1870 mm × 2200 mm), the eighth generation (2200 mm × 2500 mm), and the ninth generation are used as the substrate 100. In the case of a large-sized glass substrate (2400 mm × 2800 mm) or the tenth generation (2880 mm × 3130 mm), it is difficult to perform fine processing due to shrinkage of the substrate 100 due to heat treatment or the like in the process of the semiconductor device. Therefore, when the above-described large-sized glass substrate is used as the substrate 100, it is preferable to use a substrate having less shrinkage due to heat treatment. For example, the shrinkage amount after the heat treatment for 1 hour at 400 ° C, preferably 450 ° C, and more preferably 500 is used as the substrate 100 is 10 ppm or less, preferably 5 ppm or less, more preferably 3 ppm or less. Large glass substrate.

此外,基板100也可以使用撓性基板。另外,作為在撓性基板上設置電晶體的方法,也存在如下方法:在非撓性的基板上製作電晶體之後,剝離電晶體並將該電晶體轉置到作為撓性基板的基板100上。在這種情況下,較佳為在非撓性的基板和電晶體之間設置剝離層。 Further, a flexible substrate can also be used for the substrate 100. Further, as a method of providing a transistor on a flexible substrate, there is also a method of peeling off the transistor and transposing the transistor onto the substrate 100 as a flexible substrate after the transistor is formed on the non-flexible substrate. . In this case, it is preferred to provide a peeling layer between the non-flexible substrate and the transistor.

按上述步驟構成的電晶體藉由將通道形成在氧化物半導體膜106a中,由此具有穩定的電氣特性並具有高場效移動率。另外,即使將具有包含銅的層的多層膜用於源極電極116a及汲極電極116b,也可以得到穩定的電氣特性。 The transistor constructed as described above is formed in the oxide semiconductor film 106a by the channel, thereby having stable electrical characteristics and having high field-effect mobility. Further, even if a multilayer film having a layer containing copper is used for the source electrode 116a and the drain electrode 116b, stable electrical characteristics can be obtained.

1-2.電晶體結構(1)的製造方法 1-2. Method of manufacturing transistor structure (1)

在此,參照圖5A至圖6B說明電晶體的製造方法。 Here, a method of manufacturing a transistor will be described with reference to FIGS. 5A to 6B.

首先,準備基板100。 First, the substrate 100 is prepared.

接著,形成作為閘極電極104的導電膜。關於作為閘極電極104的導電膜,藉由使用濺射法、化學氣相沉積(CVD:Chemical Vapor Deposition)法、分子束磊晶(MBE:Molecular Beam Epitaxy)法、原子層沉積(ALD:Atomic Layer Deposition)法或脈衝雷射沉積(PLD:Pulsed Laser Deposition)法來形成作為閘極電極104所示的導電膜即可。 Next, a conductive film as the gate electrode 104 is formed. Regarding the conductive film as the gate electrode 104, by sputtering, chemical vapor deposition (CVD: Chemical Vapor Deposition), molecular beam epitaxy (MBE: Molecular Beam Epitaxy), atomic layer deposition (ALD: Atomic) A conductive film shown as the gate electrode 104 may be formed by a layer deposition method or a pulsed laser deposition (PLD) method.

接著,對作為閘極電極104的導電膜的一部分進行蝕刻,形成閘極電極104(參照圖5A)。 Next, a part of the conductive film as the gate electrode 104 is etched to form the gate electrode 104 (see FIG. 5A).

接著,形成閘極絕緣膜112(參照圖5B)。關於閘極絕緣膜112,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成上述作為閘極絕緣膜112舉出的絕緣膜即可。 Next, a gate insulating film 112 is formed (see FIG. 5B). The gate insulating film 112 may be formed of the insulating film as the gate insulating film 112 by a sputtering method, a CVD method, an MBE method, an ALD method, or a PLD method.

接著,形成被加工成氧化物半導體膜106a的氧化物半導體膜126a(參照圖5C)。關於氧化物半導體 膜126a,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成上述作為氧化物半導體膜106a舉出的氧化物半導體膜即可。 Next, an oxide semiconductor film 126a processed into an oxide semiconductor film 106a is formed (see FIG. 5C). About oxide semiconductor The film 126a may be formed of the oxide semiconductor film described above as the oxide semiconductor film 106a by a sputtering method, a CVD method, an MBE method, an ALD method, or a PLD method.

接著,形成被加工成氧化物膜106b的氧化物膜126b。關於氧化物膜126b,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成上述作為氧化物膜106b舉出的氧化物膜即可。 Next, an oxide film 126b processed into the oxide film 106b is formed. The oxide film 126b may be formed by the above-described oxide film 106b by a sputtering method, a CVD method, an MBE method, an ALD method or a PLD method.

在藉由濺射法形成氧化物半導體膜126a及氧化物膜126b的情況下,用於產生電漿的電源裝置可以適當地使用RF電源裝置、AC電源裝置、DC電源裝置等。 In the case where the oxide semiconductor film 126a and the oxide film 126b are formed by a sputtering method, an RF power source device, an AC power source device, a DC power source device, or the like can be suitably used as the power source device for generating plasma.

濺射氣體可以適當地使用稀有氣體(典型地為氬)氛圍、氧氛圍、稀有氣體及氧的混合氣體。此外,在採用稀有氣體和氧的混合氣體的情況下,較佳為相對稀有氣體增高氧氣的比例。 As the sputtering gas, a mixed gas of a rare gas (typically argon) atmosphere, an oxygen atmosphere, a rare gas, and oxygen can be suitably used. Further, in the case of using a mixed gas of a rare gas and oxygen, it is preferred to increase the ratio of oxygen to a relatively rare gas.

另外,結合氧化物半導體膜126a及氧化物膜126b的組成而適當地選擇靶材即可。 Further, the target material may be appropriately selected in combination with the composition of the oxide semiconductor film 126a and the oxide film 126b.

在利用濺射法的情況下,至少氧化物半導體膜126a藉由如下製程形成,由此可以形成CAAC-OS。明確而言,將基板溫度設定為150℃以上且500℃以下,較佳為設定為150℃以上且450℃以下,更佳為設定為200℃以上且350℃以下,進行加熱而形成氧化物半導體膜126a。此外,對氧化物膜126b也可以這樣地進行加熱而形成。 In the case of using the sputtering method, at least the oxide semiconductor film 126a is formed by the following process, whereby CAAC-OS can be formed. Specifically, the substrate temperature is set to 150° C. or higher and 500° C. or lower, preferably 150° C. or higher and 450° C. or lower, and more preferably 200° C. or higher and 350° C. or lower, and heating is performed to form an oxide semiconductor. Film 126a. Further, the oxide film 126b may be formed by heating as described above.

另外,為了使氧化物半導體膜106a與氧化物 膜106b連續接合,較佳為以不暴露於大氣的方式連續地形成氧化物半導體膜126a及氧化物膜126b。另外,氧化物半導體膜126a及氧化物膜126b可以抑制雜質進入到各層之間。 In addition, in order to make the oxide semiconductor film 106a and oxide The film 106b is continuously joined, and it is preferable that the oxide semiconductor film 126a and the oxide film 126b are continuously formed so as not to be exposed to the atmosphere. Further, the oxide semiconductor film 126a and the oxide film 126b can suppress impurities from entering between the layers.

明確而言,為了形成連續接合,較佳為使用具備有裝載閉鎖室的多室方式的成膜裝置(濺射裝置)以不使各膜接觸於大氣的方式連續地層疊。在濺射裝置中的各室中,較佳為使用應能夠盡可能地去除對氧化物半導體膜而言為雜質的水等的、如低溫泵這樣的吸附式真空排氣泵來進行高真空排氣(排氣到1×10-4Pa至5×10-7Pa左右)。或者,較佳為組合渦輪分子泵和冷阱而防止氣體從排氣系統倒流到室內。 Specifically, in order to form the continuous joining, it is preferable to use a multi-chamber film forming apparatus (sputtering apparatus) equipped with a loading lock chamber so as to continuously laminate the respective films so as not to be in contact with the atmosphere. In each of the chambers of the sputtering apparatus, it is preferable to use an adsorption type vacuum exhaust pump such as a cryopump that can remove water or the like which is an impurity to the oxide semiconductor film as much as possible to perform high vacuum discharge. Gas (exhaust to 1 × 10 -4 Pa to 5 × 10 -7 Pa or so). Alternatively, it is preferred to combine the turbomolecular pump and the cold trap to prevent gas from flowing back from the exhaust system to the chamber.

為了獲得雜質及載子密度被降低的氧化物半導體膜,不但需要對室內進行高真空排氣,也需要進行濺射氣體的高度純化。關於作為用作濺射氣體的氧氣或氬氣體,藉由使用高度純化到露點為-40℃以下、較佳為-80℃以下、更佳為-100℃以下的氣體,可以盡可能防止水分等進入到氧化物半導體膜。 In order to obtain an oxide semiconductor film in which the impurity and the carrier density are lowered, it is necessary to perform high-vacuum evacuation in the chamber, and it is also necessary to perform high-purification of the sputtering gas. As the oxygen or argon gas used as the sputtering gas, it is possible to prevent moisture, etc. as much as possible by using a gas which is highly purified to a dew point of -40 ° C or lower, preferably -80 ° C or lower, more preferably -100 ° C or lower. Enters the oxide semiconductor film.

此外,在利用濺射法形成氧化物膜126b的情況下,從降低在成膜時產生的粒子數的觀點來看,較佳為使用包含銦的靶材。另外,較佳為使用鎵的原子個數比比較少的氧化物靶材。這是因為藉由使用包含銦的靶材,可以提高靶材的導電率並容易進行DC放電及AC放電,從而容易對應於大面積的基板。由此,可以提高半導體裝置 的生產率。 Further, when the oxide film 126b is formed by a sputtering method, it is preferable to use a target containing indium from the viewpoint of reducing the number of particles generated at the time of film formation. Further, it is preferable to use an oxide target having a relatively small atomic ratio of gallium. This is because by using a target containing indium, the conductivity of the target can be improved and DC discharge and AC discharge can be easily performed, which is easy to correspond to a large-area substrate. Thereby, the semiconductor device can be improved Productivity.

另外,也可以在形成氧化物半導體膜126a及氧化物膜126b之後以氧氛圍、或者氮及氧氛圍進行電漿處理。由此,能夠至少減少氧化物半導體膜126a中的氧空位。 Further, after the oxide semiconductor film 126a and the oxide film 126b are formed, the plasma treatment may be performed in an oxygen atmosphere or a nitrogen atmosphere and an oxygen atmosphere. Thereby, at least the oxygen vacancies in the oxide semiconductor film 126a can be reduced.

接著,在氧化物半導體膜126a及氧化物膜126b上形成光阻遮罩,利用該光阻遮罩對氧化物半導體膜126a及氧化物膜126b的一部分進行蝕刻,形成包括氧化物半導體膜106a及氧化物膜106b的多層膜106(參照圖6A)。該蝕刻採用如上所述的濕蝕刻。藉由進行該濕蝕刻,可以將多層膜106設為具有不同的兩個錐角的錐形狀。 Then, a photoresist mask is formed on the oxide semiconductor film 126a and the oxide film 126b, and a part of the oxide semiconductor film 126a and the oxide film 126b is etched by the photoresist mask to form the oxide semiconductor film 106a and The multilayer film 106 of the oxide film 106b (see FIG. 6A). This etching employs wet etching as described above. By performing this wet etching, the multilayer film 106 can be formed into a tapered shape having two different taper angles.

接著,較佳為進行第一加熱處理。第一加熱處理在250℃以上且650℃以下,較佳為在以300℃以上且500℃以下進行即可。第一加熱處理在惰性氣體氛圍下,包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下或者在減壓狀態下進行。或者,第一加熱處理在採用惰性氣體氛圍進行加熱處理之後,為了在填補脫離了的氧,也可以在包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下進行。藉由進行第一加熱處理,可以提高氧化物半導體膜106a的結晶性,還可以從閘極絕緣膜112及多層膜106去除水、氫、氮及碳等雜質。 Next, it is preferred to perform the first heat treatment. The first heat treatment may be carried out at 250 ° C or higher and 650 ° C or lower, preferably at 300 ° C or higher and 500 ° C or lower. The first heat treatment is carried out in an atmosphere of an oxidizing gas containing 10 ppm or more, 1% or more, or 10% or more under an inert gas atmosphere or under reduced pressure. Alternatively, the first heat treatment may be carried out in an oxidizing gas atmosphere containing 10 ppm or more, 1% or more, or 10% or more in order to fill the desorbed oxygen after heat treatment in an inert gas atmosphere. By performing the first heat treatment, the crystallinity of the oxide semiconductor film 106a can be improved, and impurities such as water, hydrogen, nitrogen, and carbon can be removed from the gate insulating film 112 and the multilayer film 106.

此外,第一加熱處理可以在形成多層膜106的蝕刻製程之前或之後進行。 Further, the first heat treatment may be performed before or after the etching process of forming the multilayer film 106.

接著,形成用作源極電極116a及汲極電極116b的導電膜。關於作為源極電極116a及汲極電極116b的導電膜,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成作為源極電極116a及汲極電極116b所示的導電膜即可。 Next, a conductive film serving as the source electrode 116a and the drain electrode 116b is formed. The conductive film as the source electrode 116a and the drain electrode 116b is formed by using a sputtering method, a CVD method, an MBE method, an ALD method, or a PLD method to form a conductive film as the source electrode 116a and the drain electrode 116b. Just fine.

例如,作為成為源極電極116a及汲極電極116b的導電膜,形成包括鎢層和設置在鎢層上的銅層的多層膜即可。 For example, as the conductive film to be the source electrode 116a and the drain electrode 116b, a multilayer film including a tungsten layer and a copper layer provided on the tungsten layer may be formed.

接著,對作為源極電極116a及汲極電極116b的導電膜的一部分進行蝕刻,形成源極電極116a及汲極電極116b(參照圖6B)。在作為成為源極電極116a及汲極電極116b的導電膜而使用包括鎢層和設置在鎢層上的銅層的多層膜的情況下,可以使用相同遮罩對該多層膜進行蝕刻。即使一次地對鎢層以及銅層進行蝕刻,藉由在氧化物半導體膜106a上設置氧化物膜106b,也可以將氧化物半導體膜106a與氧化物膜106b之間的銅濃度設定為低於1×1019atoms/cm3、低於2×1018atoms/cm3或低於2×1017atoms/cm3,因而,不發生由銅導致的電晶體的電氣特性的劣化。因此,可以提高製程的自由度,並提高電晶體的生產率。 Next, a part of the conductive film as the source electrode 116a and the drain electrode 116b is etched to form the source electrode 116a and the drain electrode 116b (see FIG. 6B). In the case of using a multilayer film including a tungsten layer and a copper layer provided on the tungsten layer as the conductive film to be the source electrode 116a and the drain electrode 116b, the multilayer film can be etched using the same mask. Even if the tungsten layer and the copper layer are etched once, the copper concentration between the oxide semiconductor film 106a and the oxide film 106b can be set lower than 1 by providing the oxide film 106b on the oxide semiconductor film 106a. ×10 19 atoms/cm 3 , less than 2 × 10 18 atoms/cm 3 or less than 2 × 10 17 atoms/cm 3 , and thus deterioration of electrical characteristics of the transistor due to copper does not occur. Therefore, the degree of freedom of the process can be improved and the productivity of the transistor can be improved.

接著,較佳為進行第二加熱處理。第二加熱處理參照第一加熱處理的說明進行即可。藉由第二加熱處理,可以從多層膜106去除氫及水等雜質。由於氫特別容易在多層膜106中移動,所以當藉由進行第二加熱處理減 少氫,則可以賦予電晶體穩定的電氣特性。此外,水也是包含氫的化合物,所以有可能成為氧化物半導體膜106a中的雜質。 Next, it is preferred to perform the second heat treatment. The second heat treatment may be performed with reference to the description of the first heat treatment. By the second heat treatment, impurities such as hydrogen and water can be removed from the multilayer film 106. Since hydrogen is particularly easy to move in the multilayer film 106, it is reduced by performing the second heat treatment. Less hydrogen can impart stable electrical characteristics to the transistor. Further, since water is also a compound containing hydrogen, it may become an impurity in the oxide semiconductor film 106a.

另外,藉由第二加熱處理可以在接觸於源極電極116a及汲極電極116b的多層膜106中形成低電阻區106c及低電阻區106d。 Further, the low resistance region 106c and the low resistance region 106d may be formed in the multilayer film 106 contacting the source electrode 116a and the drain electrode 116b by the second heat treatment.

如上所述,藉由形成多層膜106,可以提高氧化物半導體膜106a的結晶性,並可以降低氧化物半導體膜106a的雜質濃度、氧化物膜106b的雜質濃度以及氧化物半導體膜106a與氧化物膜106b之間的介面的雜質濃度。 As described above, by forming the multilayer film 106, the crystallinity of the oxide semiconductor film 106a can be improved, and the impurity concentration of the oxide semiconductor film 106a, the impurity concentration of the oxide film 106b, and the oxide semiconductor film 106a and oxide can be reduced. The impurity concentration of the interface between the films 106b.

接著,形成保護絕緣膜118(參照圖1B)。關於保護絕緣膜118,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成上述作為保護絕緣膜118舉出的絕緣膜即可。 Next, a protective insulating film 118 is formed (see FIG. 1B). The protective insulating film 118 may be formed of the above-described insulating film as the protective insulating film 118 by a sputtering method, a CVD method, an MBE method, an ALD method, or a PLD method.

在此,說明將保護絕緣膜118設為圖1D所示的三層結構的情況。首先,形成第一氧化矽膜118a。接著,形成第二氧化矽膜118b。然後,也可以進行對第二氧化矽膜118b添加氧離子的處理。添加氧離子的處理利用離子摻雜裝置或電漿處理裝置即可。作為離子摻雜裝置,也可以利用具有質量分離功能的離子摻雜裝置。作為氧離子的原料,使用16O218O2等氧氣、一氧化二氮氣體或臭氧氣體等即可。接著,藉由形成氮化矽膜118c來形成保護絕緣膜118即可。 Here, a case where the protective insulating film 118 is a three-layer structure as shown in FIG. 1D will be described. First, the first hafnium oxide film 118a is formed. Next, a second hafnium oxide film 118b is formed. Then, a treatment of adding oxygen ions to the second hafnium oxide film 118b may be performed. The treatment of adding oxygen ions may be performed by an ion doping apparatus or a plasma processing apparatus. As the ion doping apparatus, an ion doping apparatus having a mass separation function can also be utilized. As a raw material of oxygen ions, oxygen such as 16 O 2 or 18 O 2 , nitrous oxide gas or ozone gas may be used. Next, the protective insulating film 118 may be formed by forming the tantalum nitride film 118c.

第一氧化矽膜118a較佳為藉由CVD法之一的電漿CVD法形成。明確而言,可以以如下條件下形成:將基板溫度設定為180℃以上且400℃以下,較佳為200℃以上且370℃以下,使用含有矽的沉積性氣體及氧化性氣體並將壓力設定為20Pa以上且250Pa以下,較佳為設定為40Pa以上且200Pa以下,並對電極供應高頻功率。另外,作為包含矽的沉積性氣體的典型例子,可以舉出矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體,可以舉出氧、臭氧、一氧化二氮、二氧化氮等。 The first hafnium oxide film 118a is preferably formed by a plasma CVD method which is one of CVD methods. Specifically, it can be formed under the following conditions: the substrate temperature is set to 180° C. or higher and 400° C. or lower, preferably 200° C. or higher and 370° C. or lower, and a deposition gas containing cerium and an oxidizing gas are used and the pressure is set. It is 20 Pa or more and 250 Pa or less, and it is preferable to set it as 40 Pa or more and 200 Pa or less, and the high frequency power is supplied to an electrode. Further, typical examples of the deposition gas containing ruthenium include decane, acetane, propane, fluorinated decane, and the like. Examples of the oxidizing gas include oxygen, ozone, nitrous oxide, and nitrogen dioxide.

另外,藉由將氧化性氣體的流量設定為含有矽的沉積性氣體的100倍以上,可以減少第一氧化矽膜118a中的氫含量,並可以減少懸空鍵。 Further, by setting the flow rate of the oxidizing gas to 100 times or more of the deposition gas containing cerium, the hydrogen content in the first cerium oxide film 118a can be reduced, and the dangling bonds can be reduced.

藉由上述方式,形成缺陷密度小的第一氧化矽膜118a。就是說,第一氧化矽膜118a可以將在ESR中來源於g值為2.001的信號的自旋的密度設為3×1017spins/cm3以下或5×1016spins/cm3以下。 By the above manner, the first hafnium oxide film 118a having a small defect density is formed. That is, the first hafnium oxide film 118a may have a density of spin derived from a signal having a g value of 2.001 in the ESR of 3 × 10 17 spins/cm 3 or less or 5 × 10 16 spins/cm 3 or less.

第二氧化矽膜118b較佳為藉由電漿CVD法形成。明確而言,可以以如下條件下形成:將基板溫度設定為160℃以上且350℃以下,較佳為180℃以上且260℃以下,使用含有矽的沉積性氣體及氧化性氣體並將壓力設定為100Pa以上且250Pa以下,較佳為設定為100Pa以上且200Pa以下,並對電極供應0.17W/cm2以上且0.5W/cm2以下,較佳為0.25W/cm2以上且0.35W/cm2以下的高頻功率。 The second hafnium oxide film 118b is preferably formed by a plasma CVD method. Specifically, it can be formed under the following conditions: the substrate temperature is set to 160° C. or higher and 350° C. or lower, preferably 180° C. or higher and 260° C. or lower, and a deposition gas containing cerium and an oxidizing gas are used and the pressure is set. It is preferably 100 Pa or more and 200 Pa or less, and is preferably 100 Pa or more and 200 Pa or less, and supplies 0.17 W/cm 2 or more and 0.5 W/cm 2 or less, preferably 0.25 W/cm 2 or more and 0.35 W/cm to the electrode. 2 or less high frequency power.

由於藉由上述方法電漿中的氣體的分解效率得到提高,氧自由基增加,氣體的氧化增進,因此可以形成包含過量氧的第二氧化矽膜118b。 Since the decomposition efficiency of the gas in the plasma is improved by the above method, the oxygen radicals are increased, and the oxidation of the gas is enhanced, so that the second hafnium oxide film 118b containing excess oxygen can be formed.

氮化矽膜118c較佳為藉由電漿CVD法形成。明確而言,可以以如下條件下形成:將基板溫度設定為180℃以上且400℃以下,較佳為200℃以上且370℃以下,使用含有矽的沉積性氣體、氮氣及氨氣並將壓力設定為20Pa以上且250Pa以下,較佳為設定為40Pa以上且200Pa以下,並供應高頻功率。 The tantalum nitride film 118c is preferably formed by a plasma CVD method. Specifically, it can be formed under the following conditions: the substrate temperature is set to 180° C. or higher and 400° C. or lower, preferably 200° C. or higher and 370° C. or lower, and a deposition gas containing cerium, nitrogen gas, and ammonia gas is used and the pressure is applied. The temperature is set to 20 Pa or more and 250 Pa or less, preferably 40 Pa or more and 200 Pa or less, and high frequency power is supplied.

此外,氮氣的流量為氨氣的流量的5倍以上且50倍以下,較佳為10倍以上且50倍以下。此外,藉由使用氨氣可以促進含有矽的沉積性氣體及氮氣的分解。這是因為:氨氣因電漿能及熱能而離解,藉由離解時產生的能量有助於含有矽的沉積性氣體的鍵合及氮氣的鍵合的分解。 Further, the flow rate of nitrogen gas is 5 times or more and 50 times or less, preferably 10 times or more and 50 times or less, of the flow rate of the ammonia gas. Further, decomposition of a deposition gas containing cerium and nitrogen can be promoted by using ammonia gas. This is because the ammonia gas is dissociated by the plasma energy and the heat energy, and the energy generated by the dissociation contributes to the bonding of the deposition gas containing cerium and the decomposition of the nitrogen gas.

因此,藉由上述方法可以形成氫氣及氨氣的釋放量少的氮化矽膜118c。另外,由於氫含量少,所以可以形成緻密的、使氫、水及氧不透過或幾乎不透過的氮化矽膜118c。 Therefore, the tantalum nitride film 118c having a small amount of hydrogen gas and ammonia gas released can be formed by the above method. Further, since the hydrogen content is small, a dense tantalum nitride film 118c which makes hydrogen, water, and oxygen impervious or hardly permeated can be formed.

接著,較佳為進行第三加熱處理。第三加熱處理參照第一加熱處理的記載進行即可。藉由第三加熱處理,可以從閘極絕緣膜112或/及保護絕緣膜118釋放過量氧,並且降低多層膜106的氧空位。另外,在多層膜106中,由於氧空位捕獲所相鄰的氧原子而在外觀上進行 移動。 Next, it is preferred to perform the third heat treatment. The third heat treatment may be performed with reference to the description of the first heat treatment. By the third heat treatment, excess oxygen can be released from the gate insulating film 112 or/and the protective insulating film 118, and the oxygen vacancies of the multilayer film 106 can be lowered. In addition, in the multilayer film 106, appearance is performed due to oxygen vacancies capturing adjacent oxygen atoms mobile.

藉由上述步驟,可以製造圖1A至圖1D所示的BGTC結構的電晶體。 By the above steps, the transistor of the BGTC structure shown in FIGS. 1A to 1D can be manufactured.

1-3.電晶體結構(2) 1-3. Crystal structure (2)

在此,使用圖7A至圖7D說明圖1A至圖1D所示的電晶體的變形例。 Here, a modification of the transistor shown in FIGS. 1A to 1D will be described using FIGS. 7A to 7D.

圖7A至圖7D示出作為該變形例的電晶體的俯視圖及剖面圖。圖7A示出電晶體的俯視圖。圖7B示出對應於圖7A所示的點劃線A1-A2的剖面圖。另外,圖7C示出對應於圖7A所示的點劃線A3-A4的剖面圖。此外,在圖7A中,為了使圖式清楚,省略該電晶體的構成要素的一部分(閘極絕緣膜及保護絕緣膜等)。 7A to 7D are a plan view and a cross-sectional view showing a transistor as the modification. Fig. 7A shows a plan view of a transistor. Fig. 7B shows a cross-sectional view corresponding to the chain line A1-A2 shown in Fig. 7A. In addition, FIG. 7C shows a cross-sectional view corresponding to the chain line A3-A4 shown in FIG. 7A. In addition, in FIG. 7A, in order to make a figure clear, a part of the components of the transistor (gate insulating film, protective insulating film, etc.) is abbreviate|omitted.

圖7A至圖7D所示的電晶體與圖1A至圖1D所示的電晶體不同之處在於:以接觸於源極電極116a和汲極電極116b的上表面、以及多層膜106的上表面的方式設置有氧化物膜107。 The transistor shown in FIGS. 7A to 7D is different from the transistor shown in FIGS. 1A to 1D in that it contacts the upper surface of the source electrode 116a and the gate electrode 116b, and the upper surface of the multilayer film 106. The oxide film 107 is provided in a manner.

氧化物膜117可以使用能夠應用於多層膜106的氧化物膜106b的氧化物膜,並可以利用能夠應用於氧化物膜106b的方法而形成。此外,圖7A至圖7D所示的電晶體的其他構成要素與圖1A至圖1D所示的電晶體相同,可以適當地參照上述記載。 The oxide film 117 can be formed using an oxide film which can be applied to the oxide film 106b of the multilayer film 106, and can be formed by a method applicable to the oxide film 106b. Further, other constituent elements of the transistor shown in FIGS. 7A to 7D are the same as those of the transistor shown in FIGS. 1A to 1D, and the above description can be appropriately referred to.

由於圖7A至圖7D所示的電晶體為在氧化物半導體膜106a與保護絕緣膜118之間設置有氧化物膜 106b及氧化物膜107的結構,所以可以進一步使起因於形成在與保護絕緣膜118之間的介面附近的雜質或缺陷的陷阱能階與氧化物半導體膜106a遠離。就是說,即使在EcS1和EcS2之間的能量差小的情況下,也可以抑制氧化物半導體膜106a的電子越過該能量差到達陷阱能階。因此,圖7A至圖7D所示的電晶體是臨界電壓的變動進一步被降低的具有穩定的電氣特性的電晶體。 Since the transistor shown in FIGS. 7A to 7D is provided with an oxide film between the oxide semiconductor film 106a and the protective insulating film 118 Since the structure of the oxide film 107 is 106b, the trap level due to impurities or defects formed in the vicinity of the interface between the protective insulating film 118 and the oxide semiconductor film 106a can be further separated. That is, even in the case where the energy difference between EcS1 and EcS2 is small, it is possible to suppress the electrons of the oxide semiconductor film 106a from reaching the trap level beyond the energy difference. Therefore, the transistor shown in FIGS. 7A to 7D is a transistor having stable electrical characteristics in which the variation of the threshold voltage is further lowered.

另外,圖7A至圖7D所示的電晶體的製造方法可以適當地參照關於圖1A至圖1D所示的電晶體的記載。 In addition, the method of manufacturing the transistor shown in FIGS. 7A to 7D can be referred to the description about the transistor shown in FIGS. 1A to 1D as appropriate.

如上所述,由於在多層膜106的氧化物半導體膜106a(尤其是通道區)中雜質及載子密度被降低,所以圖1A至圖1D及圖7A至圖7D所示的電晶體具有穩定的電氣特性。 As described above, since the impurity and the carrier density are lowered in the oxide semiconductor film 106a (especially, the channel region) of the multilayer film 106, the transistors shown in FIGS. 1A to 1D and 7A to 7D have stability. Electrical characteristics.

實施方式2 Embodiment 2

在本實施方式中說明本發明的一個方式的其結構與實施方式1部分不同的電晶體。 In the present embodiment, a transistor having a configuration different from that of the first embodiment of the embodiment of the present invention will be described.

2-1.電晶體結構(3) 2-1. Crystal structure (3)

在本項中說明頂閘極型電晶體。在此,使用圖8A至圖8C說明一種頂閘極型電晶體的頂閘極頂接觸結構(TGTC結構)的電晶體。 The top gate type transistor is described in this section. Here, a transistor of a top gate top contact structure (TGTC structure) of a top gate type transistor will be described using FIGS. 8A to 8C.

圖8A至圖8C示出TGTC結構的電晶體的俯 視圖及剖面圖。圖8A示出電晶體的俯視圖。圖8B示出對應於圖8A所示的點劃線B1-B2的剖面圖。圖8C示出對應於圖8A所示的點劃線B3-B4的剖面圖。 8A to 8C show the tilt of a transistor of a TGTC structure View and section view. Fig. 8A shows a plan view of a transistor. Fig. 8B shows a cross-sectional view corresponding to the chain line B1-B2 shown in Fig. 8A. Fig. 8C shows a cross-sectional view corresponding to the chain line B3-B4 shown in Fig. 8A.

圖8B所示的電晶體包括:設置在基板200上的基底絕緣膜202;多層膜206,該多層膜206包括設置在基底絕緣膜202上的氧化物膜206c、設置在氧化物膜206c上的氧化物半導體膜206a以及設置在氧化物半導體膜206a上的氧化物膜206b;設置在基底絕緣膜202及多層膜206上的源極電極216a及汲極電極216b;設置在多層膜206、源極電極216a及汲極電極216b上的閘極絕緣膜212;設置在閘極絕緣膜212上的閘極電極204;以及設置在閘極絕緣膜212及閘極電極204上的保護絕緣膜218。此外,電晶體也可以不包括基底絕緣膜202和保護絕緣膜218中的一個或兩個。 The transistor shown in FIG. 8B includes a base insulating film 202 disposed on a substrate 200, and a multilayer film 206 including an oxide film 206c disposed on the base insulating film 202 and disposed on the oxide film 206c. An oxide semiconductor film 206a and an oxide film 206b disposed on the oxide semiconductor film 206a; a source electrode 216a and a drain electrode 216b disposed on the base insulating film 202 and the multilayer film 206; and a multilayer film 206 and a source a gate insulating film 212 on the electrode 216a and the drain electrode 216b; a gate electrode 204 provided on the gate insulating film 212; and a protective insulating film 218 provided on the gate insulating film 212 and the gate electrode 204. Further, the transistor may not include one or both of the base insulating film 202 and the protective insulating film 218.

另外,根據用於源極電極216a及汲極電極216b的導電膜的種類,有可能從多層膜206的一部分奪取氧或者形成混合層,而在多層膜206中形成低電阻區206d及低電阻區206e。在圖8B中,低電阻區206d及低電阻區206e成為多層膜206中的與源極電極216a及汲極電極216b接觸的介面附近的區域(多層膜206的虛線與源極電極216a及汲極電極216b之間的區域)。低電阻區206d及低電阻區206e的一部或全部作為源極區及汲極區發揮功能。 Further, depending on the kind of the conductive film for the source electrode 216a and the drain electrode 216b, it is possible to take oxygen from a part of the multilayer film 206 or form a mixed layer, and form the low-resistance region 206d and the low-resistance region in the multilayer film 206. 206e. In FIG. 8B, the low-resistance region 206d and the low-resistance region 206e become a region in the vicinity of the interface in contact with the source electrode 216a and the drain electrode 216b in the multilayer film 206 (dashed line of the multilayer film 206 and the source electrode 216a and the drain electrode) The area between the electrodes 216b). One or all of the low resistance region 206d and the low resistance region 206e function as a source region and a drain region.

在圖8A所示的重疊於閘極電極204的區域 中,將源極電極216a和汲極電極216b之間的間隔稱為通道長度。此外,在電晶體包括源極區和汲極區的情況下,在重疊於閘極電極204的區域中,也可以將源極區與汲極區之間的間隔稱為通道長度。 The area overlapped with the gate electrode 204 shown in FIG. 8A In the middle, the interval between the source electrode 216a and the drain electrode 216b is referred to as a channel length. Further, in the case where the transistor includes the source region and the drain region, in the region overlapping the gate electrode 204, the interval between the source region and the drain region may also be referred to as the channel length.

此外,通道形成區是指多層膜206中的重疊於閘極電極204並且夾在源極電極216a和汲極電極216b的區域。另外,通道區是指通道形成區中的電流主要流過的區域。在此,通道區是通道形成區中的氧化物半導體膜206a的一部分。 Further, the channel formation region refers to a region of the multilayer film 206 that overlaps the gate electrode 204 and is sandwiched between the source electrode 216a and the drain electrode 216b. In addition, the channel region refers to a region where the current in the channel formation region mainly flows. Here, the channel region is a part of the oxide semiconductor film 206a in the channel formation region.

2-1-1.關於多層膜 2-1-1. About multilayer film

多層膜206為在氧化物半導體膜206a的上下層疊了氧化物膜206b及氧化物膜206c的結構。氧化物半導體膜206a的下表面相當於氧化物半導體膜206a的基板200一側的表面或與氧化物膜206c之間的邊界面。氧化物膜206b的下表面相當於氧化物膜206b的基板200一側的表面或與氧化物半導體膜206a之間的邊界面。氧化物膜206c的下表面相當於氧化物膜206c的基板200一側的表面或氧化物膜206c的接觸於閘極絕緣膜112的表面。另外,多層膜206的層疊結構藉由使用STEM(Scanning Transmission Electron Microscopy:掃描透射電子顯微術)觀察,可以確認出其邊界。但是,根據用於氧化物半導體膜206a、氧化物膜206b及氧化物膜206c的材料,有時不能明確地確認出該邊界。 The multilayer film 206 has a structure in which an oxide film 206b and an oxide film 206c are laminated on the upper and lower sides of the oxide semiconductor film 206a. The lower surface of the oxide semiconductor film 206a corresponds to the surface of the oxide semiconductor film 206a on the substrate 200 side or the boundary surface with the oxide film 206c. The lower surface of the oxide film 206b corresponds to the surface of the oxide film 206b on the substrate 200 side or the boundary surface with the oxide semiconductor film 206a. The lower surface of the oxide film 206c corresponds to the surface of the oxide film 206c on the substrate 200 side or the surface of the oxide film 206c that is in contact with the gate insulating film 112. Further, the laminated structure of the multilayer film 206 can be confirmed by STEM (Scanning Transmission Electron Microscopy). However, depending on the materials used for the oxide semiconductor film 206a, the oxide film 206b, and the oxide film 206c, the boundary may not be clearly confirmed.

氧化物半導體膜206a可以使用能夠應用於實施方式1的氧化物半導體膜106a的氧化物半導體膜。氧化物膜206b可以使用能夠應用於實施方式1的氧化物膜106b的氧化物膜。氧化物膜206c可以使用能夠應用於實施方式1的氧化物膜106b的氧化物膜。 As the oxide semiconductor film 206a, an oxide semiconductor film which can be applied to the oxide semiconductor film 106a of the first embodiment can be used. As the oxide film 206b, an oxide film which can be applied to the oxide film 106b of the first embodiment can be used. As the oxide film 206c, an oxide film which can be applied to the oxide film 106b of the first embodiment can be used.

在多層膜206中,至少氧化物半導體膜206a具有錐形狀。較佳的是,氧化物膜206b及氧化物膜206c也具有錐形狀。此外,較佳的是,至少氧化物半導體膜206a的錐形狀與氧化物膜206b的錐形狀及氧化物膜206c的錐形狀不同。氧化物膜206b和氧化物膜206c的錐形狀既可以是相同,又可以是不同。 In the multilayer film 206, at least the oxide semiconductor film 206a has a tapered shape. Preferably, the oxide film 206b and the oxide film 206c also have a tapered shape. Further, it is preferable that at least the tapered shape of the oxide semiconductor film 206a is different from the tapered shape of the oxide film 206b and the tapered shape of the oxide film 206c. The tapered shape of the oxide film 206b and the oxide film 206c may be the same or different.

明確而言,在氧化物半導體膜206a中,將氧化物半導體膜206a的下表面與氧化物半導體膜206a的側面所呈的角度稱為第一角度θ1,在氧化物膜206b中,將氧化物膜206b的下表面與氧化物膜206b的側面所呈的角度稱為第二角度θ2,並且在氧化物膜206c中,將氧化物膜206c的下表面與氧化物膜206c的側面所呈的角度稱為第三角度θ3。在這種情況下,第一角度θ1可以設為銳角,第二角度θ2及第三角度θ3可以設為銳角或垂直。 Specifically, in the oxide semiconductor film 206a, the angle between the lower surface of the oxide semiconductor film 206a and the side surface of the oxide semiconductor film 206a is referred to as a first angle θ1, and in the oxide film 206b, an oxide is formed. The angle between the lower surface of the film 206b and the side surface of the oxide film 206b is referred to as a second angle θ2, and in the oxide film 206c, the angle between the lower surface of the oxide film 206c and the side surface of the oxide film 206c It is called the third angle θ3. In this case, the first angle θ1 may be set to an acute angle, and the second angle θ2 and the third angle θ3 may be set to an acute angle or a vertical direction.

較佳的是,第一角度θ1、第二角度θ2及第三角度θ3都是銳角,並且至少第一角度θ1小於第二角度θ2及第三角度θ3(參照圖9)。 Preferably, the first angle θ1, the second angle θ2, and the third angle θ3 are all acute angles, and at least the first angle θ1 is smaller than the second angle θ2 and the third angle θ3 (refer to FIG. 9).

此外,第二角度θ2和第三角度θ3既可以是相同角度,又可以是不同角度。例如,藉由將氧化物膜 206b和氧化物膜206c設為相同種類的氧化物膜,可以將第二角度θ2和第三角度θ3設為相同角度。 Further, the second angle θ2 and the third angle θ3 may be the same angle or different angles. For example, by using an oxide film The 206b and the oxide film 206c are made of the same type of oxide film, and the second angle θ2 and the third angle θ3 can be set to the same angle.

另外,第一角度θ1為10°以上且小於90°,較佳為30°以上且70°以下。第二角度θ2及第三角度θ3為10°以上且小於90°,較佳為30°以上且70°且以下。 Further, the first angle θ1 is 10° or more and less than 90°, preferably 30° or more and 70° or less. The second angle θ2 and the third angle θ3 are 10° or more and less than 90°, preferably 30° or more and 70° or less.

如上所述,藉由將多層膜206的形狀設為具有不同的錐角的錐形狀,可以得到下述效果。對於多層膜206,藉由將其設為具有不同的錐角的錐形狀,與具有相同的錐角的錐形狀相比,可以擴大多層膜206與源極電極216a及汲極電極216b之間的接觸面積。由此,可以降低多層膜206與源極電極216a及汲極電極216b之間的接觸電阻而使電晶體的通態電流增大。 As described above, by setting the shape of the multilayer film 206 to a tapered shape having different taper angles, the following effects can be obtained. For the multilayer film 206, by setting it to a tapered shape having different taper angles, the multilayer film 206 can be enlarged between the source electrode 216a and the drain electrode 216b as compared with the tapered shape having the same taper angle. Contact area. Thereby, the contact resistance between the multilayer film 206 and the source electrode 216a and the drain electrode 216b can be lowered to increase the on-state current of the transistor.

另外,藉由使第二角度θ2及第三角度θ3大於第一角度θ1,可以減小氧化物膜206b及氧化物膜206c與源極電極216a及汲極電極216b之間的接觸面積,從而可以減小形成在氧化物膜206b及氧化物膜206c中的低電阻區。因此,可以抑制氧化物膜206b及氧化物膜206c中的一個或兩個的低電阻化,抑制在源極電極216a與汲極電極216b之間產生的洩漏路徑,同時在作為通道區發揮功能的氧化物半導體膜206a中高效地形成低電阻區,從而可以同時實現電晶體的通態電流的增大和電晶體的關態電流的降低。 Further, by making the second angle θ2 and the third angle θ3 larger than the first angle θ1, the contact area between the oxide film 206b and the oxide film 206c and the source electrode 216a and the drain electrode 216b can be reduced, thereby making it possible to The low resistance region formed in the oxide film 206b and the oxide film 206c is reduced. Therefore, it is possible to suppress the low resistance of one or both of the oxide film 206b and the oxide film 206c, suppress the leakage path generated between the source electrode 216a and the drain electrode 216b, and at the same time function as a channel region. The low-resistance region is efficiently formed in the oxide semiconductor film 206a, so that an increase in the on-state current of the transistor and a decrease in the off-state current of the transistor can be simultaneously achieved.

另外,氧化物半導體膜206a的上端與氧化物膜206b的下端大致一致,氧化物膜206c的上端與氧化物 半導體膜206a的下端大致一致(參照圖9)。就是說,多層膜206沒有由氧化物半導體膜206a、氧化物膜206b和氧化物膜206c中的兩個以上的膜形成的大的步階213及大的步階214(參照圖32A和圖32B)。因此,可以抑制設置在多層膜206上的膜(例如,被加工成源極電極216a及汲極電極216b的導電膜)的斷開,從而可以製造電氣特性良好的電晶體。此外,“氧化物半導體膜206a的上端與氧化物膜206b的下端大致一致,氧化物膜206c的上端與氧化物半導體膜206a的下端大致一致”是指氧化物膜206b的下端與氧化物半導體膜206a的上端之間的距離L1以及氧化物膜206c的上端與氧化物半導體膜206a的下端之間的距離L2為30nm以下,較佳為10nm以下(參照圖32A和圖32B)。 Further, the upper end of the oxide semiconductor film 206a substantially coincides with the lower end of the oxide film 206b, and the upper end of the oxide film 206c and the oxide The lower ends of the semiconductor films 206a are substantially identical (see FIG. 9). That is, the multilayer film 206 does not have a large step 213 and a large step 214 formed of two or more of the oxide semiconductor film 206a, the oxide film 206b, and the oxide film 206c (refer to FIGS. 32A and 32B). ). Therefore, the disconnection of the film (for example, the conductive film processed into the source electrode 216a and the drain electrode 216b) provided on the multilayer film 206 can be suppressed, so that a transistor having good electrical characteristics can be manufactured. Further, "the upper end of the oxide semiconductor film 206a substantially coincides with the lower end of the oxide film 206b, and the upper end of the oxide film 206c substantially coincides with the lower end of the oxide semiconductor film 206a" means the lower end of the oxide film 206b and the oxide semiconductor film. The distance L1 between the upper ends of 206a and the distance L2 between the upper end of the oxide film 206c and the lower end of the oxide semiconductor film 206a are 30 nm or less, preferably 10 nm or less (see FIGS. 32A and 32B).

藉由利用在由蝕刻來形成多層膜206時的每個膜的蝕刻速度的差異,可以形成上述錐形狀。尤其是,上述錐形狀藉由使氧化物半導體膜206a的蝕刻速度低於氧化物膜206b的蝕刻速度及氧化物膜206c的蝕刻速度來可以形成。 The above-described tapered shape can be formed by utilizing the difference in etching speed of each film when the multilayer film 206 is formed by etching. In particular, the tapered shape can be formed by making the etching rate of the oxide semiconductor film 206a lower than the etching rate of the oxide film 206b and the etching rate of the oxide film 206c.

在使第二角度θ2小於第三角度θ3的情況下,使氧化物膜206b的蝕刻速度低於氧化物膜206c的蝕刻速度即可。另外,在使第二角度θ2大於第三角度θ3時,使氧化物膜206b的蝕刻速度高於氧化物膜206c的蝕刻速度即可。 When the second angle θ2 is smaller than the third angle θ3, the etching rate of the oxide film 206b may be lower than the etching rate of the oxide film 206c. Further, when the second angle θ2 is made larger than the third angle θ3, the etching rate of the oxide film 206b may be higher than the etching rate of the oxide film 206c.

與實施方式1相同,上述錐形狀可以藉由作 為蝕刻劑而使用包含磷酸的溶液的濕蝕刻來形成。另外,關於該濕蝕刻的詳細內容可以參照實施方式1。另外,藉由使第二角度θ2及第三角度θ3大於第一角度θ1,可以盡可能減小在該濕蝕刻中暴露於蝕刻劑的面積。另外,藉由使第二角度θ2及第三角度θ3大於第一角度θ1,可以減小由於蝕刻劑所引起的污染或缺陷的生成而被形成在氧化物膜206b及氧化物膜206c中的低電阻區。 As in Embodiment 1, the above-described tapered shape can be made by It is formed by wet etching using a solution containing phosphoric acid for the etchant. Further, the details of the wet etching can be referred to the first embodiment. Further, by making the second angle θ2 and the third angle θ3 larger than the first angle θ1, the area exposed to the etchant in the wet etching can be minimized. Further, by making the second angle θ2 and the third angle θ3 larger than the first angle θ1, it is possible to reduce the formation of the oxide film 206b and the oxide film 206c due to contamination or defect generation by the etchant. Resistance zone.

藉由濕蝕刻形成多層膜206,如實施方式1所示,可以抑制電晶體的良率的下降並且以高生產率製造電氣特性良好的電晶體。 By forming the multilayer film 206 by wet etching, as shown in Embodiment 1, it is possible to suppress a decrease in the yield of the transistor and to manufacture a transistor having good electrical characteristics with high productivity.

以下,參照圖10A至圖10C說明多層膜206的能帶結構。 Hereinafter, the energy band structure of the multilayer film 206 will be described with reference to FIGS. 10A to 10C.

例如,使用能隙為3.15eV的In-Ga-Zn氧化物作為氧化物半導體膜206a,使用能隙為3.5eV的In-Ga-Zn氧化物作為氧化物膜206b及氧化物膜206c。利用光譜橢圓偏光計(HORIBA JOBIN YVON公司的UT-300)測定能隙。 For example, an In-Ga-Zn oxide having an energy gap of 3.15 eV is used as the oxide semiconductor film 206a, and an In-Ga-Zn oxide having an energy gap of 3.5 eV is used as the oxide film 206b and the oxide film 206c. The energy gap was measured using a spectral ellipsometer (UT-IB JOBIN YVON UT-300).

氧化物半導體膜206a的真空能階與價帶上端之間的能量差(也稱為游離電位)為8eV。另外,氧化物膜206b及氧化物膜206c的游離電位為8.2eV。此外,關於真空能階和價帶頂端之間的能量差,利用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置(PHI公司的VersaProbe)進行測定。 The energy difference (also referred to as free potential) between the vacuum energy level of the oxide semiconductor film 206a and the upper end of the valence band is 8 eV. Further, the free potential of the oxide film 206b and the oxide film 206c was 8.2 eV. Further, the energy difference between the vacuum level and the valence band tip was measured by an ultraviolet photoelectron spectroscopy (UPS: Versa Probe).

因此,氧化物半導體膜206a的真空能階和導 帶底的能量之間的能量差(也稱為電子親和力)為4.85eV。氧化物膜206b及氧化物膜206c的電子親和力為4.7eV。 Therefore, the vacuum level and the conductance of the oxide semiconductor film 206a The energy difference (also known as electron affinity) between the bottomed energy is 4.85 eV. The electron affinity of the oxide film 206b and the oxide film 206c was 4.7 eV.

圖10A示意性地示出多層膜206的能帶結構的一部分。在圖10A中,說明了與氧化物膜206b以及氧化物膜206c的每一個接觸地設置氧化矽膜(基底絕緣膜202及閘極絕緣膜212)的情況。在此,EcI1表示氧化矽膜的導帶底的能量,EcS1表示氧化物半導體膜206a的導帶底的能量,EcS2表示氧化物膜206b的導帶底的能量,EcS3表示氧化物膜206c的導帶底的能量,EcI2表示氧化矽膜的導帶底的能量。 FIG. 10A schematically illustrates a portion of the energy band structure of the multilayer film 206. In FIG. 10A, a case where a tantalum oxide film (base insulating film 202 and gate insulating film 212) is provided in contact with each of the oxide film 206b and the oxide film 206c is described. Here, EcI1 represents the energy of the conduction band bottom of the ruthenium oxide film, EcS1 represents the energy of the conduction band bottom of the oxide semiconductor film 206a, EcS2 represents the energy of the conduction band bottom of the oxide film 206b, and EcS3 represents the conduction of the oxide film 206c. With bottom energy, EcI2 represents the energy of the conduction band bottom of the ruthenium oxide film.

如圖10A所示那樣,在氧化物半導體膜206a、氧化物膜206b及氧化物膜206c中,導帶底的能量沒有位壘而平緩地變化。換言之,也可以說是連續地變化。這可以說是因為氧化物膜206b以及氧化物膜206c包含與氧化物半導體膜206a相同的元素,並且藉由在氧化物半導體膜206a和氧化物膜206b之間以及在氧化物半導體膜206a和氧化物膜206c之間氧相互移動而形成有混合層。 As shown in FIG. 10A, in the oxide semiconductor film 206a, the oxide film 206b, and the oxide film 206c, the energy of the conduction band bottom changes gently without a barrier. In other words, it can be said that it changes continuously. This can be said that the oxide film 206b and the oxide film 206c contain the same elements as the oxide semiconductor film 206a, and are oxidized between the oxide semiconductor film 206a and the oxide film 206b and in the oxide semiconductor film 206a. The oxygen between the film 206c moves to each other to form a mixed layer.

從圖10A可知,多層膜206的氧化物半導體膜206a成為阱(well),在使用多層膜206的電晶體中,通道區形成在氧化物半導體膜206a。另外,由於多層膜206的導帶底的能量連續地變化,所以也可以說氧化物半導體膜206a與氧化物膜206b連續地接合,氧化物半導體 膜206a與氧化物膜206c連續地接合。 As is apparent from FIG. 10A, the oxide semiconductor film 206a of the multilayer film 206 becomes a well, and in the transistor using the multilayer film 206, a channel region is formed in the oxide semiconductor film 206a. In addition, since the energy of the conduction band bottom of the multilayer film 206 is continuously changed, it can be said that the oxide semiconductor film 206a and the oxide film 206b are continuously joined, and the oxide semiconductor The film 206a is continuously joined to the oxide film 206c.

另外,藉由將氧化物膜206b與氧化物膜206c分別設為導帶底的能量不同的氧化物膜,可以根據該導帶底的能量的大小關係而改變多層膜206的能帶結構。 Further, by forming the oxide film 206b and the oxide film 206c as oxide films having different energy at the bottom of the conduction band, the energy band structure of the multilayer film 206 can be changed in accordance with the magnitude relationship of the energy of the conduction band bottom.

藉由作為氧化物膜206c而使用其導帶底的能量比氧化物膜206b大的氧化物,可以形成具有圖10B所示的能帶結構的多層膜206。 The multilayer film 206 having the energy band structure shown in Fig. 10B can be formed by using an oxide having a larger conduction band bottom than the oxide film 206b as the oxide film 206c.

藉由作為氧化物膜206c而使用其導帶底的能量比氧化物膜206b小的氧化物,可以形成圖10C所示的具有能帶結構的多層膜206。 By using the oxide of the conduction band bottom as the oxide film 206c as an oxide smaller than the oxide film 206b, the multilayer film 206 having the energy band structure shown in Fig. 10C can be formed.

此外,在具有圖10B及圖10C所示的能帶結構的多層膜206中,通道區也形成在氧化物半導體膜206a中。 Further, in the multilayer film 206 having the energy band structure shown in FIGS. 10B and 10C, the channel region is also formed in the oxide semiconductor film 206a.

另外,雖然在氧化物膜206b與閘極絕緣膜212之間的介面附近有可能形成起因於雜質或缺陷的陷阱能階,但是藉由設置氧化物膜206b,可以使氧化物半導體膜206a與該陷阱能階遠離。然而,在EcS1和EcS2之間的能量差小的情況下,有時氧化物半導體膜206a的電子會越過該能量差到達陷阱能階。由於電子被陷阱能階捕獲,使得在絕緣膜的介面產生負的固定電荷,這導致電晶體的臨界電壓向正的方向移動。 In addition, although it is possible to form a trap level due to an impurity or a defect in the vicinity of the interface between the oxide film 206b and the gate insulating film 212, the oxide semiconductor film 206a can be made by providing the oxide film 206b. The trap can be farther away. However, in the case where the energy difference between EcS1 and EcS2 is small, the electrons of the oxide semiconductor film 206a sometimes pass the energy difference to reach the trap level. Since the electrons are trapped by the trap level, a negative fixed charge is generated at the interface of the insulating film, which causes the threshold voltage of the transistor to move in the positive direction.

另外,雖然在氧化物膜206c與基底絕緣膜202之間的介面附近有可能形成起因於雜質或缺陷的陷阱能階,但是可以使氧化物半導體膜206a與該陷阱能階遠 離。此外,當EcS1和EcS3之間的能量差小時,有時氧化物半導體膜206a的電子越過該能量差到達陷阱能階。電子被陷阱能階捕獲,使得在絕緣膜的介面產生負的固定電荷,這導致電晶體的臨界電壓向正的方向移動。 In addition, although it is possible to form a trap level due to an impurity or a defect in the vicinity of the interface between the oxide film 206c and the base insulating film 202, the oxide semiconductor film 206a can be made far from the trap level from. Further, when the energy difference between EcS1 and EcS3 is small, the electrons of the oxide semiconductor film 206a sometimes pass the energy difference to reach the trap level. The electrons are trapped by the trap level, causing a negative fixed charge at the interface of the insulating film, which causes the critical voltage of the transistor to move in a positive direction.

因此,當將EcS1與EcS2之間的能量差以及EcS1與EcS3之間的能量差分別設定為0.1eV以上,較佳為0.15eV以上,則減少電晶體的臨界電壓的變動而得到穩定的電氣特性,所以是較佳的。 Therefore, when the energy difference between EcS1 and EcS2 and the energy difference between EcS1 and EcS3 are set to 0.1 eV or more, preferably 0.15 eV or more, the variation of the threshold voltage of the transistor is reduced to obtain stable electrical characteristics. So it is better.

2-1-2.關於其他結構 2-1-2. About other structures

基板200可以參照關於基板100的記載。此外,源極電極216a及汲極電極216b可以參照關於源極電極116a及汲極電極116b的記載。另外,閘極絕緣膜212可以參照關於閘極絕緣膜112的記載。另外,閘極電極204可以參照關於閘極電極104的記載。此外,保護絕緣膜218可以參照關於保護絕緣膜118的記載。 The substrate 200 can be referred to the description about the substrate 100. Further, the source electrode 216a and the drain electrode 216b can be referred to the description of the source electrode 116a and the drain electrode 116b. In addition, the gate insulating film 212 can be referred to the description about the gate insulating film 112. In addition, the description of the gate electrode 104 can be referred to as the gate electrode 204. Further, the protective insulating film 218 can be referred to the description about the protective insulating film 118.

此外,在圖8A中,雖然多層膜206在上表面形狀中形成到閘極電極204的外側,但是也可以形成為閘極電極204的寬度大於多層膜206的寬度,以抑制因來自上方的光而在多層膜206中生成載子。 Further, in FIG. 8A, although the multilayer film 206 is formed to the outer side of the gate electrode 204 in the upper surface shape, it may be formed such that the width of the gate electrode 204 is larger than the width of the multilayer film 206 to suppress light from above. A carrier is generated in the multilayer film 206.

基底絕緣膜202可以以單層或層疊的方式使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿以及氧化鉭中的一種以上的絕緣膜。 The base insulating film 202 may be used in a single layer or in a laminated manner including alumina, magnesia, cerium oxide, cerium oxynitride, cerium oxynitride, cerium nitride, gallium oxide, cerium oxide, cerium oxide, zirconium oxide, cerium oxide. One or more insulating films of cerium oxide, cerium oxide, and cerium oxide.

例如,作為基底絕緣膜202,可以是將第一層設為氮化矽膜,將第二層設為氧化矽膜的層疊結構。此時,氧化矽膜也可以為氧氮化矽膜。另外,氮化矽膜也可以為氮氧化矽膜。氧化矽膜較佳為使用缺陷密度小的氧化矽膜。明確而言,使用如下氧化矽膜:在ESR中,來源於g值為2.001的信號的自旋的密度為3×1017spins/cm3以下,較佳為5×1016spins/cm3以下。氮化矽膜使用氫及氨的釋放量少的氮化矽膜。氫及氨的釋放量藉由TDS分析進行測定即可。另外,氮化矽膜使用使氫、水及氧不透過或幾乎不透過的氮化矽膜。 For example, the base insulating film 202 may have a laminated structure in which the first layer is a tantalum nitride film and the second layer is a hafnium oxide film. At this time, the hafnium oxide film may also be a hafnium oxynitride film. Further, the tantalum nitride film may also be a hafnium oxynitride film. The hafnium oxide film is preferably a hafnium oxide film having a small defect density. Specifically, the following cerium oxide film is used: in the ESR, the density of the spin derived from the signal having a g value of 2.001 is 3 × 10 17 spins/cm 3 or less, preferably 5 × 10 16 spins/cm 3 or less. . As the tantalum nitride film, a tantalum nitride film having a small amount of hydrogen and ammonia released is used. The amount of hydrogen and ammonia released can be measured by TDS analysis. Further, as the tantalum nitride film, a tantalum nitride film which does not transmit or hardly permeate hydrogen, water, and oxygen is used.

另外,例如,作為基底絕緣膜202,可以是將第一層設為第一氮化矽膜,將第二層設為第一氧化矽膜並將第三層設為第二氧化矽膜的層疊結構。在這種情況下,第一氧化矽膜或/和第二氧化矽膜也可以為氧氮化矽膜。另外,氮化矽膜也可以為氮氧化矽膜。第一氧化矽膜較佳為使用缺陷密度小的氧化矽膜。明確而言,使用如下氧化矽膜:在ESR中,來源於g值為2.001的信號的自旋的密度為3×1017spins/cm3以下,較佳為5×1016spins/cm3以下。第二氧化矽膜使用包含過量氧的氧化矽膜。氮化矽膜使用氫及氨的釋放量少的氮化矽膜。另外,氮化矽膜使用使氫、水及氧不透過或幾乎不透過的氮化矽膜。 Further, for example, the base insulating film 202 may be a laminate in which the first layer is a first tantalum nitride film, the second layer is a first hafnium oxide film, and the third layer is a second hafnium oxide film. structure. In this case, the first hafnium oxide film or/and the second hafnium oxide film may also be a hafnium oxynitride film. Further, the tantalum nitride film may also be a hafnium oxynitride film. The first hafnium oxide film is preferably a hafnium oxide film having a small defect density. Specifically, the following cerium oxide film is used: in the ESR, the density of the spin derived from the signal having a g value of 2.001 is 3 × 10 17 spins/cm 3 or less, preferably 5 × 10 16 spins/cm 3 or less. . The second hafnium oxide film uses a hafnium oxide film containing excess oxygen. As the tantalum nitride film, a tantalum nitride film having a small amount of hydrogen and ammonia released is used. Further, as the tantalum nitride film, a tantalum nitride film which does not transmit or hardly permeate hydrogen, water, and oxygen is used.

在閘極絕緣膜212和基底絕緣膜202中的一個或兩個具有包含過量氧的絕緣膜的情況下,可以降低氧化物半導體膜206a中的氧空位。 In the case where one or both of the gate insulating film 212 and the base insulating film 202 have an insulating film containing excess oxygen, oxygen vacancies in the oxide semiconductor film 206a can be lowered.

如上所述,本實施方式所示的電晶體由於降低多層膜206的氧化物半導體膜206a(尤其是通道區)的雜質及載子密度,從而具有穩定的電氣特性和高場效移動率。 As described above, the transistor shown in the present embodiment has stable electrical characteristics and high field-effect mobility because the impurity and the carrier density of the oxide semiconductor film 206a (especially the channel region) of the multilayer film 206 are lowered.

2-2.電晶體結構(3)的製造方法 2-2. Method of manufacturing transistor structure (3)

在此,使用圖11A至圖12B說明電晶體的製造方法。 Here, a method of manufacturing a transistor will be described using FIGS. 11A to 12B.

首先,準備基板200。 First, the substrate 200 is prepared.

在基板200上形成基底絕緣膜202。關於基底絕緣膜202,藉由使用濺射法、CVD法、MBE法、ALD法或PLD法來形成上述絕緣膜即可。 A base insulating film 202 is formed on the substrate 200. The insulating film may be formed by using a sputtering method, a CVD method, an MBE method, an ALD method, or a PLD method for the base insulating film 202.

接著,形成被加工成氧化物膜206c的氧化物膜226c。氧化物膜206c的成膜方法可以參照關於實施方式1的氧化物膜106b的記載。此外,氧化物膜206c形成為CAAC-OS或非晶質。當氧化物膜206c為CAAC-OS或非晶質,則作為氧化物半導體膜206a的氧化物半導體膜226a容易成為CAAC-OS。 Next, an oxide film 226c processed into the oxide film 206c is formed. The method of forming the oxide film 206c can be referred to the description of the oxide film 106b of the first embodiment. Further, the oxide film 206c is formed as CAAC-OS or amorphous. When the oxide film 206c is CAAC-OS or amorphous, the oxide semiconductor film 226a which is the oxide semiconductor film 206a is likely to be CAAC-OS.

接著,形成被加工成氧化物半導體膜206a的氧化物半導體膜226a。氧化物半導體膜226a的成膜方法可以參照關於實施方式1的氧化物半導體膜106a的記載。 Next, an oxide semiconductor film 226a processed into the oxide semiconductor film 206a is formed. The method of forming the oxide semiconductor film 226a can be referred to the description of the oxide semiconductor film 106a of the first embodiment.

接著,形成被加工成氧化物膜206b的氧化物膜226b。氧化物膜226b的成膜方法可以參照關於實施方 式1的氧化物膜106b的記載(參照圖11A)。 Next, an oxide film 226b processed into the oxide film 206b is formed. The film formation method of the oxide film 226b can be referred to the implementation side. Description of the oxide film 106b of Formula 1 (refer FIG. 11A).

如實施方式1所示,為了使氧化物膜206c、氧化物半導體膜206a與氧化物膜206b連續接合,較佳為以不使各膜暴露於大氣的方式連續地層疊氧化物膜226c、氧化物半導體膜226a及氧化物膜226b。 As shown in the first embodiment, in order to continuously bond the oxide film 206c and the oxide semiconductor film 206a and the oxide film 206b, it is preferable to continuously laminate the oxide film 226c and the oxide so that the respective films are not exposed to the atmosphere. Semiconductor film 226a and oxide film 226b.

接著,對氧化物膜226c、氧化物半導體膜226a及氧化物膜226b的一部分進行蝕刻,形成包括氧化物膜206c、氧化物半導體膜206a及氧化物膜206b的多層膜206(參照圖11B)。此外,該蝕刻可以參照上述蝕刻。 Then, a part of the oxide film 226c, the oxide semiconductor film 226a, and the oxide film 226b is etched to form a multilayer film 206 including the oxide film 206c, the oxide semiconductor film 206a, and the oxide film 206b (see FIG. 11B). Further, the etching can be referred to the above etching.

接著,較佳為進行第一加熱處理。第一加熱處理也可以在250℃以上且650℃以下,較佳為在300℃以上且500℃以下進行即可。第一加熱處理在惰性氣體氛圍,包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下或者在減壓狀態下進行。或者,第一加熱處理在採用惰性氣體氛圍進行加熱處理之後,為了填補脫離了的氧,也可以在包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下進行。藉由進行第一加熱處理,可以提高氧化物半導體膜226a的結晶性,進而可以從基底絕緣膜202及多層膜206去除水、氫、氮及碳等雜質。 Next, it is preferred to perform the first heat treatment. The first heat treatment may be carried out at 250 ° C or higher and 650 ° C or lower, preferably 300 ° C or higher and 500 ° C or lower. The first heat treatment is performed in an inert gas atmosphere containing an oxidizing gas atmosphere of 10 ppm or more, 1% or more, or 10% or more, or under reduced pressure. Alternatively, the first heat treatment may be carried out in an oxidizing gas atmosphere containing 10 ppm or more, 1% or more, or 10% or more in order to fill the desorbed oxygen after heat treatment in an inert gas atmosphere. By performing the first heat treatment, the crystallinity of the oxide semiconductor film 226a can be improved, and impurities such as water, hydrogen, nitrogen, and carbon can be removed from the base insulating film 202 and the multilayer film 206.

此外,第一加熱處理可以在形成多層膜206的蝕刻製程之前或之後進行。 Further, the first heat treatment may be performed before or after the etching process of forming the multilayer film 206.

接著,形成用作源極電極216a及汲極電極216b的導電膜。用作源極電極216a及汲極電極216b的 導電膜的成膜方法可以參照關於實施方式1的源極電極116a及汲極電極116b的記載。 Next, a conductive film serving as the source electrode 216a and the drain electrode 216b is formed. Used as source electrode 216a and drain electrode 216b For the film formation method of the conductive film, the description of the source electrode 116a and the drain electrode 116b of the first embodiment can be referred to.

接著,對作為源極電極216a及汲極電極216b的導電膜的一部分進行蝕刻,形成源極電極216a及汲極電極216b(參照圖11C)。 Next, a part of the conductive film as the source electrode 216a and the drain electrode 216b is etched to form a source electrode 216a and a drain electrode 216b (see FIG. 11C).

接著,較佳為進行第二加熱處理。關於第二加熱處理,參照第一加熱處理的說明進行即可。藉由進行第二加熱處理,可以從多層膜206去除水、氫、氮及碳等雜質。 Next, it is preferred to perform the second heat treatment. The second heat treatment may be performed with reference to the description of the first heat treatment. By performing the second heat treatment, impurities such as water, hydrogen, nitrogen, and carbon can be removed from the multilayer film 206.

另外,藉由第二加熱處理可以在接觸於源極電極216a及汲極電極216b的多層膜206中形成低電阻區206d及低電阻區206e。 Further, the low resistance region 206d and the low resistance region 206e may be formed in the multilayer film 206 contacting the source electrode 216a and the drain electrode 216b by the second heat treatment.

接著,形成閘極絕緣膜212(參照圖12A)。閘極絕緣膜212的成膜方法可以參照關於實施方式1的閘極絕緣膜112的記載。 Next, a gate insulating film 212 is formed (see FIG. 12A). The method of forming the gate insulating film 212 can be referred to the description of the gate insulating film 112 of the first embodiment.

接著,形成作為閘極電極204的導電膜。接著,對作為閘極電極204的導電膜的一部分進行蝕刻,形成閘極電極204(參照圖12B)。閘極電極204的成膜方法及蝕刻製程可以參照關於實施方式1的閘極電極104的記載。 Next, a conductive film as the gate electrode 204 is formed. Next, a part of the conductive film as the gate electrode 204 is etched to form a gate electrode 204 (see FIG. 12B). The film formation method and etching process of the gate electrode 204 can be referred to the description of the gate electrode 104 of the first embodiment.

接著,形成保護絕緣膜218(參照圖8B)。保護絕緣膜218的成膜方法可以參照關於保護絕緣膜118的記載。 Next, a protective insulating film 218 is formed (see FIG. 8B). The method of forming the protective insulating film 218 can be referred to the description of the protective insulating film 118.

藉由上述步驟,可以製造圖8A至圖8C所示 的電晶體。 Through the above steps, it can be manufactured as shown in FIGS. 8A to 8C. The transistor.

2-3.電晶體結構(4) 2-3. Crystal structure (4)

在此,使用圖13A至圖13C說明圖8A至圖8C所示的電晶體的變形例。 Here, a modification of the transistor shown in FIGS. 8A to 8C will be described using FIGS. 13A to 13C.

圖13A至圖13C示出作為該變形例的電晶體的俯視圖及剖面圖。圖13A示出電晶體的俯視圖。圖13B示出對應於圖13A所示的點劃線B1-B2的剖面圖。另外,圖13C示出對應於圖13A所示的點劃線B3-B4的剖面圖。另外,在圖13A中,為了使圖式清楚,省略該電晶體的構成要素的一部分(閘極絕緣膜及保護絕緣膜等)。 13A to 13C are a plan view and a cross-sectional view showing a transistor as the modification. Fig. 13A shows a plan view of a transistor. Fig. 13B shows a cross-sectional view corresponding to the chain line B1-B2 shown in Fig. 13A. In addition, FIG. 13C shows a cross-sectional view corresponding to the chain line B3-B4 shown in FIG. 13A. In addition, in FIG. 13A, in order to make a figure clear, a part of the components of the transistor (gate insulating film, protective insulating film, etc.) is abbreviate|omitted.

圖13A至圖13C所示的電晶體與圖8A至圖8C所示的電晶體不同之處在於:在多層膜206中不包括氧化物膜206c。就是說,圖13A至圖13C所示的電晶體中的多層膜206是氧化物半導體膜206a及氧化物膜206b。此外,圖13A至圖13C所示的電晶體的其他構成要素與圖8A至圖8C所示的電晶體相同,而可以適當地參照上述記載。 The transistor shown in FIGS. 13A to 13C is different from the transistor shown in FIGS. 8A to 8C in that the oxide film 206c is not included in the multilayer film 206. That is, the multilayer film 206 in the transistor shown in FIGS. 13A to 13C is the oxide semiconductor film 206a and the oxide film 206b. Further, other constituent elements of the transistor shown in FIGS. 13A to 13C are the same as those of the transistor shown in FIGS. 8A to 8C, and the above description can be appropriately referred to.

在圖13A至圖13C所示的電晶體中,雖然在氧化物膜206b與閘極絕緣膜212之間的介面附近有可能形成起因於雜質或缺陷的陷阱能階,但是藉由設置氧化物膜206b,可以使氧化物半導體膜206a與該陷阱能階遠離。因此,圖13A至圖13C所示的電晶體是臨界電壓的變動被降低的具有穩定的電氣特性的電晶體。 In the transistor shown in FIGS. 13A to 13C, although it is possible to form a trap level due to an impurity or a defect in the vicinity of the interface between the oxide film 206b and the gate insulating film 212, by providing an oxide film 206b, the oxide semiconductor film 206a can be moved away from the trap level. Therefore, the transistor shown in FIGS. 13A to 13C is a transistor having stable electrical characteristics in which variation in threshold voltage is lowered.

此外,圖13A至圖13C所示的電晶體的製造方法可以適當地參照關於實施方式1及圖8A至圖8C所示的電晶體的記載。 Further, the method of manufacturing the transistor shown in FIGS. 13A to 13C can be referred to the description of the transistor shown in the first embodiment and FIGS. 8A to 8C as appropriate.

2-4.電晶體結構(5) 2-4. Crystal structure (5)

在此,使用圖14A至圖14C說明作為圖8A至圖8C所示的電晶體的變形例的電晶體。 Here, a transistor which is a modification of the transistor shown in FIGS. 8A to 8C will be described using FIGS. 14A to 14C.

圖14A至圖14C示出作為該變形例的電晶體的俯視圖及剖面圖。圖14A示出電晶體的俯視圖。圖14B示出對應於圖14A所示的點劃線B1-B2的剖面圖。另外,圖14C示出對應於圖14A所示的點劃線B3-B4的剖面圖。另外,在圖14A中,為了使圖式清楚,省略該電晶體的構成要素的一部分(閘極絕緣膜及保護絕緣膜等)。 14A to 14C are a plan view and a cross-sectional view showing a transistor as the modification. Fig. 14A shows a plan view of a transistor. Fig. 14B shows a cross-sectional view corresponding to the chain line B1-B2 shown in Fig. 14A. In addition, FIG. 14C shows a cross-sectional view corresponding to the chain line B3-B4 shown in FIG. 14A. In addition, in FIG. 14A, in order to clarify the drawing, a part of the constituent elements of the transistor (a gate insulating film, a protective insulating film, etc.) is omitted.

圖14A至圖14C所示的電晶體與圖8A至圖8C所示的電晶體不同之處在於:在多層膜206中不包括氧化物膜206b。就是說,圖14A至圖14C所示的電晶體中的多層膜206是氧化物膜206c及氧化物半導體膜206a。另外,在以接觸於源極電極216a的上表面、汲極電極216b的上表面及多層膜206的上表面的方式設置有氧化物膜207這一點上也不同。 The transistor shown in FIGS. 14A to 14C is different from the transistor shown in FIGS. 8A to 8C in that the oxide film 206b is not included in the multilayer film 206. That is, the multilayer film 206 in the transistor shown in FIGS. 14A to 14C is the oxide film 206c and the oxide semiconductor film 206a. In addition, the oxide film 207 is also provided in contact with the upper surface of the source electrode 216a, the upper surface of the drain electrode 216b, and the upper surface of the multilayer film 206.

氧化物膜207可以使用能夠應用於實施例1的多層膜106的氧化物膜106b的氧化物膜,並可以利用能夠應用於氧化物膜106b的方法而形成。此外,圖14A至圖14C所示的電晶體的其他構成要素與圖8A至圖8C 所示的電晶體相同,而可以適當地參照上述記載。 As the oxide film 207, an oxide film which can be applied to the oxide film 106b of the multilayer film 106 of the first embodiment can be used, and can be formed by a method which can be applied to the oxide film 106b. In addition, other constituent elements of the transistor shown in FIGS. 14A to 14C and FIGS. 8A to 8C The illustrated transistors are the same, and the above description can be appropriately referred to.

由於圖14A至圖14C所示的電晶體為在氧化物半導體膜206a與閘極絕緣膜212之間設置有氧化物膜207的結構,所以可以進一步使起因於形成在氧化物膜207與閘極絕緣膜212之間的介面附近的雜質或缺陷的陷阱能階與氧化物半導體膜106a遠離。因此,圖14A至圖14C所示的電晶體是電晶體的臨界電壓的變動被降低的具有穩定的電氣特性的電晶體。 Since the transistor shown in FIGS. 14A to 14C has a structure in which the oxide film 207 is provided between the oxide semiconductor film 206a and the gate insulating film 212, it can be further caused by the formation of the oxide film 207 and the gate. The trap level of impurities or defects in the vicinity of the interface between the insulating films 212 is away from the oxide semiconductor film 106a. Therefore, the transistor shown in FIGS. 14A to 14C is a transistor having stable electrical characteristics in which variation in the threshold voltage of the transistor is lowered.

另外,圖14A至圖14C所示的電晶體的製造方法可以適當地參照關於實施方式1及圖8A至圖8C所示的電晶體的記載。 Further, the method of manufacturing the transistor shown in FIGS. 14A to 14C can be referred to the description of the transistor shown in the first embodiment and FIGS. 8A to 8C as appropriate.

2-5.其他電晶體結構 2-5. Other transistor structures

例如,在圖8A至圖8C所示的電晶體中,如下結構的電晶體也包括在本發明的一個方式中:在源極電極212a和汲極電極212b的上表面、以及多層膜206的上表面與閘極絕緣膜212之間設置有圖14A至圖14C所示的電晶體的氧化物膜207。 For example, in the transistor shown in FIGS. 8A to 8C, a transistor having the following structure is also included in one embodiment of the present invention: on the upper surface of the source electrode 212a and the gate electrode 212b, and on the multilayer film 206. An oxide film 207 of the transistor shown in FIGS. 14A to 14C is provided between the surface and the gate insulating film 212.

藉由採用具有上述結構的電晶體,可以得到在氧化物半導體膜206a與閘極絕緣膜212之間設置有氧化物膜206b及氧化物膜207的結構,所以可以進一步使起因於形成在氧化物膜207與閘極絕緣膜212之間的介面附近的雜質或缺陷的陷阱能階與氧化物半導體膜206a遠離。就是說,即使在EcS1和EcS2之間的能量差小的情況 下,也可以抑制氧化物半導體膜206a的電子越過該能量差到達陷阱能階。因此,可以得到臨界電壓的變動進一步被降低的具有穩定的電氣特性的電晶體。 By using the transistor having the above structure, the oxide film 206b and the oxide film 207 are provided between the oxide semiconductor film 206a and the gate insulating film 212, so that it can be further formed in the oxide. The trap level of impurities or defects in the vicinity of the interface between the film 207 and the gate insulating film 212 is away from the oxide semiconductor film 206a. That is, even when the energy difference between EcS1 and EcS2 is small Next, it is also possible to suppress the electrons of the oxide semiconductor film 206a from reaching the trap level beyond the energy difference. Therefore, a transistor having stable electrical characteristics in which the variation of the threshold voltage is further reduced can be obtained.

此外,如下電晶體也包括在本發明的一個方式中:使用具有氧化物半導體膜206a、氧化物膜206b及氧化物膜206c的多層膜206來代替在實施方式1中說明的底閘極結構的電晶體的多層膜106。 Further, the following transistor is also included in one embodiment of the present invention: a multilayer film 206 having an oxide semiconductor film 206a, an oxide film 206b, and an oxide film 206c is used instead of the bottom gate structure explained in Embodiment 1. Multilayer film 106 of the transistor.

如上所述,由於在多層膜106、206的氧化物半導體膜106a、206a(尤其是通道區)中雜質及載子密度被降低,所以圖8A至圖8C、圖13A至圖13C以及圖14A至圖14C所示的電晶體具有穩定的電氣特性。 As described above, since the impurity and the carrier density are lowered in the oxide semiconductor films 106a, 206a (especially the channel region) of the multilayer films 106, 206, FIGS. 8A to 8C, 13A to 13C, and 14A to The transistor shown in Fig. 14C has stable electrical characteristics.

實施方式3 Embodiment 3

在本實施方式中,說明使用在上述實施方式中記載的電晶體的半導體裝置。 In the present embodiment, a semiconductor device using the transistor described in the above embodiment will be described.

3-1.顯示裝置 3-1. Display device

在此,說明使用在上述實施方式中記載的電晶體的半導體裝置之一的顯示裝置。 Here, a display device using one of the semiconductor devices of the transistor described in the above embodiment will be described.

作為設置在顯示裝置中的顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)等。發光元件在其範疇內包括其亮度由電流或電壓控制的元件,明確而言,包括無機EL(Electro Luminescence:電致發光)元件、有機EL元件等。此 外,也可以採用電子墨水等由於電作用而改變對比度的顯示媒體作為顯示元件。下面,作為顯示裝置的一個例子對使用EL元件的顯示裝置及使用液晶元件的顯示裝置進行說明。 As the display element provided in the display device, a liquid crystal element (also referred to as a liquid crystal display element), a light-emitting element (also referred to as a light-emitting display element), or the like can be used. The light-emitting element includes, within its scope, an element whose luminance is controlled by current or voltage, and specifically includes an inorganic EL (Electro Luminescence) element, an organic EL element, and the like. this Further, a display medium whose contrast is changed by an electric action such as electronic ink may be used as the display element. Next, a display device using an EL element and a display device using the liquid crystal element will be described as an example of a display device.

另外,下面示出的顯示裝置包括處於密封有顯示元件的狀態的面板及處於在該面板中安裝有包括控制器的IC等的狀態的模組。 Further, the display device shown below includes a panel in a state in which a display element is sealed, and a module in a state in which an IC including a controller is mounted in the panel.

另外,下面示出的顯示裝置是指影像顯示裝置或光源(包括照明設備)。此外,顯示裝置還包括:安裝有連接器(諸如FPC或TCP)的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG方式將IC(積體電路)直接安裝到顯示元件的模組。 In addition, the display device shown below refers to an image display device or a light source (including a lighting device). In addition, the display device further includes: a module in which a connector (such as FPC or TCP) is mounted; a module in which a printed circuit board is disposed at an end of the TCP; or an IC (integrated circuit) is directly mounted to the COG method A module that displays components.

此外,在下面示出的顯示裝置中可以設置由根據接觸或非接觸的傳感來進行的輸入單元(未圖示)。例如,作為由根據接觸的傳感進行的輸入單元,可以採用各種方式諸如電阻式、電容式、紅外線式、電磁感應方式、表面聲波式等各種方式的觸控感測器。此外,作為由根據非接觸的傳感來進行的輸入單元,可以採用紅外線相機等來實施。 Further, an input unit (not shown) by sensing according to contact or non-contact may be provided in the display device shown below. For example, as an input unit by sensing according to contact, various methods such as a resistive type, a capacitive type, an infrared type, an electromagnetic induction type, a surface acoustic wave type, and the like can be employed. Further, the input unit by the non-contact sensing can be implemented by an infrared camera or the like.

該輸入單元既可以藉由另行設置在下面示出的顯示裝置上的所謂“單元上(On-cell)”方式來設置,又可以藉由和下面示出的顯示裝置一體地設置的所謂“單元內(In-cell)”方式來設置。 The input unit can be provided by a so-called "On-cell" method separately provided on the display device shown below, or by a so-called "unit" integrally provided with the display device shown below. In-cell mode is set.

3-1-1.EL顯示裝置 3-1-1.EL display device

在此,說明使用EL元件的顯示裝置(也稱為EL顯示裝置)。 Here, a display device (also referred to as an EL display device) using an EL element will be described.

圖15是EL顯示裝置的像素的電路圖的一個例子。 Fig. 15 is an example of a circuit diagram of a pixel of an EL display device.

圖15所示的EL顯示裝置具有切換元件743、電晶體741、電容器742、發光元件719。 The EL display device shown in FIG. 15 has a switching element 743, a transistor 741, a capacitor 742, and a light-emitting element 719.

電晶體741的閘極與切換元件743的一端及電容器742的一端電連接。電晶體741的源極與發光元件719的一端電連接。電晶體741的汲極與電容器742的另一端電連接,並被提供電源電位VDD。切換元件743的另一端與信號線744電連接。發光元件719的另一端被提供恆電位。另外,恆電位為等於或低於接地電位GND的電位。 The gate of the transistor 741 is electrically connected to one end of the switching element 743 and one end of the capacitor 742. The source of the transistor 741 is electrically connected to one end of the light-emitting element 719. The drain of the transistor 741 is electrically connected to the other end of the capacitor 742 and is supplied with a power supply potential VDD. The other end of the switching element 743 is electrically connected to the signal line 744. The other end of the light-emitting element 719 is supplied with a constant potential. In addition, the constant potential is a potential equal to or lower than the ground potential GND.

另外,電晶體741採用在上述實施方式中記載的電晶體。該電晶體具有穩定的電氣特性。因此,可以成為顯示品質高的EL顯示裝置。 Further, the transistor 741 is the transistor described in the above embodiment. The transistor has stable electrical characteristics. Therefore, it can be an EL display device with high display quality.

作為切換元件743較佳為使用電晶體。藉由使用電晶體,可以減小像素的面積,由此可以成為分辨度高的EL顯示裝置。另外,切換元件743也可以採用在上述實施方式中記載的電晶體。藉由作為切換元件743而使用該電晶體,可以藉由與電晶體741相同製程來製作切換元件743,由此可以提高EL顯示裝置的生產率。 As the switching element 743, a transistor is preferably used. By using a transistor, the area of the pixel can be reduced, whereby an EL display device having high resolution can be obtained. Further, the switching element 743 may be the transistor described in the above embodiment. By using the transistor as the switching element 743, the switching element 743 can be fabricated by the same process as the transistor 741, whereby the productivity of the EL display device can be improved.

圖16A是EL顯示裝置的俯視圖。EL顯示裝 置包含基板100、基板700、密封材料734、驅動電路735、驅動電路736、像素737以及FPC732。密封材料734以包圍像素737、驅動電路735以及驅動電路736的方式設置在基板100與基板700之間。另外,驅動電路735和驅動電路736中的一個或兩個也可以設置在密封材料734的外側。 Fig. 16A is a plan view of the EL display device. EL display The substrate 100, the substrate 700, the sealing material 734, the driving circuit 735, the driving circuit 736, the pixels 737, and the FPC 732 are disposed. The sealing material 734 is disposed between the substrate 100 and the substrate 700 in such a manner as to surround the pixel 737, the driving circuit 735, and the driving circuit 736. In addition, one or both of the driving circuit 735 and the driving circuit 736 may also be disposed outside the sealing material 734.

圖16B是對應於圖16A的點劃線M-N的EL顯示裝置的剖面圖。FPC732經由端子731與佈線733a連接。另外,佈線733a在與閘極電極104相同的層。 Fig. 16B is a cross-sectional view of the EL display device corresponding to the chain line M-N of Fig. 16A. The FPC 732 is connected to the wiring 733a via the terminal 731. Further, the wiring 733a is on the same layer as the gate electrode 104.

另外,圖16B示出電晶體741及電容器742設置在相同平面上的例子。藉由採用這種結構,可以將電容器742形成在與電晶體741的閘極電極、閘極絕緣膜及源極電極(汲極電極)相同平面上。如此,藉由將電晶體741及電容器742設置在相同平面上,可以縮短EL顯示裝置的製程,由此可以提高生產率。 In addition, FIG. 16B shows an example in which the transistor 741 and the capacitor 742 are disposed on the same plane. By adopting such a configuration, the capacitor 742 can be formed on the same plane as the gate electrode, the gate insulating film, and the source electrode (drain electrode) of the transistor 741. Thus, by arranging the transistor 741 and the capacitor 742 on the same plane, the process of the EL display device can be shortened, whereby productivity can be improved.

圖16B示出作為電晶體741而應用圖1A至圖1D所示的電晶體的例子。因此,關於在電晶體741的各構成中以下不特別進行說明的構成,參照關於圖1A至圖1D所記載的說明。 FIG. 16B shows an example in which the transistor shown in FIGS. 1A to 1D is applied as the transistor 741. Therefore, the configuration described below with reference to FIGS. 1A to 1D is referred to as a configuration that is not particularly described below in the respective configurations of the transistor 741.

在電晶體741及電容器742上設置有絕緣膜720。 An insulating film 720 is provided on the transistor 741 and the capacitor 742.

在此,在絕緣膜720及保護絕緣膜118中設置有直到電晶體741的源極電極116a的開口部。 Here, an opening portion up to the source electrode 116a of the transistor 741 is provided in the insulating film 720 and the protective insulating film 118.

在絕緣膜720上設置有電極781。電極781經 由設置在絕緣膜720及保護絕緣膜118中的開口部與電晶體741的源極電極116a連接。 An electrode 781 is provided on the insulating film 720. Electrode 781 The opening provided in the insulating film 720 and the protective insulating film 118 is connected to the source electrode 116a of the transistor 741.

在電極781上設置有包含直到電極781的開口部的隔壁784。 A partition wall 784 including an opening portion up to the electrode 781 is provided on the electrode 781.

在隔壁784上設置有藉由設置在隔壁784中的開口部而與電極781接觸的發光層782。 A light-emitting layer 782 that is in contact with the electrode 781 by an opening provided in the partition 784 is provided on the partition 784.

在發光層782上設置有電極783。 An electrode 783 is provided on the light emitting layer 782.

電極781、發光層782和電極783相重疊的區域成為發光元件719。 A region where the electrode 781, the light-emitting layer 782, and the electrode 783 overlap each other is the light-emitting element 719.

另外,關於絕緣膜720,參照保護絕緣膜118的記載。或者,也可以使用聚醯亞胺樹脂、丙烯酸樹脂、環氧樹脂、矽酮樹脂等的樹脂膜。 In addition, regarding the insulating film 720, the description of the protective insulating film 118 is referred to. Alternatively, a resin film such as a polyimide resin, an acrylic resin, an epoxy resin, or an anthrone resin may be used.

發光層782不侷限於單層,也可以藉由層疊多種發光層等來設置發光層782。例如,可以採用圖16C所示的結構。圖16C是依次層疊了中間層785a、發光層786a、中間層785b、發光層786b、中間層785c、發光層786c以及中間層785d的結構。此時,當發光層786a、發光層786b以及發光層786c採用適當的發光顏色的發光層,則可以形成彩色再現性高或者發光效率高的發光元件719。 The light-emitting layer 782 is not limited to a single layer, and the light-emitting layer 782 may be provided by laminating a plurality of light-emitting layers or the like. For example, the structure shown in Fig. 16C can be employed. 16C is a structure in which an intermediate layer 785a, a light-emitting layer 786a, an intermediate layer 785b, a light-emitting layer 786b, an intermediate layer 785c, a light-emitting layer 786c, and an intermediate layer 785d are laminated in this order. At this time, when the light-emitting layer 786a, the light-emitting layer 786b, and the light-emitting layer 786c are formed with a light-emitting layer of an appropriate light-emitting color, the light-emitting element 719 having high color reproducibility or high light-emitting efficiency can be formed.

也可以藉由層疊多種發光層地設置而得到白色光。雖然在圖16B中未圖示,但是也可以採用經由著色層提取白色光的結構。 It is also possible to obtain white light by laminating a plurality of light-emitting layers. Although not shown in FIG. 16B, a configuration in which white light is extracted via the coloring layer may be employed.

雖然在此示出了設置有三個發光層及四個中 間層的結構,但是不侷限於該結構,也可以適當地改變發光層及中間層的層數。例如,可以僅由中間層785a、發光層786a、中間層785b、發光層786b以及中間層785c構成。此外,也可以採用由中間層785a、發光層786a、中間層785b、發光層786b、發光層786c以及中間層785d構成而省略中間層785c的結構。 Although shown here, there are three illuminating layers and four The structure of the interlayer is not limited to this structure, and the number of layers of the light-emitting layer and the intermediate layer may be appropriately changed. For example, it may be composed only of the intermediate layer 785a, the light-emitting layer 786a, the intermediate layer 785b, the light-emitting layer 786b, and the intermediate layer 785c. Further, a configuration in which the intermediate layer 785a, the light-emitting layer 786a, the intermediate layer 785b, the light-emitting layer 786b, the light-emitting layer 786c, and the intermediate layer 785d are formed, and the intermediate layer 785c is omitted may be employed.

另外,中間層可以以層疊結構而採用電洞注入層、電洞傳輸層、電子傳輸層及電子注入層等。另外,中間層不一定包含上述所有層。可以適當地選擇並設置這些層。另外,也可以重複設置具有同樣功能的層。另外,作為中間層,除了載子產生層以外,還可以適當地追加電子中繼層等。 Further, the intermediate layer may have a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, or the like in a laminated structure. In addition, the intermediate layer does not necessarily include all of the above layers. These layers can be selected and set as appropriate. In addition, it is also possible to repeatedly set layers having the same function. Further, as the intermediate layer, in addition to the carrier generating layer, an electron relay layer or the like may be added as appropriate.

電極781使用具有可見光透過性的導電膜即可。具有可見光透過性是指在可見光區(例如波長範圍在400nm至800nm之間)的平均穿透率為70%以上,尤其為80%以上。 The electrode 781 may be a conductive film having visible light transmittance. Having visible light transmittance means that the average transmittance in the visible light region (for example, a wavelength range of from 400 nm to 800 nm) is 70% or more, particularly 80% or more.

作為電極781例如可以使用In-Zn-W氧化物膜、In-Sn氧化物膜、In-Zn氧化物膜、氧化銦膜、氧化鋅膜以及氧化錫膜等氧化物膜。另外,上述氧化物膜也可以添加有微量的Al、Ga、Sb、F等。另外,也可以使用具有能夠透光的程度的金屬薄膜(較佳為5nm至30nm左右)。例如可以使用5nm厚的Ag膜、Mg膜或者Ag-Mg合金膜。 As the electrode 781, for example, an oxide film such as an In—Zn—W oxide film, an In—Sn oxide film, an In—Zn oxide film, an indium oxide film, a zinc oxide film, or a tin oxide film can be used. Further, a trace amount of Al, Ga, Sb, F or the like may be added to the oxide film. Further, a metal thin film (preferably about 5 nm to 30 nm) having a degree of light transmission can be used. For example, a 5 nm thick Ag film, a Mg film, or an Ag-Mg alloy film can be used.

或者,電極781較佳為使用高效率地反射可 見光的膜。例如,電極781使用包含鋰、鋁、鈦、鎂、鑭、銀、矽或鎳的膜即可。 Alternatively, the electrode 781 is preferably reflective using high efficiency. See the film of light. For example, the electrode 781 may be a film containing lithium, aluminum, titanium, magnesium, ruthenium, silver, rhodium or nickel.

電極783可以使用選自作為電極781而示出的膜。此外,在電極781具有可見光透過性的情況下,較佳的是,電極783高效率地反射可見光。另外,在電極781高效率地反射可見光的情況下,較佳的是,電極783具有可見光透過性。 The electrode 783 can use a film selected from the group consisting of the electrode 781. Further, in the case where the electrode 781 has visible light transmittance, it is preferable that the electrode 783 efficiently reflects visible light. Further, in the case where the electrode 781 efficiently reflects visible light, it is preferable that the electrode 783 has visible light transmittance.

此外,雖然以圖16B所示的結構來設置電極781及電極783,但是也可以互相調換電極781和電極783。作為陽極發揮功能的電極較佳為使用功函數大的導電膜,作為陰極發揮功能的電極較佳為使用功函數小的導電膜。但是,在與陽極接觸並設置載子產生層的情況下,可以將各種導電膜用於陽極,而不用考慮功函數。 Further, although the electrode 781 and the electrode 783 are provided in the configuration shown in FIG. 16B, the electrode 781 and the electrode 783 may be exchanged with each other. The electrode functioning as the anode is preferably a conductive film having a large work function, and the electrode functioning as a cathode is preferably a conductive film having a small work function. However, in the case of contacting the anode and providing a carrier generating layer, various conductive films can be used for the anode regardless of the work function.

關於隔壁784,參照保護絕緣膜118的記載。或者也可以使用聚醯亞胺樹脂、丙烯酸樹脂、環氧樹脂、矽酮樹脂等的樹脂膜。 Regarding the partition 784, the description of the protective insulating film 118 is referred to. Alternatively, a resin film such as a polyimide resin, an acrylic resin, an epoxy resin, or an anthrone resin may be used.

此外,在顯示裝置中,適當地設置黑矩陣(遮光膜)、偏振構件、相位差構件、防反射構件等的光學構件(光學基板)等。例如,也可以使用利用偏振基板以及相位差基板的圓偏振。 Further, in the display device, an optical member (optical substrate) such as a black matrix (light shielding film), a polarizing member, a phase difference member, an antireflection member, or the like is appropriately provided. For example, circular polarization using a polarizing substrate and a phase difference substrate can also be used.

與發光元件719連接的電晶體741具有穩定的電氣特性。因此,可以提供顯示品質高的EL顯示裝置。 The transistor 741 connected to the light-emitting element 719 has stable electrical characteristics. Therefore, an EL display device with high display quality can be provided.

圖17A和圖17B是與圖16B一部分不同的 EL顯示裝置的剖面圖的一個例子。具體地,不同點為與FPC732連接的佈線。在圖17A中,FPC732經由端子731與佈線733b連接。佈線733b在與源極電極116a及汲極電極116b相同的層。在圖17B中,FPC732經由端子731與佈線733c連接。佈線733c在與電極781相同的層。 17A and 17B are different from the portion of FIG. 16B. An example of a cross-sectional view of an EL display device. Specifically, the difference is the wiring connected to the FPC 732. In FIG. 17A, the FPC 732 is connected to the wiring 733b via the terminal 731. The wiring 733b is the same layer as the source electrode 116a and the drain electrode 116b. In FIG. 17B, the FPC 732 is connected to the wiring 733c via the terminal 731. The wiring 733c is on the same layer as the electrode 781.

3-1-2.液晶顯示裝置 3-1-2. Liquid crystal display device

接著,對使用液晶元件的顯示裝置(也稱為液晶顯示裝置)進行說明。 Next, a display device (also referred to as a liquid crystal display device) using a liquid crystal element will be described.

圖18是示出液晶顯示裝置的像素的結構例的電路圖。圖18所示的像素750包含電晶體751、電容器752、一對在電極之間的填充有液晶的元件(以下稱為液晶元件)753。 18 is a circuit diagram showing a configuration example of a pixel of a liquid crystal display device. The pixel 750 shown in FIG. 18 includes a transistor 751, a capacitor 752, and a pair of liquid crystal-filled elements (hereinafter referred to as liquid crystal elements) 753 between the electrodes.

在電晶體751中,源極和汲極中的一個與信號線755電連接,閘極與掃描線754電連接。 In the transistor 751, one of the source and the drain is electrically connected to the signal line 755, and the gate is electrically connected to the scan line 754.

在電容器752中,一個電極與電晶體751的源極和汲極中的另一個電連接,另一個電極與供應公共電位的佈線電連接。 In the capacitor 752, one electrode is electrically connected to the other of the source and the drain of the transistor 751, and the other electrode is electrically connected to a wiring that supplies a common potential.

在液晶元件753中,一個電極與電晶體751的源極和汲極中的另一個電連接,另一個電極與供應公共電位的佈線電連接。此外,上述供應到與上述電容器752的另一個電極電連接的佈線的公共電位與供應到液晶元件753的另一個電極的公共電位可以不同。 In the liquid crystal element 753, one electrode is electrically connected to the other of the source and the drain of the transistor 751, and the other electrode is electrically connected to a wiring that supplies a common potential. Further, the common potential supplied to the wiring electrically connected to the other electrode of the capacitor 752 described above may be different from the common potential supplied to the other electrode of the liquid crystal element 753.

另外,液晶顯示裝置的俯視圖與EL顯示裝置 的俯視圖大致相同。圖19A示出對應於圖16A的點劃線M-N的液晶顯示裝置的剖面圖。在圖19A中,FPC732經由端子731與佈線733a連接。另外,佈線733a在與閘極電極104相同的層。 In addition, a top view of the liquid crystal display device and the EL display device The top view is roughly the same. Fig. 19A shows a cross-sectional view of a liquid crystal display device corresponding to the chain line M-N of Fig. 16A. In FIG. 19A, the FPC 732 is connected to the wiring 733a via the terminal 731. Further, the wiring 733a is on the same layer as the gate electrode 104.

圖19A示出電晶體751及電容器752設置在相同平面上的例子。藉由採用這種結構,可以將電容器752製作在與電晶體751的閘極電極、閘極絕緣膜及源極電極(汲極電極)相同平面上。這樣地,藉由將電晶體751及電容器752設置在相同平面上,可以縮短液晶顯示裝置的製程,由此提高生產率。 Fig. 19A shows an example in which the transistor 751 and the capacitor 752 are disposed on the same plane. By adopting such a configuration, the capacitor 752 can be formed on the same plane as the gate electrode, the gate insulating film, and the source electrode (drain electrode) of the transistor 751. Thus, by arranging the transistor 751 and the capacitor 752 on the same plane, the process of the liquid crystal display device can be shortened, thereby improving productivity.

作為電晶體751可以使用上述電晶體。圖19A示出應用圖1A至1D所示的電晶體的例子。因此,關於在電晶體751的各構成中以下不進行說明的構成,參照圖1A至1D所示的說明。 As the transistor 751, the above transistor can be used. Fig. 19A shows an example in which the transistor shown in Figs. 1A to 1D is applied. Therefore, the configuration that will not be described below in the respective configurations of the transistor 751 will be described with reference to FIGS. 1A to 1D.

另外,電晶體751可以使用關態電流極小的電晶體。因此,保持在電容器752中的電荷不容易洩漏,可以在長期間保持施加到液晶元件753的電壓。因此,當顯示動作少的動態影像、靜態影像時,藉由使電晶體751成為截止狀態,不需要用於電晶體751的動作的功率,由此可以成為耗電量低的液晶顯示裝置。 In addition, the transistor 751 can use a transistor having a very small off-state current. Therefore, the electric charge held in the capacitor 752 is not easily leaked, and the voltage applied to the liquid crystal element 753 can be maintained for a long period of time. Therefore, when the moving image or the still image having little movement is displayed, the transistor 751 is turned off, and the power for the operation of the transistor 751 is not required, whereby the liquid crystal display device having low power consumption can be obtained.

考慮到配置在像素部中的電晶體751的洩漏電流等,將設置在液晶顯示裝置中的電容器752的大小設定成能夠在規定期間內保存電荷。藉由使用電晶體751,因設置具有各像素中的液晶電容的1/3以下,較佳為1/5 以下的電容大小的電容器就已足夠,所以可以提高像素的孔徑比。 The size of the capacitor 752 provided in the liquid crystal display device is set so that the electric charge can be stored for a predetermined period in consideration of the leakage current or the like of the transistor 751 disposed in the pixel portion. By using the transistor 751, it is provided that it has 1/3 or less of the liquid crystal capacitance in each pixel, preferably 1/5. The following capacitor-sized capacitors are sufficient, so the aperture ratio of the pixels can be increased.

在電晶體751及電容器752上設置有絕緣膜721。 An insulating film 721 is provided on the transistor 751 and the capacitor 752.

在此,在絕緣膜721及保護絕緣膜118中設置有直到電晶體751的汲極電極116b的開口部。 Here, an opening portion up to the gate electrode 116b of the transistor 751 is provided in the insulating film 721 and the protective insulating film 118.

在絕緣膜721上設置有電極791。電極791藉由設置在絕緣膜721及保護絕緣膜118中的開口部與電晶體751的汲極電極116b連接。 An electrode 791 is provided on the insulating film 721. The electrode 791 is connected to the gate electrode 116b of the transistor 751 through an opening provided in the insulating film 721 and the protective insulating film 118.

在電極791上設置有作為配向膜發揮功能的絕緣膜792。 An insulating film 792 functioning as an alignment film is provided on the electrode 791.

在絕緣膜792上設置有液晶層793。 A liquid crystal layer 793 is provided on the insulating film 792.

在液晶層793上設置有作為配向膜發揮功能的絕緣膜794。 An insulating film 794 functioning as an alignment film is provided on the liquid crystal layer 793.

在絕緣膜794上設置有隔離物795。 A spacer 795 is disposed on the insulating film 794.

在隔離物795及絕緣膜794上設置有電極796。 An electrode 796 is provided on the spacer 795 and the insulating film 794.

在電極796上設置有基板797。 A substrate 797 is disposed on the electrode 796.

此外,關於絕緣膜721,參照保護絕緣膜118的記載。或者,也可以使用聚醯亞胺樹脂、丙烯酸樹脂、環氧樹脂、矽酮樹脂等的樹脂膜。 Further, regarding the insulating film 721, the description of the protective insulating film 118 is referred to. Alternatively, a resin film such as a polyimide resin, an acrylic resin, an epoxy resin, or an anthrone resin may be used.

液晶層793使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、強介電性液晶、反強介電性液晶等即可。這些液晶根據條件而呈現膽固醇相、層列 相、立方相、手性向列相、各向同性相等。 The liquid crystal layer 793 may be a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal or the like. These liquid crystals exhibit a cholesterol phase and a stratification according to conditions. Phase, cubic phase, chiral nematic phase, and isotropic.

此外,作為液晶層793也可以使用呈現藍相的液晶。在這種情況下,採用不設置作為配向膜發揮功能的絕緣膜792及絕緣膜794的結構即可。 Further, as the liquid crystal layer 793, a liquid crystal exhibiting a blue phase can also be used. In this case, a structure in which the insulating film 792 and the insulating film 794 functioning as an alignment film are not provided may be employed.

電極791使用具有可見光透過性的導電膜即可。 The electrode 791 may be a conductive film having visible light transmittance.

在液晶顯示裝置為透過型的情況下,作為電極791例如可以使用In-Zn-W氧化物膜、In-Sn氧化物膜、In-Zn氧化物膜、氧化銦膜、氧化鋅膜以及氧化錫膜等氧化物膜。另外,上述氧化物膜也可以添加有微量的Al、Ga、Sb、F等。另外,也可以使用具有能夠透光的程度的金屬薄膜(較佳為5nm至30nm左右)。 When the liquid crystal display device is of a transmissive type, as the electrode 791, for example, an In—Zn—W oxide film, an In—Sn oxide film, an In—Zn oxide film, an indium oxide film, a zinc oxide film, and tin oxide can be used. An oxide film such as a film. Further, a trace amount of Al, Ga, Sb, F or the like may be added to the oxide film. Further, a metal thin film (preferably about 5 nm to 30 nm) having a degree of light transmission can be used.

在液晶顯示裝置為反射型的情況下,電極791較佳為使用高效率地反射可見光的膜。例如,電極791使用包含鋁、鈦、鉻、銅、鉬、銀、鉭或鎢的膜即可。 In the case where the liquid crystal display device is of a reflective type, the electrode 791 is preferably a film that reflects visible light with high efficiency. For example, the electrode 791 may be a film containing aluminum, titanium, chromium, copper, molybdenum, silver, ruthenium or tungsten.

在液晶顯示裝置為透過型的情況下,電極796可以使用選自作為電極791而示出的具有可見光透過性的導電膜。另一方面,在液晶顯示裝置為反射型的情況下,在電極791具有可見光透過性的情況下,較佳的是電極796高效率地反射可見光。另外,在電極791高效率地反射可見光的情況下,電極796較佳為具有可見光透過性。 When the liquid crystal display device is of a transmissive type, the electrode 796 can use a conductive film having visible light transmittance selected from the electrode 791. On the other hand, when the liquid crystal display device is of a reflective type, when the electrode 791 has visible light transmittance, it is preferable that the electrode 796 efficiently reflects visible light. Further, in the case where the electrode 791 reflects visible light efficiently, the electrode 796 preferably has visible light transmittance.

此外,雖然以圖19A所示的結構設置電極791及電極796,但是也可以互相調換電極791和電極796。 Further, although the electrode 791 and the electrode 796 are provided in the configuration shown in FIG. 19A, the electrode 791 and the electrode 796 may be exchanged with each other.

絕緣膜792及絕緣膜794使用有機化合物或者無機化合物形成即可。 The insulating film 792 and the insulating film 794 may be formed using an organic compound or an inorganic compound.

隔離物795從有機化合物或者無機化合物選擇而使用即可。另外,隔離物795可以具有柱狀或者球狀等各種形狀。 The separator 795 may be selected from an organic compound or an inorganic compound. In addition, the spacer 795 may have various shapes such as a column shape or a spherical shape.

電極791、絕緣膜792、液晶層793、絕緣膜794以及電極796相互重疊的區域成為液晶元件753。 A region where the electrode 791, the insulating film 792, the liquid crystal layer 793, the insulating film 794, and the electrode 796 overlap each other is the liquid crystal element 753.

基板797使用玻璃、樹脂或者金屬等即可。基板797可以具有撓性。 The substrate 797 may be made of glass, resin, metal or the like. The substrate 797 can have flexibility.

圖19B和圖19C是與圖19一部分A不同的液晶顯示裝置的剖面圖的一個例子。具體地,不同點為與FPC732連接的佈線。在圖19B中,FPC732藉由端子731與佈線733b連接。佈線733b在與源極電極116a及汲極電極116b相同的層。在圖19C中,FPC732經由端子731與佈線733c連接。佈線733c在與電極791相同的層。 19B and 19C are views showing an example of a cross-sectional view of a liquid crystal display device different from a portion A of Fig. 19. Specifically, the difference is the wiring connected to the FPC 732. In FIG. 19B, the FPC 732 is connected to the wiring 733b via the terminal 731. The wiring 733b is the same layer as the source electrode 116a and the drain electrode 116b. In FIG. 19C, the FPC 732 is connected to the wiring 733c via the terminal 731. The wiring 733c is on the same layer as the electrode 791.

與液晶元件753連接的電晶體751具有穩定的電氣特性。因此,可以提供顯示品質高的液晶顯示裝置。另外,由於可以使電晶體751的關態電流極小,所以可以提供耗電量低的液晶顯示裝置。 The transistor 751 connected to the liquid crystal element 753 has stable electrical characteristics. Therefore, it is possible to provide a liquid crystal display device having high display quality. In addition, since the off-state current of the transistor 751 can be made extremely small, a liquid crystal display device with low power consumption can be provided.

在液晶顯示裝置中,可以適當地選擇動作模式。例如,有與基板垂直地施加電壓的垂直電場方式以及與基板平行地施加電壓的水平電場方式。明確而言,可以舉出TN模式、VA模式、MVA模式、PVA模式、ASM模式、TBA模式、OCB模式、FLC模式、AFLC模式或FFS 模式等。 In the liquid crystal display device, the operation mode can be appropriately selected. For example, there is a vertical electric field method in which a voltage is applied perpendicularly to the substrate, and a horizontal electric field method in which a voltage is applied in parallel with the substrate. Specifically, TN mode, VA mode, MVA mode, PVA mode, ASM mode, TBA mode, OCB mode, FLC mode, AFLC mode, or FFS may be mentioned. Mode, etc.

在液晶顯示裝置中,適當地設置黑矩陣(遮光層)、偏振構件、相位差構件、防反射構件等的光學構件(光學基板)等。例如,也可以使用利用偏振基板以及相位差基板的圓偏振。另外,作為光源,也可以使用背光、側光燈等。 In the liquid crystal display device, an optical member (optical substrate) such as a black matrix (light shielding layer), a polarizing member, a phase difference member, and an antireflection member is appropriately provided. For example, circular polarization using a polarizing substrate and a phase difference substrate can also be used. Further, as the light source, a backlight, a sidelight, or the like can also be used.

另外,也可以作為背光而使用多個發光二極體(LED)來進行時間分割顯示方式(場序驅動方式)。藉由應用場序驅動方式,可以不使用著色層地進行彩色顯示。 Further, a time division display method (field sequential driving method) may be performed using a plurality of light emitting diodes (LEDs) as a backlight. By applying the field sequential driving method, color display can be performed without using a colored layer.

如上所述,作為像素部中的顯示方式,可以採用前進方式或交錯方式等。此外,當進行彩色顯示時作為在像素中受到控制的色彩要素不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,也可以採用RGBW(W表示白色)或者對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種以上的顏色。此外,每個色彩要素的點中的顯示區的大小也可以不同。但是,本發明不侷限於彩色顯示的顯示裝置,而也可以應用於單色顯示的液晶顯示裝置。 As described above, as the display mode in the pixel portion, a forward mode, an interleaving method, or the like can be employed. Further, the color elements that are controlled in the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue). For example, RGBW (W indicates white) or RGB may be added with one or more colors of yellow, cyan, magenta, and the like. In addition, the size of the display area in the dots of each color element may also be different. However, the present invention is not limited to a display device for color display, but can also be applied to a liquid crystal display device for monochrome display.

3-2.微型電腦 3-2. Microcomputer

上述電晶體可以用於裝載在各種電子裝置中的微型電腦。 The above transistor can be used for a microcomputer mounted in various electronic devices.

下面,作為裝載了微型電腦的電子裝置的一 個例子,使用圖20、圖21、圖22A至圖22C以及圖23A說明火災警報器的結構及動作。 Next, as one of the electronic devices on which the microcomputer is mounted For example, the structure and operation of the fire alarm will be described with reference to FIGS. 20, 21, 22A to 22C, and 23A.

另外,在本說明書中,火災警報器表示緊急通報火災發生的所有裝置,其包括諸如住宅用火災警報器、自動火災警報設備、用於該自動火災警報設備的火災檢測器等。 Further, in the present specification, the fire alarm indicates all devices that urgently notify the occurrence of a fire, and includes, for example, a home fire alarm, an automatic fire alarm device, a fire detector for the automatic fire alarm device, and the like.

圖20所示的警報裝置至少具有微型電腦500。在此,微型電腦500設置在警報裝置的內部。微型電腦500包括與高電位電源線VDD電連接的電源閘控制器503、與高電位電源線VDD及電源閘控制器503電連接的電源閘504、與電源閘504電連接的CPU(Central Processing Unit:中央處理器)505、以及與電源閘504及CPU505電連接的檢測部509。另外,CPU505包含揮發性記憶部506及非揮發性記憶部507。 The alarm device shown in Fig. 20 has at least a microcomputer 500. Here, the microcomputer 500 is disposed inside the alarm device. The microcomputer 500 includes a power gate controller 503 electrically connected to the high potential power line VDD, a power gate 504 electrically connected to the high potential power line VDD and the power gate controller 503, and a CPU electrically connected to the power gate 504 (Central Processing Unit) : a central processing unit) 505 and a detecting unit 509 electrically connected to the power gate 504 and the CPU 505. Further, the CPU 505 includes a volatile memory unit 506 and a non-volatile memory unit 507.

另外,CPU505經介面508與匯流排502電連接。與CPU505同樣,介面508也與電源閘504電連接。作為介面508的匯流排標準,例如可以使用I2C匯流排等。在警報裝置中設置經由介面508與電源閘504電連接的發光元件530。 In addition, the CPU 505 is electrically connected to the bus bar 502 via the interface 508. Like interface 508, interface 508 is also electrically coupled to power gate 504. As the bus bar standard of the interface 508, for example, an I 2 C bus bar or the like can be used. A light-emitting element 530 electrically connected to the power gate 504 via the interface 508 is provided in the alarm device.

作為發光元件530較佳為發出指向性強的光,例如可以使用有機EL元件、無機EL元件、LED等。 As the light-emitting element 530, it is preferable to emit light having high directivity. For example, an organic EL element, an inorganic EL element, an LED, or the like can be used.

電源閘控制器503具有計時器,依照該計時器控制電源閘504。電源閘504依照電源閘控制器503的 控制,對CPU505、檢測部509及介面508供應或切斷從高電位電源線VDD供應的電源。在此,作為電源閘504可以使用如電晶體等的切換元件。 The power gate controller 503 has a timer in accordance with which the power gate 504 is controlled. The power gate 504 is in accordance with the power gate controller 503 Control, supply or cut off the power supplied from the high potential power line VDD to the CPU 505, the detecting unit 509, and the interface 508. Here, as the power gate 504, a switching element such as a transistor can be used.

藉由使用這種電源閘控制器503及電源閘504,可以在測定光量的期間內,進行對檢測部509、CPU505及介面508的電源供應,並且在測定期間的空閒期間可以切斷對檢測部509、CPU505及介面508的電源供應。藉由使警報裝置這樣動作,與對上述各個結構常時供應電源的情況相比,能夠謀求耗電量的降低。 By using the power gate controller 503 and the power gate 504, power supply to the detecting unit 509, the CPU 505, and the interface 508 can be performed during the measurement of the amount of light, and the detecting unit can be cut off during the idle period of the measurement period. 509, CPU 505 and interface 508 power supply. By operating the alarm device in this manner, it is possible to reduce the power consumption compared to the case where the power supply is constantly supplied to each of the above-described configurations.

另外,在作為電源閘504使用電晶體的情況下,較佳為使用用於非揮發性記憶部507並且關態電流極低的電晶體,例如在上述實施方式中記載的電晶體。藉由採用這種電晶體,當由電源閘504切斷電源時可以減少洩漏電流,謀求耗電量的降低。 Further, when a transistor is used as the power gate 504, it is preferable to use a transistor for the non-volatile memory portion 507 and having an extremely low off-state current, for example, the transistor described in the above embodiment. By using such a transistor, leakage current can be reduced when the power supply 504 is turned off, and power consumption is reduced.

也可以在警報裝置中設置直流電源501,從直流電源501對高電位電源線VDD供應電源。直流電源501的高電位一側的電極與高電位電源線VDD電連接,直流電源501的低電位一側的電極與低電位電源線VSS電連接。低電位電源線VSS與微型電腦500電連接。在此,對高電位電源線VDD供應高電位H。另外,對低電位電源線VSS提供諸如接地電位(GND)等的低電位L。 It is also possible to provide a DC power source 501 in the alarm device and supply power to the high-potential power source line VDD from the DC power source 501. The electrode on the high potential side of the DC power source 501 is electrically connected to the high potential power source line VDD, and the electrode on the low potential side of the DC power source 501 is electrically connected to the low potential power source line VSS. The low potential power line VSS is electrically connected to the microcomputer 500. Here, the high potential power line VDD is supplied with a high potential H. In addition, a low potential L such as a ground potential (GND) is supplied to the low potential power line VSS.

在作為直流電源501而使用電池的情況下,例如採用在外殼中設置包括如下部件的電池箱的結構即可,即與高電位電源線VDD電連接的電極、與低電位電 源線VSS電連接的電極、以及可以保持該電池的外殼。另外,警報裝置也可以不一定設置直流電源501,例如也可以採用從設置在該警報裝置的外部的交流電源經由佈線供應電源的結構。 In the case where a battery is used as the DC power source 501, for example, a configuration in which a battery case including the following components is provided in the casing, that is, an electrode electrically connected to the high-potential power source line VDD, and a low-potential electric current may be employed. An electrode electrically connected to the source line VSS and an outer casing of the battery can be held. Further, the alarm device may not necessarily be provided with the DC power source 501. For example, a configuration may be adopted in which the power source is supplied from the AC power source provided outside the alarm device via the wiring.

此外,作為上述電池,也可以使用二次電池,如鋰離子二次電池(也稱為鋰離子蓄電池、鋰離子電池或lithium ion battery)。另外,較佳為設置太陽能電池以能夠對該二次電池進行充電。 Further, as the above battery, a secondary battery such as a lithium ion secondary battery (also referred to as a lithium ion battery, a lithium ion battery or a lithium ion battery) may be used. Further, it is preferable to provide a solar cell to be able to charge the secondary battery.

檢測部509測量有關異常的物理量而對CPU505發送測量值。有關異常的物理量根據警報裝置的用途而不同,在作為火災警報器發揮功能的警報裝置中,測量有關火災的物理量。因此,在檢測部509中,測量作為有關火災的物理量的光量而檢測出煙霧的存在。 The detecting unit 509 measures the physical quantity of the abnormality and transmits the measured value to the CPU 505. The physical quantity of the abnormality differs depending on the use of the alarm device, and the physical quantity related to the fire is measured in the alarm device that functions as a fire alarm. Therefore, the detecting unit 509 measures the amount of light as a physical quantity related to the fire and detects the presence of the smoke.

檢測部509具有與電源閘504電連接的光感測器511、與電源閘504電連接的放大器512、以及與電源閘504及CPU505電連接的AD轉換器513。發光元件530、光感測器511、放大器512及AD轉換器513在電源閘504對檢測部509供應電源時進行動作。 The detecting unit 509 has a photo sensor 511 electrically connected to the power gate 504, an amplifier 512 electrically connected to the power gate 504, and an AD converter 513 electrically connected to the power gate 504 and the CPU 505. The light-emitting element 530, the photo sensor 511, the amplifier 512, and the AD converter 513 operate when the power supply shutter 504 supplies power to the detecting unit 509.

圖21示出警報裝置的剖面的一部分。在p型半導體基板401上具有元件分離區403,形成有n型電晶體519,該n型電晶體519包括:閘極絕緣膜407、閘極電極409、n型雜質區411a、以及n型雜質區411b。n型電晶體519使用單晶矽等的半導體來形成,所以可以進行高速動作。因此,可以形成能夠進行高速訪問的CPU的 揮發性記憶部。另外,在n型電晶體519上設置有絕緣膜415及絕緣膜417。 Figure 21 shows a portion of a section of the alarm device. An element isolation region 403 is formed on the p-type semiconductor substrate 401, and an n-type transistor 519 is formed. The n-type transistor 519 includes a gate insulating film 407, a gate electrode 409, an n-type impurity region 411a, and an n-type impurity. Area 411b. The n-type transistor 519 is formed using a semiconductor such as a single crystal germanium, so that high-speed operation can be performed. Therefore, it is possible to form a CPU capable of high-speed access. Volatile memory. Further, an insulating film 415 and an insulating film 417 are provided on the n-type transistor 519.

另外,在對絕緣膜415及絕緣膜417的一部分選擇性地進行了蝕刻的開口部處形成接觸插頭419a及接觸插頭419b,在絕緣膜417、接觸插頭419a以及接觸插頭419b上設置有具有溝槽部的絕緣膜421。另外,在絕緣膜421的溝槽部形成佈線423a及佈線423b。另外,在絕緣膜421、佈線423a以及佈線423b上藉由濺射法、CVD法等形成絕緣膜420,在該絕緣膜420上形成具有溝槽部的絕緣膜422。在絕緣膜422的溝槽部形成電極424。電極424是作為第二電晶體517的背閘極電極發揮功能的電極。藉由設置這樣的電極424,可以進行第二電晶體517的臨界電壓的控制。 Further, a contact plug 419a and a contact plug 419b are formed at an opening portion that selectively etches a part of the insulating film 415 and the insulating film 417, and a trench is provided on the insulating film 417, the contact plug 419a, and the contact plug 419b. The insulating film 421 of the portion. Moreover, the wiring 423a and the wiring 423b are formed in the groove portion of the insulating film 421. In addition, the insulating film 420 is formed on the insulating film 421, the wiring 423a, and the wiring 423b by a sputtering method, a CVD method, or the like, and an insulating film 422 having a groove portion is formed on the insulating film 420. An electrode 424 is formed in the groove portion of the insulating film 422. The electrode 424 is an electrode that functions as a back gate electrode of the second transistor 517. By providing such an electrode 424, the control of the threshold voltage of the second transistor 517 can be performed.

另外,在絕緣膜422及電極424上藉由濺射法、CVD法等設置絕緣膜425。 Further, an insulating film 425 is provided on the insulating film 422 and the electrode 424 by a sputtering method, a CVD method, or the like.

在絕緣膜425上設置第二電晶體517及光電轉換元件514。第二電晶體517包括:包含氧化物半導體膜206a及氧化物膜206b的多層膜206;接觸於多層膜206上的源極電極216a及汲極電極216b;閘極絕緣膜212;閘極電極204;以及保護絕緣膜218。另外,設置覆蓋光電轉換元件514及第二電晶體517的絕緣膜445,在絕緣膜445上具有接觸於汲極電極216b的佈線449。佈線449作為使第二電晶體517的汲極電極與n型電晶體519的閘極電極409電連接的節點發揮功能。 A second transistor 517 and a photoelectric conversion element 514 are provided on the insulating film 425. The second transistor 517 includes: a multilayer film 206 including an oxide semiconductor film 206a and an oxide film 206b; a source electrode 216a and a drain electrode 216b contacting the multilayer film 206; a gate insulating film 212; and a gate electrode 204. And a protective insulating film 218. Further, an insulating film 445 covering the photoelectric conversion element 514 and the second transistor 517 is provided, and a wiring 449 contacting the gate electrode 216b is provided on the insulating film 445. The wiring 449 functions as a node that electrically connects the gate electrode of the second transistor 517 and the gate electrode 409 of the n-type transistor 519.

光感測器511包括光電轉換元件514、電容元件、第一電晶體、第二電晶體517、第三電晶體以及n型電晶體519。在此,作為光電轉換元件514,例如可以採用光電二極體等。 The photo sensor 511 includes a photoelectric conversion element 514, a capacitance element, a first transistor, a second transistor 517, a third transistor, and an n-type transistor 519. Here, as the photoelectric conversion element 514, for example, a photodiode or the like can be used.

光電轉換元件514的端子的一個與低電位電源線VSS電連接,端子的另一個與第二電晶體517的源極電極和汲極電極中的一個電連接。對第二電晶體517的閘極電極提供電荷累積控制信號Tx,源極電極和汲極電極中的另一個與電容元件的一對電極中的一個、第一電晶體的源極電極和汲極電極中的一個、以及n型電晶體519的閘極電極電連接(下面,有時將該節點稱為節點FD)。電容元件的一對電極中的另一個與低電位電源線VSS電連接。對第一電晶體的閘極電極提供重設信號Res,源極電極和汲極電極中的另一個與高電位電源線VDD電連接。n型電晶體519的源極電極和汲極電極中的一個與第三電晶體的源極電極和汲極電極中的一個、以及放大器512電連接。另外,n型電晶體519的源極電極和汲極電極中的另一個與高電位電源線VDD電連接。對第三電晶體的閘極電極提供偏置信號Bias,源極電極和汲極電極中的另一個與低電位電源線VSS電連接。 One of the terminals of the photoelectric conversion element 514 is electrically connected to the low potential power line VSS, and the other of the terminals is electrically connected to one of the source electrode and the drain electrode of the second transistor 517. Providing a charge accumulation control signal Tx to the gate electrode of the second transistor 517, one of the source electrode and the drain electrode and one of the pair of electrodes of the capacitance element, the source electrode of the first transistor, and the drain electrode One of the electrodes and the gate electrode of the n-type transistor 519 are electrically connected (hereinafter, this node is sometimes referred to as a node FD). The other of the pair of electrodes of the capacitive element is electrically connected to the low potential power line VSS. A reset signal Res is provided to the gate electrode of the first transistor, and the other of the source electrode and the drain electrode is electrically connected to the high potential power line VDD. One of the source electrode and the drain electrode of the n-type transistor 519 is electrically connected to one of the source electrode and the drain electrode of the third transistor, and the amplifier 512. Further, the other of the source electrode and the drain electrode of the n-type transistor 519 is electrically connected to the high-potential power supply line VDD. A bias signal Bias is provided to the gate electrode of the third transistor, and the other of the source electrode and the drain electrode is electrically connected to the low potential power line VSS.

此外,也可以不一定要設置電容元件,例如在n型電晶體519等的寄生電容充分大的情況下也可以採用不設置電容元件的結構。 Further, it is not always necessary to provide a capacitor element. For example, when the parasitic capacitance of the n-type transistor 519 or the like is sufficiently large, a configuration in which a capacitor element is not provided may be employed.

另外,第一電晶體及第二電晶體517較佳為 使用關態電流極低的電晶體。此外,作為關態電流極低的電晶體,較佳為採用使用了上述的包含氧化物半導體膜的多層膜的電晶體。藉由採用這種結構,能夠長時間保持節點FD的電位。 In addition, the first transistor and the second transistor 517 are preferably Use a transistor with a very low off-state current. Further, as the transistor having an extremely low off-state current, a transistor using the above-described multilayer film including an oxide semiconductor film is preferably used. By adopting such a configuration, the potential of the node FD can be maintained for a long time.

另外,在圖21所示的結構中,與第二電晶體517電連接地在絕緣膜425上設置有光電轉換元件514。 Further, in the structure shown in FIG. 21, the photoelectric conversion element 514 is provided on the insulating film 425 in electrical connection with the second transistor 517.

光電轉換元件514具有設置在絕緣膜425上的半導體膜260、以及接觸於半導體膜260上地設置的第二電晶體517的源極電極216a、電極216c。源極電極216a是作為第二電晶體517的源極電極或汲極電極發揮功能的電極,並使光電轉換元件514與第二電晶體517電連接。 The photoelectric conversion element 514 has a semiconductor film 260 provided on the insulating film 425, and a source electrode 216a and an electrode 216c that are in contact with the second transistor 517 provided on the semiconductor film 260. The source electrode 216a is an electrode functioning as a source electrode or a drain electrode of the second transistor 517, and electrically connects the photoelectric conversion element 514 and the second transistor 517.

在半導體膜260、第二電晶體517的源極電極216a及電極216c上設置有閘極絕緣膜212、保護絕緣膜218以及絕緣膜445。另外,在絕緣膜445上設置有佈線456,經由設置於閘極絕緣膜212、保護絕緣膜218以及絕緣膜445的開口與電極216c接觸。 A gate insulating film 212, a protective insulating film 218, and an insulating film 445 are provided on the semiconductor film 260, the source electrode 216a of the second transistor 517, and the electrode 216c. Further, a wiring 456 is provided on the insulating film 445, and is in contact with the electrode 216c via an opening provided in the gate insulating film 212, the protective insulating film 218, and the insulating film 445.

電極216c可以藉由與第二電晶體517的源極電極216a及汲極電極216b相同的製程形成,佈線456可以藉由與佈線449相同的製程形成。 The electrode 216c can be formed by the same process as the source electrode 216a and the drain electrode 216b of the second transistor 517, and the wiring 456 can be formed by the same process as the wiring 449.

作為半導體膜260,設置能夠進行光電轉換的半導體膜即可,例如可以使用矽及鍺等。在將矽用於半導體膜260的情況下,作為檢測可見光的光感測器發揮功能。另外,因為矽和鍺能夠吸收的電磁波的波長不同,所 以如果採用將鍺用於半導體膜260的結構,則能夠用作檢測紅外線的感測器。 As the semiconductor film 260, a semiconductor film capable of photoelectric conversion can be provided, and for example, tantalum and niobium can be used. When ruthenium is used for the semiconductor film 260, it functions as a photosensor that detects visible light. In addition, because the wavelengths of electromagnetic waves that helium and neon can absorb are different, If a structure in which germanium is used for the semiconductor film 260 is employed, it can be used as a sensor for detecting infrared rays.

如上所述那樣,可以在微型電腦500中內置地設置包含光感測器511的檢測部509,所以可以縮減部件數,並縮小警報裝置的外殼。 As described above, since the detecting unit 509 including the photo sensor 511 can be provided in the microcomputer 500, the number of components can be reduced, and the casing of the alarm device can be reduced.

在上述的包含IC晶片的火災警報器中,採用了組合多個使用上述電晶體的電路並將它們裝載於一個IC晶片的CPU505。 In the fire alarm including the IC chip described above, a CPU 505 that combines a plurality of circuits using the above transistors and mounts them on one IC wafer is employed.

3-3.CPU 3-3. CPU

圖22A至圖22C是示出將上述電晶體至少用於其一部分的CPU的具體結構的方塊圖。 22A to 22C are block diagrams showing a specific configuration of a CPU in which the above-described transistor is used at least for a part thereof.

圖22A所示的CPU在基板1190上包括:ALU1191(Arithmetic logic unit:算術邏輯單元);ALU控制器1192;指令解碼器1193;中斷控制器1194;時序控制器1195;暫存器1196;暫存器控制器1197;匯流排介面1198(Bus I/F);可改寫的ROM1199;以及ROM介面1189(ROM I/F)。基板1190使用半導體基板、SOI基板及玻璃基板等。ROM1199和ROM介面1189可以設置在不同的晶片上。當然,圖22A所示的CPU只是將其結構簡化而示出的一個例子,並且實際上的CPU根據其用途具有多種結構。 The CPU shown in FIG. 22A includes: ALU 1191 (Arithmetic logic unit); ALU controller 1192; instruction decoder 1193; interrupt controller 1194; timing controller 1195; register 1196; Controller 1197; bus interface 1198 (Bus I/F); rewritable ROM 1199; and ROM interface 1189 (ROM I/F). As the substrate 1190, a semiconductor substrate, an SOI substrate, a glass substrate, or the like is used. ROM 1199 and ROM interface 1189 can be placed on different wafers. Of course, the CPU shown in Fig. 22A is only an example shown by simplifying its structure, and the actual CPU has various structures depending on its use.

經由匯流排介面1198輸入到CPU的命令被輸入到指令解碼器1193並且被解碼之後,被輸入到ALU 控制器1192、中斷控制器1194、暫存器控制器1197和時序控制器1195。 The command input to the CPU via the bus interface 1198 is input to the instruction decoder 1193 and decoded, and is input to the ALU. The controller 1192, the interrupt controller 1194, the scratchpad controller 1197, and the timing controller 1195.

根據被解碼的指令,ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195進行各種控制。明確而言,ALU控制器1192生成用於控制ALU1191的動作的信號。另外,中斷控制器1194在CPU的程式執行中,根據其優先度或遮罩狀態來判斷來自外部的輸入/輸出裝置、週邊電路的中斷請求,並處理該請求。暫存器控制器1197生成暫存器1196的位址,並根據CPU的狀態進行從暫存器1196的讀出或對暫存器1196的寫入。 The ALU controller 1192, the interrupt controller 1194, the scratchpad controller 1197, and the timing controller 1195 perform various controls in accordance with the decoded instructions. Specifically, the ALU controller 1192 generates a signal for controlling the action of the ALU 1191. Further, the interrupt controller 1194 determines an interrupt request from an external input/output device and peripheral circuits based on the priority or the mask state during execution of the program of the CPU, and processes the request. The scratchpad controller 1197 generates an address of the scratchpad 1196 and performs a read from the scratchpad 1196 or a write to the scratchpad 1196 depending on the state of the CPU.

另外,時序控制器1195生成控制ALU1191、ALU控制器1192、指令解碼器1193、中斷控制器1194以及暫存器控制器1197的動作定時的信號。例如,時序控制器1195具備有根據基準時脈信號CLK1來生成內部時脈信號CLK2的內部時脈生成部,將內部時脈信號CLK2供應到上述各種電路。 Further, the timing controller 1195 generates signals for controlling the operation timings of the ALU 1191, the ALU controller 1192, the command decoder 1193, the interrupt controller 1194, and the scratchpad controller 1197. For example, the timing controller 1195 includes an internal clock generation unit that generates the internal clock signal CLK2 based on the reference clock signal CLK1, and supplies the internal clock signal CLK2 to the above various circuits.

在圖22A所示的CPU中,在暫存器1196中設置有記憶單元。作為暫存器1196的記憶單元,可以使用上述電晶體。 In the CPU shown in FIG. 22A, a memory unit is provided in the register 1196. As the memory unit of the register 1196, the above transistor can be used.

在圖22A所示的CPU中,暫存器控制器1197依照來自ALU1191的指示,進行暫存器1196中的保持動作的選擇。換言之,在暫存器1196所具有的記憶單元中,選擇進行基於正反器的資料的保持還是進行基於電容 元件的資料的保持。在選擇基於正反器的資料的保持的情況下,進行對暫存器1196內的記憶單元的電源電壓的供應。在選擇基於電容元件的資料的保持的情況下,進行對電容元件的資料改寫,可以停止對暫存器1196內的記憶單元的電源電壓的供應。 In the CPU shown in FIG. 22A, the register controller 1197 performs selection of the holding operation in the register 1196 in accordance with an instruction from the ALU 1191. In other words, in the memory unit of the register 1196, whether to perform the holding of the data based on the flip-flop or the capacitor-based selection is performed. The maintenance of the information of the components. In the case where the holding of the data based on the flip-flop is selected, the supply of the power supply voltage to the memory cells in the register 1196 is performed. When the holding of the data based on the capacitive element is selected, the data rewriting of the capacitive element is performed, and the supply of the power supply voltage to the memory unit in the register 1196 can be stopped.

如圖22B或圖22C所示那樣,關於停止電源電壓供應,可以藉由在記憶單元組與被供應有電源電位VDD或電源電位VSS的節點之間設置切換元件來進行。以下說明圖22B及圖22C的電路。 As shown in FIG. 22B or FIG. 22C, the supply of the power supply voltage can be stopped by providing a switching element between the memory cell group and the node to which the power supply potential VDD or the power supply potential VSS is supplied. The circuit of Fig. 22B and Fig. 22C will be described below.

圖22B及圖22C是將上述電晶體用於控制對記憶單元的電源電位的供應的切換元件的記憶體裝置。 22B and 22C are memory devices in which the above-described transistor is used to control a switching element for supplying a power supply potential to a memory cell.

圖22B所示的記憶體裝置具有切換元件1141以及具有多個記憶單元1142的記憶單元組1143。明確而言,各記憶單元1142可以使用上述電晶體。經由切換元件1141,高位準的電源電位VDD被供應到記憶單元組1143所具有的各記憶單元1142。進一步地,信號IN的電位和低位準的電源電位VSS的電位供應到記憶單元組1143所具有的各記憶單元1142。 The memory device shown in FIG. 22B has a switching element 1141 and a memory cell group 1143 having a plurality of memory cells 1142. Specifically, each of the memory cells 1142 can use the above-described transistor. Via the switching element 1141, the high level power supply potential VDD is supplied to the respective memory cells 1142 of the memory cell group 1143. Further, the potential of the signal IN and the potential of the low-level power supply potential VSS are supplied to the respective memory cells 1142 of the memory cell group 1143.

在圖22B中,作為切換元件1141使用了上述電晶體,關於該電晶體,由提供到其閘極電極層的信號SigA來控制其開關。 In Fig. 22B, the above-described transistor is used as the switching element 1141, and with respect to the transistor, its switching is controlled by a signal SigA supplied to its gate electrode layer.

此外,在圖22B中示出切換元件1141只具有一個電晶體的結構,但是對此沒有特別的限制,也可以具有多個電晶體。在切換元件1141具有多個作為切換元件 發揮功能的電晶體時,既可以將上述多個電晶體並聯地連接,又可以串聯地連接,還可以並聯和串聯組合地連接。 Further, the structure in which the switching element 1141 has only one transistor is shown in FIG. 22B, but there is no particular limitation thereto, and a plurality of transistors may be provided. The switching element 1141 has a plurality of switching elements In the case of a functioning transistor, the plurality of transistors may be connected in parallel or in series, or may be connected in parallel and in series.

另外,在圖22B中,由切換元件1141控制對記憶單元組1143所具有的各記憶單元1142的高位準的電源電位VDD的供應,但是也可以由切換元件1141控制低位準的電源電位VSS的供應。 In addition, in FIG. 22B, the supply of the high-level power supply potential VDD to each memory cell 1142 of the memory cell group 1143 is controlled by the switching element 1141, but the supply of the low-level power supply potential VSS may be controlled by the switching element 1141. .

另外,圖22C示出記憶體裝置的一個例子,其中經由切換元件1141將低位準的電源電位VSS供應到記憶單元組1143所具有的各記憶單元1142。藉由切換元件1141可以控制對記憶單元組1143所具有的各記憶單元1142的低位準的電源電位VSS的供應。 In addition, FIG. 22C shows an example of the memory device in which the low-level power supply potential VSS is supplied to the respective memory cells 1142 of the memory cell group 1143 via the switching element 1141. The supply of the low-level power supply potential VSS to each of the memory cells 1142 of the memory cell group 1143 can be controlled by the switching element 1141.

在設置切換元件於記憶單元組與被施加電源電位VDD或電源電位VSS的節點之間,並暫時停止CPU的動作,停止電源電壓的供應的情況下,也可以保持資料,由此可以降低耗電量。明確而言,例如,在個人電腦的用戶停止對鍵盤等輸入裝置輸入資訊的期間,也可以停止CPU的動作,由此可以降低耗電量。 When the switching element is provided between the memory cell group and the node to which the power supply potential VDD or the power supply potential VSS is applied, and the operation of the CPU is temporarily stopped, and the supply of the power supply voltage is stopped, the data can be held, thereby reducing power consumption. the amount. Specifically, for example, while the user of the personal computer stops inputting information to an input device such as a keyboard, the operation of the CPU can be stopped, whereby power consumption can be reduced.

在此,以CPU為例子進行了說明,但是也可以應用於DSP(Digital Signal Processor:數位信號處理器)、定製LSI、FPGA(Field Programmable Gate Array:現場可程式邏輯閘陣列)等的LSI。 Here, the CPU has been described as an example, but it can also be applied to an LSI such as a DSP (Digital Signal Processor), a custom LSI, or an FPGA (Field Programmable Gate Array).

3-4.設置例 3-4. Setting example

在圖23A中,警報裝置8100是住宅用火災警報器, 具有檢測部以及微型電腦8101。微型電腦8101包括使用上述電晶體的CPU。 In FIG. 23A, the alarm device 8100 is a residential fire alarm. There is a detection unit and a microcomputer 8101. The microcomputer 8101 includes a CPU using the above transistor.

在圖23A中,具有室內機8200及室外機8204的空調器包括使用上述電晶體的CPU。明確地說,室內機8200具有外殼8201、送風口8202、CPU8203等。在圖23A中,示例了CPU8203設置在室內機8200中的情況,但是CPU8203也可以設置在室外機8204中。或者,也可以在室內機8200和室外機8204兩個中都設置有CPU8203。藉由包括使用上述電晶體的CPU,可以使空調器實現省電化。 In FIG. 23A, an air conditioner having an indoor unit 8200 and an outdoor unit 8204 includes a CPU using the above-described transistor. Specifically, the indoor unit 8200 has a housing 8201, a blower port 8202, a CPU 8203, and the like. In FIG. 23A, the case where the CPU 8203 is set in the indoor unit 8200 is exemplified, but the CPU 8203 may be provided in the outdoor unit 8204. Alternatively, the CPU 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204. The air conditioner can be made to be power-saving by including a CPU using the above-described transistor.

在圖23A中,電冷藏冷凍箱8300包括使用上述電晶體的CPU。明確地說,電冷藏冷凍箱8300包括外殼8301、冷藏室用門8302、冷凍室用門8303及CPU8304等。在圖23A中,CPU8304設置在外殼8301的內部。藉由包括使用上述電晶體的CPU,可以使電冷藏冷凍箱8300實現省電化。 In Fig. 23A, the electric refrigerator freezer 8300 includes a CPU using the above-described transistor. Specifically, the electric refrigerator-freezer 8300 includes a casing 8301, a refrigerator compartment door 8302, a freezer compartment door 8303, a CPU 8304, and the like. In FIG. 23A, the CPU 8304 is disposed inside the casing 8301. The electric refrigerator-freezer 8300 can be made to be power-saving by including a CPU using the above-described transistor.

圖23B及圖23C示出電動汽車的例子。電動汽車9700裝載有二次電池9701。二次電池9701的電力由控制電路9702調整其輸出,並供給到驅動裝置9703。控制電路9702由具有未圖示的ROM、RAM、CPU等的處理裝置9704控制。藉由包括使用上述電晶體的CPU,可以使電動汽車9700實現省電化。 23B and 23C show an example of an electric car. The electric vehicle 9700 is loaded with a secondary battery 9701. The electric power of the secondary battery 9701 is adjusted by the control circuit 9702 and supplied to the drive device 9703. The control circuit 9702 is controlled by a processing device 9704 having a ROM, a RAM, a CPU, and the like (not shown). The electric vehicle 9700 can be made to be power-saving by including a CPU using the above-described transistor.

驅動裝置9703是由直流電動機或交流電動機單獨或者與電動機和內燃機組合而構成的。處理裝置 9704根據電動汽車9700的駕駛員的操作資訊(加速、減速、停止等)、行車時的資訊(爬坡、下坡等資訊、驅動輪受到的負載資訊等)等的輸入資訊,向控制電路9702輸出控制信號。控制電路9702根據處理裝置9704的控制信號來調整從二次電池9701供應的電能並控制驅動裝置9703的輸出。在裝載交流電動機的情況下,雖然未圖示,但是還內置有將直流轉換為交流的逆變器。 The drive unit 9703 is constituted by a direct current motor or an alternating current motor alone or in combination with an electric motor and an internal combustion engine. Processing device 9704 according to the operation information (acceleration, deceleration, stop, etc.) of the driver of the electric vehicle 9700, the information at the time of driving (the information such as climbing, downhill, etc., load information received by the driving wheel, etc.), etc., to the control circuit 9702 Output control signals. The control circuit 9702 adjusts the electric energy supplied from the secondary battery 9701 in accordance with the control signal of the processing device 9704 and controls the output of the driving device 9703. When an AC motor is mounted, although not shown, an inverter that converts direct current into alternating current is built in.

實施例1 Example 1

在本實施例中,利用圖24至圖30B來說明對氧化物半導體膜進行濕蝕刻時的蝕刻速度和氧化物半導體膜的側面的形狀。 In the present embodiment, the etching rate at the time of wet etching the oxide semiconductor film and the shape of the side surface of the oxide semiconductor film will be described with reference to FIGS. 24 to 30B.

首先,說明氧化物半導體膜及蝕刻劑各自的種類及蝕刻速度。 First, the type and etching rate of each of the oxide semiconductor film and the etchant will be described.

以下說明樣本1及樣本2的製造方法。 The manufacturing methods of the sample 1 and the sample 2 will be described below.

在玻璃基板上形成氧化物半導體膜。樣本1在玻璃基板上具有使用In:Ga:Zn=1:1:1(原子個數比)的金屬氧化物的濺射靶材形成的厚度為100nm的In-Ga-Zn氧化物膜。樣本2在玻璃基板上具有使用In:Ga:Zn=1:3:2(原子個數比)的金屬氧化物的濺射靶材形成的厚度為100nm的In-Ga-Zn氧化物膜。 An oxide semiconductor film is formed on the glass substrate. Sample 1 had an In-Ga-Zn oxide film having a thickness of 100 nm formed on a glass substrate using a sputtering target of a metal oxide of In:Ga:Zn=1:1:1 (atomic ratio). Sample 2 had an In-Ga-Zn oxide film having a thickness of 100 nm formed on a glass substrate using a sputtering target of a metal oxide of In:Ga:Zn=1:3:2 (atomic ratio).

作為樣本1中的In-Ga-Zn氧化物膜的成膜條件,使用如下條件:將濺射靶材設為In:Ga:Zn=1:1:1(原子個數比)的靶材,向濺射裝置的反應室內供應作 為濺射氣體的流量為50sccm的氬和流量為50sccm的氧,將反應室內的壓力控制為0.6Pa,並供應5kW的直流功率。此外,將形成In-Ga-Zn氧化物膜時的基板溫度設為170℃。 As a film formation condition of the In—Ga—Zn oxide film in the sample 1 , a sputtering target is used as a target of In:Ga:Zn=1:1:1 (atomic ratio). Supply to the reaction chamber of the sputtering device For argon having a flow rate of 50 sccm of sputtering gas and oxygen having a flow rate of 50 sccm, the pressure in the reaction chamber was controlled to 0.6 Pa, and a DC power of 5 kW was supplied. Further, the substrate temperature at the time of forming the In—Ga—Zn oxide film was 170° C.

作為樣本2的In-Ga-Zn氧化物膜的成膜條件,使用如下條件:將濺射靶材設為In:Ga:Zn=1:3:2(原子個數比)的靶材,向濺射裝置的反應室內供應作為濺射氣體的流量為90sccm的Ar和流量為10sccm的氧,將反應室內的壓力控制為0.3Pa,並供應5kW的直流功率。此外,形成In-Ga-Zn氧化物膜時的基板溫度為100℃。 As a film formation condition of the In-Ga-Zn oxide film of the sample 2, a sputtering target was used as a target of In:Ga:Zn=1:3:2 (atomic ratio), In the reaction chamber of the sputtering apparatus, Ar having a flow rate of 90 sccm and oxygen having a flow rate of 10 sccm were supplied as a sputtering gas, the pressure in the reaction chamber was controlled to 0.3 Pa, and a DC power of 5 kW was supplied. Further, the substrate temperature at the time of forming the In-Ga-Zn oxide film was 100 °C.

接著,對形成在樣本1及樣本2中的In-Ga-Zn氧化物膜進行濕蝕刻。在該濕蝕刻製程中,使用第一蝕刻劑至第三蝕刻劑中的任一個。作為第一蝕刻劑使用25℃的85重量%的磷酸。作為第二蝕刻劑使用60℃的草酸類水溶液(例如,日本關東化學株式會社製造的ITO-07N(含有5重量%以下的草酸的水溶液))。作為第三蝕刻劑,使用30℃的磷酸類水溶液(例如,日本和光純藥工業株式會社製造的混合酸鋁液(含有72重量%的磷酸、2重量%的硝酸及9.8重量%的醋酸的水溶液))。 Next, the In-Ga-Zn oxide film formed in the sample 1 and the sample 2 was subjected to wet etching. In the wet etching process, any one of the first etchant to the third etchant is used. As the first etchant, 85 wt% of phosphoric acid at 25 ° C was used. As the second etchant, an aqueous oxalic acid solution at 60° C. (for example, ITO-07N (aqueous solution containing 5% by weight or less of oxalic acid) manufactured by Kanto Chemical Co., Ltd., Japan) is used. As the third etchant, a phosphoric acid-based aqueous solution (for example, a mixed aluminum silicate solution manufactured by Nippon Shokuhin Co., Ltd.) (aqueous solution containing 72% by weight of phosphoric acid, 2% by weight of nitric acid, and 9.8% by weight of acetic acid) is used. )).

接著,圖24示出樣本1及樣本2中的各蝕刻劑與蝕刻速度的關係。 Next, FIG. 24 shows the relationship between each etchant in the sample 1 and the sample 2 and the etching rate.

由圖24可知,具有使用In:Ga:Zn=1:1:1(原子個數比)作為濺射靶材而形成的In-Ga-Zn氧化物 膜(表示為In-Ga-Zn-O(111))的樣本1在使用作為第二蝕刻劑的草酸類水溶液的蝕刻中,蝕刻速度快。 As can be seen from Fig. 24, there is an In-Ga-Zn oxide formed by using In:Ga:Zn = 1:1:1 (atomic ratio) as a sputtering target. The sample 1 of the film (indicated as In-Ga-Zn-O (111)) was etched in the etching using the aqueous oxalic acid solution as the second etchant.

另一方面,可知,具有使用In:Ga:Zn=1:3:2(原子個數比)作為濺射靶材而形成的In-Ga-Zn氧化物膜(表示為In-Ga-Zn-O(132))的樣本2在所有蝕刻劑中,蝕刻速度大致相同。 On the other hand, it is understood that an In-Ga-Zn oxide film (indicated as In-Ga-Zn-) formed using In:Ga:Zn=1:3:2 (atomic ratio) as a sputtering target is provided. Sample 2 of O(132)) The etching rate was approximately the same in all etchants.

接著,說明當使用第一蝕刻劑至第三蝕刻劑中的任一個對層疊結構的氧化物半導體膜進行蝕刻時的氧化物半導體膜的側面的形狀。 Next, the shape of the side surface of the oxide semiconductor film when the oxide semiconductor film of the stacked structure is etched using any one of the first etchant to the third etchant will be described.

以下說明樣本3及樣本4的製造方法。此外,樣本3及樣本4是層疊有第一In-Ga-Zn氧化物膜和第二In-Ga-Zn氧化物膜的兩層結構。 The manufacturing methods of the sample 3 and the sample 4 will be described below. Further, Sample 3 and Sample 4 are a two-layer structure in which a first In-Ga-Zn oxide film and a second In-Ga-Zn oxide film are laminated.

在玻璃基板上對層疊結構的氧化物半導體膜進行成膜。首先,在玻璃基板上使用In:Ga:Zn=1:1:1(原子個數比)的金屬氧化物的濺射靶材來對厚度為35nm的第一In-Ga-Zn氧化物膜進行成膜。接著,使用In:Ga:Zn=1:3:2(原子個數比)的金屬氧化物的濺射靶材來對厚度為20nm的第二In-Ga-Zn氧化物膜進行成膜。 The oxide semiconductor film of the laminated structure is formed on a glass substrate. First, a first In-Ga-Zn oxide film having a thickness of 35 nm is deposited on a glass substrate using a sputtering target of a metal oxide of In:Ga:Zn=1:1:1 (atomic ratio). Film formation. Next, a second In-Ga-Zn oxide film having a thickness of 20 nm was formed by using a sputtering target of a metal oxide of In:Ga:Zn=1:3:2 (atomic ratio).

此外,第一In-Ga-Zn氧化物膜是利用與樣本1的In-Ga-Zn氧化物膜相同的成膜條件而被進行成膜的膜。另外,第二In-Ga-Zn氧化物膜是利用與樣本2的In-Ga-Zn氧化物膜相同的成膜條件而被進行成膜的膜。 Further, the first In—Ga—Zn oxide film is a film formed by the same film formation conditions as the In—Ga—Zn oxide film of Sample 1. In addition, the second In—Ga—Zn oxide film is a film formed by the same film formation conditions as the In—Ga—Zn oxide film of Sample 2.

接著,對層疊結構的氧化物半導體膜進行蝕 刻。在樣本3中,作為蝕刻劑,使用作為第一蝕刻劑的25℃的85重量%的磷酸。在樣本4中,作為蝕刻劑,使用作為第三蝕刻劑的30℃的磷酸類水溶液。 Next, etching the oxide semiconductor film of the stacked structure engraved. In the sample 3, as the etchant, 85 wt% of phosphoric acid at 25 ° C as the first etchant was used. In the sample 4, as the etchant, a 30 ° C phosphoric acid aqueous solution as a third etchant was used.

接著,對樣本5的製造方法進行說明。此外,樣本5是層疊有第一In-Ga-Zn氧化物膜至第三In-Ga-Zn氧化物膜的三層結構。 Next, a method of manufacturing the sample 5 will be described. Further, the sample 5 is a three-layer structure in which a first In-Ga-Zn oxide film is laminated to a third In-Ga-Zn oxide film.

在玻璃基板上藉由CVD法形成氮化矽膜及氧氮化矽膜。接著,在氧氮化矽膜上形成層疊結構的氧化物半導體膜。接著,在氧氮化矽膜上使用In:Ga:Zn=1:3:2(原子個數比)的金屬氧化物的濺射靶材來形成厚度為5nm的第一In-Ga-Zn氧化物膜。接著,使用In:Ga:Zn=3:1:2(原子個數比)的金屬氧化物的濺射靶材來形成厚度為20nm的第二In-Ga-Zn氧化物膜。接著,使用In:Ga:Zn=1:1:1(原子個數比)的金屬氧化物的濺射靶材來形成厚度為20nm的第三In-Ga-Zn氧化物膜。接著,在第三In-Ga-Zn氧化物膜上藉由CVD法形成氧氮化矽膜。 A tantalum nitride film and a hafnium oxynitride film are formed on the glass substrate by a CVD method. Next, an oxide semiconductor film having a laminated structure is formed on the hafnium oxynitride film. Next, a sputtering target of a metal oxide of In:Ga:Zn=1:3:2 (atomic ratio) is used on the hafnium oxynitride film to form a first In-Ga-Zn oxide having a thickness of 5 nm. Film. Next, a second In-Ga-Zn oxide film having a thickness of 20 nm was formed using a sputtering target of a metal oxide of In:Ga:Zn=3:1:2 (atomic ratio). Next, a third In-Ga-Zn oxide film having a thickness of 20 nm was formed using a sputtering target of a metal oxide of In:Ga:Zn=1:1:1 (atomic ratio). Next, a hafnium oxynitride film was formed on the third In-Ga-Zn oxide film by a CVD method.

此外,樣本5中的第一In-Ga-Zn氧化物膜使用如下條件來形成:將濺射靶材設為In:Ga:Zn=1:3:2(原子個數比)的靶材,向濺射裝置的反應室內供應作為濺射氣體的90sccm的氬和10sccm的氧,將反應室內的壓力控制為0.6Pa,並供應5kW的直流功率。第二In-Ga-Zn氧化物膜使用如下條件來形成:將濺射靶材設為In:Ga:Zn=3:1:2(原子個數比)的靶材,向濺射裝置的 反應室內供應作為濺射氣體的50sccm的氬和50sccm的氧,將反應室內的壓力控制為0.6Pa,並供應5kW的直流功率。第三In-Ga-Zn氧化物膜使用如下條件來形成:將濺射靶材設為In:Ga:Zn=1:1:1(原子個數比)的靶材,向濺射裝置的反應室內供應作為濺射氣體的100sccm的氧,將反應室內的壓力控制為0.6Pa,並供應5kW的直流功率。此外,形成第一In-Ga-Zn氧化物膜至第三In-Ga-Zn氧化物膜時的基板溫度為170℃。 Further, the first In-Ga-Zn oxide film in the sample 5 was formed using the sputtering target as a target of In:Ga:Zn=1:3:2 (atomic ratio), 90 sccm of argon and 10 sccm of oxygen as a sputtering gas were supplied to the reaction chamber of the sputtering apparatus, the pressure in the reaction chamber was controlled to 0.6 Pa, and a direct current of 5 kW was supplied. The second In-Ga-Zn oxide film is formed using a sputtering target as a target of In:Ga:Zn=3:1:2 (atomic ratio) to a sputtering apparatus. 50 sccm of argon and 50 sccm of oxygen as a sputtering gas were supplied in the reaction chamber, the pressure in the reaction chamber was controlled to 0.6 Pa, and a DC power of 5 kW was supplied. The third In-Ga-Zn oxide film was formed under the following conditions: a sputtering target was set to a target of In:Ga:Zn=1:1:1 (atomic ratio), and the reaction was performed on a sputtering apparatus. The chamber was supplied with 100 sccm of oxygen as a sputtering gas, the pressure in the reaction chamber was controlled to 0.6 Pa, and a DC power of 5 kW was supplied. Further, the substrate temperature at the time of forming the first In-Ga-Zn oxide film to the third In-Ga-Zn oxide film was 170 °C.

接著,對層疊結構的氧化物半導體膜進行蝕刻。在樣本5中,作為蝕刻劑使用作為第二蝕刻劑的60℃的草酸類水溶液。 Next, the oxide semiconductor film of the stacked structure is etched. In the sample 5, an aqueous oxalic acid solution of 60 ° C as a second etchant was used as an etchant.

接著,說明樣本6的製造方法。此外,樣本6是層疊有第一In-Ga-Zn氧化物膜及第二In-Ga-Zn氧化物膜的兩層結構。 Next, a method of manufacturing the sample 6 will be described. Further, the sample 6 is a two-layer structure in which a first In-Ga-Zn oxide film and a second In-Ga-Zn oxide film are laminated.

在玻璃基板上藉由CVD法形成氧氮化矽膜。接著,在氧氮化矽膜上使用與樣本3及樣本4相同的成膜條件,並使用In:Ga:Zn=1:1:1(原子個數比)的金屬氧化物的濺射靶材而形成厚度為35nm的第一In-Ga-Zn氧化物膜之後,使用In:Ga:Zn=1:3:2(原子個數比)的金屬氧化物的濺射靶材來形成厚度為20nm的第二In-Ga-Zn氧化物膜。接著,在第二In-Ga-Zn氧化物膜上形成氧氮化矽膜。 A hafnium oxynitride film is formed on the glass substrate by a CVD method. Next, the same film formation conditions as those of the sample 3 and the sample 4 were used on the yttrium oxynitride film, and a sputtering target of a metal oxide of In:Ga:Zn=1:1:1 (atomic ratio) was used. After forming a first In-Ga-Zn oxide film having a thickness of 35 nm, a sputtering target of a metal oxide of In:Ga:Zn=1:3:2 (atomic ratio) was used to form a thickness of 20 nm. A second In-Ga-Zn oxide film. Next, a hafnium oxynitride film is formed on the second In-Ga-Zn oxide film.

接著,對層疊結構的氧化物半導體膜進行蝕刻。在樣本6中,藉由乾蝕刻法對層疊結構的氧化物半導 體膜進行蝕刻。此外,作為蝕刻氣體使用BCl3Next, the oxide semiconductor film of the stacked structure is etched. In the sample 6, the oxide semiconductor film of the laminated structure was etched by dry etching. Further, BCl 3 is used as an etching gas.

接著,使用STEM(Scanning Transmission Electron Microscopy:掃描透射電子顯微術)來觀察樣本3至樣本6的剖面形狀。 Next, the cross-sectional shape of the sample 3 to the sample 6 was observed using STEM (Scanning Transmission Electron Microscopy).

圖25A示出樣本3的20萬倍放大倍率的相襯影像(TE影像),圖25B示出圖25A的示意圖。另外,圖26示出樣本3的15萬倍放大倍率的Z對比影像(ZC影像)。 Fig. 25A shows a phase contrast image (TE image) of 200,000 magnification of the sample 3, and Fig. 25B shows a schematic view of Fig. 25A. In addition, FIG. 26 shows a Z contrast image (ZC image) of 150,000 times magnification of the sample 3.

圖27A示出樣本4的20萬倍放大倍率的相襯影像(TE影像),圖27B示出圖27A的示意圖。 Fig. 27A shows a phase contrast image (TE image) of 200,000 magnification of the sample 4, and Fig. 27B shows a schematic view of Fig. 27A.

圖28A示出樣本5的15萬倍放大倍率的相襯影像(TE影像),圖28B示出圖28A的示意圖。為了說明樣本5中的層疊結構的氧化物半導體膜的側面附近的詳細情況,圖29A示出樣本5的15萬倍放大倍率的Z對比影像(ZC影像),圖29B示出圖29A的示意圖。 Fig. 28A shows a phase contrast image (TE image) of 150,000 times magnification of the sample 5, and Fig. 28B shows a schematic view of Fig. 28A. In order to explain the details of the vicinity of the side surface of the oxide semiconductor film of the laminated structure in the sample 5, FIG. 29A shows a Z-contrast image (ZC image) of 150,000 times magnification of the sample 5, and FIG. 29B shows a schematic view of FIG. 29A.

圖30A示出樣本6的15萬倍放大倍率的相襯影像(TE影像),圖30B示出圖30A的示意圖。 Fig. 30A shows a phase contrast image (TE image) of 150,000 times magnification of the sample 6, and Fig. 30B shows a schematic view of Fig. 30A.

如圖25B所示,在樣本3中,在玻璃基板801上形成有第一In-Ga-Zn氧化物膜803。在第一In-Ga-Zn氧化物膜803上形成有第二In-Ga-Zn氧化物膜805。在第二In-Ga-Zn氧化物膜805上設置有光阻劑807。 As shown in FIG. 25B, in the sample 3, a first In-Ga-Zn oxide film 803 is formed on the glass substrate 801. A second In-Ga-Zn oxide film 805 is formed on the first In-Ga-Zn oxide film 803. A photoresist 807 is provided on the second In-Ga-Zn oxide film 805.

另外,如圖26所示,在樣本3中,第一In-Ga-Zn氧化物膜803及第二In-Ga-Zn氧化物膜805根據其濃淡的差異而可以確認出兩者的邊界。就是說,在本發明 的一個方式的電晶體中,即使在氧化物半導體膜和氧化物膜包含相同元素的情況下,也可以根據其組成的差異而確認出兩者的邊界。 Further, as shown in FIG. 26, in the sample 3, the first In-Ga-Zn oxide film 803 and the second In-Ga-Zn oxide film 805 can confirm the boundary between the two in accordance with the difference in shading. That is, in the present invention In the transistor of one embodiment, even when the oxide semiconductor film and the oxide film contain the same element, the boundary between the two can be confirmed based on the difference in composition.

如圖27B所示,在樣本4中,在玻璃基板811上形成有第一In-Ga-Zn氧化物膜813。在第一In-Ga-Zn氧化物膜813上形成有第二In-Ga-Zn氧化物膜815。在第二In-Ga-Zn氧化物膜815上設置有光阻劑817。 As shown in FIG. 27B, in the sample 4, a first In-Ga-Zn oxide film 813 is formed on the glass substrate 811. A second In-Ga-Zn oxide film 815 is formed on the first In-Ga-Zn oxide film 813. A photoresist 817 is provided on the second In-Ga-Zn oxide film 815.

在樣本3及樣本4中,將玻璃基板801、811與第一In-Ga-Zn氧化物膜803、813的側面所呈的角度設為角度θ1。將第一In-Ga-Zn氧化物膜803、813及第二In-Ga-Zn氧化物膜805、815的介面與第二In-Ga-Zn氧化物膜805、815的側面所呈的角度設為角度θ2。如圖25A和圖25B及圖27A和圖27B所示,可知在樣本3及樣本4中角度θ2大於角度θ1。 In the sample 3 and the sample 4, the angles of the glass substrates 801 and 811 and the side faces of the first In-Ga-Zn oxide films 803 and 813 are set to an angle θ1. The angle between the interface of the first In-Ga-Zn oxide film 803, 813 and the second In-Ga-Zn oxide film 805, 815 and the side faces of the second In-Ga-Zn oxide film 805, 815 Set to angle θ2. As shown in FIGS. 25A and 25B and FIGS. 27A and 27B, it is understood that the angle θ2 is larger than the angle θ1 in the sample 3 and the sample 4.

如圖28B所示,在樣本5中,在氮化矽膜821上形成有氧氮化矽膜823。在氧氮化矽膜823上形成有層疊結構的氧化物半導體膜825。在氧氮化矽膜823及層疊結構的氧化物半導體膜825上形成有氧氮化矽膜827。此外,在氧氮化矽膜827中形成有低密度區829。 As shown in FIG. 28B, in the sample 5, a hafnium oxynitride film 823 is formed on the tantalum nitride film 821. An oxide semiconductor film 825 having a laminated structure is formed on the hafnium oxynitride film 823. A hafnium oxynitride film 827 is formed on the hafnium oxynitride film 823 and the stacked oxide semiconductor film 825. Further, a low density region 829 is formed in the hafnium oxynitride film 827.

在樣本5中,將氧氮化矽膜823及層疊結構的氧化物半導體膜825的介面與層疊結構的氧化物半導體膜825的側面所呈的角度稱為角度θ3。如圖29B所示,在樣本5中,角度θ3為鈍角。此外,ZC影像根據原子番號的差異而其對比度不同,由此可知在層疊結構的氧化物半 導體膜825的側面形成有具有與氧化物半導體膜不同的組成的膜826。當藉由能量分散型X射線分析(Energy dispersive X-ray spectrometry:EDX)對該膜826進行分析可知,膜826包含鎢。 In the sample 5, the angle between the interface of the yttrium oxynitride film 823 and the oxide semiconductor film 825 of the laminated structure and the side surface of the oxide semiconductor film 825 of the laminated structure is referred to as an angle θ3. As shown in Fig. 29B, in the sample 5, the angle θ3 is an obtuse angle. In addition, the ZC image has a different contrast depending on the difference of the atomic number, and thus it is known that the oxide layer in the laminated structure is half. A film 826 having a composition different from that of the oxide semiconductor film is formed on the side surface of the conductor film 825. When the film 826 was analyzed by Energy Dispersive X-ray Spectrometry (EDX), the film 826 contained tungsten.

如圖30B所示,在樣本6中,在玻璃基板831上形成有氧氮化矽膜833。在氧氮化矽膜833上形成有層疊結構的氧化物半導體膜835。在氧氮化矽膜833及層疊結構的氧化物半導體膜835上形成有氧氮化矽膜837。 As shown in FIG. 30B, in the sample 6, a hafnium oxynitride film 833 is formed on the glass substrate 831. An oxide semiconductor film 835 having a laminated structure is formed on the hafnium oxynitride film 833. A hafnium oxynitride film 837 is formed on the hafnium oxynitride film 833 and the stacked oxide semiconductor film 835.

在樣本6中,將氧氮化矽膜833及層疊結構的氧化物半導體膜835的介面與層疊結構的氧化物半導體膜835的側面所呈的角度稱為角度θ4。如圖30B所示,在樣本6中,角度θ4大致相同,不因氧化物半導體膜的側面的位置而改變。 In the sample 6, the angle between the interface of the yttrium oxynitride film 833 and the oxide semiconductor film 835 of the laminated structure and the side surface of the oxide semiconductor film 835 of the laminated structure is referred to as an angle θ4. As shown in FIG. 30B, in the sample 6, the angle θ4 is substantially the same, and does not change depending on the position of the side surface of the oxide semiconductor film.

由以上所述可知,在層疊結構的氧化物半導體膜中,藉由利用將磷酸或磷酸類水溶液用於蝕刻劑的濕蝕刻法,可以使使用In:Ga:Zn=1:1:1(原子個數比)的濺射靶材形成的In-Ga-Zn氧化物膜的側面與In-Ga-Zn氧化物膜的基底膜的介面所呈的角度θ1小於使用In:Ga:Zn=1:3:2(原子個數比)的濺射靶材形成的In-Ga-Zn氧化物膜的側面與In-Ga-Zn氧化物膜的基底膜的介面所呈的角度θ2。 As described above, in the oxide semiconductor film of a laminated structure, by using a wet etching method using an aqueous solution of phosphoric acid or phosphoric acid as an etchant, it is possible to use In:Ga:Zn=1:1:1 (atoms). The angle θ1 between the side surface of the In—Ga—Zn oxide film formed by the sputtering target and the interface film of the base film of the In—Ga—Zn oxide film is smaller than that of using In:Ga:Zn=1: An angle θ2 between the side surface of the In—Ga—Zn oxide film formed by the sputtering target of 3:2 (atomic ratio) and the interface of the base film of the In—Ga—Zn oxide film.

100‧‧‧基板 100‧‧‧Substrate

104‧‧‧閘極電極 104‧‧‧gate electrode

106‧‧‧多層膜 106‧‧‧Multilayer film

106a‧‧‧氧化物半導體膜 106a‧‧‧Oxide semiconductor film

106b‧‧‧氧化物膜 106b‧‧‧Oxide film

106c‧‧‧低電阻區 106c‧‧‧low resistance zone

106d‧‧‧低電阻區 106d‧‧‧Low resistance zone

112‧‧‧閘極絕緣膜 112‧‧‧gate insulating film

116a‧‧‧源極電極 116a‧‧‧Source electrode

116b‧‧‧汲極電極 116b‧‧‧汲electrode

118‧‧‧保護絕緣膜 118‧‧‧Protective insulation film

Claims (16)

一種半導體裝置,包括:多層膜,其中層疊有氧化物半導體膜及氧化物膜;閘極電極;以及閘極絕緣膜,其中,該多層膜隔著該閘極絕緣膜與該閘極電極重疊,其中,該多層膜具有如下形狀,該形狀具有該氧化物半導體膜的底面與該氧化物半導體膜的側面所呈的第一角度、以及該氧化物膜的底面與該氧化物膜的側面所呈的第二角度,並且其中,該第一角度為銳角且小於該第二角度。 A semiconductor device comprising: a multilayer film in which an oxide semiconductor film and an oxide film are laminated; a gate electrode; and a gate insulating film, wherein the multilayer film overlaps the gate electrode via the gate insulating film, Wherein the multilayer film has a shape having a first angle of a bottom surface of the oxide semiconductor film and a side surface of the oxide semiconductor film, and a bottom surface of the oxide film and a side surface of the oxide film a second angle, and wherein the first angle is an acute angle and less than the second angle. 根據申請專利範圍第1項之半導體裝置,其中,在該多層膜中,該氧化物半導體膜的上端與該氧化物膜的下端大致一致。 The semiconductor device according to claim 1, wherein in the multilayer film, an upper end of the oxide semiconductor film substantially coincides with a lower end of the oxide film. 根據申請專利範圍第1項之半導體裝置,其中,該第一角度及該第二角度分別都為10°以上且小於90°。 The semiconductor device according to claim 1, wherein the first angle and the second angle are each 10° or more and less than 90°. 根據申請專利範圍第1項之半導體裝置,其中,在該多層膜中,該氧化物膜層疊在該氧化物半導體膜上。 The semiconductor device according to claim 1, wherein in the multilayer film, the oxide film is laminated on the oxide semiconductor film. 根據申請專利範圍第1項之半導體裝置,其中,該氧化物半導體膜層疊在該氧化物膜上,並且其中,第二氧化物膜層疊在該氧化物半導體膜上。 The semiconductor device according to the first aspect of the invention, wherein the oxide semiconductor film is laminated on the oxide film, and wherein the second oxide film is laminated on the oxide semiconductor film. 根據申請專利範圍第1項之半導體裝置,其中,該氧化物膜包含化學元素, 其中,該氧化物半導體膜包含該化學元素,並且其中,該氧化物膜的導帶底的能量比該氧化物半導體膜的導帶底的能量更接近於真空能階。 The semiconductor device according to claim 1, wherein the oxide film contains a chemical element, Wherein the oxide semiconductor film contains the chemical element, and wherein the energy of the conduction band bottom of the oxide film is closer to the vacuum energy level than the energy of the conduction band bottom of the oxide semiconductor film. 根據申請專利範圍第6項之半導體裝置,其中,該氧化物膜的該導帶底的該能量比該氧化物半導體膜的該導帶底的該能量更接近於該真空能階0.05eV以上且2eV以下。 The semiconductor device of claim 6, wherein the energy of the conduction band bottom of the oxide film is closer to the vacuum energy level of 0.05 eV or more than the energy of the conduction band bottom of the oxide semiconductor film. Below 2eV. 根據申請專利範圍第1項之半導體裝置,其中,該氧化物半導體膜及該氧化物膜各自都包含In-M-Zn氧化物,其中M為選自由Al、Ga、Ge、Y、Zr、La、Ce和Nd構成的組中的一個,並且其中,該氧化物膜的In對M的原子個數比小於該氧化物半導體膜。 The semiconductor device according to the first aspect of the invention, wherein the oxide semiconductor film and the oxide film each comprise an In-M-Zn oxide, wherein M is selected from the group consisting of Al, Ga, Ge, Y, Zr, La One of a group consisting of Ce and Nd, and wherein the oxide film has an atomic ratio of In to M smaller than that of the oxide semiconductor film. 根據申請專利範圍第1項之半導體裝置,其中,該氧化物膜為非晶的,其中,該氧化物半導體膜為結晶的,並且其中,包括在該氧化物半導體膜中的結晶部的c軸平行於該氧化物半導體膜的表面的法向量。 The semiconductor device according to the first aspect of the invention, wherein the oxide film is amorphous, wherein the oxide semiconductor film is crystalline, and wherein the c-axis of the crystal portion included in the oxide semiconductor film A normal vector parallel to the surface of the oxide semiconductor film. 根據申請專利範圍第1項之半導體裝置,還包括接觸於該多層膜的源極電極及汲極電極。 The semiconductor device according to claim 1, further comprising a source electrode and a drain electrode contacting the multilayer film. 根據申請專利範圍第10項之半導體裝置,其中,低電阻區設置在如下區域,該區域處於該多層膜中並且處於該多層膜與該源極電極和該汲極電極中的一個之間的介面附近。 The semiconductor device of claim 10, wherein the low resistance region is disposed in an area in the multilayer film and in an interface between the multilayer film and one of the source electrode and the one of the drain electrodes nearby. 根據申請專利範圍第10項之半導體裝置,還包括具有與該氧化物膜相同或不同的組成的第二氧化物膜,其中該第二氧化物膜設置在該源極電極的上表面、該汲極電極的上表面及該多層膜的上表面上且與它們接觸。 A semiconductor device according to claim 10, further comprising a second oxide film having the same or different composition as the oxide film, wherein the second oxide film is disposed on an upper surface of the source electrode The upper surface of the electrode and the upper surface of the multilayer film are in contact with each other. 一種半導體裝置,包括:閘極電極;該閘極電極上的氧化物半導體膜;以及該氧化物半導體膜上的氧化物膜,其中,該氧化物半導體膜的底面與該氧化物半導體膜的側面所呈的第一角度小於該氧化物膜的底面與該氧化物膜的側面所呈的第二角度,並且其中,該第一角度為銳角。 A semiconductor device comprising: a gate electrode; an oxide semiconductor film on the gate electrode; and an oxide film on the oxide semiconductor film, wherein a bottom surface of the oxide semiconductor film and a side surface of the oxide semiconductor film The first angle is less than a second angle of the bottom surface of the oxide film and the side surface of the oxide film, and wherein the first angle is an acute angle. 根據申請專利範圍第13項之半導體裝置,其中,該氧化物半導體膜包含In-Ga-Zn氧化物。 The semiconductor device according to claim 13, wherein the oxide semiconductor film contains In-Ga-Zn oxide. 根據申請專利範圍第13項之半導體裝置,其中,該氧化物膜包含In-Ga-Zn氧化物。 The semiconductor device according to claim 13, wherein the oxide film contains In-Ga-Zn oxide. 根據申請專利範圍第13項之半導體裝置,其中,該氧化物半導體膜包含In-Ga-Zn氧化物,並且其中,該氧化物膜包含In-Ga-Zn氧化物。 The semiconductor device of claim 13, wherein the oxide semiconductor film comprises an In-Ga-Zn oxide, and wherein the oxide film comprises an In-Ga-Zn oxide.
TW102139950A 2012-11-16 2013-11-04 Semiconductor device TWI600157B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251794 2012-11-16

Publications (2)

Publication Number Publication Date
TW201427014A true TW201427014A (en) 2014-07-01
TWI600157B TWI600157B (en) 2017-09-21

Family

ID=50727111

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102139950A TWI600157B (en) 2012-11-16 2013-11-04 Semiconductor device
TW106112788A TWI613813B (en) 2012-11-16 2013-11-04 Semiconductor device
TW106139021A TWI661553B (en) 2012-11-16 2013-11-04 Semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106112788A TWI613813B (en) 2012-11-16 2013-11-04 Semiconductor device
TW106139021A TWI661553B (en) 2012-11-16 2013-11-04 Semiconductor device

Country Status (5)

Country Link
US (8) US9087726B2 (en)
JP (8) JP6189182B2 (en)
KR (7) KR20140063444A (en)
CN (4) CN110047937A (en)
TW (3) TWI600157B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865470B2 (en) 2016-01-18 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film, semiconductor device, and display device
US11450691B2 (en) 2016-04-13 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113160B1 (en) * 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102171650B1 (en) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI600157B (en) * 2012-11-16 2017-09-21 半導體能源研究所股份有限公司 Semiconductor device
US9263531B2 (en) 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
TWI624949B (en) 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 Semiconductor device
US9368636B2 (en) * 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
JP2015115469A (en) * 2013-12-12 2015-06-22 ソニー株式会社 Thin film transistor, display device, electronic apparatus and thin film transistor manufacturing method
JP6676316B2 (en) * 2014-09-12 2020-04-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9991393B2 (en) * 2014-10-16 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6650888B2 (en) * 2015-02-06 2020-02-19 株式会社半導体エネルギー研究所 Semiconductor device
US9601614B2 (en) * 2015-03-26 2017-03-21 Nxp Usa, Inc. Composite semiconductor device with different channel widths
US11189736B2 (en) * 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102554963B1 (en) 2015-10-29 2023-07-11 엘지디스플레이 주식회사 Organic light emitting display device
KR102465381B1 (en) * 2015-12-14 2022-11-10 삼성디스플레이 주식회사 Organic light emitting device
CN105655389B (en) * 2016-01-15 2018-05-11 京东方科技集团股份有限公司 Active layer, thin film transistor (TFT), array base palte, display device and preparation method
WO2017134495A1 (en) 2016-02-05 2017-08-10 株式会社半導体エネルギー研究所 Metal oxide film, semiconductor device, and semiconductor device manufacturing method
US20180329242A1 (en) * 2016-02-24 2018-11-15 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US10756118B2 (en) 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
WO2018168639A1 (en) * 2017-03-14 2018-09-20 シャープ株式会社 Semiconductor device and method for producing same
US11545581B2 (en) * 2019-08-02 2023-01-03 South China University Of Technology Metal oxide (MO) semiconductor and thin-film transistor and application thereof
TWI667796B (en) * 2017-05-31 2019-08-01 南韓商Lg顯示器股份有限公司 Thin film transistor, gate driver including the same, and display device including the gate driver
CN109148592B (en) 2017-06-27 2022-03-11 乐金显示有限公司 Thin film transistor including oxide semiconductor layer, method of manufacturing the same, and display device including the same
US11545580B2 (en) * 2017-11-15 2023-01-03 South China University Of Technology Metal oxide (MO semiconductor and thin-film transistor and application thereof
CN107978560B (en) * 2017-11-21 2019-12-03 深圳市华星光电半导体显示技术有限公司 Carry on the back channel etch type TFT substrate and preparation method thereof
JPWO2019111105A1 (en) 2017-12-06 2020-12-03 株式会社半導体エネルギー研究所 Semiconductor devices and methods for manufacturing semiconductor devices
JP2019114751A (en) * 2017-12-26 2019-07-11 シャープ株式会社 Thin-film transistor substrate and liquid crystal display device including the same, and method for manufacturing thin-film transistor substrate
JP6706638B2 (en) * 2018-03-07 2020-06-10 シャープ株式会社 Semiconductor device and manufacturing method thereof
US11107929B2 (en) 2018-12-21 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10978563B2 (en) 2018-12-21 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102205148B1 (en) * 2019-01-28 2021-01-20 연세대학교 산학협력단 Thin film transistor having double channel layers and method of manufacturing the same
CN110299415A (en) * 2019-07-05 2019-10-01 山东大学 A kind of indium aluminium zinc oxide film transistor based on high dielectric constant gate dielectric layer and its full room temperature preparation method
CN110310985A (en) * 2019-07-05 2019-10-08 山东大学 A kind of indium aluminium zinc oxide film transistor and preparation method thereof based on double active layers
KR20210051551A (en) 2019-10-30 2021-05-10 엘지디스플레이 주식회사 Thin film transistor, gate driver including the same, and display device including the same
CN111090033A (en) * 2019-12-24 2020-05-01 淮安芯测半导体有限公司 Semiconductor device and probe test method thereof
JP7040555B2 (en) * 2020-04-15 2022-03-23 セイコーエプソン株式会社 Manufacturing method of optical substrate
JP2023007092A (en) 2021-07-01 2023-01-18 シャープディスプレイテクノロジー株式会社 Active matrix substrate and method of manufacturing the same
CN117546302A (en) * 2022-03-31 2024-02-09 京东方科技集团股份有限公司 Metal oxide thin film transistor and display panel
CN115347005B (en) * 2022-10-18 2023-03-24 广州华星光电半导体显示技术有限公司 Display panel

Family Cites Families (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231325B2 (en) 1972-12-20 1977-08-13
JPS5052693A (en) 1973-09-10 1975-05-10
JPS60198861A (en) 1984-03-23 1985-10-08 Fujitsu Ltd Thin film transistor
JPH0244256B2 (en) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN2O5DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244260B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN5O8DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPS63210023A (en) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Compound having laminar structure of hexagonal crystal system expressed by ingazn4o7 and its production
JPH0244258B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN3O6DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244262B2 (en) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN6O9DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244263B2 (en) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN7O10DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP3298974B2 (en) 1993-03-23 2002-07-08 電子科学株式会社 Thermal desorption gas analyzer
JP3479375B2 (en) 1995-03-27 2003-12-15 科学技術振興事業団 Metal oxide semiconductor device in which a pn junction is formed with a thin film transistor made of a metal oxide semiconductor such as cuprous oxide, and methods for manufacturing the same
DE69635107D1 (en) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv SEMICONDUCTOR ARRANGEMENT WITH A TRANSPARENT CIRCUIT ELEMENT
US6294799B1 (en) 1995-11-27 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
JP3625598B2 (en) 1995-12-30 2005-03-02 三星電子株式会社 Manufacturing method of liquid crystal display device
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000150861A (en) 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3276930B2 (en) 1998-11-17 2002-04-22 科学技術振興事業団 Transistor and semiconductor device
US6475836B1 (en) 1999-03-29 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP2001223365A (en) * 2000-02-10 2001-08-17 Fujitsu Ltd Thin film transistor and its manufacturing method
JP4677654B2 (en) 2000-04-19 2011-04-27 日本電気株式会社 Transmission type liquid crystal display device and manufacturing method thereof
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
KR20020038482A (en) 2000-11-15 2002-05-23 모리시타 요이찌 Thin film transistor array, method for producing the same, and display panel using the same
JP3997731B2 (en) 2001-03-19 2007-10-24 富士ゼロックス株式会社 Method for forming a crystalline semiconductor thin film on a substrate
JP2002289859A (en) 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
JP2002373867A (en) 2001-06-14 2002-12-26 Idemitsu Kosan Co Ltd Semiconductor device, electrically conductive thin film therefor, and method of manufacturing the same
JP3925839B2 (en) 2001-09-10 2007-06-06 シャープ株式会社 Semiconductor memory device and test method thereof
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (en) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
CN1445821A (en) 2002-03-15 2003-10-01 三洋电机株式会社 Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
US7742019B2 (en) * 2002-04-26 2010-06-22 Toshiba Matsushita Display Technology Co., Ltd. Drive method of el display apparatus
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (en) 2002-06-13 2004-01-22 Murata Mfg Co Ltd Manufacturing method of semiconductor device and its manufacturing method
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4108633B2 (en) 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
CN102867855B (en) 2004-03-12 2015-07-15 独立行政法人科学技术振兴机构 Amorphous oxide and thin film transistor
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7642573B2 (en) 2004-03-12 2010-01-05 Hewlett-Packard Development Company, L.P. Semiconductor device
KR100623253B1 (en) 2004-04-16 2006-09-18 삼성에스디아이 주식회사 Method of fabricating OLED
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (en) 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
JP5126729B2 (en) 2004-11-10 2013-01-23 キヤノン株式会社 Image display device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
AU2005302963B2 (en) 2004-11-10 2009-07-02 Cannon Kabushiki Kaisha Light-emitting device
RU2369940C2 (en) 2004-11-10 2009-10-10 Кэнон Кабусики Кайся Amorphous oxide and field-effect transistor using said oxide
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI481024B (en) 2005-01-28 2015-04-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006310372A (en) * 2005-04-26 2006-11-09 Canon Inc Semiconductor device and manufacturing method thereof
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP2007073705A (en) 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP5116225B2 (en) 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP4850457B2 (en) 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
JP4280736B2 (en) 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP5078246B2 (en) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5064747B2 (en) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5037808B2 (en) * 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
CN101577293B (en) 2005-11-15 2012-09-19 株式会社半导体能源研究所 Semiconductor device and method of manufacturing the same
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
KR101186297B1 (en) 2006-01-21 2012-09-27 아주대학교산학협력단 Fabrication method of ZnO film and TFT adopting the film
JP4977478B2 (en) 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (en) 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4609797B2 (en) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
JP4999400B2 (en) 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4332545B2 (en) 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP4274219B2 (en) 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
JP5164357B2 (en) 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (en) 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (en) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
CN101663762B (en) 2007-04-25 2011-09-21 佳能株式会社 Oxynitride semiconductor
KR101345376B1 (en) 2007-05-29 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
WO2009034953A1 (en) * 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. Thin film transistor
KR101413655B1 (en) * 2007-11-30 2014-08-07 삼성전자주식회사 Fabrication method of oxide semiconductor thin film transistor
KR100961182B1 (en) 2007-12-17 2010-06-09 한국전자통신연구원 The transparent electronic devices and manufacturing method thereof
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
US8093136B2 (en) 2007-12-28 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP2009206508A (en) 2008-01-31 2009-09-10 Canon Inc Thin film transistor and display
KR100941850B1 (en) * 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963027B1 (en) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR101468594B1 (en) * 2008-07-31 2014-12-04 삼성전자주식회사 Oxide Semiconductor and Thin Film Transistor comprising the same
KR101496150B1 (en) * 2008-08-19 2015-02-27 삼성전자주식회사 Oxide Semiconductor and Thin Film Transistor comprising the same
US8129718B2 (en) 2008-08-28 2012-03-06 Canon Kabushiki Kaisha Amorphous oxide semiconductor and thin film transistor using the same
KR20110028393A (en) 2008-08-29 2011-03-17 가부시키가이샤 아루박 Method and device for manufacturing field-effect transistor
JP5345359B2 (en) 2008-09-18 2013-11-20 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP4623179B2 (en) 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof
KR101623958B1 (en) 2008-10-01 2016-05-25 삼성전자주식회사 Inverter, method of operating the same and logic circuit comprising inverter
JP5451280B2 (en) 2008-10-09 2014-03-26 キヤノン株式会社 Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
JP5484853B2 (en) 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2010047288A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductordevice
TWI633605B (en) * 2008-10-31 2018-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
KR101659703B1 (en) 2008-11-07 2016-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2010118407A (en) * 2008-11-11 2010-05-27 Idemitsu Kosan Co Ltd Thin-film transistor having etching resistance, and production method thereof
CN101840936B (en) 2009-02-13 2014-10-08 株式会社半导体能源研究所 Semiconductor device including a transistor, and manufacturing method of the semiconductor device
TWI479574B (en) * 2009-03-16 2015-04-01 Hannstar Display Corp Tft array substrate and method for manufacturing the same
KR20110011002A (en) * 2009-07-27 2011-02-08 삼성전자주식회사 Method and apparatus for web browsing
CN103489871B (en) * 2009-07-31 2016-03-23 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
KR101301461B1 (en) 2009-09-16 2013-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and oxide semiconductor layer
US7988470B2 (en) 2009-09-24 2011-08-02 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride TFTs using wet process for source-drain metal etch
KR101991006B1 (en) 2009-10-08 2019-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101376461B1 (en) 2009-10-08 2014-03-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor layer and semiconductor device
KR101073272B1 (en) * 2009-11-04 2011-10-12 삼성모바일디스플레이주식회사 Method of manufacturing organic light emitting display device
KR101638977B1 (en) * 2009-11-13 2016-07-12 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device comprising transistor
KR101329849B1 (en) 2009-11-28 2013-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5497417B2 (en) * 2009-12-10 2014-05-21 富士フイルム株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
JP2011150294A (en) * 2009-12-21 2011-08-04 Canon Inc Method of driving display apparatus
EP3550604A1 (en) * 2009-12-25 2019-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011138934A (en) * 2009-12-28 2011-07-14 Sony Corp Thin film transistor, display device, and electronic equipment
EP2526622B1 (en) 2010-01-20 2015-09-23 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
CN105590964B (en) 2010-02-05 2019-01-04 株式会社半导体能源研究所 Semiconductor device
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011105184A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5496745B2 (en) * 2010-03-31 2014-05-21 富士フイルム株式会社 Thin film field effect transistor and method of manufacturing the same
KR101977152B1 (en) 2010-04-02 2019-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101850926B1 (en) * 2010-04-09 2018-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5606787B2 (en) * 2010-05-18 2014-10-15 富士フイルム株式会社 Thin film transistor manufacturing method, thin film transistor, image sensor, X-ray sensor, and X-ray digital imaging apparatus
CN102959713B (en) 2010-07-02 2017-05-10 株式会社半导体能源研究所 Semiconductor device
US8422272B2 (en) 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN107947763B (en) 2010-08-06 2021-12-28 株式会社半导体能源研究所 Semiconductor integrated circuit having a plurality of transistors
JP5626978B2 (en) * 2010-09-08 2014-11-19 富士フイルム株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
US8766253B2 (en) 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101932576B1 (en) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8912536B2 (en) * 2010-11-19 2014-12-16 Samsung Electronics Co., Ltd. Transistors, methods of manufacturing the same and electronic devices including transistors
TWI562379B (en) 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
TWI416737B (en) 2010-12-30 2013-11-21 Au Optronics Corp Thin film transistor and fabricating method thereof
US20130280859A1 (en) * 2010-12-30 2013-10-24 Jae-ho Kim Thin-film transistor and method for manufacturing same
JP5897910B2 (en) * 2011-01-20 2016-04-06 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102233959B1 (en) * 2011-01-28 2021-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device and semiconductor device
US9799773B2 (en) 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
KR101844953B1 (en) * 2011-03-02 2018-04-04 삼성디스플레이 주식회사 Thin film transistor display panel and the method thereof
US9190526B2 (en) 2011-04-18 2015-11-17 Sharp Kabushiki Kaisha Thin film transistor, display panel, and method for fabricating thin film transistor
US8901554B2 (en) 2011-06-17 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including channel formation region including oxide semiconductor
JP4982620B1 (en) * 2011-07-29 2012-07-25 富士フイルム株式会社 Manufacturing method of field effect transistor, field effect transistor, display device, image sensor, and X-ray sensor
JP4982619B1 (en) * 2011-07-29 2012-07-25 富士フイルム株式会社 Manufacturing method of semiconductor element and manufacturing method of field effect transistor
US9178076B2 (en) * 2011-08-11 2015-11-03 Idemitsu Kosan Co., Ltd. Thin-film transistor
JP5052693B1 (en) 2011-08-12 2012-10-17 富士フイルム株式会社 Thin film transistor and manufacturing method thereof, display device, image sensor, X-ray sensor, and X-ray digital imaging device
JP5927523B2 (en) * 2011-11-29 2016-06-01 株式会社Joled THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
CN202443973U (en) 2012-02-28 2012-09-19 北京京东方光电科技有限公司 Oxide semiconductor thin film transistor and display device
TW201340329A (en) * 2012-03-28 2013-10-01 Wintek Corp Thin film transistor and manufacturing method thereof
JP6139187B2 (en) * 2012-03-29 2017-05-31 株式会社半導体エネルギー研究所 Semiconductor device
KR20130111873A (en) * 2012-04-02 2013-10-11 단국대학교 산학협력단 Manufacturing method for a thin film transistor array panel
KR101949225B1 (en) * 2012-04-16 2019-04-26 삼성디스플레이 주식회사 Thin film transistor and display device having the same
WO2014065343A1 (en) * 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI600157B (en) * 2012-11-16 2017-09-21 半導體能源研究所股份有限公司 Semiconductor device
CN103000628B (en) * 2012-12-14 2015-04-22 京东方科技集团股份有限公司 Display device, array substrate and manufacture method of array substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865470B2 (en) 2016-01-18 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film, semiconductor device, and display device
TWI747824B (en) * 2016-01-18 2021-12-01 日商半導體能源研究所股份有限公司 Metal oxide film, semiconductor device, and display device
US11352690B2 (en) 2016-01-18 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film, semiconductor device, and display device
US11450691B2 (en) 2016-04-13 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device

Also Published As

Publication number Publication date
US20160035567A1 (en) 2016-02-04
JP6595563B2 (en) 2019-10-23
KR102107592B1 (en) 2020-05-07
US9812583B2 (en) 2017-11-07
US10886413B2 (en) 2021-01-05
US20160293641A1 (en) 2016-10-06
JP6189182B2 (en) 2017-08-30
TWI613813B (en) 2018-02-01
US10361318B2 (en) 2019-07-23
CN113421929A (en) 2021-09-21
US20190341502A1 (en) 2019-11-07
US11710794B2 (en) 2023-07-25
US20140138674A1 (en) 2014-05-22
CN107068767A (en) 2017-08-18
KR20210043551A (en) 2021-04-21
JP2023101608A (en) 2023-07-21
US20210020785A1 (en) 2021-01-21
JP6082423B2 (en) 2017-02-15
KR20200047486A (en) 2020-05-07
KR20140063444A (en) 2014-05-27
JP2017120920A (en) 2017-07-06
CN103824886A (en) 2014-05-28
US9087726B2 (en) 2015-07-21
KR20230038452A (en) 2023-03-20
US20180053856A1 (en) 2018-02-22
JP5948446B2 (en) 2016-07-06
TW202018938A (en) 2020-05-16
KR20220116129A (en) 2022-08-22
JP2014116588A (en) 2014-06-26
TW201735355A (en) 2017-10-01
TWI661553B (en) 2019-06-01
KR20220001507A (en) 2022-01-05
US9449819B2 (en) 2016-09-20
JP2020014011A (en) 2020-01-23
JP2022010399A (en) 2022-01-14
JP2015216377A (en) 2015-12-03
US9219165B2 (en) 2015-12-22
TWI600157B (en) 2017-09-21
US20150270404A1 (en) 2015-09-24
JP7285302B2 (en) 2023-06-01
JP6982040B2 (en) 2021-12-17
KR20170023054A (en) 2017-03-02
CN103824886B (en) 2019-03-01
US20230317857A1 (en) 2023-10-05
JP2015122509A (en) 2015-07-02
JP2018026598A (en) 2018-02-15
CN110047937A (en) 2019-07-23

Similar Documents

Publication Publication Date Title
TWI600157B (en) Semiconductor device
TWI618252B (en) Semiconductor device
JP2014187359A (en) Semiconductor device
KR20240049257A (en) Semiconductor device