TW200303040A - Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures - Google Patents

Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures Download PDF

Info

Publication number
TW200303040A
TW200303040A TW092102209A TW92102209A TW200303040A TW 200303040 A TW200303040 A TW 200303040A TW 092102209 A TW092102209 A TW 092102209A TW 92102209 A TW92102209 A TW 92102209A TW 200303040 A TW200303040 A TW 200303040A
Authority
TW
Taiwan
Prior art keywords
silver
elemental
scope
item
patent application
Prior art date
Application number
TW092102209A
Other languages
English (en)
Other versions
TWI251263B (en
Inventor
Terry L Gilton
Kristy A Campbell
John T Moore
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW200303040A publication Critical patent/TW200303040A/zh
Application granted granted Critical
Publication of TWI251263B publication Critical patent/TWI251263B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/066Patterning of the switching material by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe

Description

200303040 ⑴ 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單戈明) 技術領域 本發明是有關於形成非揮發性可變電阻裝置的方法,、 及形成含硒化銀結構的方法。 先前技術 半導體製造持續努力的讓工業電子組件更小,造成更加 密集的電路。有一種積體電路型式包括記憶體電路,其中ϋ 資afl疋以二位元資料的形式儲存起來。該電路可以製造成 讓該資料是揮發性的或非揮發性的。揮發性儲存記憶體裝 置在電源中斷時會造成資料損失。非揮發性記憶體電路在 電源中斷時會保存資料。 本發明的主要動機是要改善由K〇zicki等人所揭示的美 ,專利編號第5761115案,第5896312案,第5914893案以及 第6084796案中的記憶體電路的設計以及操作,這些都是來 自於1 9 9 6年5月30曰提出申請案的美國專利申請序號 0J/65J706 ’該案揭示什麼是被稱作可程式金屬化記憶胞。 這種記憶胞包括相反的電極,其間具有絕緣介電材料。其 間的介電材料是一種可變電阻材料。這種材料的電阻可二 在低電阻與高電阻狀態之間做改變。在正常的高電阻狀態 下,為了進行寫入操作,將電壓施加到某一電極上,另一 電極則保持令電壓或接地。被施加上電壓的電極是當作陽 極來運作’而保持零電壓或接地的電極則是當作陰極來運 :::!、!阻材料的本性是在某個外加電壓下電阻值會改 灸错故種外加電麗,材料内會被感應出低電阻狀態, (2) 200303040
使得頂部與底部電極之間會發生電氣傳導。 、> f 一旦發生’在移去電屬時’還會保持住低電阻狀能。 延能有效的造成電極間可變遍 〜 1000倍。將陽極與陰極q M U值降低 到其高電阻狀態。再—次這種材料回復 住言雷阻肤能。ra L —一移去反轉電壓,仍能保持 问 - 此,例如這種裝置能當作可程式 的記憶體電路。 才式忑匕胞 電極間較佳的可變電阻材料一般且最好是包 擴散到其内之金屬離子的* 考,、有 括-層或多声呈有魅 物材料。特定的實例包 / a /、有銀離子擴散到其内的硒化鍺,以及一声 或夕層具有過多銀離子擴散到其内 : 形成富含銀的硒化銀。 …、而很難 雖然本發明主要的叙她θ 1~ 受限於此。技術人員將^社述的問題,但是絕不 其它特點上的應發:在f上述問題無關之 專利範圍,而不受限於: 子的文限於相關的申請 當的绘釋。又限於㈣書,亚且依據對等的主旨做適 發明内容 :發明包括形成非揮發性可變電阻裝置的方法,以及形 3石西化銀結構的方法。在其中―實 可變電阻裝置的方半6 k ^ /取非伴'『生 /匕括形成圖案團塊,該圖案團塊在基 ί 的銀。在基板上形成包含有元素態砸的薄 二古:且包ΐ有包括元素態銀的圖案團塊。將該基板曝露 ,夕的狀態下,只讓某些元素態硒與元素態銀起反應, 200303040 形成圖案團塊’以便包含石西化銀。從基板上去除掉未反應 的元素態m電電極是以钱方式連接到包括㈣ 銀的-部分圖案團塊。一種含石西化鍺材料是以電氣方式$ 、 接到包括硒化銀的另一部分圖案團塊。第二導電電極是以 · 電氣方式連接到該含碰化鍺材料。 在八中貝例中,形成包含石西化銀結構的方法包括形成 包含有第一外層部分與第二外層部分的基板。第一外層部 分包括含有元素態銀的圖案團塊。第二外層部分不包括$ 素態銀°在第—外層部分與第二外層部分上形成含元素態 硒的薄層。讓該基板曝露到對以下二種情形都有效的氧化 條件’ a)在第-部分上的元素態石西與元素態銀起反應,形 成圖案團塊,包括石西化銀,以及…從基板上去除掉第二外 層部分上薄層的元素態硒。 實施例方式 本發明所揭示的内容是在促進美國專利法中,,提升科學 與有用技術的進步”的實體目的下提出。 子 一開始參閱圖i — 8來說明形成非揮發性可變電阻裝置的 · 典型方法。圖1顯示出基板區段1G,包括基底基心與第一 導電電極材料14。基底基板可以包括任何適當的支撐美板 如曾包含有本體單晶石夕的半導體基板。在本文件内牙i中 ’:半導體基板”或”半導電性基板”是定義成任何包括 體導電性材料,如半導電性晶圓(獨立的或在包括其它材料 的組合體内)之本體半導電性材料,以及半導電性材料層 (4) 200303040
合體内)的結構體,但不受 層’’是包含單一個薄層以及 薄層14的典型較佳材料是 (獨立的或在包括其它材料的組 限於此。而且在本文件中,,,薄 多個的薄層,除非有特別指明。 元素態鎢。 守电|电徑材料14上形成絕緣材料Μ。 適當的圖案方法(例如單石方法, 、、糟运 κ —盖山固也 * 如说衫餘刻)對絕緣材米 二=,形成穿過第一導電性電極材料14的開口 1
:開口 18包括所製造之裝置的至少—部分 構的某些所需形狀,如 ^ 參閱圖2,開口 18已姐用含;时:/,乂明顯看出來的。 氣方式連接到第-導=電材㈣填滿,以電 材料包括至少50莫3 = ;::。材料2。的典型較佳 耳百分比的元素態銀,= ^ 二:最釋的較佳實施針,絕緣材料16具有 團塊:==接近開口 18,而且在開口 18内的圖案 ^以素態銀材料20具有一最外部表面
平面上。此外,圖索團一視為= 、生二顧典f的厚度f圍從約5。埃到約2_埃。 料,覆蓋在A不之結構的不犯方法會沉積出一層含銀材 部絕緣=然後將這種薄層平坦化,回到至少外 方式讓‘種二頁部。只是舉例說明而已,•由化學或物理 ,機此外’能藉由光阻,化學研磨 以上的任何組合,或藉 發展出來的太i ^ 9由一匕存在的或將要 法,讓研磨或平坦化處理發生。此外,以另 -9- 200303040
(5) 一種方式而且只是舉例說明,藉由無電沉積或其它沉積的 含銀材料20,在所示之開口内製造出圖2所示的結構,使得 材料20只在其内有效的沉積出來並向上成長,該成長最好 在材料20大約到達絕緣材料16上部表面時停止。不論如何 ,圖2顯示出形成包括元素態銀在基板上圖案圑塊的實例。 參閱圖3 ’在基板1 〇上形成含元素態硒的薄層22,而且還 包括含元素態銀圖案團塊20。最好,薄層22包括至少90莫 耳百分比的元素態銀,最好是至少95莫耳百分比的元素態 銀’而大於99莫耳百分比的元素態銀則更好。 參閱圖4,基板1〇已經被曝露到能有效的與元素態銀團塊 20上元素態硒22起反應的條件下,以便形成至少一部分的 填滿開口 /圖案團塊,以包括硒化銀25。在所顯示的以及較 佳的實施例中,對於只有某些含元素態砸的薄層22會與基 本上未反應絕緣材料丨6上所形成的那些部分起反應來說, 曝露到這些條件下是很有效的。在所顯示的以及較佳實施 例的圖4中,該曝露是解釋成形成圖案團塊而整體性的包括 硒化銀材料25。不論如何,該曝露最好是形成會轉變而包 括至:5 0莫耳百分比;g西化銀以及最好至少8 〇莫耳百分比石西 化銀的那部分圖案團塊。更好的1,所形成的那部分在理 想上是本質均勻態的。 圖5顯示出另一實施例1〇a。在適當的地方會使用與第一 實施例相類似的參考數號,用字尾”a"表示差異。圖5顯示 出形成圖案團塊的最外層部分25a,以包括碼化銀,而圖汽 團塊的最内層部分鳥仍是一開始形成時的沉積含銀:: • 10 - 200303040
⑹ 。,、疋舉例說明而已,最内層部分2〇a殘留厚度最好是所顯 不圖案團塊之總厚度的百分之〇至10。每個圖4與5都顯示出 只有-種實施例,纟中該曝露會形成一半以上的已填滿開 口二以包括硒化銀。另一方式是,只是舉例說明而已,有 半或夕於半會被填滿。此外在所顯示的較佳實施例中 ,該曝露會形成圖案團塊,以具有大於最大第一厚度的最 大第二厚度。 對於曝露主題的典型較佳方法,包括在溫度約4〇它至約 100°C且壓力30 mTorr至760 Torr下,對基板進行約一至三 小時的退火處理。更高的溫度一般會造成更高的退火速率 。可以控制條件與時間來達成轉移到含硒化銀材料的所需 團塊量。此外只是舉例說明而已,在適當氧化氣體下的退 火也是一種可能,如同底下要更加完全說明的。 參閱圖6,未反應的元素態硒22已經從基板上去除掉。如 所示的’較佳的去除會從基板上去除掉所有殘留的未反應 硒。去除的實例包括化學蝕刻,而且最好的方式是,相對 於含砸化銀材料25選擇性的去除掉含元素態砸材料16。進 行該處理的典型濕蝕刻包括使用過氧化氫,例如在室溫至 50°C且在周圍環境壓力下。典型的乾蝕刻包括使用cf4的電 漿蝕刻。此外只是舉例說明而已,去除掉未反應元素態硒 的另^一方法,包括增加基板溫度到更加接近ί西的溶點,從 200°C至250°C,而且在大氣壓力下10分鐘至一小時,有效 的讓未反應的硒從基板上蒸發掉。 參閱圖7,碼化鍺材料層26(亦即最好是40莫耳百分比的 -11- 200303040
⑺ 鍺與60莫耳百分比的;&西)是在含;5西化銀材料2 5上形成,並以 電氣方式連接到含碼化銀材料2 5。第二導電電極材料2 8在 其上形成,而且藉此經由材料26而以電氣方式連接到含硒 化銀材料2 5。第二導電電極材料2 8可以是第一導電電極材 料14 ’或是不相同。在所顯示的以及所說明的較佳實施例 中’該電極28的典型較佳材料是元素態銀。不論如何,在 較佳實施例中,這會提供典型的處理,提供以電氣方式連
接到έ石西化銀之一部分圖案團塊2 5的第一導電電極,提供 以電氣方式連接到含砸化銀之另一部分圖案團塊的含砸化 鍺材料,以及提供以電氣方式連接到含硒化鍺材料的第二 導電電極。
上述的典型較佳實施例處理會以不同或分別的處理步, 來引導曝露與去除處理。本發明也仔細考慮過以相同或 一共用處理步驟來引導曝露與去除處理。圖8顯示出另一」 施例1〇c,該實施例顯示出圖3晶圓的另一種處理,該處3 會產生與圖4所示的結構比較起來有稍微改變的結構。在e 8中’曝露與去除處理已經在共用處理步驟中發生,包括^ 少100 C以及會藉氧化而去除掉未反應元素態石西的氣體。資 好,氧化氣體使用較弱的氧化劑或稀釋的氧化劑,例如3 少低於或等於五個艚籍百\ 产 積百刀比的氧化劑,而低於或等於一 個百分比會更好。典型的奎 、
、 Κ土虱化氟體包括至少N2〇,NO ’ 〇3 ’ 與Cl2的其中之一。口 e與々 /、疋舉例5兒明而已,較佳條,Λ 包括40t至25〇t:的升高w择 Μ π 11卞件 开冋,皿度,30 mT〇rr至760 T〇rr的壓力 以及30分鐘至二小時。 l刀 -12- 200303040
⑻ 氧化條件與氣體最好是選取到足夠稀或足夠弱,如上所 標識的,以避免圖案團塊20上的含碼材料22,在驅動元素 悲硒進入圖案團塊2〇之前,便先完全氧化掉,而使得有效 的硒化銀團塊25c形成。然而,這種氧化通常會在氧化時, 藉由氧化掉圖案團塊上含元素態石西層22的最外層部分,而 造成去除掉某些元素態硒。在本實施例或其它實施例中, 該曝露處理最好是將圖案團塊上元素態硒那部分的至少大 多數都驅動到圖案團塊内。 本發明進一步仔細考慮到一種形成任何含硒化銀結構的 方法,而不論非揮發性可變電阻裝置中是否使用到。這種 方法仔細考慮到形力包括第一外層料與第二外層部分的 基板〃中第一外層部分構成含元素態銀的圖案團塊,而 第二外層部分並不包括元素態銀。只是舉例說明而已且相 對於圖2與3 ’含元素態銀的圖案團塊2〇的最外層部分包括 典型的第-外層料,而絕緣層16的最外層部分構成典型 的第:外層部分。在第-與第二外層部分上形成含元素態 西的薄層,、疋如上所述舉例說明而已’該基板曝露到對 f下二種情形都有效的氧化條件,a)在第—部分上的元素 石西與兀素態銀起反應’形成圖案團塊’包括石西化銀,以 及b)從基板上去除掉在第:外層部分上薄層的元素態石西。 最好,該曝露處理會從基板上去除掉所有未反應的元素態 场。此外’依據上述的較佳實例’這種曝露處理很容易從 基板上去除掉第-部分上薄層的某些元素態碼,但最好是 將至少大部分第一部分上元素態砸的那部分驅動進入圖案 -13- (9) 200303040
團塊内,而且至少80莫耳百分比會更好。此外,這種曝露 處理形成的圖案團塊最好在曝露處理之前便立刻具有比最 大第一厚度還大的最大第二厚度。
所顯示出的以及上述的實施例都顯示出處理方法,其中 會形成在開口 18内的至少大部分材料以及如果有必要的話 會形成開口 18内的所有材料,以便包括元素態銀。圖9_u 顯不出另一貫施例10d。在適當的地方會使用與第一實施例 相類似的參考數號,用字尾”d”表示差異。圖9顯示出開口 18内的另一種含元素態銀材料2〇d。這包括下部典型硒化鍺 部分21(亦即最好是百分之4G的鍺以及百分之⑼的則,以 及底下最好是百分之99以上的純元素態銀區域23。只是舉 例說明而已,這能藉相對於絕緣層16的適當沉積以及平坦 化而形成。在其上形成含石西層22d。 參閱圖10,基板10d已經接受較佳曝露以及去除處理(一 起處理或在不同的處理步驟中),有效的形成硒化銀團塊 25d,並從基板上去除掉至少某些且最好是所有的未反應元 素態砸。 參閱圖
28d。 11,在其上形成另一硒化鍺層26d以及第 二電極 上述的實施例說明並顯示出典型形成含元素態銀之圖案 團塊的方法。這些實施例顯示出形成基板上絕緣材料内的 圖案開口 ’且帛含元素態銀的材料至少部分填滿該開口。 然而’本發明仔細考慮到任何形成含元素態銀之圖案團塊 的方法。只是舉例說明而已,參閱圖12_15說明該另一方法 -14- 200303040
(ίο) 的其中一種方法。 圖12顯示出另一實施例l〇e,在適當的地方會使用與第一 實施例相類似的參考數號,用字尾”en表示差異。圖12顯示 沉積出含銀材料20e。材料20e已經被定義出圖案,例如藉 微影定義圖案的處理,然後在定義出圖案後進行減除姓刻 處理。其它的定義圖案方法,如雷射定義圖案方法或任何
其它定義圖案的方法,都被仔細考慮過,無論是已存在的 或是還在發展的。 參閱圖13,含元素態硒的薄層22e是在圖案團塊2〇e上形 成0 參閱圖14,該基板已經曝露到只讓某些元素態硒22e與元 素態銀會有效起反應的條件下,以便形成包括砸化銀的圖 案團塊25e。上述的任何處理,包括從該曝露時的處理中上 除掉元素態硒22e的氧化處理,都已經被仔細考慮過,當然 都只是較佳實例而已。 ^ # 參閱圖1 5, 都在其上形成 較佳的硒化鍺層26e以及較佳的第二電極28e
一 /…八…几μ取野的方式製造出 上以及其它積體電路上形成可铲々仆认人歷 牡口己 依攄Φ八了釭式化的金屬化記憶胞 依據法々,本發明已經針 ,以# ^壯— 訂對結構性的以及方法性的 更加特疋的或較不特定的纽士 7s 1 Ja形式做了說明。鈇 了解的疋,本發明並不限定 …、 特性,因為i内所揭…所顯不的以及所說明的 。因并 的裝置包括實現本發明的較佳 。因此’以所附申請專利範 旳孕“土 固中適虽乾圍内任何的形 -15- (11) 200303040 寧择_娜 改變,依據相對等原理做適當的触 +Λ ^ ^ , ^ πη J鮮釋,來主張本發明的專 利範圍。 圖式簡單說明 參閱底下的相關圖式來說明本發明的較佳實施例。 圖1疋依據本發明特點處理之半導體晶圓區段/切面的圖 式。 圖2是圖1晶圓區段在圖丨所示之晶圓處理後之處理步驟 的圖式。 圖3是圖2晶圓區段在圖2所 的圖式。 示之晶圓處理後之處理步 驟 圖4是圖3晶圓區段在圖3所示之晶圓處理後之處理步驟 的圖式。 圖5疋圖3晶圓區段在圖3所示之晶圓處理後之另_處理 步驟的圖式。 圖6是圖4晶圓區段在圖4所示之晶圓處理後之處理步驟 的圖式。 圖7是圖6晶圓區段在圖6所示之晶圓處理後之處理步驟 的圖式。 圖8疋圖3晶圓區段在圖3所示之晶圓處理後之另一處理 步驟的圖式。 圖9是在依據本發明特點處理之另一實施例半導體晶圓 區段/切面的圖式。 圖10是圖9晶圓區段在圖9所示之晶圓處理後之處理步驟 的圖式。 -16- 200303040 (12) 發明__ 圖11是圖1 〇晶圓區段在圖1 〇所示之晶圓處理後之處理步 驟的圖式。 圖12是依據本發明特點處理之另一實施例半導體晶圓區 段/切面的圖式。 圖I3是圖12晶圓區段在圖I2所示之晶圓處理後之處理步 驟的圖式。 圖14*是圖I3晶圓區段在圖13所不之晶圓處理後之處理牛 驟的圖式。 圖15是圖I4晶圓區段在圖I4所示之晶圓處理後之處理+ 驟的圖式。 "" 圖式代表符號說明 10 ’ 10a , l〇c , l〇d , 10e 基板 12 基底基板 14 第一導電電極材料 16 含元素態砸材料 18 開口 2〇 , 20a , 20d , 20e 含元素悲銀的材料 22 , 22d , 22e 元素態石西 25 ’ 25a , 25c , 25d , 25e 含石西化銀材料 26 , 26d , 26e 石西化鍺材料層 28 , 28d , 28e 第二導電電極材料 17-

Claims (1)

  1. 200303040 拾、申請專利範圍 1 · 一種形成非揮發性可變電阻裝置的方法,其包括: 在一基板上,形成一含元素態銀的圖案團塊; 在一基板上,形成一含元素態碰層,並且包括該含元 素態銀的圖案團塊; 讓基板曝露到只有某些元素態砸會與元素態銀有效 起反應的條件下,而形成包括硒化銀的圖案團塊; 從該基板上去除掉未反應的元素態硒; 提供一第一導電電極,以電氣方式連接到包括硒化銀 之圖案團塊的一部分; 提供含硒化鍺的材料,以電氣方式連接到包括硒化銀 之圖案團塊的另一部分;以及 提供一第二導電電極,以電氣方式連接到該含硒化鍺 的材料。 2 ·如申請專利範圍之第1項之方法,其中該圖案團塊在進 行曝露處理之前,包括至少5 0莫耳百分比的元素態銀。 3·如申請專利範圍之第1項之方法,其中該圖案團塊在進 行曝露處理之前,包括至少95莫耳百分比的元素態銀。 4·如申請專利範圍之第1項之方法,其中該含元素態硒的 薄層在進行曝露處理之前,包括至少9〇莫耳百分比的元 素態碼。 5.如申請專利範圍之第1項之方法,其中該含元素態硒的 薄層在進行曝露處理之前,包括至少95莫耳百分比的元 素態ί西。 200303040
    6. 如^專利範圍之第!項之方法 理疋在一共用處理步驟中發生。 如申請專利範圍之第1項之方法 理是在不同的處理步驟中發生。如申睛專利範圍之理是在一丘用旁 、方法穴丁热喂路興去除處 少4。。。以:會ΓΖΙΙΓ,該共用處理步驟包括至元之第1項之方法,其中該去除掉未反肩 1〇 ΠΓΓ 包括在料露處理㈣化㈣刻處理< ‘ ㈣範m項之方法,#中該去除掉未反肩 疋素態砸的處理包括在該曝露處理後的蒸發處理。〜 申吻專利粑圍之第!項之方法,其中該曝露處理 成圖案團塊’包括至少50莫耳百分比的石西化銀。/.:申請專利範圍之第1項之方法,*中該曝露處理會开 成圖案團塊,包括至少8〇莫耳百分比㈣化銀。… 13.如申請專利範圍之第W之方法,其中該曝露處理會網至少圖案團塊上元素態石西那部分的大部》,驅 團塊内。 莽 8· 9. 其中該曝露與去除處 其中該曝露與去除處 其中該曝露與去除處
    14·如申明專利範圍之第i項之方法,其中該圖案團塊在進 仃曝露處理之前,包括大於50莫耳百分比的元素態銀, 該曝露處理會形成圖案團塊的最外層部分,以包括大於 5〇莫耳百分比的硒化銀,而圖案團塊的最内層部分會殘 留下大於50莫耳百分比的元素態銀。 15 ·如申請專利範圍之第i項之方法,其中該圖案團塊在進 -2- 200303040
    行曝露處理之前,包括大於90莫耳百分比的元素能费, 該曝露處理會形成圖案團塊的最外層部分,包括大於% 莫耳百分比的硒化銀,而圖案團塊的最内層部分合殘留 下大於90莫耳百分比的元素態銀。 9 16. 17. 18. 19. 20. 如申請專利範圍之第1項之方法,其中該圖案團塊在進 行曝露處理之前,具有最大第一厚度,該曝露處理會形 成具有比該最大第一厚度還大之最大第二厚度的圖案 團塊。 、 如申請專利範圍之第丨項之方法,其中該去除處理會從 基板上去除掉所有的未反應元素態砸。 如申請專利範圍之第丨項之方法,其中該形成含元素態 銀之圖案團塊的處理包括沉積出含元素態銀的材料,微 影定義出圖案,以及在微影定義出圖案後進行減除蝕刻 處理。 如申明專利範圍之第1項之方法,其中該形成含元素態 銀之圖案團塊的處理包括在基板上之絕緣材料内形成 囷案開口並且用含元素悲銀的材料至少部分填滿該開 〇 〇 一種形成非揮發性可變電阻裝置的方法,其包括: 在一基板上,形成一含至少9〇莫耳百分比元素態銀的 圖案團塊,以及具有一最大第一厚度; —在基板上,形成一含至少90莫耳百分比元素態硒的 薄層,並且包括該含元素態銀的圖案團塊; «板曝露H某些元素“會與元素態銀有效 200303040
    起反應的條件下,而形成包括硒化銀的圖案團塊,該曝 露處理會形成富含銀的硒化銀,並且形成具有一最大第 · 二厚度的圖案團塊,該最大第二厚度是大於該最大第一 . 厚度,該曝露處理會形成包括至少80莫耳百分比硒化銀 的圖案團塊,該曝露處理會將該圖案團塊上元素態硒那 部分的大部分,都驅動到該圖案團塊内; 從5亥基板上去除掉未反應的元素態石西; 提供-第-導電電極,以電氣方式連接到包括石西化冑 φ 之圖案團塊的一部分; 提供含硒化鍺的材料,以電氣方式連接到包括硒化銀 之圖案團塊的另一部分;以及 提供一第二導電電極,以電氣方式連接到該含硒化鍺 的材料。 21. —種形成非揮發性可變電阻裝置的方法,其包括·· 在一基板上,形成一第一導電電極材料; …在該第一導電電極材料上,形成絕緣材料以及穿過該 第一導電電極材料的一開口,該開口包括該裝置至少一 鲁 部分最後可設定電阻結構的所需形狀; 用含元素態銀的材料填滿該開口,以電氣方式連接到 該第一導電電極材料; 在該絕緣材料上以及在該開口内含元素態銀的材料 上,形成含元素態硒的薄層; 讓該基板曝露到會對元素態銀上之元素態砸起反應 . 的條件下,形成至少-部分的填滿開σ,以便包括則b . -4- 200303040
    銀; 從該基板上去除掉該絕緣材料上的未反應元素態石西 ;以及 提供一含硒化鍺的材料,以電氣方式連接到該硒化銀 ;以及 提供一第二導電電極,以電氣方式連接到該含硒化鍺 的材料。 22. 23. 24. 25. 26. 27. 28. 如申請專利範圍之第2 1項之方法,其中該曝露處理會形 成至少大部分的填滿開口,以便包括硒化銀。 如申請專利範圍之第21項之方法,其中該曝露處理會形 成小於一半的填滿開口,以便包括硒化銀。 如申請專利範圍之第2 1項之方法,其中該含元素態銀的 材料在該曝露處理之前,包括至少5〇莫耳百分比的元素 態銀。 如申請專利範圍之第21項之方法,其中該含元素態銀的 材料在該曝露處理之前,包括至少95莫耳百分比的元素 態銀。 如申請專利範圍之第21項之方法,其中該含元素態硒的 材料在該曝露處理之前,包括至少90莫耳百分比的元素 態石西。 如申請專利範圍之第21項之方法,其中該含元素態硒的 層在該曝露處理之前,包括至少95莫耳百分比的元素態 石西。 如申請專利範圍之第21項之方法,其中該曝露與去除步 200303040
    驟是發生在一共用處理步驊中。 29·如申請專利範圍之第2 1項之方法,其中該曝露與去除步 驟是發生在不同的處理步驟中。 3 0.如申請專利範圍之第21項之方法,其中該曝露與去除步 驟是發生在一共用處理步驟中,該共用處理步驟包括至 少40°C以及會藉氧化而去除掉未反應元素態硒的氣體。 3 1 ·如申請專利範圍之第2丨項之方法,其中該去除掉未反應 元素態碼的處理包括在該曝露處理後的化學蝕刻處理。 32·如申請專利範圍之第2〗項之方法,其中該去除掉未反應 元素態硒的處理包括在該曝露處理後的蒸發處理。 3 3 ·如申請專利範圍之第2丨項之方法,其中該曝露處理會形 成至少8 0 %的填滿開口,以便包括石西化銀。 34.如申請專利範圍之第21項之方法,其中該曝露處理會將 該含元素態銀的材料上那部分元素態硒的至少大部分 ’都驅動到該含元素態銀的材料内。 35·如申請專利範圍之第21項之方法,其中該填滿開口在該 曝露處理之前包括50莫耳百分比的元素態銀,該曝露處 理會形成該填滿開口的最外層部分,以便包括大於5 〇莫 耳百分比的石西化銀,而該填滿開口的最内層部分殘留下 大於5 0莫耳百分比的元素態銀。 3 6 ·如申請專利範圍之第2 1項之方法,其中該填滿開口在該 曝露處理之前包括90莫耳百分比的元素態銀,該曝露處 理會形成該填滿開口的最外層部分,以便包括大於9 〇莫 耳百分比的硒化銀,而該填滿開口的最内層部分殘留下 200303040 37. 38. 39. 40. 41.
    大於90莫耳百分比的元素態銀。 如申請專利範圍之第21項之方法,其中该 — ,、r巧%緣材料具肩 貫貝上平面型的最外層表面,接近該開口,而且在咳趙 滿開口内含元素態銀的材料具有一最外層表面,該=外 層表面在該曝露處理之前是與絕緣材料的外層表面位 於同-平面上,該開口内含元素態銀的材料在曝露處 理之月”具有-最大第—厚度,該曝露處理會形成圖案 團塊,以具有比該最大第一厚度還大的一最大第二厚声。 ,申請專利範園之第21項之方法,其中該去除處理會-從 忒基板上去除掉所有未反應的元素態硒。 一種形成含硒化銀結構的方法,其包括: 形成基板,該基板包括一第一外層部分以及一第二 卜曰P刀"亥第一外層部分包括一含元素態銀的圖案團 外層部分不包含元素態銀; 、 在β亥第一與第二外層部分上,形成含元素態砸的薄層 :以及
    •讓忒基板曝露到對以下二種情形都有效的氧化條件 • a)在第一部分 / 、 刀上的兀素態硒會與元素態銀起反應,以 化成圖案團塊,以便包括砸化銀;以及b)從基板上去除 掉:第二外層部分上薄層的元素態硒。 1装:月專利犯圍之第39項之方法,其中該去除處理會從 二=去除掉該第—部分上薄層的某些元素態石西。 如申请專利範>赞 外十 w之弟39項之方法,其中該曝露處理會將 邊第一部分上开I 京怨硒那部分的至少大部分都驅動則
    200303040
    該圖累團塊内。 42. 43. 44. 45. 46. 47. 48. 49. 50. 如申請專利範圍之第39項之方、、1 #丄 乃去,其中該曝露處理备 該第一部分上元素態硒那部分的至 曰 驅動到該圖案團塊内。 ' 百分比都 如申請專利範圍之第39項之方、土 ^ ^ 約40°C至約250°C的溫度。 # 如申請專利範圍之第39項之方 、〈万去,其中該氧化條
    含有至少仏0, ΝΟχ,〇3,匕鱼 怍仵匕招 2兴U2其中之一的氣體。 如申請專利範圍之第39項 ,χ 只及万去,其中該曝露處理會牧 基板上去除掉該第二外層部分 ,.^ ^ /哥7^的所有兀素態硒C 如申請專利範圍之第39項之方沬甘占> Α板上去…植斯古去e鹿 法’,、中該曝露處理會牧 土板上去除掉所有未反應的元素態硒。 =專利範圍之第39項之方法,其中該圖案團塊在該 +路處理之W,包括至少95莫耳百分比的元素態銀。 範圍之第39項之方法,其中該含元素態-的 :㈣在该曝露處理之前,包括至少95莫耳百分比的元素 您石西。 ”
    如甲言月專利範圍之第3 9項之方法,甘士 _ 布^貝<万沄,其中該圖案團塊在 行曝露處理之前,具有最大第_ ^ g ^ ^ 、 /、π取八乐与度,該曝露處理會 成具有比該最大第一厚慶邊大 坪沒遷大之蚨大第二厚度的圖 團塊。 如申請專利範圍之第39項之方法,其中形成含元素態銀 之該圖!團塊的處理包括沉積出-含元素態銀的材料 ’對該含元素態銀的材料進行微料義圖案的處理,以 200303040
    及在該微影定義圖案處理後,進行減除蝕刻處理。 5 1.如申請專利範圍之第39項之方法,其中形成含元素態銀 之該圖案團塊的處理包括在該基板上之絕緣材料内形 成一圖案開口,而且用含元素態銀的材料至少部分填滿 該開口。
TW092102209A 2002-01-31 2003-01-30 Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures TWI251263B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/061,825 US20030143782A1 (en) 2002-01-31 2002-01-31 Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures

Publications (2)

Publication Number Publication Date
TW200303040A true TW200303040A (en) 2003-08-16
TWI251263B TWI251263B (en) 2006-03-11

Family

ID=27610193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092102209A TWI251263B (en) 2002-01-31 2003-01-30 Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures

Country Status (10)

Country Link
US (2) US20030143782A1 (zh)
EP (1) EP1470589B1 (zh)
JP (1) JP2005516418A (zh)
KR (1) KR100660245B1 (zh)
CN (1) CN100375284C (zh)
AT (1) ATE392714T1 (zh)
AU (1) AU2003212814A1 (zh)
DE (1) DE60320373T2 (zh)
TW (1) TWI251263B (zh)
WO (1) WO2003065456A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US7109056B2 (en) * 2001-09-20 2006-09-19 Micron Technology, Inc. Electro-and electroless plating of metal in the manufacture of PCRAM devices
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6731528B2 (en) * 2002-05-03 2004-05-04 Micron Technology, Inc. Dual write cycle programmable conductor memory system and method of operation
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US6825135B2 (en) 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
TWI233204B (en) * 2002-07-26 2005-05-21 Infineon Technologies Ag Nonvolatile memory element and associated production methods and memory element arrangements
US6864521B2 (en) 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US7364644B2 (en) 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US7022579B2 (en) * 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
US7583551B2 (en) 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
US7326950B2 (en) 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7354793B2 (en) 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
US7365411B2 (en) 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
DE102004047630A1 (de) * 2004-09-30 2006-04-13 Infineon Technologies Ag Verfahren zur Herstellung eines CBRAM-Halbleiterspeichers
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US7374174B2 (en) 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
US7317200B2 (en) 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
US7427770B2 (en) 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US7709289B2 (en) 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
JP2007019305A (ja) * 2005-07-08 2007-01-25 Elpida Memory Inc 半導体記憶装置
US7274034B2 (en) 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7332735B2 (en) 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
US7579615B2 (en) 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
US7251154B2 (en) 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7924608B2 (en) * 2006-10-19 2011-04-12 Boise State University Forced ion migration for chalcogenide phase change memory device
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US8238146B2 (en) * 2008-08-01 2012-08-07 Boise State University Variable integrated analog resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US20110079709A1 (en) * 2009-10-07 2011-04-07 Campbell Kristy A Wide band sensor
US8284590B2 (en) 2010-05-06 2012-10-09 Boise State University Integratable programmable capacitive device
JP5348108B2 (ja) * 2010-10-18 2013-11-20 ソニー株式会社 記憶素子
US9478419B2 (en) 2013-12-18 2016-10-25 Asm Ip Holding B.V. Sulfur-containing thin films
US9245742B2 (en) 2013-12-18 2016-01-26 Asm Ip Holding B.V. Sulfur-containing thin films
US9461134B1 (en) 2015-05-20 2016-10-04 Asm Ip Holding B.V. Method for forming source/drain contact structure with chalcogen passivation
US10490475B2 (en) 2015-06-03 2019-11-26 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation after oxide removal
US9711350B2 (en) 2015-06-03 2017-07-18 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation
US9741815B2 (en) 2015-06-16 2017-08-22 Asm Ip Holding B.V. Metal selenide and metal telluride thin films for semiconductor device applications
US9711396B2 (en) 2015-06-16 2017-07-18 Asm Ip Holding B.V. Method for forming metal chalcogenide thin films on a semiconductor device

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1131740A (en) 1912-04-11 1915-03-16 Otto C Schwarz Building-block.
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3450967A (en) * 1966-09-07 1969-06-17 Vitautas Balio Tolutis Selenium memory cell containing silver up to 2 atomic percent adjacent the rectifying contact
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
GB1131740A (en) * 1967-08-24 1968-10-23 Inst Fysiki I Mat Semi-conductor devices
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4350541A (en) * 1979-08-13 1982-09-21 Nippon Telegraph & Telephone Public Corp. Doping from a photoresist layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
JPS6024580B2 (ja) 1980-03-10 1985-06-13 日本電信電話株式会社 半導体装置の製法
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4410421A (en) 1982-02-08 1983-10-18 Electric Power Research Institute Process for nitrogen removal from hydrocarbonaceous materials
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4843443A (en) 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4673957A (en) 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4668968A (en) 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4809044A (en) 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5406509A (en) 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5534711A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
KR940004732A (ko) 1992-08-07 1994-03-15 가나이 쯔또무 패턴 형성 방법 및 패턴 형성에 사용하는 박막 형성 방법
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
JP3363154B2 (ja) 1995-06-07 2003-01-08 ミクロン テクノロジー、インコーポレイテッド 不揮発性メモリセル内のマルチステート材料と共に使用するスタック/トレンチダイオード
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5714768A (en) 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
WO1999028914A2 (en) 1997-12-04 1999-06-10 Axon Technologies Corporation Programmable sub-surface aggregating metallization structure and method of making same
JP3149937B2 (ja) * 1997-12-08 2001-03-26 日本電気株式会社 半導体装置およびその製造方法
US6011757A (en) 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6388324B2 (en) 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
WO2000048196A1 (en) 1999-02-11 2000-08-17 Arizona Board Of Regents Programmable microelectronic devices and methods of forming and programming same
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
WO2002021542A1 (en) 2000-09-08 2002-03-14 Axon Technologies Corporation Microelectronic programmable device and methods of forming and programming the same
US6563164B2 (en) 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6404665B1 (en) 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6649928B2 (en) 2000-12-13 2003-11-18 Intel Corporation Method to selectively remove one side of a conductive bottom electrode of a phase-change memory cell and structure obtained thereby
US6696355B2 (en) 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6437383B1 (en) 2000-12-21 2002-08-20 Intel Corporation Dual trench isolation for a phase-change memory cell and method of making same
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6646297B2 (en) 2000-12-26 2003-11-11 Ovonyx, Inc. Lower electrode isolation in a double-wide trench
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
DE60220912T2 (de) 2001-05-07 2008-02-28 Advanced Micro Devices, Inc., Sunnyvale Speichervorrichtung mit einem sich selbst einbauenden polymer und verfahren zur herstellung derselben
US6480438B1 (en) 2001-06-12 2002-11-12 Ovonyx, Inc. Providing equal cell programming conditions across a large and high density array of phase-change memory cells
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6570784B2 (en) 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6487113B1 (en) 2001-06-29 2002-11-26 Ovonyx, Inc. Programming a phase-change memory with slow quench time
US6462984B1 (en) 2001-06-29 2002-10-08 Intel Corporation Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6511862B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6642102B2 (en) 2001-06-30 2003-11-04 Intel Corporation Barrier material encapsulation of programmable material
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6514805B2 (en) 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
EP1428212A4 (en) 2001-09-01 2008-01-09 Energy Conversion Devices Inc STORING DATA INCREASED IN OPTICAL MEMORY AND RECOVERY SYSTEMS USING BLUE LASERS AND / OR PLASMON LENSES
US6545287B2 (en) 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US7109056B2 (en) * 2001-09-20 2006-09-19 Micron Technology, Inc. Electro-and electroless plating of metal in the manufacture of PCRAM devices
US6690026B2 (en) 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
WO2003032392A2 (en) 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6667900B2 (en) 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
US6625054B2 (en) 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6671710B2 (en) 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Also Published As

Publication number Publication date
DE60320373D1 (de) 2008-05-29
US20030143782A1 (en) 2003-07-31
KR100660245B1 (ko) 2006-12-20
JP2005516418A (ja) 2005-06-02
EP1470589B1 (en) 2008-04-16
WO2003065456A3 (en) 2003-12-04
CN100375284C (zh) 2008-03-12
CN1647278A (zh) 2005-07-27
US20040029351A1 (en) 2004-02-12
DE60320373T2 (de) 2009-02-19
WO2003065456A2 (en) 2003-08-07
EP1470589A2 (en) 2004-10-27
AU2003212814A1 (en) 2003-09-02
US6812087B2 (en) 2004-11-02
KR20040083432A (ko) 2004-10-01
ATE392714T1 (de) 2008-05-15
TWI251263B (en) 2006-03-11

Similar Documents

Publication Publication Date Title
TW200303040A (en) Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures
TWI310588B (en) A method for making a semiconductor device with a high-k gate dielectric and a metal gate electrode
TW477001B (en) Method for forming gate electrode of flash memory
TWI293508B (en) Process for producing high quality pzt films for ferroelectric memory integrated circuits
TW442957B (en) Feram cell with internal oxygen source and method of oxygen release
TW200834894A (en) Non-volatile memory devices and methods of manufacturing the same
KR20180002940A (ko) 자기 메모리 소자의 제조 방법
CN111477741A (zh) 非易失多值忆阻器
JP2008529275A (ja) 窒化酸化物層を有する半導体デバイスおよびこのための方法
JP2008244108A (ja) 半導体装置および半導体装置の製造方法
CN105789439A (zh) 一种Cu基阻变存储器的制备方法及存储器
JP2008529275A5 (zh)
TW200304156A (en) Method for fabricating capacitor device
TWI270168B (en) Method for manufacturing non-volatile memory
JPH08236769A (ja) 半導体素子のゲ−ト電極及びその製造方法
JP4940494B2 (ja) 不揮発性半導体記憶装置およびその製造方法
JPH06140519A (ja) 半導体装置及びその製造方法
US10700276B2 (en) Preparation method of Cu-based resistive random access memory, and memory
JP2008091538A (ja) 半導体装置の製造方法
KR101726995B1 (ko) 콘택 형성 방법
KR101055388B1 (ko) 반도체 소자의 제조 방법
JPH11145412A (ja) 電子装置およびその製造方法ならびに誘電体キャパシタおよびその製造方法ならびに強誘電体不揮発性記憶装置およびその製造方法
JP2018181863A (ja) グラフェン基板、及びこの製造方法
TW577151B (en) Manufacturing method of read only memory
JP2000235978A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees