RU2409605C2 - Обладающие покрытием абразивные материалы и способ их изготовления - Google Patents

Обладающие покрытием абразивные материалы и способ их изготовления Download PDF

Info

Publication number
RU2409605C2
RU2409605C2 RU2006136877/05A RU2006136877A RU2409605C2 RU 2409605 C2 RU2409605 C2 RU 2409605C2 RU 2006136877/05 A RU2006136877/05 A RU 2006136877/05A RU 2006136877 A RU2006136877 A RU 2006136877A RU 2409605 C2 RU2409605 C2 RU 2409605C2
Authority
RU
Russia
Prior art keywords
particles
coating
oxide
tungsten
molybdenum
Prior art date
Application number
RU2006136877/05A
Other languages
English (en)
Other versions
RU2006136877A (ru
Inventor
Антионетте КАН (ZA)
Антионетте КАН
Анна Эмела МОЧУБЕЛЕ (ZA)
Анна Эмела МОЧУБЕЛЕ
Джеффри Джон ДЕЙВИС (ZA)
Джеффри Джон ДЕЙВИС
Йоханнес Лодевикус МАЙБУРГ (ZA)
Йоханнес Лодевикус МАЙБУРГ
Original Assignee
Элемент Сикс (Пти) Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Элемент Сикс (Пти) Лтд. filed Critical Элемент Сикс (Пти) Лтд.
Publication of RU2006136877A publication Critical patent/RU2006136877A/ru
Application granted granted Critical
Publication of RU2409605C2 publication Critical patent/RU2409605C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Abstract

Изобретение может быть использовано при изготовлении абразивных инструментов. Используют множество сверхтвердых абразивных частиц субмикрометрового или нанометрового размера алмаза или кубического нитрида бора или комбинации этих материалов и обладающие витреофильными поверхностями, способными образовывать химические связи с оксидами. Наносят на частицы покрытия из оксидного материала-предшественника и затем термически обрабатывают для высушивания и очистки покрытий. Покрытия выбраны из группы, включающей нитриды титана, ванадия, ниобия, тантала, молибдена и вольфрама или карбиды ванадия, ниобия, тантала, молибдена и вольфрама, фазу анатаза диоксида титана, фазу рутила диоксида титана, тетрагональный диоксид циркония, моноклинный диоксид циркония, диоксид циркония, стабилизированный оксидом иттрия или оксидом магния, переходные структуры или альфа-фазу оксида алюминия и оксиды ванадия, ниобия, тантала, гафния, молибдена и вольфрама, кварцевое стекло. Изобретение позволяет наносить покрытия на абразивы субмикрометрового или нанометрового размера. 5 н. и 30 з.п. ф-лы, 6 ил., 2 табл.

Description

УРОВЕНЬ ТЕХНИКИ
Изобретение относится к обладающим покрытием абразивным частицам и материалам и к способу их изготовления.
Абразивные зернистые материалы, такие как частицы алмаза и кубического нитрида бора, широко применяются для распиливания, сверления, шлифования, полирования и других абразивных операций и операций резания. В таких случаях применения зернистый материал обычно окружен матрицей, состоящей из металлов, таких как Fe, Co, Ni, Cu и их сплавы (связывание металлом). Альтернативно можно использовать матрицы из смолы (связывание смолой) или стекла (связывание стеклом), и выбор матрицы зависит от конкретной области применения абразива.
Применение абразивного зернистого материала для изготовления абразивных инструментов связано с затруднениями. Связанные стеклом шлифовальные круги и инструменты, содержащие сверхтвердые абразивные частицы, такие как алмаз и кубический нитрид бора, широко применяются в обычных операциях шлифования. Обычно абразивные частицы удерживаются в пористой стеклянной матрице. Инструменты изготавливают путем смешивания или объединения сверхтвердых абразивных частиц со стеклообразной фриттой и/или стеклообразующими исходными материалами, уплотнения или придания необходимой формы шлифовальному кругу или компонентам указанного круга с последующей термической обработкой при температуре, достаточной для спекания стекла в необходимой степени, так чтобы образовалась измельчающаяся пористая матрица для сверхтвердых абразивных частиц.
Имеются различные затруднения, которые ограничивают изготовление и применение таких шлифовальных кругов и изделий.
Во-первых, в случае, когда необходимые сверхтвердые абразивные частицы представляют собой алмаз, использующиеся или идеально необходимые температуры, длительность термической обработки и среда в печи являются такими, при которых может происходить значительное разрушение частиц алмаза вследствие окисления. Хорошо известно, что реакции окисления алмаза могут в заметной степени начаться на воздухе при температуре, равной лишь 550°С, и могут стать очень быстрыми при температуре, превышающей 800°С. Это ограничивает технологии изготовления в том отношении, что используются приводящие к затруднениям и иногда дорогостоящие газовые среды. Кроме того, реакции окисления алмаза зависят от площади поверхности и становятся чрезвычайно быстрыми, когда размер абразивных частиц алмаза становится небольшим. Это ограничивает обычное применение алмаза в связанных стеклом системах крупными зернами, такими как обладающими диаметром примерно от 100 до 150 мкм, хотя для некоторых случаев применения могут потребоваться мелкие частицы алмаза размером от 1 до 10 мкм.
В стеклянные спрессованные элементы часто необходимо включать органические соединения и агенты, чтобы путем пиролиза и термического разложения таких органических соединений можно было регулируемым образом придать пористость. Хотя можно использовать инертные газовые среды, такой пиролиз органических компонентов приводит к обладающим высокой окислительной способностью продуктам, которые могут окислить и разрушить абразивные частицы алмаза.
Во-вторых, когда необходимым сверхтвердым абразивом являются частицы кубического нитрида бора, некоторые стеклообразующие компоненты или соединения могут нежелательным образом взаимодействовать с кубическим нитридом бора с выделением большого количества газа и вспениванием, что может разрушить или повредить шлифовальный круг или изделие. Примерами таких стеклообразующих компонентов являются оксиды щелочных металлов, такие как оксид лития (Li2O), оксид натрия (Na2O) и оксид калия (K2O). Эти компоненты могут являться флюсами, необходимыми для спекания и образования стекла. Известно, что оксид лития легко реагирует с кубическим нитридом бора при повышенных температурах с выделением азота (N2). Такое выделение газа и вызванное этим вспенивание может разрушить заготовку связанного стеклом шлифовального круга или изделие. Поэтому выбор связующих стекол ограничивается такими, которые не содержат значительных количеств соединений, которые могут энергично взаимодействовать с кубическим нитридом бора.
Это затруднение усиливается, когда частицы кубического нитрида бора становятся мельче, поскольку значительно увеличивается площадь поверхности и образующейся реакционноспособной поверхности, и поэтому наблюдается тенденция не использовать кубический нитрид бора, обладающий широким распределением частиц по размерам.
В-третьих, когда механические смеси комбинаций сверхтвердых частиц и стеклянной фритты и/или исходных материалов для изготовления стекла обрабатывают при условиях спекания и образования стекла, связывание и закрепление абразивных частиц в стеклообразной матрице может быть затруднительным вследствие недостаточного смачивания и контактирования абразивных частиц и стекла.
В-четвертых, во время изготовления связанных стеклом инструментов часто необходимы низкие скорости охлаждения, чтобы свести к минимуму вызванные растрескиванием повреждения, которые могут происходить вследствие несогласованного термического расширения абразивных зерен и пористой связывающей стеклянной матрицы.
В предшествующем уровне техники рассматривали такие затруднения. В ЕР 0400322 (так же опубликованном, как US 4951427) заявлены абразивные частицы, включая алмаз и cBN, содержащие огнеупорный оксид металла, в основном покрывающий поверхность указанных частиц. Заявлено, что покрытия из оксидов металлов способны в основном устранить воздействие связывающей стеклянной матрицы на частицы cBN в шлифовальных кругах во время их изготовления. Предпочтительными тугоплавкими оксидами металлов являются оксиды титана, циркония, алюминия и кремния. Наиболее предпочтительным является диоксид титана.
Рассматриваемый способ изготовления шлифовальных кругов включает нанесение на частицы покрытия из металла в элементной форме с последующим превращением указанного покрытия в оксиды посредством термической обработки, предпочтительно - во время обжига в окислительной атмосфере. Хотя в одном примере описан альтернативный способ для TiO2, включающий образование взвеси с металлоорганическим соединением, а именно с тетраизопропилтитанатом, с последующим разложением указанного металлоорганического соединения путем нагревания, приведенный пример является неосуществимым, подробно не описан и не предоставляет средства для нанесения на отдельные мелкие частицы покрытия из выбранных фаз диоксида титана.
Кроме того, эти методики неприемлемы, когда становятся меньше размеры частиц необходимых исходных компонентов, в особенности в случае микрометровых и субмикрометровых измельченных материалов и в еще большей степени - в случае нанометровых измельченных материалов, что обусловлено значительной трудностью нанесения равномерного покрытия на каждую очень мелкую частицу и склонностью к образованию агломератов мелких частиц. Таким образом, применение таких методик налагает ограничения на нанесение покрытий на мелкие частицы измельченных абразивных материалов.
В US 4011064 показано, что шероховатые зернистые прилипающие покрытия можно нанести на абразивные частицы cBN путем размола частиц вместе с соединениями металлов на шаровой мельнице, проводимого таким образом, чтобы соединение металла могло размазаться по поверхностям частиц. Затем соединение металла можно разложить путем нагревания при температуре примерно от 800 до 1400°С в инертной или восстановительной атмосфере с превращением соединения металла в металл. Типичным рассмотренным соединением металла является сульфид вольфрама, WS2, который приводит к гранулированному покрытию из металлического вольфрама на частицах cBN размером от 125 до 149 мкм.
Предполагается, что эту методику весьма затруднительно использовать для более мелких частиц, таких как размером, равным 10 мкм или менее, и что она совершенно неприменима для частиц субмикрометрового и нанометрового размера вследствие того, что сам размазывающийся материал должен быть в достаточной степени измельчен в частицы, намного меньшие, чем частицы, на которые наносится покрытие. Кроме того, соединения металлов, применимые в этой методике, ограничиваются такими, которые обладают механическими характеристиками, обеспечивающими размазывание.
Большая часть исследований предшествующего уровня техники, относящихся к включению абразивных частиц в связанные инструменты и круги, посвящена нанесению на абразивные частицы покрытий из металлов, керамики и комбинации таких материалов. В этих исследованиях предшествующего уровня техники для образования таких покрытий используются различные методики химического осаждения из паровой фазы или физического осаждения из паровой фазы. Кроме того, предполагается, что такие методики в ограниченной степени и с трудом можно применять для мелких абразивных частиц, в особенности микрометрового, субмикрометрового или нанометрового размера. Предполагается, что методики предшествующего уровня техники в целом обладают тем недостатком, что для всех и каждой частиц затруднительно создать одинаковые условия проведения реакций и нанесения покрытия, что неизбежно приведет к неодинаковым покрытиям на разных частицах.
Сохраняется необходимость в эффективных способах нанесения на абразивные частицы покрытий из материалов, которые защищают абразив от химического взаимодействия со многими необходимыми связующими материалами шлифовальных кругов и инструментов, связывающих стеклом или металлом, и др. В частности, необходимы способы, которые позволяют использовать мелкозернистые абразивы микрометрового, субмикрометрового и даже нанометрового размера.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В одном варианте осуществления настоящего изобретения способ нанесения покрытия на сверхтвердые абразивные частицы включает стадии использования множества сверхтвердых абразивных частиц, обладающих витреофильными поверхностями, нанесения на сверхтвердые абразивные частицы покрытия из оксидного материала-предшественника и термической обработки обладающих покрытием сверхтвердых абразивных частиц для высушивания и очистки покрытий.
Затем подвергнутые термической обработке обладающие покрытием сверхтвердые абразивные частицы дополнительно обрабатывают для превращения материала-предшественника в оксид, нитрид, карбид, оксинитрид, оксикарбид или карбонитрид оксидного материала-предшественника, или в элементную форму оксидного материала-предшественника, или в их комбинации.
Оксидный материал-предшественник предпочтительно представляет собой аморфный или нанокристаллический оксид, гидроксид или оксогидроксид.
Сверхтвердые абразивные частицы предпочтительно выбраны из группы, включающей алмаз, кубический нитрид бора, карбид кремния, нитрид кремния, карбид бора, субоксид бора (В6О) и т.п.
Предпочтительно, если сверхтвердые абразивные частицы представляют собой алмаз или кубический нитрид бора или комбинацию этих материалов и в этом случае частицы должны быть подвергнуты поверхностной обработке, чтобы сделать их поверхности витреофильными. Это образует другой объект настоящего изобретения, согласно которому находящиеся на поверхности химические частицы выбираются и генерируются путем соответствующей обработки для того, чтобы образовавшиеся таким образом на поверхности химические частицы могли быть совместимыми с последующими мокрыми химическими реакциями и средствами нанесения покрытия на сверхтвердые частицы и участвовали в них. Поверхностные химические частицы такого рода можно описать как витреофильные или склонные взаимодействовать со стеклом, в том отношении, что они могут образовывать связи с оксидными компонентами, типичными для стекла и стеклоподобных аморфных материалов. В этом случае материалы покрытия, вероятно, химически свяжутся с поверхностью сверхтвердых частиц.
Подвергнутые превращению материалы-предшественники матрицы обычно выбраны из числа обладающих зернами микрометрового, субмикрометрового или нанометрового размера оксидов, нитридов, карбидов, оксинитридов, оксикарбидов, карбонитридов или элементных форм материалов-предшественников, или их комбинаций. Они обычно включают оксиды, нитриды, карбиды, оксинитриды, оксикарбиды и карбонитриды алюминия, титана, кремния, ванадия, циркония, ниобия, гафния, тантала, хрома, молибдена и вольфрама и любые подходящие комбинации этих материалов. Предпочтительно, если эти оксидные материалы-предшественники являются аморфными или обладают зернами нанометрового размера.
Некоторые оксидные материалы-предшественники с помощью соответствующей обработки можно восстановить в элементные формы. Примерами этого класса материалов-предшественников являются оксиды молибдена и вольфрама.
Оксидные материалы-предшественники предпочтительно наносят на сверхтвердые абразивные частицы с помощью так называемой золь-гелевой методики. Сверхтвердые частицы суспендируют в жидких средах, в которые введены подходящие химические реагенты, предпочтительно - один или большее количество алкоксидов, так чтобы могли образоваться коллоидные частицы, которые связываются с поверхностями и включаются в покрытия, находящиеся на указанных частицах. Образованные таким образом покрытия преимущественно представляют собой микропористые оксиды, гидроксиды или оксогидроксиды указанных выше металлов или металлоидов.
Для удаления летучих веществ и нежелательных химических веществ, присоединенных к большим участкам поверхности микропористых аморфных покрытий, таких как гидроксилсодержащие частицы, в особенности -ОН, предпочтительно проводить нагревание на воздухе, в вакууме или инертном газе с регулированием температуры.
Для кристаллизации покрытий с образованием мелкозернистых или нанометровых оксидных керамик можно использовать дополнительную термическую обработку или прокаливание.
Поскольку некоторые оксидные керамики в некоторых температурных диапазонах подвергаются фазовым превращениям, выбор конкретных кристаллических фаз путем использования соответствующих температуры и длительности является другим объектом настоящего изобретения.
Реакции с регулированием температуры в реакционноспособных газах также можно использовать для превращения аморфных оксидов или кристаллических оксидных керамик в кристаллические неоксидные керамики. В частности, по реакции покрытий с аммиаком образуются нитриды. Карбиды можно получить по реакции покрытий со смесями углеродсодержащих газов с водородом, например со смесями метана или этана с водородом. Если некоторые оксидные покрытия восстанавливаются водородом, то их можно превратить в обладающие зернами микрометрового и нанометрового размера элементы или металлы.
Отличительной особенностью настоящего изобретения является то, что вследствие аморфного или микрокристаллического характера оксидных предшественников покрытий температуры, необходимые для их превращения в соответствующие керамики или металлы по реакции с газами, намного ниже температур, необходимых для обычных оксидных керамик, получаемых с помощью обычного прокаливания и плавления.
Способ, предлагаемый в настоящем изобретении, также предоставляет возможность изготовления множества обладающих покрытием сверхтвердых абразивных материалов, предпочтительно - обладающих микрометровым или меньшим диаметром, более предпочтительно - обладающих субмикрометровым и нанометровым размером. Однако также можно изготовить специфические материалы из обладающего покрытием алмаза и кубического нитрида бора диаметром от нескольких десятков микрометров до нескольких сотен микрометров, которые включают керамические покрытия, обладающие специфическими фазами, структурой и размером зерен, и, в частности, обладающие зернами нанометрового размера керамики. Примеры таких оксидных керамик включают диоксид циркония, ZrO2 в метастабильной тетрагональной фазе, структуры диоксида циркония, стабилизированные путем изменения состава, такие как содержащие от 3 до 8% оксида иттрия, и моноклинной фазы диоксида циркония, и диоксида титана, TiO2, преимущественно в фазе анатаза или рутила. Также являются новыми многие из неоксидных керамических покрытий, получаемых способом, предлагаемым в настоящем изобретении, включая нитриды, карбиды, оксинитриды, оксикарбиды и карбонитриды переходных металлов, таких как ванадий, ниобий, тантал, гафний, молибден и вольфрам. Кроме того, некоторые оксидные материалы покрытий не кристаллизуются в широких диапазонах температур и поэтому по механизмам спекания стекол могут образовывать плотные стекла. Сверхтвердые абразивы, полностью покрытые плотными стеклами, предпочтительно на основе диоксида кремния, SiO2, толщиной от нанометров до нескольких микрометров, являются новыми и их можно получить способами, предлагаемыми в настоящем изобретении.
Обладающие покрытием сверхтвердые абразивные частицы, которые являются очень мелкими, обладают микрометровым, субмикрометровым и нанометровым размером, обладающие покрытием из оксидных керамик, неоксидных керамик, таких как нитриды, карбиды, оксинитриды, оксикарбиды и карбонитриды, и из металлов, таких как молибден и вольфрам, являются уникальными только вследствие небольших размеров сверхтвердых частиц. Кроме того, дополнительная уникальность обусловлена специфическими структурами и тем, что материалы покрытий обладают зернами нанометрового размера.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение ниже только в качестве примера будет более подробно описано со ссылкой на прилагаемые чертежи, на которых представлено следующее:
На фиг.1 приведена блок-схема стадий способа, предлагаемого в настоящем изобретении.
На фиг.2 приведена рентгенограмма частиц cBN, обладающих покрытием из диоксида титана, промежуточного материала в предпочтительном варианте осуществления способа, предлагаемого в настоящем изобретении.
На фиг.3 приведена рентгенограмма частиц cBN, обладающих покрытием из нитрида титана, полученного термической обработкой частиц cBN, обладающих покрытием из диоксида титана, охарактеризованных на фиг.2.
На фиг.4 приведена рентгенограмма частиц cBN, обладающих покрытием из диоксида титана, полученного в соответствии с другим предпочтительным вариантом осуществления способа, предлагаемого в настоящем изобретении, после термической обработки при 475°С (А) и после термической обработки при 800°С (В).
На фиг.5 приведена рентгенограмма частиц алмаза, обладающих покрытием из нитрида титана, полученных в соответствии с другим предпочтительным вариантом осуществления способа, предлагаемого в настоящем изобретении.
На фиг.6 приведена рентгенограмма частиц cBN, обладающих покрытием из диоксида циркония, полученного в соответствии с еще одним предпочтительным вариантом осуществления способа, предлагаемого в настоящем изобретении, после сушки (А), после термической обработки при 475°С (В) и после термической обработки при 800°С (С).
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Настоящее изобретение относится к обладающим покрытием абразивным частицам и материалам, предназначенным для применения для распиливания, сверления, шлифования, полирования и других абразивных операций и операций резания.
Настоящее изобретение позволяет преодолеть множество из затруднений, имеющихся в предшествующем уровне техники, относящихся к возможности эффективного нанесения покрытий на более мелкие абразивные частицы, предпочтительно - на частицы размером несколько микрометров и менее, и еще более предпочтительно - на абразивы субмикрометрового и даже нанометрового размера. В частности, обнаружено, нанесение на частицы покрытия по золь-гелевой методике в суспензии может быть все более эффективным и полезным по мере того, как частицы становятся более мелкими и приобретают все более и более значительную площадь поверхности, и при этом нанесению покрытий может способствовать химическая обработка поверхности. Кроме того, среда из химикатов вокруг всех частиц в динамически перемешиваемой суспензии может быть практически одинаковой, что приводит к предположению о том, что покрытие на всех частицах будет в основном идентичным. Таким образом можно свести к минимуму различия материалов покрытий на всех частицах.
Сверхтвердые абразивные частицы предпочтительно выбраны из группы, включающей алмаз, кубический нитрид бора, карбид кремния, нитрид кремния, карбид бора, субоксид бора (B6O) и т.п.
Предпочтительными сверхтвердыми абразивными частицами являются алмаз и кубический нитрид бора (cBN), обладающие размерами от нанометрового (нм) до миллиметрового (мм).
Керамические покрытия могут быть пористыми или не содержать пор.
Керамические материалы покрытий включают аморфные и кристаллические фазы оксидных керамик. Они включают оксиды титана, кремния, циркония, алюминия, ванадия, ниобия, гафния, тантала, хрома, молибдена и вольфрама и т.п. и любые подходящие комбинации этих материалов. Предпочтительными оксидами являются оксиды титана, циркония, кремния и алюминия.
Неоксидные керамики включают нитриды металлов, карбиды металлов, карбонитриды металлов. Предпочтительными нитридами являются нитриды титана, ванадия, ниобия, тантала, молибдена и вольфрама.
Диапазон толщин керамических покрытий находится в интервале от нанометрового (нм) до микрометрового (мкм).
В настоящем изобретении субмикрометровые частицы или зерна определяются как обладающие наибольшим диаметром, равным от 1 мкм (1000 нм) до 0,1 мкм (100 нм), и нанометровые частицы или зерна определяются как обладающие наибольшим диаметром, равным менее 0,1 мкм (100 нм).
Способ, предлагаемый в настоящем изобретении, обычно включает три технологические стадии, а именно: 1) использование сверхтвердых абразивных частиц, обладающих витреофильными поверхностями, или, если это является целесообразным, химическую обработку поверхностей сверхтвердых абразивных частиц для придания им витреофильности; 2) использование методик коллоидных суспензионных реакций для нанесения на сверхтвердые частицы покрытия из оксидного материала-предшественника; 3) термическую обработку обладающих нанесенным таким образом покрытием сверхтвердых частиц в газовых средах для высушивания и очистки покрытий с последующим превращением в выбранные оксиды (включая стекла), нитриды, карбиды, оксинитриды, оксикарбиды, карбонитриды и металлы выбранной фазы и состава.
На первой стадии на поверхности сверхтвердого измельченного материала проводят химические реакции для придания частицам витреофильной природы. Витреофильная, склонная взаимодействовать со стеклом, определяется, как обладающая такой природой, что легко может образовывать химические связи с оксидными материалами. Виды обработки, которые могут привести к образованию на поверхности химических соединений, необходимых для проявления витреофильности сверхтвердых частиц, включают, но не ограничиваются только ими, кипячение в кислотах-окислителях, таких как концентрированная азотная кислота, если это является подходящим, или обработка сильными окислительными реагентами, такими как растворы пероксида водорода, или нагревание на воздухе или в кислороде. Образованные таким образом поверхности обеспечивают образование и рост покрытий на основе оксидов или гидроксидов на измельченном материале и хорошую адгезию с образованными таким образом предшественниками покрытий на основе оксидов.
На второй стадии используется коллоидное суспензионное нанесение на сверхтвердые абразивные частицы покрытия из аморфных и/или обладающих зернами нанометрового размера гидратированных оксидных материалов-предшественников. Обнаружено, что модификация некоторых коллоидных методик позволяет аккуратно наносить покрытия на микрометровые, субмикрометровые и даже нанометровые частицы сверхтвердых материалов. Имеются две общие коллоидные методики, с помощью которых можно получить подходящие покрытия, в одной из которых используют водные растворы неорганических солей, а в другой используют металлоорганические соединения. Для этого предпочтительным подходом является указанная золь-гелевая методика, более предпочтительными - золь-гелевые методики с использованием гидролиза и поликонденсации алкоксидов или алкоголятов. Предшественники покрытий, сформированные по этой методике, являются микропористыми, аморфными или обладающими зернами нанометрового размера гидратированными оксидами с большой площадью поверхности. Золь-гелевые методики, в частности, являются весьма универсальными и пригодными для регулирования гетерогенного зародышеобразования и роста чрезвычайно правильных покрытий из гидратированных оксидных материалов-предшественников на поверхностях витреофильных суспендированных частиц, размер которых может составлять лишь 10 нм или даже менее.
Предпочтительной золь-гелевой методикой является медленное прибавление спиртового раствора алкоксида металла или комбинации алкоксидов металлов к суспензии частиц сверхтвердого материала в аликвоте раствора воды низкой концентрации в том же спирте. Алкоксиды металлов гидролизуются водой с образованием мономеров гидроксидов металлов, которые, в свою очередь, вступают в реакцию поликонденсации, которая постепенно приводит к образованию гидратированных микропористых оксидов, которые в настоящем изобретении называют оксидными материалами-предшественниками или покрытиями. Путем соответствующего выбора типа спирта, который обычно содержит такие же алкильные группы, как и алкоксид(ы), концентрации суспендированных сверхтвердых частиц, концентрации раствора алкоксида в спирте, соотношения алкоксид/вода, температуры и наличия или отсутствия других реагентов, таких как кислоты или основания, можно регулировать образование покрытия из оксидного предшественника на суспендированных сверхтвердых частицах. Для нанесения на суспендированный сверхтвердый измельченный материал необходимого покрытия в случае каждого типа использованного алкоксида необходимы специальные условия.
Важной особенностью этого подхода является то, что побочными продуктами реакций гидролиза алкоксидов и поликонденсации являются вода, спирты и гидроксидные соединения, находящиеся на части свободных поверхностей покрытия. Все эти побочные продукты легко удаляются путем сушки и термической обработки при низкой температуре. Кроме того, сами алкоксиды легко доступны в виде продуктов высокой чистоты. Таким образом, золь-гелевая методика приводит к очень чистым незагрязненным оксидам.
Еще одной очень важной особенностью способа, предлагаемого в настоящем изобретении, является то, что путем одновременного использования более одного типа алкоксида разных металлов можно получить большое количество смешанных оксидных материалов-предшественников. При этом подходе полученный таким образом оксидный материал-предшественник будет представлять собой смешанный оксид, в котором различные металлы распределены в молекулярном масштабе. Альтернативно известно, что можно получить алкоксидные комплексы, содержащие более одного металла. Эти алкоксидные комплексы можно использовать в способе, предлагаемом в настоящем изобретении. Следовательно, оксиды, нитриды и карбиды, полученные при полном применении способа, предлагаемого в настоящем изобретении, могут включать смешанные и легированные фазы. Кроме того, известно, что можно получить смешанные структуры алкоксидов металлов. Использование таких смешанных алкоксидов металлов также приводит к смешанным предшественникам оксидов металлов и затем к смешанным фазам покрытий.
Применение смесей алкоксидов или смешанных алкоксидов также позволяет легировать матричные материалы-предшественники и последующие материалы агентами, модифицирующими спекание и структуру, такими как оксид иттрия, оксид магния и т.п. Альтернативно такие модифицирующие структуру агенты можно ввести с помощь растворимых солей или во время проведения реакций с алкоксидами, или после их завершения. Примеры таких солей предпочтительно включают ацетаты и нитраты иттрия и магния. При получении материалов покрытий способом, предлагаемым в настоящем изобретении, можно использовать большое количество информации, имеющейся в области керамики, керметов и металлургии.
После извлечения из суспензии и промывки обладающие покрытием частицы медленно сушат, например, путем нагревания в вакууме при температуре ниже 100°С. Микропористые, аморфные покрытия можно дополнительно очистить путем нагревания в диапазоне температур от 300 до 400°С, обычно на воздухе или в инертной атмосфере для удаления остаточного спирта и воды из микропор и в особенности для преимущественного удаления содержащих гидроксильные группы (-ОН) поверхностных частиц, которые обычно находятся на больших участках поверхностей пор. При необходимости формирования относительно толстых покрытий иногда обнаруживается, что вследствие капиллярных сил, проявляющихся при испарении спирта и воды из пор, при сушке происходит усадка и растрескивание. Этот эффект можно свести к минимуму путем медленной сушки и путем использования так называемых регулирующих сушку добавочных химикатов, РСДХ.
Эти химикаты делают поры в оксидном предшественнике покрытия более широкими и однородными и тем самым уменьшают капиллярные силы, что приводит к меньшей склонности к растрескиванию. Примерами таких РСДХ являются щавелевая кислота и диметилформамид, ДМФ. Последний из них является предпочтительным.
Микропористые, аморфные или обладающие зернами нанометрового размера структуры материалов-предшественников покрытий делают их идеальными для реакционной термической обработки с программированием температуры в газообразных реагентах или средах с получением необходимых мелкозернистых и обладающих зернами нанометрового размера керамических фаз или стеклообразных фаз в качестве материала покрытия. В действительности, если оксидное покрытие способно восстанавливаться водородом, то можно получить металлические покрытия.
На третьей стадии реакционную термическую обработку с программированием температуры предшественников обладающих покрытием сверхтвердых частиц в выбранной газовой среде используют для частичного уплотнения покрытия и для его превращения в выбранный мелкозернистый или обладающий зернами нанометрового размера керамический материал. Термическую обработку на воздухе, в кислороде или в инертном газе можно использовать для прокаливания, уплотнения покрытия и кристаллизации покрытия в виде требующейся оксидной фазы. Выбор скорости нагрева, максимальной температуры и длительности нагревания при максимальной температуре зависит от структуры, фазы и типа требующегося оксида.
Если покрытие необходимо превратить в нитрид, то высушенный или прокаленный на воздухе обладающий покрытием материал можно нагреть в сухом аммиаке при температурах, обычно достигающих 1100°С, хотя в некоторых случаях может потребоваться использование температур, достигающих примерно 1400°С включительно. Обнаружено, что эта реакционная термическая обработка с программированием температуры приводит к постепенному восстановлению материала покрытия и может превратить оксидные основные покрытия в стехиометрические и нестехиометрические нитриды и оксинитриды. И в этом случае выбор скорости нагрева, скоростей потоков газов, максимальной температуры и длительности нагревания при максимальной температуре зависит от структуры, фазы и типа требующегося нитрида. Также обнаружено, что путем соответствующего выбора условий можно получить оксинитридные фазы.
Если покрытие необходимо превратить в карбид, то высушенный или прокаленный на воздухе обладающий покрытием материал можно нагреть в смеси углеродсодержащих газов, таких как метан или этан, с водородом при температурах, обычно ниже 1200°С, хотя в некоторых случаях может потребоваться использование температур, достигающих примерно 1500°С включительно. И в этом случае выбор скорости нагрева, скоростей потоков газов, максимальной температуры и длительности нагревания при максимальной температуре зависит от структуры, фазы и типа требующегося карбида. Также обнаружено, что путем соответствующего выбора условий можно получить оксикарбидные фазы. Альтернативно, обнаружено, что нитридные покрытия, полученные так, как описано выше, можно превратить в карбиды путем соответствующей термической обработки в смесях метана или этана с водородом. Путем соответствующего выбора условий можно получить карбонитридные фазы.
Некоторые оксидные покрытия можно легко восстановить в соответствующий элементарный металл путем восстановления в чистом водороде. Примерами таких покрытий являются оксиды вольфрама и молибдена, WO3 и МоО3, которые можно легко восстановить в металлы при низких температурах, обычно в диапазоне от 500 до 700°С.
Основной особенностью стадии реакции с программированием температуры способа, предлагаемого в настоящем изобретении, является то, что обнаружено, что размеры всех зерен полученных оксидных, нитридных, карбидных покрытий на сверхтвердых частицах часто являются нанометровыми. Кроме того, другой важной особенностью этой термической обработки является то, что температуры и времена, необходимые для превращения, являются низкими и непродолжительными соответственно по сравнению с температурами и временами, необходимыми для аналогичных превращений обычных оксидных материалов, проводимых по методикам плавления или сплавления. В некоторых случаях в способе, предлагаемом в настоящем изобретении, температуры образования нитридов ниже температур образования нитридов обычных оксидных материалов на величину, достигающую 400°С. Кроме того, обладающие покрытием сверхтвердые частицы можно отделить в неагломерированном виде.
Указанные выше стадии способа будут подробнее описаны ниже со ссылкой на фиг.1.
1. Обработка поверхности сверхтвердых частиц для придания им витреофильности.
В случае обладающего зернами микрометрового, субмикрометрового или нанометрового размера алмаза с помощью таких методик, как нагревание в концентрированных окисляющих кислотах, таких как смеси азотной и/или серной кислоты, можно сделать так, чтобы концевые поверхностные функциональные группы в основном представляли собой группы С-ОН, С-О-С, С=O и O=С-O-. Альтернативно, газовая термическая обработка в смеси 20% водород/аргон при 900°С для образования на поверхности концевых Н с последующей обработкой в смеси 20% кислород/аргон при 480°С приводит к тому, что на поверхности преобладают кислородсодержащие частицы. Также можно использовать другие методики образования кислородсодержащих функциональных групп, присоединенных к поверхности алмаза. Окисление поверхности алмаза делает ее витреофильной, т.е. способной к образованию химических связей с оксидами, включая, в частности, гидратированные оксидные структуры.
Предполагается, что в случае частиц cBN термическая обработка на воздухе при температуре выше 600°С приведет к увеличению концентрации борокислородных и азоткислородных частиц на поверхности, и это можно обнаружить с помощью инфракрасной Фурье-спектроскопии отражения. Такая поверхность обладает витреофильностью при последующем коллоидном нанесении покрытия на оксиды, полученные по золь-гелевой методике. Многие другие хорошо известные сверхтвердые материалы, такие как карбид кремния и нитрид кремния и т.п., содержат на своей поверхности окисленные химические группы, что обычно делает их витреофильными и пригодными для использования в способе, предлагаемом в настоящем изобретении.
2. Коллоидное нанесение покрытия на абразивные частицы.
В части 2(а) блок-схемы используются обычные золь-гелевые методики получения предшественников гидратированных оксидных материалов для необходимых матричных материалов. Один пример такого подхода включает гидролиз растворов сульфата алюминия при повышенных температурах, таких как равная 100°С, в присутствии органических соединений, таких как мочевина, для нанесения покрытия на частицы в суспензии. Таким образом можно получить покрытия из водного оксида алюминия.
Однако предпочтительным более общим подходом является применение реакций гидролиза и поликонденсации алкоксидов металлов в спиртовых растворах. Алкоксиды или алкоголяты металлов обладают общей формулой вида Mn+[OR]n, где М обозначает металл валентности n, О обозначает кислород и R обозначает алкильную группу. Металл связан с алкильными группами через атомы кислорода. Большинство алкоксидов металлов растворимы в спиртах и могут легко гидролизоваться водой в спиртовом растворе с образованием гидроксидов:
Figure 00000001
Затем можно провести реакции поликонденсации, такие как представленные приведенным ниже уравнением (2), и образовать связи М-О-М.
Figure 00000002
Последовательное проведение этих реакций приводит к трехмерной сетке -М-O-М-O-М-. Образовавшийся таким образом оксидный материал-предшественник обычно является аморфным или обладающим зернами нанометрового размера с очень большой площадью поверхности и является микропористым, содержащим в порах Н2О и спирт. На поверхностях пористой структуры находятся концевые гидроксильные группы, ОН и некоторые непрореагировавшие функциональные группы OR. Путем соответствующего выбора концентраций, соотношений алкоксид/вода, температуры, спирта-растворителя и введения других химикатов, таких как кислоты или основания, можно сделать так, чтобы в спиртовом растворе происходили зародышеобразование и рост пористого оксидного материала-предшественника. Необходимо подобрать подходящие концентрации суспендированных частиц, выступающих в качестве центров роста материала покрытия.
Раствор алкоксида (алкоксидов) металла получают в безводном спирте и затем в течение нескольких часов его при непрерывном перемешивании медленно прибавляют к суспензии сверхтвердых частиц в аликвоте чистой воды обычно в том же спирте. Для стабилизации суспензии можно прибавить пептизирующий реагент, такой как кислоту или основание.
Альтернативно, если необходимо использовать особенно реакционноспособный алкоксидный реагент, лучшее регулирование образования покрытия можно обеспечить путем медленного прибавления аликвоты воды в спирте к суспензии сверхтвердых частиц в суспензии алкоксида в безводном спирте.
Побочные продукты реакции - воду и спирт - можно удалить путем сушки и термической обработки при низкой температуре 2(b). Аналогичным образом можно удалить поверхностные функциональные группы ОН. Обычно после фильтрования, центрифугирования или осаждения и декантирования суспензии с последующей промывкой свежим чистым спиртом и/или деионизированной водой обладающие покрытием частицы можно медленно высушить в течение примерно двух дней при температуре около 60°С в низком вакууме. Последующее удаление остаточной воды и спирта можно обеспечить путем нагревания примерно до 300°С на воздухе.
Многие элементы периодической системы могут образовывать алкоксиды. Алкоксиды, найденные пригодными для получения оксидных матриц способом, предлагаемым в настоящем изобретении, включают алкоксиды титана, алюминия, циркония, хрома, кремния, вольфрама, молибдена, тантала, ниобия, ванадия, а алкоксиды кальция, магния, гафния, иттрия иногда пригодны в качестве добавок, включая комбинации этих алкоксидов. Алкоксиды, найденные пригодными для получения нитридных покрытий способом, предлагаемым в настоящем изобретении, включают алкоксиды алюминия, титана, циркония, кремния, тантала, хрома, ниобия, гафния, ванадия, молибдена и вольфрама и их комбинации. Алкоксиды, найденные пригодными для получения карбидных покрытий способом, предлагаемым в настоящем изобретении, включают алкоксиды титана, циркония, кремния, тантала, хрома, ниобия, гафния, ванадия, молибдена и вольфрама и их комбинации.
Алкильные группы R в общей формуле алкоксидов металлов, M[OR]n, могут включать метил, этил, н-пропил, н-бутил и любую группу общей формулы -CxH2x+1. Кроме того, включаются алкильные группы, в которых содержатся боковые алкильные группы, такие как изопропильная группа, -СН(СН3)2, втор-бутильная группа, -СНСН2СН3СН3, трет-бутильная группа, -С(СН3)3 и др.
Скорость реакции гидролиза и время достижения точки гелеобразования для каждого алкоксида металла сильно зависят от длины цепи алкильной группы. Чем меньше длина цепи R, тем быстрее гидролиз и тем меньше время достижения точки гелеобразования оксидного материала-предшественника в покрытии сверхтвердых частиц. На характеристики покрытия для каждого типа требующегося гидратированного оксидного предшественника покрытия может сильно повлиять выбор R.
Спирты, применяющиеся в качестве растворителя для алкоксида и воды и в качестве суспендирующей жидкости для сверхтвердых частиц, можно выбрать из числа любых обычно имеющихся в продаже жидких растворителей. Предпочтительными спиртами являются этанол, метанол и изопропиловый спирт. Более предпочтительно, но не обязательно, использовать спирт, содержащий такую же группу, что и алкоксид.
В таблице 1 приведен примерный, но не полный перечень некоторых алкоксидов, наиболее подходящих для способа, предлагаемого в настоящем изобретении.
ТАБЛИЦА 1
Металл (М) Название алкоксида Формула M[OR]n
Титан Метоксид титана Ti[ОСН3]4
Тетраэтоксид титана Ti[ОС2Н5]4
Н-пропоксид титана Ti[ОС3Н7]4
Изопропоксид титана Ti[ОСН(СН3)2]4
Н-бутоксид титана Ti[OC4H9]4
Алюминий Метоксид алюминия Al[ОСН3]3
Триэтилат алюминия Al[ОС2Н5]3
Н-пропоксид алюминия Al[ОС3Н7]3
Изопропоксид алюминия Al[ОСН(СН3)2]3
Н-бутоксид алюминия Al[ОС4Н9]3
Металл (М) Название алкоксида Формула M[OR]n
Три-втор-бутилат алюминия Al[ОСНСН2СН3СН3]3
Кремний Метоксид кремния Si[ОСН3]4
Ортосиликат кремния Si[OC2H5]4
Цирконий Метоксид циркония Zr[OCH3]4
Этоксид циркония Zr[OC2H5]4
Н-пропоксид циркония Zr[C3H7]4
Ванадий Этоксид ванадия V[OC2H5]4
Ванадилоксиэтоксид VO[OC2H5]4
Ванадилоксиизопропоксид VO[ОСН(СН3)2]4
Ниобий Этоксид ниобия Nb[OC2H5]5
Тантал Этоксид тантала Та[ОС2Н5]5
Хром Этоксид хрома Cr[ОС2Н5]3
Вольфрам Этоксид вольфрама W[OC2H5]5
Гафний Этоксид гафния Hf[OC2H5]4
После сушки/предварительной термической обработки обладающие покрытием частицы можно исследовать с помощью сканирующего электронного микроскопа и/или трансмиссионного электронного микроскопа.
3. Термическая обработка с программированием температуры (ТПТ)
Затем обладающие покрытием частицы подвергают термической обработке с программированием температуры. Это выполняют в выбранных газовых средах, при выбранных скоростях нагрева, при выбранных максимальных температурах, в течение выбранных периодов времени для регулирования удаления остаточных летучих примесей, уплотнения и спекания, перехода в другие структурные фазы и проведения химической реакции покрытия с газами, приводящей к другим типам материалов и фаз. Предпочтительным подходом является использование проточных газовых систем при тщательно подобранной и регулируемой скорости потока. Нагревание обладающего покрытием измельченного материала можно проводить в трубчатой печи, вращающейся трубчатой печи, приспособленной для медленного перемешивания частиц, и тем самым предотвращения спекания или агломерации, или в любой конструкции печи, пригодной для регулируемого нагрева измельченных материалов в выбранных регулируемых газовых средах.
Как показано на схеме, приведенной на фиг.1, после предварительной сушки/термической обработки 2(b) существуют несколько возможных путей превращения обладающего покрытием материала в требующиеся материалы (сама предварительная сушка/термическая обработка 2(b) может представлять собой многостадийную процедуру, например, сушку в вакууме при температуре ниже 100°С для удаления большей части свободной воды из микропор покрытия с последующим нагреванием, например примерно до 300°С в вакууме или на воздухе для удаления остаточных спиртов и абсорбированных гидроксильных функциональных групп с поверхности).
Одним путем, путем А, является прокаливание обладающих покрытием частиц на воздухе или в кислороде, или в инертном газе для превращения покрытия в необходимый оксид. В зависимости от конкретного используемого пористого оксидного материала-предшественника будет происходить спекание и/или кристаллизация, включающая уплотнение. Также могут происходить фазовые превращения в оксиды различной кристаллической структуры и их можно осуществить для получения требующихся оксидов. По этой методике обычно получают нанометровый оксид(ы). Альтернативно, при спекании в стекла некоторые оксидные покрытия не кристаллизуются, а уплотняются с образованием стекол. В каждом случае необходимые условия термической обработки определяют с помощью методик мониторинга и исследования реакции, таких как термогравиметрический анализ (ТГА), дифференциальный термический анализ (ДТА), рентгеноструктурный анализ (РСА) и т.п. Нагревание можно проводить в любом обычном оборудовании, пригодном для обработки тонкоизмельченного материала, хотя предпочтительными являются вращающиеся печи и печи с псевдоожиженным слоем.
Путь В используют для нагревания высушенных обладающих покрытием частиц, полученных на стадии 2(b), в аммиаке или смеси аммиака с инертным газом для превращения пористого оксидного предшественника покрытия в нитрид(ы) или оксинитрид(ы). Аммиак разлагается с образованием высокоактивных азот- и водородсодержащих частиц, которые постепенно восстанавливают и азотируют оксидный предшественник покрытия. Путем подбора условий можно получить различные оксинитридные и нитридные структуры. И в этом случае необходимые условия термической обработки определяют с помощью методик мониторинга и исследования реакции, таких как термогравиметрический анализ (ТГА), дифференциальный термический анализ (ДТА), рентгеноструктурный анализ (РСА) и т.п. Обычно образуются обладающие зернами нанометрового размера покрытия.
Путь С используют для нагревания высушенных обладающих покрытием частиц, полученных на стадии 2(b), в смесях углеродсодержащих газов с водородом для превращения пористого оксидного предшественника покрытия в карбид(ы) или оксикарбид(ы). Углеродсодержащим газом, в принципе, может быть любой газообразный углеводород, но предпочтительно - метан или этан. Смеси углеродсодержащий газ/водород можно разбавить инертным газом-носителем, таким как, например, аргон. Если активные газы составляют не более 20% от инертного газа-носителя, то маловероятно, что при утечке образуется взрывоопасная смесь газов с воздухом, так что улучшается безопасность. Типичные значения отношений количества метана или этана к количеству водорода составляют от 1/5 до 1/20. Необходимые условия термической обработки определяют с помощью методик мониторинга и исследования реакции, таких как термогравиметрический анализ (ТГА), дифференциальный термический анализ (ДТА), рентгеноструктурный анализ (РСА) и т.п.
Альтернативой превращения покрытий в оксинитриды и нитриды является использование пути А для выбранного оксида с последующим использованием пути D путем проведения термической обработки в содержащей аммиак среде с получением нитридов. Кроме того, при последующем использовании пути Е путем проведения обработки полученных таким образом нитридных покрытий в системах углеродсодержащий газ/водород можно получить другие карбидные микроструктуры, не такие как для пути С.
Кроме того, после получения оксидных структур с использованием пути А можно использовать путь F для получения карбидных микроструктур непосредственно из оксидных фаз.
В случае, когда пористое оксидное покрытие в 2(b) легко восстанавливается водородом, можно использовать путь G и можно получить мелкозернистые металлические покрытия.
Альтернативные комбинации путей допускают внесение изменений в содержание углерода, азота и кислорода в каждом карбиде, нитриде и оксиде. Например, посредством выбора пути и условий ТПТ можно получить оксинитридные материалы, материалы MNOx, в которых М обозначает металл, с выбором х в диапазоне от 0,5 до 0,05. В другом примере посредством выбора пути и условий ТПТ можно получить карбонитридные материалы, материалы MCNy, в которых у может находиться в диапазоне от 0 до 1.
Температуры нагрева, необходимые для получения кристаллических систем требующегося состава и структуры для материалов покрытий, являются относительно низкими. Это может привести к образованию низкотемпературных кристаллических систем, которые не образуются по более часто применяющимся твердофазным реакциям, обычно проводимым при более высоких температурах. В большей части случаев необходимые температуры ниже 1200°С, часто ниже 1000°С и в некоторых случаях составляют лишь 550°С.
Настоящее изобретение будет более подробно описано с помощью приведенных ниже неограничивающих примеров.
Пример 1
50 г субмикрометрового кубического нитрида бора, обладающего средним размером частиц, равным 0,7 мкм, в диапазоне размеров от 0,5 до 1,0 мкм обрабатывали в дымящей концентрированной серной кислоте, к которой прибавлен нитрат калия. После промывания и сушки субмикрометровый cBN дополнительно нагревали на воздухе при 600°С в течение 30 мин. Эта процедура приводила к тому, что в составе поверхности cBN преобладали кислородсодержащие функциональные группы и поэтому она стала витреофильной.
Затем 15 г этого субмикрометрового cBN с подвергнутой обработке поверхностью суспендировали в 865 мл чистого этанола в стакане, в который прибавляли 7,3 мл деионизированной воды. Суспензию энергично перемешивали лопастной мешалкой примерно при 100 оборотов/мин. 15,3 г жидкого изопропоксида титана, Ti(ОС3Н7)4, растворяли в 100 мл безводного этанола. Затем этот раствор по каплям в течение 1 ч при комнатной температуре (примерно 25°С) медленно прибавляли к суспензии cBN/этанол/вода, продолжая перемешивание. Перемешивание продолжали в течение еще 2 ч и содержимое стакана выдерживали в течение ночи. Полученные обладающие покрытием частицы извлекали из суспензии путем вакуумного фильтрования, трижды промывали этанолом и трижды деионизованной водой и затем сушили при 60°С в течение 2 дней в вакуумном сушильном шкафу. С помощью исследования на сканирующем электронном микроскопе (СЭМ) обнаружено, что каждая частица cBN была полностью покрыта соединением оксида титана, предположительно представляющим собой микропористый аморфный диоксид титана, TiO2.
Затем 10 г частиц cBN, обладающих покрытием из TiO2, подвергали термической обработке в потоке воздуха при 700°С в течение 3 ч. Скорость нагревания и скорость охлаждения поддерживали равными 5°С/мин. С помощью исследования на рентгеновском дифрактометре обнаружено, что покрытие закристаллизовалось в виде преимущественно анатазной фазы диоксида титана, как это показано на фиг.2, на котором приведена рентгенограмма, показывающая, что этот материал состоит только из диоксида титана и cBN. С помощью исследования этого измельченного материала на трансмиссионном электронном микроскопе, ТЭМ, обнаружено, что покрытие из диоксида титана закристаллизовалось в форме нанометровых кристаллитов размером примерно 30 нм.
5 г нагретых на воздухе субмикрометровых частиц cBN, обладающих покрытием из диоксида титана, дополнительно нагревали при 1100°С в течение 5 ч в трубчатой печи при пропускании потока сухого газообразного аммиака, NH3. Использовали скорость нагревания, равную 10°С/мин. Эта термическая обработка в аммиаке приводила к превращению обладающего зернами нанометрового размера покрытия из диоксида титана в обладающий зернами нанометрового размера нитрид титана, TiN. Исследование этого материала с помощью ТЭМ показало, что теперь покрытие состоит из кристаллитов нитрида титана размером примерно 40 нм. На фиг.3 приведена рентгенограмма, показывающая, что полученное покрытие в действительности представляет собой нитрид титана, TiN, называющийся осборнитом.
Пример 2
30 г порошкообразного cBN со средним размером частиц, равным 2 мкм, суспендировали в смешанном растворе 15% пероксида водорода, Н2О2, и 15% гидроксида аммония, NH4OH, в воде, состава 1:1. Это приводило к гидролизу поверхностей частиц cBN и тем самым делало их витреофильными. Затем порошок cBN, обладающий частицами размером 2 мкм, извлекали из суспензии путем фильтрования и промывали деионизированной водой.
Затем 25,5 г полученного таким образом порошкообразного cBN суспендировали в 1440 мл этанола, в который прибавляли 13,1 мл деионизированной воды. Суспензию обрабатывали с помощью ультразвукового зонда в течение 15 мин для разрушения всех агломератов частиц cBN. 20,7 г изопропоксида титана растворяли в 100 мл безводного этанола. Затем этот раствор по каплям в течение 1 ч при комнатной температуре при энергичном перемешивании прибавляли к суспензии cBN в смеси этанол/вода. После прибавления суспензию перемешивали в течение еще 2 ч и затем выдерживали в течение ночи. Затем измельченный материал извлекали из суспензии путем фильтрования и трижды промывали чистым этанолом и затем трижды промывали деионизованной водой и затем сушили при 60°С в течение 2 дней в вакуумном сушильном шкафу. Исследование этого измельченного материала на электронном микроскопе с использованием устройства СДЭ показало, что на cBN имеется покрытие из соединения титана с кислородом. Все частицы были полностью покрыты в одинаковой степени.
Затем 20 г этого обладающего покрытием cBN прокаливали в трубчатой печи в потоке сухого воздуха при 450°С в течение 3 ч. Скорость нагревания и охлаждения поддерживали равными 5°С/мин. Исследование с помощью рентгеновского дифрактометра показало, что покрытие представляет собой диоксид титана, TiO2, со структурой анатаза.
8 г прокаленного cBN, обладающего покрытием из диоксида титана со структурой анатаза, нагревали в трубчатой печи при 1100°С в течение 5 ч в потоке сухого газообразного аммиака. С помощью исследования на рентгеновском дифрактометре показано, что покрытие из диоксида титана со структурой анатаза превратилось в нитрид титана.
Таким образом на образцы cBN, обладающие частицами со средним размером, равным 2 мкм, наносили покрытие из аморфного диоксида титана со структурой анатаза и нитрида титана соответственно.
Пример 3
105 г ограненного кристаллического cBN, пропущенного через сито США 120/140 меш (105-125 мкм), обрабатывали в кипящей 32 об.% хлористоводородной кислоте, промывали водой и сушили. Затем этот материал нагревали на воздухе при 650°С в течение 1 ч для небольшого окисления поверхностей частиц.
Затем частицы cBN суспендировали в 500 мл чистого этанола, к которому прибавляли 10,6 мл деионизированной воды. Суспензию образовывали и поддерживали с помощью механического перемешивания лопастной мешалкой примерно при 100 оборотов/мин. 20 г изопропоксида титана формулы Ti(ОСН(СН3)2)4 растворяли в 100 мл чистого безводного этилового спирта и этот раствор при перемешивании медленно прибавляли к суспензии, по каплям, в течение 2 ч. Затем суспензию перемешивали в течение еще 2 ч до завершения реакций гидролиза и поликонденсации. Затем измельченный материал cBN трижды промывали этиловым спиртом путем осаждения и декантации. После последней декантации материалу давали медленно высохнуть в течение двух дней при условиях окружающей среды, а затем в течение 24 ч в вакуумном сушильном шкафу при 60°С.
Затем обладающий покрытием cBN разделяли на два образца, один образец медленно нагревали на воздухе при 475°С и выдерживали при этой температуре в течение 3 ч, а второй образец аналогичным образом нагревали при температуре 800°С в течение 3 ч. На фиг.4 приведена рентгенограмма, показывающая, что (А), нагревавшийся при 475°С материал, представляет собой cBN, обладающий покрытием из очень мелкокристаллического диоксида титана, TiO2, со структурой анатаза, и что (В), нагревавшийся при 800°С материал представляет собой cBN, обладающий покрытием из мелкокристаллического диоксида титана, TiO2, преимущественно со структурой рутила при сохранении небольшого количества компонента со структурой анатаза.
Затем первый образец нагревали в сухом аммиаке при 1100°С в течение 5 ч и после этого покрытие из диоксида титана превращалось в нитрид титана. Изображения этого материала исследовали с помощью ТЭМ, и обнаружено, что все поверхности кристаллов cBN обладают хорошим покрытием, но в покрытии имеются небольшие трещины.
Пример 4
50 г алмаза, обладающего частицами микрометрового размера, полученного из синтетического алмаза с помощью дробления и сортировки, обладающего средним размером частиц, равным 1,0 мкм, в диапазоне размеров от 0,75 до 1,5 мкм обрабатывали в дымящей концентрированной серной кислоте, к которой прибавлен нитрат калия. Эта очистка показала, что на поверхности алмаза не содержится металлов и неорганических загрязнений. Затем алмаз нагревали в потоке 20% кислорода в аргоне при 480°С в течение 1 ч. Эта процедура приводила к доведению до максимума количества кислородсодержащих функциональных групп, присоединенных к поверхностям алмаза, и делала их витреофильными.
15 г этого алмаза, обладающего частицами размером 1 мкм, с подвергнутой обработке поверхностью затем суспендировали в 865 мл чистого этанола в стакане, в который прибавляли 7,3 мл деионизированной воды. Суспензию энергично перемешивали лопастной мешалкой примерно при 100 оборотов/мин. 15,6 г жидкого изопропоксида титана, Ti(ОС3Н7)4, растворяли в 100 мл безводного этанола. Затем этот раствор по каплям в течение 1 ч при комнатной температуре (примерно 25°С) медленно прибавляли к суспензии алмаз/этанол/вода, продолжая перемешивание. Перемешивание продолжали в течение еще 2 ч и содержимое стакана выдерживали в течение ночи. Полученные обладающие покрытием частицы извлекали из суспензии путем вакуумного фильтрования, трижды промывали этанолом и трижды деионизованной водой и затем сушили при 60°С в течение 2 дней в вакуумном сушильном шкафу.
Затем 12 г высушенного обладающего покрытием алмаза нагревали на воздухе в статических условиях при 450°С в течение 2 ч. Использовали скорость нагревания, равную 5°С/мин. Затем материал исследовали с помощью СЭМ рентгеновской дифракции и обнаружили, что теперь на алмазе имеется покрытие из кристаллического диоксида титана со структурой анатаза, а другие фазы и соединения не обнаружены.
Затем 5 г этого обладающего покрытием материала подвергали термической обработке в потоке сухого аммиака в течение 5 ч при 1100°С. Скорость потока аммиака составляла примерно 1 л/мин, и использовали скорость нагревания, равную примерно 10°С/мин. Исследование с помощью СЭМ и ДРИ (дифракции рентгеновского излучения) показало, что теперь на алмазе имеется покрытие из нитрида титана. На фиг.5 приведена рентгенограмма, показывающая наличие алмаза и нитрида титана, а другие фазы и соединения не обнаружены. Таким образом, этот алмаз, обладающий частицами размером 1 мкм, полностью покрыт нитридом титана.
Пример 5
Методику, описанную выше в примере 4, можно проводить до получения порошкообразного алмаза, обладающего покрытием из кристаллического анатаза. Предполагается, что, если этот порошок обрабатывать в потоке, состоящем из газовой смеси 10% метана в аргоне и 10% водорода в аргоне при соответствующем соотношении метан: водород (предположительно 1:4) и при температуре, равной примерно 1350°С, в течение нескольких часов (вероятно, более 5 ч), то покрытие из диоксида титана превратиться в карбид титана. Таким образом получен алмаз, обладающий частицами размером 1 мкм, обладающий покрытием из карбида титана.
Пример 6
20 г образца ограненного кристаллического синтетического алмаза со средним размером частиц в диапазоне от 105 до 125 мкм суспендировали в 1,25 л этилового спирта чистоты более 99%. Образец алмаза предварительно нагревали при 480°С в течение 10 мин в потоке 20% кислорода в аргоне для получения поверхностей с преимущественно кислородсодержащими функциональными группами. При энергичном перемешивании к этой суспензии прибавляли 250 мл деионизированной воды и 30 мл 25 об.% водного раствора гидроксида аммония.
40 г тетраэтоксисилана (Si(OC2H5)4) растворяли в 100 мл этилового спирта чистоты 99%. Этот раствор с постоянной скоростью при перемешивании медленно прибавляли к суспензии, поддерживаемой при комнатной температуре, в течение 8 ч. Перемешивание продолжали в течение еще 1 ч. Перемешивание прекращали и обладающим покрытием частицам алмаза давали осесть. Надосадочная жидкость над осевшим множеством частиц алмаза была в основном прозрачной, и ее декантировали. Затем обладающие покрытием частицы трижды промывали чистым этиловым спиртом. После отфильтровывания множество частиц алмаза сушили в вакуумном сушильном шкафу при 60°С в течение 24 ч.
Затем образец обладающих покрытием частиц исследовали на сканирующем электронном микроскопе (СЭМ), который показал, что покрытие полностью закрывает частицы, и с помощью энергодисперсионного анализа (ЭДА) показано, что покрытие состоит из кремния и кислорода. Толщина найдена равной примерно 0,4 мкм.
Затем половину образца нагревали в потоке чистого аргона в трубчатой печи до температуры, равной 670°С (образец А), и выдерживали при этой температуре в течение 3 ч. Скорость нагревания составляла 3°С/мин. При последующем исследовании с помощью СЭМ обнаружено, что произошло определенное слияние покрытия и определенная усадка покрытия.
Другую половину образца нагревали в потоке чистого аргона до температуры, равной 900°С (образец В) в течение 3 ч, также при скорости нагревания, равной 3°С/мин. При исследовании с помощью СЭМ обнаружено, что покрытие обладает стеклообразным видом и полностью закрывает все части ограненных поверхностей алмаза. Толщина найдена равной примерно от 0,2 до 0,3 мкм и в основном оно представляло не содержащее пор кварцевое стекло. При исследовании с помощью оптического микроскопа покрытие оказалось прозрачным. В покрытии не обнаружены трещины, и это показывает, что различие термического расширения измельченной алмазной подложки и покрытия из диоксида кремния являлось небольшим.
Образец, подвергнутый термической обработке при 670°С (образец А), и образец, подвергнутый термической обработке при 900°С (образец В), после этого сопоставляли с образцом такого же алмаза без покрытия в термогравиметрическом анализаторе в потоке воздуха при скорости нагревания, равной 20°С/мин. Окисление алмаза без покрытия начиналось при 781°С, а образцов А и В - при 791°С 893°С соответственно. Это показывало, что образец А содержал значительное количество открытых пор, слабо подавляющих окисление, тогда как в образце В, для которого начало окисления смещалось примерно на 110°С, обеспечивается значительная защита алмаза от окисления. Этот результат показывает, что образец, подвергнутый термической обработке при 900°С, образец В, был полностью покрыт преимущественно не содержащим пор стеклом SiO2, о чем свидетельствуют данные СЭМ и оптических изображений.
Пример 7
Множество частиц алмаза размером от 0,75 до 1,5 мкм, полученных с помощью хорошо известных технологий дробления и сортировки, обрабатывали в дымящей концентрированной серной кислоте, к которой прибавлен нитрат калия. Эта методика приводит к тому, что на поверхности алмаза преобладают кислородсодержащие функциональные группы и поэтому она является витреофильной, что позволяет находящимся на поверхности химическим соединениям участвовать в золь-гелевых реакциях. 20 г этого алмаза с помощью ультразвукового зонда диспергировали в 2,5 л этилового спирта чистоты 99%, к которому прибавляли 500 мл деионизированной воды и 60 мл 25 об.% водного раствора гидроксида аммония. Суспензию энергично перемешивали с помощью механической лопастной мешалки и выдерживали при комнатной температуре (25°С). 80 г тетраэтоксисиликата кремния (Si(OC2H5)4) растворяли в 100 мл этанола чистоты 99%. Этот раствор медленно прибавляли к суспензии в течение 12 ч. Перемешивание продолжали в течение еще 1 ч. Затем множество обладающих покрытием частиц алмаза извлекали из суспензии, промывали и сушили, как это описано в примере 6.
Исследование с помощью СЭМ показало, что каждая частица алмаза размером примерно 1 мкм полностью закрыта покрытием. Путем взвешивания до и после нанесения покрытия установлено, что масса покрытия составляет примерно 30 мас.% от полной массы.
Обладающий покрытием материал разделяли на 3 примерно одинаковые порции и образцы помечали как С, D и Е. Образец D нагревали в потоке чистого аргона до температуры, равной 670°С в течение 3 ч, скорость нагревания составляла 3°С/мин. Аналогичным образом образец Е подвергали термической обработке при максимальной температуре, равной 1000°С, также в течение 3 ч. Образец С сохраняли в высушенном состоянии и не подвергали дополнительной термической обработке. Исследование с помощью СЭМ показало, что частицы образца Е полностью закрыты не содержащим трещин покрытием, которое выглядело как плавленое стекло.
Удельную площадь поверхности не содержащего покрытия образца алмаза и образцов С, D и Е определяли с помощью хорошо известной методики адсорбции азота Брунауэра, Эметта и Теллера (БЭТ). Результаты приведены в таблице 2.
ТАБЛИЦА 2
Алмаз Удельная площадь поверхности (м2г-1)
Без покрытия 0,75-1,5 мкм 7,86
Образец С 140,00
Образец D 8,07
Образец Е 7,13
Из таблицы 2 следует, покрытие из диоксида кремния на образце С приводит к двадцатикратному увеличению удельной площади поверхности по сравнению с удельной площадью поверхности порошкообразного алмаза без покрытия. Это показывает, что покрытие действительно обладает сильно микропористой структурой с открытыми порами.
После термической обработки в аргоне при 670°С (образец D) происходило значительное вязкое течение диоксида кремния, находящегося в покрытии, так что открытые поры были у основном устранены, о чем свидетельствует значение удельной площади поверхности, которая уменьшилась до значения, близкого к значению для порошка без покрытия. Удельная площадь поверхности образца Е после термической обработки при 1000°С уменьшилась до значения, немного меньшего, чем значение для порошка без покрытия. Это указывает на немного более значительное закрывание пор и, возможно, не небольшое сглаживание поверхности частиц порошка, что согласуется с образованием не содержащего пор покрытия из кварцевого стекла, закрывающего грани и неровности частиц алмаза. Эти результаты показывают, что пористость и плотность покрытий из диоксида кремния можно регулировать путем выбора методики термической обработки, проводимой после нанесения покрытия по золь-гелевой методике.
Пример 8
20 г хорошо ограненных высококристаллических частиц зернистого материала cBN, обладающего частицами диаметром от 105 до 125 мкм, обрабатывали в кипящей 32 об.% хлористоводородной кислоте, промывали водой и сушили. Этот материал суспендировали путем энергичного перемешивания в смеси 1,8 л этанола чистоты 99%, 350 мл деионизированной воды и 40 мл 25 об.% водного раствора гидроксида аммония. Затем при перемешивании к суспензии в течение 10 ч медленно прибавляли 30 мас.% раствор тетраэтоксисилана (Si(OC2H5)4) в чистом сухом этаноле. Перемешивание продолжали в течение еще 1 ч. Материалу давали осесть, надосадочную жидкость удаляли, и обладающие покрытием частицы cBN промывали чистым сухим этанолом. Затем обладающий покрытием материал сушили при 60°С в вакуумном сушильном шкафу в течение 24 ч. Затем этот обладающий покрытием материал нагревали в сухом чистом аргоне со скоростью 3°С/мин до температуры, равной 800°С и выдерживали при этой температуре в течение 3 ч. Проведенное после этого исследование с помощью СЭМ показало, что частицы зернистого материала полностью закрыты не содержащим трещин покрытием из диоксида кремния, которое в основном выглядело гладким и бесструктурным.
Пример 9
Методику нанесения покрытия на алмаз, обладающий частицами размером от 0,75 до 1,5 мкм, описанную в примере 7, использовали для нанесения покрытия на микрометровый порошкообразный cBN, обладающий частицами со средним размером, равным 1,25 мкм. Мелкозернистый порошок, обладающий нанесенным по золь-гелевой методике покрытием, после сушки в течение 24 ч в вакууме при 60°С подвергали термической обработке в аргоне при 800°С в течение 3 ч. Исследование с помощью СЭМ показало, что каждая отдельная частица cBN полностью закрыта плотным покрытием из диоксида кремния.
Пример 10
110 г ограненного кристаллического cBN, пропущенного через сито США 120/140 меш (105-125 мкм), обрабатывали в кипящей 32 об.% хлористоводородной кислоте, промывали водой и сушили. Затем этот материал нагревали на воздухе при 650°С в течение 1 ч для небольшого окисления поверхностей частиц.
Затем эти частицы cBN суспендировали в 250 мл раствора н-пропоксида циркония формулы Zr(ОС3Н7)4 в безводном изопропаноле. Суспензию поддерживали с помощью механического перемешивания лопастной мешалкой примерно при 100 оборотах/мин. Масса н-пропоксида циркония в растворе составляла 15 г.
3,8 мл чистой деионизированной воды смешивали с 100 мл изопропанола и эту смесь в течение 90 мин медленно прибавляли к суспензии частиц cBN. Затем перемешивание продолжали в течение еще 3 ч до завершения реакций гидролиза и поликонденсации и на частицы cBN наносилось покрытие. Затем обладающим покрытием частицам cBN давали осесть в течение ночи и надосадочную жидкость сливали. Затем обладающие покрытием частицы cBN трижды промывали изопропанолом путем осаждения и декантации. Затем обладающие покрытием частицы cBN сушили в течение ночи путем медленного выпаривания оставшегося спирта при условиях окружающей среды. Затем материал сушили путем нагревания в вакуумном сушильном шкафу при 60°С в течение 24 ч. При исследовании с помощью сканирующего электронного микроскопа обнаружено, что все частицы cBN полностью закрыты в основном не содержащим трещин покрытием. Покрытие закрывало грани, ребра, ступени и входящие ребра. Как показано на фиг.6(А), исследование с помощью рентгеновского дифрактометра, обладающего покрытием высушенного cBN, обнаружило наличие только узких дифракционных полос, соответствующих кристаллическому cBN. Это показывает, что предполагаемое покрытие из диоксида циркония в основном является аморфным.
Затем 50 г обладающих покрытием и высушенных частиц cBN нагревали на воздухе при 475°С в течение 3 ч. Использовали очень низкую скорость нагревания, равную примерно 20°С/ч. Рентгенограмма этого материала, приведенная на фиг.6(В), показала, что покрытие из диоксида циркония закристаллизовалось с образованием микрокристаллического диоксида циркония, ZrO2, обладающего тетрагональной структурой.
Еще 50 г образца, обладающего покрытием, и высушенного cBN нагревали на воздухе при 800°С в течение 3 ч, также при сходной очень низкой скорости нагревания. Исследование с помощью рентгеновского дифрактометра показало, что, покрытие закристаллизовалось в моноклинную фазу диоксида циркония, ZrO2.
Предполагается, что cBN, обладающий покрытиями из такого кристаллического диоксида циркония, при изготовлении шлифовальных кругов и т.п. будет менее реакционноспособным по отношению к функциональным группам стекла.
Это является примером альтернативной методики нанесения покрытий, при которой спиртовый раствор воды медленно прибавляют к суспензии частиц, на которые наносят покрытие, в спиртовом растворе алкоксида.
Пример 11
Субмикрометровый кубический нитрид бора, обладающий размером частиц в диапазоне от 0,5 до 1 мкм (средний размер частиц равен 0,7 мкм), подвергали кислотной обработке, как это описано в примере 1. 34,04 г подвергнутого кислотной обработке порошкообразного cBN суспендировали в 2021 мл чистого этанола и 42 мл деионизированной воды. Эту суспензию cBN обрабатывали с помощью ультразвукового зонда в течение 20 мин для удаления агломератов, а затем энергично механически перемешивали лопастной мешалкой.
19,79 г н-пропоксида циркония(IV) (70 мас./мас.% в н-пропаноле), обладающего химической формулой Zr[O(СН2)2СН3]4, растворяли в 122 мл сухого этанола. Раствор алкоксида при перемешивании при комнатной температуре по каплям в течение 3 ч прибавляли к суспензии cBN и перемешивали в течение еще 1,5 ч после прибавления алкоксида. Суспензию обладающего покрытием cBN выдерживали при комнатной температуре в течение ночи. cBN, обладающий покрытием из оксида циркония, трижды промывали чистым этанолом и сушили на роторном испарителе в вакууме при давлении, равном от 600 до 390 мбар, и при температуре, равной от 70 до 80°С. Полученный порошок дополнительно сушили в вакуумном сушильном шкафу при 60°С в течение 2 дней. Высушенный порошок исследовали на сканирующем электронном микроскопе, и обнаружено, что частицы cBN обладают хорошим покрытием.
Затем этот высушенный порошок подвергали термической обработке на воздухе в статических условиях при 600°С в течение 3 ч. Использовали скорость нагревания, равную 5°С/мин. Рентгеноструктурный анализ подвергнутого термической обработке порошка показал, что покрытие представляет собой тетрагональный оксид циркония, ZrO2.
Микрофотографии, полученные с помощью ТЭМ, показали, что покрытие на поверхностях субмикрометровых частиц cBN состоит из нанометровых частиц диаметром примерно 5 нм.
Пример 12
Субмикрометровый кубический нитрид бора, обладающий размером частиц в диапазоне от 0,5 до 1 мкм (средний размер частиц равен 0,7 мкм), подвергали кислотной обработке, как это описано в примере 1. 25 г этого порошка суспендировали в 1,5 л чистого этанола и 30 мл деионизированной воды и в течение 25 мин подвергали ультразвуковой обработке для удаления агломератов. В отдельном стакане 0,48 г гексагидрата нитрата иттрия, Y(NO3)3·6H2O, растворяли в 50 мл чистого этанола, а затем прибавляли 13,9 г н-пропоксида циркония(IV), обладающего химической формулой Zr[O(СН2)2СН3]4, и еще 50 мл чистого этанола. Содержимое последнего стакана перемешивали стеклянной палочкой и дополнительно перемешивали путем встряхивания содержимого в делительной воронке. Раствор смеси гексагидрата нитрата иттрия с н-пропоксидом циркония(IV) при перемешивании по каплям при комнатной температуре в течение 2 ч прибавляли к суспензии cBN. После этого прибавления раствор дополнительно механически перемешивали в течение 1 ч 10 мин. Затем раствор выдерживали в течение ночи при комнатной температуре. Обнаружено, что после выдерживания в течение ночи полученное множество обладающих покрытием частиц образовало высоковязкий гель. После выдерживания всего в течение 48 ч золь-гель сушили на роторном испарителе в вакууме при давлении, равном 400 мбар, и при температуре, равной от 70 до 80°С.
Этот порошок дополнительно сушили в вакуумном сушильном шкафу при 60°С в течение 2 дней. Затем высушенный порошок cBN, обладающий покрытием из оксида циркония, подвергали термической обработке на воздухе в статических условиях при 600°С в течение 3 ч. Использовали скорость нагревания, равную 5°С/мин. Рентгеноструктурный анализ показал, что полученный порошок содержит фазы cBN и тетрагональную ZrO1,99. Полученные на ТЭМ микрофотографии показали, что зерна диоксида циркония обладают размером, равным от 4 до 5 нм.
Пример 13
12 г ограненного кристаллического cBN, пропущенного через сито США 120/140 меш (105-125 мкм) нагревали на воздухе при 650°С для окисления поверхностей. Затем этот материал перемешивали и суспендировали в 200 мл чистого изопропанола, к которому прибавляли 22 мл деионизированной воды. Суспензию нагревали и кипятили с обратным холодильником при 50°С.
К этой суспензии в течение 1 ч медленно прибавляли раствор 10 г втор-бутоксида алюминия формулы Al(ОС4Н9)3 в 50 безводного изопропанола. Суспензию перемешивали в течение еще 2 ч и затем прибавляли 1 мл 55% азотной кислоты и суспензию перемешивали в течение еще 1 ч. Затем измельченному материалу давали осесть и его промывали изопропанолом, а затем медленно сушили в течение ночи. В заключение обладающий покрытием cBN сушили в вакуумном сушильном шкафу в течение 24 ч при 60°С. Исследование с помощью СЭМ показало, что частицы cBN в основном закрыты тонким покрытием из соединения оксида алюминия.
Предполагается, что это покрытие можно превратить в ряд так называемых переходных структур оксида алюминия путем нагревания на воздухе при различных температурах в диапазоне от 400 до 1200°С, примерно вплоть до 1150°С и выше, и можно образовать так называемый
Figure 00000003
. Эти структуры оксида алюминия известны в области термической обработки оксидов алюминия, полученных по золь-гелевой методике.
Пример 14
Синтетический порошкообразный алмаз, обладающий частицами размером 1 мкм с диапазоном размеров от 0,75 до 1,5 мкм, подвергали кислотной очистке, как это описано в примере 4. 20 г этого порошкообразного алмаза суспендировали в растворе, содержащем 258 мл чистого изопропанола и 175 мл деионизированной воды. Эту суспензию нагревали при 60°С в установке с обратным холодильником и механически перемешивали мешалкой лопастного типа примерно при 100 оборотов/мин. 24 г Втор-бутоксида алюминия, обладающего химической формулой AlO3C12H27, растворяли в 100 мл безводного изопропанола и по каплям в течение 1 ч 45 мин при нагревании и перемешивании прибавляли к суспензии алмаза суспензию. После прибавления алкоксида суспензию перемешивали в течение 1 ч 15 мин при 60°С. Затем к нагретой суспензии прибавляли примерно 1 мл хлористоводородной кислоты (32%) и затем нагревали до 80°С и перемешивали в течение еще 1 ч, поддерживая указанную температуру. Затем суспензии давали охладиться до комнатной температуры и ее выдерживали при комнатной температуре в течение ночи. Затем суспензию сушили на роторном испарителе при температуре, равной 80°С, и в вакууме при давлении, равном 400 мбар.
Алмаз, обладающий покрытием из соединения алюминия, дополнительно сушили в вакуумном сушильном шкафу при 60°С в течение 2 дней. Исследование с помощью СЭМ показало, что частицы алмаза обладают покрытием из соединения оксида алюминия.
Затем этот порошок подвергали термической обработке при 400°С на воздухе в статических условиях в течение 3 ч. Использовали скорость нагревания, равную 5°С/мин. Рентгеноструктурный анализ показал, что после этой термической обработки покрытие на алмазе являлось преимущественно аморфным. Это было подтверждено исследованием с помощью ТЭМ.
Пример 15
12 г хорошо ограненного чистого обладающего в основном октаэдрической морфологией синтетического алмаза, пропущенного через сито США 120/140 меш (105-125 мкм) нагревали на воздухе при 500°С в течение 1 ч для получения окисленных поверхностей. Этот алмаз суспендировали в 200 мл чистого этанола, к которому прибавляли 20 мл деионизированной воды. Суспензию поддерживали путем перемешивания.
Затем раствор 5,1 г этоксида вольфрама формулы W(OC2H5)5 в 50 мл чистого безводного этанола в течение примерно 1 ч при перемешивании по каплям медленно прибавляли к суспензии. Суспензию перемешивали в течение еще 1 ч до завершения реакций гидролиза и поликонденсации. После проводимых несколько раз осаждения, декантации и промывки чистым этанолом частицы алмаза сушили путем естественного испарения, а затем в вакуумном сушильном шкафу при 60°С. Исследование с помощью СЭМ и ЭДА показало, что каждый кристалл алмаза равномерно закрыт тонким покрытием из соединения вольфрама с кислородом, предположительно представляющего собой оксид вольфрама, WO3. Толщина найдена равной примерно 0,25 мкм.
Затем образец обладающего покрытием алмаза нагревали в атмосфере водорода при температуре 550°С в течение 1 ч. Исследование с помощью СЭМ показало, что покрытие из оксида вольфрама восстановилось в металлический вольфрам и образовало дисперсию очень мелкозернистых частиц или островков этого металла размером примерно 100 нм или менее. Сделан вывод о том, что покрытие из WO3 в этом случае было недостаточным для того, чтобы обеспечить покрытие всей поверхности после восстановления в металл.
Предполагается, что для того, чтобы полностью закрыть металлическим вольфрамом частицы алмаза такого размера, необходимо покрытие из WO3, обладающее толщиной, равной примерно 1 мкм или более. Это можно обеспечить путем соответствующего изменения методики, описанной в этом примере.

Claims (35)

1. Способ нанесения покрытия на сверхтвердые абразивные частицы субмикрометрового или нанометрового размера, выбранные из алмаза или кубического нитрида бора или комбинации этих материалов, включающий стадии использования множества сверхтвердых абразивных частиц, обладающих витреофильными поверхностями, способными образовывать химические связи с оксидами, нанесения на сверхтвердые абразивные частицы покрытия из оксидного материала-предшественника и термической обработки обладающих покрытием сверхтвердых абразивных частиц для высушивания и очистки покрытий.
2. Способ по п.1, в котором обладающие покрытием сверхтвердые абразивные частицы обрабатывают для превращения оксидного материала-предшественника в оксид, нитрид, карбид, оксинитрид, оксикарбид или карбонитрид оксидного материала-предшественника или в элементную форму оксидного материала-предшественника, или в их комбинации.
3. Способ по п.1, в котором оксидный материал-предшественник представляет собой аморфный или нанокристаллический оксид, гидроксид или оксогидроксид.
4. Способ по п.1, в котором частицы алмаза или кубического нитрида бора подвергнуты поверхностной обработке, чтобы сделать их поверхности витреофильными.
5. Способ по п.2, в котором подвергнутый превращению оксидный материал-предшественник выбран из группы, включающей обладающие зернами микрометрового, субмикрометрового или нанометрового размера оксиды, нитриды, карбиды, оксинитриды, оксикарбиды и карбонитриды оксидных материалов-предшественников или элементные материалы-предшественники, или их комбинации.
6. Способ по п.2, в котором подвергнутый превращению оксидный материал-предшественник выбран из группы, включающей оксиды, нитриды, карбиды, оксинитриды, оксикарбиды и карбонитриды алюминия, титана, кремния, ванадия, циркония, ниобия, гафния, тантала, хрома, молибдена и вольфрама и элементные формы молибдена и вольфрама, и любую подходящую комбинацию этих материалов.
7. Способ по п.2, в котором подвергнутый превращению оксидный материал-предшественник представляет собой обладающее зернами нанометрового размера соединение алюминия, титана, кремния, ванадия, циркония, ниобия, гафния, тантала, хрома, молибдена или вольфрама, или любую подходящую комбинацию этих материалов.
8. Способ по п.2, в котором подвергнутый превращению оксидный материал-предшественник представляет собой обладающую зернами нанометрового размера элементную форму вольфрама, молибдена или комбинацию, или сплав этих металлов.
9. Способ по п.1, в котором оксидный материал-предшественник в виде покрытия нанесен на сверхтвердые абразивные частицы с использованием так называемой золь-гелевой методики.
10. Способ по п.9, в котором сверхтвердые абразивные частицы суспендированы в жидкой среде и введен подходящий химический реагент для образования коллоидных частиц, которые связываются с поверхностями соответствующих частиц и образуют покрытия на частицах.
11. Способ по п.10, в котором подходящий химический реагент представляет собой по меньшей мере один алкоксид или раствор алкоксида (алкоксидов) в спирте.
12. Способ по п.10, в котором жидкой средой является аликвота воды и спирта.
13. Способ по п.10, в котором подходящим химическим реагентом является аликвота воды и спирта.
14. Способ по п.13, в котором жидкой средой является по меньшей мере один алкоксид или раствор алкоксида (алкоксидов) в спирте.
15. Способ по п.11 или 14, в котором алкоксид представляет собой алкоксид элемента, выбранного из группы, включающей алюминий, титан, кремний, цирконий, ванадий, ниобий, тантал, хром, молибден, вольфрам, гафний и иттрий.
16. Способ по п.11 или 12, в котором в жидкую среду введены 2 или большее количество алкоксидов, которые выбраны из группы, включающей алкоксиды элементов алюминия, титана, кремния, циркония, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, гафния и иттрия.
17. Способ по п.13 или 14, в котором жидкая среда включает 2 или большее количество алкоксидов в спиртовом растворе, которые выбраны из группы, включающей алкоксиды элементов алюминия, титана, кремния, циркония, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, гафния и иттрия.
18. Способ по любому из пп.10-12, в котором подходящий химический реагент представляет собой раствор смешанного алкоксидного соединения или комплекса, включающего два или большее количество элементов алюминия, титана, кремния, циркония, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, гафния или иттрия.
19. Способ по любому из пп.10, 13 или 14, в котором жидкая среда представляет собой раствор смешанного алкоксидного соединения или комплекса, включающего два или большее количество элементов алюминия, титана, кремния, циркония, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, гафния или иттрия.
20. Способ по любому из пп.11-14, в котором спирт содержит такую же алкильную группу, что и алкоксид (ы).
21. Способ по п.1, в котором оксидный материал-предшественник покрытия является в основном микропористым.
22. Способ по п.21, в котором обладающие покрытием сверхтвердые абразивные частицы подвергают нагреванию на воздухе, в вакууме или в инертном газе для удаления летучих и нежелательных химических веществ, присоединенных к большим участкам поверхности микропористых аморфных покрытий.
23. Способ по п.22, в котором обладающие покрытием сверхтвердые абразивные частицы подвергают дополнительной термической обработке или прокаливанию для кристаллизации покрытий в форме мелкозернистых или обладающих зернами нанометрового размера оксидных керамик.
24. Способ по п.22, в котором обладающие покрытием сверхтвердые абразивные частицы подвергают дополнительной термической обработке для витрификации покрытий с образованием стекол.
25. Способ по любому из пп.21-24, в котором обладающие покрытием сверхтвердые абразивные частицы нагревают в реакционноспособных газах для превращения материалов покрытий в неоксидные керамики или стекла.
26. Способ по п.25, в котором нитриды образуют по реакции покрытий с газообразным аммиаком.
27. Способ по п.26, в котором карбиды образуют по реакции покрытий в смесях углеродсодержащих газов с водородом.
28. Способ по п.27, в котором карбиды образуют по реакции покрытий в смеси метана или этана с водородом.
29. Способ по любому из пп.21-24, в котором обладающие покрытием сверхтвердые абразивные частицы нагревают в реакционноспособных газах для превращения материалов покрытий в оксинитридные или оксикарбидные керамики или стекла.
30. Способ по п.22 или 23, в котором оксидные покрытия восстанавливают водородом и превращают в обладающие зернами микрометрового или нанометрового размера элементы или металлы.
31. Обладающий покрытием сверхтвердый абразивный измельченный материал, включающий частицы алмаза или кубического нитрида бора субмикрометрового или нанометрового размера, обладающие покрытиями, выбранными из группы, включающей нитриды титана, ванадия, ниобия, тантала, молибдена и вольфрама или карбиды ванадия, ниобия, тантала, молибдена и вольфрама.
32. Обладающий покрытием сверхтвердый абразивный измельченный материал, включающий частицы алмаза или кубического нитрида бора субмикрометрового или нанометрового размера, обладающие покрытиями, выбранными из группы, включающей фазу анатаза диоксида титана, фазу рутила диоксида титана, тетрагональный диоксид циркония, моноклинный диоксид циркония, диоксид циркония, стабилизированный оксидом иттрия или оксидом магния, переходные структуры или альфа-фазу оксида алюминия и оксиды ванадия, ниобия, тантала, гафния, молибдена и вольфрама.
33. Обладающий покрытием сверхтвердый абразивный измельченный материал, включающий частицы алмаза или кубического нитрида бора субмикрометрового или нанометрового размера, обладающие покрытием из кварцевого стекла.
34. Обладающий покрытием сверхтвердый абразивный измельченный материал, включающий частицы алмаза или кубического нитрида бора субмикрометрового или нанометрового размера, обладающие покрытием из оксидов титана, ванадия, ниобия, тантала, алюминия, кремния, молибдена или вольфрама, или нитридов или карбидов титана, ванадия, ниобия, тантала или молибдена, или металлического молибдена или вольфрама.
35. Обладающий покрытием сверхтвердый абразивный измельченный материал по пп.31-33, в котором толщина покрытия составляет менее 2 мкм.
RU2006136877/05A 2004-09-23 2005-09-21 Обладающие покрытием абразивные материалы и способ их изготовления RU2409605C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA200407715 2004-09-23
ZA2004/7715 2004-09-23

Publications (2)

Publication Number Publication Date
RU2006136877A RU2006136877A (ru) 2008-10-27
RU2409605C2 true RU2409605C2 (ru) 2011-01-20

Family

ID=35448358

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2006136878/02A RU2404021C2 (ru) 2004-09-23 2005-09-21 Поликристаллические абразивные материалы и способ их изготовления
RU2006136877/05A RU2409605C2 (ru) 2004-09-23 2005-09-21 Обладающие покрытием абразивные материалы и способ их изготовления

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2006136878/02A RU2404021C2 (ru) 2004-09-23 2005-09-21 Поликристаллические абразивные материалы и способ их изготовления

Country Status (13)

Country Link
US (2) US8118896B2 (ru)
EP (2) EP1794251B8 (ru)
JP (4) JP5070056B2 (ru)
KR (2) KR20070083557A (ru)
CN (2) CN1954042B (ru)
AU (2) AU2005286166B2 (ru)
CA (2) CA2564741C (ru)
MX (2) MXPA06012366A (ru)
NO (2) NO20064589L (ru)
PL (1) PL1794252T3 (ru)
RU (2) RU2404021C2 (ru)
WO (2) WO2006032982A1 (ru)
ZA (2) ZA200609062B (ru)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913779B2 (en) 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
WO2007088461A1 (en) * 2006-02-02 2007-08-09 Element Six (Production) (Proprietary) Limited Glass coated hard and ultra-hard abrasive particles and a method of making them
US7841428B2 (en) 2006-02-10 2010-11-30 Us Synthetic Corporation Polycrystalline diamond apparatuses and methods of manufacture
KR101410154B1 (ko) 2006-03-29 2014-06-19 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 다결정성 연마 컴팩트
US20100009839A1 (en) * 2006-06-09 2010-01-14 Antionette Can Ultrahard Composite Materials
KR20090023474A (ko) * 2006-06-09 2009-03-04 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 초경질 복합체
WO2007148214A2 (en) * 2006-06-23 2007-12-27 Element Six (Production) (Pty) Ltd Transformation toughened ultrahard composite materials
US7516804B2 (en) 2006-07-31 2009-04-14 Us Synthetic Corporation Polycrystalline diamond element comprising ultra-dispersed diamond grain structures and applications utilizing same
JP4854445B2 (ja) * 2006-09-25 2012-01-18 三菱マテリアル株式会社 Cmpコンディショナおよびその製造方法
US8147574B2 (en) * 2006-11-21 2012-04-03 Charles Stephan Montross Material containing diamond and an intermetallic compound
CN100478412C (zh) * 2007-02-06 2009-04-15 中国科学院上海微系统与信息技术研究所 一种蓝宝石衬底化学机械抛光浆液
EP2132002B1 (en) * 2007-03-14 2012-07-25 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of making
JP5150931B2 (ja) * 2008-02-05 2013-02-27 三菱マテリアル株式会社 薄刃ブレードおよびその製造方法
US9555387B2 (en) 2008-02-14 2017-01-31 Element Six Limited Method for manufacturing encapsulated superhard material
CN101910354B (zh) * 2008-02-14 2013-10-16 六号元素有限公司 制造包封的超硬材料的方法
FR2928916B1 (fr) * 2008-03-21 2011-11-18 Saint Gobain Ct Recherches Grains fondus et revetus de silice
US7842111B1 (en) 2008-04-29 2010-11-30 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating same, and applications using same
US8986408B1 (en) 2008-04-29 2015-03-24 Us Synthetic Corporation Methods of fabricating polycrystalline diamond products using a selected amount of graphite particles
TWI388401B (en) * 2008-07-30 2013-03-11 Polycrystalline aluminum-containing grits and associated methods
GB0815229D0 (en) 2008-08-21 2008-09-24 Element Six Production Pty Ltd Polycrystalline diamond abrasive compact
US9315881B2 (en) 2008-10-03 2016-04-19 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
GB0823328D0 (en) 2008-12-22 2009-01-28 Element Six Production Pty Ltd Ultra hard/hard composite materials
GB0902230D0 (en) 2009-02-11 2009-03-25 Element Six Production Pty Ltd Polycrystalline super-hard element
GB0902232D0 (en) 2009-02-11 2009-03-25 Element Six Production Pty Ltd Method of coating carbon body
US8074748B1 (en) 2009-02-20 2011-12-13 Us Synthetic Corporation Thermally-stable polycrystalline diamond element and compact, and applications therefor such as drill bits
US8069937B2 (en) * 2009-02-26 2011-12-06 Us Synthetic Corporation Polycrystalline diamond compact including a cemented tungsten carbide substrate that is substantially free of tungsten carbide grains exhibiting abnormal grain growth and applications therefor
GB0903822D0 (en) 2009-03-06 2009-04-22 Element Six Ltd Polycrystalline diamond body
US8662209B2 (en) * 2009-03-27 2014-03-04 Varel International, Ind., L.P. Backfilled polycrystalline diamond cutter with high thermal conductivity
US8365846B2 (en) * 2009-03-27 2013-02-05 Varel International, Ind., L.P. Polycrystalline diamond cutter with high thermal conductivity
GB0909350D0 (en) 2009-06-01 2009-07-15 Element Six Production Pty Ltd Ploycrystalline diamond material and method of making same
US8490721B2 (en) 2009-06-02 2013-07-23 Element Six Abrasives S.A. Polycrystalline diamond
US20110024201A1 (en) 2009-07-31 2011-02-03 Danny Eugene Scott Polycrystalline diamond composite compact elements and tools incorporating same
GB0913304D0 (en) 2009-07-31 2009-09-02 Element Six Ltd Polycrystalline diamond composite compact elements and tools incorporating same
US8800693B2 (en) 2010-11-08 2014-08-12 Baker Hughes Incorporated Polycrystalline compacts including nanoparticulate inclusions, cutting elements and earth-boring tools including such compacts, and methods of forming same
WO2011017649A2 (en) 2009-08-07 2011-02-10 Baker Hughes Incorporated Polycrystalline compacts including in-situ nucleated grains earth-boring tools including such compacts, and methods of forming such compacts and tools
US8727042B2 (en) 2009-09-11 2014-05-20 Baker Hughes Incorporated Polycrystalline compacts having material disposed in interstitial spaces therein, and cutting elements including such compacts
US20110061944A1 (en) 2009-09-11 2011-03-17 Danny Eugene Scott Polycrystalline diamond composite compact
GB0915971D0 (en) 2009-09-11 2009-10-28 Element Six Ltd Polycrysalline diamond composite compact elements, tools incorporating same, method for making same and method for using same
CA2777110C (en) 2009-10-15 2014-12-16 Baker Hughes Incorporated Polycrystalline compacts including nanoparticulate inclusions, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts
EP2513013A1 (en) * 2009-12-16 2012-10-24 Smith International, Inc. Thermally stable diamond bonded materials and compacts
GB201000872D0 (en) 2010-01-20 2010-03-10 Element Six Production Pty Ltd A method for making a superhard tip, superhard tips and tools comprising same
GB201002375D0 (en) 2010-02-12 2010-03-31 Element Six Production Pty Ltd A superhard tip, method for making same and tool comprising same
SA111320374B1 (ar) 2010-04-14 2015-08-10 بيكر هوغيس انكوبوريتد طريقة تشكيل الماسة متعدد البلورات من الماس المستخرج بحجم النانو
US8974562B2 (en) * 2010-04-14 2015-03-10 Baker Hughes Incorporated Method of making a diamond particle suspension and method of making a polycrystalline diamond article therefrom
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US9309582B2 (en) 2011-09-16 2016-04-12 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9205531B2 (en) 2011-09-16 2015-12-08 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
US9776151B2 (en) 2010-04-14 2017-10-03 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond
US9079295B2 (en) * 2010-04-14 2015-07-14 Baker Hughes Incorporated Diamond particle mixture
US20110315046A1 (en) * 2010-06-28 2011-12-29 Paul Sheedy Method for fabricating composite powders
US20110319252A1 (en) * 2010-06-28 2011-12-29 Schmidt Wayde R Composite powders
JP5565694B2 (ja) * 2010-08-09 2014-08-06 独立行政法人物質・材料研究機構 窒化ホウ素ナノチューブ誘導体、その分散液、及び該窒化ホウ素ナノチューブ誘導体の製造方法
WO2012033930A2 (en) 2010-09-08 2012-03-15 Smith International, Inc. Edm cuttable, high cbn content solid pcbn compact
IE86959B1 (en) * 2010-11-29 2019-02-20 Element Six Ltd Fabrication of ultrafine polycrystalline diamond with nano-sized grain growth inhibitor
CN103459351B (zh) * 2010-12-28 2015-11-25 维尔科材料有限公司 基于碳化硼的材料和其制造工艺
US8727046B2 (en) 2011-04-15 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compacts including at least one transition layer and methods for stress management in polycrsystalline diamond compacts
US10639768B2 (en) * 2011-05-27 2020-05-05 P&S Global Holdings Llc Multi-layer coating with cubic boron nitride particles
GB201108967D0 (en) * 2011-05-27 2011-07-13 Element Six Ltd Superhard structure, tool element and method of making same
GB201109864D0 (en) 2011-06-13 2011-07-27 Element Six Ltd Blank bodies for drill tips and methods for making same
US8974561B2 (en) * 2011-09-30 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing device
TW201323154A (zh) * 2011-12-15 2013-06-16 Ying-Tung Chen 具有磨粒的產品及其製法
GB201121673D0 (en) 2011-12-16 2012-01-25 Element Six Gmbh Polycrystalline diamond composite compact elements and methods of making and using same
FR2986166B1 (fr) * 2012-01-31 2014-03-14 Univ Claude Bernard Lyon Procede de preparation de particules de nitrure de bore hexagonal sur lesquelles sont fixees, selon des liaisons stables, des nanoparticules metalliques
US8916483B2 (en) * 2012-03-09 2014-12-23 Soitec Methods of forming semiconductor structures including III-V semiconductor material using substrates comprising molybdenum
US9321187B2 (en) 2012-07-31 2016-04-26 Verco Materials, Llc Process for fabrication of high-hardness, fine-grained, complex-shaped silicon carbide articles
JP2014069308A (ja) * 2012-09-27 2014-04-21 Tadamasa Fujimura 研磨材。
JP6820657B2 (ja) * 2012-10-03 2021-01-27 ダイヤモンド イノヴェーションズ インコーポレイテッド 固有の形態を有する立方晶窒化ホウ素粒子
KR101736085B1 (ko) * 2012-10-15 2017-05-16 생-고뱅 어브레이시브즈, 인코포레이티드 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들
GB201219642D0 (en) * 2012-11-01 2012-12-12 Norwegian Univ Sci & Tech Ntnu Thermal spraying of ceramic materials
GB2507568A (en) 2012-11-05 2014-05-07 Element Six Abrasives Sa A chamfered pcd cutter or shear bit
GB201222383D0 (en) * 2012-12-12 2013-01-23 Element Six Abrasives Sa Diamond grains, method for making same and mixture comprising same
GB201305871D0 (en) * 2013-03-31 2013-05-15 Element Six Abrasives Sa Superhard constructions & methods of making same
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
GB201311849D0 (en) * 2013-07-02 2013-08-14 Element Six Ltd Super-hard constructions and methods for making and processing same
KR101350294B1 (ko) * 2013-07-12 2014-01-13 주식회사 펨빅스 균열이 없는 금속산화물 막 구조물
JP5784679B2 (ja) * 2013-08-12 2015-09-24 エレメント シックス アブラシヴェス エス.エー. 多結晶質研磨材料成形体
US10160688B2 (en) 2013-09-13 2018-12-25 Corning Incorporated Fracture-resistant layered-substrates and articles including the same
WO2015091635A1 (en) 2013-12-17 2015-06-25 Element Six Limited Polycrystalline super hard construction & method of making
CN104746058B (zh) * 2013-12-27 2017-10-27 北京有色金属研究总院 一种包覆钨钼纳米膜层的金刚石及其制备方法
AR099053A1 (es) * 2014-01-10 2016-06-29 Esco Corp Partículas de desgaste encapsuladas
CN103770025A (zh) * 2014-01-10 2014-05-07 当涂县南方红月磨具磨料有限公司 一种耐高温陶瓷cbn砂轮
CN103921222B (zh) * 2014-04-21 2016-04-13 湖南大学 一种微小直径金刚石微粉砂轮的低温制备方法
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
CN104030690B (zh) * 2014-06-09 2015-10-07 河海大学 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法
CN104072138B (zh) * 2014-06-18 2015-10-28 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法
CN104030258B (zh) * 2014-06-30 2016-04-06 东北大学 一种纳米SiO2膜包裹微米cBN颗粒的制备方法
GB201411676D0 (en) 2014-07-01 2014-08-13 Element Six Abrasives Sa Superhard constructions & methods of making same
KR102347861B1 (ko) * 2014-07-01 2022-01-05 다이아몬드 이노베이션즈, 인크. 유리 코팅된 cbn 연마제 및 이들의 제조 방법
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN107532458A (zh) * 2015-02-28 2018-01-02 第六元素(英国)有限公司 超硬结构及其制造方法
GB201503976D0 (en) * 2015-03-09 2015-04-22 Element Six Abrasives Sa Polycrystalline abrasive constructions
CN105038699A (zh) * 2015-06-18 2015-11-11 和县科嘉阀门铸造有限公司 一种阀门抛砂处理用纳米碳化钽复合砂料
US20170066110A1 (en) * 2015-09-08 2017-03-09 Baker Hughes Incorporated Polycrystalline diamond, methods of forming same, cutting elements, and earth-boring tools
TWI744249B (zh) 2015-09-14 2021-11-01 美商康寧公司 高光穿透與抗刮抗反射物件
CN105349869B (zh) * 2015-10-15 2017-03-29 河北友金冶金材料有限公司 氮化铝镍合金及其生产方法
CN105238354B (zh) * 2015-11-04 2019-01-01 华侨大学 一种硬核软壳复合磨料及其制备方法和应用
CN105479300B (zh) * 2015-11-20 2017-11-10 沈阳黎明航空发动机(集团)有限责任公司 镍基高温合金涡轮导向叶片深窄圆弧槽加工方法
GB2545026A (en) * 2015-12-04 2017-06-07 Jean Boulle Luxury Paint Ltd Reflective coating
JP7028403B2 (ja) * 2015-12-07 2022-03-02 アイエイチアイ ベルネックス アーゲー コーティングされた押出工具
CN105368398A (zh) * 2015-12-28 2016-03-02 祝世连 Led蓝宝石衬底加工用新型金刚石磨料及其制备方法
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
GB201609672D0 (en) 2016-06-02 2016-07-20 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material
CN106514500B (zh) * 2016-10-31 2018-11-13 佛山市锐研磨料磨具有限公司 超涂层砂带及其制造方法
JP2018079552A (ja) * 2016-11-18 2018-05-24 株式会社クリスタル光学 砥粒、電着工具および砥粒の製造方法
CN106625197B (zh) * 2016-12-26 2019-04-09 银川市恒益达机械有限公司 含钒和锆元素的珩磨油石及其制备方法
CN108251056A (zh) 2016-12-29 2018-07-06 圣戈本陶瓷及塑料股份有限公司 研磨颗粒、固定研磨制品以及形成该固定研磨制品的方法
GB201622472D0 (en) 2016-12-31 2017-02-15 Element Six (Uk) Ltd Superhard constructions & methods of making same
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
CN109015114B (zh) * 2017-06-09 2020-11-06 蓝思科技(长沙)有限公司 一种含盲孔的3d玻璃产品的加工方法
GB201711417D0 (en) 2017-07-17 2017-08-30 Element Six (Uk) Ltd Polycrystalline diamond composite compact elements and methods of making and using same
KR102554674B1 (ko) * 2018-02-08 2023-07-11 스미토모덴키고교가부시키가이샤 초지립 및 초지립 휠
CN108422335B (zh) * 2018-04-17 2020-11-06 重庆强泰砂轮制造有限公司 一种强度高的砂轮及其制备方法和应用
EP3785852A4 (en) * 2018-04-27 2022-01-19 Sumitomo Electric Industries, Ltd. POLYCRYSTALLINE ABRASIVE GRITS AND ABRASIVE DISC WITH THEM
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
CN108857867B (zh) * 2018-06-05 2020-09-25 黄文魁 金刚石研磨垫及其制备工艺
CN114085038A (zh) 2018-08-17 2022-02-25 康宁股份有限公司 具有薄的耐久性减反射结构的无机氧化物制品
CA3113924A1 (en) * 2018-09-28 2020-04-02 Fujimi Incorporated Coated silicon carbide particle powder
CN109777352B (zh) * 2019-02-25 2020-06-30 清华大学 超耐磨二维复合材料及其制备方法
WO2021025015A1 (ja) * 2019-08-06 2021-02-11 住友電気工業株式会社 被覆超砥粒、砥粒、及びホイール
JP6964821B2 (ja) * 2019-08-06 2021-11-10 住友電気工業株式会社 超砥粒、及び超砥粒ホイール
CN110802052A (zh) * 2019-10-14 2020-02-18 江苏吉星新材料有限公司 一种蓝宝石衬底粗糙表面碳化硼的去除方法
CN110643327A (zh) * 2019-10-17 2020-01-03 江苏吉星新材料有限公司 一种蓝宝石晶片研磨液的制备方法
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
US20220042172A1 (en) * 2020-08-07 2022-02-10 Lawrence Livermore National Security, Llc System and method for atomic layer deposition of rare-earth oxides on optical grade materials for laser gain media
CN112427278A (zh) * 2020-11-12 2021-03-02 金铎禹辰(嘉兴)环保科技有限责任公司 一种金刚石抗菌涂层技术
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
CN113319742B (zh) * 2021-06-09 2023-08-01 江苏锋芒复合材料科技集团有限公司 一种具有磨削与抛光功能磨料的制备方法
CN113444490B (zh) * 2021-06-25 2022-08-26 郑州益奇超硬材料有限公司 多晶立方氮化硼磨料及其制备方法
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
CN114426809A (zh) * 2022-02-17 2022-05-03 上海映智研磨材料有限公司 氧化硅改性纳米金刚石磨粒及其制备方法和应用
CN115070626B (zh) * 2022-06-16 2023-08-25 北京安泰钢研超硬材料制品有限责任公司 一种超精密磨削砂轮及其制造方法
WO2024034076A1 (ja) * 2022-08-10 2024-02-15 住友電気工業株式会社 超砥粒および砥石
CN115627153A (zh) * 2022-10-19 2023-01-20 中国兵器科学研究院宁波分院 一种碳化硼陶瓷球用水基研磨液及其制备方法
CN116120895A (zh) * 2022-12-28 2023-05-16 河南创研新材料科技有限公司 一种氧化铝-金刚石复合微球粉体的制备方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492100A (en) 1966-11-25 1970-01-27 Centre Nat Rech Scient Process for obtaining simple and mixed carbonitrides and oxycarbonitrides of transition metals and new metallic carbonitrides and oxycarbonitrides containing such metals
GB1318467A (en) 1970-09-08 1973-05-31 Hollandse Metallurg Ind Billit Methods of preparation of a material containing vanadium carbonitride and or vanadium nitride
US4011064A (en) * 1975-07-28 1977-03-08 General Electric Company Modifying the surface of cubic boron nitride particles
RU961281C (ru) 1980-11-18 1993-06-30 Всесоюзный научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов Способ получени поликристаллического алмазсодержащего материала
ZA82762B (en) * 1981-04-01 1983-01-26 Gen Electric Randomly-oriented polycrystalline silicon carbide coatings for abrasive grains
US4339281A (en) * 1981-08-20 1982-07-13 Rca Corporation Shank diamond cleaning
JPS62263991A (ja) 1986-05-07 1987-11-16 Adachi Shin Sangyo Kk 鍍金物製造法
US4855264A (en) * 1986-11-20 1989-08-08 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US4957886A (en) * 1986-11-20 1990-09-18 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US5238669A (en) * 1988-08-31 1993-08-24 Sullivan Thomas M Production of ultrastructural ceramics by supercritical processing of the ceramic precursor
US5103598A (en) * 1989-04-28 1992-04-14 Norton Company Coated abrasive material containing abrasive filaments
US4951427A (en) 1989-05-30 1990-08-28 General Electric Company Refractory metal oxide coated abrasives and grinding wheels made therefrom
JPH033776A (ja) 1989-05-30 1991-01-09 Noritake Co Ltd 窒化物被覆砥粒の製法
US5104422A (en) * 1989-05-30 1992-04-14 General Electric Company Refractory metal oxide coated abrasives and grinding wheels made therefrom
US5015265A (en) * 1989-06-14 1991-05-14 General Electric Company Process for making cubic boron nitride from coated hexagonal boron nitride, and abrasive particles and articles made therefrom
JPH0324185A (ja) 1989-06-22 1991-02-01 Toshiba Tungaloy Co Ltd ウイスカー被覆ダイヤモンド及びその製造方法
JPH04202490A (ja) 1990-11-30 1992-07-23 Sumitomo Electric Ind Ltd 被覆ダイヤモンド砥粒
KR100260367B1 (ko) 1991-03-14 2000-12-01 제이 엘. 차스킨 멀티그레인 연마 입자
US5106392A (en) * 1991-03-14 1992-04-21 General Electric Company Multigrain abrasive particles
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
KR950702608A (ko) 1992-07-28 1995-07-29 테릴 켄트 쿠알리 산화금속으로 피복된 연마 입자, 그것의 제조 방법 및 연마제품(abrasive grain with metal oxide coating, method of making same and abrasive products)
JP3104433B2 (ja) * 1992-10-16 2000-10-30 住友電気工業株式会社 ダイヤモンドのエッチング方法
JPH0790465A (ja) 1993-09-24 1995-04-04 Ishizuka Kenkyusho:Kk 耐火物・金属複合体およびその製法
DE4404747C2 (de) 1994-02-15 1995-12-14 Starck H C Gmbh Co Kg Herstellung von Reinstmetallpulver aus Metallalkoxiden
ZA9510267B (en) * 1994-12-06 1996-06-12 De Beers Ind Diamond Abrasive body
JP2691884B2 (ja) * 1995-07-10 1997-12-17 株式会社石塚研究所 親水性ダイヤモンド微細粒子及びその製造方法
JPH09125110A (ja) 1995-11-07 1997-05-13 Fukuda Metal Foil & Powder Co Ltd 電解銀粉末の製造方法
EP0863959B1 (en) 1995-11-22 2001-05-23 Minnesota Mining And Manufacturing Company Method of making alumina abrasive grain having a metal carbide or metal nitride coating thereon
US5876682A (en) * 1997-02-25 1999-03-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured ceramic nitride powders and a method of making the same
JP3970399B2 (ja) 1997-12-24 2007-09-05 シャープ株式会社 ダイヤモンド形成用基体の製造方法
US6414338B1 (en) * 1998-11-30 2002-07-02 Sandia National Laboratories n-Type diamond and method for producing same
RU2163222C2 (ru) 1999-05-13 2001-02-20 Акционерное общество открытого типа "Абразивный завод "Ильич" Способ очистки сверхтвердых материалов от примесей
US6454027B1 (en) * 2000-03-09 2002-09-24 Smith International, Inc. Polycrystalline diamond carbide composites
KR100777148B1 (ko) 2000-06-30 2007-11-19 생-고뱅 어브레이시브즈, 인코포레이티드 초연삭제에 금속으로 코팅하는 방법
EP1341865B1 (en) * 2000-10-12 2009-09-30 Element Six (PTY) Ltd Method for the production of polycrystalline abrasive grit
WO2002032809A1 (fr) * 2000-10-17 2002-04-25 Sharp Kabushiki Kaisha Compose oxyde, procede de preparation d'une couche mince d'oxyde et element comprenant ce compose
EP1331990B1 (en) * 2000-11-09 2007-04-11 Element Six (PTY) Ltd A method of producing ultra-hard abrasive particles
JP5081352B2 (ja) * 2001-08-22 2012-11-28 トーメイダイヤ株式会社 炭化物被覆ダイヤモンド粉末の製造方法
US6982073B2 (en) 2001-11-02 2006-01-03 Altair Nanomaterials Inc. Process for making nano-sized stabilized zirconia
US6475254B1 (en) * 2001-11-16 2002-11-05 General Electric Company Functionally graded coatings for abrasive particles and use thereof in vitreous matrix composites
DE10260337A1 (de) * 2002-12-20 2004-07-08 Basf Ag Verwendung wässriger Dispersionen aus Polymerisat und feinteiligem anorganischem Feststoff zur Grundierung mineralischer Untergründe
US20040258611A1 (en) * 2003-06-23 2004-12-23 Mark Barrow Colloidal composite sol gel formulation with an expanded gel network for making thick inorganic coatings
US20060042417A1 (en) * 2004-06-24 2006-03-02 The Regents Of The University Of Ca Preparation of porous pyrophoric iron using sol-gel methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TUROVA N.YA, TUREVSKAYA E.P, Chemistry of Metal Alkoxides, Nor-well, Kluwer Academic Publishers, 2002, p.107-125. *

Also Published As

Publication number Publication date
CA2564748A1 (en) 2006-03-30
US20080115424A1 (en) 2008-05-22
JP2008513566A (ja) 2008-05-01
NO20064589L (no) 2007-01-08
EP1794251A1 (en) 2007-06-13
RU2006136877A (ru) 2008-10-27
AU2005286168A1 (en) 2006-03-30
US20080168717A1 (en) 2008-07-17
US8118896B2 (en) 2012-02-21
CA2564741C (en) 2013-05-14
CN1954042A (zh) 2007-04-25
ZA200609061B (en) 2008-05-30
ZA200609062B (en) 2008-08-27
KR20070083557A (ko) 2007-08-24
JP5070056B2 (ja) 2012-11-07
JP2008513227A (ja) 2008-05-01
EP1794252B1 (en) 2012-08-22
CN1954043B (zh) 2011-03-23
RU2404021C2 (ru) 2010-11-20
WO2006032984A2 (en) 2006-03-30
JP5465381B2 (ja) 2014-04-09
CN1954043A (zh) 2007-04-25
KR20070057176A (ko) 2007-06-04
MXPA06012366A (es) 2007-01-31
PL1794252T3 (pl) 2013-03-29
KR101267679B1 (ko) 2013-05-23
CN1954042B (zh) 2011-03-23
CA2564748C (en) 2013-05-21
WO2006032984A3 (en) 2006-05-04
EP1794252A2 (en) 2007-06-13
EP1794251B1 (en) 2013-08-21
CA2564741A1 (en) 2006-03-30
AU2005286166B2 (en) 2012-01-12
EP1794251B8 (en) 2013-12-11
RU2006136878A (ru) 2008-10-27
AU2005286166A1 (en) 2006-03-30
AU2005286168B2 (en) 2012-01-19
JP2014040589A (ja) 2014-03-06
WO2006032982A1 (en) 2006-03-30
JP2013013999A (ja) 2013-01-24
NO20064650L (no) 2007-04-18
US9624135B2 (en) 2017-04-18
MXPA06012361A (es) 2007-01-31

Similar Documents

Publication Publication Date Title
RU2409605C2 (ru) Обладающие покрытием абразивные материалы и способ их изготовления
US8419814B2 (en) Polycrystalline abrasive compacts
WO2007088461A1 (en) Glass coated hard and ultra-hard abrasive particles and a method of making them
JP5784679B2 (ja) 多結晶質研磨材料成形体
AU2012202109A1 (en) Coated abrasive materials and method of manufacture
WO2009150626A2 (en) Coating of particulate substrates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140922