RU2370902C2 - Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов - Google Patents

Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов Download PDF

Info

Publication number
RU2370902C2
RU2370902C2 RU2007138379/09A RU2007138379A RU2370902C2 RU 2370902 C2 RU2370902 C2 RU 2370902C2 RU 2007138379/09 A RU2007138379/09 A RU 2007138379/09A RU 2007138379 A RU2007138379 A RU 2007138379A RU 2370902 C2 RU2370902 C2 RU 2370902C2
Authority
RU
Russia
Prior art keywords
pilot
sequences
frequency
selective
pattern
Prior art date
Application number
RU2007138379/09A
Other languages
English (en)
Other versions
RU2007138379A (ru
Inventor
Алексей ГОРОХОВ (US)
Алексей ГОРОХОВ
Айман Фавзи НАДЖИБ (US)
Айман Фавзи НАДЖИБ
Арак СУТИВОНГ (US)
Арак СУТИВОНГ
Дхананджай Ашок ГОРЕ (US)
Дхананджай Ашок ГОРЕ
Тинфан ЦЗИ (US)
Тинфан ЦЗИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2007138379A publication Critical patent/RU2007138379A/ru
Application granted granted Critical
Publication of RU2370902C2 publication Critical patent/RU2370902C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к беспроводной связи. Технический результат - улучшение приема передаваемых символов пилот-сигнала. Предложены шаблоны передачи для символов пилот-сигнала, передаваемых с мобильной станции или базовой станции. Шаблон предоставляет возможность улучшенного приема передаваемых символов пилот-сигнала. В дополнение, раскрыты схемы для улучшения возможности мультиплексировать символы пилот-сигнала без помех и/или смещения от других мобильных станций на одних и тех же частотах и в одних и тех же временных интервалах. 4 н. и 25 з.п. ф-лы, 11 ил.

Description

Область техники
Настоящее изобретение, в целом, относится к беспроводной связи и, среди прочего, передаче информации пилот-сигнала в системе беспроводной связи с ортогональным частотным разделением каналов.
Уровень техники
Система множественного доступа с ортогональным частотным разделением каналов (OFDMA) использует мультиплексирование с ортогональным частотным разделением каналов (OFDM). OFDM является методом модуляции с множеством несущих, которая разделяет полную ширину полосы пропускания системы на множество (N) ортогональных частотных поднесущих. Эти поднесущие также могут называться тонами, элементами разрешения и частотными каналами. Каждая поднесущая может модулироваться данными. Вплоть до N символов модуляции могут посылаться на N поднесущих в каждом периоде символа OFDM. Эти символы модуляции преобразуются во временную область с помощью N-точечного обратного быстрого преобразования Фурье (ОБПФ) для формирования преобразованных символов, которые содержат N кодовых элементов временной области или выборок.
В системе связи со скачкообразным изменением частоты, данные передаются на разных частотных поднесущих в разных временных интервалах, которые могут упоминаться как «периоды скачкообразного изменения». Эти частотные поднесущие могут быть предоставлены посредством мультиплексирования с ортогональным частотным разделением каналов, других методов модуляции со множеством несущих или некоторых других методов. При скачкообразном изменении частоты, передача данных скачкообразно переходит с поднесущей на поднесущую псевдослучайным образом. Это скачкообразное изменение обеспечивает частотное разнесение и позволяет передаче данных лучше противостоять отрицательным воздействиям тракта, таким как узкополосные помехи, преднамеренные помехи, замирание и так далее.
Система OFDMA может одновременно поддерживать множество мобильных станций. Для системы OFDMA со скачкообразным изменением частоты, передача данных для данной мобильной станции может осуществляться по каналу трафика, который связан с конкретной последовательностью скачкообразного изменения частоты (FH). Эта последовательность FH указывает конкретную поднесущую, используемую для передачи данных в каждом периоде скачкообразного изменения. Множество передач данных для множества мобильных станций могут посылаться одновременно по множеству каналов трафика, которые связаны с разными последовательностями FH. Последовательности FH могут быть определены ортогональными одна к другой, так что только один канал трафика и, соответственно, только одна передача данных, использует каждую поднесущую в каждом периоде скачкообразного изменения. Посредством использования ортогональных последовательностей FH, множество передач данных, в целом, не создают взаимных помех наряду, одновременно используя преимущества частотного разнесения.
Точная оценка беспроводного канала между передатчиком и приемником обычно необходима для того, чтобы восстанавливать данные, переданные по беспроводному каналу. Оценка канала типично выполняется посредством передачи пилот-сигнала от передатчика и измерения пилот-сигнала в приемнике. Пилот-сигнал состоит из пилот-символов, которые известны априори как передатчику, так и приемнику. Приемник, таким образом, может оценивать характеристику канала на основании принятых символов и известных символов.
Часть каждой передачи с любой конкретной мобильной станции на базовую станцию, часто упоминаемая как передача «обратной линии связи», во время периода скачкообразного изменения выделяется для передачи символов пилот-сигнала. Как правило, количество символов пилот-сигнала определяет качество оценки канала и, следовательно, характеристику частоты ошибок пакетов. Однако использование символов пилот-сигнала обуславливает снижение эффективной скорости передачи данных, которая может быть достигнута. То есть, так как бульшая ширина полосы пропускания выделяется для информации пилот-сигнала, меньшая ширина полосы пропускания становится доступной для передачи данных.
Одним из типов системы FH-OFDMA является система с блокированным скачкообразным изменением, где множеству мобильных станций назначены непрерывные группы частот и периоды символов. В такой системе важно, чтобы информация пилот-сигнала надежно принималась от мобильной станции при одновременном уменьшении ширины полосы пропускания, которая выделяется для информации пилот-сигнала, поскольку блок содержит ограниченное количество символов и тонов, доступных для использования для передачи как пилот-сигналов, так и данных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В варианте осуществления шаблоны символов пилот-сигналов предусмотрены для символов пилот-сигналов, передаваемых от мобильной станции или базовой станции. Шаблон обеспечивает улучшенный прием и демодуляцию передаваемых символов пилот-сигнала.
В дополнительных вариантах осуществления предложены схемы для улучшения возможности мультиплексировать символы пилот-сигнала без взаимных помех и/или смещения от разных мобильных станций в одном и том же секторе базовой станции на одних и тех же частотах и в одних и тех же временных сегментах в системе OFDM.
В дополнительных вариантах осуществления предложены схемы для снижения смещения или взаимных помех для символов пилот-сигналов, передаваемых с разных мобильных станций в смежных сотовых ячейках на одних и тех же частотах и в одних и тех же временных сегментах в системе OFDM. В других вариантах осуществления предложены способы для изменения шаблонов символов пилот-сигналов.
К тому же предусмотрены другие способы дополнительных вариантов осуществления для формирования контрольных символов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки, сущность и преимущества настоящих вариантов осуществления поясняются в подробном описании, изложенном ниже, иллюстрируемом чертежами, на которых одинаковыми ссылочными позициями обозначены соответствующие элементы на всех чертежах, при этом:
фиг.1 иллюстрирует систему беспроводной связи множественного доступа согласно варианту осуществления;
фиг.2 иллюстрирует схему распределения спектра для системы беспроводной связи множественного доступа согласно варианту осуществления;
фиг.3A иллюстрирует диаграммы схемы назначения пилот-сигнала согласно варианту осуществления;
фиг.3B иллюстрирует диаграммы схемы назначения пилот-сигнала согласно еще одному варианту осуществления;
фиг.4A иллюстрирует схему скремблирования символов пилот-сигнала согласно варианту осуществления;
фиг.4B иллюстрирует схему скремблирования символов пилот-сигнала согласно еще одному варианту осуществления;
фиг.5 иллюстрирует базовую станцию с множеством секторов в системе беспроводной связи множественного доступа согласно варианту осуществления;
фиг.6 иллюстрирует систему беспроводной связи множественного доступа согласно варианту осуществления;
фиг.7 иллюстрирует структурную схему варианта осуществления системы передатчика и системы приемника в системе беспроводной связи множественного доступа с множеством входов и множеством выходов.
фиг.8 иллюстрирует блок-схему последовательности операций способа формирования символа пилот-сигнала согласно варианту осуществления; и
фиг.9 иллюстрирует блок-схему последовательности операций способа изменения шаблонов символов пилот-сигнала согласно варианту осуществления.
ПОДРОБНОЕ ОПИСАНИЕ
Со ссылкой на фиг.1 проиллюстрирована система беспроводной связи множественного доступа согласно варианту осуществления. Базовая станция 100 включает в себя множество антенных групп 102, 104 и 106, каждая из которых включает в себя одну или более антенн. На фиг.1 единственная антенна показана для каждой антенной группы 102, 104 и 106, однако, множество антенн могут использоваться для каждой антенной группы, которая соответствует сектору базовой станции 100. Мобильная станция 108 осуществляет связь с антенной 104, при этом антенна 104 передает информацию на мобильную станцию 108 по прямой линии 114 связи и принимает информацию с мобильной станции 108 по обратной линии 112 связи. Мобильная станция 110 осуществляет связь с антенной 106, при этом антенна 106 передает информацию на мобильную станцию 110 по прямой линии 118 связи и принимает информацию с мобильной станции 110 по обратной линии 116 связи.
Каждая группа антенн 102, 104 и 106 и/или зона, в которой они предназначены для осуществления связи, часто упоминается как сектор базовой станции. В варианте осуществления антенные группы 102, 104 и 106, каждая из которых предназначена для осуществления связи с мобильными станциями в секторе, секторах 120, 122 и 124, соответственно, зон, покрываемых базовой станцией 100.
Базовая станция может быть стационарной станцией, используемой для осуществления связи с терминалами, и также может упоминаться как узел доступа, узел В или определяться с использованием некоторой другой терминологии. Мобильная станция также может называться мобильной станцией, пользовательским оборудованием (UE), устройством беспроводной связи, терминалом, терминалом доступа или определяться с использованием некоторой другой терминологии.
Со ссылкой на фиг.2 проиллюстрирована схема распределения спектра для системы беспроводной связи множественного доступа. Множество символов 200 OFDM распределены по T периодам символов и S частотным поднесущим. Каждый символ 200 OFDM содержит один период символа из T периодов символов и тон или частотную поднесущую из S поднесущих.
В системе OFDM со скачкообразным изменением частоты, один или более символов 200 может назначаться заданной мобильной станции. В варианте осуществления схемы распределения, которая показана на фиг.2, одна или более областей скачкообразного изменения, например, область 202 скачкообразного изменения, символов назначена группе мобильных станций для осуществления связи по обратной линии связи. В пределах каждой области скачкообразного изменения, назначение символов может рандомизироваться для снижения потенциально возможных помех и обеспечения частотного разнесения для противодействия отрицательным воздействием тракта.
Каждая область 202 скачкообразного изменения включает в себя символы 204, которые назначены одной или более мобильных станций, которые осуществляют связь с сектором базовой станции и назначены данной области скачкообразного изменения. В других вариантах осуществления каждая область скачкообразного изменения назначена одной или более мобильных станций. Во время каждого периода скачкообразного изменения размещение области 202 скачкообразного изменения в пределах T периодов символов и S поднесущих изменяется согласно последовательности скачкообразного изменения. В дополнение, назначение символов 204 для отдельных мобильных станций в пределах области 202 скачкообразного изменения может изменяться для каждого периода скачкообразного изменения.
Последовательность скачкообразного изменения может псевдослучайным образом, случайным образом или согласно предопределенной последовательности выбирать размещение области 202 скачкообразного изменения для каждого периода скачкообразного изменения. Последовательности скачкообразного изменения для разных секторов одной и той же базовой станции спроектированы ортогональными одна другой, чтобы избежать «внутрисотовых» помех между мобильными станциями, осуществляющими связь с одной и той же базовой станцией. Кроме того, последовательности скачкообразного изменения для каждой базовой станции могут быть псевдослучайными по отношению к последовательностям скачкообразного изменения для близлежащих базовых станций. Это способствует рандомизации «межсотовых» помех среди мобильных станций, осуществляющих связь с разными базовыми станциями.
В случае связи по обратной линии связи, некоторые из символов 204 области 202 скачкообразного изменения, назначены символам пилот-сигнала, которые передаются с мобильных станций на базовую станцию. Назначение символов пилот-сигнала символам 204, предпочтительно, должно поддерживать множественный доступ с пространственным разделением каналов (SDMA), где сигналы разных мобильных станций, работающих с перекрытием в одной и той же области скачкообразного изменения, могут быть разделены благодаря множеству приемных антенн в секторе или базовой станции, при условии достаточного различия пространственных сигнатур, соответствующих разным мобильным станциям. Чтобы более точно выделять и демодулировать сигналы разных мобильных станций, соответствующие каналы обратной линии связи должны точно оцениваться. Поэтому может быть желательным, чтобы символы пилот-сигнала в обратной линии связи давали возможность разделения сигнатур пилот-сигнала разных мобильных станций на каждой приемной антенне в пределах сектора, для того чтобы затем применять многоантенную обработку к символам пилот-сигнала, принятым от разных мобильных станций.
Блочное скачкообразное изменение может использоваться для обеих, прямой линии связи и обратной линии связи, или только для обратной линии связи, в зависимости от системы. Следует отметить, что хотя фиг. 2 изображает область 200 скачкообразного изменения, имеющую протяженность в семь периодов символов, протяженность области 200 скачкообразного изменения может быть любой требуемой величины, может изменяться по размеру между периодами скачкообразного изменения или между разными областями скачкообразного изменения в заданном периоде скачкообразного изменения.
Следует отметить, что хотя вариант осуществления по фиг.2 описан относительно использования блочного скачкообразного изменения, размещение блока не обязательно должно изменяться между следующими друг за другом периодами скачкообразного изменения или изменяться в принципе.
Со ссылкой на фиг.3A и 3B, проиллюстрированы блочные диаграммы схем назначения пилот-сигнала согласно нескольким вариантам осуществления. Области 300 и 320 скачкообразного изменения определены T периодами символа по S поднесущим или тонам. Область 300 скачкообразного изменения включает в себя символы 302 пилот-сигнала, а область 320 скачкообразного изменения включает в себя символы 322 пилот-сигнала, с оставшимися периодами символов и комбинациями тонов, имеющимися в распоряжении для символов данных и других символов. В варианте осуществления размещения символов пилот-сигнала для каждой из областей скачкообразного изменения, то есть группы N S смежных тонов на N T следующих друг за другом символах OFDM, должны содержать тоны пилот-сигнала, размещенные рядом с границами области скачкообразного изменения. Это объясняется тем, что типичные каналы в беспроводных применениях являются относительно медленными функциями времени и частоты, так что приближение первого порядка канала, например, разложение в ряд Тейлора первого порядка, на области скачкообразного изменения по времени и частоте, дает информацию касательно канальных условий, которая достаточна для оценки канала по данной мобильной станции. По существу, является предпочтительным оценивать пару канальных параметров для надлежащего приема и демодуляции символов с мобильных станций, а именно постоянную составляющую канала, т.е. член нулевого порядка разложения Тейлора, и линейную составляющую, т.е. член первого порядка разложения Тейлора, канала на временном и частотном диапазоне канала. Обычно точность оценки постоянной составляющей является независимой от размещения пилот-сигнала. Точность оценки линейной составляющей, как правило, предпочтительно достигается с помощью тонов пилот-сигнала на границах области скачкообразного изменения.
Символы 302 и 322 пилот-сигнала скомпонованы в непрерывные кластеры 304, 306, 308 и 310 (фиг.3A), и 324, 326, 328 и 330 (фиг.3B) символов пилот-сигнала. В варианте осуществления каждый кластер 304, 306, 308 и 310 (фиг.3A), и 324, 326, 328 и 330 (фиг.3B) в пределах области скачкообразного изменения, имеет фиксированное количество, а зачастую одинаковое количество символов пилот-сигнала в пределах заданной области скачкообразного изменения. Использование кластеров 304, 306, 308 и 310 (фиг.3A), и 324, 326, 328 и 330 (фиг.3B) смежных символов пилот-сигнала может, в варианте осуществления, учитывать воздействие помех многих пользователей, вызванных помехами между несущими, которые обусловлены высокими доплеровскими сдвигами и/или разбросами задержек символов. Кроме того, если символы пилот-сигнала с мобильных станций, планируемых в одной и той же области скачкообразного изменения, принимаются по существу на разных уровнях мощности, сигналы более мощной мобильной станции могут создавать значительную величину помех для менее мощной мобильной станции. Величина помех является более высокой на границах, например, поднесущей 1 и поднесущей S, области скачкообразного изменения, а также на границе символов OFDM, например, периодах 1 и T символа, когда рассеяние вызывается чрезмерным разбросом задержек, то есть, когда становится значительной часть энергии канала, сосредоточенной в отводах, которая превосходит циклический префикс символов OFDM. Поэтому, если символы пилот-сигнала размещены исключительно на границах области скачкообразного изменения, может иметь место ухудшение в точности оценки канала и смещение в оценке помех. Следовательно, как изображено на фиг.3A и 3B, символы пилот-сигнала помещаются вплотную к границам области скачкообразного изменения, однако, избегая ситуации, где все символы пилот-сигнала находятся на границах области скачкообразного изменения.
Как показано на фиг.3A, область 300 скачкообразного изменения составлена из символов 302 пилот-сигнала. В случае каналов скорее с более резко выраженной избирательностью по частоте, чем избирательностью по времени, символы 302 пилот-сигнала размещены в непрерывных кластерах 304, 306, 308 и 310 символов пилот-сигналов, причем каждый кластер 304, 306, 308 и 310 символов пилот-сигналов охватывает множество периодов символов и один частотный тон. Частотный тон предпочтительно выбирается близкорасположенным к границам частотного диапазона области 300 скачкообразного изменения, однако, не точно на границе. В варианте осуществления по фиг.3A никакие из символов 302 пилот-сигнала в заданном кластере не находятся на граничных частотных тонах, и в каждом кластере только символ пилот-сигнала может быть в граничном периоде символа.
Одно из обоснований «горизонтальной» формы непрерывных кластеров символов пилот-сигнала из символов 302 пилот-сигнала состоит в том, что, для каналов с более высокой избирательностью по частоте, (линейная) составляющая первого порядка может быть более мощной в частотной области, чем во временной области.
Следует отметить, что один или более символов пилот-сигнала в каждом кластере, в варианте осуществления по фиг.3A, могут быть на другом тоне, чем один или более символов пилот-сигнала в другом кластере. Например, кластер 304 может быть на тоне S, а кластер 306 может быть на тоне S-1.
Согласно фиг.3B, в случае каналов скорее с резко выраженной избирательностью по времени, чем избирательностью по частоте, символы 322 пилот-сигнала скомпонованы в кластерах 324, 326, 328 и 330 смежных символов пилот-сигнала, каждый из которых охватывает множество частотных тонов, но содержит один и тот же период символа области 320 скачкообразного изменения. Символы OFDM на границах области 320 скачкообразного изменения, те что обладают максимальным тоном, например тоном S, или минимальным тоном, например тоном 1, частотного диапазона, который определяет S поднесущих, могут быть включены в качестве части символов пилот-сигнала, поскольку могут быть символы 322 пилот-сигнала, которые находятся на границах области 320 скачкообразного изменения. Однако в варианте осуществления, показанном на фиг.3B, только один символ пилот-сигнала в каждом кластере может быть назначен на максимальную или минимальную частотную поднесущую.
В варианте осуществления, изображенном на фиг.3B, канал с более высокой избирательностью по времени может иметь типичный шаблон, который может быть получен поворотом на 90° шаблона, выбранного для каналов с более высокой избирательностью по частоте (фиг.3A).
Следует отметить, что один или более символов пилот-сигнала в каждом кластере, в варианте осуществления по фиг.3B, могут быть назначены на другой период символа, нежели один или более символов пилот-сигнала в другом кластере. Например, кластер 324 может быть в другом периоде T символа, нежели кластер 326.
Дополнительно, как изображено в вариантах осуществления по фиг.3A и 3B, шаблоны пилот-сигналов предусмотрены таким образом, что кластеры 304, 306, 308 и 310 (фиг.3A), и 324, 326, 328 и 330 (фиг.3B), являются предпочтительно симметричными относительно центра области скачкообразного изменения. Симметрия кластеров относительно центра области скачкообразного изменения может обеспечивать улучшенную совместную оценку канала, что касается временной и частотной характеристик канала.
Следует отметить, что, хотя фиг.3A и 3B изображают четыре кластера символов пилот-сигнала на область скачкообразного изменения, меньший или больший объем кластеров может использоваться в каждой области скачкообразного изменения. Кроме того, количество символов пилот-сигнала на кластер символов пилот-сигнала также может изменяться. Суммарное количество символов пилот-сигнала и кластеров символов пилот-сигнала является функцией количества символов пилот-сигнала, требуемых базовой станцией для успешной демодуляции символов данных, принимаемых по обратной линии связи, и для оценки канала между базовой станцией и мобильной станцией. К тому же каждому кластеру не обязательно иметь одинаковое количество символов пилот-сигнала. Количество мобильных станций, которые могут мультиплексироваться в одиночной области скачкообразного изменения, в варианте осуществления, может быть равным количеству символов пилот-сигнала в области скачкообразного изменения.
Кроме того, хотя фиг.3A и 3B изображают кластеры символов пилот-сигнала, предназначенных для каналов, либо обладающих избирательностью по частоте, либо избирательностью по времени, шаблон пилот-сигнала может быть таким, что есть кластеры для избирательных по частоте каналов, а также кластеры для избирательных по времени каналов, в одном и том же шаблоне пилот-сигнала, например, несколько кластеров, скомпонованных в шаблон кластеров 304, 306, 308 или 310, и несколько кластеров, скомпонованных в шаблон кластеров 326, 328 или 330.
В некоторых вариантах осуществления шаблон пилот-сигнала, выбранный используемым, может быть основан на условиях, для которых оптимизируется канал. Например, для каналов, которым свойственно высокоскоростное перемещение, например, транспортных средств, мобильных станций, может быть предпочтительным избирательный по времени шаблон пилот-сигнала, тогда как для низкоскоростных перемещений мобильной станции, например, пешеходов, может использоваться избирательный по частоте шаблон пилот-сигнала. В другом варианте осуществления шаблон пилот-сигнала может выбираться на основании канальных условий, решений, принимаемых через предопределенное количество периодов скачкообразного изменения.
Со ссылкой на фиг.4A и 4B проиллюстрированы схемы распределения пилот-сигналов согласно другим вариантам осуществления. На фиг.4A, области 400 скачкообразного изменения включают в себя символы пилот-сигнала, C 1,q, C 2,q, и C 3,q, скомпонованные в кластер 402; C 4,q, C 5,q, и C 6,q, скомпонованные в кластер 404; C 7,q, C 8,q и C 9,q, скомпонованные в кластер 406; а также C 10,q, C 11,q и C 12,q, скомпонованные в кластер 408. В варианте осуществления, для того чтобы улучшить пространственное разнесение в областях скачкообразного изменения, где множество мобильных станций предусматривают перекрывающиеся символы пилот-сигналов, символы пилот-сигналов разных мобильных станций должны мультиплексироваться таким способом в одном и том же периоде и тоне символа OFDM, чтобы символы пилот-сигналов были по существу ортогональными, когда принимаются в антеннах кластера базовой станции.
На фиг.4A, каждый из символов пилот-сигналов C 1,q, C 2,q, C 3,q, C 4,q, C 5,q, C 6,q, C 7,q, C 8,q, C 9,q, C 10,q, C 11,q и C 12,q назначен множеству мобильным станциям области 400 скачкообразного изменения, то есть каждый период символа включает в себя множество символов пилот-сигналов от ряда станций из разных мобильных станций. Каждый из символов пилот-сигналов в кластере символов пилот-сигналов, например, кластере 402, 404, 406 и 408, формируется и передается таким способом, что приемник символов пилот-сигнала в кластере, например базовая станция, может принимать их так, что они являются ортогональными по отношению к символам пилот-сигнала из каждой другой мобильной станции в том же самом кластере. Это может осуществляться применением предопределенного фазового сдвига, например, скалярной функции для умножения каждой из выборок символов пилот-сигнала, передаваемого каждой из мобильной станций. Для обеспечения ортогональности, скалярные произведения векторов, представляющих последовательность скалярных функций в каждом кластере для каждой мобильной станции, могут быть нулевыми.
Кроме того, в некоторых вариантах осуществления предпочтительно, чтобы символы пилот-сигнала каждого кластера были ортогональны символам пилот-сигнала каждого кластера области скачкообразного изменения. Это может обеспечиваться таким же образом, как обеспечивается ортогональность для символов пилот-сигналов в пределах каждого кластера от другой мобильной станции, с использованием другой последовательности скалярных функций для символов пилот-сигнала каждой мобильной станции в каждом кластере символов пилот-сигналов. Математическое определение ортогональности может быть сделано посредством выбора последовательности скалярных кратных для каждого из символов пилот-сигналов для конкретного кластера для конкретной мобильной станции, вектор которых является ортогональным, например скалярное произведение является нулевым, по отношению к вектору, представляющему последовательность скалярных кратных, используемых для символов пилот-сигналов других мобильных станций во всех кластерах и той же самой мобильной станции в других кластерах.
В варианте осуществления количество мобильных станций, которые могут поддерживаться, где обеспечивается ортогональность символов пилот-сигналов по каждому из кластеров, равно количеству символов пилот-сигналов, которые предусмотрены на кластер символов пилот-сигналов. В варианте осуществления по фиг.4A и 4B, q-й пользователь из Q работающих с перекрытием пользователей, 1≤qQ, использует последовательность S размера N P, где N P - суммарное количество тонов пилот-сигналов (на фиг.4A и 4B, N P=12):
Figure 00000001
здесь, (T) обозначает транспозицию матрицы, содержащей последовательности. Как обсуждено выше, последовательности скалярных функций, в каждом кластере символов пилот-сигналов, должны быть разными для разных мобильных станций, для того чтобы получать состоятельные оценки соответствующих каналов, благодаря снижению помех между символами пилот-сигналов. Более того, последовательности должны быть линейно независимыми, по существу, предпочтительно, чтобы никакая последовательность или вектор не была линейной комбинацией остальных последовательностей. Математически это может определяться тем, что матрица N P×Q
Figure 00000002
имеет полный ранг столбцов. Следует отметить, что в вышеприведенных матрицах выражения (2) QN P . То есть количество работающих с перекрытием мобильных станций не должно превышать количество всех символов пилот-сигналов в области скачкообразного изменения.
На основании приведенного выше, любой набор последовательностей Q с полноранговой матрицей S дает возможность состоятельной оценки канала. Однако в другом варианте осуществления, фактическая точность оценки может зависеть от корреляционных свойств S . В варианте осуществления, как может быть определено с использованием уравнения (1), эксплуатационные показатели могут улучшаться, когда любые две последовательности являются взаимно (квази-) ортогональными при наличии канала. Математически, это условие может быть определено согласно
Figure 00000003
где H k - комплексный коэффициент усиления канала, соответствующий k-му символу пилот-сигнала, 1≤kN p . В неизменном по времени и частоте канале ( H 1,= H 2=...=
Figure 00000004
) условие (3) сводится к требованию взаимно ортогональных последовательностей
Figure 00000005
приводя к тому, что это условие для любой возможной реализации канала из типичного набора каналов может быть неосуществимым. Фактически выражение (3) может удовлетворяться, когда канал демонстрирует ограниченную избирательность по времени и частоте, что является случаем каналов пользователей-пешеходов с относительно небольшим разбросом задержек. Однако условия могут существенно отличаться в каналах пользователей на транспортных средствах и/или каналах со значительным разбросом задержек, приводя к ухудшению эксплуатационных показателей.
Как описано со ссылкой на фиг.3A и 3B, шаблоны распределения пилот-сигналов состоят из нескольких кластеров символов пилот-сигналов, размещенных около границ области скачкообразного изменения, где каждый кластер является непрерывным по времени (фиг.3A) и/или частоте (фиг.3B). Поскольку изменения канала внутри каждого кластера обычно ограничены ввиду непрерывного характера символов пилот-сигналов по времени и частоте и непрерывности канала по времени и частоте, поэтому создание разных последовательностей, ортогональных на каждом кластере, позволяет удовлетворить условие (3). Потенциально возможный недостаток этого решения состоит в том, что количество работающих с перекрытием мобильных станций, которые могут быть ортогональными на каждом кластере, ограничено размером кластера, здесь обозначенного N c. В примере, показанном на фиг.4A и 4B, N C=3, а отсюда, вплоть до Q=3 мобильных станций могут быть ортогонально разделены в таком варианте осуществления. Фактически довольно небольшое количество Q является достаточным во многих практических сценариях. Когда Q>N C, может быть затруднительным сохранять все мобильные станции ортогональными на каждом кластере, поскольку могут иметь место межсимвольные помехи. Отсюда приближенная ортогональность может быть достаточна, при некоторой потере эксплуатационных показателей изменяющихся по времени и/или частоте каналов, если Q>N C.
В варианте осуществления набор параметров проектирования для каждой последовательности скалярных функций S =[ S ,… S Q] может быть определен следующим образом:
* Любые две последовательности ортогональны на полном наборе символов пилот-сигналов, тем самым, удовлетворяя
Figure 00000006
* Являющиеся результатом группы N C последовательностей являются такими, что любые последовательности в пределах группы взаимно ортогональны на любом кластере пилот-сигналов
Figure 00000007
* Все элементы S k,q всех последовательностей имеют по существу равные абсолютные значения, например приблизительно одинаковую мощность.
где M C обозначает общее число кластеров размера N C, так что количество пилот-сигналов N P =M C N C.
В варианте осуществления последовательности S =[ S 1 S Q] созданы с использованием экспоненциальных функций, с тем чтобы одинаковая энергия на символ обеспечивалась каждой последовательностью. Кроме того, в этом варианте осуществления группы из N C последовательностей могут быть сделаны взаимно ортогональными в пределах каждого кластера, независимо от размера кластера, поскольку экспоненты не ограничены конкретными кратными числами, и с последовательностями, используемыми в каждом другом кластере по всем из символов пилот-сигналов, посредством (i) определения экспоненциальных последовательностей в пределах каждого кластера; и (ii) заполнения внутрикластерных участков по кластерам. Это можно увидеть в уравнении (7), где определен базис дискретного преобразования Фурье N×N.
Figure 00000008
Вышеприведенное выражение (7) может быть записано в компактной блочной форме, как изложено ниже
Figure 00000009
где
Figure 00000010
обозначает блок матрицы, охватывающий столбцы с 1 по Q исходной матрицы. Более общая форма S может быть задана посредством
Figure 00000011
где U - произвольная унитарная матрица N C ЧN C ( U*U =
Figure 00000012
), а V - произвольная унитарная матрица M C ЧM C ( V * V =
Figure 00000013
).
В варианте осуществления количество поддерживаемых мобильных станций, где обеспечивается ортогональность символов пилот-сигналов по каждому из кластеров, равно количеству символов пилот-сигналов, которые предусмотрены на кластер символов пилот-сигналов.
В варианте осуществления экспоненциальные функции, используемые для умножения на выборки символов пилот-сигналов, формируются с использованием функции дискретного преобразования Фурье, которая широко известна. В вариантах осуществления, где функция дискретного преобразования Фурье используется для формирования символов для передачи, добавочный фазовый сдвиг применяется при формировании символов с использованием функции дискретного преобразования Фурье при формировании символов для передачи.
В вариантах осуществления по фиг.4A и 4B, скалярные произведения векторов, представляющих последовательность скалярных функций в каждом кластере для каждой мобильной станции, могут быть нулевыми. Однако в других вариантах осуществления это не так. Она может быть скомпонована так, что обеспечивается только квазиортогональность между последовательностями скалярных функций в каждом кластере для каждой мобильной станции.
Кроме того, в тех случаях, где количество мобильных станций, назначенных на область скачкообразного изменения, является меньшим, чем количество символов пилот-сигналов, распределенных области скачкообразного изменения, скалярные сдвиги по прежнему могут декодироваться на базовой станции, чтобы использоваться для выполнения оценивания помех. Поэтому эти символы пилот-сигналов могут использоваться для оценивания помех, поскольку они ортогональны или квазиортогональны по отношению к символам пилот-сигналов, другими мобильными станциями, распределенными области скачкообразного изменения.
На фиг.5 проиллюстрирована базовая станция с множеством секторов в системе беспроводной связи множественного доступа согласно варианту осуществления. Базовая станция 500 включает в себя множество антенных групп из антенн 502, 504 и 506. На фиг.5 только одна антенна показана для каждой антенной группы 502, 504 и 506, однако, может использоваться множество антенн. Множество антенн каждой антенной группы 502, 504 и 506 могут использоваться для обеспечения частотного разнесения на базовой станции в отношении сигналов, передаваемых с мобильных станций в соответствующем секторе, в дополнение к пространственному разнесению, предусмотренному для разных физических местоположений разных мобильных станций.
Каждая антенная группа 502, 504 и 506 базовой станции 500 сконфигурирована для поддержания связи с мобильными станциями в секторе, который должен покрываться базовой станцией 500. В варианте осуществления по фиг.5 антенная группа 502 покрывает сектор 515, антенная группа 504 покрывает сектор 516, а антенная группа 506 покрывает сектор 518. В пределах каждого сектора, как описано по фиг.4, символы пилот-сигналов, передаваемые с мобильных станций, могут точно демодулироваться и использоваться для оценивания канала и других функций в базовой станции, вследствие ортогональности или приблизительной ортогональности между всеми из межсекторных кластеров символов пилот-сигналов.
Однако межсекторные помехи могут существовать для мобильных станций около границы сектора, например мобильной станции 510, которая находится возле границы секторов 514 и 516. В таком случае символы пилот-сигналов из мобильной станции 510 могут быть более низкой мощности, чем символы пилот-сигналов с других мобильных станций в обоих секторах 514 и 516. В такой ситуации мобильная станция 510 могла бы, в конечном счете, извлекать пользу из приема антеннами обоих секторов, особенно когда ее канал в обслуживающий сектор, то есть сигналы сектора 516, может замирать, если мощность с антенны 504 повышается. Для того чтобы полностью извлечь пользу из приема антенной 502 сектора 514, должна быть обеспечена точная оценка канала мобильной станции 510 между антенной 502 сектора 514. Однако, если одинаковые или по существу одинаковые частоты используются для скалярных множителей символов пилот-сигналов в разных секторах с существующей формой пилот-сигнала, символы пилот-сигнала, передаваемые мобильной станцией 510, могут входить в конфликт с символами пилот-сигнала, передаваемыми мобильной станцией 508, которая запланирована для сектора 514 в той же области скачкообразного изменения, что и запланированная мобильная станция 510 для сектора 516. Кроме того, в некоторых случаях, в зависимости от стратегии управления мощностью, используемой базовой станцией для управления мобильными станциями, уровень мощности символов с мобильной станции 508, может существенно превышать уровень сигнала мобильной станции 510 в антенной группе 502 сектора 514, особенно когда мобильная станция 508 близка к базовой станции 500.
Для того чтобы бороться с межсекторными помехами, которые могут возникать, для мобильных станций могут использоваться коды скремблирования. Коды скремблирования могут быть уникальными для отдельных мобильных станций или могут быть одинаковыми для каждой из мобильных станций, поддерживающих связь с отдельным сектором. В варианте осуществления эти отдельные коды скремблирования предоставляют антенной группе 502 возможность принимать составной канал мобильных станций 508 и 510.
В случае, когда одной мобильной станцией распределена вся область скачкообразного изменения, могут быть предусмотрены последовательности специфичного для пользователя скремблирования, так что каждая мобильная станция в заданном секторе пользуется одной и той же последовательностью пилот-сигнала; формирование этих последовательностей описано со ссылкой на фиг.4A и 4B. В примере по фиг.5 мобильные станции 508, 510 и 512 могут иметь в распоряжении разные последовательности специфичного для пользователя скремблирования, потому может быть реализовано достаточное оценивание канала.
Там где множество станций назначены или могут быть назначены на одну и ту же область скачкообразного изменения могут использоваться два подхода для снижения внутрикластерных помех. Во-первых, могут использоваться последовательности специфичного для пользователя скремблирования, если размер N C кластера равен или больше, чем количество Q работающих с перекрытием мобильных станций в каждом секторе, умноженное на количество секторов в соте. Если дело обстоит именно так, отдельные наборы из Q разных кодов специфичного для пользователя скремблирования могут быть назначены разным секторам.
Однако, если размер N C кластера является меньшим, чем количество Q работающих с перекрытием мобильных станций в каждом секторе, умноженное на количество секторов в соте, это может быть важным, если цель проектирования системы состоит в том, чтобы сохранять N C для поддержания ограниченных служебных данных пилот-сигнала, коды специфичного для пользователя скремблирования могут не быть эффективными для снижения межсотовых помех. В таких случаях последовательность специфичного для сектора скремблирования может использоваться наряду с последовательностью специфичного для пользователя скремблирования.
Последовательностью специфичного для сектора скремблирования является последовательность X s =[ X 1,s ,…,
Figure 00000014
]T из N P номинальных функций, которые умножаются на соответствующие элементы последовательностей S =[ S 1 S Q], для всех мобильных станций в одном и том же секторе. В соте, состоящей из S секторов, набор из S последовательностей X 1,…, X S специфичного для сектора скремблирования может использоваться для умножения на последовательности S =[ S 1 S Q] мобильных станций. В таком случае мобильные станции в пределах разных секторов, например, секторов 514 и 516, которые могут содержать мобильные станции, которые используют одинаковые последовательности S =[ S 1 S Q] специфичного пользователю скремблирования, могут отличаться вследствие разных последовательностей
Figure 00000015
и
Figure 00000016
специфичного для сектора скремблирования, используемых для умножения на последовательности специфичного для пользователя скремблирования.
Подобно специфичному для пользователя скремблированию, предпочтительно, чтобы все элементы X 1,…, X S имели приблизительно равные абсолютные значения для поддержания приблизительно равной мощности между символами пилот-сигналов. В других вариантах осуществления, предпочтительно, чтобы элементы X 1,…, X S были такими, что любая пара символов пилот-сигналов в кластере символов пилот-сигналов, соответствующая любым двум комбинациям последовательностей специфичного для пользователя и специфичного для сектора скремблирования, должна удовлетворять условию (3). Один из способов для подхода к выбору содержимого каждой специфичной для сектора последовательности X 1,…, X S состоит в полном переборе последовательностей, например, элементы каждой последовательности берутся из некоторой комбинации с постоянным модулем (PSK (фазовой манипуляции)), такой как QPSK (квадратурная фазовая манипуляция), восьмипозиционная PSK. Критерий отбора может быть основан на дисперсии ошибок оценки канала «наихудшего случая», соответствующей «наихудшему» сочетанию мобильных станций из разных секторов и разному специфичному для пользователя скремблированию, которые основаны на возможных канальных условиях. Ошибка оценивания канала может рассчитываться аналитически на основании статистических свойств канала. Более точно, ранг ковариационной матрицы оценки канала, который допускает корреляционную структуру канала, основанную на ожидаемой модели замирания и параметрах, таких как скорость мобильной станции, которая определяет избирательность по времени, и разброс задержек распространения, который определяет избирательность по частоте. Аналитические выражения для минимальной достижимой ошибки оценки канала при условии заданной корреляционной структуры истинного канала известны в данной области техники. Другие подобные критерии также могут использоваться для оптимизации выбора X 1,…, X S.
В варианте осуществления, где квадратурная амплитудная модуляция используется в качестве схемы модуляции, набор последовательностей X 1,…, X S специфичного для сектора скремблирования, которые могут использоваться, показана в таблице 1, приведенной ниже. Каждый элемент таблицы задает (синфазную и квадратурную) составляющие I и Q каждой X k,s, 1≤s≤S и 1≤kN P при S=3 и N P=12.
Таблица 1
k 1 2 3 4 5 6 7 8 9 10 11 12
s=1 {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0}
s=2 {+1,+0} {+1,+0} {-1,+0} {+1,+0} {+0,-1} {+1,+0} {+1,+0} {+0,-1} {+0,+1} {+0,+1} {+0,+1} {+0,+1}
s=3 {+0,+1} {-1,+0} {+1,+0} {+1,+0} {+0,+1} {+0,-1} {+0,-1} {+0,+1} {+1,+0} {+0,-1} {+1,+0} {-1,+0}
В некоторых вариантах осуществления каждая сота в сети связи может использовать одинаковые последовательности для последовательностей специфичного для сектора скремблирования.
На фиг.6 проиллюстрирована система 600 беспроводной связи множественного доступа согласно еще одному варианту осуществления. В случае, когда одинаковые наборы последовательностей специфичного для пользователя и специфичного для сектора скремблирования используются в множестве сот, например, в сотах 602, 604 и 606, помехи, приходящие из соседних сот, могут приводить к ухудшению точности оценки канала вследствие конфликта символов пилот-сигналов. Например, оценка канала в пределах интересующего сектора может иметь смещение вследствие канала мобильной станции из соседней соты, которая имеет в распоряжении такое же специфичное для пользователя и специфичное для сектора скремблирование. Чтобы избежать такого смещения, в дополнение к специфичному для пользователя скремблированию и специфичному для сектора скремблированию может использоваться специфичное для соты скремблирование. Схема специфичного для соты скремблирования может быть определена посредством вектора скалярных функций Y c =[ Y 1,c,…,
Figure 00000017
] T, которые умножаются на соответствующую последовательность символов пилот-сигнала для каждой мобильной станции в соте. Общие последовательности символов пилот-сигнала Z (q,s,c)=[ Z 1,(q,s,c),…,
Figure 00000018
]T, которые соответствуют мобильной станции с q-м специфичным для пользователя скремблированием в s-м секторе c-й соты, могут быть определены как изложено ниже. Если используется специфичное для сектора скремблирование
Figure 00000019
Если специфичное для сектора скремблирование не используется:
Figure 00000020
Как уже упомянуто, использование специфичного для сектора скремблирования рекомендовано, когда Q>1, и не рекомендовано, когда Q=1.
В отличие от специфичного для пользователя и специфичного для сектора скремблирования не требуется использовать никакой конкретной оптимизации последовательностей специфичного для соты скремблирования. Два используемых параметра проектирования представляют следующее:
* Все элементы последовательности специфичного для соты скремблирования имеют равные модули.
* Последовательности специфичного для соты скремблирования существенно отличаются для разных сот.
При отсутствии предопределенного распределения последовательностей специфичного для соты скремблирования по сети базовых станций, (псевдо-) случайные последовательности специфичного для соты скремблирования из некоторых комбинаций с постоянным модулем (PSK), таких как QPSK, восьмипозиционная PSK, могут использоваться при создании специфичных для соты последовательностей Y . Чтобы дополнительно улучшить рандомизацию специфичного для соты скремблирования и избежать плохих стационарных сочетаний последовательностей скремблирования, специфичное для соты скремблирование может периодически изменяться (псевдо-) случайным образом. В некоторых вариантах осуществления периодическое изменение может происходить на каждый кадр, суперкадр или множество кадров или суперкадров.
Фиг.7 - структурная схема варианта осуществления системы 710 передатчика и системы 150 приемника в системе 700 MIMO. В системе 710 передатчика данные трафика для некоторого количества потоков данных выдаются из источника 712 данных в процессор 714 данных передачи (TX). В варианте осуществления каждый поток данных передается через соответствующую передающую антенну. Процессор 714 данных TX форматирует, кодирует и перемежает данные трафика для каждого потока данных на основании конкретной схемы кодирования, выбранной для такого потока данных, чтобы подготовить кодированные данные.
Кодированные данные для каждого потока данных могут мультиплексироваться с данными пилот-сигналов с использованием технологий OFDM. Данные пилот-сигнала в типичном случае являются известным шаблоном данных, который обрабатывается известным образом, и могут использоваться в системе приемника для оценки характеристики канала. Мультиплексированные пилот-сигналы и кодированные данные для каждого потока данных затем модулируются (например, посимвольно отображаются) на основании конкретной схемы модуляции (например, BPSK, QPSK, M-PSK (M-позиционной фазовой манипуляции) или M-QAM (M-позиционной квадратурной амплитудной манипуляции)), выбранной для такого потока данных, для обеспечения символов модуляции. Скорость передачи данных, кодирование и модуляция для каждого потока данных могут определяться выполняемыми инструкциями, предоставленными процессором 130.
Символы модуляции для всех потоков данных затем выдаются в процессор 720 TX, который может дополнительно обрабатывать символы модуляции (например, для OFDM). Процессор 720 TX затем выдает N T потоков символов модуляции на N T передатчиков (TMTR) с 722a по 722t. Каждый передатчик 722 принимает и обрабатывает соответствующий поток символов для предоставления одного или более аналоговых сигналов, и дополнительно преобразует (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы для обеспечения модулированного сигнала, подходящего для передачи по каналу MIMO. N T модулированных сигналов из передатчиков с 722a по 722t затем передаются с N T антенн со 124a по 124t, соответственно.
В системе 750 приемника переданные модулированные сигналы принимаются N R антеннами, с 752a по 752r, и принятые сигналы с каждой антенны 752 выдаются в соответствующий приемник (RCVR) 754. Каждый приемник 754 преобразует (например, фильтрует, усиливает и преобразует с понижением частоты) соответствующий принятый сигнал, оцифровывает преобразованный сигнал, чтобы предоставить отсчеты, и дополнительно обрабатывает отсчеты, чтобы предоставить соответствующий «принятый» поток символов.
Процессор 760 данных RX затем принимает и обрабатывает N R принятых потоков символов из N R приемников 754 на основании конкретной технологии обработки приемника, чтобы предоставить N T «детектированных» потоков символов. Обработка процессором 760 данных RX ниже описана более подробно. Каждый детектированный поток символов включает в себя символы, которые являются оценками символов модуляции, переданных для соответствующего потока данных. Процессор 760 данных RX затем демодулирует, обращенно перемежает и декодирует каждый детектированный поток символов, чтобы восстановить данные трафика для потока данных. Обработка процессором 760 данных RX является комплементарной по отношению к выполняемой процессором 720 TX и процессором 714 данных TX в системе 710 передатчика.
Процессор 760 RX может извлекать и оценивать характеристику канала между N T передающими и N R приемными антеннами, например, на основании информации пилот-сигнала, мультиплексированной с данными трафика. Процессор 760 RX может распознавать символы пилот-сигнала согласно шаблонам пилот-сигнала, сохраненным в памяти, например, памяти 722, которые идентифицируют частотную поднесущую и период символа, назначенные каждому символу пилот-сигнала. В дополнение, последовательности специфичного для пользователя, специфичного для сектора и специфичного для соты скремблирования, могут сохраняться в памяти, с тем чтобы они могли использоваться процессором 760 RX для умножения на принятые символы для обеспечения надлежащего декодирования.
Оценка характеристики канала, сформированная процессором 760 RX, может использоваться для выполнения пространственной, пространственно/временной обработки в приемнике, настройки уровней мощности, изменения глубин или схем модуляции или других действий. Процессор 760 RX дополнительно может оценивать отношения сигнала к шуму и помехе (SNR) детектированных потоков символов и, возможно, другие технические параметры канала, и выдает эти параметры в контроллер 770. Процессор 760 данных RX или контроллер 770 дополнительно может выводить оценку «действующего» SNR для системы. Контроллер 770 затем выдает информацию о состоянии канала (CSI), которая может содержать различные типы информации касательно линии связи и/или принимаемого потока данных. Например, CSI может содержать только действующее SNR. CSI затем обрабатывается процессором 778 данных TX, который также принимает данные трафика для некоторого количества потоков данных из источника 776 данных, модулируется модулятором 780, преобразуется передатчиками с 754a по 754r и передается обратно в систему 710 передатчика.
В системе 710 передатчика, модулированные сигналы из системы 750 приемника принимаются антеннами 724, преобразуются приемниками 722, демодулируются демодулятором 740 и обрабатываются процессором 742 данных RX, чтобы восстановить CSI, сообщенную системой приемника. Сообщенная CSI затем выдается в контроллер 730 и используется для (1) определения скоростей передачи данных, а также схем кодирования и модуляции, которые должны использоваться для потоков данных, и (2) формирования различных управляющих сигналов для процессора 714 данных TX и процессора 720 TX.
Контроллеры 730 и 770 управляют работой в системах передатчика и приемника, соответственно. Память 732 и 772 обеспечивает хранение для управляющих программ и данных, используемых, соответственно, контроллерами 730 и 770. Память 732 и 772 хранит шаблоны пилот-сигнала в параметрах размещений кластеров, последовательностей специфичного для пользователя скремблирования, последовательностей специфичного для сектора скремблирования, если используются, и последовательностей специфичного для соты скремблирования, если используются. В некоторых вариантах осуществления многочисленные шаблоны пилот-сигнала хранятся в каждой памяти, с тем чтобы передатчик мог передавать, а приемник мог принимать как избирательные по частоте шаблоны пилот-сигнала, так и избирательные по времени шаблоны пилот-сигнала. К тому же может использоваться сочетание шаблонов пилот-сигнала, содержащих кластеры, аранжированные для избирательных по времени и избирательных по частоте каналов. Это предоставляет передатчику возможность передавать определенный шаблон на основании параметра, такой случайной последовательности, или в ответ на инструкцию от базовой станции.
Процессоры 730 и 770, в таком случае, могут выбирать, какие из шаблонов пилот-сигнала, последовательностей специфичного для пользователя скремблирования, последовательностей специфичного для сектора скремблирования и последовательностей специфичного для соты скремблирования должны использоваться при передаче символов пилот-сигнала.
В приемнике различные технологии обработки могут использоваться для обработки N R принятых сигналов для детектирования N T переданных потоков символов. Эти технологии обработки приемника могут быть сгруппированы в две основополагающие категории: (i) технологии пространственной и пространственно-временной обработки приемника (которые также упоминаются как технологии компенсации); и (ii) технология обработки «последовательной режекцией/компенсацией и подавленим помех» приемника (которая также упоминается как технология обработки «последовательным подавлением помех» или «последовательным подавлением» приемника).
Хотя фиг.7 иллюстрирует систему MIMO, такая же система может применяться в системе с множеством входов и одним выходом, где множество передающих антенн, например на базовой станции, передают один или более потоков символов на устройство с одной антенной, например, мобильную станцию. К тому же антенная система с одним выходом и одним входом может использоваться таким же образом, как описано со ссылкой на фиг.7.
На фиг.8 проиллюстрирована блок-схема последовательности операций способа формирования символа пилот-сигнала согласно варианту осуществления. Множество кластеров символов пилот-сигнала выбираются для передачи на интервале области скачкообразного изменения от конкретной мобильной станции (блок 800). Эти кластеры символов пилот-сигналов все могут быть выровнены для передачи в избирательном по частоте (фиг.3A), избирательном по времени (фиг.3B) канале, или могут представлять собой сочетание кластеров, некоторые из которых выровнены для передачи в избирательном по частоте и избирательном по времени канале.
Как только кластеры символов пилот-сигналов выбраны, выполняется определение в отношении того, поддерживает ли кластер базовой станции, в котором осуществляет связь мобильная станция, или осуществляет связь с множеством мобильных станций (блок 802). Это определение может быть основано на предопределенном знании о сети, в которой находится мобильная станция. В качестве альтернативы, эта информация может передаваться из сектора для базовой станции как часть ее информации пилот-сигнала или широковещательные сообщения.
Ели кластер не поддерживает связь или в текущий момент не осуществляет связь с множеством мобильных станций, то скалярные функции применяются к символам пилот-сигналов, которые уникальны для кластера, с которым устанавливает связь мобильная станция (блок 804). В варианте осуществления, скалярные функции для каждого сектора могут сохраняться в мобильной станции и использоваться в зависимости от сигнала идентификации сектора, который является частью ее информации пилот-сигнала или широковещательных сообщений.
Если кластер не поддерживает связь с множеством мобильных станций, то скалярные функции применяются к символам пилот-сигналов, которые уникальны для мобильной станции (блок 806). В некоторых вариантах осуществления, скалярные функции для каждой мобильной станции могут быть основаны на ее уникальном идентификаторе, используемом для регистрации, или предоставленном устройству во время изготовления.
После того, как скалярные функции, которые уникальны либо для сектора, с которым осуществляет связь мобильная станция, либо самой мобильной станции, применяются к символам пилот-сигналов, еще одна последовательность скалярных функций применяется к символам пилот-сигналов (блок 808). Эта последовательность скалярных функций относится к соте, в которой осуществляет связь мобильная станция. Эта скалярная функция может изменяться во времени, если каждой соте не назначены конкретно скалярные функции, которые известны или предоставлены мобильным станциям. После этой операции, символы пилот-сигнала могут передаваться с мобильной станции на базовую станцию.
Скалярные функции, описанные со ссылкой на фиг.8, в варианте осуществления могут включать в себя фазовый сдвиг каждой из выборок, которые составляют символы пилот-сигналов. Как описано со ссылкой на фиг.4A, 4B, 5 и 6, скалярные функции выбираются так, что каждый кластер символов пилот-сигналов является ортогональным каждому другому набору символов пилот-сигналов из той же самой мобильной станции в других кластерах символов пилот-сигналов, и в таком же и других кластерах символов пилот-сигналов для других мобильных станций того же самого сектора базовой станции.
В дополнение, каждый из этапов, описанных со ссылкой на фиг.8, может быть реализован в качестве одной или более инструкций на машиночитаемых носителях, таких как память, которые приводятся в исполнение процессором, контроллером или другими электронными схемами.
На фиг.9 проиллюстрирована блок-схема последовательности операций способа изменения шаблонов символов пилот-сигналов согласно варианту осуществления. В блоке 900 получают информацию касательно канальных условий. Информация может содержать отношения SNR в одном или более секторах базовых станций, избирательность канала на базовой станции, требуемый тип трафика, относящийся к пользователям пешеходам или пользователям на транспортных средствах, в отношении которого базовая станция должна оптимизироваться, разбросы задержек или другие технические параметры канала. Кроме того, информация может относиться к периодам времени, может быть частью регулярного технического обслуживания на базовой станции или сети базовых станций, может быть основана на повышенной нагрузке базовых станций или сети базовых станций, или других промежутках времени.
Информации анализируется для определения канальных условий сектора или базовой станции (блок 902). Анализом может быть определение, является ли канал избирательным по частоте, избирательным по времени или сочетанием обоих. Анализ затем используется для определения шаблона символов пилот-сигналов, который должен передаваться с мобильных станций, которые могут поддерживать связь с сектором или базовой станцией (блок 904). Эти кластеры символов пилот-сигналов все могут быть выровнены для передачи в избирательном по частоте (фиг.3A), избирательном по времени (фиг.3B) канале, или могут представлять собой сочетание кластеров, некоторые из которых выровнены для передачи в избирательном по частоте и избирательном по времени канале. Отдельный шаблон пилот-сигнала затем может использоваться всеми мобильными станциями, которые поддерживают связь с базовой станцией или сектором, до того момента времени, когда снова выполняется диагностика для базовой станции или сектора.
Чтобы реализовать отдельный шаблон пилот-сигнала на мобильных станциях, устанавливающих связь с базовой станцией или сектором базовой станции, с базовой станции или сектора может отправляться инструкция на мобильные станции в качестве части процедуры инициализации или настройки. В некоторых вариантах осуществления, информация, например, какие шаблон пилот-сигнала, последовательность специфичного для пользователя скремблирования, последовательность специфичного для сектора скремблирования и/или последовательность специфичного для соты скремблирования должны использоваться, может передаваться в преамбуле одного или более пакетов данных, которые передаются с базовой станции на мобильную станцию с регулярными интервалами или во время инициализации или настройки.
Следует отметить, что анализ также может использоваться для определения количества символов пилот-сигналов, которые должны передаваться в каждом кластере символов пилот-сигналов и группировках символов пилот-сигналов. К тому же, каждый из этапов, описанных со ссылкой на фиг.9, может быть реализован в качестве одной или более инструкций на машиночитаемых носителях, таких как память или съемные носители, которые приводятся в исполнение процессором, контроллером или другими электронными схемами.
Технологии, описанные в материалах настоящей заявки, могут быть реализованы различными средствами. Например, эти технологии могут быть реализованы в аппаратных средствах, программном обеспечении или их сочетании. Для аппаратной реализации узлы обработки в базовой станции или мобильной станции могут быть реализованы на одной или более специализированных интегральных схемах (ASIC), цифровых сигнальных процессорах (ЦСП, DSP), устройствах цифровой сигнальной обработки (DSPD), программируемых логических устройствах (PLD), программируемых пользователем вентильных матрицах (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных узлах, предназначенных для выполнения функций, описанных в материалах настоящей заявки, или их сочетаниях.
Для программной реализации, технологии, описанные в материалах настоящей заявки, могут быть реализованы с помощью модулей (например, процедур, функций и так далее), которые выполняют функции, описанные в материалах настоящей заявки. Машинные программы могут храниться в узлах памяти и выполняться процессорами. Узел памяти может быть реализован внутри процессора или быть внешним по отношению к процессору, при этом он может быть связан с процессором с возможностью обмена данными через различные средства, как известно в данной области техники.
Предшествующее описание раскрытых вариантов осуществления предоставлено, чтобы дать любому специалисту в данной области техники возможность изготовить или использовать настоящее изобретение. Различные модификации в отношении этих вариантов осуществления будут без труда очевидны специалистам в данной области техники, а общие принципы, определенные в материалах настоящей заявки, могут быть применены к другим вариантам осуществления, без изменения сущности или объема изобретения. Таким образом, настоящее изобретение не ограничивается вариантами осуществления, показанными в материалах настоящей заявки, но должно быть согласованным с самым широким объемом, не противоречащим принципам и новым признакам, раскрытым в материалах настоящей заявки.

Claims (29)

1. Устройство беспроводной связи, содержащее по меньшей мере, одну антенну;
память, которая хранит, по меньшей мере, один избирательный по времени шаблон пилот-сигнала, соответствующий множеству символов пилот-сигнала, расположенных в смежных кластерах символов пилот-сигнала, занимающих множество периодов символов, и, по меньшей мере, один избирательный по частоте шаблон пилот-сигнала, соответствующий другому множеству символов пилот-сигнала, которые занимают множество частотных тонов той же самой области скачкообразного изменения; и
процессор, связанный с, по меньшей мере, одной антенной и памятью, причем процессор выбирает один шаблон пилот-сигнала из, по меньшей мере, одного избирательного по времени шаблона пилот-сигнала и, по меньшей мере, одного избирательного по частоте шаблона пилот-сигнала.
2. Устройство беспроводной связи по п.1, в котором, по меньшей мере, один избирательный по времени шаблон пилот-сигнала содержит множество избирательных по времени шаблонов пилот-сигнала,
по меньшей мере, один избирательный по частоте шаблон пилот-сигнала содержит множество избирательных по частоте шаблонов пилот-сигнала,
при этом процессор выбирает, по меньшей мере, один из множества избирательных по времени шаблонов пилот-сигнала и, по меньшей мере, один из множества избирательных по частоте шаблонов пилот-сигнала.
3. Устройство беспроводной связи по п.2, в котором множество избирательных по частоте шаблонов пилот-сигнала содержат кластеры символов пилот-сигнала, которые ортогональны друг другу.
4. Устройство беспроводной связи по п.2, в котором множество избирательных по времени шаблонов пилот-сигнала содержат кластеры символов пилот-сигнала, которые ортогональны друг другу.
5. Устройство беспроводной связи по п.1, в котором процессор выбирает, по меньшей мере, один из множества избирательных по времени шаблонов пилот-сигнала и, по меньшей мере, один из множества избирательных по частоте шаблонов пилот-сигнала на основании параметра.
6. Устройство беспроводной связи по п.5, в котором параметр содержит предопределенное пороговое значение.
7. Устройство беспроводной связи по п.5, в котором параметр динамически обновляется в ответ на сигнал, принятый в устройстве беспроводной связи.
8. Устройство беспроводной связи по п.5, в котором параметр содержит предопределенную оптимизацию сети, в которой должно работать устройство беспроводной связи.
9. Устройство беспроводной связи по п.1, в котором память дополнительно сохраняет множество последовательностей, которые ортогональны каждой другой последовательности из множества последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала шаблона пилот-сигнала на некоторую последовательность из множества последовательностей до передачи шаблона пилот-сигнала.
10. Устройство беспроводной связи по п.9, в котором память дополнительно сохраняет другое множество последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала шаблона пилот-сигнала на упомянутую некоторую последовательность из множества последовательностей и некоторую последовательность из другого множества последовательностей до передачи шаблона пилот-сигнала.
11. Устройство беспроводной связи по п.1, в котором множество избирательных по частоте шаблонов пилот-сигнала содержат кластеры символов пилот-сигнала, которые квазиортогональны друг другу.
12. Устройство беспроводной связи по п.1, в котором множество избирательных по времени шаблонов пилот-сигнала содержат кластеры символов пилот-сигнала, которые квазиортогональны друг другу.
13. Способ изменения передачи символа пилот-сигнала в системе беспроводной связи, состоящий в том, что
получают информацию касательно канальных условий из, по меньшей мере, одного сектора базовой станции;
определяют на основании упомянутой информации избирательность канала; и
настраивают шаблон кластеризованных символов пилот-сигнала на основании избирательности канала.
14. Способ по п.13, в котором настройка шаблона содержит настройку размещения кластеров пилот-сигналов.
15. Способ по п.13, в котором определение избирательности содержит классифицирование канала как избирательного по частоте или избирательного по времени.
16. Способ по п.13, в котором определение избирательности содержит определение избирательности по частоте или по времени.
17. Способ по п.13, в котором настройка содержит настройку кластеров символов пилот-сигнала оптимизированными для избирательных по частоте и избирательных по времени условий.
18. Способ по п.13, дополнительно содержащий передачу информации, указывающей шаблон символов пилот-сигнала, множеству пользователей, чтобы пользователи передавали символы пилот-сигнала согласно упомянутому шаблону в сектор базовой станции.
19. Устройство беспроводной связи, обеспечивающее передачу множества символов, каждый из которых передается с использованием частотной поднесущей из группы смежных частотных поднесущих, которые находятся в диапазоне от минимальной частоты до максимальной частоты, и в течение периода символа из группы смежных периодов символов, которые находятся в диапазоне от первого периода символа до последнего периода символа, причем устройство беспроводной связи содержит
по меньшей мере, одну антенну;
память, которая сохраняет множество шаблонов пилот-сигнала, каждый из которых содержит множество кластеров, каждый из которых содержит множество смежных символов пилот-сигнала, при этом в каждом кластере только одному символу пилот-сигнала назначена максимальная частота или минимальная частота в качестве его частотной поднесущей передачи, либо первый период символа или последний период символа в качестве его периода символа передачи; и
процессор, связанный с множеством антенн и памятью, причем процессор обеспечивает передачу одного шаблона пилот-сигнала из множества шаблонов пилот-сигнала, по меньшей мере, одной антенной в течение группы смежных периодов символов, с использованием группы смежных частотных поднесущих.
20. Устройство беспроводной связи по п.19, в котором множество шаблонов пилот-сигнала содержит, по меньшей мере, один избирательный по времени шаблон пилот-сигнала и, по меньшей мере, один избирательный по частоте шаблон пилот-сигнала.
21. Устройство беспроводной связи по п.19, в котором память дополнительно сохраняет множество последовательностей, которые ортогональны каждой другой последовательности из множества последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала шаблона пилот-сигнала на некоторую последовательность из множества последовательностей до декодирования символов пилот-сигнала.
22. Устройство беспроводной связи по п.19, в котором память дополнительно сохраняет множество последовательностей, которые квазиортогональны каждой другой последовательности из множества последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала шаблона пилот-сигнала на некоторую последовательность из множества последовательностей до декодирования символов пилот-сигнала.
23. Устройство беспроводной связи по п.22, в котором память дополнительно сохраняет другое множество последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала шаблона пилот-сигнала сигнала на некоторую последовательность из множества последовательностей и некоторую последовательность из другого множества последовательностей до декодирования символов пилот-сигнала.
24. Устройство беспроводной связи по п.19, в котором процессор выбирает шаблон пилот-сигнала, который должен передаваться, на основании указания, принятого, по меньшей мере, одной антенной.
25. Устройство беспроводной связи по п.19, в котором, по меньшей мере, одна антенна содержит множество антенн, при этом процессор обеспечивает передачу множества шаблонов пилот-сигнала из множества шаблонов пилот-сигнала от множества антенн в течение группы смежных периодов символов, с использованием группы смежных частотных поднесущих.
26. Устройство беспроводной связи по п.25, в котором память дополнительно сохраняет множество последовательностей, которые ортогональны каждой другой последовательности из множества последовательностей, при этом процессор избирательно дает указание на умножение символов пилот-сигнала каждого из множества шаблонов пилот-сигнала сигнала на разные последовательности из множества последовательностей до передачи множества шаблонов пилот-сигнала.
27. Устройство беспроводной связи по п.19, в котором процессор использует один шаблон пилот-сигнала из множества шаблонов пилот-сигнала для декодирования множества групп символов пилот-сигнала, передаваемых множеством беспроводных устройств и принимаемых, по меньшей мере, одной антенной.
28. Способ изменения передачи символа пилот-сигнала в системе беспроводной связи, состоящий в том, что
получают информацию касательно канальных условий из, по меньшей мере, одного сектора базовой станции;
определяют на основании упомянутой информации избирательность канала;
настраивают шаблон кластеризованных символов пилот-сигнала на основании избирательности канала и
формируют пакет данных для передачи в беспроводной сети, причем упомянутый пакет данных включает в себя секцию преамбулы, которая идентифицирует шаблон пилот-сигнала из множества шаблонов пилот-сигнала, которые должны передаваться приемником пакета данных.
29. Способ по п.28, в котором секция преамбулы дополнительно включает в себя информацию в отношении того, какая последовательность из множества ортогональных последовательностей, имеющихся в приемнике, должна использоваться приемником пакета данных для умножения на выборки, которые содержат символы пилот-сигнала шаблона пилот-сигнала, до передачи символов пилот-сигнала приемником пакета данных.
RU2007138379/09A 2005-03-17 2006-03-17 Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов RU2370902C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/083,708 US9520972B2 (en) 2005-03-17 2005-03-17 Pilot signal transmission for an orthogonal frequency division wireless communication system
US11/083,708 2005-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2009123319/09A Division RU2009123319A (ru) 2005-03-17 2009-06-18 Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов

Publications (2)

Publication Number Publication Date
RU2007138379A RU2007138379A (ru) 2009-04-27
RU2370902C2 true RU2370902C2 (ru) 2009-10-20

Family

ID=36693220

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2007138379/09A RU2370902C2 (ru) 2005-03-17 2006-03-17 Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов
RU2009123319/09A RU2009123319A (ru) 2005-03-17 2009-06-18 Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2009123319/09A RU2009123319A (ru) 2005-03-17 2009-06-18 Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов

Country Status (17)

Country Link
US (1) US9520972B2 (ru)
EP (2) EP2348666B1 (ru)
JP (2) JP2008533927A (ru)
KR (2) KR100963288B1 (ru)
CN (1) CN101176324B (ru)
AR (1) AR054432A1 (ru)
AT (1) ATE489798T1 (ru)
BR (1) BRPI0607788A2 (ru)
CA (1) CA2601361A1 (ru)
DE (1) DE602006018427D1 (ru)
ES (1) ES2353813T3 (ru)
MY (1) MY144651A (ru)
PL (1) PL1859591T3 (ru)
RU (2) RU2370902C2 (ru)
SG (1) SG160408A1 (ru)
TW (1) TWI401908B (ru)
WO (1) WO2006102077A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566814C2 (ru) * 2011-05-06 2015-10-27 Квэлкомм Инкорпорейтед Система и способ для конфигурирования удаленных радиостанций

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US20090213950A1 (en) * 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) * 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7715460B2 (en) * 2005-04-22 2010-05-11 Interdigital Technology Corporation Hybrid orthogonal frequency division multiple access system and method
US8243779B2 (en) * 2005-04-29 2012-08-14 Alcatel Lucent Method of quality-based frequency hopping in a wirelesscommunication system
US7768979B2 (en) * 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7508842B2 (en) * 2005-08-18 2009-03-24 Motorola, Inc. Method and apparatus for pilot signal transmission
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
JP5014727B2 (ja) * 2006-10-03 2012-08-29 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及びユーザ端末
KR101208539B1 (ko) 2006-10-17 2012-12-05 엘지전자 주식회사 주파수 도약 사용자 신호와 스케줄링 사용자 신호의 다중화방법 및 이를 이용한 신호 송신 방법
EP2074787B1 (en) * 2006-10-19 2012-08-15 QUALCOMM Incorporated Beacon coding in wireless communications systems
TW200838234A (en) * 2006-10-26 2008-09-16 Qualcomm Inc Beacon coding in wireless communications systems
US8433357B2 (en) * 2007-01-04 2013-04-30 Qualcomm Incorporated Method and apparatus for utilizing other sector interference (OSI) indication
US8681749B2 (en) * 2007-01-04 2014-03-25 Qualcomm Incorporated Control resource mapping for a wireless communication system
US8320407B2 (en) * 2007-01-05 2012-11-27 Qualcomm Incorporated Mapping of subpackets to resources in a communication system
US8457315B2 (en) * 2007-01-05 2013-06-04 Qualcomm Incorporated Pilot transmission in a wireless communication system
US8737353B2 (en) 2007-03-21 2014-05-27 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8737350B2 (en) * 2007-03-21 2014-05-27 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8948757B2 (en) 2007-03-21 2015-02-03 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8457064B2 (en) 2007-03-21 2013-06-04 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8750248B2 (en) 2007-03-21 2014-06-10 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US7940848B2 (en) * 2007-04-02 2011-05-10 Infineon Technologies Ag System having an OFDM channel estimator
US8565799B2 (en) 2007-04-04 2013-10-22 Qualcomm Incorporated Methods and apparatus for flow data acquisition in a multi-frequency network
WO2008129476A2 (en) * 2007-04-24 2008-10-30 Koninklijke Philips Electronics N.V. Pilot allocation in single frequency network
WO2008138164A1 (fr) * 2007-05-10 2008-11-20 Alcatel Shanghai Bell Company, Ltd. Procédé pour programmer les transmissions de liaison montante d'un système de communication sans fil et dispositif associé
US8279743B2 (en) 2007-05-31 2012-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Method for interference estimation for orthogonal pilot patterns
US8570939B2 (en) 2008-03-07 2013-10-29 Qualcomm Incorporated Methods and systems for choosing cyclic delays in multiple antenna OFDM systems
CN102017461B (zh) 2008-03-10 2014-09-17 蔚蓝公司 高效及一致的无线下行链路信道配置
CN101939943A (zh) * 2008-03-14 2011-01-05 高通股份有限公司 用于在多天线ofdm系统中选取循环延迟的方法和系统
KR20100003206A (ko) * 2008-06-30 2010-01-07 한국전자통신연구원 디지털 멀티미디어 방송 송수신 장치 및 방법
US9596106B2 (en) 2008-10-15 2017-03-14 Stmicroelectronics, Inc. Pilot pattern for observation-scalar MIMO-OFDM
US9130788B2 (en) 2008-10-15 2015-09-08 Stmicroelectronics, Inc. Determining a response of a rapidly varying OFDM communication channel using an observation scalar
US9020050B2 (en) * 2008-10-15 2015-04-28 Stmicroelectronics, Inc. Accounting for inter-carrier interference in determining a response of an OFDM communication channel
US9137054B2 (en) * 2008-10-15 2015-09-15 Stmicroelectronics, Inc. Pilot pattern for MIMO OFDM
US9148311B2 (en) 2008-10-15 2015-09-29 Stmicroelectronics, Inc. Determining responses of rapidly varying MIMO-OFDM communication channels using observation scalars
US9240908B2 (en) 2008-10-15 2016-01-19 Stmicroelectronics, Inc. Pilot pattern for observation scalar MIMO-OFDM
US8737536B2 (en) * 2008-10-15 2014-05-27 Stmicroelectronics, Inc. Recovery of data from a multi carrier signal
CN101771640B (zh) * 2008-12-31 2013-01-16 中兴通讯股份有限公司 一种专用导频的传输方法
US8693429B2 (en) * 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
US9288096B2 (en) * 2009-12-07 2016-03-15 Qualcomm Incorporated Enabling phase tracking for a communication device
KR101655269B1 (ko) * 2010-05-28 2016-09-07 삼성전자주식회사 무선통신시스템에서 자원분배 장치 및 방법
CN102869107B (zh) * 2011-07-08 2015-04-01 普天信息技术研究院有限公司 一种控制信息的发送方法和装置
US10014915B2 (en) * 2012-11-12 2018-07-03 Aerohive Networks, Inc. Antenna pattern matching and mounting
US9871565B2 (en) * 2013-03-01 2018-01-16 Sony Corporation MIMO communication method, transmitting device, and receiving device
CN104348763B (zh) * 2013-07-23 2018-06-05 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
CN105406950A (zh) * 2014-08-07 2016-03-16 索尼公司 用于无线通信的装置和方法、电子设备及其方法
CN105847208B (zh) * 2015-01-13 2019-04-30 上海数字电视国家工程研究中心有限公司 基于ofdm技术的连续导频数目的选定方法及设计方法
US10505772B2 (en) 2016-10-26 2019-12-10 Qualcomm Incorporated Non-staggered reference signals and repeated pilots in orthogonal frequency-division multiplexing
US10051685B1 (en) * 2017-05-22 2018-08-14 Hewlett Packard Enterprise Development Lp Adapting radios of millimeter-wave devices
US20190045361A1 (en) * 2017-10-30 2019-02-07 Intel IP Corporation Secure sounding arrangement

Family Cites Families (895)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393276A (en) 1981-03-19 1983-07-12 Bell Telephone Laboratories, Incorporated Fourier masking analog signal secure communication system
FR2527871B1 (fr) 1982-05-27 1986-04-11 Thomson Csf Systeme de radiocommunications, a sauts de frequence
SU1320883A1 (ru) 1985-02-06 1987-06-30 Предприятие П/Я Р-6707 Устройство дл восстановлени временных интервалов цифровых сигналов,принимаемых из канала с ограниченной полосой пропускани
FR2584884B1 (fr) 1985-07-09 1987-10-09 Trt Telecom Radio Electr Procede et dispositif de recherche de canal libre pour un systeme de radio mobile
JPS6216639A (ja) * 1985-07-16 1987-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> 秘話音声信号送出装置
GB2180127B (en) 1985-09-04 1989-08-23 Philips Electronic Associated Method of data communication
JPS6290045A (ja) 1985-10-16 1987-04-24 Kokusai Denshin Denwa Co Ltd <Kdd> Fdma通信方式における周波数割当方式
US5008900A (en) 1989-08-14 1991-04-16 International Mobile Machines Corporation Subscriber unit for wireless digital subscriber communication system
FR2652452B1 (fr) 1989-09-26 1992-03-20 Europ Agence Spatiale Dispositif d'alimentation d'une antenne a faisceaux multiples.
JPH04111544A (ja) 1990-08-31 1992-04-13 Nippon Telegr & Teleph Corp <Ntt> 無線チャネル割当方法
JP2807771B2 (ja) 1991-03-28 1998-10-08 キヤノン株式会社 無線電話システム及び無線通信装置
US5257399A (en) 1990-11-28 1993-10-26 Telefonaktiebolaget L M Ericsson Multiple access handling in a cellular communications system
US5253270A (en) 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5455839A (en) 1991-12-27 1995-10-03 Motorola, Inc. Device and method for precoding
JP2904986B2 (ja) 1992-01-31 1999-06-14 日本放送協会 直交周波数分割多重ディジタル信号送信装置および受信装置
US5384810A (en) 1992-02-05 1995-01-24 At&T Bell Laboratories Modulo decoder
US5363408A (en) 1992-03-24 1994-11-08 General Instrument Corporation Mode selective quadrature amplitude modulation communication system
US5282222A (en) 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
GB9209027D0 (en) 1992-04-25 1992-06-17 British Aerospace Multi purpose digital signal regenerative processing apparatus
US5268694A (en) 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
FR2693861A1 (fr) 1992-07-16 1994-01-21 Philips Electronique Lab Récepteur de signaux à répartition multiplexée de fréquences orthogonales muni d'un dispositif de synchronisation de fréquences.
US5603081A (en) 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system
US5768276A (en) 1992-10-05 1998-06-16 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels supporting broadcast SMS
US5604744A (en) 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
JP2942913B2 (ja) 1993-06-10 1999-08-30 ケイディディ株式会社 相手認証/暗号鍵配送方式
ES2110248T3 (es) 1993-06-18 1998-02-01 Qualcomm Inc Metodo y aparato para determinar la velocidad de transmision de datos de una señal recibida.
US5870393A (en) * 1995-01-20 1999-02-09 Hitachi, Ltd. Spread spectrum communication system and transmission power control method therefor
JPH0746248A (ja) 1993-07-30 1995-02-14 Toshiba Corp 無線通信システム
US6501810B1 (en) 1998-10-13 2002-12-31 Agere Systems Inc. Fast frame synchronization
US5594738A (en) 1993-10-18 1997-01-14 Motorola, Inc. Time slot allocation method
ZA948134B (en) * 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US5410538A (en) 1993-11-09 1995-04-25 At&T Corp. Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system
EP0660559B1 (fr) 1993-12-22 2005-04-27 Koninklijke Philips Electronics N.V. Système de communication à multiporteuses à saut de fréquence
US5465253A (en) 1994-01-04 1995-11-07 Motorola, Inc. Method and apparatus for demand-assigned reduced-rate out-of-band signaling channel
US5469471A (en) 1994-02-01 1995-11-21 Qualcomm Incorporated Method and apparatus for providing a communication link quality indication
GB9402942D0 (en) 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
US5513379A (en) 1994-05-04 1996-04-30 At&T Corp. Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing
US5603096A (en) 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5583869A (en) 1994-09-30 1996-12-10 Motorola, Inc. Method for dynamically allocating wireless communication resources
ATE258350T1 (de) 1994-10-27 2004-02-15 Ibm Verfahren und einrichtung zur sicheren identifizierung eines mobilen teilnehmers in einem kommunikationsnetz
JP3437291B2 (ja) 1994-11-14 2003-08-18 キヤノン株式会社 再生装置および再生方法
US6169910B1 (en) * 1994-12-30 2001-01-02 Focused Energy Holding Inc. Focused narrow beam communication system
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
JPH08288927A (ja) 1995-04-17 1996-11-01 Oki Electric Ind Co Ltd スペクトル拡散通信方式及びスペクトル拡散通信装置
DE69534445T2 (de) 1995-04-28 2006-04-27 Alcatel Verfahren zur TDMA-Verwaltung, Zentralstation, Teilnehmerstation und Netzwerk zur Ausführung des Verfahrens
US5612978A (en) 1995-05-30 1997-03-18 Motorola, Inc. Method and apparatus for real-time adaptive interference cancellation in dynamic environments
US6535666B1 (en) * 1995-06-02 2003-03-18 Trw Inc. Method and apparatus for separating signals transmitted over a waveguide
US6215983B1 (en) * 1995-06-02 2001-04-10 Trw Inc. Method and apparatus for complex phase equalization for use in a communication system
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US5726978A (en) 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
FI99252C (fi) 1995-07-03 1997-12-29 Nokia Mobile Phones Ltd Yhdistetty radiosignaalin modulointi- ja monikäyttömenetelmä
US6154484A (en) 1995-09-06 2000-11-28 Solana Technology Development Corporation Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing
US5815488A (en) 1995-09-28 1998-09-29 Cable Television Laboratories, Inc. Multiple user access method using OFDM
JPH09139725A (ja) 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd 多重通信装置
DE69633705T2 (de) 1995-11-16 2006-02-02 Ntt Mobile Communications Network Inc. Verfahren zum Erfassen eines digitalen Signals und Detektor
US5887023A (en) 1995-11-29 1999-03-23 Nec Corporation Method and apparatus for a frequency hopping-spread spectrum communication system
JP2812318B2 (ja) 1995-11-29 1998-10-22 日本電気株式会社 スペクトラム拡散通信方法及び装置
KR0150275B1 (ko) 1995-12-22 1998-11-02 양승택 멀티캐스트 통신의 폭주 제어방법
EP0786889B1 (en) 1996-02-02 2002-04-17 Deutsche Thomson-Brandt Gmbh Method for the reception of multicarrier signals and related apparatus
US6088592A (en) 1996-03-25 2000-07-11 Airnet Communications Corporation Wireless system plan using in band-translators with diversity backhaul to enable efficient depolyment of high capacity base transceiver systems
US6134215A (en) 1996-04-02 2000-10-17 Qualcomm Incorpoated Using orthogonal waveforms to enable multiple transmitters to share a single CDM channel
US5822368A (en) 1996-04-04 1998-10-13 Lucent Technologies Inc. Developing a channel impulse response by using distortion
JPH09281508A (ja) * 1996-04-12 1997-10-31 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
GB9609148D0 (en) 1996-05-01 1996-07-03 Plessey Telecomm Multi-party communication
US5790537A (en) 1996-05-15 1998-08-04 Mcgill University Interference suppression in DS-CDMA systems
DE69705356T2 (de) 1996-05-17 2002-05-02 Motorola Ltd., Basingstoke Verfahren und Vorrichtung zur Gewichtung eines Uebertragungsweges
US5926470A (en) 1996-05-22 1999-07-20 Qualcomm Incorporated Method and apparatus for providing diversity in hard handoff for a CDMA system
GB9611146D0 (en) 1996-05-29 1996-07-31 Philips Electronics Nv Method of, and system for, transmitting messages
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
KR980007105A (ko) 1996-06-28 1998-03-30 김광호 이동국 송신전력 제어방법
US6909797B2 (en) 1996-07-10 2005-06-21 R2 Technology, Inc. Density nodule detection in 3-D digital images
US6058309A (en) 1996-08-09 2000-05-02 Nortel Networks Corporation Network directed system selection for cellular and PCS enhanced roaming
US6141317A (en) 1996-08-22 2000-10-31 Tellabs Operations, Inc. Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system
US6233456B1 (en) 1996-09-27 2001-05-15 Qualcomm Inc. Method and apparatus for adjacent coverage area handoff in communication systems
JP3444114B2 (ja) 1996-11-22 2003-09-08 ソニー株式会社 通信方法、基地局及び端末装置
US5956642A (en) 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
US6061337A (en) 1996-12-02 2000-05-09 Lucent Technologies Inc. System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site
KR19980063990A (ko) 1996-12-11 1998-10-07 윌리엄비.켐플러 로컬 다지점 분배 서비스 시스템 내에서 전송 자원을 할당 및할당해제하는 방법
KR100221336B1 (ko) 1996-12-28 1999-09-15 전주범 직교 주파수 분할 다중화 수신 시스템의 프레임 동기 장치 및 그 방법
US5953325A (en) 1997-01-02 1999-09-14 Telefonaktiebolaget L M Ericsson (Publ) Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas
US6232918B1 (en) 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
US6173007B1 (en) 1997-01-15 2001-01-09 Qualcomm Inc. High-data-rate supplemental channel for CDMA telecommunications system
US5933421A (en) 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
US5920571A (en) 1997-02-07 1999-07-06 Lucent Technologies Inc. Frequency channel and time slot assignments in broadband access networks
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
AU6177298A (en) 1997-02-21 1998-09-09 Motorola, Inc. Method and apparatus for allocating spectral resources in a wireless communication system
US6359923B1 (en) 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US6584144B2 (en) 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
US5838268A (en) 1997-03-14 1998-11-17 Orckit Communications Ltd. Apparatus and methods for modulation and demodulation of data
US5974310A (en) 1997-03-20 1999-10-26 Omnipoint Corporation Communication control for a user of a central communication center
FI104610B (fi) 1997-03-27 2000-02-29 Nokia Networks Oy Ohjauskanavan allokointi pakettiradioverkossa
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100242421B1 (ko) 1997-04-14 2000-02-01 윤종용 디지털 이동 통신시스템의 파이롯트 피엔 오프셋 할당 방법
FI106605B (fi) 1997-04-16 2001-02-28 Nokia Networks Oy Autentikointimenetelmä
US6076114A (en) 1997-04-18 2000-06-13 International Business Machines Corporation Methods, systems and computer program products for reliable data transmission over communications networks
FI105136B (fi) 1997-04-21 2000-06-15 Nokia Mobile Phones Ltd Yleinen pakettiradiopalvelu
FI104939B (fi) 1997-04-23 2000-04-28 Nokia Networks Oy Merkinannon toteutus tietoliikenneverkossa
CN1494236A (zh) 1997-04-24 2004-05-05 ��ʽ����Ntt����Ħ 移动通信方法和移动通信系统
KR100241894B1 (ko) 1997-05-07 2000-02-01 윤종용 개인통신 시스템의 코드분할 접속방식 기지국 시스템에서 소프트웨어 관리방법
US6075814A (en) 1997-05-09 2000-06-13 Broadcom Homenetworking, Inc. Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem
FI105063B (fi) 1997-05-16 2000-05-31 Nokia Networks Oy Menetelmä lähetyssuunnan määrittämiseksi ja radiojärjestelmä
JP2879030B2 (ja) 1997-05-16 1999-04-05 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm送信装置及び受信装置とofdm送信方法及び受信方法
US6374115B1 (en) 1997-05-28 2002-04-16 Transcrypt International/E.F. Johnson Method and apparatus for trunked radio repeater communications with backwards compatibility
CN1253049C (zh) 1997-05-30 2006-04-19 高通股份有限公司 用于在无线电信系统中寻呼无线终端的方法和装置
SE9702271D0 (sv) 1997-06-13 1997-06-13 Ericsson Telefon Ab L M Återanvändning av fysisk kontrollkanal i ett distribuerat cellulärt radiokommunikationssystem
US6052364A (en) * 1997-06-13 2000-04-18 Comsat Corporation CDMA system architecture for satcom terminals
US6151296A (en) 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6240129B1 (en) 1997-07-10 2001-05-29 Alcatel Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used
US6038150A (en) 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
US6038263A (en) * 1997-07-31 2000-03-14 Motorola, Inc. Method and apparatus for transmitting signals in a communication system
US6307849B1 (en) 1997-09-08 2001-10-23 Qualcomm Incorporated Method and system for changing forward traffic channel power allocation during soft handoff
KR100365346B1 (ko) * 1997-09-09 2003-04-11 삼성전자 주식회사 이동통신시스템의쿼시직교부호생성및쿼시직교부호를이용한대역확산장치및방법
US6038450A (en) 1997-09-12 2000-03-14 Lucent Technologies, Inc. Soft handover system for a multiple sub-carrier communication system and method thereof
US6377809B1 (en) 1997-09-16 2002-04-23 Qualcomm Incorporated Channel structure for communication systems
US6577739B1 (en) 1997-09-19 2003-06-10 University Of Iowa Research Foundation Apparatus and methods for proportional audio compression and frequency shifting
US6058105A (en) 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6075797A (en) * 1997-10-17 2000-06-13 3Com Corporation Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
KR100369602B1 (ko) 1997-11-03 2003-04-11 삼성전자 주식회사 부호분할다중접속방식이동통신시스템의전력제어비트삽입방법
US5995992A (en) 1997-11-17 1999-11-30 Bull Hn Information Systems Inc. Conditional truncation indicator control for a decimal numeric processor employing result truncation
US6108323A (en) 1997-11-26 2000-08-22 Nokia Mobile Phones Limited Method and system for operating a CDMA cellular system having beamforming antennas
US5971484A (en) 1997-12-03 1999-10-26 Steelcase Development Inc. Adjustable armrest for chairs
US6067315A (en) * 1997-12-04 2000-05-23 Telefonaktiebolaget Lm Ericsson Method and apparatus for coherently-averaged power estimation
US6563806B1 (en) 1997-12-12 2003-05-13 Hitachi, Ltd. Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US6393008B1 (en) 1997-12-23 2002-05-21 Nokia Movile Phones Ltd. Control structures for contention-based packet data services in wideband CDMA
JPH11191756A (ja) 1997-12-25 1999-07-13 Nec Corp Phs(登録商標)によるデータ通信装置及び方法
JPH11196109A (ja) 1997-12-26 1999-07-21 Canon Inc 無線情報通信システム
DE19800653A1 (de) 1998-01-09 1999-07-15 Albert M Huber Vorrichtung zum Abtrennen von Partikeln, oder von Partikeln und Gasen, oder von Fluiden anderer Dichte aus Flüssigkeiten, oder Suspensionen, oder Emulsionen, die ein feststehendes Gehäuse besitzt und mit Hilfe der Zentrifugalkraft separiert und auch diese obengenannten Medien durch diese Vorrichtung und eventuell nachgeschaltete Mittel fördert
DE19800953C1 (de) 1998-01-13 1999-07-29 Siemens Ag Verfahren und Funk-Kommunikationssystem zur Zuteilung von Funkressourcen einer Funkschnittstelle
US6175650B1 (en) * 1998-01-26 2001-01-16 Xerox Corporation Adaptive quantization compatible with the JPEG baseline sequential mode
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
CA2283290C (en) 1998-02-14 2003-04-01 Samsung Electronics Co., Ltd. Data communication device and method for mobile communication system with dedicated control channel
JP3589851B2 (ja) 1998-02-20 2004-11-17 株式会社日立製作所 パケット通信システム及びパケット通信装置
AU3254599A (en) 1998-02-27 1999-09-15 Siemens Aktiengesellschaft Telecommunications system with wireless code and time-division multiplex based telecommunication
WO1999044383A1 (de) 1998-02-27 1999-09-02 Siemens Aktiengesellschaft Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten
JP3199020B2 (ja) * 1998-02-27 2001-08-13 日本電気株式会社 音声音楽信号の符号化装置および復号装置
CA2288779C (en) 1998-03-14 2003-04-08 Samsung Electronics Co., Ltd. Device and method for exchanging frame messages of different lengths in cdma communication system
RU2210864C2 (ru) 1998-03-23 2003-08-20 Самсунг Электроникс Ко., Лтд. Устройство и способ регулирования мощности для управления общим каналом обратной линии связи в системе связи мдкр
WO1999052250A1 (en) 1998-04-03 1999-10-14 Tellabs Operations, Inc. Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission
US6112094A (en) 1998-04-06 2000-08-29 Ericsson Inc. Orthogonal frequency hopping pattern re-use scheme
JPH11298954A (ja) 1998-04-08 1999-10-29 Hitachi Ltd 無線通信方法及び無線通信装置
US6353620B1 (en) 1998-04-09 2002-03-05 Ericsson Inc. System and method for facilitating inter-nodal protocol agreement in a telecommunications
JP4420561B2 (ja) 1998-04-21 2010-02-24 トムソン マルチメディア 無線チャネルを有する家庭用通信システムにおける伝送方法
US6567425B1 (en) 1998-04-23 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Bearer independent signaling protocol
US6075350A (en) 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
US6198775B1 (en) 1998-04-28 2001-03-06 Ericsson Inc. Transmit diversity method, systems, and terminals using scramble coding
JP3955680B2 (ja) 1998-05-12 2007-08-08 株式会社エヌ・ティ・ティ・ドコモ 時分割通信方式の移動通信システムにおける無線チャネルアクセス方法、その方法を使用する基地局及び移動局
BR9906499A (pt) 1998-05-12 2000-09-26 Samsung Electronics Co Ltd Soc Processo e dispositivo para a redução da razão de energia de pico para média da energia de transmissão de uma estação móvel em um sistema de comunicação móvel.
KR100383575B1 (ko) 1998-05-12 2004-06-26 삼성전자주식회사 단말기의송신전력에서피크전력대평균전력비를줄이기위한확산변조방법및장치
GB2337414A (en) 1998-05-14 1999-11-17 Fujitsu Ltd Soft handoff in cellular communications networks
US6643275B1 (en) 1998-05-15 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
KR100291476B1 (ko) 1998-05-25 2001-07-12 윤종용 파일럿측정요구명령제어방법및시스템
JP2000004215A (ja) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd 送受信システム
JP3092798B2 (ja) 1998-06-30 2000-09-25 日本電気株式会社 適応送受信装置
JP2000022618A (ja) 1998-07-03 2000-01-21 Hitachi Ltd 基地局およびアンテナビームの制御方法
RU2141706C1 (ru) 1998-07-06 1999-11-20 Военная академия связи Способ и устройство адаптивной пространственной фильтрации сигналов
KR100318959B1 (ko) 1998-07-07 2002-04-22 윤종용 부호분할다중접속통신시스템의서로다른부호간의간섭을제거하는장치및방법
DE69920388T2 (de) 1998-07-13 2006-02-23 Sony Corp. Mehrträgerkommunikationsverfahren, Sender und Empfänger
AU4934399A (en) 1998-07-16 2000-02-07 Samsung Electronics Co., Ltd. Processing packet data in mobile communication system
US6636525B1 (en) 1998-08-19 2003-10-21 International Business Machines Corporation Destination dependent coding for discrete multi-tone modulation
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6798736B1 (en) 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
JP2000102065A (ja) 1998-09-24 2000-04-07 Toshiba Corp 無線通信基地局装置
CA2282942A1 (en) 1998-11-09 2000-05-09 Lucent Technologies Inc. Efficient authentication with key update
US6542485B1 (en) * 1998-11-25 2003-04-01 Lucent Technologies Inc. Methods and apparatus for wireless communication using time division duplex time-slotted CDMA
US6473399B1 (en) 1998-11-30 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining an optimum timeout under varying data rates in an RLC wireless system which uses a PDU counter
US6590881B1 (en) 1998-12-04 2003-07-08 Qualcomm, Incorporated Method and apparatus for providing wireless communication system synchronization
EP1006665B1 (en) 1998-12-04 2003-05-28 Lucent Technologies Inc. Error concealment or correction of speech, image and video signals
CN1240198C (zh) 1998-12-07 2006-02-01 三星电子株式会社 在码分多址移动通信系统中用于选通发送的设备和方法
JP2000184425A (ja) 1998-12-15 2000-06-30 Toshiba Corp 無線通信基地局装置
US6654429B1 (en) 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
GB2345612B (en) 1998-12-31 2003-09-03 Nokia Mobile Phones Ltd Measurement report transmission in a telecommunications system
EP1530336B1 (en) 1999-01-08 2009-06-10 Sony Deutschland GmbH Synchronization preamble structure for OFDM system
US6229795B1 (en) * 1999-01-13 2001-05-08 Qualcomm Incorporated System for allocating resources in a communication system
US6393012B1 (en) * 1999-01-13 2002-05-21 Qualcomm Inc. System for allocating resources in a communication system
EP1021019A1 (en) 1999-01-15 2000-07-19 Sony International (Europe) GmbH Quasi-differential modulation/demodulation method for multi-amplitude digital modulated signals and OFDM system
US6584140B1 (en) 1999-01-22 2003-06-24 Systems Information And Electronic Systems Integration Inc. Spectrum efficient fast frequency-hopped modem with coherent demodulation
US6271946B1 (en) 1999-01-25 2001-08-07 Telcordia Technologies, Inc. Optical layer survivability and security system using optical label switching and high-speed optical header generation and detection
US6388998B1 (en) 1999-02-04 2002-05-14 Lucent Technologies Inc. Reuse of codes and spectrum in a CDMA system with multiple-sector cells
US6256478B1 (en) 1999-02-18 2001-07-03 Eastman Kodak Company Dynamic packet sizing in an RF communications system
US6597746B1 (en) 1999-02-18 2003-07-22 Globespanvirata, Inc. System and method for peak to average power ratio reduction
CA2262315A1 (en) * 1999-02-19 2000-08-19 Northern Telecom Limited Joint optimal power balance for coded/tdm constituent data channels
US6259918B1 (en) 1999-02-26 2001-07-10 Telefonaktiebolaget Lm (Publ) Preservation of cell borders at hand-off within a smart antenna cellular system
US6317435B1 (en) 1999-03-08 2001-11-13 Qualcomm Incorporated Method and apparatus for maximizing the use of available capacity in a communication system
US6487243B1 (en) 1999-03-08 2002-11-26 International Business Machines Corporation Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems
US6473418B1 (en) 1999-03-11 2002-10-29 Flarion Technologies, Inc. Orthogonal frequency division multiplexing based spread spectrum multiple access
US6987746B1 (en) * 1999-03-15 2006-01-17 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
US6693952B1 (en) 1999-03-16 2004-02-17 Lucent Technologies Inc. Dynamic code allocation for downlink shared channels
KR20000060428A (ko) 1999-03-16 2000-10-16 윤종용 코드분할다중접속 시스템에서 기지국간 직접 연결을 이용한 소프트/소프터 핸드오프의 강화 방법
US7151761B1 (en) 1999-03-19 2006-12-19 Telefonaktiebolaget L M Ericsson (Publ) Code reservation for interference measurement in a CDMA radiocommunication system
US6483820B1 (en) 1999-03-22 2002-11-19 Ericsson Inc. System and method for dynamic radio resource allocation for non-transparent high-speed circuit-switched data services
US6430401B1 (en) 1999-03-29 2002-08-06 Lucent Technologies Inc. Technique for effectively communicating multiple digital representations of a signal
GB2348776B (en) 1999-04-06 2003-07-09 Motorola Ltd A communications network and method of allocating resource thefor
US6249683B1 (en) * 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
US6937665B1 (en) 1999-04-19 2005-08-30 Interuniversitaire Micron Elektronica Centrum Method and apparatus for multi-user transmission
EP1047209A1 (en) 1999-04-19 2000-10-25 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multiuser transmission
JP4224168B2 (ja) 1999-04-23 2009-02-12 パナソニック株式会社 基地局装置及びピーク電力抑圧方法
US6614857B1 (en) 1999-04-23 2003-09-02 Lucent Technologies Inc. Iterative channel estimation and compensation based thereon
AU749328B2 (en) 1999-05-12 2002-06-20 Samsung Electronics Co., Ltd. Method for supporting a discontinuous transmission mode in a base station in a mobile communication system
JP3236273B2 (ja) 1999-05-17 2001-12-10 三菱電機株式会社 マルチキャリア伝送システムおよびマルチキャリア変調方法
US6674787B1 (en) * 1999-05-19 2004-01-06 Interdigital Technology Corporation Raising random access channel packet payload
US6445917B1 (en) 1999-05-19 2002-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Mobile station measurements with event-based reporting
US6674810B1 (en) 1999-05-27 2004-01-06 3Com Corporation Method and apparatus for reducing peak-to-average power ratio in a discrete multi-tone signal
JP2001057545A (ja) 1999-06-02 2001-02-27 Texas Instr Inc <Ti> スペクトラム拡散チャネルの推定方法と装置
US6631126B1 (en) 1999-06-11 2003-10-07 Lucent Technologies Inc. Wireless communications using circuit-oriented and packet-oriented frame selection/distribution functions
FR2794915A1 (fr) 1999-06-14 2000-12-15 Canon Kk Procede et dispositif d'emission, procede et dispositif de reception, et systemes les mettant en oeuvre
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US7095708B1 (en) 1999-06-23 2006-08-22 Cingular Wireless Ii, Llc Methods and apparatus for use in communicating voice and high speed data in a wireless communication system
JP3518426B2 (ja) 1999-06-30 2004-04-12 Kddi株式会社 Cdma移動通信システムにおける符号割当方法
US6363060B1 (en) 1999-06-30 2002-03-26 Qualcomm Incorporated Method and apparatus for fast WCDMA acquisition
US6657949B1 (en) 1999-07-06 2003-12-02 Cisco Technology, Inc. Efficient request access for OFDM systems
JP2003506525A (ja) 1999-07-28 2003-02-18 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド サレン型マンガン錯体の水溶性顆粒
US6831943B1 (en) 1999-08-13 2004-12-14 Texas Instruments Incorporated Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification
JP2001069046A (ja) 1999-08-30 2001-03-16 Fujitsu Ltd 送受信システムおよび受信装置
US6542743B1 (en) 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
US6765969B1 (en) 1999-09-01 2004-07-20 Motorola, Inc. Method and device for multi-user channel estimation
US6928047B1 (en) 1999-09-11 2005-08-09 The University Of Delaware Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length
US6633614B1 (en) 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
RU2242091C2 (ru) 1999-10-02 2004-12-10 Самсунг Электроникс Ко., Лтд. Устройство и способ стробирования данных, передаваемых по каналу управления в системе связи мдкр
US7006482B1 (en) 1999-10-02 2006-02-28 Samsung Electronics Co., Ltd. Apparatus and method for gating data on a control channel in a CDMA communication system
US6870882B1 (en) 1999-10-08 2005-03-22 At&T Corp. Finite-length equalization over multi-input multi-output channels
US6337659B1 (en) 1999-10-25 2002-01-08 Gamma Nu, Inc. Phased array base station antenna system having distributed low power amplifiers
US6985466B1 (en) 1999-11-09 2006-01-10 Arraycomm, Inc. Downlink signal processing in CDMA systems utilizing arrays of antennae
US6721568B1 (en) 1999-11-10 2004-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Admission control in a mobile radio communications system
KR100602022B1 (ko) 1999-12-15 2006-07-20 유티스타콤코리아 유한회사 이동통신 시스템에서 동기식 기지국과 비동기식 기지국간핸드오프에 필요한 파라메타 전송방법
DE60023334T2 (de) * 1999-11-17 2006-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Beschleunigungsabhängige kanalumschaltung in mobilen telekommunikationsnetzen
US6466800B1 (en) 1999-11-19 2002-10-15 Siemens Information And Communication Mobile, Llc Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system
JP3289718B2 (ja) 1999-11-24 2002-06-10 日本電気株式会社 時分割多重アクセス方法及び基準局装置、端末局装置
DE19957288C1 (de) 1999-11-29 2001-05-10 Siemens Ag Verfahren zur Signalisierung einer Funkkanalstruktur in einem Funk-Kommunikationssystem
EP1232575B1 (en) 1999-11-29 2009-06-03 Samsung Electronics Co., Ltd. method for assigning a common packet channel in a cdma communication system
US6763009B1 (en) 1999-12-03 2004-07-13 Lucent Technologies Inc. Down-link transmission scheduling in CDMA data networks
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6690951B1 (en) 1999-12-20 2004-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic size allocation system and method
CA2327734A1 (en) 1999-12-21 2001-06-21 Eta Sa Fabriques D'ebauches Ultra-thin piezoelectric resonator
US6628673B1 (en) 1999-12-29 2003-09-30 Atheros Communications, Inc. Scalable communication system using overlaid signals and multi-carrier frequency communication
US6678318B1 (en) 2000-01-11 2004-01-13 Agere Systems Inc. Method and apparatus for time-domain equalization in discrete multitone transceivers
US6907020B2 (en) 2000-01-20 2005-06-14 Nortel Networks Limited Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks
US7463600B2 (en) 2000-01-20 2008-12-09 Nortel Networks Limited Frame structure for variable rate wireless channels transmitting high speed data
US6804307B1 (en) 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
KR100387034B1 (ko) 2000-02-01 2003-06-11 삼성전자주식회사 무선통신 시스템의 패킷데이타 서비스를 위한스케듈링장치 및 방법
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6754511B1 (en) 2000-02-04 2004-06-22 Harris Corporation Linear signal separation using polarization diversity
GB0002985D0 (en) 2000-02-09 2000-03-29 Travelfusion Limited Integrated journey planner
WO2001059968A1 (en) * 2000-02-09 2001-08-16 Golden Bridge Technology, Inc. Collision avoidance
US6546248B1 (en) 2000-02-10 2003-04-08 Qualcomm, Incorporated Method and apparatus for generating pilot strength measurement messages
JP3826653B2 (ja) 2000-02-25 2006-09-27 Kddi株式会社 無線通信システムのサブキャリア割当方法
EP1260035A2 (en) 2000-02-29 2002-11-27 HRL Laboratories, LLC Cooperative mobile antenna system
JP2001245355A (ja) 2000-03-01 2001-09-07 Mitsubishi Electric Corp 移動通信におけるパケット伝送システム
JP2001249802A (ja) 2000-03-07 2001-09-14 Sony Corp 伝送方法、伝送システム、伝送制御装置及び入力装置
KR100493068B1 (ko) 2000-03-08 2005-06-02 삼성전자주식회사 이동통신시스템에서 피드백 정보를 이용하는 반맹목적방식의 송신안테나어레이 장치 및 방법
EP1266463B1 (en) 2000-03-15 2006-06-21 Nokia Corporation Transmit diversity method and system
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6940845B2 (en) 2000-03-23 2005-09-06 At & T, Corp. Asymmetric measurement-based dynamic packet assignment system and method for wireless data services
JP2001285927A (ja) 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
US6493331B1 (en) 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
DE60021772T2 (de) 2000-04-07 2006-04-20 Nokia Corp. Verfahren und vorrichtung zur übertragung mit mehreren antennen
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6934275B1 (en) 2000-04-17 2005-08-23 Motorola, Inc. Apparatus and method for providing separate forward dedicated and shared control channels in a communications system
US6961364B1 (en) 2000-04-18 2005-11-01 Flarion Technologies, Inc. Base station identification in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6954481B1 (en) 2000-04-18 2005-10-11 Flarion Technologies, Inc. Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6807146B1 (en) 2000-04-21 2004-10-19 Atheros Communications, Inc. Protocols for scalable communication system using overland signals and multi-carrier frequency communication
EP1277317A2 (en) 2000-04-22 2003-01-22 Atheros Communications, Inc. Multi-carrier communication systems employing variable ofdm-symbol rates and number of carriers
US6748220B1 (en) 2000-05-05 2004-06-08 Nortel Networks Limited Resource allocation in wireless networks
US6519462B1 (en) 2000-05-11 2003-02-11 Lucent Technologies Inc. Method and apparatus for multi-user resource management in wireless communication systems
FI20001133A (fi) 2000-05-12 2001-11-13 Nokia Corp Menetelmä päätelaitteiden ja yhteysaseman välisen tiedonsiirron järjestämiseksi tiedonsiirtojärjestelmässä
FI20001160A (fi) 2000-05-15 2001-11-16 Nokia Networks Oy Pilottisignaalin toteuttamismenetelmä
ES2289205T3 (es) 2000-05-17 2008-02-01 Matsushita Electric Industrial Co., Ltd Metodo arq hibrido para transmision de datos en paquetes con un canal de control y un canal de datos.
US6529525B1 (en) * 2000-05-19 2003-03-04 Motorola, Inc. Method for supporting acknowledged transport layer protocols in GPRS/edge host application
KR100370746B1 (ko) 2000-05-30 2003-02-05 한국전자통신연구원 다차원 직교 자원 도약 다중화 통신 방식 및 장치
CA2310188A1 (en) 2000-05-30 2001-11-30 Mark J. Frazer Communication structure with channels configured responsive to reception quality
GB2363256B (en) 2000-06-07 2004-05-12 Motorola Inc Adaptive antenna array and method of controlling operation thereof
US6839325B2 (en) * 2000-06-09 2005-01-04 Texas Instruments Incorporated Wireless communication system which uses ARQ packets to ACK a plurality of packets from an 802.15 superpacket
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6337983B1 (en) 2000-06-21 2002-01-08 Motorola, Inc. Method for autonomous handoff in a wireless communication system
US6701165B1 (en) 2000-06-21 2004-03-02 Agere Systems Inc. Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection
US20020015405A1 (en) 2000-06-26 2002-02-07 Risto Sepponen Error correction of important fields in data packet communications in a digital mobile radio network
JP2002016531A (ja) 2000-06-27 2002-01-18 Nec Corp Cdma通信方式及びその方法
JP2002026790A (ja) 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
DE10032426B4 (de) 2000-07-04 2006-01-12 Siemens Ag Strahlformungsverfahren
JP4212353B2 (ja) 2000-07-11 2009-01-21 財団法人神奈川科学技術アカデミー 液状試料の質量分析用プローブ
IT1318161B1 (it) 2000-07-14 2003-07-23 Cit Alcatel Metodo e dispositivo per il recupero di portante in sistemi ofdm
FR2814301B1 (fr) 2000-07-17 2004-11-12 Telediffusion De France Tdf Synchronisation d'un signal amrf
US7418043B2 (en) 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
WO2002009334A1 (fr) * 2000-07-26 2002-01-31 Mitsubishi Denki Kabushiki Kaisha Dispositif de communication a acces multiple par repartition de code (amrc) multiporteuse, dispositif d'emission amrc multiporteuse et dispositif de reception amrc multiporteuse
GB2366938B (en) 2000-08-03 2004-09-01 Orange Personal Comm Serv Ltd Authentication in a mobile communications network
DE10039429A1 (de) 2000-08-11 2002-03-07 Siemens Ag Verfahren zur Signalübertragung in einem Funk-Kommunikationssystem
GB0020088D0 (en) 2000-08-15 2000-10-04 Fujitsu Ltd Adaptive beam forming
US6980540B1 (en) 2000-08-16 2005-12-27 Lucent Technologies Inc. Apparatus and method for acquiring an uplink traffic channel, in wireless communications systems
US6487184B1 (en) 2000-08-25 2002-11-26 Motorola, Inc. Method and apparatus for supporting radio acknowledgement information for a uni-directional user data channel
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6937592B1 (en) 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6898441B1 (en) 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7295509B2 (en) * 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US6694147B1 (en) 2000-09-15 2004-02-17 Flarion Technologies, Inc. Methods and apparatus for transmitting information between a basestation and multiple mobile stations
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6842487B1 (en) * 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US6658258B1 (en) 2000-09-29 2003-12-02 Lucent Technologies Inc. Method and apparatus for estimating the location of a mobile terminal
US7349371B2 (en) 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US6778513B2 (en) 2000-09-29 2004-08-17 Arraycomm, Inc. Method and apparatus for separting multiple users in a shared-channel communication system
US6496790B1 (en) 2000-09-29 2002-12-17 Intel Corporation Management of sensors in computer systems
KR100452536B1 (ko) 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 이동통신기지국 장치
JP2002111556A (ja) 2000-10-02 2002-04-12 Ntt Docomo Inc 基地局装置
US7072315B1 (en) 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
FR2815507B1 (fr) 2000-10-16 2003-01-31 Cit Alcatel Procede de gestion des ressources radio dans un reseau de telecommunication interactif
US6704571B1 (en) * 2000-10-17 2004-03-09 Cisco Technology, Inc. Reducing data loss during cell handoffs
US6870808B1 (en) 2000-10-18 2005-03-22 Adaptix, Inc. Channel allocation in broadband orthogonal frequency-division multiple-access/space-division multiple-access networks
WO2002033856A1 (en) 2000-10-20 2002-04-25 Samsung Electronics Co., Ltd Apparatus and method for determining a data rate of packet data in a mobile communication system
CA2424462C (en) 2000-10-20 2010-03-30 Biochemie Gesellschaft M.B.H. Clavulanic acid pharmaceutical compositions
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
US6788959B2 (en) 2000-10-30 2004-09-07 Nokia Corporation Method and apparatus for transmitting and receiving dynamic configuration parameters in a third generation cellular telephone network
DE60044436D1 (de) 2000-11-03 2010-07-01 Sony Deutschland Gmbh Sendeleistungsregelung für OFDM-Kommunikationsverbindungen
US6567387B1 (en) 2000-11-07 2003-05-20 Intel Corporation System and method for data transmission from multiple wireless base transceiver stations to a subscriber unit
ATE354923T1 (de) 2000-11-07 2007-03-15 Nokia Corp Verfahren und system zur aufwärtsplanung von paketdatenverkehr in drahlosen systemen
US20020090024A1 (en) 2000-11-15 2002-07-11 Tan Keng Tiong Method and apparatus for non-linear code-division multiple access technology
US7447270B1 (en) 2000-11-17 2008-11-04 Nokia Corporation Method for controlling the data signal weighting in multi-element transceivers and corresponding devices and telecommunications network
EP1338166B1 (en) 2000-11-28 2008-01-09 Telefonaktiebolaget LM Ericsson (publ) Release of user equipment using a page procedure in a cellular communication system
GB0029424D0 (en) 2000-12-02 2001-01-17 Koninkl Philips Electronics Nv Radio communication system
WO2002049387A1 (fr) 2000-12-11 2002-06-20 Sharp Kabushiki Kaisha Systeme de radiocommunication
MXPA03005307A (es) 2000-12-15 2004-12-02 Adaptix Inc Comunicaciones de multiportadores con asignacion de subportadora con base en grupos.
US20020077152A1 (en) 2000-12-15 2002-06-20 Johnson Thomas J. Wireless communication methods and systems using multiple overlapping sectored cells
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
AU2002235217A1 (en) 2000-12-15 2002-06-24 Broadstorm Telecommunications, Inc. Multi-carrier communications with adaptive cluster configuration and switching
US6862268B2 (en) 2000-12-29 2005-03-01 Nortel Networks, Ltd Method and apparatus for managing a CDMA supplemental channel
US6920119B2 (en) 2001-01-09 2005-07-19 Motorola, Inc. Method for scheduling and allocating data transmissions in a broad-band communications system
US6829293B2 (en) 2001-01-16 2004-12-07 Mindspeed Technologies, Inc. Method and apparatus for line probe signal processing
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US6813284B2 (en) 2001-01-17 2004-11-02 Qualcomm Incorporated Method and apparatus for allocating data streams given transmission time interval (TTI) constraints
EP1227601A1 (en) 2001-01-25 2002-07-31 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Downlink scheduling using parallel code trees
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
RU2192094C1 (ru) 2001-02-05 2002-10-27 Гармонов Александр Васильевич Способ когерентной разнесенной передачи сигнала
FR2820574B1 (fr) 2001-02-08 2005-08-05 Wavecom Sa Procede d'extraction d'un motif de symboles de reference servant a estimer la fonction de transfert d'un canal de transmission, signal, dispositif et procedes correspondants
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6985453B2 (en) 2001-02-15 2006-01-10 Qualcomm Incorporated Method and apparatus for link quality feedback in a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US20020160781A1 (en) 2001-02-23 2002-10-31 Gunnar Bark System, method and apparatus for facilitating resource allocation in a communication system
US6937641B2 (en) 2001-02-28 2005-08-30 Golden Bridge Technology, Inc. Power-controlled random access
US6930470B2 (en) 2001-03-01 2005-08-16 Nortel Networks Limited System and method for code division multiple access communication in a wireless communication environment
US6675012B2 (en) 2001-03-08 2004-01-06 Nokia Mobile Phones, Ltd. Apparatus, and associated method, for reporting a measurement summary in a radio communication system
US6940827B2 (en) 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
US6934340B1 (en) 2001-03-19 2005-08-23 Cisco Technology, Inc. Adaptive control system for interference rejections in a wireless communications system
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6748024B2 (en) 2001-03-28 2004-06-08 Nokia Corporation Non-zero complex weighted space-time code for multiple antenna transmission
US7042897B1 (en) 2001-04-05 2006-05-09 Arcwave, Inc Medium access control layer protocol in a distributed environment
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US7145959B2 (en) 2001-04-25 2006-12-05 Magnolia Broadband Inc. Smart antenna based spectrum multiplexing using existing pilot signals for orthogonal frequency division multiplexing (OFDM) modulations
US6625172B2 (en) 2001-04-26 2003-09-23 Joseph P. Odenwalder Rescheduling scheduled transmissions
US7230941B2 (en) 2001-04-26 2007-06-12 Qualcomm Incorporated Preamble channel decoding
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7188300B2 (en) 2001-05-01 2007-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Flexible layer one for radio interface to PLMN
US7042856B2 (en) 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
EP1259008B1 (en) * 2001-05-17 2006-10-04 SAMSUNG ELECTRONICS Co. Ltd. Mobile communication apparatus with antenna array and mobile coomunication method therefor
US6751187B2 (en) * 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
FR2825208B1 (fr) 2001-05-22 2004-07-09 Cit Alcatel Procede d'attribution de ressources en communication dans un systeme de telecommunications du type mf-tdma
EP1393486B1 (en) 2001-05-25 2008-07-09 Regents of the University of Minnesota Space-time coded transmissions within a wireless communication network
US6904097B2 (en) 2001-06-01 2005-06-07 Motorola, Inc. Method and apparatus for adaptive signaling in a QAM communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
CA2390253A1 (en) 2001-06-11 2002-12-11 Unique Broadband Systems, Inc. Ofdm multiple sub-channel communication system
AU2002322131A1 (en) 2001-06-21 2003-01-08 Flarion Technologies, Inc. Method of tone allocation for tone hopping sequences
US7027523B2 (en) 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
KR20040008230A (ko) 2001-06-27 2004-01-28 노오텔 네트웍스 리미티드 무선 통신 시스템에서 제어 정보의 통신
WO2003001981A2 (en) 2001-06-29 2003-01-09 The Government Of The United State Of America As Represent By The Secretary Of The Department Of Health And Human Services Method of promoting engraftment of a donor transplant in a recipient host
GB0116015D0 (en) 2001-06-29 2001-08-22 Simoco Digital Systems Ltd Communications systems
US6963543B2 (en) 2001-06-29 2005-11-08 Qualcomm Incorporated Method and system for group call service
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
JP2003018054A (ja) 2001-07-02 2003-01-17 Ntt Docomo Inc 無線通信方法及びシステム並びに通信装置
DE10132492A1 (de) * 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptives Signalverarbeitungsverfahren zur bidirektionalen Funkübertragung in einem MIMO-Kanal und MIMO-System zur Verfahrensdurchführung
JP3607643B2 (ja) 2001-07-13 2005-01-05 松下電器産業株式会社 マルチキャリア送信装置、マルチキャリア受信装置、およびマルチキャリア無線通信方法
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US7236536B2 (en) * 2001-07-26 2007-06-26 Lucent Technologies Inc. Method and apparatus for detection and decoding of signals received from a linear propagation channel
US20030027579A1 (en) 2001-08-03 2003-02-06 Uwe Sydon System for and method of providing an air interface with variable data rate by switching the bit time
JP4318412B2 (ja) 2001-08-08 2009-08-26 富士通株式会社 通信システムにおける送受信装置及び送受信方法
US6776765B2 (en) 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
JP4127757B2 (ja) 2001-08-21 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、通信端末装置、及びバースト信号送信方法
KR100459557B1 (ko) 2001-08-23 2004-12-03 삼성전자주식회사 고속 순방향 패킷 접속 통신 시스템에서 데이터 상태정보를 나타내기 위한 혼화 자동 재전송 요구 채널 번호할당 방법
JP2003069472A (ja) 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd 受信端末装置及び通信システム
KR100474689B1 (ko) 2001-08-30 2005-03-08 삼성전자주식회사 이동통신 시스템에서 소프트 핸드오프 도중의 전력제어 방법
US7664061B2 (en) * 2001-09-05 2010-02-16 Nokia Corporation Closed-loop signaling method for controlling multiple transmit beams and correspondingly adapted transceiver device
US20050044206A1 (en) 2001-09-07 2005-02-24 Staffan Johansson Method and arrangements to achieve a dynamic resource distribution policy in packet based communication networks
FR2829642B1 (fr) * 2001-09-12 2004-01-16 Eads Defence & Security Ntwk Signal multiporteuses, procede de poursuite d'un canal de transmission a partir d'un tel signal et dispositif pour sa mise en oeuvre
US7106319B2 (en) 2001-09-14 2006-09-12 Seiko Epson Corporation Power supply circuit, voltage conversion circuit, semiconductor device, display device, display panel, and electronic equipment
WO2003028302A2 (en) 2001-09-24 2003-04-03 Atheros Communications, Inc. Method and system for variable rate acknowledgement for wireless communication protocols
JP2003101515A (ja) 2001-09-25 2003-04-04 Sony Corp 無線通信システム、基地局、移動局、送信制御方法及びプログラム格納媒体
KR100440182B1 (ko) * 2001-09-29 2004-07-14 삼성전자주식회사 음영지역에서의 퀵페이징 방법
RU2207723C1 (ru) 2001-10-01 2003-06-27 Военный университет связи Способ распределения ресурсов в системе электросвязи с множественным доступом
US7218906B2 (en) 2001-10-04 2007-05-15 Wisconsin Alumni Research Foundation Layered space time processing in a multiple antenna system
US7773699B2 (en) * 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
JP3675433B2 (ja) 2001-10-17 2005-07-27 日本電気株式会社 移動通信システム及び通信制御方法並びにそれに用いる基地局、移動局
KR100533205B1 (ko) * 2001-10-17 2005-12-05 닛본 덴끼 가부시끼가이샤 이동 통신 시스템, 통신 제어 방법, 이것에 사용되는기지국 및 이동국
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
KR100452639B1 (ko) 2001-10-20 2004-10-14 한국전자통신연구원 위성 이동 통신 시스템에서 공통 패킷 채널 접속 방법
KR100547847B1 (ko) 2001-10-26 2006-01-31 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 제어 장치 및 방법
US20030086393A1 (en) 2001-11-02 2003-05-08 Subramanian Vasudevan Method for allocating wireless communication resources
US7164649B2 (en) 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US6909707B2 (en) 2001-11-06 2005-06-21 Motorola, Inc. Method and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7453801B2 (en) 2001-11-08 2008-11-18 Qualcomm Incorporated Admission control and resource allocation in a communication system supporting application flows having quality of service requirements
US20030108191A1 (en) 2001-11-13 2003-06-12 Kerpez Kenneth James Method and system for spectrally compatible remote terminal ADSL deployment
GB2382265B (en) 2001-11-14 2004-06-09 Toshiba Res Europ Ltd Emergency rescue aid
SE0103853D0 (sv) 2001-11-15 2001-11-15 Ericsson Telefon Ab L M Method and system of retransmission
JP3637965B2 (ja) 2001-11-22 2005-04-13 日本電気株式会社 無線通信システム
JP3756110B2 (ja) 2001-11-29 2006-03-15 シャープ株式会社 無線通信装置
TW595857U (en) 2001-11-29 2004-06-21 Us 091219345
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
AU2002353270A1 (en) 2001-12-03 2003-06-17 Nokia Corporation Policy based mechanisms for selecting access routers and mobile context
JP3895165B2 (ja) 2001-12-03 2007-03-22 株式会社エヌ・ティ・ティ・ドコモ 通信制御システム、通信制御方法、通信基地局及び移動端末
US6799043B2 (en) 2001-12-04 2004-09-28 Qualcomm, Incorporated Method and apparatus for a reverse link supplemental channel scheduling
JP3955463B2 (ja) 2001-12-05 2007-08-08 ソフトバンクテレコム株式会社 直交周波数分割多重通信システム
US20030112745A1 (en) * 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7054301B1 (en) 2001-12-31 2006-05-30 Arraycomm, Llc. Coordinated hopping in wireless networks using adaptive antenna arrays
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
AU2002219573A1 (en) 2002-01-10 2003-07-30 Fujitsu Limited Pilot multiplex method in ofdm system and ofdm receiving method
DE10240138A1 (de) 2002-01-18 2003-08-14 Siemens Ag Dynamische Zuordnung von Funkressourcen in einem Funk-Kommunikationssystem
US6954622B2 (en) 2002-01-29 2005-10-11 L-3 Communications Corporation Cooperative transmission power control method and system for CDMA communication systems
US7006557B2 (en) * 2002-01-31 2006-02-28 Qualcomm Incorporated Time tracking loop for diversity pilots
US20030142648A1 (en) 2002-01-31 2003-07-31 Samsung Electronics Co., Ltd. System and method for providing a continuous high speed packet data handoff
JP2003235072A (ja) 2002-02-06 2003-08-22 Ntt Docomo Inc 無線リソース割当て方法、無線リソース割当て装置及び移動通信システム
US7031742B2 (en) 2002-02-07 2006-04-18 Qualcomm Incorporation Forward and reverse link power control of serving and non-serving base stations in a wireless communication system
KR100547845B1 (ko) 2002-02-07 2006-01-31 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서서빙 고속 공통 제어 채널 셋 정보를 송수신하는 장치 및방법
RU2237379C2 (ru) 2002-02-08 2004-09-27 Самсунг Электроникс Способ формирования диаграммы направленности адаптивной антенной решетки базовой станции и устройство для его реализации (варианты)
US7009500B2 (en) * 2002-02-13 2006-03-07 Ford Global Technologies, Llc Method for operating a pre-crash sensing system in a vehicle having a countermeasure system using stereo cameras
WO2003069832A1 (de) 2002-02-13 2003-08-21 Siemens Aktiengesellschaft Methode zum beamforming eines mehrnutzempfängers mit kanalschätzung
IL151937A0 (en) 2002-02-13 2003-07-31 Witcom Ltd Near-field spatial multiplexing
US7050759B2 (en) * 2002-02-19 2006-05-23 Qualcomm Incorporated Channel quality feedback mechanism and method
JP2003249907A (ja) 2002-02-22 2003-09-05 Hitachi Kokusai Electric Inc Ofdm方式の伝送装置
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US7099299B2 (en) 2002-03-04 2006-08-29 Agency For Science, Technology And Research CDMA system with frequency domain equalization
US7039356B2 (en) * 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
KR100464014B1 (ko) 2002-03-21 2004-12-30 엘지전자 주식회사 다중 입출력 이동 통신 시스템에서의 폐루프 신호 처리 방법
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
JP2003292667A (ja) 2002-03-29 2003-10-15 Jsr Corp 架橋発泡用熱可塑性エラストマー組成物、成形品の製造方法、および成形品
US6741587B2 (en) 2002-04-02 2004-05-25 Nokia Corporation Inter-frequency measurements with MIMO terminals
US6850741B2 (en) 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
US7508804B2 (en) 2002-04-05 2009-03-24 Alcatel-Lucent Usa Inc. Shared signaling for multiple user equipment
KR100896682B1 (ko) 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
TW200307432A (en) 2002-04-15 2003-12-01 Matsushita Electric Ind Co Ltd The receiving device and the method thereof
US7522673B2 (en) 2002-04-22 2009-04-21 Regents Of The University Of Minnesota Space-time coding using estimated channel information
JP2003318857A (ja) 2002-04-25 2003-11-07 Mitsubishi Electric Corp デジタル放送受信機
TWI242992B (en) 2002-04-25 2005-11-01 Raytheon Co Dynamic wireless resource utilization
US7161971B2 (en) 2002-04-29 2007-01-09 Qualcomm, Incorporated Sending transmission format information on dedicated channels
US6839336B2 (en) 2002-04-29 2005-01-04 Qualcomm, Incorporated Acknowledging broadcast transmissions
US7170876B2 (en) 2002-04-30 2007-01-30 Qualcomm, Inc. Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
US7170937B2 (en) * 2002-05-01 2007-01-30 Texas Instruments Incorporated Complexity-scalable intra-frame prediction technique
US7127241B2 (en) 2002-05-09 2006-10-24 Casabyte, Inc. Method, apparatus and article to remotely associate wireless communications devices with subscriber identities and/or proxy wireless communications devices
JP4334274B2 (ja) 2002-05-16 2009-09-30 株式会社エヌ・ティ・ティ・ドコモ マルチキャリア伝送用送信機及びマルチキャリア伝送方法
KR100689399B1 (ko) 2002-05-17 2007-03-08 삼성전자주식회사 이동통신시스템에서 스마트 안테나의 순방향 송신빔 형성장치 및 방법
JP2003347985A (ja) 2002-05-22 2003-12-05 Fujitsu Ltd 無線基地局装置及びその省電力方法
JP4067873B2 (ja) 2002-05-24 2008-03-26 三菱電機株式会社 無線伝送装置
GB0212165D0 (en) * 2002-05-27 2002-07-03 Nokia Corp A wireless system
US6917602B2 (en) 2002-05-29 2005-07-12 Nokia Corporation System and method for random access channel capture with automatic retransmission request
US7899067B2 (en) 2002-05-31 2011-03-01 Cisco Technology, Inc. Method and apparatus for generating and using enhanced tree bitmap data structures in determining a longest prefix match
US8699505B2 (en) 2002-05-31 2014-04-15 Qualcomm Incorporated Dynamic channelization code allocation
US7366223B1 (en) 2002-06-06 2008-04-29 Arraycomm, Llc Modifying hopping sequences in wireless networks
US7356005B2 (en) 2002-06-07 2008-04-08 Nokia Corporation Apparatus and associated method, by which to facilitate scheduling of data communications in a radio communications system
KR100548311B1 (ko) 2002-06-07 2006-02-02 엘지전자 주식회사 이동 통신 시스템에서의 송신 다이버시티 장치와 방법
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
JP3751265B2 (ja) 2002-06-20 2006-03-01 松下電器産業株式会社 無線通信システムおよびスケジューリング方法
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7483408B2 (en) 2002-06-26 2009-01-27 Nortel Networks Limited Soft handoff method for uplink wireless communications
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
WO2004004173A1 (en) 2002-06-27 2004-01-08 Koninklijke Philips Electronics N.V. Measurement of channel characteristics in a communication system
ATE308172T1 (de) 2002-06-27 2005-11-15 Siemens Ag Anordnung und verfahren zur datenübertragung in einem mehrfacheingabe mehrfachausgabe funkkommunikationssystem
US20040077379A1 (en) 2002-06-27 2004-04-22 Martin Smith Wireless transmitter, transceiver and method
US7372911B1 (en) 2002-06-28 2008-05-13 Arraycomm, Llc Beam forming and transmit diversity in a multiple array radio communications system
US7043274B2 (en) 2002-06-28 2006-05-09 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell for common and dedicated channels utilizing beam forming and sweeping
KR100640470B1 (ko) 2002-06-29 2006-10-30 삼성전자주식회사 패킷 서비스 통신 시스템에서 전송 안테나 다이버시티방식을 사용하여 데이터를 전송 장치 및 방법
CN1219372C (zh) 2002-07-08 2005-09-14 华为技术有限公司 一种实现多媒体广播和多播业务的传输方法
KR100630112B1 (ko) 2002-07-09 2006-09-27 삼성전자주식회사 이동통신시스템의 적응형 채널 추정장치 및 방법
US7243150B2 (en) 2002-07-10 2007-07-10 Radwin Ltd. Reducing the access delay for transmitting processed data over transmission data
CN1669257B (zh) 2002-07-16 2012-08-29 松下电器产业株式会社 通信方法和使用该通信方法的发送装置和接收装置
US20040017785A1 (en) 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
KR20050021477A (ko) 2002-07-17 2005-03-07 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 데이터 기호 송신 및 수신 방법, 송신기, 수신기, 컴퓨터프로그램 제품, 및 전송 시스템
AU2003246484B2 (en) 2002-07-17 2008-03-06 Soma Networks, Inc. Frequency domain equalization in communications systems with scrambling
TWI382705B (zh) 2002-07-18 2013-01-11 Interdigital Tech Corp 直角可變擴展因素碼分派
US7020446B2 (en) 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
JP4022744B2 (ja) 2002-08-01 2007-12-19 日本電気株式会社 移動通信システム及びベストセル変更方法並びにそれに用いる基地局制御装置
PT1525690E (pt) 2002-08-02 2012-10-29 Nms Comm Processos e dispositivos para reagrupamento de sinal de rede e redução de largura de banda
JP4047655B2 (ja) 2002-08-07 2008-02-13 京セラ株式会社 無線通信システム
US6788963B2 (en) 2002-08-08 2004-09-07 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple a states
US7418241B2 (en) 2002-08-09 2008-08-26 Qualcomm Incorporated System and techniques for enhancing the reliability of feedback in a wireless communications system
US7558193B2 (en) 2002-08-12 2009-07-07 Starent Networks Corporation Redundancy in voice and data communications systems
US7180627B2 (en) 2002-08-16 2007-02-20 Paxar Corporation Hand-held portable printer with RFID read/write capability
JP3999605B2 (ja) 2002-08-23 2007-10-31 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動通信システム及び通信方法
US7050405B2 (en) * 2002-08-23 2006-05-23 Qualcomm Incorporated Method and system for a data transmission in a communication system
DE10238796B4 (de) 2002-08-23 2006-09-14 Siemens Ag Verfahren zur Richtungsbestimmung der Position einer Mobilstation relativ zu einer Basisstation, Mobilfunksystem sowie Einrichtung zur Richtungsbestimmung
US6985498B2 (en) 2002-08-26 2006-01-10 Flarion Technologies, Inc. Beacon signaling in a wireless system
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
JP2004096142A (ja) 2002-08-29 2004-03-25 Hitachi Kokusai Electric Inc 地区エリアポーリング方式
US7167916B2 (en) 2002-08-30 2007-01-23 Unisys Corporation Computer OS dispatcher operation with virtual switching queue and IP queues
KR100831987B1 (ko) 2002-08-30 2008-05-23 삼성전자주식회사 다중 사용자를 위한 다중 안테나를 이용한 송수신 장치
US7519032B2 (en) 2002-09-04 2009-04-14 Koninklijke Philips Electronics N.V. Apparatus and method for providing QoS service schedule and bandwidth allocation to a wireless station
IL151644A (en) 2002-09-05 2008-11-26 Fazan Comm Llc Allocation of radio resources in a cdma 2000 cellular system
US7227854B2 (en) * 2002-09-06 2007-06-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting CQI information in a CDMA communication system employing an HSDPA scheme
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US6776165B2 (en) 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
WO2004028037A1 (ja) 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha 無線通信システム
US7209712B2 (en) * 2002-09-23 2007-04-24 Qualcomm, Incorporated Mean square estimation of channel quality measure
GB0222555D0 (en) 2002-09-28 2002-11-06 Koninkl Philips Electronics Nv Packet data transmission system
KR100933155B1 (ko) 2002-09-30 2009-12-21 삼성전자주식회사 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법
US7317680B2 (en) 2002-10-01 2008-01-08 Nortel Networks Limited Channel mapping for OFDM
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
JP4602641B2 (ja) 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 信号伝送システム、信号伝送方法及び送信機
KR100461547B1 (ko) * 2002-10-22 2004-12-16 한국전자통신연구원 디에스/시디엠에이 미모 안테나 시스템에서 보다 나은수신 다이버시티 이득을 얻기 위한 전송 시스템
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7477618B2 (en) 2002-10-25 2009-01-13 Qualcomm Incorporated Method and apparatus for stealing power or code for data channel operations
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
AU2002353638A1 (en) 2002-10-26 2004-05-13 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
US7023880B2 (en) 2002-10-28 2006-04-04 Qualcomm Incorporated Re-formatting variable-rate vocoder frames for inter-system transmissions
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US6928062B2 (en) 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
AU2003290543A1 (en) 2002-10-29 2004-05-25 Nokia Corporation Low complexity beamformers for multiple transmit and receive antennas
CN100557982C (zh) 2002-10-30 2009-11-04 Nxp股份有限公司 用于接收编码块信号的接收器及其方法和处理器系统
US6963959B2 (en) 2002-10-31 2005-11-08 International Business Machines Corporation Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance
JP2004153676A (ja) 2002-10-31 2004-05-27 Mitsubishi Electric Corp 通信装置、送信機および受信機
JP2004158901A (ja) 2002-11-01 2004-06-03 Kddi Corp Ofdm及びmc−cdmaを用いる送信装置、システム及び方法
US7680507B2 (en) * 2002-11-04 2010-03-16 Alcatel-Lucent Usa Inc. Shared control and signaling channel for users subscribing to data services in a communication system
JP4095881B2 (ja) 2002-11-13 2008-06-04 株式会社 サンウェイ 道路路面計画の評価方法
DE10254384B4 (de) 2002-11-17 2005-11-17 Siemens Ag Bidirektionales Signalverarbeitungsverfahren für ein MIMO-System mit einer rangadaptiven Anpassung der Datenübertragungsrate
JP4084639B2 (ja) 2002-11-19 2008-04-30 株式会社エヌ・ティ・ティ・ドコモ 移動通信における受付制御方法、移動通信システム、移動局、受付制御装置及び受付制御用プログラム
US20040098505A1 (en) 2002-11-20 2004-05-20 Clemmensen Daniel G. Forwarding system with multiple logical sub-system functionality
JP3796212B2 (ja) 2002-11-20 2006-07-12 松下電器産業株式会社 基地局装置及び送信割り当て制御方法
KR100479864B1 (ko) 2002-11-26 2005-03-31 학교법인 중앙대학교 이동 통신 시스템에서의 하향링크 신호의 구성 방법과동기화 방법 및 그 장치 그리고 이를 이용한 셀 탐색 방법
ATE509455T1 (de) 2002-12-04 2011-05-15 Interdigital Tech Corp Zuverlässigkeitserkennung eines kanalqualitätsanzeigers (cqi) und anwendung auf die leistungsregelung in äusserer schleife
JP4350491B2 (ja) 2002-12-05 2009-10-21 パナソニック株式会社 無線通信システム、無線通信方法、及び無線通信装置
US8179833B2 (en) 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
US7027539B2 (en) 2002-12-09 2006-04-11 Broadcom Corporation Pipeline architecture for multi-slot wireless link processing
KR100507519B1 (ko) 2002-12-13 2005-08-17 한국전자통신연구원 Ofdma 기반 셀룰러 시스템의 하향링크를 위한 신호구성 방법 및 장치
US7508798B2 (en) 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
KR100552669B1 (ko) 2002-12-26 2006-02-20 한국전자통신연구원 층적 공간-시간 구조의 검파기를 갖는 다중 입출력시스템에 적용되는 적응 변복조 장치 및 그 방법
US6904550B2 (en) 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
KR100606008B1 (ko) 2003-01-04 2006-07-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 요청 송수신 장치 및 방법
JP4098096B2 (ja) 2003-01-06 2008-06-11 三菱電機株式会社 スペクトル拡散受信装置
US8400979B2 (en) 2003-01-07 2013-03-19 Qualcomm Incorporated Forward link handoff for wireless communication systems with OFDM forward link and CDMA reverse link
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
CN1302671C (zh) 2003-01-07 2007-02-28 华为技术有限公司 一种第三方为接收方接收多媒体短消息付费的方法
JP4139230B2 (ja) 2003-01-15 2008-08-27 松下電器産業株式会社 送信装置及び送信方法
US7346018B2 (en) 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
CN100417269C (zh) 2003-01-20 2008-09-03 中兴通讯股份有限公司 智能天线波束切换方法
KR100580244B1 (ko) 2003-01-23 2006-05-16 삼성전자주식회사 무선랜상의 핸드오프 방법
WO2004068721A2 (en) 2003-01-28 2004-08-12 Celletra Ltd. System and method for load distribution between base station sectors
JP4276009B2 (ja) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP4514463B2 (ja) 2003-02-12 2010-07-28 パナソニック株式会社 送信装置及び無線通信方法
JP3740471B2 (ja) 2003-02-13 2006-02-01 株式会社東芝 Ofdm受信装置、半導体集積回路及びofdm受信方法
EP1593246A1 (en) 2003-02-14 2005-11-09 DoCoMo Communications Laboratories Europe GmbH Two-dimensional channel estimation for multicarrier multiple input multiple outpout communication systems
RU2368106C2 (ru) 2003-02-18 2009-09-20 Квэлкомм Инкорпорейтед Планируемая и автономная передача и подтверждение приема
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US7660282B2 (en) 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7813322B2 (en) 2003-02-19 2010-10-12 Qualcomm Incorporated Efficient automatic repeat request methods and apparatus
CA2516382C (en) 2003-02-19 2013-04-16 Flarion Technologies, Inc. Controlled superposition coding in multi-user communication systems
US9544860B2 (en) 2003-02-24 2017-01-10 Qualcomm Incorporated Pilot signals for use in multi-sector cells
EP1600012A1 (en) 2003-02-24 2005-11-30 Floyd Backes Wireless access protocol system and method
KR100539230B1 (ko) 2003-02-26 2005-12-27 삼성전자주식회사 다양한 규격의 신호를 송수신 처리하는 물리층 장치, 이를구비한 무선 랜 시스템 및 그 무선 랜 방법
JP2004260658A (ja) 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd 無線lan装置
TWI357271B (en) 2003-02-27 2012-01-21 Interdigital Tech Corp Method for implementing fast-dynamic channel alloc
WO2004077777A1 (en) 2003-02-28 2004-09-10 Nortel Networks Limited Sub-carrier allocation for ofdm
KR100547758B1 (ko) 2003-02-28 2006-01-31 삼성전자주식회사 초광대역 통신 시스템의 프리앰블 송수신 장치 및 방법
US20040181569A1 (en) 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for a data transmission in a communication system
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7746816B2 (en) 2003-03-13 2010-06-29 Qualcomm Incorporated Method and system for a power control in a communication system
US20040179480A1 (en) 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for estimating parameters of a link for data transmission in a communication system
US7130580B2 (en) 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7016319B2 (en) * 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
SE527445C2 (sv) 2003-03-25 2006-03-07 Telia Ab Lägesanpassat skyddsintervall för OFDM-kommunikation
JP4218387B2 (ja) * 2003-03-26 2009-02-04 日本電気株式会社 無線通信システム、基地局及びそれらに用いる無線リンク品質情報補正方法並びにそのプログラム
JP4181906B2 (ja) 2003-03-26 2008-11-19 富士通株式会社 送信機及び受信機
US20040192386A1 (en) 2003-03-26 2004-09-30 Naveen Aerrabotu Method and apparatus for multiple subscriber identities in a mobile communication device
JP4162522B2 (ja) 2003-03-26 2008-10-08 三洋電機株式会社 無線基地装置、送信指向性制御方法、および送信指向性制御プログラム
JP4099175B2 (ja) * 2003-03-27 2008-06-11 株式会社エヌ・ティ・ティ・ドコモ 複数のチャネルを推定する装置及び方法
US7233634B1 (en) 2003-03-27 2007-06-19 Nortel Networks Limited Maximum likelihood decoding
GB2400280B (en) 2003-04-02 2005-06-01 Matsushita Electric Ind Co Ltd Dynamic resource allocation in packet data transfer
US7085574B2 (en) 2003-04-15 2006-08-01 Qualcomm, Incorporated Grant channel assignment
US7406055B2 (en) 2003-04-21 2008-07-29 Mitsubishi Denki Kabushiki Kaisha Radio communication apparatus, transmitter apparatus, receiver apparatus and radio communication system
KR20120024992A (ko) 2003-04-23 2012-03-14 콸콤 인코포레이티드 무선 통신 시스템에서 수행성능을 향상시키는 방법들 및 장치
US7640373B2 (en) 2003-04-25 2009-12-29 Motorola, Inc. Method and apparatus for channel quality feedback within a communication system
KR100942645B1 (ko) 2003-04-29 2010-02-17 엘지전자 주식회사 이동통신 시스템에서의 신호전송 방법 및 장치
US7013143B2 (en) 2003-04-30 2006-03-14 Motorola, Inc. HARQ ACK/NAK coding for a communication device during soft handoff
US20040219919A1 (en) 2003-04-30 2004-11-04 Nicholas Whinnett Management of uplink scheduling modes in a wireless communication system
US6824416B2 (en) 2003-04-30 2004-11-30 Agilent Technologies, Inc. Mounting arrangement for plug-in modules
US6993342B2 (en) 2003-05-07 2006-01-31 Motorola, Inc. Buffer occupancy used in uplink scheduling for a communication device
US6882855B2 (en) 2003-05-09 2005-04-19 Motorola, Inc. Method and apparatus for CDMA soft handoff for dispatch group members
US7254158B2 (en) 2003-05-12 2007-08-07 Qualcomm Incorporated Soft handoff with interference cancellation in a wireless frequency hopping communication system
US7177297B2 (en) 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
US6950319B2 (en) 2003-05-13 2005-09-27 Delta Electronics, Inc. AC/DC flyback converter
US7545867B1 (en) 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
KR100526542B1 (ko) 2003-05-15 2005-11-08 삼성전자주식회사 이동 통신 시스템에서 다중안테나를 사용하는송신다이버시티 방식을 사용하여 데이터를 송수신하는장치 및 방법
US7181196B2 (en) 2003-05-15 2007-02-20 Lucent Technologies Inc. Performing authentication in a communications system
WO2004102829A1 (en) 2003-05-15 2004-11-25 Lg Electronics Inc. Method and apparatus for allocating channelization codes for wireless communications
US20040228313A1 (en) 2003-05-16 2004-11-18 Fang-Chen Cheng Method of mapping data for uplink transmission in communication systems
WO2004105272A1 (ja) 2003-05-20 2004-12-02 Fujitsu Limited 移動通信システムにおけるアプリケーションハンドオーバ方法並びに同移動通信システムに使用される移動管理ノード及び移動ノード
US7454510B2 (en) 2003-05-29 2008-11-18 Microsoft Corporation Controlled relay of media streams across network perimeters
US7366137B2 (en) * 2003-05-31 2008-04-29 Qualcomm Incorporated Signal-to-noise estimation in wireless communication devices with receive diversity
US8018902B2 (en) * 2003-06-06 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for channel quality indicator determination
US7079870B2 (en) 2003-06-09 2006-07-18 Ipr Licensing, Inc. Compensation techniques for group delay effects in transmit beamforming radio communication
KR100547734B1 (ko) 2003-06-13 2006-01-31 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 매체 접속 제어 계층의 동작 상태 제어 방법
WO2004114549A1 (en) 2003-06-13 2004-12-29 Nokia Corporation Enhanced data only code division multiple access (cdma) system
US7236747B1 (en) 2003-06-18 2007-06-26 Samsung Electronics Co., Ltd. (SAIT) Increasing OFDM transmit power via reduction in pilot tone
RU2313909C2 (ru) 2003-06-18 2007-12-27 Самсунг Электроникс Ко., Лтд. Устройство и способ для передачи и приема шаблона пилот-сигнала для идентификации базовой станции в системе связи омчр
WO2004114615A1 (en) 2003-06-22 2004-12-29 Ntt Docomo, Inc. Apparatus and method for estimating a channel in a multiple input transmission system
KR20050000709A (ko) 2003-06-24 2005-01-06 삼성전자주식회사 다중 접속 방식을 사용하는 통신 시스템의 데이터 송수신장치 및 방법
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
NZ526669A (en) * 2003-06-25 2006-03-31 Ind Res Ltd Narrowband interference suppression for OFDM systems
US7433661B2 (en) 2003-06-25 2008-10-07 Lucent Technologies Inc. Method for improved performance and reduced bandwidth channel state information feedback in communication systems
EP1492241B1 (en) * 2003-06-26 2007-02-14 Mitsubishi Electric Information Technology Centre Europe B.V. Improved sphere decoding of symbols transmitted in a telecommunication system
JP3746280B2 (ja) 2003-06-27 2006-02-15 株式会社東芝 通信方法、通信システム及び通信装置
JPWO2005002253A1 (ja) 2003-06-30 2006-08-10 日本電気株式会社 無線通信システムおよび送信モード選択方法
US7639728B2 (en) 2003-07-08 2009-12-29 Qualcomm Incorporated Methods for generating and transmitting frequency hopped signals
US7522919B2 (en) 2003-07-14 2009-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements to periodic silences in wireless communication systems
KR100987286B1 (ko) * 2003-07-31 2010-10-12 삼성전자주식회사 무선 통신 시스템에서 다중접속 방법 및 그 제어 시스템
ATE467283T1 (de) 2003-08-05 2010-05-15 Telecom Italia Spa Verfahren zur bereitstellung von extraverkehrswegen mit verbindungsschutz in einem kommunikationsnetz, diesbezügliches netz und computerprogrammprodukt dafür
US7315527B2 (en) * 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
US8140980B2 (en) 2003-08-05 2012-03-20 Verizon Business Global Llc Method and system for providing conferencing services
US7126928B2 (en) 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US7969857B2 (en) 2003-08-07 2011-06-28 Nortel Networks Limited OFDM system and method employing OFDM symbols with known or information-containing prefixes
US7460494B2 (en) 2003-08-08 2008-12-02 Intel Corporation Adaptive signaling in multiple antenna systems
KR101160136B1 (ko) * 2003-08-12 2012-06-26 파나소닉 주식회사 무선 통신 장치 및 파일럿 심볼 전송 방법
US7420939B2 (en) 2003-08-13 2008-09-02 Qualcomm Incorporated Methods and apparatus of power control in wireless communication systems
DE60306519T2 (de) 2003-08-14 2006-11-09 Matsushita Electric Industrial Co., Ltd., Kadoma Synchronisation von Basisstationen während Soft-Handover
RU2235429C1 (ru) 2003-08-15 2004-08-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Способ частотно-временной синхронизации системы связи и устройство для его осуществления
CN1284795C (zh) 2003-08-15 2006-11-15 上海师范大学 磁性纳米粒子核酸分离器、及其制法和应用
US7257167B2 (en) 2003-08-19 2007-08-14 The University Of Hong Kong System and method for multi-access MIMO channels with feedback capacity constraint
RU2340104C2 (ru) 2003-08-20 2008-11-27 Мацусита Электрик Индастриал Ко., Лтд. Устройство беспроводной связи и способ выделения поднесущих
US6925145B2 (en) * 2003-08-22 2005-08-02 General Electric Company High speed digital radiographic inspection of piping
JP4194091B2 (ja) 2003-09-02 2008-12-10 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線通信システムおよび無線通信装置
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US20050063298A1 (en) 2003-09-02 2005-03-24 Qualcomm Incorporated Synchronization in a broadcast OFDM system using time division multiplexed pilots
US7400856B2 (en) 2003-09-03 2008-07-15 Motorola, Inc. Method and apparatus for relay facilitated communications
US20050047517A1 (en) 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US8908496B2 (en) 2003-09-09 2014-12-09 Qualcomm Incorporated Incremental redundancy transmission in a MIMO communication system
US7356073B2 (en) * 2003-09-10 2008-04-08 Nokia Corporation Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector
US6917821B2 (en) 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US20050068921A1 (en) 2003-09-29 2005-03-31 Jung-Tao Liu Multiplexing of physical channels on the uplink
KR100950668B1 (ko) 2003-09-30 2010-04-02 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 업링크 파일럿 신호 송수신 장치 및 방법
US20050164709A1 (en) 2003-09-30 2005-07-28 Srinivasan Balasubramanian Method and apparatus for congestion control in high speed wireless packet data networks
JP2005110130A (ja) 2003-10-01 2005-04-21 Samsung Electronics Co Ltd 共通チャネル伝送システム、共通チャネル伝送方法及び通信プログラム
US7230942B2 (en) 2003-10-03 2007-06-12 Qualcomm, Incorporated Method of downlink resource allocation in a sectorized environment
EP1521414B1 (en) 2003-10-03 2008-10-29 Kabushiki Kaisha Toshiba Method and apparatus for sphere decoding
US7039370B2 (en) 2003-10-16 2006-05-02 Flarion Technologies, Inc. Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
US7242722B2 (en) 2003-10-17 2007-07-10 Motorola, Inc. Method and apparatus for transmission and reception within an OFDM communication system
US7120395B2 (en) 2003-10-20 2006-10-10 Nortel Networks Limited MIMO communications
ATE368977T1 (de) * 2003-10-21 2007-08-15 Alcatel Lucent Verfahren zur zuordnung der unterträger und zur auswahl des modulationsschemas in einem drahtlosen mehrträgerübertragungssystem
US7508748B2 (en) * 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
KR20050040988A (ko) * 2003-10-29 2005-05-04 삼성전자주식회사 주파수도약 직교 주파수 분할 다중화 기반 셀룰러시스템을 위한 통신방법
KR100957415B1 (ko) * 2003-10-31 2010-05-11 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서 기지국 구분을 위한 파일럿 신호 송수신 장치 및 방법
KR101023330B1 (ko) 2003-11-05 2011-03-18 한국과학기술원 무선 통신 시스템에서 서비스 품질을 보장하기 위한 복합자동 재전송 요구 방법
US7664533B2 (en) 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
KR100981554B1 (ko) 2003-11-13 2010-09-10 한국과학기술원 다중 송수신 안테나들을 구비하는 이동통신시스템에서,송신 안테나들을 그룹핑하여 신호를 전송하는 방법
EP1533950A1 (en) 2003-11-21 2005-05-25 Sony International (Europe) GmbH Method for connecting a mobile terminal to a wireless communication system, wireless communication system and mobile terminal for a wireless communication system
US7356000B2 (en) 2003-11-21 2008-04-08 Motorola, Inc. Method and apparatus for reducing call setup delay
JP3908723B2 (ja) 2003-11-28 2007-04-25 Tdk株式会社 誘電体磁器組成物の製造方法
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
JP2005167502A (ja) 2003-12-01 2005-06-23 Ntt Docomo Inc 無線通信システム、送信無線局の制御装置及び受信無線局の制御装置、並びにサブキャリア選択方法
KR20050053907A (ko) 2003-12-03 2005-06-10 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 캐리어 할당 방법
WO2005055543A1 (en) 2003-12-03 2005-06-16 Australian Telecommunications Cooperative Research Centre Channel estimation for ofdm systems
TWI232040B (en) 2003-12-03 2005-05-01 Chung Shan Inst Of Science CDMA transmitting and receiving apparatus with multiply applied interface functions and a method thereof
JP4864720B2 (ja) 2003-12-05 2012-02-01 クアルコム,インコーポレイテッド 閉ループ多重入出力移動通信システムで送信固有ベクトルを選択してデータを送信する装置及び方法
US7145940B2 (en) 2003-12-05 2006-12-05 Qualcomm Incorporated Pilot transmission schemes for a multi-antenna system
WO2005055484A1 (ja) 2003-12-05 2005-06-16 Nippon Telegraph And Telephone Corporation 無線通信装置、無線通信方法、及び無線通信システム
EP1542488A1 (en) 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
KR100856227B1 (ko) 2003-12-15 2008-09-03 삼성전자주식회사 이동통신시스템에서의 송/수신장치 및 방법
US7302009B2 (en) 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
KR100560386B1 (ko) 2003-12-17 2006-03-13 한국전자통신연구원 무선 통신 시스템의 상향 링크에서 코히어런트 검출을위한 직교주파수 분할 다중 접속 방식의 송수신 장치 및그 방법
EP1545082A3 (en) 2003-12-17 2005-08-03 Kabushiki Kaisha Toshiba Signal decoding methods and apparatus
KR100507541B1 (ko) * 2003-12-19 2005-08-09 삼성전자주식회사 직교주파수분할다중접속 시스템에서의 데이터 및 파일롯할당 방법 과 그를 이용한 송신 방법 및 그 장치, 수신방법과 그 장치
KR20050063826A (ko) 2003-12-19 2005-06-28 엘지전자 주식회사 무선통신 시스템의 무선자원 할당방법
US7181170B2 (en) * 2003-12-22 2007-02-20 Motorola Inc. Apparatus and method for adaptive broadcast transmission
ATE491269T1 (de) 2003-12-22 2010-12-15 Ericsson Telefon Ab L M Verfahren zur bestimmung von sendegewichten
KR100943572B1 (ko) 2003-12-23 2010-02-24 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 주파수재사용율을 고려한 적응적 부채널 할당 장치 및 방법
US7352819B2 (en) 2003-12-24 2008-04-01 Intel Corporation Multiantenna communications apparatus, methods, and system
JP2005197772A (ja) 2003-12-26 2005-07-21 Toshiba Corp アダプティブアレイアンテナ装置
WO2005062729A2 (en) 2003-12-27 2005-07-14 Electronics And Telecommunications Research Institute A mimo-ofdm system using eigenbeamforming method
US7489621B2 (en) * 2003-12-30 2009-02-10 Alexander A Maltsev Adaptive puncturing technique for multicarrier systems
WO2005069538A1 (en) 2004-01-07 2005-07-28 Deltel, Inc./Pbnext Method and apparatus for telecommunication system
CN1642051A (zh) 2004-01-08 2005-07-20 电子科技大学 一种获取最优导引符号功率的方法
WO2005065062A2 (en) 2004-01-09 2005-07-21 Lg Electronics Inc. Packet transmission method
US7289585B2 (en) 2004-01-12 2007-10-30 Intel Corporation Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system
JP4167183B2 (ja) 2004-01-14 2008-10-15 株式会社国際電気通信基礎技術研究所 アレーアンテナの制御装置
US20050159162A1 (en) 2004-01-20 2005-07-21 Samsung Electronics Co., Ltd. Method for transmitting data in mobile communication network
CA2525239C (en) 2004-01-20 2013-01-08 Qualcomm Incorporated Synchronized broadcast/multicast communication
BRPI0506904A (pt) 2004-01-20 2007-06-26 Lg Electronics Inc método para transmitir / receber um sinal em um sistema mimo
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US8144735B2 (en) 2004-02-10 2012-03-27 Qualcomm Incorporated Transmission of signaling information for broadcast and multicast services
GB2412541B (en) 2004-02-11 2006-08-16 Samsung Electronics Co Ltd Method of operating TDD/virtual FDD hierarchical cellular telecommunication system
KR100827105B1 (ko) 2004-02-13 2008-05-02 삼성전자주식회사 광대역 무선 통신 시스템에서 고속 레인징을 통한 빠른핸드오버 수행 방법 및 장치
CN1943152B (zh) 2004-02-13 2011-07-27 桥扬科技有限公司 用于具有自适应发射和反馈的多载波通信系统的方法和设备
WO2005081437A1 (en) 2004-02-17 2005-09-01 Huawei Technologies Co., Ltd. Multiplexing scheme in a communication system
US7564906B2 (en) 2004-02-17 2009-07-21 Nokia Siemens Networks Oy OFDM transceiver structure with time-domain scrambling
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
JP2005236678A (ja) 2004-02-19 2005-09-02 Toyota Motor Corp 移動体用受信装置
EP1721475A1 (en) 2004-02-27 2006-11-15 Nokia Corporation Constrained optimization based mimo lmmse-sic receiver for cdma downlink
US7421041B2 (en) 2004-03-01 2008-09-02 Qualcomm, Incorporated Iterative channel and interference estimation and decoding
US20050195886A1 (en) 2004-03-02 2005-09-08 Nokia Corporation CPICH processing for SINR estimation in W-CDMA system
US20050201180A1 (en) * 2004-03-05 2005-09-15 Qualcomm Incorporated System and methods for back-off and clipping control in wireless communication systems
KR101084113B1 (ko) 2004-03-05 2011-11-17 엘지전자 주식회사 이동통신의 핸드오버에 적용되는 서비스 정보 전달 방법
US7290195B2 (en) 2004-03-05 2007-10-30 Microsoft Corporation Adaptive acknowledgment delay
US20050201296A1 (en) 2004-03-15 2005-09-15 Telefonaktiebolaget Lm Ericsson (Pu Reduced channel quality feedback
CN108234099B (zh) 2004-03-15 2020-12-29 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
US7706350B2 (en) 2004-03-19 2010-04-27 Qualcomm Incorporated Methods and apparatus for flexible spectrum allocation in communication systems
US20050207367A1 (en) 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
US7907898B2 (en) 2004-03-26 2011-03-15 Qualcomm Incorporated Asynchronous inter-piconet routing
JP2005284751A (ja) 2004-03-30 2005-10-13 Fujitsu Ltd 論理検証装置、論理検証方法および論理検証プログラム
JP4288368B2 (ja) 2004-04-09 2009-07-01 Okiセミコンダクタ株式会社 受信制御方法および無線lan装置
US7684507B2 (en) * 2004-04-13 2010-03-23 Intel Corporation Method and apparatus to select coding mode
US7047006B2 (en) 2004-04-28 2006-05-16 Motorola, Inc. Method and apparatus for transmission and reception of narrowband signals within a wideband communication system
GB0409704D0 (en) 2004-04-30 2004-06-02 Nokia Corp A method for verifying a first identity and a second identity of an entity
KR100594084B1 (ko) 2004-04-30 2006-06-30 삼성전자주식회사 직교 주파수 분할 다중 수신기의 채널 추정 방법 및 채널추정기
CA2506267A1 (en) 2004-05-04 2005-11-04 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Multi-subband frequency hopping communication system and method
US7411898B2 (en) 2004-05-10 2008-08-12 Infineon Technologies Ag Preamble generator for a multiband OFDM transceiver
JP4447372B2 (ja) 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信装置、無線受信装置、無線通信方法及びチャネル推定方法
KR20050109789A (ko) 2004-05-17 2005-11-22 삼성전자주식회사 공간분할다중화/다중입력다중출력 시스템에서의 빔포밍 방법
US7157351B2 (en) * 2004-05-20 2007-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Ozone vapor clean method
US20050259005A1 (en) 2004-05-20 2005-11-24 Interdigital Technology Corporation Beam forming matrix-fed circular array system
US8000377B2 (en) 2004-05-24 2011-08-16 General Dynamics C4 Systems, Inc. System and method for variable rate multiple access short message communications
JP4398791B2 (ja) 2004-05-25 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法
US7551564B2 (en) 2004-05-28 2009-06-23 Intel Corporation Flow control method and apparatus for single packet arrival on a bidirectional ring interconnect
KR100754794B1 (ko) 2004-05-29 2007-09-03 삼성전자주식회사 이동통신시스템에서 셀 식별 코드 송수신 장치 및 방법
US7437164B2 (en) 2004-06-08 2008-10-14 Qualcomm Incorporated Soft handoff for reverse link in a wireless communication system with frequency reuse
JP2005352205A (ja) 2004-06-10 2005-12-22 Fujinon Corp 照明装置
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
US8619907B2 (en) 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US7773950B2 (en) 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US8068530B2 (en) 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US7599327B2 (en) 2004-06-24 2009-10-06 Motorola, Inc. Method and apparatus for accessing a wireless communication system
US7299048B2 (en) 2004-06-25 2007-11-20 Samsung Electronics Co., Ltd. System and method for performing soft handover in broadband wireless access communication system
KR101053610B1 (ko) * 2004-06-25 2011-08-03 엘지전자 주식회사 Ofdm/ofdma 시스템의 무선자원 할당 방법
CN1998247B (zh) * 2004-06-30 2012-05-30 桥扬科技有限公司 用于多载波无线系统中功率控制的方法和装置
US8000268B2 (en) 2004-06-30 2011-08-16 Motorola Mobility, Inc. Frequency-hopped IFDMA communication system
WO2006017086A1 (en) 2004-07-02 2006-02-16 Vibration Research Corporation System and method for simultaneously controlling spectrum and kurtosis of a random vibration
US8588326B2 (en) * 2004-07-07 2013-11-19 Apple Inc. System and method for mapping symbols for MIMO transmission
JP4181093B2 (ja) * 2004-07-16 2008-11-12 株式会社東芝 無線通信システム
US10355825B2 (en) 2004-07-21 2019-07-16 Qualcomm Incorporated Shared signaling channel for a communication system
US8477710B2 (en) 2004-07-21 2013-07-02 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US7676007B1 (en) 2004-07-21 2010-03-09 Jihoon Choi System and method for interpolation based transmit beamforming for MIMO-OFDM with partial feedback
US7567621B2 (en) 2004-07-21 2009-07-28 Qualcomm Incorporated Capacity based rank prediction for MIMO design
US9137822B2 (en) * 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7257406B2 (en) 2004-07-23 2007-08-14 Qualcomm, Incorporated Restrictive reuse set management
TW200620924A (en) * 2004-08-03 2006-06-16 Agency Science Tech & Res Method for transmitting a digital data stream, transmitter, method for receiving a digital data stream and receiver
JP2006050326A (ja) * 2004-08-05 2006-02-16 Toshiba Corp 情報処理装置および同装置のシーンチェンジ検出方法
US7428426B2 (en) 2004-08-06 2008-09-23 Qualcomm, Inc. Method and apparatus for controlling transmit power in a wireless communications device
US7499393B2 (en) 2004-08-11 2009-03-03 Interdigital Technology Corporation Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems
WO2006031019A1 (en) 2004-08-12 2006-03-23 Lg Electronics Inc. Reception in dedicated service of wireless communication system
US20060218459A1 (en) 2004-08-13 2006-09-28 David Hedberg Coding systems and methods
US20060039332A1 (en) * 2004-08-17 2006-02-23 Kotzin Michael D Mechanism for hand off using subscriber detection of synchronized access point beacon transmissions
JP4436415B2 (ja) 2004-08-17 2010-03-24 サムスン エレクトロニクス カンパニー リミテッド 性能向上のための時空間周波数ブロック符号化装置及び方法
CN1296682C (zh) 2004-08-17 2007-01-24 广东省基础工程公司 一种隧道过江施工中用于监测河床沉降的装置及其方法
US7899497B2 (en) 2004-08-18 2011-03-01 Ruckus Wireless, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US7336727B2 (en) 2004-08-19 2008-02-26 Nokia Corporation Generalized m-rank beamformers for MIMO systems using successive quantization
US20060039344A1 (en) * 2004-08-20 2006-02-23 Lucent Technologies, Inc. Multiplexing scheme for unicast and broadcast/multicast traffic
US7852746B2 (en) 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
KR100856249B1 (ko) 2004-08-26 2008-09-03 삼성전자주식회사 무선 통신 시스템에서 초기 동작 모드 검출 방법
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7362822B2 (en) * 2004-09-08 2008-04-22 Intel Corporation Recursive reduction of channel state feedback
US7613423B2 (en) * 2004-09-10 2009-11-03 Samsung Electronics Co., Ltd. Method of creating active multipaths for mimo wireless systems
GB0420164D0 (en) 2004-09-10 2004-10-13 Nokia Corp A scheduler
KR100715910B1 (ko) * 2004-09-20 2007-05-08 삼성전자주식회사 다중 접속 방식을 사용하는 이동 통신 시스템의 셀 탐색장치 및 방법
RU2285388C2 (ru) 2004-09-27 2006-10-20 Оао "Онежский Тракторный Завод" Машина для бесчокерной трелевки деревьев
US7924935B2 (en) * 2004-09-30 2011-04-12 Nortel Networks Limited Channel sounding in OFDMA system
US8325863B2 (en) * 2004-10-12 2012-12-04 Qualcomm Incorporated Data detection and decoding with considerations for channel estimation errors due to guard subbands
US7969858B2 (en) 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
US7636328B2 (en) 2004-10-20 2009-12-22 Qualcomm Incorporated Efficient transmission of signaling using channel constraints
US7616955B2 (en) 2004-11-12 2009-11-10 Broadcom Corporation Method and system for bits and coding assignment utilizing Eigen beamforming with fixed rates for closed loop WLAN
US20060089104A1 (en) 2004-10-27 2006-04-27 Nokia Corporation Method for improving an HS-DSCH transport format allocation
GB2419788B (en) 2004-11-01 2007-10-31 Toshiba Res Europ Ltd Interleaver and de-interleaver systems
US7139328B2 (en) 2004-11-04 2006-11-21 Motorola, Inc. Method and apparatus for closed loop data transmission
US7627051B2 (en) 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
IN2012DN02302A (ru) 2004-11-16 2015-08-21 Qualcomm Inc
US20060104333A1 (en) * 2004-11-18 2006-05-18 Motorola, Inc. Acknowledgment for a time division channel
US20060111054A1 (en) 2004-11-22 2006-05-25 Interdigital Technology Corporation Method and system for selecting transmit antennas to reduce antenna correlation
US7512096B2 (en) 2004-11-24 2009-03-31 Alcatel-Lucent Usa Inc. Communicating data between an access point and multiple wireless devices over a link
US7593473B2 (en) 2004-12-01 2009-09-22 Bae Systems Information And Electronic Systems Integration Inc. Tree structured multicarrier multiple access systems
US7822128B2 (en) 2004-12-03 2010-10-26 Intel Corporation Multiple antenna multicarrier transmitter and method for adaptive beamforming with transmit-power normalization
EP1820287A4 (en) 2004-12-08 2012-07-11 Korea Electronics Telecomm Transmitter, receiver and method for controlling a system with multiple inputs and outputs
CA2725658C (en) 2004-12-22 2014-07-08 Qualcomm Incorporated Methods and apparatus for flexible hopping in a multiple-access communication network
US7543197B2 (en) 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US7940710B2 (en) 2004-12-22 2011-05-10 Qualcomm Incorporated Methods and apparatus for efficient paging in a wireless communication system
US8179876B2 (en) 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
US20060140289A1 (en) 2004-12-27 2006-06-29 Mandyam Giridhar D Method and apparatus for providing an efficient pilot scheme for channel estimation
CN1642335A (zh) 2005-01-06 2005-07-20 东南大学 移动通信系统混合无线资源管理方法
US7778826B2 (en) 2005-01-13 2010-08-17 Intel Corporation Beamforming codebook generation system and associated methods
EP3544217B1 (en) 2005-01-18 2021-04-07 SHARP Kabushiki Kaisha Wireless communication apparatus and wireless communication method
JP2006211537A (ja) 2005-01-31 2006-08-10 Nec Corp コード状態変更装置、コード状態変更方法、およびコード状態変更プログラム
KR100966044B1 (ko) 2005-02-24 2010-06-28 삼성전자주식회사 다중 셀 통신 시스템에서 주파수 자원 할당 시스템 및 방법
KR20060096365A (ko) 2005-03-04 2006-09-11 삼성전자주식회사 다중 사용자 다중입력 다중출력(mu-mimo)통신시스템의 사용자 스케줄링 방법
US8135088B2 (en) 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US8095141B2 (en) 2005-03-09 2012-01-10 Qualcomm Incorporated Use of supplemental assignments
US20060203794A1 (en) 2005-03-10 2006-09-14 Qualcomm Incorporated Systems and methods for beamforming in multi-input multi-output communication systems
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US7720162B2 (en) 2005-03-10 2010-05-18 Qualcomm Incorporated Partial FFT processing and demodulation for a system with multiple subcarriers
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US7512412B2 (en) 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US8446892B2 (en) * 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US20090213950A1 (en) 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US8031583B2 (en) 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US7797018B2 (en) 2005-04-01 2010-09-14 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US7711033B2 (en) 2005-04-14 2010-05-04 Telefonaktiebolaget Lm Ericsson (Publ) SIR prediction method and apparatus
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7768979B2 (en) 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
US8077692B2 (en) 2005-05-20 2011-12-13 Qualcomm Incorporated Enhanced frequency division multiple access for wireless communication
US7916681B2 (en) 2005-05-20 2011-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication channel error rate estimation
EP1889436A4 (en) 2005-05-26 2012-01-25 Nokia Corp METHOD AND DEVICE FOR INDICATING CHANNEL STATUS INFORMATION FOR MULTIPLE CARRIER
JP4599228B2 (ja) 2005-05-30 2010-12-15 株式会社日立製作所 無線送受信機
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8842693B2 (en) 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8126066B2 (en) 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US7403470B2 (en) 2005-06-13 2008-07-22 Qualcomm Incorporated Communications system, methods and apparatus
EP1734773A1 (en) 2005-06-14 2006-12-20 Alcatel A method for uplink interference coordination in single frequency networks, a base station a mobile terminal and a mobile network therefor
JP4869724B2 (ja) 2005-06-14 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ 送信装置、送信方法、受信装置及び受信方法
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8254924B2 (en) 2005-06-16 2012-08-28 Qualcomm Incorporated Method and apparatus for adaptive registration and paging area determination
US8098667B2 (en) 2005-06-16 2012-01-17 Qualcomm Incorporated Methods and apparatus for efficient providing of scheduling information
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US20070071147A1 (en) * 2005-06-16 2007-03-29 Hemanth Sampath Pseudo eigen-beamforming with dynamic beam selection
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8503371B2 (en) * 2005-06-16 2013-08-06 Qualcomm Incorporated Link assignment messages in lieu of assignment acknowledgement messages
DE102005028179A1 (de) 2005-06-17 2006-12-28 Siemens Ag Verfahren zum Verbindungsaufbau durch mobile Endgeräte in Kommunikationsnetzen mit variablen Bandbreiten
US7668564B2 (en) 2005-06-20 2010-02-23 Texas Instruments Incorporated Slow uplink power control
KR100606099B1 (ko) 2005-06-22 2006-07-31 삼성전자주식회사 주파수 분할 다중 접속 방식시스템에서의 긍정 및 부정응답 채널을 설정하는 방법 및 장치
CA2612746A1 (en) * 2005-07-04 2007-01-11 Samsung Electronics Co., Ltd. Position measuring system and method using wireless broadband (wibro) signal
US20070025345A1 (en) 2005-07-27 2007-02-01 Bachl Rainer W Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems
US7403745B2 (en) 2005-08-02 2008-07-22 Lucent Technologies Inc. Channel quality predictor and method of estimating a channel condition in a wireless communications network
US20070183386A1 (en) 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7508842B2 (en) 2005-08-18 2009-03-24 Motorola, Inc. Method and apparatus for pilot signal transmission
EP2639971B1 (en) 2005-08-18 2014-07-09 Beceem Communications Inc. Antenna virtualization in communication systems
US20090129501A1 (en) 2005-08-19 2009-05-21 Mehta Neelesh B Optimal signaling and selection verification for transmit antenna selection with erroneous feedback
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8331463B2 (en) 2005-08-22 2012-12-11 Qualcomm Incorporated Channel estimation in communications
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
RU2407179C2 (ru) 2005-08-24 2010-12-20 Квэлкомм Инкорпорейтед Переменные интервалы времени передачи для системы радиосвязи
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US20070047495A1 (en) 2005-08-29 2007-03-01 Qualcomm Incorporated Reverse link soft handoff in a wireless multiple-access communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
DE102005041273B4 (de) 2005-08-31 2014-05-08 Intel Mobile Communications GmbH Verfahren zum rechnergestützten Bilden von Systeminformations-Medium-Zugriffs-Steuerungs-Protokollnachrichten, Medium-Zugriffs-Steuerungs-Einheit und Computerprogrammelement
RU2417520C2 (ru) 2005-09-21 2011-04-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ представления канала блокирования управления скоростью передачи комбинированных данных в системе беспроводной связи
US20090022098A1 (en) 2005-10-21 2009-01-22 Robert Novak Multiplexing schemes for ofdma
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US20070165738A1 (en) 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US8134977B2 (en) 2005-10-27 2012-03-13 Qualcomm Incorporated Tune-away protocols for wireless systems
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US7835460B2 (en) 2005-10-27 2010-11-16 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8649362B2 (en) 2005-11-02 2014-02-11 Texas Instruments Incorporated Methods for determining the location of control channels in the uplink of communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
WO2007065272A1 (en) 2005-12-08 2007-06-14 Nortel Networks Limited Resource assignment systems and methods
US9148795B2 (en) 2005-12-22 2015-09-29 Qualcomm Incorporated Methods and apparatus for flexible reporting of control information
US9451491B2 (en) 2005-12-22 2016-09-20 Qualcomm Incorporated Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system
US8437251B2 (en) 2005-12-22 2013-05-07 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
KR100793315B1 (ko) 2005-12-31 2008-01-11 포스데이타 주식회사 다운링크 프리앰블을 이용한 반송파 신호 대 잡음비 측정장치 및 방법
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US7486408B2 (en) 2006-03-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with reduced scribe lane usage for substrate measurement
US20070242653A1 (en) 2006-04-13 2007-10-18 Futurewei Technologies, Inc. Method and apparatus for sharing radio resources in an ofdma-based communication system
EP1855424B1 (en) 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
US8259695B2 (en) 2007-04-30 2012-09-04 Alcatel Lucent Method and apparatus for packet wireless telecommunications
US8254487B2 (en) 2007-08-09 2012-08-28 Samsung Electronics Co., Ltd. Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems
US20090180459A1 (en) 2008-01-16 2009-07-16 Orlik Philip V OFDMA Frame Structures for Uplinks in MIMO Networks
JP5579182B2 (ja) 2008-08-12 2014-08-27 ノーテル・ネットワークス・リミテッド 無線通信ネットワークにおける下りリンクの透過中継のイネーブル
US8228862B2 (en) 2008-12-03 2012-07-24 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design
US8238483B2 (en) 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
US20100232384A1 (en) 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
US8891590B1 (en) * 2011-09-28 2014-11-18 Marvell International Ltd. Method and apparatus for processing wireless signals
KR200471652Y1 (ko) 2013-08-07 2014-03-12 남경탁 의자 일체형 가구

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566814C2 (ru) * 2011-05-06 2015-10-27 Квэлкомм Инкорпорейтед Система и способ для конфигурирования удаленных радиостанций

Also Published As

Publication number Publication date
RU2007138379A (ru) 2009-04-27
EP1859591A1 (en) 2007-11-28
US9520972B2 (en) 2016-12-13
TWI401908B (zh) 2013-07-11
US20060209973A1 (en) 2006-09-21
KR20070110932A (ko) 2007-11-20
KR100917936B1 (ko) 2009-09-21
JP2008533927A (ja) 2008-08-21
CN101176324B (zh) 2012-01-25
EP1859591B1 (en) 2010-11-24
KR20090077857A (ko) 2009-07-15
RU2009123319A (ru) 2010-12-27
JP5265740B2 (ja) 2013-08-14
KR100963288B1 (ko) 2010-06-11
EP2348666B1 (en) 2021-04-28
CA2601361A1 (en) 2006-09-28
WO2006102077A1 (en) 2006-09-28
BRPI0607788A2 (pt) 2009-06-13
CN101176324A (zh) 2008-05-07
TW200703990A (en) 2007-01-16
PL1859591T3 (pl) 2011-04-29
ES2353813T3 (es) 2011-03-07
EP2348666A2 (en) 2011-07-27
ATE489798T1 (de) 2010-12-15
EP2348666A3 (en) 2017-07-12
AR054432A1 (es) 2007-06-27
MY144651A (en) 2011-10-31
JP2012016033A (ja) 2012-01-19
DE602006018427D1 (de) 2011-01-05
SG160408A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
RU2370902C2 (ru) Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов
RU2407200C2 (ru) Назначение шаблона контрольного сигнала, адаптированное к характеристикам канала для системы связи множественного доступа с ортогональным частотным разделением
KR100925094B1 (ko) 직교 주파수 분할 무선 통신 시스템을 위한 파일롯 신호전송
TWI411270B (zh) 正交頻分無線通訊系統的引導頻信號傳輸
JP4690456B2 (ja) 直交周波数分割無線通信システムにおけるソフターおよびソフトハンドオフ