CN105847208B - 基于ofdm技术的连续导频数目的选定方法及设计方法 - Google Patents

基于ofdm技术的连续导频数目的选定方法及设计方法 Download PDF

Info

Publication number
CN105847208B
CN105847208B CN201510016997.4A CN201510016997A CN105847208B CN 105847208 B CN105847208 B CN 105847208B CN 201510016997 A CN201510016997 A CN 201510016997A CN 105847208 B CN105847208 B CN 105847208B
Authority
CN
China
Prior art keywords
pilot
continuous pilot
continuous
pilots
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510016997.4A
Other languages
English (en)
Other versions
CN105847208A (zh
Inventor
张文军
郭序峰
何大治
史毅俊
徐洪亮
徐胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center of Digital Television Co Ltd
Original Assignee
Shanghai National Engineering Research Center of Digital Television Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center of Digital Television Co Ltd filed Critical Shanghai National Engineering Research Center of Digital Television Co Ltd
Priority to CN201510016997.4A priority Critical patent/CN105847208B/zh
Publication of CN105847208A publication Critical patent/CN105847208A/zh
Application granted granted Critical
Publication of CN105847208B publication Critical patent/CN105847208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于OFDM传输技术的连续导频的数目选定方法及连续导频设计方法,所适用的OFDM符号的有效子载波用于配置连续导频、离散导频、边缘导频及保留导频,设计出了OFDM符号的连续导频的位置分布,并对该连续导频数目的确定一种较优化的预定连续导频数目的选定方法,通过该连续导频数目的选定方法选择出最优的导频数目,本发明的方法实现过程中并不能完全由理论推理得到,需要结合仿真,来通过连续导频选择准则选出最优导频数目,进一步地对该最优导频数目通过全系统仿真验证设计方案的合理性和优选性,采用本发明技术方案,能够将载波频偏性能和系统开销二者之间确切折中到最优关系,有效地提高系统性能。

Description

基于OFDM技术的连续导频数目的选定方法及设计方法
技术领域
本发明涉及无线信号传输技术,更具体地说,涉及一种具有OFDM符号的帧结构中连续导频数目的选定方法及连续导频设计方法。
背景技术
OFDM技术由于良好的抗多径衰落性能、及其较小的实现复杂度,已经被广泛用于各种无线通信标准中,例如:DVB-T、DVB-T2。基于OFDM技术的帧结构中,通常包含离散导频和连续导频。离散导频在一个OFDM符号中等间隔分布、在相邻OFDM符号中交错分布,离散导频被接收端用于进行信道估计。连续导频在所有的OFDM符号中的位置都相同,连续导频被接收端用于进行载波频偏/采样钟估计、噪声/干扰功率估计,以及公共相位误差估计等。对连续导频的设计方法中,需设计的参数包括:导频数目、导频位置、导频调制序列和幅度提升因子。导频数目、导频位置与幅度提升因子会影响同步跟踪性能、噪声/干扰功率的估计性能,而导频调制序列与峰均比相关。
当前的数字地面电视广播物理层标准中,连续导频设计大都是根据经验确定连续导频数目,然后做一些性能仿真验证所选用的连续导频数目以及其他参数,并主观判断其合理性。这种经验方法在没有较好的优化准则时是切实可行的,但是不一定是最优的。连续导频数目越多,载波频偏的性能就会越好,但是系统的开销就会越大,这两者是一种折中关系,然而,以往根据经验来确定连续导频的设计方案是无法将载波频偏性能和系统开销二者之间确切折中到最优关系的。
发明内容
本发明解决的问题是现有连续导频设计中依据经验的方法无法将载波频偏性能和系统开销二者之间确切折中到最优关系,从而无法有效地提高系统性能。
为解决上述问题,本发明实施例提供了一种基于OFDM传输技术的连续导频设计方法,所适用的OFDM符号的有效子载波用于配置连续导频、离散导频、边缘导频及保留导频,其特征在于,包括以下步骤:在预定快速傅里叶变换FFT模式下,当所需配置的连续导频与离散导频的位置不重合时,则从有效子载波中去除离散导频子载波、边缘导频子载波以及保留导频子载波,当所需配置的连续导频与离散导频的位置部分重合时,则从有效子载波中去除未重合离散导频子载波、边缘导频子载波以及保留导频子载波,去除后得到用于配置预定数目NUMi的连续导频的剩余子载波;基于预定数目NUMi将剩余子载波相应地平均分为NUMi份分子载波,并在每一份分子载波中随机选择一个子载波位置;以及生成预定快速傅里叶变换FFT模式下与OFDM符号的分布相应的连续导频索引值表格,依据该连续导频索引值表格来配置连续导频,其中,预定数目NUMi是由预定连续导频数目的选定方法来确定的。
可选的,其中,预定连续导频数目的选定方法,包括以下步骤:(1)设定候选步骤:根据系统的目标导频开销的大小,在同一预定快速傅里叶变换FFT模式下设定出的一组连续导频数目作为候选;(2)频偏估计步骤:在候选出的不同连续导频数目下,对系统仿真频偏估计性能,相应地收敛到的不同载波频偏值,得到归一化的残留频偏;(3)损失计算步骤:根据不同的归一化的残留频偏,计算出候选出的不同连续导频数目下的系统性能损失;(4)距离计算步骤:针对所有不同连续导频数目,分别计算出相应的工作门限值和系统性能损失之间的差值,以及通过根据预定计算规则所得到相应的频谱效率值,相应作为横坐标值和纵坐标值确定出各个坐标点,针对各个坐标点分别计算出与具有相应同等谱效率的信道容量之间的距离值;以及(5)选择导频数目步骤:获得各个距离值中的最小值,以将该最小值和预定仿真误差的相加值确定出筛选范围,通过该筛选范围进一步减小候选导频数目的个数,以从候选的连续导频数目中选择出适宜导频数目。
可选的,在(1)设定候选步骤中,通过根据系统的有效子载波数总数,以及期望的连续导频所配置占有该有效子载波数总数的最大比例开销值,得出连续导频的最大数目值,设定出范围在该最大数目值内且根据仿真能力而互相间隔预定值的一组候选导频数目。
可选的,在(2)频偏估计步骤中,针对不同连续导频数目,设定预置频偏倍数的子载波间隔,按照预定频偏估计算法计算相邻两个OFDM符号连续导频位置上的相位差,并拟合成直线,然后找出该直线的截距,该截距对应载波频偏值,从而仿真收敛到不同载波频偏值而得到归一化残留频偏(ΔfTu)。
可选的,在(3)损失计算步骤中,根据所接收估计的残留频偏值,通过损失计算公式得到接收机的最小系统性能损失,接收机包括内接收机和外接收机,内接收机包括同步、均衡模块,外接收机包括解映射和译码模块,其中,(ΔfTu)为归一化的残留频偏值,(1/σ2)为外接收机的输入信噪比。
可选的,在(4)距离计算步骤中,预定计算规则为在快速傅里叶变换模式下星座映射阶数n、编码的码率r、及该配置参数下连续导频对有效子载波和剩余子载波中任意一个的理论占比值η三者的乘积,即频谱效率值ζi为ζi=n*r*η,工作门限表示为SNRth、系统性能损失表示为Δγi,则坐标点表示为(SNRth-Δγii),i=1,...,NUMmax,其中NUMmax表示候选的一组连续导频数目集合大小。
可选的,在(5)选择导频数目步骤中,从候选的连续导频数目中选择出适宜导频数目,该适宜导频数目为筛选范围内最大导频数目,用于保证噪声/干扰功率估计性能。
可选的,其中,预定连续导频数目的选定方法,还包括以下步骤:(6)仿真验证步骤:对所选择出的适宜导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,基于结果决定所选择的导频数目是否合理或是否需要进一步优化。
可选的,其中,载波频偏估计是通过相邻两个OFDM符号的连续导频的相位差估计值,从而用该相位差估计值同时补偿此两个OFDM符号。
可选的,其中,噪声方差估计是通过一个OFDM符号内连续导频进行平均得到。
可选的,针对预定传输系统中数据OFDM符号和信令OFDM符号不同的离散导频和保留导频的分布,分别设计4KFFT模式、8KFFT模式、16KFFT模式以及32KFFT的连续导频,其中,4KFFT模式下有3098个有效子载波,设计出45个连续导频;8KFFT下有6314个有效子载波,设计50个连续导频;16KFFT下有12626个有效子载波,设计80个连续导频;以及32KFFT下有25250个有效子载波,设计120个连续导频,则针对数据OFDM符号得到各个FFT模式下连续导频索引值表格:
则针对信令OFDM符号得到各个FFT模式下连续导频索引值表格:
本发明实施例还提供了一种基于OFDM传输技术的连续导频数目的选定方法,用以确定OFDM符号的有效子载波中相应剩余子载波所配置连续导频的预定数目NUMi,其特征在于,包括以下步骤:(1)设定候选步骤:根据系统的目标导频开销的大小,在同一预定快速傅里叶变换模式下设定出的一组连续导频数目作为候选;(2)频偏估计步骤:在候选出的不同连续导频数目下,对系统仿真频偏估计性能,相应地收敛到的不同载波频偏值,得到归一化的残留频偏;(3)损失计算步骤:根据不同的归一化的残留频偏,计算出候选出的不同连续导频数目下的系统性能损失;(4)距离计算步骤:针对所有不同连续导频数目,分别计算出相应的工作门限值和系统性能损失之间的差值,以及通过根据预定计算规则所得到相应的频谱效率值,相应作为横坐标值和纵坐标值确定出各个坐标点,针对各个坐标点分别计算出与具有相应同等谱效率的信道容量之间的距离值;以及(5)选择导频数目步骤:获得各个距离值中的最小值,以将该最小值和预定仿真误差的相加值确定出筛选范围,通过该筛选范围进一步减小候选导频数目的个数,以从候选的连续导频数目中选择出适宜导频数目。
可选的,上述连续导频数目的选定方法还包括以下步骤(6)仿真验证步骤:对所选择出的适宜导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,基于结果决定所选择的导频数目是否合理或是否需要进一步优化。
与现有技术相比,本发明技术方案具有以下有益效果:
根据本发明所涉及的基于OFDM传输技术的连续导频数目的选定方法及连续导频设计方法,因为设计出了OFDM符号的连续导频的位置分布,并对该连续导频数目的确定一种较优化的预定连续导频数目的选定方法,通过该连续导频数目的选定方法选择出最优的导频数目,本发明的方法实现过程中并不能完全由理论推理得到,需要结合仿真,来通过连续导频选择准则选出最优导频数目,进一步地,还可以对该最优导频数目通过全系统仿真验证设计方案的合理性和优选性。
附图说明
图1是本发明的具体实施方式中基于OFDM传输技术的连续导频设计方法的流程示意图;
图2是本发明的具体实施方式中基于OFDM传输技术的连续导频数目的选定方法的流程示意图;
图3是本发明的具体实施方式中所适用且包含OFDM符号的第一帧结构的结构示意图;
图4是本发明的具体实施方式中所适用且包含OFDM符号的第二帧结构的结构示意图;
图5是本发明的具体实施方式中所适用OFDM符号的结构示意图;
图6是本发明的具体实施方式中32KFFT模式下候选的一组不同连续导频数目的工作门限与频谱效率的曲线图;
图7是本发明的具体实施方式中16KFFT模式下候选的一组不同连续导频数目的工作门限与频谱效率的曲线图;
图8是本发明的具体实施方式中8KFFT模式下候选的一组不同连续导频数目的工作门限与频谱效率的曲线图;
图9是本发明的具体实施方式中4KFFT模式下候选的一组不同连续导频数目的工作门限与频谱效率的曲线图;
图10是本发明的具体实施方式中32KFFT模式下连续导频数目为120/180时比特误码率的仿真结果图;
图11是本发明的具体实施方式中16KFFT模式下连续导频数目为80时比特误码率的仿真结果图;
图12是本发明的具体实施方式中8KFFT模式下连续导频数目为50时比特误码率的仿真结果图;
图13是本发明的具体实施方式中4KFFT模式下连续导频数目为45时比特误码率的仿真结果图;以及
图14是本发明的具体实施方式中实施例二的连续导频数目的选定方法的流程示意图。
具体实施方式
发明人发现现有技术中,现有连续导频设计中依据经验的方法无法将载波频偏性能和系统开销二者之间折中到最优关系,从而无法有效地提高系统性能。
针对上述问题,发明人经过研究,提供了一种基于OFDM传输技术的连续导频数目的选定方法及连续导频设计方法,因为设计出了OFDM符号的连续导频的位置分布,并对该连续导频数目的确定一种较优化的预定连续导频数目的选定方法,通过该连续导频数目的选定方法选择出最优的导频数目,本发明的方法实现过程中并不能完全由理论推理得到,需要结合仿真,来通过连续导频选择准则选出最优导频数目,进一步地,还可以对该最优导频数目通过全系统仿真验证设计方案的合理性和优选性。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
<实施例一>
本发明实施例提供了一种基于OFDM(正交频分复用,Orthogonal FrequencyDivision Multiplexing)传输技术的连续导频设计方法。如图1所示是本发明的具体实施方式中基于OFDM传输技术的连续导频设计方法的流程示意图。
参考图1,基于OFDM传输技术的连续导频设计方法,包括如下步骤:
步骤S11:在预定快速傅里叶变换FFT模式下,当所需配置的连续导频与离散导频的位置不重合时,则从有效子载波中去除离散导频子载波、边缘导频子载波以及保留导频子载波,当所需配置的连续导频与离散导频的位置部分重合时,则从有效子载波中去除未重合离散导频子载波、边缘导频子载波以及保留导频子载波,去除后得到用于配置预定数目NUMi的连续导频的剩余子载波;
步骤S12:基于预定数目NUMi将剩余子载波相应地平均分为NUMi份分子载波,并在每一份分子载波中随机选择一个子载波位置;以及
步骤S13:生成所述预定快速傅里叶变换FFT模式下与所述OFDM符号的分布相应的连续导频索引值表格。
具体地,步骤S12中的预定数目NUMi是由以下如图2所示的预定连续导频数目的选定方法来确定的。
图2是本发明的具体实施方式中基于OFDM传输技术的连续导频数目的选定方法的流程示意图。
如图2所示,图1中步骤S12所述的预定连续导频数目的选定方法,包括以下步骤:
步骤S12-1,为设定候选步骤:根据系统的目标导频开销的大小,在同一预定快速傅里叶变换FFT模式下设定出的一组连续导频数目作为候选;
步骤S12-2,为频偏估计步骤:在候选出的不同连续导频数目下,对系统仿真频偏估计性能,相应地收敛到的不同载波频偏值,得到归一化的残留频偏;
步骤S12-3,为损失计算步骤:根据不同的归一化的残留频偏,计算出候选出的不同连续导频数目下的系统性能损失;
步骤S12-4,为距离计算步骤:针对所有不同连续导频数目,分别计算出相应的工作门限值和系统性能损失之间的差值,以及通过根据预定计算规则所得到相应的频谱效率值,相应作为横坐标值和纵坐标值确定出各个坐标点,针对各个坐标点分别计算出与具有相应同等谱效率的信道容量之间的距离值;以及
步骤S12-5,为选择导频数目步骤:获得各个所述距离值中的最小值,以将该最小值和预定仿真误差的相加值确定出筛选范围,通过该筛选范围进一步减小候选导频数目的个数,以从候选的连续导频数目中选择出适宜导频数目。
进一步地,从候选中选择出适宜导频数目后,为了进一步确认其合理性和优选性,本实施例中还可以包括步骤S12-6,即仿真验证步骤:所选择出的适宜导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,基于结果决定所选择的导频数目是否合理或是否需要进一步优化。
图3和图4分别是本发明的具体实施方式中所适用且包含OFDM符号的第一种帧结构100、第二种帧结构200的结构示意图。
通过图3和图4给出了本发明中预定连续导频数目的选定方法所适用的两种OFDM符号的帧结构。
图3中为类似于DVB-T2的帧结构100,通常DVB-T2的帧结构包含:同步头/前导符号20、保护间隔30以及OFDM符号10。位于多个保护间隔30和OFDM符号10的前部,同步头/前导符号20与这多个保护间隔30和OFDM符号10相级联。
对于类似DVB-T2帧结构信号,接收机一般需要利用同步头或前导符号20完成信号捕获和初始同步,初始同步可以完成载波整数倍频偏和载波粗小数倍频偏估计和补偿。然后,接收机利用保护间隔30或连续导频完成载波细小数倍频偏估计及跟踪补偿,使得每个接收到的OFDM符号10的残留频偏在很小的范围内波动,从而保证OFDM符号10的正交性。
图4中为类似于DTMB的帧结构200,通常DTMB的帧结构200包含:多个OFDM符号10以及分别位于每个OFDM符号10前与该OFDM符号10相级联的训练序列40。
对于类似DTMB帧结构信号,接收机可以利用训练序列40做频偏估计,但由于训练序列40通常遭受多径干扰,在恶劣环境下,训练序列40干扰严重,此时利用训练序列40得到的同步性能不够理想,在OFDM符号10中插入少许连续导频,可用来辅助频偏估计和跟踪。
图5是本发明的具体实施方式中所适用OFDM符号10的结构示意图。
无论是图3中类似于DVB-T2的帧结构100,还是图4中类似于DTMB的帧结构200,此时OFDM符号10需配置有连续导频。图5给出了本发明对于所适用帧结构中OFDM符号10的结构方案。
图5给出了一种OFDM符号10中连续导频的分布方案,OFDM符号可以带有两端的虚拟子载波部分,也可以没有虚拟子载波。那么,OFDM符号10的有效子载波用于配置连续导频11、离散导频12、边缘导频13及保留导频14。其中,保留导频14用于降峰均比等。
如图5所示,在某一预定快速傅里叶变换(FFT)模式下,若所需连续导频11与离散导频12的位置不重合,则有效子载波数目去除离散导频子载波、边缘导频子载波、保留导频子载波,去除后得到用于配置连续导频的剩余子载波。假定需要配置保留NUMi个连续导频,则将剩下子载波平均分成NUMi份分子载波,每份分子载波里面随机选择一个子载波位置。若所需连续导频11与离散导频12的位置部分重合,则有效子载波数目去除未重合离散导频子载波、边缘导频子载波、保留导频子载波,去除后得到剩余子载波,然后将剩余子载波分块来配置分布NUMi个连续导频。
通过上去除分块再在每个分子载波随机选择一个位置来配置连续导频,那么,NUMi个连续导频分布较均匀,且能覆盖整个频谱或整个OFDM的子载波;由于不知道信道会出现何种衰落(无规律性的或单频衰落),从统计上来说,随机分布的连续导频性能是最优的。此外,在频谱两边(OFDM符号的左半边和右半边)的连续导频数目基本相同,可优化载波频偏估计和采样钟偏估计的性能。
特别地,与以往方法中根据经验确定连续导频数目然后做性能仿真验证所选用的连续导频数目以及其他参数并主观判断其合理性所不同的是,本实施例中上述连续导频的数目NUMi是通过图2中预定连续导频数目的选定方法来选定的。
具体地,针对预定连续导频数目的选定方法进行以下介绍说明。
在上述S12-1设定候选步骤中,本发明假定某传输系统配置最具挑战性的参数(最高星座映射和最高前向纠错码率),在某一FFT模式下,设定候选的一组连续导频数目,例如40,50,60,...。候选的连续导频数目是由目标导频开销决定,例如,32K FFT模式下,假定有效子载波数为25250,期望连续导频的开销要小于1%,即决定候选连续导频数目要小于252,因此根据仿真能力,设定候选导频数目的大小。那么也就是,通过根据系统的有效子载波数总数,以及期望的连续导频所配置占有该有效子载波数总数的最大比例开销值,得出连续导频的最大数目值,设定出范围在该最大数目值内且根据仿真能力而互相间隔预定值的一组候选导频数目。
在上述S12-2频偏估计步骤中,需要在不同导频数目下仿真系统的频偏估计性能,本实施例中,假定预置的频偏为0.4倍的子载波间隔,预定频偏估计算法参见文献[1],计算相邻两个OFDM符号连续导频位置上的相位差,并拟合成直线,然后找出该直线的截距,该截距对应载波频偏值。因此,在不同的导频数目下,通过蒙特卡罗仿真,频偏估计会收敛到不同的值,可以得到归一化的残留频偏(ΔfTu)。其中,参考文献[1]为《使用OFDM技术的无线宽带系统的最优接收机设计方案-第一部分》(M.Speth,S.A.Fechtel,G.Fock and H.Meyr,“Optimum Receiver Design for Wireless Broad-band Systems Using OFDM–Part I,”IEEE Trans.Communi.,vol.47,no.11,Nov.1999.)
在上述S12-3损失计算步骤中,同样地,根据参考文献[1]中公式(43)转换得出以下损失计算公式(公式1.1),若接收机残留某一频偏,因此,接收系统的最小性能损失为:
(公式1.1)
因此,我们可以在同样的外接收机的输入信噪比下,不同的归一化的残留频偏,计算出不同连续导频数目下的系统性能损失。其中,接收机包括外接收机和内接收机,内接收机包括同步、均衡模块等,外接收机包括解映射和译码模块等,外接收机的输入即为均衡器的输出。上述公式1.1中,(ΔfTu)为归一化的残留频偏值,(1/σ2)为外接收机的输入信噪比。
在上述S12-4距离计算步骤中,针对不同的候选导频数目,可以计算得到相应的谱效率。如32K FFT,星座映射阶数为n,编码的码率为r,此配置参数下理论工作门限为SNRth,连续导频数目对有效子载波数量和剩余子载波数量中任意一个的理论占比为值η,则频谱效率的预定计算规则为该三者乘积即ζ1=n*r*η,假定此时的导频数目为NUM1,假设由步骤S12-3得到系统性能损失Δγ1≥0.2,因此在NUM1下,可以得到一个坐标点(SNRth-Δγ11),如图6、7、8及9所示,横坐标表示此连续导频数目下的工作点,纵坐标表示对应的谱效率,以此类推,计算出所有候选导频数目下的工作点和谱效率,如(SNRth-Δγii),i=1,...,NUMmax,其中NUMmax表示候选连续导频数目集合的大小。
图6、图7、图8以及图9分别是本发明的具体实施方式中相应的32KFFT、16KFFT、8KFFT以及4KFFT模式下候选的一组不同连续导频数目的工作门限与频谱效率的曲线图。
在本实施例中,信道容量采用香农限,在本发明中,信道容量还可以是离散无记忆信道、编码调制信道容量(Coded Modulation Capacity)以及比特交织编码调制信道容量(Bit-Interleaved Coded Modulation Capacity)中任意一种信道容量。为了找出最优数目,计算图6、7、8及9中这些坐标点与具有相应同等谱效率下的香农限之间的距离值。
一般连续导频数目不是越大越好、也不是越小越好,这两个方向都会造成损失更多的频谱效率。在上述S12-5选择导频数目步骤中,由于在不同导频数目下,频偏估计步骤会引入仿真误差,本发明假定仿真误差为dsim_error,本发明的选定方法为,每个FFT模式下,连续导频数目所引入的性能损失应小于Dmin+dsim_errordB,其中D表示工作点与香农限的距离值,Dmin即为最小距离。通过此筛选范围,可以进一步减小候选导频数目的个数。本实施例中,为保证噪声/干扰功率估计性能,选择所有候选中的最大导频数目来作为适宜导频数目,当然本发明中,亦可以选择次大导频数目,对此不作限制。
图10、图11、图12及图13分别是本发明的具体实施方式中32KFFT模式下连续导频数目为120/180时比特误码率的仿真结果图、16KFFT模式下连续导频数目为80时比特误码率的仿真结果图、8KFFT模式下连续导频数目为50时比特误码率的仿真结果图以及4KFFT模式下连续导频数目为45时比特误码率的仿真结果图。
在上述S12-6仿真验证步骤中,如图10至图13所示,所选择出的最大导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,若系统性能损失较大,需要适度的放大连续导频的数目。其中,载波频偏估计是通过相邻两个OFDM符号的连续导频的相位差估计值,从而用该相位差估计值同时补偿此两个OFDM符号。噪声方差估计是通过一个OFDM符号内连续导频进行平均得到的。
下面结合系统设计数据和具体传输参数对本发明的具体实施方式中的基于OFDM传输技术的连续导频设计方法以及连续导频数目的选定方法进行详细介绍说明。
假定某一信号传输系统,调制编码参数被配置为最具挑战性的1024QAM星座映射阶数n和5/6码率r的LDPC,该信号传输系统在高斯信道下的理论工作门限SNRth为26.64dB,仿真10000个OFDM符号,测试4种快速傅里叶变换(FFT)模式下的连续导频数目,该4种分别为32K FFT、16K FFT、8K FFT以及4K FFT。
由上述步骤S12-1,可以在各个FFT模式下设定出一组导频数目作为候选,分别为:
32K FFT模式下候选连续导频数目分别为180、160、140、120、100、80、60、40;16KFFT模式下候选连续导频数目分别为90、80、70、60、50、40;8K FFT模式下候选连续导频数目分别为50、45、40、35、30;4K FFT模式下候选连续导频数目分别为50、45、40、35、30。
由步骤S12-2可知,可以得到上述这些不同连续导频数目的系统性能损失和频谱效率。图6-图9分别给出32K、16K、8K和4K FFT模式下不同连续导频数目的工作门限与频谱效率的曲线,其中横坐标表示工作点,纵坐标表示频谱效率,从而确定出各个坐标点。根据图6-图9,本实施例中,针对每个FFT模式可计算得出下述表1至表4,即各种FFT模式下不同导频数目各个坐标点与具有相应同等频谱效率的香农限之间的距离值。
如图6所示,32K FFT模式下不同连续导频数目与系统工作门限、频谱效率:其中每个棱形表示一个连续导频数目(从左到右依次为180、160、140、120、100、80、60、40)。通过下列表1分别列出。
表1:32K FFT模式下不同导频数目的距离值
连续导频数目 离香农限的距离的DdB
180 1.7747
160 1.7560
140 1.7433
120 1.7311
100 1.7164
80 1.7225
60 1.7105
40 1.7383
如图7所示,16K FFT模式下不同连续导频数目与系统工作门限、频谱效率:其中每个棱形表示一个连续导频数目(从左到右依次为90、80、70、60、50、40)。通过下列表2分别列出。
表2:16K FFT模式下不同导频数目的距离值
连续导频数目 离香农限的距离的DdB
90 1.8027
80 1.7868
70 1.7778
60 1.7824
50 1.7784
40 1.7713
如图8所示,8K FFT模式下不同连续导频数目与系统工作门限、频谱效率:其中每个棱形表示一个连续导频数目(从左到右依次为50、45、40、35、30)。通过下列表3分别列出。
表3:8K FFT模式下不同导频数目的距离值
连续导频数目 离香农限的距离DdB
50 1.8626
45 1.8617
40 1.8555
35 1.8554
30 1.8704
如图9所示,4K FFT模式下不同连续导频数目与系统工作门限、频谱效率:其中每个绿色棱形表示一个连续导频数目(从左到右依次为50、45、40、35、30)。通过下列表4分别列出。
表4:4K FFT模式下不同导频数目的距离值
连续导频数目 离香农限的距离DdB
50 2.3079
45 2.2785
40 2.2994
35 2.2685
30 2.3529
在不同导频数目下,频偏估计步骤会引入仿真误差,本实施例中假定仿真误差为dsim_error,本发明的选择方法为,每个FFT模式下,连续导频数目所引入的性能损失应小于Dmin+dsim_errordB,其中D表示工作点与香农限的距离值,Dmin即为最小距离。例如,32K FFT模式下,Dmin=1.7105dB,取dsim_error=0.03dB,这就要求性能损失小于1.74dB,即确定出筛选范围是小于1.74dB,从而进一步减小候选导频数目的个数,通过查阅表1可知,这样就剩下导频数目40、60、80、100、120,在此,本实施例中,为保证噪声/干扰功率估计性能,选择其中最大导频数目为120,当然本发明也可以选择次大或者较大导频数目。
依据此相应同样的原理、方法,由表1-表4可得出各个FFT模式下的适宜导频数目,在此不再重复赘述。32K FFT模式下适宜导频数目为120、16K FFT模式下适宜导频数目为80、8K FFT模式下适宜导频数目为50、4K FFT模式下适宜导频数目为45,此项在表1至表4中分别进行明显突出标记。
本实施例中,如上述步骤S12-6,可对适宜导频数目进行全面评估连续导频对系统的载波频偏估计和噪声方差估计的影响,并根据系统性能需求,决定所选择的导频数目是否合理或需要进一步优化,若系统性能损失较大,需要适度的放大连续导频的数目。本发明中,也可不进行仿真评估而直接使用该适宜导频数目。
32K FFT模式选用120个连续导频子载波,16K FFT模式选用80个连续导频子载波,8KFFT模式选用50个连续导频子载波,4KFFT模式选用45个连续导频子载波,具体评估仿真过程以及仿真验证结果如下所述:
图10至图13分别是本发明的具体实施方式中32KFFT模式下连续导频数目为120/180时、16KFFT模式下连续导频数目为80时、8KFFT模式下连续导频数目为50时以及4KFFT模式下连续导频数目为45时比特误码率的仿真结果图。
采用蒙特卡罗仿真技术,每次仿真独立产生两个OFDM符号,在4K FFT模式下,我们选取最前的1个LDPC块比特,丢弃剩下数据;在8K FFT模式下,我们选取最前的1个LDPC块比特,丢弃剩下数据;在16K FFT模式下,我们选取最前的2个LDPC块比特,丢弃剩下数据;在32K FFT模式下,我们选取最前的4个LDPC块比特,丢弃剩下数据;因此,除4K模式外,所有评估数据均位于第一个OFDM符号内。
针对载波频偏估计,通过相邻两个OFDM符号的连续导频的相位差估计,然后用该估计值同时补偿此两个OFDM符号,考虑到实际硬件设计中的滑动运算,本仿真取第一个OFDM符号数据用于分析,是合理的。针对噪声方差估计,在假设信道估计完美情况下,是通过一个OFDM符号内的连续导频平均得到。
本仿真预置频偏为0.4倍的子载波间距,测试工作点为1024QAM、5/6 LDPC的门限下3dB工作点,即23.64dB,仿真测试了高斯信道,具体的仿真结果及说明参见图10~图13。
其中,图10给出了32k FFT模式下连续导频数目为120/180时误比特率的仿真结果,其中横坐标为EsN0,纵坐标为误比特率。图中,圆圈曲线表示连续导频数目为120个的仿真结果,菱形点曲线表示连续导频数目为180个的仿真结果。由图10观察可知,在BER=1e-5上,两种导频数目对系统性能影响较小,即180个导频比120个导频优0.02dB,所以,本实施例优选120个导频数目。图11至图13分别给出了16k FFT模式下连续导频数目为80时、8KFFT模式下连续导频数目为50时、4K FFT模式下连续导频数目为45时误比特率的仿真结果,其中横坐标为EsN0,纵坐标为误比特率。
总结来说,已有的通过经验确定导频数目的方式,要不导致多过的系统开销,要不引起过多的系统频偏损失,往往二者之间无法权衡,通过表1至表4可知,本发明既考虑到了理论上的香农限最小距离值Dmin,也考虑到了系统本身实际上的仿真误差dsim_error,由相加值确定出筛选范围后,考虑到应保证噪声/干扰功率估计性能,又在该筛选范围内取最大导频数目,相较于已有技术中只考虑频谱效率和频偏估计对系统损失来说,这点本发明有了较大优势。另外,通过图10和图13观察来看,仿真结果曲线呈现良好的瀑布性,可验证所确定出的适应导频数目的合理性和优选性。
整体来看,根据本实施例中导频数目设计方法,针对NGB-W传输系统,由于数据OFDM符号和信令OFDM符号不同的离散导频和保留导频的分布,则分别设计连续导频,通过上述步骤S12-1至步骤S12-6选定出各个FFT模式下的导频数目NUMi,将剩余子载波均分为相应NUMi份分子载波,分别在每一个所均分得到的分载波随机选择一个位置来配置连续导频。
那么,4KFFT模式下有3098个有效子载波,设计45个连续导频;8KFFT模式下有6314个有效子载波,设计50个连续导频;16KFFT模式下有12626个有效子载波,有80个连续导频;32KFFT模式下有25250个有效子载波,设计120个连续导频。从而,各种FFT模式下的连续导频索引值如下:
表5:数据OFDM符号的各个FFT模式下连续导频索引值表格
表6:信令OFDM符号的各个FFT模式下连续导频索引值表格
表5和表6中,将数据OFDM符号和信令OFDM符号的有效子载波中首个位置定义为1,将整个有效子载波顺次排列定义下去,那么,依据相应连续导频索引值表格5和连续导频索引值表格6中的具体索引数值来依次配置各个连续导频。
<实施例二>
在上述实施例一中,由预定连续导频数目的选定方法确定出了用于将剩余子载波进行分块的导频数目NUMi,对剩余子载波的处理是进行均分以及对每一份均分所得的分子载波中随机选取一个位置来生成连续导频索引值表格从而配置连续导频,在本发明中,还可以是通过预定连续导频数目的选定方法确定出最优的导频数目NUMi,并非进行均分后再对每一份随机选择位置,也可依据预定分块规则和预定位置选取规则(例如考虑信号传输系统需求或所传输的信号帧结构),来按照导频数目NUMi相应分块为预定大小的子载波块,再在每一个子载波块中取出一个位置来配置。因而,本发明还提供了一种基于OFDM传输技术的连续导频数目的选定方法,具体如下所述。
图14是本发明的具体实施方式中实施例二的连续导频数目的选定方法的流程示意图。
如图14所示,预定连续导频数目的选定方法,包括以下步骤:
步骤S21,为设定候选步骤:根据系统的目标导频开销的大小,在同一预定快速傅里叶变换FFT模式下设定出的一组连续导频数目作为候选;
步骤S22,为频偏估计步骤:在候选出的不同连续导频数目下,对系统仿真频偏估计性能,相应地收敛到的不同载波频偏值,得到归一化的残留频偏;
步骤S23,为损失计算步骤:根据不同的归一化的残留频偏,计算出候选出的不同连续导频数目下的系统性能损失;
步骤S24,为距离计算步骤:针对所有不同连续导频数目,分别计算出相应的工作门限值和系统性能损失之间的差值,以及通过根据预定计算规则所得到相应的频谱效率值,相应作为横坐标值和纵坐标值确定出各个坐标点,针对各个坐标点分别计算出与具有相应同等谱效率的信道容量之间的距离值;以及
步骤S25,为选择导频数目步骤:获得各个所述距离值中的最小值,以将该最小值和预定仿真误差的相加值确定出筛选范围,通过该筛选范围进一步减小候选导频数目的个数,以从候选的连续导频数目中选择出适宜导频数目。
进一步地,从候选中选择出适宜导频数目后,为了进一步确认其合理性和优选性,本实施例中还可以包括步骤S26,即仿真验证步骤:所选择出的适宜导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,基于结果决定所选择的导频数目是否合理或是否需要进一步优化。
步骤S21至S26中所包含的具体说明内容,本实施例二中与实施例一中预定连续导频数目的选定方法的相同部分,原理相通省略同样说明不再赘述。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (11)

1.一种基于OFDM传输技术的连续导频设计方法,所适用的OFDM符号的有效子载波用于配置连续导频、离散导频、边缘导频及保留导频,其特征在于,包括以下步骤:
在预定快速傅里叶变换FFT模式下,当所需配置的连续导频与离散导频的位置不重合时,则从有效子载波中去除离散导频子载波、边缘导频子载波以及保留导频子载波,当所需配置的连续导频与离散导频的位置部分重合时,则从有效子载波中去除未重合离散导频子载波、边缘导频子载波以及保留导频子载波,去除后得到用于配置预定数目NUMi的连续导频的剩余子载波;
基于预定数目NUMi将剩余子载波相应地平均分为NUMi份分子载波,并在每一份分子载波中随机选择一个子载波位置;以及
生成所述预定快速傅里叶变换FFT模式下与所述OFDM符号的分布相应的连续导频索引值表格,依据该连续导频索引值表格来配置连续导频,
其中,所述预定数目NUMi是由预定连续导频数目的选定方法来确定的。
2.如权利要求1所述的连续导频设计方法,其特征在于:
其中,所述预定连续导频数目的选定方法,包括以下步骤:
(1)设定候选步骤:根据系统的目标导频开销的大小,在同一预定快速傅里叶变换FFT模式下设定出的一组连续导频数目作为候选;
(2)频偏估计步骤:在候选出的不同连续导频数目下,对系统仿真频偏估计性能,相应地收敛到的不同载波频偏值,得到归一化的残留频偏;
(3)损失计算步骤:根据不同的归一化的残留频偏,计算出候选出的不同连续导频数目下的系统性能损失;
(4)距离计算步骤:针对所有不同连续导频数目,分别计算出相应的工作门限值和系统性能损失之间的差值,以及通过根据预定计算规则所得到相应的频谱效率值,相应作为横坐标值和纵坐标值确定出各个坐标点,针对各个坐标点分别计算出与具有相应同等谱效率的信道容量之间的距离值;以及
(5)选择导频数目步骤:获得各个所述距离值中的最小值,以将该最小值和预定仿真误差的相加值确定出筛选范围,通过该筛选范围进一步减小候选导频数目的个数,以从候选的连续导频数目中选择出适宜导频数目。
3.如权利要求2所述的连续导频设计方法,其特征在于:
在所述(1)设定候选步骤中,通过根据系统的有效子载波数总数,以及期望的连续导频所配置占有该有效子载波数总数的最大比例开销值,得出连续导频的最大数目值,设定出范围在该最大数目值内且根据仿真能力而互相间隔预定值的一组候选导频数目。
4.如权利要求2所述的连续导频设计方法,其特征在于:
在所述(2)频偏估计步骤中,针对不同连续导频数目,设定预置频偏倍数的子载波间隔,按照预定频偏估计算法计算相邻两个OFDM符号连续导频位置上的相位差,并拟合成直线,然后找出该直线的截距,该截距对应载波频偏值,从而仿真收敛到不同载波频偏值而得到归一化残留频偏ΔfTu
5.如权利要求2所述的连续导频设计方法,其特征在于:
在所述(3)损失计算步骤中,根据所接收估计的残留频偏值,通过损失计算公式得到接收机的最小所述系统性能损失,接收机包括内接收机和外接收机,内接收机包括同步、均衡模块,外接收机包括解映射和译码模块,其中,ΔfTu为归一化的残留频偏值,1/σ2为外接收机的输入信噪比。
6.如权利要求2所述的连续导频设计方法,其特征在于:
在所述(4)距离计算步骤中,
所述预定计算规则为在所述快速傅里叶变换模式下星座映射阶数n、编码的码率r、及该配置参数下连续导频对所述有效子载波和所述剩余子载波中任意一个的理论占比值η三者的乘积,即频谱效率值
工作门限表示为SNRth、系统性能损失表示为Δγi,则所述坐标点表示为其中NUMmax表示候选的一组连续导频数目集合大小。
7.如权利要求2所述的连续导频设计方法,其特征在于:
在所述(5)选择导频数目步骤中,从候选的连续导频数目中选择出适宜导频数目,该适宜导频数目为所述筛选范围内最大导频数目,用于保证噪声/干扰功率估计性能。
8.如权利要求2所述的连续导频设计方法,其特征在于:
其中,所述预定连续导频数目的选定方法,还包括以下步骤:
(6)仿真验证步骤:对所选择出的适宜导频数目评估其全系统性能,包括载波频偏估计和噪声/干扰估计对系统译码的影响,基于结果决定所选择的导频数目是否合理或是否需要进一步优化。
9.如权利要求8所述的连续导频设计方法,其特征在于:
其中,所述载波频偏估计是通过相邻两个OFDM符号的连续导频的相位差估计值,从而用该相位差估计值同时补偿此两个OFDM符号。
10.如权利要求8所述的连续导频设计方法,其特征在于:
其中,所述噪声/干扰估计采用噪声方差估计,噪声方差估计是通过一个OFDM符号内连续导频进行平均得到。
11.如权利要求2所述的连续导频设计方法,其特征在于:
针对预定传输系统中数据OFDM符号和信令OFDM符号不同的离散导频和保留导频的分布,分别设计4KFFT模式、8KFFT模式、16KFFT模式以及32KFFT的连续导频,
其中,4KFFT模式下有3098个有效子载波,设计出45个连续导频;
8KFFT下有6314个有效子载波,设计50个连续导频;
16KFFT下有12626个有效子载波,设计80个连续导频;以及
32KFFT下有25250个有效子载波,设计120个连续导频,
则针对数据OFDM符号得到各个FFT模式下所述连续导频索引值表格:
则针对信令OFDM符号得到各个FFT模式下所述连续导频索引值表格:
CN201510016997.4A 2015-01-13 2015-01-13 基于ofdm技术的连续导频数目的选定方法及设计方法 Active CN105847208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510016997.4A CN105847208B (zh) 2015-01-13 2015-01-13 基于ofdm技术的连续导频数目的选定方法及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510016997.4A CN105847208B (zh) 2015-01-13 2015-01-13 基于ofdm技术的连续导频数目的选定方法及设计方法

Publications (2)

Publication Number Publication Date
CN105847208A CN105847208A (zh) 2016-08-10
CN105847208B true CN105847208B (zh) 2019-04-30

Family

ID=56579764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510016997.4A Active CN105847208B (zh) 2015-01-13 2015-01-13 基于ofdm技术的连续导频数目的选定方法及设计方法

Country Status (1)

Country Link
CN (1) CN105847208B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181886A (zh) * 2018-11-13 2020-05-19 普天信息技术有限公司 频偏估计方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905546A (zh) * 2005-07-25 2007-01-31 上海原动力通信科技有限公司 时分双工ofdm系统确定导频符号位置的方法
CN101867948A (zh) * 2009-04-14 2010-10-20 中兴通讯股份有限公司 一种无线通信系统中下行链路中间导频的发送方法
CN102025677A (zh) * 2009-09-22 2011-04-20 北京三星通信技术研究有限公司 多载波无线传输系统中传输导频信号的方法
CN103685088A (zh) * 2012-09-20 2014-03-26 华为技术有限公司 稀疏信道的导频优化方法、装置和信道估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905546A (zh) * 2005-07-25 2007-01-31 上海原动力通信科技有限公司 时分双工ofdm系统确定导频符号位置的方法
CN101867948A (zh) * 2009-04-14 2010-10-20 中兴通讯股份有限公司 一种无线通信系统中下行链路中间导频的发送方法
CN102025677A (zh) * 2009-09-22 2011-04-20 北京三星通信技术研究有限公司 多载波无线传输系统中传输导频信号的方法
CN103685088A (zh) * 2012-09-20 2014-03-26 华为技术有限公司 稀疏信道的导频优化方法、装置和信道估计方法

Also Published As

Publication number Publication date
CN105847208A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105814856B (zh) 控制组合波形的方法、设备和系统、组合多个信号的设备
WO2018187155A1 (en) Wireless communication system that performs measurement based selection of phase tracking reference signal (ptrs) ports
He et al. Comparison and evaluation between FBMC and OFDM systems
US20160080187A1 (en) Symbol transmission method and apparatus for use in filter bank multicarrier system
Morgade et al. SFN-SISO and SFN-MISO Gain Performance Analysis for DVB-T2 Network Planning.
CN103283199A (zh) 无线通信系统中的方法和设备
WO2016016723A2 (en) Orthogonal frequency division multiplexing based communications over nonlinear channels
Filippi et al. OFDM symbol synchronization using frequency domain pilots in time domain
US20100085865A1 (en) Method and an apparatus for estimating a delay spread of a multipath channel
CN105847208B (zh) 基于ofdm技术的连续导频数目的选定方法及设计方法
US20240094336A1 (en) Affine frequency division multiplexing waveforms for doubly dispersive channels
CN103546416B (zh) Ofdm符号同步方法
Ahmed et al. Performance evaluation of DVB-T based OFDM over wireless communication channels
JP2018007056A (ja) 無線通信システム、無線送信装置および無線受信装置
Okano et al. Overlap-windowed-DFTs-OFDM with overlap FFT filter-bank for flexible uplink access in 5G and beyond
Sibel Tracking the phase noise in sub-THz bands
Gorbunov et al. Spatial receive diversity for SEFDM based system
KR20120119577A (ko) 무선 통신 시스템에서 신호대 잡음비 추정 방법 및 장치
CN109039967A (zh) 一种基于ICI自删除技术的f-OFDM系统ISI的解决方法
Idi et al. Window-based UFMC technique for 5G systems
CN108293031B (zh) 用于多载波通信的发射器
Elkwash et al. Effect of cyclic prefix on data rates in WiMAX system with variation in delay vector, gain vector, signal to noise ratio and coding rates for different modulation techniques
Wang et al. Modified symbol timing offset estimation for OFDM over frequency selective channels
Ahn et al. Performance Evaluation of 5G MBS for Terrestrial Broadcasting Scenarios
Hraiech et al. Optimization of the PHYDYAS waveforms using the POPS algorithm: POPS-PHYDYAS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
CB02 Change of applicant information

Address after: Room 1018, block B, No. three East Bridge Road, Pudong New Area, Shanghai, 200125, China

Applicant after: Shanghai NERC-DTV National Engineering Research Center Co., Ltd.

Address before: 200125 Shanghai East Road, Pudong New Area, No. three, No. 1018

Applicant before: Shanghai NERC-DTV National Engineering Research Center Co., Ltd.

COR Change of bibliographic data
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant