RU2337912C2 - Соли с цианоборатными анионами - Google Patents

Соли с цианоборатными анионами Download PDF

Info

Publication number
RU2337912C2
RU2337912C2 RU2005128348/04A RU2005128348A RU2337912C2 RU 2337912 C2 RU2337912 C2 RU 2337912C2 RU 2005128348/04 A RU2005128348/04 A RU 2005128348/04A RU 2005128348 A RU2005128348 A RU 2005128348A RU 2337912 C2 RU2337912 C2 RU 2337912C2
Authority
RU
Russia
Prior art keywords
alkali metal
metal cyanide
salt
group
ppm
Prior art date
Application number
RU2005128348/04A
Other languages
English (en)
Other versions
RU2005128348A (ru
Inventor
Урс ВЕЛЬЦ-БИРМАНН (DE)
Урс ВЕЛЬЦ-БИРМАНН
Николай ИГНАТЬЕВ (DE)
Николай ИГНАТЬЕВ
Эдуард БЕРНХАРДТ (DE)
Эдуард БЕРНХАРДТ
Майк ФИНЦЕ (DE)
Майк ФИНЦЕ
Хельге ВИЛЛЬНЕР (DE)
Хельге ВИЛЛЬНЕР
Original Assignee
Мерк Патент Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мерк Патент Гмбх filed Critical Мерк Патент Гмбх
Publication of RU2005128348A publication Critical patent/RU2005128348A/ru
Application granted granted Critical
Publication of RU2337912C2 publication Critical patent/RU2337912C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/64Quaternary ammonium compounds having quaternised nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds

Abstract

Описывается способ получения цианоборатов щелочных металлов общей формулы M+[B(CN)4]-, где М - калий действием цианида щелочного металла на тетрафторборат калия в условиях твердофазной реакции, их дальнейшее превращение в соли, включающие цианоборатные анионы и органические катионы, указанные соли могут использоваться в качестве ионных жидкостей. 8 н. и 10 з.п. ф-лы, 1 табл.

Description

Настоящее изобретение относится к способу получения цианоборатов щелочных металлов, к их дальнейшему превращению в соли, включающие цианоборатные анионы и органические катионы, к этим солям, и к их применению в качестве ионных жидкостей.
Ионные жидкости или жидкие соли представляют собой ионные частицы, состоящие из органического катиона и в основном неорганического аниона. Они не содержат нейтральных молекул, и в основном имеют температуру плавления ниже, чем 373 K. Из предшествующего уровня техники известен целый ряд соединений, которые используются в качестве ионных жидкостей. В частности, они являются также объектом ряда патентов и патентных заявок.
Таким образом, ионные жидкости, не содержащие растворителя, были впервые раскрыты Hurley и Wier в ряде американских патентов (US 2446331, US 2446339 и US 2446350). Эти "соли, которые являются расплавленными при комнатной температуре", включали AlCl3 и целый ряд галогенидных соединений н-алкилпиридиниума.
В последние годы на эту тему было опубликовано несколько обзорных статей (R.Sheldon "Catalytic reactions in ionic liquids", Chem. Commun., 2001, 2399 - 2407; M.J.Earle, К.R.Seddon "Ionic liquids. Green solvent for the future", Pure Appl. Chem., 72 (2000), 1391-1398; P.Wasserscheid, W.Keim "lonische Flüssig-keiten - neue Lösungen für die Übergangsmetallkatalyse" [Ionic Liquids -Novel Solutions for Transition-Metal Catalysis], Angew. Chem., 112 (2000), 3926-3945; Т.Welton "Room temperature ionic liquids. Solvents for synthesis and catalysis", Chem. Rev., 92 (1999), 2071-2083; R. Hagiwara, Ya. Ito "Room temperature ionic liquids of alkylimidazolium cations and fluoroanions". Journal of Fluorine Chem., 105 (2000), 221-227).
Свойства ионных жидкостей, например точка плавления, тепловая и электрохимическая стабильность, вязкость, значительно зависят от природы аниона. В отличие от этого, полярность и гидрофильность или липофильность могут быть различными в зависимости от соответствующего выбора пары катион/анион. Поэтому существует основное требование к новым ионным жидкостям, имеющим различные свойства, которые обеспечивают дополнительные возможности относительно их применения.
Решающие достижения в области ионных жидкостей были достигнуты с открытием 1-этил-3-метилимидазолиум хлоралюмината. Эта соль имеет широкий жидкостной диапазон и электрохимическое окно больше, чем 3 В и, таким образом, является интересной для электрохимических и синтетических целей. Однако ее использование ограничено химической неустойчивостью, особенно к влажности. После открытия более устойчивого к гидролизу 1-этил-3-метилимидазолиум тетрафторбората были исследованы комбинации катионов алкилимидазолиума с неорганическими или органическими анионами, из которых 1-этил-3-метилимидазолиум тетрафторборат характеризуется как лучший.
Стабильность имидазолиумового катиона является относительно высокой и его температура разложения в высокой степени определяется анионом. Таким образом, 1-этил-3-метилимидазолиумовые соли с трифлатным и бис(трифторметилсульфонил)имидным анионами являются стабильными аж до 400°С, в то время как 1-этил-3-метилимидазолиум тетрафторборат является стабильным только до 300°С.
Предшествующий уровень техники описывает боратные анионы, в которых фторные лиганды заменены на цианидные (Е.Bernhardt, G.Henkel, H.Willner, Z.Anorg. Allg. Chem. 626 (2000) 560; D.Williams, В.Pleune, J.Kouvetakis, M.D.Williams, R.A.Andersen, J.Amer. Chem. Soc. 122 (2000) 7735; Е.Bernhardt, M.Berkei, M.Schurmann, H.Willner, Z.Anorg. Allg. Chem. 628 (2002) 1734) и трифторметильные лиганды (Е.Bernhardt, G.Henkel, H.Willner, G.Pawelke, H.Burger, Chem. Eur. J. 7 (2001) 4696; G.Pawelke, H. Burger, Coord. Chem. Rev. 215 (2001) 243). Трифторметил бораты синтезированы в этих статьях, исходя из цианоборатов, но цианобораты получают только с большими сложностями и в маленьких количествах. Синтез [B(CN4)]- является трудоемким и может быть выполнен только в маленьком препаративном масштабе. Кроме того, исходные материалы достаточно дорогие.
Цель настоящего изобретения заключается в обеспечении новых устойчивых соединений, имеющих ценные свойства, которые могут использоваться как ионные жидкости, и способа их получения. В частности, цель изобретения состоит в том, чтобы обеспечить соли с боратными анионами, которые имеют более высокую стабильность, чем соли с тетрафторборатными анионами.
Еще одна цель настоящего изобретения состоит в том, чтобы обеспечить эффективный и экономичный способ получения этих боратных солей и их прекурсоров.
В соответствии с изобретением эта цель достигается с помощью отличительных признаков независимого пункта Формулы изобретения и зависимых пунктов.
Поэтому настоящее изобретение относится, во-первых, к способу получения цианоборатов щелочных металлов общей формулы (1)
Figure 00000001
в которой M выбирают из группы, которая включает Li, Na, K, Rb и Cs, в которой легкодоступные исходные вещества тетрафторборат щелочного металла M[BF4] (M=Li, Na, K, Rb, Cs) и цианид щелочного металла MCN (M=Li, Na, K, Rb, Cs) вводят в реакцию один с другим в твердофазной реакции.
Тетрафторборат щелочного металла, используемый в соответствии с настоящим изобретением, представляет собой предпочтительно тетрафторборат калия K[BF4] или тетрафторборат натрия Na[BF4], и цианид щелочного металла, используемый в соответствии с настоящим изобретением, представляет собой предпочтительно цианид калия KCN или цианид натрия NaCN.
В предпочтительном варианте способа в соответствии с настоящим изобретением, тетрафторборат щелочного металла вводят в реакцию с цианидом щелочного металла в присутствии галогенида лития. При этом галогенид лития выбирают из LiCl, LiBr и LiI, особенно предпочтительным является хлорид лития LiCl.
В каждом отдельном случае цианид щелочного металла и галогенид лития могут использоваться в избытке одного из двух реагентов. Однако цианид щелочного металла и галогенид лития предпочтительно вводят в реакцию приблизительно в молярном соотношении 1:1.
Тетрафторборат щелочного металла и цианид щелочного металла предпочтительно используют в молярном соотношении от 1:4 до 1:12, особенно предпочтительно в молярном соотношении приблизительно 1:9.
Поэтому особенно предпочтительно используется молярное соотношение тетрафторборат щелочного металла: цианид щелочного металла: галогенид лития, составляющее приблизительно 1:9:9.
Исходные материалы, используемые для этой реакции в соответствии с настоящим изобретением, особенно предпочтительно представляют собой тетрафторборат калия K[BF4] в качестве тетрафторбората щелочного металла и цианид калия KCN в качестве цианида щелочного металла.
Твердофазную реакцию в соответствии с настоящим изобретением выполняют при температурах в интервале между 100°С и 500°С. Предпочтение отдается температурам от 250 до 400°С, особенно предпочтительно 280-340°С.
Не подразумевая никакого ограничения, объект твердофазной реакции в соответствии с настоящим изобретением объясняется со ссылкой на общий пример: K[BF4], KCN и LiCl смешивают в молярном соотношении 1:9:9 и далее вводят в реакцию при плавлении. Температуру реакции выбирают таким образом, что, с одной стороны, смесь KCN/LiCl образует эвтектическое плавление при 270-290°С, и, с другой стороны, только что образованные тетрацианоборатные соли разлагаются медленно (<400-500°С). Анализ диффрактограмм порошков охлажденного расплава KCN с LiCl (молярное соотношение 1:1) позволяет определить смешанные кристаллы K (Cl, CN) типа (a=6,34 Å, F m3m) и дополнительное не идентифицированное соединение (d=4,958, 2,878, 2,728, 2,482, 2,175 Å). Выход K[B(CN)4] фактически не зависит от температуры в интервале 280-340°С и составляет приблизительно 40-60%, на основе K[BF4]. В дополнительных исследованиях найдено, что понижение в молярном соотношении K[BF4] к KCN/LiCl от 1:9 до 1:4,5 приводит к снижениям в выходе продукта. Рамановские спектры реакционных смесей показывают, что тетрацианоборат после реакции находится в форме литиевой соли (ν(CN)=2263 см-1).
В аналогичной реакции, используя NaCN/LiCl смесь, смешанные кристаллы (Li, Na) (Cl, CN) типа (a=5,50 Å F m3m) образуются в расплаве NaCN с LiCl (молярное соотношение 1:1), кроме того, с небольшим количеством LiCN (d=5,216, 3,626 Å, температура плавления = 160°С). Эвтектика (120-140°С) образуется между NaCN и LiCl, в отличие от KCN/LiCl, но только смешанные кристаллы плавятся при 360-540°С; возможно, это причина низких выходов (приблизительно 25%) Na[B(CN)4].
В течение обработки продуктов реакции, сначала должен быть удален избыток цианида. Найдено, что окисление цианида, используя водный 30% Н2О2 раствор, является лучшим способом обработки. Низкая навеска соли и полное и быстрое разложение цианида, оставшегося в реакционной смеси, так же, как и хорошие выходы, перевешивают единственный недостаток, часто бурное и сложно контролируемое прохождение реакции цианида. Тетрацианоборат затем экстрагируют из водного раствора и превращают в К или Na соль с помощью реэкстракции.
Альтернативным способом, доступным для обработки продуктов твердофазной реакции, является окисление непрореагировавшего цианида, используя водный NaOCl раствор, которое происходит в течение нескольких минут в очень мягких условиях, т.е. без нагревания или вспенивания реакционной смесь. Далее обработку выполняют аналогично обработке с помощью Н2О2. Однако эта дополнительная обработка является более трудоемкой и занимает много времени из-за большей навески соли.
Более того, настоящее изобретение относится к способу получения цианоборатов щелочных металлов общей формулы (2)
Figure 00000002
в которой n=0, 1, 2 или 3 и
М выбирают из группы, которая включает Li, Na, K, Rb и Cs,
в которой цианид щелочного металла MCN, где М=Li, Na, K, Rb, Cs, вводят в реакцию с бортрифторидэтератом BF3·OEt2.
При использовании крупнозернистого цианида калия KCN и BF3·OEt2 эквимолярные количества K[BF4] и K[BF2(CN)2] также образуются в реакции в соответствии с настоящим изобретением параллельно с первичным аддуктом K[BF3(CN)], в соответствии со следующими уравнениями:
K[BF3(CN)]+BF3·OEt2↔K[BF4]+BF2(CN)·OEt2
BF2(CN)·OEt2+KCN→K[BF2(CN)2]+Et2O
Кроме того, две соли K[BF(CN)3] и K[B(CN)4] образуются в меньшем количестве, первая из которых в особенности, если реакционную смесь поддерживают при температурах, больших, чем комнатная температура.
В соответствии с настоящим изобретением бортрифторидэтерат вводят в реакцию с цианидом щелочного металла в присутствии апротонного растворителя. Не подразумевая никакого ограничения, в качестве апротонного растворителя могут использоваться, например, ацетонитрил, диэтиловый эфир, тетрагидрофуран и/или диметоксиэтан.
Цианид щелочного металла, используемый для способа в соответствии с настоящим изобретением, представляет собой предпочтительно цианид калия KCN.
Исходные материалы предпочтительно вводят в реакцию в соответствии с настоящим изобретением при температурах от - 80 до 100°С, особенно предпочтительно при комнатной температуре.
В течение реакции могут образовываться летучие побочные продукты, которые удаляют при пониженном давлении. Главным образом, однако, побочные продукты, которые являются нерастворимыми в используемых растворителях, отделяют с помощью фильтрования. Растворитель, при желании, удаляют при пониженном давлении вместе с летучими побочными продуктами, и полученные цианобораты щелочных металлов, при желании, могут быть отделены и очищены с помощью обычных способов, известных специалистам, квалифицированным в данном уровне техники.
Третьим и четвертым объектом настоящего изобретения является способ получения солей с цианоборатными анионами общей формулы (3) и соответствующих солей общей формулы (3)
Figure 00000003
в которой n=0, 1, 2 или 3, и Kt+ представляет собой органический катион, при условии, что катион Kt+ не обозначает [N(C4H9)4]+ для n=0.
Для получения этих солей цианоборат щелочного металла общей формулы М+ [B(CN)4]-, в которой М выбирают из группы, которая включает Li, Na, K, Rb и Cs, или цианоборат щелочного металла общей формулы М+ [BFn(CN)4-n]-, в которой n=0, 1, 2 или 3 и М выбирают из группы, которая включает Li, Na, K, Rb и Cs, вводят в реакцию с Kt+ X-, где Х представляет собой атом галогена, выбранный из Cl, Br и I, и Kt+ представляет собой органический катион, при условии, что катион Kt+ не обозначает [N(C4H9)4]+ для n=0.
Органический катион Kt+ предпочтительно выбирают из группы
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
где R=Н, при условии, что, по крайней мере, один R на гетероатоме отличается от Н,
линейный или разветвленный алкил, который имеет 1-20 атомов углерода, линейный или разветвленный алкенил, который имеет 2-20 атомов углерода и одну или более двойных связей и линейный или разветвленный алкинил, который имеет 2-20 атомов углерода и одну или более тройных связей,
насыщенный, частично или полностью ненасыщенный циклоалкил, который имеет 3-7 атомов углерода,
галоген, в особенности фтор или хлор, при условии, что не присутствует ни одной связи галоген - гетероатом,
-NO2, при условии, что не присутствует ни одной связи с положительно заряженным гетероатомом, и, по крайней мере, один R отличается от NO2,
-CN, при условии, что не присутствует ни одной связи с положительно заряженным гетероатомом, и, по крайней мере, один R отличается от CN,
где R, в каждом случае, являются одинаковыми или различными,
где R могут быть прикреплены один к другому в парах простой или двойной связью,
где один или более R могут быть частично или полностью замещены атомами галогена, в частности -F и/или -Cl, или частично -CN или -NO2, при условии, что не все R полностью галогенированны,
и где один или два атома углерода радикала R могут быть заменены на гетероатомы и/или группы атомов, выбранных из группы -O-, -С(O)-, С(O)O-, -S-, -S(O)-, -SO2-, -S(O)2O-, -N=, -P=, -NR'-, -PR'-, -P(O)(OR'), -P(O)(OR')O-, -P(O)(NR'R'), -P(O)(NR'R')O-, -P(O)(NR'R')NR'-, -S(O)NR'- и -S(O)2NR'-, где R'=H, не-, частично или перфторированный C1 до С6-алкил или не-, частично или перфторированный фенил.
Для целей настоящего изобретения, полностью ненасыщенные заместители также подразумевают ароматические заместители.
Помимо водорода подходящими заместителями R органического катиона в соответствии с настоящим изобретением являются: C1 до С20-, в особенности C1- до С12-алкильные группы, C2- до С20-, в особенности С2- до С12-, алкенильные или алкинильные группы, насыщенные или ненасыщенные, т.е. также ароматические, С3- до С7-циклоалкильные группы, NO2, CN или галогены. Однако ограничивающий фактор для галогенов заключается в том, что они встречаются только как заместители на атомах углерода, но не на гетероатомах.
NO2 и CN не встречаются как заместители положительно заряженного гетероатома; кроме того, не все заместители одновременно принимают значение NO2 или CN.
Заместители R также могут быть скреплены в пары таким путем, что образуются циклический, би- или полициклический катионы. Эти заместители могут быть частично или полностью замещены атомами галогена, в особенности атомом F и/или Cl, или частично группой CN или NO2 и содержат один или два гетероатома или группы атомов, выбранных из группы О, (О), С(O)O, S, S(O), SO2, SO2O, N, P, NH, PH, NR', PR', P(O)(OR'), P(O)(OR')O, P(O)(NR'R'), P(O)(NR'R')O, P(O)(NR'R')NR', S(O)NR' и S(O)2NR'. В случае полного галогенирования, однако, не все присутствующие заместители R могут быть полностью галогенированны, т.е. по крайней мере, один R не является пергалогенированным.
Не подразумевая никакого ограничения, примеры заместителей в соответствии с настоящим изобретением органического катиона представляют собой:
-F, -Cl, -Br, -I, -СН3, -С2Н5, -С3Н7, -СН(СН3)2, -С4Н9, -С(СН3)3, -С5Н11, -С6Н13, -С6Н13, -C7H15, -C8H17, -C9H19, -С10Н21, -C12H25, -C20H41, -ОСН3, -ОСН(СН3)2, -СН2OCH3, -С2Н4OCH(СН3)2, -SCH3, -SCH(СН3)2, -C2H4SC2H5, -С2Н4SCH(СН3)2, -S(O)CH3, -SO2СН3, -SO2C2H5, -SO2С3Н7, -SO2СН(СН3)2, -CH2SO2CH3, -OSO2СН3, -OSO2CF3, -CH2N(H)C2H5, -C2H4N(H)C2H5, -CH2N(CH3)CH3, -C2H4N(CH3)CH3, -N(CH3)2, N(СН33Н5, -N(СН3)CF3, O-C4H8-O-C4H9, -S-C2H4-N(C4H9)2, -OCF3, -S(O)CF3, -SO2CF3, -CF3, -C2F5, -С3F7, -C4F9, -С(CF3)3, -CF2SO2CF3, -C2F4N(C2F5)C2F5, -CF=CF2, -С(CF3)=CFCF3, -CF2CF=CFCF3, -CF=CFN(CF3)CF3, -CFH2, -CHF2, -СН2CF3, -С2F2Н3, -С3FH6, -СН2С3F7, -С(CFH2)3, -СНО, -С(O)ОН, -СН2С(O)ОН, -СН2С(O)СН3, -СН2С(O)С2Н5, -СН2С(O)ОСН3, СН2С(O)ОС2Н5, -С(O)СН3, -С(O)ОСН3,
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Не подразумевая никакого ограничения, следующие органические катионы являются особенно предпочтительными как соли в соответствии с настоящим изобретением:
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
N(C2H5)4+ N(C4H9)4+ P(C2H5)4+ P(C4H9)4+ P(C6H13)3(C14H29)+
Эти соли в соответствии с настоящим изобретением преимущественно являются очень легко растворимыми в органических растворителях. В сравнении с известными жидкими солями, эти соли в соответствии с настоящим изобретением, неожиданно, имеют низкую вязкость. Эти соли в соответствии с настоящим изобретением преимущественно являются стабильными. Они могут быть выделены и могут храниться при комнатной температуре. Кроме того, эти соли в соответствии с настоящим изобретением относительно легко получаются, и требуют легко доступных исходных материалов.
Все соединения в соответствии с настоящим изобретением и соединения формулы [N(C4H9)4]+[B(CN)4]- имеют солеподобный характер, относительно низкие точки плавления (обычно ниже 100°С) и могут использоваться в качестве ионных жидкостей.
Эти соли в соответствии с настоящим изобретением и соли формулы [N(C4H9)4]+[B(CN)4]- могут использоваться в качестве растворителей для многих синтетических или каталитических реакций, таких как, например, ацилирование и алкилирование Фриделя-Крафтса, реакции циклоприсоединения Дильса-Альдера, реакции гидрогенирования и окисления, реакции Хека. Более того, например, могут быть синтезированны фторированные растворители для вторичной и первичной батарей.
Эти соли в соответствии с настоящим изобретением и соли формулы [N(C4H9)4]+[B(CN)4]- являются подходящими в качестве прекурсоров для получения жидкокристаллических соединений и активных ингредиентов, в числе других для лекарственных средств и средств для защиты сельскохозяйственных культур.
Возможно также использовать соединения в соответствии с настоящим изобретением и соли формулы [N(C4H9)4]+[B(CN)4]- в качестве неводного электролита, не обязательно в комбинации с другими электролитами, известными специалисту, квалифицированному в данном уровне техники.
Кроме того, эти соли в соответствии с настоящим изобретением и соли формулы [N(C4H9)4]+[B(CN)4]- являются интересными соединениями в качестве безводных, полярных веществ в подходящих реакциях в качестве катализатора фазового переноса или в качестве среды для гетерогенизации гомогенных катализаторов.
Полное раскрытие содержания всех заявок, патентов и публикаций, упомянутых выше и ниже, включено в эту заявку посредством ссылки.
Даже без дополнительных комментариев, предполагается, что специалист, квалифицированный в данном уровне техники, будет в состоянии использовать вышеупомянутое описание в самом широком объеме. Поэтому предпочтительные воплощения и примеры просто должны быть расценены как описательное раскрытие сущности изобретения, которые в любом случае абсолютно не ограничивают изобретение.
ЯМР спектры измеряли на растворах в дейтерированных растворителях при 20°С на спектрометре Bruker Avance DRX-300 с 5 мм 1Н/ВВ широкополосной головкой с дейтерированным затвором. Измерительные частоты различных ядер составляют: 1Н: 300,13 МГц, 11В: 96,92 МГц, 13С: 75,47 МГц, 19F: 282,41 МГц и 15N: 30,41 МГц. Метод сравнений показан отдельно для каждого спектра или каждого набора данных.
DSC измерения выполняли на приборе Netzsch DSC 204. Температуру и чувствительность калибровали, используя нафталин, бензойную кислоту, KNO3, AgNO3, LiNO3 и CsCl. В каждом случае 5-20 мг веществ взвешивали в алюминиевом тигле и запечатывали алюминиевыми крышками с маленьким отверстием. Исследование выполняли в температурном интервале от 25 до 500°С. Если не указано иначе, скорость нагрева составляет 10 К мин-1. В течение измерения пространство над образцом обрабатывали сухим азотом. Образцы веществ, чувствительных к воздуху, получали в вытяжном шкафу и переносили к аналитическим приборам в виале, заполненной аргоном. Оценку данных выполняли, используя программу Netzsch Protens 4.0.
Элементный анализ выполняли с помощью методов микроанализа сжиганием (microanalysis combustion methods), используя прибор Euro EA3000 компании HEKA-Tech GmbH. Образцы веществ, чувствительных к воздуху, получали в вытяжном шкафу и переносили к аналитическим приборам в виале, заполненной аргоном. Пределы погрешностей для записанных атомов составляют: С: ±0,3%, Н: ±0,1%, N: ±0,2%.
Пример 1: Синтез K[B(CN)4]
KCN, LiCl и K[BF4] размалывают на крупные гранулы и смешивают одно с другим в ступке в вытяжном шкафу (MBraun, Munich). Эту смесь размалывают мелкодисперсно, используя коммерчески доступную кофемолку. Реакционную смесь затем переносят в никелевый тигель (⌀внутренний = 101 мм, dстенки = 2 мм, h=85 мм). Этот тигель неплотно накрывают железной крышкой, переносят из вытяжного шкафа в муфельную печь (VMK 93, Kontron Material und Strukturanalyse GmbH) и нагревают. Когда реакция завершилась, тигель с металлической крышкой вынимают из все еще горячей муфельной печи и охлаждают до комнатной температуры на воздухе.
Охлажденную серую/черную пористую реакционную смесь переносят из тигля в ступку и крупнодисперсно размалывают. Затем к раздробленному твердому веществу добавляют 150 мл воды в 3 л химический стакан, и добавляют в общем 350 мл Н2О2 (30% водный раствор, приблизительно 3 моль) порциями приблизительно по 30 мл в течение получаса с постоянным перемешиванием. Реакцию, которая начинается экзотермически с бурным выделением газа, контролируют добавлением льда. Эту реакционную смесь (V=2,3 л) делят на два 3 л химических стакана и подкисляют, используя концентрированную HCl (приблизительно 300 мл, приблизительно 3,6 моль) (рН 5-7), до того, пока не перестанет наблюдаться выделение газа. Далее проверяют, присутствуют ли еще в этой смеси цианидные осадки (тест на цианид, Merck KGaA, Darmstadt, Germany). Затем эту смесь отфильтровывают и при перемешивании к этому желтому раствору добавляют 28 мл (0,34 моль) конц. HCl. Далее добавляют 47 г (63 мл, 0,33 моль) трипропиламина. Эту реакционную смесь перемешивают в течение 15 минут и экстрагируют дихлорметаном (250, 150 и 50 мл). Объединенные органические фазы промывают с помощью 200 мл Н2О, и промывные воды реэкстрагируют с помощью 25 мл дихлорметана. Объединенные дихлорметановые фазы сушат над MgSO4 и фильтруют через стеклянный фильтр (D4). 35 г (0,63 моль) КОН растворяют в маленьком количестве воды и добавляют к органическому раствору при интенсивном перемешивании. Бежевое маслянистое вещество сразу же выпадает в осадок и образует комки на дне сосуда после дополнительного перемешивания (30 минут). Смесь дихлорметан/трипропиламин отфильтравывают декантированием и продукт экстрагируют из осадка с помощью THF (200, 100 и 50 мл). Собранные THF фазы сушат, используя K2СО3, и наконец все летучие составляющие удаляют в роторном испарителе. Белый продукт промывают дихлорметаном и сушат при комнатной температуре при пониженном давлении.
Таблица 1.
Синтез K[B(CN)4]
Темп. °С Время ч. K[BF4] KCN LiCl K[B(CN)4] Выход %
г моль г моль г моль г моль
300 1,5 37,2 0,30 170,3 2,62 116,1 2,74 29,2[a] 0,19 64
340 0,75 36,9 0,29 170,0 2,61 116,2 2,74 27,0[a] 0,18 60
340 1,25 36,9 0,29 169,9 2,61 115,9 2,74 26,7[a] 0,17 59
340 2 37,0 0,29 160,6 2,47 115,9 2,74 20,8[a] 0,14 46
340 3 36,7 0,29 172,5 2,65 102,8 2,42 20,3[b] 0,13 45
340 3 36,8 0,29 160,1 2,46 115,2 2,72 18,8[a] 0,12 42
340 3 36,7 0,29 180,9 2,78 104,7 2,46 17,4[a] 0,11 39
[a] Окисление непрореагировавшего CN-, используя H2O2.
[b] Окисление непрореагировавшего CN-, используя NaOCl.
13С{1H}-ЯМР: δ=123,3 ppm (q, 4C, CN), 1Δ13C(10/11B)=0,0021 ppm, 1J(11B, 13C)=70,9 Гц; 11B-ЯМР: δ=-38,6 ppm, 1J(11B, 13C)=71,2 Гц; растворитель: CD3CN; эталонные вещества: 13С-ЯМР пик растворителя (относительно TMS) и 11В-ЯМР BF3-Et2O/CD3CN в качестве внешнего стандарта.
ЯМР данные являются идентичными с теми, которые известны из предшествующего уровня техники (Е.Bernhardt, G.Henkel, H.Willner, Z.Anorg. Allg. Chem. 626 (2000) 560). Результаты элементного анализа:
С [%] H [%] N [%]
Теоретические 31,20 - 36,39
Найденные 31,35 - 35,97
В соответствии с DSC измерениями соль разлагается при температуре выше, чем 450°С.
Пример 2: Синтез Na[B(CN)4]
170,3 г (2,62 моль) KCN, 116,1 г (2,74 моль) LiCl и 37,2 г (0,30 моль) K[BF4] взвешивают, крупнодисперсно размалывают в ступке и смешивают одно с другим. Дальнейшая процедура соответствует процедуре, описанной в Примере 1 (температура реакции 300°С, время реакции 1,5 часов), как получение дихлорметанового экстракта.
2 эквивалента NaOH (приблизительно 25 г, 0,63 моль) растворяют в как только можно меньшем количестве воды (приблизительно 10-20 мл) и по каплям добавляют к органическому раствору при интенсивном перемешивании. Бежевое маслянистое вещество сразу же выпадает в осадок и образует комки на дне сосуда после дополнительного перемешивания (30 минут). Смесь дихлорметан/трипропиламин отфильтравывают декантированием и продукт экстрагируют из осадка с помощью THF (200, 100 и 50 мл). Если этот бежевый осадок становится жидким благодаря экстракции, его вязкая консистенция может быть восстановлена осторожным добавлением Na2CO3 или Na2SO4.
Собранные THF фазы сушат, используя К2СО3 или Na2SO4, и наконец все летучие составляющие удаляют в роторном испарителе. Белый продукт промывают дихлорметаном для того, чтобы удалить аминные осадки и сушат при 60°С при пониженном давлении. Выход составляет 25,3 г (62%, 0,18 моль).
13С{1Н}-ЯМР: δ=123,3 ppm (q, 4C, CN), 1Δ13С(10/11В)=0,0021 ppm, 1J(11B, 13C)=70,9 Гц; 11В-ЯМР: δ=-38,6 ppm, 1J(11В, 13С)=71,2 Гц; растворитель: CD3CN; эталонные вещества: С-ЯМР пик растворителя (относительно TMS) и 11В-ЯМР BF3-Et2O/CD3CN в качестве внешнего стандарта.
ЯМР данные являются идентичными с теми, которые известны из предшествующего уровня техники (Е.Bernhardt, G.Henkel, H.Willner, Z.Anorg. Allg. Chem. 626 (2000) 560).
Результаты элементного анализа:
С [%] H [%] N [%]
Теоретические 34,85 - 40,64
Найденные 34,60 - 40,15
Пример 3: Тетрацианоборат лития, Li[B(CN)4]
5 г (32 ммоль) K[B(CN)4] растворяют в 20 мл воды и вводят в реакцию с 8 мл 37% соляной кислоты (96 ммоль) и 8 мл nPr3Н (42 ммоль). Эту смесь затем экстрагируют дважды с помощью 50 мл СН2Cl2 каждый раз, органическую фазу сушат, используя MgSO4, и добавляют раствор 3 г LiOH-Н2О (72 ммоль) в 20 мл воды и смесь перемешивают энергично в течение одного часа. Все летучие продукты удаляют при пониженном давлении. Li[B(CN)4] экстрагируют из осадка с помощью 50 мл СН3CN в аппарате Сокслета. Органическую фазу выпаривают в роторном испарителе. Сырой продукт перекристаллизовывают из воды, промывают с помощью 50 мл CH2Cl2 и освобождают от осадков растворителя при пониженном давлении. Выход составляет 3,5 г (80%, 29 ммоль).
В соответствии с DSC измерениями соль разлагается при температуре выше, чем 470°С.
Пример 4: Тетрацианоборат аммония, NH4[B(CN)4]
0,31 г (2,0 ммоль) K[B(CN)4] растворяют в 8 мл воды, затем вводят в реакцию с раствором 0,20 г (1,1 ммоль) (NH4)2[SiF6] в 8 мл воды. Все летучие составляющие удаляют при пониженном давлении. NH4[B(CN)4] экстрагируют из осадка с помощью 10 мл СН3CN. Органическую фазу выпаривают в роторном испарителе. Сырой продукт промывают с помощью 10 мл CH2Cl2 и сушат при пониженном давлении. Выход составляет 0,25 г (93%, 1,9 ммоль).
В соответствии с DSC измерениями соль разлагается при температуре выше, чем 300°С.
Пример 5: Тритил тетрацианоборат, [Ph3С][В(CN)4]
500 мг (2,3 ммоль) Ag[B(CN)4] и 726 мг (2,3 ммоль) (С6Н5)3CBr в безводном ацетонитриле приводят во взаимодействие в 250 мл стеклянной колбе с ПТФЭ крышкой (Young, London). Ацетонитрил удаляют при пониженном давлении через 4 часа и затем добавляют 100 мл дихлорметана. Суспензию фильтруют через Celite® - покрытый фильтр в колбу Шленка (Schlenk flask). Реакционную колбу промывают дважды дихлорметаном (20 мл и 10 мл). Раствор выпаривают до 10 мл при пониженном давлении, и, после добавления 70 мл безводного гексана, выпадает в осадок оранжевое твердое вещество. Это вещество отфильтровывают через фильтр Шленка и промывают дополнительными 10 мл гексана. Оранжевый [Ph3С][В(CN)4] сушат при пониженном давлении и хранят в вытяжном шкафу. Выход составляет 408 мг (51%, 1,3 ммоль).
1Н-ЯМР: δ=7,73 ppm (m, 6H, o-H), δ=7C94 ppm (m, 6H, м-Н), δ=8,31 ppm (tt, 3H, n-H); 13C{1H}-ЯМР: δ=122,7 ppm (q, 4C, CN), 1J(11B, 13C)=71,5 Гц, δ=131,0 ppm (s, 6C, m-c), δ=140,2 ppm (s, 3С, i-С), δ=143,0 ppm (s, 6C, o-C), δ=143,8 ppm (s, 3С, n-С), δ=211,2 ppm (s, 1C, С+); 11В-ЯМР: δ=-38,6 ppm, 1J(11B, 13C)=71,3 Гц; растворитель: CDCl3; эталонные вещества: 1Н- и 13С-ЯМР сигнал растворителя (относительно TMS) и 11В-ЯМР BF3-Et2O/CD3CN в качестве внешнего стандарта.
Результаты элементного анализа [Ph3С][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 77,12 4,22 15,64
Найденные 77,19 4,21 15,50
[Ph3С][В(СН)4] плавится при 158°С с разложением.
Пример 6: [HNPhMe2][B(CN)4]
1,50 г (9,7 ммоль) K[B(CN)4] растворяют в 50 мл воды. Сначала 3 мл (36 ммоль) конц. HCl раствора и затем 1,23 мл (9,7 ммоль) N,N-ди-метиланилина добавляют к раствору при перемешивании, вследствие чего выпадает в осадок белое твердое вещество. Раствор экстрагируют дважды дихлорметаном (100 мл и 30 мл), органическую фазу сушат, используя MgSO4, и дихлорметан удаляют при пониженном давлении, что приводит к получению белого [HNPhMe2][B(CN)4], который очищают промыванием с пентаном. Выход составляет 2,12 г (92%, 8,9 ммоль).
1H-ЯМР: δ=3,23 ppm (s, 6H, СН3), 1Δ1H(12/13С)=-0,0023, 1J(1Н, 13С)=145,48 Гц, δ=7,64-7,58 ppm (m, 5H, С6Н5); 13С{1H}-ЯМР: δ=47,8 ppm (s, 2C, СН3), δ=121,5 ppm (s, 2C, С6Н5), δ=123,2 ppm (s, 4C, CN), 1J(11В, 13С)=71,3 Гц, 1Δ13C(10/11B)=-0,0020 ppm, δ=131,5 ppm (s, 2C, С6Н5), δ=131,6 ppm (s, 1C, C6H5), δ=143,1 ppm (s, 1C, C6H5); 11В-ЯМР: δ=-38,6 ppm, 1J(11B, 13C)=71,3 Гц; 15Н-ЯМР: δ=103,2 ppm (q, 4N, CN), 1J(11B, 15N)=0,73 Гц; растворитель: CD3CN; эталонные вещества: 1Н- и 13С-ЯМР сигнал растворителя (относительно TMS), 11В-ЯМР BF3Et2O/CD3CN в качестве внешнего стандарта и 15N-ЯМР 80% СН3NO2 в CD3CN в качестве внешнего стандарта.
Результаты элементного анализа [HNPhMe2][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 60,80 5,10 29,54
Найденные 60,60 4,65 28,50
[HNPhMe2][B(CN)4] плавится при 101°С и разлагается экзотермически при температуре выше, чем 246°С.
Пример 7: Тетраэтиламмониум тетрацианоборат, [Et4N][B(CN)4]
7 г (46 ммоль) K[B(CN)4] растворяют в 300 мл воды и 8,4 г (46 ммоль) [Et4N]Cl-H2O растворяют в 130 мл воды. Эти два раствора объединяют, вследствие чего выпадает в осадок белое твердое вещество. После перемешивания в течение 30 минут добавляют 250 мл ди-хлорметана, в котором растворяется осажденное вещество. Эти две фазы разделяют, и органическую фазу сушат над MgSO4. Дихлорметан удаляют в роторном испарителе, и белое твердое вещество промывают несколько раз пентаном и затем сушат при пониженном давлении. Выход составляет 10,5 г (96%, 43 ммоль).
1H-ЯМР: δ=1,22 ppm (tt, 12H, СН3), 1Δ1H(12/13c)=-0,0019 ppm, 1J(1H, 13C)=128,78 Гц, 3J(1H, 1H)=7,27 Гц; δ=3,13 ppm (q, 8H, CH2), 1Δ1H(12/13C)=-0,0034 ppm, 1J(1Н, 13С)=140,30 Гц, 2J(1H, 14N)=1,89 Гц; 3J(1Н, 1Н)=7,28 Гц; 13С{1H}-ЯМР: δ=7,8 ppm (s, 4С, СН3); δ=53,2 ppm (t, 4C, CH2), 1J(13C, 15N)=3,1 Гц; δ=123,3 ppm (q, 4C, CN), 1Δ13C(10/11B)=0,0021 ppm, 1J(11B, 13C)=70,9 Гц; 11В-ЯМР: δ=-38,6 ppm, 1J(11B, 13C)=71,2 Гц; растворитель: CD3CN эталонные вещества: 1Н- и 13С-ЯМР пик растворителя (относительно TMS) и 11В-ЯМР BF3-Et2O/CD3CN в качестве внешнего стандарта.
Результаты элементного анализа [Et4N][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 58,8 8,22 28,57
Найденные 58,5 8,18 28,22
[Et4N][B(CN)4] плавится при 230°С. Дальнейшее обратимое фазовое превращение происходит при температуре 145°С. Соль разлагается при температуре выше, чем 360°С.
Пример 8: 1-Бутил-3-метилимидазолиум тетрацианоборат [C8H15N2][B(CN)4]
0,35 г (2,3 ммоль) K[B(CN)4] растворяют в 20 мл воды. 0,53 г (3,0 ммоль) [C8H15N2]Cl в 20 мл воды добавляют при перемешивании. Раствор экстрагируют дважды дихлорметаном (30 мл и 20 мл), органическую фазу промывают водой (20 мл) и сушат, используя MgSO4, и затем дихлорметан удаляют при пониженном давлении. Выход составляет 0,50 г (87%, 2,0 ммоль).
Результаты элементного анализа [C8H15N2][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 56,70 5,95 33,07
Найденные 56,24 6,13 32,99
[C8H15N2][B(CN)4] плавится при температуре ниже, чем - 50°С, и разлагается эндотермически при температуре выше, чем 410°С.
Пример 9: 1-Этил-3-метилимидазолиум тетрацианоборат [C6H11N2][B(CN)4]
6Н11N2][В(CN)4] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C6H11N2][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 53,13 4,90 37,18
Найденные 52,79 4,97 37,12
6Н11N2C[В(CN)4] плавится при температуре ниже, чем - 50°С, и разлагается эндотермически при температуре выше, чем 420°С.
Пример 10: п-Метилбутилпиридиниум тетрацианоборат [C10H16N][B(CN)4]
[C10H16N][B(CN)4] получают аналогично C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C10H16N][B(CN)4]:
С [%] Н [%] N [%]
Теоретические 63,42 6,08 26,42
Найденные 62,81 6,13 26,70
[C10H16N][B(CN)4] затвердевает при -25°С, плавится при 42°С и разлагается эндотермически при температуре выше, чем 390°С.
Пример 11: Получение K[BF2(CN)2]
Вариант А: 5,88 г (41 ммоль) BF3OEt2 и 30 мл CH3CN конденсируют на 4,12 г (63 ммоль) KCN в 50 мл колбе с ПТФЭ крышкой. Эту реакционную смесь перемешивают при комнатной температуре в течение 3 часов, и затем все летучие составляющие удаляют при пониженном давлении, и осадок растворяют в приблизительно 50 мл СН3CN и освобождают от KCN и K[BF4] фильтрованием. После удаления ацетонитрила при пониженном давлении, получают 2,66 г (19 ммоль) K[BF2(CN)2] (11B- и 19F-ЯМР: 93% [BF2(CN)2]-. 0,3% [BF3(CN)]- и приблизительно 7% неизвестных частиц). Выход: 92%. Чистый бесцветный K[BF2(CN)2] получают перекристаллизацией из воды. Выделенный выход: 2,08 г (72%, 15 ммоль).
Вариант В: 65 г (1,0 моль) KCN и 200 мл CH3CN сначала вводят в 500 мл круглодонную колбу с помощью капельной воронки. 50 мл (56 г, 0,4 моль) BF3OEt2 добавляют по каплям в течение получаса при перемешивании при комнатной температуре. В течение процесса добавления, температура поднимается до 50°С. После дополнительного перемешивания (1,5 часа) при комнатной температуре этот раствор отфильтровывают и осадок на фильтре (KCN и K[BF4]) промывают с помощью приблизительно 300 мл CH3CN. Объединенные ацетонитрильные фазы выпаривают в роторном испарителе, что приводит к получению 20 г чистого K[BF2(CN)2] в виде сырого продукта. Сырой продукт вводят в реакцию с 30 мл конц. HCl и 35 мл (25 г, 170 ммоль) трипропиламин в 200 мл воды и экстрагируют в виде трипропиламмониевой соли с помощью 200 мл дихлорметана. Эту дихлорметановую фазу сушат, используя MgSO4, и вводят в реакцию при интенсивном перемешивании с 25 г КОН, растворенного в как только можно меньшем количестве воды. Вязкую водную фазу отделяют и промывают дихлорметаном. Продукт экстрагируют из осадка с помощью приблизительно 300 мл СН3CN и раствор сушат, используя K2CO3, и выпаривают в роторном испарителе. Белый продукт промывают дихлорметаном и сушат при пониженном давлении. Выход: 17 г (60%, 120 ммоль). В соответствии с 11В-ЯМР, вещество содержит 98% [BF2(CN)2]-.
Пример 12: 1-Этил-3-метилимидазолиум трицианофторборат [C6H11N2][BF(CN)3]
6Н11N2][BF(СН)3] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [С6Н11N2][ВР(CN)3]:
С [%] Н [%] N [%]
Теоретические 49,35 5,06 31,98
Найденные 48,52 4,84 31,20
При комнатной температуре [С6Н11N2][BF(CN)3] представляет собой жидкость.
Пример 13: 1-Бутил-3-метилимидазолиум трицианофторборат [C8H15N2][BF(CNC3]
[C8H15N2][BF(CN)3] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C8H15N2][BF(CN)3]:
С [%] Н C%] N [%]
Теоретические 53,47 6,12 28,34
Найденные 54,06 6,09 28,68
[C8H15N2][BF(CN)3] плавится при температуре ниже, чем - 50°С, и разлагается экзотермически при температуре выше, чем 300°С.
Пример 14: п-Метилбутилпиридиниум трицианофторборат [C10H16N][BF(CN)3]
[C10H16N][BF(CN)3] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C10H16N][BF(CN)3]:
С [%] Н [%] N [%]
Теоретические 60,50 6,25 21,71
Найденные 61,13 5,51 22,35
[C10H16N][BF(CN)3] плавится при температуре ниже, чем - 50°С, и разлагается экзотермически при температуре выше, чем 260°С.
Пример 15: 1-Этил-3-метилимидазолиум дицианодифторборат [C6H11N2][BF2(CN)2]
[C6H11N2][BF2(CN)2] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [С6Н11N2][BF2(CN)2]:
С [%] Н [%] N [%]
Теоретические 45,32 5,23 26,43
Найденные 45,14 5,14 26,28
6Н11N2][BF2(CN)2] плавится при температуре ниже, чем - 50°С, и разлагается экзотермически при температуре выше, чем 200°С.
Пример 16: 1-Бутил-3-метилимидазолиум дицианодифторборат [C8H15N2C[BF2(CN)2]
[C8H15N2][BF2(CN)2] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C8H15N2][BF2(CN)2]:
С [%] Н [%] N [%]
Теоретические 50,03 6,30 23,34
Найденные 50,20 6,31 23,42
[C8H15N2][BF2(CN)2] плавится при температуре ниже, чем - 50°С, и разлагается экзотермически при температуре выше, чем 210°С.
Пример 17: п-Метилбутилпиридиниум дицианодифторборат [C10H16N][BF2(CN)2]
[C10H16N][BF2(CN)2] получают аналогично [C8H15N2][B(CN)4] с таким же выходом.
Результаты элементного анализа [C10H16N][BF2(CN)2]:
С [%] Н [%] N [%]
Теоретические 57,40 6,42 16,74
Найденные 57,70 6,20 16,95
[C10H16N][BF2(CN)2] плавится при температуре ниже, чем - 50°С, и разлагается экзотермически при температуре выше, чем 190°С.
Пример 18: Тетрацианоборат калия
Figure 00000039
1,00 г (7,94 ммоль) тетрафторбората калия и 2,26 г (48,83 ммоль) цианида лития смешивают вместе в манипуляционной ручной камере в условиях инертной атмосферы. Смесь нагревается в никелевом тигеле в течение 20 минут от комнатной температуры до 300°С, и затем греется 40 минут при температуре 300°С. После охлаждения до комнатной температуры реакционная смесь обрабатывается 10 см3 воды и тремя порциями 40% пероксида водорода (10+5+5 см; в сумме 230 ммоль) и разбавляют дополнительными 20 см3 воды. Полученную в результате супензию обрабатываю 3,4 г (24,6 ммоль) карбоната калия и экстрагируют двумя порциями (80 см3 и 50 см3) тетрагидрофурана. Экстракт сушат над карбонатом калия. После фильтрации и выпаривания тетрагидрофурана, полученный продукт промывается дихлорметаном и снова растворяется в тетрагидрофуране. После фильтрации и выпаривания растворителя, остается 0,54 г твердого материала. Выход тетрацианобората калия составляет 44%.
Продукт характеризуется 11В-ЯМР спектром.
11В спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: -38,6 s.
Пример 19: 1-н-бутил-1-метилпирролидиний тетрацианоборат
Figure 00000040
К перемешанному раствору 150,0 г (0,844 моль) 1-н-бутил-1-метилпирролидиний хлорида в 500 см3 воды добавляется по частям 130,0 г (0,844 моль) тетрацианобората калия. Реакционная смесь перемешивается магнитной мешалкой в течение 2 часов при комнатной температуре. Полученная эмульсия экстрагируется тремя объемами 200 см3 дихлорметана и экстракт промывается 5×200 см3 воды и обрабатывается оксидом алюминия (17,5 г) и активированный углеродом (5 г). После фильтрации и выпаривания дихлорметана остается 155 г прозрачной бесцветной жидкости. Выход продукта составляет 71%. Продукт характеризуется 1Н и 13С-ЯМР спектром.
1Н-ЯМР спектр (растворитель - ДМСО-d6, внешний стандарт - TMS), δ, ppm: 0,97 t (СН3); 1,36 t,q (CH2); 1,71 m (СН2); 2,11 m (2CH2); 2,99 s (СН3); 3,30 m (CH2); 3,46 m (2CH2); 3JH,H=7,2 Гц.
13C {Н}-ЯМР спектр (растворитель - ДМСО-d6, внешний стандарт - TMS), δ, ppm: 13,24, 19,24, 21,07, 24,89, 47,58, 63,06, 63,48, 121,80 q (CN), JC,B=71 Гц.
Пример 20: (доп.) 1-Этил-3-метилимидазолин тетрацианоборат
Figure 00000041
80,0 г (0,546 моль) 1-этил-метилимидазолин хлорида, растворенного в 200 см3 воды, добавляют к суспензии 84,1 г (0,546 моль) тетрацианобората калия в 800 см3 воды. Реакционную смесь смешивают в течение 10 часов при комнатной температуре и продукт экстрагируют 500 см3 дихлориетана (5×100 см3), промывают 4 порциями 100 см3 и 3 порциями 50 см3 воды. Дихлорметан извлекают в вакууме, а остаток сушат при температуре 90°С в вакууме при давлении 13,3 Па 20 часов. Получают 97 г жидкого материала, который содержит 18 частей на миллион примесей хлора и 30 частей на миллион воды. Выход продукта составляет 78,6%. Продукт характеризуется 1Н и 13В-ямр спектром.
1Н-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 1,45 t (СН3); 3,84 s (СН3); 4,18 q (CH2); 7,41 m (CH); 7,47 m (CH); 8,84 br. s. (CH); 3JH,H=7,3 Гц.
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,6 s.
Пример 21: 1-Бутил-3-метилимидазолин тетрацианоборат получен по вышеуказанной методике.
Продукт характеризуется 1Н и 11В спектрами.
1Н-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 0,97 t (СН3); 1,36 t,q (СН3); 1,83 m (CH2); 3,85 s (СН3); 4,15 t (СН2); 7,35 m (CH); 7,39 m (CH); 8,41 br.s. (CH); 3JH,H=7,3 Гц.
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,7 s.
Пример 22: Тетра-н-бутиламмония тетрацианоборат
Figure 00000042
50,0 г (0,169 моль) тетрабутиламмония, растворенного в 200 см3 воды, добавляют к суспензии 26,0 г (0,169 моль) тетрацианобората калия в 400 см3 воды. Реакционную смесь смешивают в течение 2 часов при комнатной температуре и осаждают (белый твердый материал) на фильтре, промывают 2 порциями 75 см дистиллированной воды. Остаток сушат при температуре 60°С в вакууме при давлении 1,3 Па два дня. Выход продукта составляет 95%. Точка плавления равна 72°С. Продукт характеризуется 1Н и 11В-ЯМР спектром.
1Н-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 1,00 t (4СН3); 1,37 t,q (4CH2); 1,63 m (4СН2); 3,11 m (4СН2); 3JH,H=7,3 Гц.
11B-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,7 s.
Пример 23: Тетра-н-бутилфосфора тетрацианоборат
Figure 00000043
5,89 г (20 ммоль) хлорида тетрабутилфосфора, растворенного в 10 см воды, добавляют к суспензии 3,13 г (20 ммоль) тетрацианобората калия в 100 см воды. Реакционную смесь смешивают в течение 10 часов при комнатной температуре и осаждают (белый твердый материал) на фильтре, промывают 5 порциями 100 см3 дистиллированной воды. Остаток сушат при температуре 60°С в вакууме при давлении 1,3 Па два дня. Получают 5,65 г твердого материала. Выход продукта составляет 75%. Точка плавления равна 79°С. Продукт характеризуется 1Н и 11В-ЯМР спектром.
1Н-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 0,98 t (4СН3); 1,51 m (8CH2); 2,08 m (4СН2); 3JН,Н=7,0 Гц.
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,7 s.
Пример 24: Три-н-гексил (н-тетрадецил)фосфора тетрацианоборат
Figure 00000044
51,4 г (99 ммоль) хлорида три-н-гексил (н-тетрадецил)фосфора, растворенного в 200 см3 дихлорметана, добавляют к раствору 16,07 г (104 ммоль) тетрацианобората калия в 400 см3 воды. Реакционную смесь смешивают магнитной мешалкой в течение 9 часов при комнатной температуре. Фаза дихлорметана отделяется, а водная фаза экстрагируется 2 порциями 100 см и 50 см3 дихлорметана. Объединенный органический раствор промывается 3 частями 100 см3 дистиллированной воды и сушится над сульфатом магния. После фильтрации и выпаривании дихлорметана остаток сушится при температуре 60°С в вакууме при давлении 1,3 Па один день. Получают 57,8 г маслянного материала. Выход продукта составляет 97,5% рассчитанный на хлорид три-н-гексил (н-тетрадецил)фосфора. Продукт характеризуется 1Н и 11В-ЯМР спектром.
1H-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 0,87-0,99 m (4СН3); 1,27-1,41 m (16CH2); 1,41-1.63 m (8СН2); 2.01-2.14 (4СН2).
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,7 s.
Пример 25: 1-Бутил-4-метилпиридиний тетрацианоборат
Figure 00000045
50,0 г (0,269 моль) хлорида 1-бутил-4-метилпиридиния, растворенного в 200 см3 дихлорметана, добавляют к суспензии 42,3 г (0,275 моль) тетрацианобората калия в 400 см3 воды. Реакционную смесь смешивают в течение 3 часов при комнатной температуре и продукт экстрагируют 3 частями 300 см3, 200 см3 и 100 см3 дихлорметана. Раствор дихлорметана отмывается 3 частями 200 см дистиллированной воды. Раствор сушится над сульфатом магния, фильтруется и дихлорметан выпаривается в вакууме. Остаток сушат при температуре 60°С в вакууме при давлении 1,3 Па один день. Получают 56,7 г желтоватого материала. Выход продукта составляет 79,2%. Продукт характеризуется 1H и 11В-ЯМР спектром.
1H-ЯМР спектр (растворитель - CD3CN, внешний стандарт - TMS), δ, ppm: 0,98 t (СН3); 1,38 t,q (CH2); 1,94 m (CH2); 2,65 s (СН3); 4,46 t (CH2); 7,84 d (2CH); 8,50 d (2CH); (CH); 3JН,Н=7,3 Гц, 3JН,Н=6,5 Гц.
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, ppm: - 38,7 s.
Пример 26: Цианотрифторборат лития, Li[B(CN)F3]
Figure 00000046
150 мг (3,5 ммоль) цианида лития растворяют в 0,5 см3 CD3CN, 0,25 см3 (2,0 моль) BF3-этерата добавляется при комнатной температуре. Реакционная смесь смешивается в течение 30 мин. 11В и 19F спектры показывают образование Li[B(CN)F3] (86,5% целевого продукта); Li[B(CN)2F2] (5,5%) и Li[BF4] (8,0%). После фильтрации и выпаривания растворителя Li[B(CN)F3] может быть отделен как твердый материал и очищен кристаллизацией или превращением в K[В(СН)F3] действием КОН в воде, аналогично получению K[B(CN)2F2] (Пример 11, вариант В).
Li[B(CN)F3]
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2О), δ, -3,8 q ppm.
19F-ЯМР спектр (растворитель - CD3CN, внешний стандарт - CCI3F), δ, -141,0 q ppm, JB,F=22 Гц.
Li[B(CN)2F2]
11В-ЯМР спектр (растворитель - CD3CN, внешний стандарт - BF3-Et2O), δ, -7,4 t ppm.
19F-ЯМР спектр (растворитель - CD3CN, внешний стандарт - CCI3F), δ, -155,9 q ppm, JB,F=38 Гц.
Соединение V (ox) V (red) компьютерные данные вязкость точка плавления температура разложения плотность масса
1-гексил-3-метил-имидазолил тетрацианоборат 2,2 -2,3 4,8 64,67 -50 300 0,99 282,15
1-бутил-1-метил-пирролидин тетрацианоборат 2,3 -3,2 5,5 65,54 22 200 0,98 257,14
1-бутил-3-метил-имидазолил тетрацианоборат 2,2 -2,6 4,8 -50 300 254,1
тетрабутиламмония тетрацианоборат 2,1 -2,8 4,9 80 300 357,34
этил-метил-пирролидин тетрацианоборат 2,3 -3,3 5,6 229,09
тетрабутилфосфора тетрацианоборат 2,2 -3,3 5,5 90 374,31
1-бутил-4-метил-пиридиний тетрацианоборат 2,3 -1,7 4 45 300 265,12
1-этил-3-метил-имидазолин тетрацианоборат 2,2 -2,5 4,7 -50 300 220,05
1-этил-3-метил-имидазолин тетрацианоборат 2,2 -2,6 4,8 -50 300 220,05
тетраэтиламмония тетрацианоборат 2,2 -3,1 5,3 245,15

Claims (18)

1. Способ получения цианоборатов щелочных металлов общей формулы (1)
Figure 00000047
в которой М выбирают из группы, которая включает К, отличающийся тем, что тетрафторборат калия вводят в реакцию с цианидом щелочного металла MCN, в котором M=Li, Na, К, в твердофазной реакции и реакция проходит при температурах в интервале между 100°С и 500°С.
2. Способ по п.1, отличающийся тем, что цианид щелочного металла представляет собой KCN или NaCN.
3. Способ по п.1 или 2, отличающийся тем, что тетрафторборат калия вводят в реакцию с цианидом щелочного металла в присутствии галогенида лития, выбранного из LiCl, LiBr и LiI.
4. Способ по п.3, отличающийся тем, что цианид щелочного металла и галогенид лития используют в молярном соотношении 1:1.
5. Способ по п.1, отличающийся тем, что тетрафторборат калия и цианид щелочного металла используют в молярном соотношении от 1:4 до 1:12.
6. Способ получения цианоборатов щелочных металлов общей формулы (1)
Figure 00000047
в которой М выбирают из группы, которая включает Li, Na, К, отличающийся тем, что тетрафторборат калия вводят в реакцию с цианидом щелочного металла MCN, в котором М=Li, Na, К в твердофазной реакции в присутствии галогенида лития, выбранного из LiCl, LiBr, LiI, при температурах в интервале между 100°С и 500°С, и образующийся тетрацианборат калия при необходимости растворяют в воде и подкисляют, эту смесь экстрагируют путем обработки водным раствором NaOH или LiOH.
7. Способ по п.6, отличающийся тем, цианид щелочного металла и галогенид лития используют в молярном соотношении 1:1 и тетрафторборат калия и цианид щелочного металла используют в молярном соотношении от 1:4 до 1:12.
8. Способ получения цианоборатов щелочных металлов общей формулы (2)
Figure 00000048
в которой n=0, 1, 2 или 3
и М выбирают из группы, которая включает Li, Na, К,
отличающийся тем, что цианид щелочного металла MCN вводят в реакцию с бортрифторидэтератом BF3·OEt2 в присутствии апротонного растворителя при температурах от -80 до 100°С.
9. Способ по п.8, отличающийся тем, что цианид щелочного металла вводят в реакцию с бортрифторидэтератом в присутствии ацетонитрила, диэтилового эфира, тетрагидрофурана и/или диметоксиэтана.
10. Способ по п.8 или 9,
отличающийся тем, что используемый цианид щелочного металла представляет собой цианид калия KCN.
11. Способ по п.8, отличающийся тем, что реакцию выполняют при комнатной температуре.
12. Способ получения соли общей формулы (3)
Figure 00000049
в которой n=0, 1, 2 или 3, и Kt+ представляет собой органический катион, при условии, что катион Kt+ не обозначает [N(C4H9)4]+ для n=0,
отличающийся тем, что цианоборат щелочного металла общей формулы M+[B(CN)4]-, в которой М выбирают из группы, которая включает Li, Na, К, полученный по любому из пп.1-7, или цианоборат щелочного металла общей формулы M+[BFn(CN)4-n]-, в которой n=0, 1, 2 или 3 и М выбирают из группы, которая включает Li, Na, К, полученный по одному из пп.8-11 вводят в реакцию с Kt+Х-,
где Х представляет собой галоген, выбранный из Cl, Br и I, и Kt+ представляет собой органический катион,
при условии, что катион Kt+ не обозначает [N(C4H9)4]+ для n=0 и где органический катион Kt+ выбирают из группы, которая включает
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
где R=H, при условии, что, по крайней мере, один R на гетероатоме отличается от Н,
линейный или разветвленный алкил, который имеет 1-20 атомов углерода, линейный насыщенный, частично или полностью ненасыщенный циклоалкил, который имеет 3-7 атомов углерода, где R в каждом случае являются одинаковыми или различными.
13. Способ по п.12, отличающийся тем, что органический катион Kt выбирают из группы, которая включает
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
N(C2H5)4+N(C4H9)4+P(C2H5)4+P(C4H9)4+P(C6H13)3(C14H29)+
14. Соль общей формулы (3)
Figure 00000049
в которой n=0, 1, 2 или 3, и Kt+ представляет собой органический катион, при условии, что катион Kf+ не обозначает [N(C4H9)4] для n=0 и органический катион Kt+ выбирают из группы, которая включает
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
где R=H, при условии, что, по крайней мере, один R на гетероатоме отличается от Н,
линейный или разветвленный алкил, который имеет 1-20 атомов углерода, насыщенный, частично или полностью ненасыщенный циклоалкил, который имеет 3-7 атомов углерода,
где R в каждом случае являются одинаковыми или различными.
15. Соль по п.14, отличающаяся тем, что органический катион Kt+выбирают из группы, которая включает
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
N(C2H5)4+N(C4H9)4+P(C2H5)4+P(C4H9)4+P(C6H13)3(C14H29)+.
16. Применение соли по любому из пп.14, 15 или соли формулы [N(C4H9)4][B(CN)4]- в качестве ионной жидкости.
17. Применение соли по любому из пп.14, 15 или соли формулы [N(C4H9)4][B(CN)4]- в качестве неводного электролита.
18. Применение соли по любому из пп.14, 15 или соли формулы [N(C4H9)4][B(CN)4]- в качестве катализатора фазового переноса.
RU2005128348/04A 2003-02-14 2004-01-15 Соли с цианоборатными анионами RU2337912C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10306617.9 2003-02-14
DE10306617A DE10306617A1 (de) 2003-02-14 2003-02-14 Salze mit Cyanoborat-Anionen

Publications (2)

Publication Number Publication Date
RU2005128348A RU2005128348A (ru) 2006-04-10
RU2337912C2 true RU2337912C2 (ru) 2008-11-10

Family

ID=32747947

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005128348/04A RU2337912C2 (ru) 2003-02-14 2004-01-15 Соли с цианоборатными анионами

Country Status (11)

Country Link
US (1) US7645434B2 (ru)
EP (3) EP1726594B1 (ru)
JP (1) JP4718438B2 (ru)
KR (4) KR101287689B1 (ru)
CN (3) CN100361997C (ru)
AT (3) ATE368044T1 (ru)
CA (2) CA2771069C (ru)
DE (4) DE10306617A1 (ru)
ES (1) ES2271837T3 (ru)
RU (1) RU2337912C2 (ru)
WO (1) WO2004072089A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575352C2 (ru) * 2010-01-18 2016-02-20 Мерк Патент Гмбх Способ получения перфторалкилциано- или перфторалкилцианофторборатов

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939644B2 (en) * 2003-08-21 2011-05-10 Merck Patent Gmbh Cyanoborate, fluoroalkylphosphate, fluoroalkylborate or imide dyes
GB0407908D0 (en) 2004-04-07 2004-05-12 Univ York Ionic liquids
DE102004051278A1 (de) * 2004-10-21 2006-04-27 Merck Patent Gmbh Neue borhaltige starke Säuren, deren Herstellung und Verwendung
EP1819005A1 (en) * 2006-02-13 2007-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) Ionic liquid electrolyte
JP4652359B2 (ja) * 2007-03-09 2011-03-16 日本合成化学工業株式会社 イオン液体の分解処理方法
EP2279172B1 (de) 2008-05-26 2013-06-26 Merck Patent GmbH Verwendung von ionischen flüssigkeiten mit tetracyanoboratanionen als lösungsmittel zur extraktion von alkoholen aus wässrigen lösungen
JP5583899B2 (ja) * 2008-06-04 2014-09-03 株式会社日本触媒 イオン性化合物の製造方法
WO2010021391A1 (ja) 2008-08-22 2010-02-25 日宝化学株式会社 イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料
DE102008048015A1 (de) * 2008-09-19 2010-03-25 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Alkalimetallcyanoborat
US8283497B2 (en) * 2009-02-02 2012-10-09 Lonza Ltd. Tricyanoborates
DE102009037300A1 (de) 2009-08-14 2011-02-17 Merck Patent Gmbh Tetracyanoborate als Schmierstoffe
KR20120120314A (ko) * 2010-01-18 2012-11-01 메르크 파텐트 게엠베하 전해질 조성물
KR20120120315A (ko) * 2010-01-18 2012-11-01 메르크 파텐트 게엠베하 전해질 조성물
KR20120131160A (ko) 2010-01-18 2012-12-04 메르크 파텐트 게엠베하 퍼플루오로알킬시아노? 또는 퍼플루오로알킬시아노플루오로보레이트의 제조방법
JP5595294B2 (ja) * 2010-01-22 2014-09-24 株式会社日本触媒 蓄電デバイスの電解液用添加剤およびこれを含む電解液
BR112012027021A2 (pt) * 2010-04-22 2018-03-20 Genesis Laboratories Inc composições e métodos para o controle de moscas de areia e outros insetos sugadores de sangue
EP2388853A1 (en) 2010-05-20 2011-11-23 Fundacion Cidetec Ionic liquid based electrolytes containing sulfide/polysulfide redox couple and uses thereof
JP5950916B2 (ja) * 2010-09-28 2016-07-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung シアノ−アルコキシ−ボレートアニオンを含む電解質配合物
KR101779243B1 (ko) * 2010-09-30 2017-09-18 메르크 파텐트 게엠베하 전해질 제제, 전기화학 및/또는 광전자 디바이스
CN103384687A (zh) 2010-11-30 2013-11-06 默克专利有限公司 电泳显示器用粒子
JP6025741B2 (ja) 2010-12-08 2016-11-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 色素増感太陽電池のための添加剤
CN103370827B (zh) * 2011-01-21 2016-02-17 株式会社日本触媒 离子性化合物及其制备方法以及使用了该离子性化合物的电解液和蓄电装置
US9518068B2 (en) * 2011-05-31 2016-12-13 Merck Patent Gmbh Compounds containing hydrido-tricyano-borate anions
EP2715858A1 (en) 2011-05-31 2014-04-09 Merck Patent GmbH Electrolyte formulations
DE102011103754A1 (de) * 2011-05-31 2012-12-06 Merck Patent Gmbh Verfahren zur Herstellung von Dihydridodicyanoborat-Salzen
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
WO2013010641A1 (en) * 2011-07-15 2013-01-24 Merck Patent Gmbh Compounds containing alkyl-cyano-borate or alkyl-cyano-fluoroborate anions
WO2013026563A1 (en) 2011-08-25 2013-02-28 Merck Patent Gmbh Additives for dye-sensitized solar cells
JP5813472B2 (ja) * 2011-09-06 2015-11-17 株式会社日本触媒 テトラシアノボレート塩の製造方法
EP2623457A1 (en) * 2012-02-02 2013-08-07 VTU Holding GmbH Use of an ionic liquid for storing hydrogen
CN104093814B (zh) 2012-02-08 2017-02-15 默克专利股份有限公司 具有导电性添加剂的反应性介晶组合物
WO2014029834A1 (en) * 2012-08-24 2014-02-27 Lonza Ltd Method for the preparation of tetraalkylammonium tetracyanidoborates
WO2014029833A1 (en) * 2012-08-24 2014-02-27 Lonza Ltd Method for the preparation of tetraalkylammonium or tetraalkylphosphonium|tricyanidofluoroborates
US9269958B2 (en) * 2012-12-07 2016-02-23 Samsung Electronics Co., Ltd. Cathode and all-solid battery including the same
EP2772495A1 (en) * 2013-03-01 2014-09-03 Lonza Ltd Method for preparation of tricyanidofluoroborates in 2 steps
DE102013009959A1 (de) * 2013-06-14 2014-12-31 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Salzen mit Hydridocyanoborat-Anionen
DE102013013502A1 (de) 2013-08-16 2015-03-12 Julius-Maximilians-Universität Würzburg Hexacyanodiborate
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
JP2015103288A (ja) 2013-11-21 2015-06-04 ソニー株式会社 二次電池、電池パック、電動車両および電力貯蔵システム
WO2015186568A1 (ja) * 2014-06-04 2015-12-10 株式会社トクヤマ 非水電解液およびそれを用いた蓄電デバイス
DE102014008130A1 (de) 2014-06-06 2015-12-17 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Tetracyanoboratsalzen
DE102014014967A1 (de) * 2014-10-14 2016-04-14 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Verbindungen mit Monofluorotricyanoborat-Anionen
CN116092839A (zh) 2015-01-27 2023-05-09 快帽系统公司 宽温度范围超级电容器
DE102016001344A1 (de) 2015-09-10 2017-03-16 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Kaliummonofluorotricyanoborat
US10323150B2 (en) 2015-09-25 2019-06-18 Nippon Kayaku Kabushiki Kaisha Azo compound, ink composition, ink jet recording method, and colored article
DE102015016401A1 (de) 2015-12-18 2017-06-22 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Salzen mit Monofluorotricyanoboratanionen
DE102015016400A1 (de) 2015-12-18 2017-06-22 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Salzen mit Perfluoralkyltricyanoboratanionen oder Tetracyanoboratanionen
DE102016009846A1 (de) 2016-08-16 2018-02-22 Julius-Maximilians-Universität Würzburg Fluoralkylhydrido- und Fluoralkylcyanohydridoborate
JP2021141101A (ja) * 2020-03-02 2021-09-16 日清紡ホールディングス株式会社 蓄電デバイス用電解液およびイオン液体
CN115477308B (zh) * 2022-08-28 2023-05-02 兰州理工大学 一种一步法常温制备四氟硼酸钠的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301129A (en) * 1978-09-18 1981-11-17 Thiokol Corporation Synthesis of NaBH3 CN and related compounds
JPH07116113B2 (ja) 1987-05-14 1995-12-13 三菱化学株式会社 四級アンモニウム無機酸塩の製造方法
US4892944A (en) * 1987-05-13 1990-01-09 Mitsubishi Petrochemical Co., Ltd. Process for producing quaternary salts
DE10055811A1 (de) 2000-11-10 2002-05-29 Merck Patent Gmbh Tetrakisfluoroalkylborat-Salze und deren Verwendung als Leitsalze
CN1449069A (zh) * 2002-04-02 2003-10-15 株式会社日本触媒 电解质溶液用材料及其用途
JP4467247B2 (ja) 2002-04-02 2010-05-26 株式会社日本触媒 新規溶融塩を用いたイオン伝導体
JP4127788B2 (ja) * 2002-11-22 2008-07-30 株式会社トクヤマ オニウム塩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.BERNARDT et al ZEITSHRIFT fur ANORGANISHE und ALLGEMEINE CHEMIE, 626(2), 560-568, 2000. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575352C2 (ru) * 2010-01-18 2016-02-20 Мерк Патент Гмбх Способ получения перфторалкилциано- или перфторалкилцианофторборатов

Also Published As

Publication number Publication date
CN101108861B (zh) 2010-06-16
ATE340799T1 (de) 2006-10-15
DE502004001603D1 (de) 2006-11-09
WO2004072089A1 (de) 2004-08-26
ES2271837T3 (es) 2007-04-16
CA2771069C (en) 2012-09-18
EP1592696B1 (de) 2006-09-27
DE502004004472D1 (de) 2007-09-06
JP2006517546A (ja) 2006-07-27
KR101287689B1 (ko) 2013-07-24
KR101010558B1 (ko) 2011-01-24
CN101108759A (zh) 2008-01-23
EP1726593B1 (de) 2007-07-25
KR101105618B1 (ko) 2012-01-18
KR20110110873A (ko) 2011-10-07
CA2515856C (en) 2013-05-14
CA2515856A1 (en) 2004-08-26
ATE368044T1 (de) 2007-08-15
EP1726594A1 (de) 2006-11-29
KR20120081640A (ko) 2012-07-19
RU2005128348A (ru) 2006-04-10
CA2771069A1 (en) 2004-08-26
CN100572385C (zh) 2009-12-23
US7645434B2 (en) 2010-01-12
KR20100130645A (ko) 2010-12-13
CN1751053A (zh) 2006-03-22
DE10306617A1 (de) 2004-08-26
US20060222584A1 (en) 2006-10-05
EP1726593A1 (de) 2006-11-29
ATE368045T1 (de) 2007-08-15
CN101108861A (zh) 2008-01-23
CN100361997C (zh) 2008-01-16
EP1726594B1 (de) 2007-07-25
EP1592696A1 (de) 2005-11-09
JP4718438B2 (ja) 2011-07-06
KR20050100685A (ko) 2005-10-19
DE502004004471D1 (de) 2007-09-06

Similar Documents

Publication Publication Date Title
RU2337912C2 (ru) Соли с цианоборатными анионами
JP6978361B2 (ja) リチウム塩錯化合物の製造方法
EP1636173A2 (de) Ionische flüssigkeiten mit guanidinium-kationen
EP2491013B1 (de) Lithiumsalze von Pentafluorphenylamid-Anionen, ihre Herstellung und ihre Verwendung
JP2011201879A (ja) [n(cf3)2]−アニオンを有するイオン液体
AU2005238128A1 (en) Ionic liquids comprising fluoralkyltriffluoroborate anions
EP2279192B1 (en) Ionic liquids
US6943263B2 (en) Method for producing bis(trifluoromethyl)imido salts
JP2004203763A (ja) 疎水性スルホニウム塩
JP2005515194A (ja) 低い融点を有するリンホウ酸塩
RU2575352C2 (ru) Способ получения перфторалкилциано- или перфторалкилцианофторборатов
Bejan The Strong NH Acid Bis [bis (pentafluoroethyl) phosphinyl] imide, H [(C2F5) 2P (O)} 2N] Salts and Ionic Liquids
PL203064B1 (pl) Imidazoliowe ciecze jonowe i sposób wytwarzania imidazoliowych cieczy jonowych

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190116