WO2015186568A1 - 非水電解液およびそれを用いた蓄電デバイス - Google Patents

非水電解液およびそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2015186568A1
WO2015186568A1 PCT/JP2015/065088 JP2015065088W WO2015186568A1 WO 2015186568 A1 WO2015186568 A1 WO 2015186568A1 JP 2015065088 W JP2015065088 W JP 2015065088W WO 2015186568 A1 WO2015186568 A1 WO 2015186568A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aqueous electrolyte
carbonate
battery
electrolytic solution
Prior art date
Application number
PCT/JP2015/065088
Other languages
English (en)
French (fr)
Inventor
永倉 直人
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014226602A external-priority patent/JP2017134888A/ja
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2015186568A1 publication Critical patent/WO2015186568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and an electricity storage device using the non-aqueous electrolyte.
  • a low-viscosity organic solvent such as a mixed solvent of ethylene carbonate and ethyl methyl carbonate
  • most low-viscosity organic solvents are vapors.
  • an electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent is used as an electrolytic solution used in an electricity storage device such as the secondary battery.
  • a nonaqueous solvent for example, a mixed solvent such as ethylene carbonate, propylene carbonate, and diethyl carbonate is generally used. LiPF 6 , LiBF 4 or the like is used as the lithium salt.
  • a negative electrode active material of a lithium ion secondary battery a carbonaceous material capable of inserting and extracting lithium ions, and a metal or alloy-based material using silicon or tin etc. aiming at high capacity, etc.
  • carbonaceous materials such as natural graphite, artificial graphite, and amorphous carbon are mainly used.
  • a transition metal composite oxide capable of inserting and extracting lithium ions is used. Typical examples of transition metals are cobalt, nickel, manganese, iron and the like.
  • Such a lithium ion secondary battery uses a highly active positive electrode and negative electrode, and it is known that the charge / discharge capacity decreases due to a side reaction between the electrode and the electrolyte, improving battery characteristics. Therefore, various studies have been made on nonaqueous solvents and electrolytes that are constituent elements of the electrolytic solution.
  • the compounds used as the electrolyte are mainly LiPF 6 and LiBF 4 .
  • LiPF 6 is preferably used.
  • Li bistrifluoromethyl sulfonic acid imide TFSI
  • Li bisfluoro sulfonic acid imide FSI
  • LiClO 4 lithium bis [pentafluoroethanesulfonyl] imide, lithium [trifluoromethanesulfonyl] [nonafluorobutanesulfonyl] imide
  • Lithium salts such as lithium tris [pentafluoroethyl] trifluorophosphate are also being studied.
  • An electrolyte solution containing an ionic compound represented by Mn + ([B (CN) 4 ⁇ m Y m ] ⁇ ) n is also known (Mn may be Li.
  • M, Y and n are Patent Documents 1 to 3).
  • lithium salt compounds specifically shown in Examples of Patent Documents 1 to 3 are lithium cyano (fluoro) oxalyl borate, lithium dicyanooxalyl borate, lithium Only tricyanomethoxyborate and lithium tricyanoethoxyborate.
  • LiPF 6 conventionally used as an electrolyte salt is extremely susceptible to hydrolysis and is a compound having poor thermal stability, and is known to decompose at 60 ° C. or higher.
  • various additives are added to increase the decomposition start temperature, and the decomposition start temperature in the electrolyte is improved to 150 ° C or higher, but this compound is fundamentally anxious. Since it is qualitative and reduces the useful life and performance of lithium batteries, it is difficult to use under extreme conditions such as high temperatures.
  • lithium salts have electrochemical stability, solubility in solvents, ionic conductivity, purity, corrosiveness to current collectors, and price problems, and those that exceed the above LiPF 6 and LiBF 4 appear Not done.
  • lithium cyano (fluoro) oxalyl borate, lithium dicyano oxalyl borate, lithium tricyanomethoxy borate and lithium tricyanoethoxy borate are considered to be compounds having a C ⁇ O bond or an alkoxy group. There is room for improvement in that the electrical conductivity when dissolved in an organic solvent is not large.
  • the present inventors have made extensive studies, and in a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a chain carbonate, a cyclic carbonate, a chain ester, a lactone and an ether are used.
  • the inventors have found that the above problems can be solved by containing one or more specific cyanofluoroborate / lithium salts in a non-aqueous solvent containing at least one selected, and completed the present invention.
  • the present invention relates to the following [1] to [7], for example.
  • An electricity storage device comprising the positive electrode, the negative electrode, and the nonaqueous electrolytic solution according to any one of [1] to [5].
  • the electricity storage device which is a lithium battery, a lithium ion battery, or a lithium ion capacitor.
  • a nonaqueous electrolytic solution capable of improving stability at high temperature and conductivity at low temperature, and an electricity storage device using the same. Specifically, by dissolving a predetermined amount of cyanofluoroborate salt in a specific non-aqueous organic solvent, it has the same electrical conductivity at room temperature as that of a known electrolytic solution, and it has high conductivity at low temperatures, and thermal decomposition. An electrolyte having a high temperature and a wide operating temperature range can be obtained.
  • lithium batteries and lithium batteries that are suitably used as non-aqueous electrolytes for on-vehicle energy storage devices or non-aqueous electrolytes for large-sized batteries for storing natural energy, are less susceptible to deterioration in electrochemical properties at high temperatures, and operate in low-temperature environments.
  • An electric storage device such as an ion battery or a lithium ion capacitor can be obtained.
  • Non-aqueous electrolyte In the nonaqueous electrolytic solution of the present invention, a lithium salt described below as an electrolyte salt is dissolved in a nonaqueous solvent.
  • the nonaqueous electrolytic solution of the present invention contains, as an electrolyte salt, a lithium salt containing at least one cyanofluoroborate / lithium salt represented by the following general formula (I) (hereinafter also referred to as lithium salt (I)). .
  • Li ⁇ BF X (CN) 4-X (I) In the above formula, X is an integer of 1 to 3. That is, Li ⁇ BF (CN) 3 , Li ⁇ BF 2 (CN) 2 and Li ⁇ BF 3 (CN) are used as the lithium salt (I) in the present invention.
  • X is 0, that is, Li ⁇ B (CN) 4 has problems of insufficient electrochemical stability and low electrical conductivity at low temperatures.
  • LiBF 4 has a problem of low electrical conductivity.
  • a compound substituted with another group instead of the fluorine atom (F) has problems of low electrochemical stability and low electrical conductivity.
  • the lithium salt (I) has an effect of sufficient electrochemical stability and high electrical conductivity particularly at a low temperature because the boron atom is substituted with both a fluorine atom and a cyano group.
  • the thermal decomposition temperature of the lithium salt (I) is 160 ° C. or higher, and all three can be suitably used. Among them, Li ⁇ BF 2 (CN) 2 and Li ⁇ BF (CN) 3 have decomposition temperatures. Since it is 180 degreeC or more, it is more suitable. Specifically, the thermal decomposition temperature of Li ⁇ BF 2 (CN) 2 was 190 ° C., and the thermal decomposition temperature of Li ⁇ BF (CN) 3 was 240 ° C. (this thermal decomposition temperature is shown in the examples below).
  • Li ⁇ BF 2 (CN) 2 has a high decomposition temperature, and in addition, the conductivity when dissolved in an organic solvent is the conductivity when other cyanofluoroborate salts are dissolved at the same concentration. It is particularly suitable because it is higher and has sufficient oxidation resistance.
  • Li ⁇ BF 2 (CN) 2 and Li ⁇ BF (CN) 3 are also stable against water.
  • the lithium salt used in the non-aqueous electrolyte of the present invention may be mixed with the above-mentioned lithium salt (I) and other lithium salts.
  • the other lithium salt existing lithium other than the lithium salt (I) may be used.
  • a salt can be used without particular limitation.
  • lithium salts include CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , lithium bisoxalatoborate, lithium difluorooxalatoborate, lithium tetrafluorooxalate phosphate, lithium difluorobisoxalatophosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , organic lithium salts such as LiPF 3 (C 2 F 5 ) 3, and LiPF 6 , LiBF 4 , Li
  • the other lithium salts may be used alone or in combination of two or more.
  • the blending ratio of these other lithium salts is preferably less than 50 mol%, more preferably 30 mol% or less in the total lithium salt.
  • the total lithium salt is the total of lithium salts contained in the non-aqueous electrolyte, that is, the total of the lithium salt (I) and other lithium salts.
  • the other lithium salt is blended, depending on the salt to be blended, the viscosity of the non-aqueous electrolyte increases and the electrical conductivity decreases, or the electrochemical stability and high-temperature stability of the non-aqueous electrolyte decrease. There is a fear. Therefore, an embodiment in which no other lithium salt is contained is preferable.
  • the content of all lithium salts contained in the nonaqueous electrolytic solution is preferably 0.3 to 4 mol / L, and usually 0.3 mol / L in the nonaqueous electrolytic solution.
  • it is 0.5 mol / L or more, More preferably, it is 0.7 mol / L or more, Usually, 4 mol / L or less, More preferably, it is 3 mol / L or less, More preferably, it is 1.5 mol / L or less. If it is this density
  • the content of the lithium salt (I) in the non-aqueous electrolyte is preferably 0.3 to 4 mol / L, more preferably 0.5 to 3 mol / L, and still more preferably 0.7 to 1.5 mol. / L.
  • the lithium salt (I) can be synthesized by a known method.
  • a lithium metal cyanide compound is dissolved in an organic solvent such as acetonitrile and acetone, and BF 3 gas is blown, or a lithium metal
  • a cyanide compound is reacted with a BF 3 addition compound such as boron trifluoride ether BF 3 ⁇ OEt 2 in the presence of an aprotic solvent such as acetonitrile, diethyl ether, tetrahydrofuran and dimethoxyethane.
  • potassium, sodium, such as magnesium and calcium, cyanide of an alkali metal or alkaline earth metal other than lithium the above BF 3 gas in the resulting solution is dissolved in an organic solvent BF 3 adduct such as boron trifluoride ether BF 3 ⁇ OEt 2 is allowed to act in the presence of an aprotic solvent to synthesize a corresponding alkali metal or alkaline earth metal salt of cyanofluoroborate,
  • the synthesized lithium salt (I) when used for the non-aqueous electrolyte of the present invention, it is preferable to sufficiently remove impurities by, for example, sufficiently washing with water and drying.
  • the metal concentration other than Li is 1000 ppm or less, Na is 20 ppm or less, K is 10 ppm or less, Ca is 10 ppm or less, Fe is 3 ppm or less, and Pb is 10 ppm or less.
  • Preferable (both lithium salt (I) is 100% by mass).
  • Nonaqueous solvent Battery electrolytes are required to have 1) electrochemical stability in the range of use, 2) high solubility in electrolyte salts, and 3) high electrical conductivity due to low viscosity.
  • lithium ion batteries have a charge / discharge potential of about 0 to 4.5 V vs. Li + / Li, which is very wide compared to other batteries, and the solvents that can be used are limited.
  • the organic solvent (nonaqueous solvent) used in the nonaqueous electrolytic solution of the present invention contains at least one selected from the group consisting of a chain carbonate, a cyclic carbonate, a chain ester, a lactone and an ether. This non-aqueous solvent does not contain water.
  • Examples of the organic solvent that can be used in the present invention include the following organic solvents (non-aqueous solvents).
  • chain carbonate a chain carbonate having 3 to 6 carbon atoms is preferable.
  • Specific examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • cyclic carbonate a cyclic carbonate having 3 to 6 carbon atoms is preferable.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • the chain ester is preferably a chain ester having 3 to 6 carbon atoms.
  • Specific examples of the chain ester include ethyl propionate, methyl propionate, ethyl acetate, and methyl acetate.
  • lactones examples include lactones having 3 to 6 carbon atoms.
  • Specific examples of the lactone include ⁇ -butyrolactone.
  • the ether is preferably an ether having 3 to 8 carbon atoms.
  • Specific ethers include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, and triethylene glycol dimethyl ether.
  • organic solvents nonaqueous solvents
  • those that are solid when the electrolytic solution is prepared or used are mixed with the above-mentioned other organic solvents (nonaqueous solvents) that are liquid. It can be used as a mixed solvent.
  • Organic solvents other than the above are usually unsuitable as electrolytes because of insufficient electrochemical stability, low solubility of electrolyte salts, high viscosity and low electrical conductivity.
  • the above solvents may be used alone or in combination of two or more.
  • a high dielectric constant solvent such as cyclic carbonates
  • a low viscosity solvent such as chain carbonates and chain esters.
  • a chain carbonate or a cyclic carbonate should be used as a non-aqueous solvent.
  • a mixed solvent of a chain carbonate and a cyclic carbonate it is preferable to use.
  • the viscosity of the electrolytic solution can be easily adjusted and the electrical conductivity can be increased when the linear carbonate content in the mixed solvent is 15% or more by volume% (23 ° C.). Therefore, it is suitable.
  • the chain carbonate content is 90% or less in terms of volume% (23 ° C.)
  • a decrease in electrical conductivity due to a decrease in the dielectric constant of the solvent can be reduced.
  • the chain carbonate content is preferably 15% to 90%
  • the cyclic carbonate content is preferably 10% to 85%
  • the chain carbonate content is 20% to 85%.
  • the cyclic carbonate content is 15% to 80%, the chain carbonate content is 25% to 80%, and the cyclic carbonate content is 20% to 75%. Preferred (however, the total volume% of the chain carbonate and cyclic carbonate at 23 ° C. is 100%).
  • the chain carbonate content is 40% or more and 85% or less, and the ethylene carbonate content is 15% or more and 60%.
  • the chain carbonate content is preferably 45% or more and 80% or less, and the ethylene carbonate content is more preferably 20% or more and 55% or less.
  • the non-aqueous electrolyte of the present invention may also contain an additive used for an existing battery or an electric double layer capacitor electrolyte.
  • the electrolyte for a lithium ion battery contains various additives for the purpose of flame retardancy and cycle characteristics improvement, but the existing additive can be used as it is for the non-aqueous electrolyte.
  • the additive include unsaturated carbonates containing double bonds and fluorinated carbonates.
  • the unsaturated carbonate containing a double bond include vinylene carbonate and vinyl ethylene carbonate.
  • the fluorinated carbonate include a fluorinated dimethyl carbonate derivative and a fluorinated ethyl methyl carbonate derivative. And fluorinated diethyl carbonate derivatives.
  • the mainstream hexafluorophosphate lithium salt starts to decompose at around 60 ° C. and is essentially unstable to water, and is a sensitive compound that decomposes by reacting with moisture. It is.
  • a lithium ion battery or the like reacts with a solvent or the like at the time of charging, and moisture can easily be generated by the reaction. Therefore, even if the reaction is suppressed by an additive or the like, the deterioration of the electrolyte salt is considered to proceed essentially.
  • the thermal decomposition temperature of the lithium salt (I) used in the present invention is 160 ° C or higher
  • the thermal decomposition temperature of a suitable compound is 180 ° C or higher
  • the thermal decomposition temperature of a more preferable compound is 200 ° C or higher.
  • This thermal decomposition temperature is a value measured by the method described in the Examples below). Therefore, it is considered stable at high temperatures because of the inherent stability of the compounds.
  • the non-aqueous electrolyte of the present invention exhibits high conductivity, particularly high ion conductivity even at low temperatures, is not necessarily clear, but the ion diameter of the anion of the lithium salt (I) that is an electrolyte salt and This is because the molecular weight is relatively small, especially with respect to the ion diameter and molecular weight of the hexafluorophosphate anion, and because the symmetry is small, it is difficult to precipitate and the polarity of the anion is small and the interaction between compounds is small. It is believed that there is.
  • the non-aqueous electrolyte can be used for power storage devices such as lithium batteries (lithium primary batteries), lithium ion batteries (lithium secondary batteries), and lithium ion capacitors. Among these, it is more preferable to use as a lithium battery and a lithium ion battery, and it is most preferable to use as a lithium ion battery. Further, the nonaqueous electrolytic solution may be used in a gel form as well as in a liquid form. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte.
  • the electricity storage device of the present invention uses lithium salt (I) as a non-aqueous electrolyte, so that it has little deterioration even when stored at a high temperature of 60 ° C. or higher, and has an electrical conductivity higher than that of an existing electrolyte from room temperature to low temperature. It can be made into an electrolyte that is electrochemically stable.
  • the lithium battery includes a negative electrode, a positive electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolytic solution of the present invention.
  • the lithium battery has the same configuration as the known lithium battery except for the non-aqueous electrolyte.
  • the positive electrode and the negative electrode are laminated through a porous film impregnated with the non-aqueous electrolyte, and these are the cases. It has the form stored in. Therefore, the shape of the lithium battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • At least one selected from the group consisting of lithium and lithium alloys is used as an active material.
  • the positive electrode contains a positive electrode active material, and preferably further contains a conductive material and a binder.
  • a positive electrode active material materials commonly used in the field of lithium batteries can be used as they are, and among them, metal oxides such as manganese dioxide, graphite fluoride, thionyl chloride and the like can be preferably used.
  • Manganese dioxide is particularly preferable because of its good discharge characteristics.
  • the non-aqueous electrolyte of the present invention using a lithium salt (I) is a battery that can be discharged at a current higher than that of an existing lithium battery from room temperature to low temperature with little deterioration even when stored at a high temperature of 60 ° C. or higher. Can do.
  • ⁇ Lithium ion battery> The lithium ion battery includes a negative electrode and a positive electrode that can occlude and release lithium ions, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolytic solution of the present invention.
  • the lithium ion battery is the same as the known lithium ion battery in terms of the configuration other than the non-aqueous electrolyte, and usually the positive electrode and the negative electrode are laminated through the porous film impregnated with the non-aqueous electrolyte, These have the form accommodated in the case. Therefore, the shape of the lithium ion battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • a negative electrode used for a lithium ion battery has a negative electrode active material layer on a current collector.
  • the negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
  • the positive electrode active material is preferably a material containing lithium and at least one transition metal. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds. These positive electrode active materials may be used alone or in any combination of two or more.
  • Lithium ion batteries have excellent electrochemical characteristics at high temperatures even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher.
  • the lithium ion battery according to the present invention can be charged and discharged at ⁇ 40 to 100 ° C.
  • the non-aqueous electrolyte of the present invention using a lithium salt (I) is a secondary that can be charged and discharged at a current higher than that of an existing lithium ion battery from room temperature to low temperature even when stored at a high temperature of 60 ° C. or higher. It can be a battery.
  • a lithium ion capacitor is a power storage device that uses a carbon material such as graphite as a negative electrode and stores energy using lithium ion intercalation thereto.
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, those using a ⁇ -conjugated polymer electrode doping / dedoping reaction, and the like.
  • LIC Since the above-described electrolytic solution is used as the electrolytic solution, LIC can achieve both electrochemical stability at high temperature and high conductivity at low temperature.
  • Example 1-1 25 ml of diethyl carbonate was added to 33 g of ethylene carbonate and dissolved, and 5.39 g of Li ⁇ BF 2 (CN) 2 was added and stirred to dissolve completely. 1: 1 (23 ° C. volume ratio) of ethylene carbonate and diethyl carbonate ) A non-aqueous electrolyte solution in which Li ⁇ BF 2 (CN) 2 was dissolved in a mixed solvent at a concentration of 1 mol / L was prepared.
  • the electrical conductivity and electrochemical stability at 23 ° C., 0 ° C. and ⁇ 10 ° C. of the obtained nonaqueous electrolytic solution were measured.
  • the measurement results are shown in Table 1.
  • the measurement result of the cyclic voltammogram of the non-aqueous electrolyte is shown in FIG.
  • Example 1-2 Except for using 5.74 g of Li ⁇ BF (CN) 3, the mixture was mixed with a mixed solvent of ethylene carbonate and diethyl carbonate in a 1: 1 (23 ° C. volume ratio) mixed solvent of Li ⁇ BF (CN). ) A nonaqueous electrolytic solution in which 3 was dissolved at a concentration of 1 mol / L was prepared.
  • the electrical conductivity and electrochemical stability at 23 ° C., 0 ° C. and ⁇ 10 ° C. of the obtained non-aqueous electrolyte were measured.
  • the measurement results are shown in Table 1.
  • the measurement result of the cyclic voltammogram of the non-aqueous electrolyte is shown in FIG.
  • the nonaqueous electrolytic solution using the cyanofluoroborate / lithium salt of the present invention has an electrical conductivity even at a low temperature as compared with the conventional nonaqueous electrolytic solution using LiPF 6 or LiBF 4 as the electrolyte salt. Is suitable for use at low temperatures.
  • the non-aqueous electrolyte of the present invention has the same electrical conductivity and electrochemical stability at room temperature as the conventional non-aqueous electrolyte, and the electrolyte salt has a relatively high thermal decomposition temperature, so that the operating temperature range is wide. It can be suitably used as a lithium ion battery electrolyte or a lithium ion capacitor electrolyte.
  • Example 2-1 Comparison of electrical conductivity depending on the solvent of non-aqueous electrolyte
  • GBL ⁇ -butyrolactone
  • Example 2-2 to 2-15 A non-aqueous electrolyte was prepared in the same manner as in Example 2-1, except that the type and concentration of the lithium salt and the type of the non-aqueous solvent were changed as described in Table 2 or 3. The electrical conductivity of was measured. The results are shown in Table 2 or 3. Li ⁇ BF 2 (CN) 2 is 0.52 g when the concentration of the electrolytic solution is 0.5 mol / L, 1.04 g when the concentration is 1.0 mol / L, and 2 when the concentration is 2.0 mol / L. 0.08 g was used, and Li ⁇ BF (CN) 3 was used at 0.58 g when the concentration of the electrolytic solution was 0.5 mol / L and 1.15 g when 1.0 mol / L was used.
  • Li ⁇ BF 2 (CN) 2 and Li ⁇ BF (CN) 3 which are cyanofluoroborate / lithium salts, are used for organic solvents such as lactones, ethers, chain carbonates and cyclic carbonates. It dissolves in a wide concentration and shows high electrical conductivity. Therefore, it can be suitably used as an electrolyte for lithium ion batteries or an electrolyte for lithium ion capacitors.
  • Example 3 In the positive electrode, 93 parts of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as an active material, 4 parts of acetylene black as a conductive material, and 3 parts of polyvinylidene fluoride as a binder were slurried into a current collector foil. It was coated with an applicator, dried at 120 ° C. for 10 minutes and then pressed.
  • the negative electrode was prepared in the same process as the positive electrode, using 93 parts of graphite as an active material, 2 parts of acetylene black as a conductive material, and 5 parts of polyvinylidene fluoride as a binder.
  • the electrolytic solution used was a solvent obtained by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 at 23 ° C. as a solvent, and Li ⁇ BF 2 (CN) dried at 70 ° C. for 12 hours under reduced pressure.
  • 2 1M (1 defined, 1 mol / L) under an argon atmosphere using a solution such that.
  • the separator used was a polyethylene microporous membrane (thickness 20 ⁇ m, porosity 40%).
  • the positive electrode and negative electrode prepared above were punched out to 30 ⁇ 50 mm 2 and dried at 170 ° C. for 10 hours, respectively, opposed to each other through a separator, inserted into an aluminum laminate, injected with an electrolytic solution, impregnated under reduced pressure, and then vacuumed A single-layer laminate cell (battery) for battery performance evaluation was produced by sealing.
  • the battery produced in Example 3 has a small increase in resistance compared with the battery produced in Comparative Example 3 after high temperature storage (85 ° C., 10 days). It was found to be stable.
  • the battery produced in Example 3 has a higher discharge capacity and lower resistance at a lower temperature than the battery produced in Comparative Example 3, and thus has superior battery performance at low temperatures. I understood that.

Abstract

 高温での安定性と低温での高伝導性を兼ね備えた非水電解液、および前記非水電解液を含む蓄電デバイスを提供する。 非水溶媒中に少なくとも1種のリチウム塩が溶解している非水電解液であって、 前記非水溶媒が、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルよりなる群から選ばれる少なくとも1種を含み、 前記リチウム塩が、下記一般式(I)で表されるシアノフルオロボレート・リチウム塩を少なくとも1種含み、 Li・BFX(CN)4-X …(I) (Xは1~3の整数である) 非水電解液に含まれる全リチウム塩の合計の濃度が0.3~4mol/Lであることを特徴とする非水電解液。

Description

非水電解液およびそれを用いた蓄電デバイス
 本発明は、非水電解液および該非水電解液を用いた蓄電デバイスに関する。
 近年、携帯用電子機器、携帯電話およびビデオカメラなどが急激に普及し、それらに用いられる軽量で高性能の二次電池の需要が大幅に増大した。また、近年、二次電池は、車載用途または自然エネルギーの貯蔵用途などに向けての開発が進められている。車載用途では使用環境温度は-30℃から60℃が想定されており、従来使用されている温度領域より厳しい使用環境が想定され、高温側では電解質の耐久性が求められ、低温側では従来以上のイオン伝導率が求められている。特に高温環境については、セルが大型化されるため、使用環境のみならず、自己発熱によって定常的に比較的高い温度にさらされることになり、高温耐久性の向上は重要な開発課題になってきている。
 また、車載用途または自然エネルギーの貯蔵用途の電池の場合、使用条件として-30℃での作動が想定され、低温でのイオン伝導性も要求される。低温でのイオン伝導度低下を避けるために通常は低粘度の有機溶媒(炭酸エチレンと炭酸エチルメチルとの混合溶媒など)を用いる事が行われているが、ほとんどの低粘度の有機溶媒は蒸気圧が高く、デンドライト析出などにより電池にショートが発生した場合、容易に火災が発生するなど安全性が低下する問題点がある。
 前記二次電池等の蓄電デバイスに用いられている電解液として、多くの場合、非水溶媒にリチウム塩を溶解した電解液が使用されている。さらに、非水溶媒としては、例えば炭酸エチレン、炭酸プロピレン、炭酸ジエチル等の混合溶媒が一般的に使用されている。リチウム塩としてはLiPF6、LiBF4などが用いられている。
 また、リチウムイオン二次電池の負極活物質としては、リチウムイオンを吸蔵および放出することができる炭素質材料、ならびに、高容量化を目指してシリコンまたはスズ等を用いた金属または合金系の材料などが知られ、現在は炭素質材料である天然黒鉛、人造黒鉛、非晶質炭素等が主に用いられている。正極活物質としてはリチウムイオンを吸蔵および放出することができる遷移金属複合酸化物が用いられている。遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等である。
 このようなリチウムイオン二次電池は、活性の高い正極と負極とを使用しているため、電極と電解液との副反応により充放電容量が低下することが知られており、電池特性を改良するために、電解液の構成要素である非水溶媒および電解質について種々の検討がなされている。
 電解質として用いられている化合物は主にLiPF6およびLiBF4である。このうちLiBF4は有機溶媒に溶解性が低く伝導度の面で良好でないため、LiPF6が好適に用いられている。
 その他に、Liビストリフルオロメチルスルフォン酸イミド(TFSI)、Liビスフルオロスルフォン酸イミド(FSI)、LiClO4、リチウムビス[ペンタフルオロエタンスルホニル]イミド、リチウム[トリフルオロメタンスルホニル][ノナフルオロブタンスルホニル]イミド、リチウムシクロヘキサフルオロプロパン-1,3-ビス[スルホニル]イミド、リチウムビス[オキサレート(2-)]ボレート、リチウムトリフルオロメチルトリフルオロボレート、リチウムペンタフルオロエチルトリフルオロボレート、リチウムヘプタフルオロプロピルトリフルオロボレート、リチウムトリス[ペンタフルオロエチル]トリフルオロホスフェートなどのリチウム塩も検討されている。
 また、Mn+([B(CN)4-mm]-nで示されるイオン性化合物を含む電解質液も知られている(MnはLiであってもよい。m、Yおよびnは、特許文献1~3参照)。上記式で規定した化合物は、非常に数多く存在するが、特許文献1~3の実施例に具体的に示されたリチウム塩の化合物は、リチウムシアノ(フルオロ)オキサリルボレート、リチウムジシアノオキサリルボレート、リチウムトリシアノメトキシボレート、リチウムトリシアノエトキシボレートだけである。
特開2014-5261号公報 特開2013-149585号公報 国際公開第2012/099259号
 従来電解質塩として用いられているLiPF6は、極めて加水分解を受けやすく、また、熱安定性が悪い化合物であり60℃以上で分解することが知られている。現行の電解液ではさまざまな添加剤を付加して分解開始温度を上げることが行われており、電解液中の分解開始温度は150℃以上まで向上しているが、根本的にこの化合物は不安定性であり、リチウム電池の耐用年数および性能を低下させるため、高温など極端な条件で使用することは難しい。
 その他のリチウム塩は、電気化学安定性、溶媒に対する溶解性、イオン伝導度、純度、集電体に対する腐食性、さらには、価格の問題があり、上記のLiPF6およびLiBF4を超えるものは出現していない。
 また、リチウムシアノ(フルオロ)オキサリルボレート、リチウムジシアノオキサリルボレート、リチウムトリシアノメトキシボレートおよびリチウムトリシアノエトキシボレートは、C=O結合またはアルコキシ基を有する化合物であるためと考えられるが、電気化学安定性と有機溶媒に溶解させたときの電気伝導度とが大きくないという点で改善の余地があった。
 本発明は、広い範囲で電気化学的に安定であり、高温での安定性を改善でき、特に低温での伝導度を向上できる非水電解液及びそれを用いた蓄電デバイスを提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルから選ばれる少なくとも1種を含む非水溶媒中に特定のシアノフルオロボレート・リチウム塩を1種以上含有することで、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、例えば以下の[1]~[7]に関する。
 [1]非水溶媒中に少なくとも1種のリチウム塩が溶解している非水電解液であって、前記非水溶媒が、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルよりなる群から選ばれる少なくとも1種を含み、前記リチウム塩が、下記一般式(I)で表されるシアノフルオロボレート・リチウム塩を少なくとも1種含み、
Li・BFX(CN)4-X   …(I)
(Xは1~3の整数である)
 非水電解液に含まれる全リチウム塩の合計の濃度が0.3~4mol/Lであることを特徴とする非水電解液。
 [2]前記一般式(I)で表わされるシアノフルオロボレート・リチウム塩の合計の濃度が、0.3~4mol/Lであることを特徴とする[1]に記載の非水電解液。
 [3]前記非水溶媒が、鎖状カーボネートと環状カーボネートとを含むことを特徴とする[1]または[2]に記載の非水電解液。
 [4]蓄電デバイスに用いられることを特徴とする[1]~[3]のいずれかに記載の非水電解液。
 [5]リチウム電池、リチウムイオン電池またはリチウムイオンキャパシタに用いられることを特徴とする[1]~[3]のいずれかに記載の非水電解液。
 [6]正極、負極および[1]~[5]のいずれかに記載の非水電解液を有することを特徴とする蓄電デバイス。
 [7]リチウム電池、リチウムイオン電池またはリチウムイオンキャパシタであることを特徴とする[6]に記載の蓄電デバイス。
 本発明によれば、高温での安定性と特に低温での伝導度などとを向上できる非水電解液及びそれを用いた蓄電デバイスを提供することができる。具体的には、特定の非水系有機溶媒に所定量のシアノフルオロボレート塩を溶解させることで、公知の電解液に比べて室温で同等の電気伝導度を持ち低温では伝導度が高く、熱分解温度も高く、作動温度領域が広い電解液が得られる。特に車載用蓄電デバイス用の非水電解液または自然エネルギー貯蔵用の大型電池の非水電解液として好適に使用され、高温での電気化学特性が低下しにくく、低温環境でも動作するリチウム電池、リチウムイオン電池、またはリチウムイオンキャパシタ等の蓄電デバイスを得ることができる。
実施例1の電解液のサイクリックボルタモグラムの測定結果 実施例2の電解液のサイクリックボルタモグラムの測定結果 実施例7の初期充放電特性の測定結果
 〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩として下記で説明するリチウム塩が溶解されている。
 <リチウム塩>
 本発明の非水電解液は、下記一般式(I)で表されるシアノフルオロボレート・リチウム塩(以下、リチウム塩(I)ともいう。)を1種以上含むリチウム塩を電解質塩として含有する。
Li・BFX(CN)4-X  …(I)
 上記式においてXは1から3の整数である。即ち、Li・BF(CN)3、Li・BF2(CN)2及びLi・BF3(CN)が本発明におけるリチウム塩(I)として使用される。Xが0の場合、即ち、Li・B(CN)4は電気化学安定性が十分でないことと低温での電気伝導度の低さという問題がある。一方、Xが4の場合、即ち、LiBF4は電気伝導度の低さという問題がある。またフッ素原子(F)に代えて他の基で置換された化合物では電気化学安定性の低さと電気伝導度の低さという問題がある。それに対しリチウム塩(I)は、ホウ素原子がフッ素原子およびシアノ基の双方で置換されていることにより、十分な電気化学安定性と特に低温での高電気伝導度という効果を有する。
 リチウム塩(I)の熱分解温度は160℃以上であり3種とも好適に用いることができるが、その中でも、Li・BF2(CN)2およびLi・BF(CN)3は、分解温度が180℃以上であるため、より好適である。具体的には、Li・BF2(CN)2の熱分解温度は190℃であり、Li・BF(CN)3の熱分解温度は240℃であった(この熱分解温度は下記実施例に記載の方法で測定した値である。)。特に、Li・BF2(CN)2は、高い分解温度を有し、それに加え、有機溶媒に溶解させたときの伝導度が他のシアノフルオロボレート塩を同一濃度で溶解させたときの伝導度より高く、また、耐酸化性も十分あるため、特に好適である。
 また、Li・BF2(CN)2およびLi・BF(CN)3は、水に対しても安定である。
 本発明の非水電解液に用いられるリチウム塩は上述のリチウム塩(I)にその他のリチウム塩を混合してもよく、その他のリチウム塩としては、前記リチウム塩(I)以外の既存のリチウム塩を特に制限無く用いることができる。
 その他のリチウム塩としては、CF3SO3Li、LiN(FSO22、LiN(FSO2)(CF3SO2)、LiN(CF3SO22、LiN(C25SO22、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO23、LiC(CF3SO23、LiC(C25SO23、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBF3CF3、LiBF325、LiPF3(CF33、LiPF3(C253等の有機リチウム塩およびLiPF6、LiBF4、LiClO4などの無機リチウム塩などが挙げられる。
 前記その他のリチウム塩は1種単独で用いても、あるいは、2種以上を併用してもよい。
 これらその他のリチウム塩の配合割合は、全リチウム塩中、50モル%未満であることが好ましく、30モル%以下であることがより好ましい。ここで、全リチウム塩とは、非水電解液に含まれるリチウム塩の合計のことであり、つまり、前記リチウム塩(I)とその他のリチウム塩との合計を表わす。
 前記その他のリチウム塩を配合した場合、配合する塩によっては非水電解液の粘度が上昇し電気伝導度が低下したり、非水電解液の電気化学安定性および高温安定性が低下したりするおそれがある。そのため、その他のリチウム塩が含まれない態様が好ましい。
 本発明の非水電解液において、非水電解液に含有される全リチウム塩の含有量は、非水電解液中に0.3~4mol/Lであることが好ましく、通常0.3mol/L以上、より好ましくは0.5mol/L以上、さらに好ましくは0.7mol/L以上であり、通常4mol/L以下、より好ましくは3mol/L以下、さらに好ましくは1.5mol/L以下である。この濃度であれば、電流の媒体であるリチウムイオンの濃度が少なすぎず、電解液の粘度の範囲が適切であり、適切な電気伝導度を得ることができる。
 さらに、非水電解液中の前記リチウム塩(I)の含有量は、好ましくは0.3~4mol/L、より好ましくは0.5~3mol/L、さらに好ましくは0.7~1.5mol/Lである。
 《リチウム塩(I)の製造方法》
 前記リチウム塩(I)は、公知の方法で合成することが可能であり、例えば、アセトニトリルおよびアセトンなどの有機溶媒にリチウム金属のシアン化合物を溶解させBF3ガスを吹き込む方法、または、リチウム金属のシアン化合物を、アセトニトリル、ジエチルエーテル、テトラヒドロフランおよびジメトキシエタン等の非プロトン性溶媒の存在下で、三フッ化ホウ素エーテルBF3・OEt2等のBF3付加化合物と反応させる方法で合成することができる。
 また、上記方法の他には、カリウム、ナトリウム、マグネシウムおよびカルシウム等の、リチウム以外のアルカリ金属またはアルカリ土類金属のシアン化合物を、有機溶媒に溶解させ得られた溶液に上述のBF3ガスを吹き込み、または、非プロトン性溶媒の存在下で三フッ化ホウ素エーテルBF3・OEt2等のBF3付加化合物を作用させ、シアノフルオロボレートの対応するアルカリ金属またはアルカリ土類金属塩を合成し、これに、水酸化リチウム、炭酸リチウム、ハロゲン化リチウムなどの無機リチウム塩を作用させることで塩交換を行い、前記リチウム塩(I)を合成する方法などがある。
 また、合成されたリチウム塩(I)を本発明の非水電解液に用いる際には、例えば、水洗、乾燥などを十分に行い、不純物を十分除去することが好ましい。具体的には、水分濃度は1000ppm以下、Li以外の金属濃度はNaが20ppm以下、Kが10ppm以下、Caが10ppm以下、Feが3ppm以下、Pbが10ppm以下となるよう精製して用いることが好ましい(いずれもリチウム塩(I)を100質量%とする)。
 <非水溶媒>
 電池用電解液には、1)使用範囲の電気化学安定性と、2)電解質塩への高い溶解性と、3)低粘性などによる高い電気伝導性が要求される。特にリチウムイオン電池は充放電の電位が0~4.5V vs Li+/Li程度と他の電池に比して非常に広く、用いることができる溶媒は限定される。
 本発明の非水電解液に用いられる有機溶媒(非水溶媒)は、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルよりなる群から選ばれる少なくとも1種を含む。なお、この非水溶媒は水を含まないものである。本発明において使用可能な有機溶媒としては以下の有機溶媒(非水溶媒)が例示される。
 鎖状カーボネートとしては、炭素数3~6の鎖状カーボネートが好ましい。具体的な鎖状カーボネートとしては、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルが挙げられる。
 環状カーボネートとしては、炭素数3~6の環状カーボネートが好ましい。具体的な環状カーボネートとしては、炭酸エチレン、炭酸プロピレンが挙げられる。
 鎖状エステルとしては、炭素数3~6の鎖状エステルが好ましい。具体的な鎖状エステルとしては、プロピオン酸エチル、プロピオン酸メチル、酢酸エチル、酢酸メチルが挙げられる。
 ラクトンとしては、炭素数3~6のラクトンが挙げられる。具体的なラクトンとしては、γ-ブチロラクトンが挙げられる。
 エーテルとしては、炭素数3~8のエーテルが好ましい。具体的なエーテルとしては、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンおよびトリエチレングリコールジメチルエーテルが挙げられる。
 以上の例示の有機溶媒(非水溶媒)において、電解液の調製時、または電解液の使用時に固体であるものについては、液状である上記他の有機溶媒(非水溶媒)と混合して液状の混合溶媒として使用することができる。
 上記以外の有機溶媒は通常、電気化学安定性が不十分であったり、電解質塩の溶解度が小さい、粘度が高く電気伝導度が小さいなどの理由で電解液として適さない。
 上記溶媒は1種単独で用いても、あるいは、2種以上を併用してもよい。例えば、環状カーボネート類のような高誘電率の溶媒と鎖状カーボネートおよび鎖状エステル類のような低粘度の溶媒とを組み合わせることで、良好な溶解性と高い電気伝導性が得られることが知られていて、これらを好適に用いることができる。
 その中でも、リチウム塩(I)の溶解性と得られる電解液の性能(優れた電気伝導度および電気化学安定性等)とを考慮すると、非水溶媒として鎖状カーボネートまたは環状カーボネートを使用することが好ましく、特に、鎖状カーボネートと環状カーボネートとの混合溶媒を使用することが好ましい。
 前記混合溶媒を使用する場合、混合溶媒中の鎖状カーボネート含有割合が体積%(23℃)として15%以上であると電解液の粘度を調整し易く、かつ電気伝導度を高くすることができるために好適である。また、鎖状カーボネート含有割合が体積%(23℃)として90%以下であると、溶媒の誘電率の低下による電気伝導度の低下を少なくすることができる。そのため、混合溶媒とする場合には、鎖状カーボネート含有割合が15%以上90%以下、環状カーボネート含有割合が10%以上85%以下であることが好ましく、鎖状カーボネート含有割合が20%以上85%以下、環状カーボネート含有割合が15%以上80%以下であることがより好ましく、鎖状カーボネート含有割合が25%以上80%以下、環状カーボネート含有割合が20%以上75%以下であることがさらに好ましい(ただし、23℃における鎖状カーボネートと環状カーボネートとの合計体積%は100%とする。)。上記の混合溶媒の中でも、環状カーボネートとして炭酸エチレンを使用した場合には、体積%(23℃)として、鎖状カーボネート含有割合が40%以上85%以下、炭酸エチレン含有割合が15%以上60%以下であることが好ましく、鎖状カーボネート含有割合が45%以上80%以下、炭酸エチレン含有割合が20%以上55%以下であることがより好ましい。
 また、高い電気伝導度を得ることができ、かつ蒸気圧が低いことから、非水溶媒としてラクトンを使用することも好ましい。
 この非水溶媒を含む非水電解液を電池に適用することで、高温での安定性と低温での高伝導率とを両立した電池を提供することができる。
 <添加物>
 本発明の非水電解液はまた、既存の電池用または電気二重層キャパシタの電解液に用いられる添加物を含んでいても良い。リチウムイオン電池用電解液は、難燃化およびサイクル特性向上等の目的で様々な添加剤を含んでいるが、当該非水電解液は既存の添加剤がそのまま使える。添加剤の例としては二重結合を含む不飽和カーボネート、フッ化カーボネートなどが挙げられる。
 二重結合を含む不飽和カーボネートの具体的な例としては、炭酸ビニレン、炭酸ビニルエチレン等が挙げられ、フッ化カーボネートの具体的な例としては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
 ≪非水電解液の特性≫
 本発明の非水電解液が、高温下でのサイクル特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。
 現在主流である六フッ化フォスフェート・リチウム塩(LiPF6)は60℃付近から分解を始めると共に、本質的には水に対して不安定であり、水分と反応して分解するなど鋭敏な化合物である。リチウムイオン電池などは充電時に電極で溶媒などが反応し、その反応で水分が容易に生じうる。そのため添加剤などによって反応を抑えても、本質的には電解質塩の劣化は進行すると考えられる。それに対し本発明で用いるリチウム塩(I)の熱分解温度は160℃以上であり、好適な化合物の熱分解温度は180℃以上であり、より好適な化合物の熱分解温度は200℃以上である(この熱分解温度は下記実施例に記載の方法で測定した値である。)。したがって、化合物の本質的な安定性が異なるために、高温下で安定であると考えられる。
 また、本発明の非水電解液が高い伝導度を示し、特に低温であっても高イオン伝導度を示す理由は必ずしも明確でないが、電解質塩であるリチウム塩(I)のアニオンのイオン径および分子量が、特に六フッ化フォスフェートアニオンのイオン径および分子量に対して比較的小さいこと、対称性が小さい為、析出しにくいことおよびアニオンの極性が小さく化合物間の相互作用が小さいことが原因であると考えられる。
 〔蓄電デバイス〕
 前記非水電解液は、リチウム電池(リチウム一次電池)、リチウムイオン電池(リチウム二次電池)およびリチウムイオンキャパシタ等の蓄電デバイスに使用することができる。その中でも、リチウム電池およびリチウムイオン電池として用いることが更に好ましく、リチウムイオン電池として用いることが最も好ましい。また、非水電解液は、液体状のものだけでなくゲル化して使用してもよい。更に本発明の非水電解液は固体高分子電解質用としても使用できる。
 本発明の蓄電デバイスは、非水電解液にリチウム塩(I)を用いることで、60℃以上の高温で保存しても劣化が少なく、常温から低温まで既存の電解液以上の電気伝導度を持ち、電気化学的にも安定な電解液とする事ができる。
 <リチウム電池>
 リチウム電池は、負極と、正極と、正極と負極との間に配されたセパレータと、前記の本発明の非水電解液とを備えるものである。
 リチウム電池は、非水電解液以外の構成については公知のリチウム電池と同様であり、通常は、前記非水電解液が含浸されている多孔膜を介し正極と負極とが積層され、これらがケースに収納された形態を有する。従って、リチウム電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
 負極には、活物質として、リチウムおよびリチウム合金からなる群より選ばれる少なくとも1種が用いられる。
 正極は、正極活物質を含有し、好ましくは、さらに導電材および結着剤を含む。正極活物質としては、リチウム電池の分野で常用される材料をそのまま使用でき、その中でも、二酸化マンガンなどの金属酸化物、フッ化黒鉛、塩化チオニルなどが好適に使用できる。二酸化マンガンは、放電特性が良好であり、特に好ましい。
 リチウム塩(I)を用いた本発明の非水電解液は、60℃以上の高温で保存しても劣化が少なく、常温から低温まで既存のリチウム電池以上の電流で放電可能な電池とする事ができる。
<リチウムイオン電池>
 リチウムイオン電池は、リチウムイオンを吸蔵および放出し得る、負極および正極と、正極と負極との間に配されたセパレータと、前記の本発明の非水電解液とを備えるものである。
 リチウムイオン電池は、非水電解液以外の構成については、公知のリチウムイオン電池と同様であり、通常は、前記非水電解液が含浸されている多孔膜を介し正極と負極とが積層され、これらがケースに収納された形態を有する。従って、リチウムイオン電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
 リチウムイオン電池に使用する負極は、集電体上に負極活物質層を有する。負極活物質としては、電気化学的にリチウムイオンを吸蔵および放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
 正極活物質としては、電気化学的にリチウムイオンを吸蔵および放出可能なものであれば特に制限されず用いることができる。正極活物質としてはリチウムと少なくとも1種の遷移金属とを含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。これらの正極活物質は、1種を単独で用いてもよく、また、2種以上を任意に組み合わせて併用してもよい。
 リチウムイオン電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温での電気化学特性に優れている。また、本発明におけるリチウムイオン電池は、-40~100℃で充放電することができる。
 リチウム塩(I)を用いた本発明の非水電解液は、60℃以上の高温で保存しても劣化が少なく、常温から低温まで既存のリチウムイオン電池以上の電流で充放電可能な二次電池とする事ができる。
 <リチウムイオンキャパシタ>
 リチウムイオンキャパシタ(LIC)とは、負極にグラファイト等の炭素材料を用い、それへのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したもの、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。
 電解液として前述の電解液が使用されるため、LICは、高温での電気化学安定性と低温での高伝導率の両立することができる。
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 (1)電気伝導度
 試料溶液10mlをフッ素樹脂(PFA)製の小型ビーカーに取り、TDK社製電気伝導度測定メーターにより測定した。伝導度のキャリブレーションはキシダ化学株式会社より購入した1mol/L LiPF6の炭酸エチレン-炭酸ジエチルの混合溶液(1:1)の伝導度0.7S/mおよび1mol/L LiBF4の炭酸エチレン-炭酸ジエチルの混合溶液(1:1)の伝導度0.39S/mにより校正した。
 (2)電気化学測定
 試料溶液適量(~2ml)をBAS社製VC-4ボルタンメトリー用セルにいれ、グラッシーカーボン電極、白金電極およびAg/Ag+型参照電極を用いAutolab社製ポテンシオスタットでサイクリックボルタンメトリ測定を行い、電気化学安定性を評価した。
 (3)充電容量および放電容量
 初期充放電特性の評価で測定した充電容量および放電容量、ならびに、低温動作性の評価で測定した放電容量は、充放電試験装置(北斗電工製HJ0501SD8)で測定した。充放電試験の条件は、
充電;0.2C、4.2V定電流定電圧(0.05C電流減衰)
放電;0.2C、2.7V定電流
で行った。そして、この条件で繰り返し充放電を行い、3回目の結果を初期充放電特性とした。
 (4)抵抗
 高温保存性能の評価および低温動作性の評価で測定した抵抗は、東陽テクニカ製VersaSTAT4で測定した。
 〔1.リチウム塩の熱分解温度〕
 Li・BF2(CN)2、Li・BF(CN)3、LiPF6およびLiBF4約1gを、それぞれフッ素樹脂(PFA)製の容器に入れ、Fisher Scientific社製真空乾燥器で真空下加熱し、容器中の試料が変色する等変化が認められた温度を測定した。結果を表1に示す。
 〔2.非水電解液の温度の違いによる電気伝導度の比較〕
 [実施例1-1]
 炭酸エチレン33gに炭酸ジエチル25mlを加え溶解させ、さらに、Li・BF2(CN)25.39gを加え攪拌し、完全に溶解させ、炭酸エチレンと炭酸ジエチルとの1:1(23℃体積比)混合溶媒にLi・BF2(CN)2が1mol/Lの濃度で溶解した非水電解液を作製した。
 得られた非水電解液の23℃、0℃および-10℃での電気伝導度、ならびに、電気化学安定性を測定した。測定結果を表1に示す。前記非水電解液のサイクリックボルタモグラムの測定結果を図1に示す。
 [実施例1-2]
 Li・BF(CN)35.74gを用いたこと以外は実施例1-1と同様にして、炭酸エチレンと炭酸ジエチルとの1:1(23℃体積比)混合溶媒にLi・BF(CN)3が1mol/Lの濃度で溶解した非水電解液を作製した。
  得られた非水電解液の23℃、0℃および-10℃での電気伝導度、ならびに、電気化学安定性を測定した。測定結果を表1に示す。前記非水電解液のサイクリックボルタモグラムの測定結果を図2に示す。
 [比較例1-1]
 キシダ化学株式会社より購入した1mol/L LiPF6の炭酸エチレン-炭酸ジエチルの混合溶液(1:1)の23℃、0℃および-10℃での電気伝導度、ならびに、電気化学安定性を測定した。測定結果を表1に示す。
 [比較例1-2]
 キシダ化学株式会社より購入した炭酸エチレンと炭酸ジエチルとの1:1混合溶媒にLiBF4が1mol/Lの濃度で溶解した非水電解液の23℃、0℃および-10℃での電気伝導度、ならびに、電気化学安定性を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるとおり本発明のシアノフルオロボレート・リチウム塩を用いた非水電解液は、電解質塩としてLiPF6またはLiBF4を用いた従来の非水電解液と比較して、低温でも電気伝導度の低下が小さく、低温での使用に好適である。
 また、本発明の非水電解液は、従来の非水電解液と室温で同等の電気伝導度および電気化学安定性を持ち、電解質塩の熱分解温度が比較的高いため、作動温度領域が広い、リチウムイオン電池用電解液またはリチウムイオンキャパシタ用電解液等として好適に用いることができる。
 〔3.非水電解液の溶媒の違いによる電気伝導度の比較〕
 [実施例2-1]
 Li・BF2(CN)20.52gをフッ素樹脂系の容器に入れ、γ-ブチロラクトン(以下、GBLともいう)を加えて溶解し10mlにし、GBL溶媒にLi・BF2(CN)2が0.5mol/Lの濃度で溶解した非水電解液を作製した。
 得られた非水電解液の23℃での電気伝導度を測定した。結果を表2に示す。
 [実施例2-2~2-15]
 リチウム塩の種類および濃度、ならびに、非水溶媒の種類を表2または3に記載したとおりに変更したこと以外は実施例2-1と同様にして、非水電解液を作製し、23℃での電気伝導度を測定した。結果を表2または3に示す。なお、Li・BF2(CN)2は、電解液の濃度を0.5mol/Lとする時0.52g、1.0mol/Lとする時1.04g、2.0mol/Lとする時2.08g使用し、Li・BF(CN)3は、電解液の濃度を0.5mol/Lとする時0.58g、1.0mol/Lとする時1.15g使用した。

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表2および3に示すようにシアノフルオロボレート・リチウム塩であるLi・BF2(CN)2およびLi・BF(CN)3は、ラクトン、エーテル、鎖状カーボネートおよび環状カーボネートの有機溶媒に対し広い濃度で溶解し、高い電気伝導度を示す。そのため、リチウムイオン電池用電解液またはリチウムイオンキャパシタ用電解液等として好適に用いることができる。
 〔4.電池性能評価〕
 [実施例3]
 正極は、活物質としてLiNi1/3Co1/3Mn1/3293部、導電材としてアセチレンブラック4部、および、バインダーとしてポリビニリデンフルオライド3部をスラリー状にし、集電箔にアプリケーターで塗工し、120℃で10分乾燥後プレスして作製した。
 負極は、活物質として黒鉛93部、導電材としてアセチレンブラック2部、および、バインダーとしてポリビニリデンフルオライド5部を用い、正極と同じ工程で作製した。
 電解溶液は、溶媒として炭酸エチレンと炭酸ジエチルとを23℃での体積比で1:1に混合した溶媒を用い、前記溶媒に、減圧下70℃で12時間乾燥したLi・BF2(CN)2をアルゴン雰囲気下で1M(1規定、1mol/L)になるように溶解した溶液を用いた。
 セパレータは、ポリエチレン製微多孔膜(厚さ20μm、気孔率40%)を用いた。
 上記で作製した正極と負極とを30x50mm2に打ち抜き、170℃にて10時間それぞれ乾燥した後、セパレータを介して対向させアルミニウム製のラミネート内に挿入し電解液を注液、減圧含浸後、真空シールして電池性能評価用単層ラミネートセル(電池)を作製した。
 [比較例3]
 電解溶液として、キシダ化学株式会社より購入した電池研究用の、炭酸エチレンと炭酸ジエチルとを体積比で1:1に混合した溶媒に、LiPF6が1M(1規定、1mol/L)で溶解した電解溶液を用いた以外は、実施例3と同じ方法でセル(電池)を作製した。
 《評価》
 <初期充放電特性>
 上記実施例3および比較例3で作製した単層ラミネートセル(電池)を、2.7Vから4.2Vの範囲で充放電を行い、3回目を初期充放電特性とした。初期充放電特性の測定結果を図3および表4に示す。
 <高温保存性能>
 上記実施例3および比較例3で作製した電池の初期充放電試験を行った後、抵抗を測定した。その後、85℃にて10日保存し、再度、抵抗を測定した。結果を表4に示した。
 <低温動作性>
 上記実施例3および比較例3で作製した電池の初期充放電試験を行った後、-30℃にて、放電容量および抵抗を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示した通り、初期充放電特性の評価結果より、実施例3で作製した電池は、常温において、比較例3で作成した電池と同等の初期充放電特性を示すこと分かった。
 また、高温保存性能の評価結果より、実施例3で作製した電池は、高温保存後(85℃、10日)において、比較例3で作製した電池と比べて抵抗の上昇が小さく、高温でより安定であることが分かった。
 さらに低温動作性の評価結果から、実施例3で作製した電池は比較例3で作製した電池と比較して、低温において放電容量が大きく、また、抵抗が小さいため、低温での電池性能に優れることが分かった。

Claims (7)

  1.  非水溶媒中に少なくとも1種のリチウム塩が溶解している非水電解液であって、
     前記非水溶媒が、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルよりなる群から選ばれる少なくとも1種を含み、
     前記リチウム塩が、下記一般式(I)で表されるシアノフルオロボレート・リチウム塩を少なくとも1種含み、
    Li・BFX(CN)4-X  …(I)
    (Xは1~3の整数である)
     非水電解液に含まれる全リチウム塩の合計の濃度が0.3~4mol/Lであることを特徴とする非水電解液。
  2.  前記一般式(I)で表わされるシアノフルオロボレート・リチウム塩の合計の濃度が、0.3~4mol/Lであることを特徴とする請求項1に記載の非水電解液。
  3.  前記非水溶媒が、鎖状カーボネートと環状カーボネートとを含むことを特徴とする請求項1または2に記載の非水電解液。
  4.  蓄電デバイスに用いられることを特徴とする請求項1~3のいずれか1項に記載の非水電解液。
  5.  リチウム電池、リチウムイオン電池またはリチウムイオンキャパシタに用いられることを特徴とする請求項1~3のいずれか1項に記載の非水電解液。
  6.  正極、負極および請求項1~5のいずれか1項に記載の非水電解液を有することを特徴とする蓄電デバイス。
  7.  リチウム電池、リチウムイオン電池またはリチウムイオンキャパシタであることを特徴とする請求項6に記載の蓄電デバイス。
PCT/JP2015/065088 2014-06-04 2015-05-26 非水電解液およびそれを用いた蓄電デバイス WO2015186568A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014115370 2014-06-04
JP2014-115370 2014-06-04
JP2014226602A JP2017134888A (ja) 2014-06-04 2014-11-07 非水系電解液およびそれを用いた蓄電デバイス
JP2014-226602 2014-11-07

Publications (1)

Publication Number Publication Date
WO2015186568A1 true WO2015186568A1 (ja) 2015-12-10

Family

ID=54766641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065088 WO2015186568A1 (ja) 2014-06-04 2015-05-26 非水電解液およびそれを用いた蓄電デバイス

Country Status (2)

Country Link
TW (1) TW201611376A (ja)
WO (1) WO2015186568A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611123A (zh) * 2019-10-23 2019-12-24 东莞维科电池有限公司 一种锂离子电池电解液和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517546A (ja) * 2003-02-14 2006-07-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング シアノボレートアニオンを有する塩
WO2012105307A1 (ja) * 2011-02-03 2012-08-09 Jsr株式会社 リチウムイオンキャパシタ
JP2012160316A (ja) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
JP2013149585A (ja) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd 電解質材料及びその製造方法
JP2015103288A (ja) * 2013-11-21 2015-06-04 ソニー株式会社 二次電池、電池パック、電動車両および電力貯蔵システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517546A (ja) * 2003-02-14 2006-07-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング シアノボレートアニオンを有する塩
JP2012160316A (ja) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
WO2012105307A1 (ja) * 2011-02-03 2012-08-09 Jsr株式会社 リチウムイオンキャパシタ
JP2013149585A (ja) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd 電解質材料及びその製造方法
JP2015103288A (ja) * 2013-11-21 2015-06-04 ソニー株式会社 二次電池、電池パック、電動車両および電力貯蔵システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EDUARD BERNHARDT ET AL.: "Die Reaktionen von M[BF4] (M=Li, K) und (C2H5)2O·BF3 mit ( CH 3) 3SiCN. Bildung von M[BFx (CN) 4-x] (M=Li,K; x=1,2) und ( CH 3)3SiNCBFx (CN) 3-x, (x=0,1).", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 629, no. Issue4, 25 March 2003 (2003-03-25), pages 677 - 685, XP055043104, ISSN: 0044-2313 *
JOHAN SCHEERS ET AL.: "Anions for Lithium Battery Electrolytes: A Spectroscopic and Theoretical Study of the B (CN) -4 Anion of the Ionic Liquid C2mim[B (CN) 4", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 155, no. Issue9, pages A628 - A634, XP055238958, ISSN: 0013-4651 *

Also Published As

Publication number Publication date
TW201611376A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
Appetecchi et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes
CA2423842C (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP3187487B1 (en) Ionic liquid and plastic crystal
EP1329975B1 (en) Non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2023158083A (ja) リチウムイオンキャパシタ
JP2010257616A (ja) 電気化学ディバイス用電解質、これを用いる電解液および非水電解液電池
EP1347530A1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2006084096A1 (en) Electrolyte solutions for electrochemical energy devices
US20170294677A1 (en) Fluorine-Substituted Propylene Carbonate-Based Electrolytic Solution and Lithium-Ion Battery
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN115458811B (zh) 一种基于砜基低共熔溶剂的电解液及其制备方法与锂离子电池
CN111512488A (zh) 包含双(氟磺酰基)酰亚胺锂的非水性电解质组合物
Swiderska-Mocek et al. Preparation and electrochemical properties of polymer electrolyte containing lithium difluoro (oxalato) borate or lithium bis (oxalate) borate for Li-ion polymer batteries
JP5621745B2 (ja) 空気電池用電解液
CN103403949A (zh) 非水电解液用添加剂、非水电解液和非水电解液二次电池
WO2016111151A1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2000077098A (ja) 非水電解質電池
JP5259996B2 (ja) リチウム二次電池用電解液、及びリチウム二次電池
JP4811070B2 (ja) 非水電解液電池用電解質、電解液及び非水電解液電池
JP2004043407A (ja) イオン性液体
Swiderska-Mocek Properties of LiMn 2 O 4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone
WO2015186568A1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2017004638A (ja) 電解質塩、該電解質塩を含む非水電解液、及びそれを用いた蓄電デバイス
JP4076738B2 (ja) リチウム電池及びリチウムイオン電池用電解質、その電解液または固体電解質並びに、リチウム電池またはリチウムイオン電池
WO2017141806A1 (ja) イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP