WO2012105307A1 - リチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ Download PDF

Info

Publication number
WO2012105307A1
WO2012105307A1 PCT/JP2012/050776 JP2012050776W WO2012105307A1 WO 2012105307 A1 WO2012105307 A1 WO 2012105307A1 JP 2012050776 W JP2012050776 W JP 2012050776W WO 2012105307 A1 WO2012105307 A1 WO 2012105307A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion capacitor
component
carbon
carbonate
Prior art date
Application number
PCT/JP2012/050776
Other languages
English (en)
French (fr)
Inventor
山田 欣司
ホジン イ
利充 菊池
泰祐 笠原
裕大 勝山
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020137022856A priority Critical patent/KR20140027101A/ko
Priority to US13/983,428 priority patent/US20140217322A1/en
Priority to JP2012555782A priority patent/JPWO2012105307A1/ja
Publication of WO2012105307A1 publication Critical patent/WO2012105307A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a lithium ion capacitor.
  • a power storage device having a high voltage and a high energy density has been required as a power source for driving electronic equipment.
  • a lithium ion capacitor is expected as an electricity storage device having a high voltage and a high energy density.
  • it in order to obtain good charge / discharge characteristics, it is not sufficient to improve only the characteristics of the positive electrode or the negative electrode, and it is indispensable to improve the characteristics of the electrolyte solution that carries ions.
  • a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is used in a nonaqueous solvent such as a cyclic carbonate such as ethylene carbonate, a chain carbonate such as dimethyl carbonate, or a carboxylic acid ester such as ⁇ -butyrolactone.
  • a dissolved non-aqueous electrolyte is generally used.
  • a lactone compound which is a kind of carboxylic acid ester, has a low freezing point and a high dielectric constant, so that sufficient conductivity can be ensured even at low temperatures. Is disclosed.
  • Japanese Patent Application Laid-Open No. 2005-101003 discusses a technique for adding vinylene carbonate to an electrolytic solution. Thereby, a protective film can be formed on a negative electrode, decomposition
  • Japanese Patent Laid-Open No. 2004-6240 has a high voltage and a high energy density by using a lithium salt having a wide potential window such as tetracyanoborate (LiB (CN) 4 ) as a solute of an electrolyte. It is disclosed that a lithium ion capacitor can be manufactured.
  • a lithium salt having a wide potential window such as tetracyanoborate (LiB (CN) 4 ) as a solute of an electrolyte. It is disclosed that a lithium ion capacitor can be manufactured.
  • some aspects according to the present invention provide a lithium ion capacitor having a high voltage and a high energy density and capable of reducing deterioration due to a charge / discharge cycle by solving the above-described problems.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the lithium ion capacitor according to the present invention is: (A) a compound represented by the following general formula (1); (B) a cyclic carbonate having at least one carbon-carbon unsaturated bond; (C) a carboxylic acid ester; Containing The ratio (M B / M C ) between the content (M B ) [mmol / g] of the component (B) and the content (M C ) [mmol / g] of the component ( C ) is 0.001 to The non-aqueous electrolyte which is 0.5 is provided. Z +.
  • X represents at least one element selected from boron, aluminum, silicon, phosphorus and arsenic
  • Y represents a halogen element
  • Z represents lithium or magnesium
  • m represents 3-6.
  • n represents an integer of 0 to 5, provided that m + n ⁇ 3.
  • the component (A) may be at least one selected from LiB (CN) 4 and LiP (CN) 6 .
  • the cyclic carbonate having at least one carbon-carbon unsaturated bond (B) can be a compound represented by the following general formula (2).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group.
  • the cyclic carbonate (B) having at least one carbon-carbon unsaturated bond may be at least one selected from vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, and fluorinated vinylene carbonate.
  • the (C) carboxylic acid ester may be a compound represented by the following general formula (3).
  • R 3 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an acetyl group.
  • the (C) carboxylic acid ester may be at least one selected from ⁇ -butyrolactone and its derivatives.
  • the lithium ion capacitor according to the present invention has a high voltage and a high energy density, and can reduce deterioration due to a charge / discharge cycle.
  • a lithium salt having a wide potential window such as tetracyanoborate (LiB (CN) 4 ) is used as the solute of the electrolytic solution, a lithium ion capacitor capable of effectively reducing deterioration of charge / discharge characteristics is provided. .
  • Lithium Ion Capacitor A lithium ion capacitor according to an embodiment of the present invention includes (A) a compound represented by the following general formula (1) (hereinafter also simply referred to as “component (A)”), and (B) carbon-carbon. A cyclic carbonate having at least one unsaturated bond (hereinafter also simply referred to as “component (B)”) and (C) a carboxylic acid ester (hereinafter also simply referred to as “component (C)”).
  • component (M B / M C ) The ratio (M B / M C ) between the content (M B ) [mmol / g] of the component (B) and the content (M C ) [mmol / g] of the component ( C ) is 0.001.
  • X represents at least one element selected from boron, aluminum, silicon, phosphorus and arsenic
  • Y represents a halogen element
  • Z represents lithium or magnesium
  • m represents 3-6.
  • n represents an integer of 0 to 5, provided that m + n ⁇ 3.
  • Non-aqueous electrolyte 1.1.1.
  • the non-aqueous electrolyte of the lithium ion capacitor according to the present embodiment contains (A) the compound represented by the general formula (1).
  • the component (A) is a solute that can impart electrical conductivity to the non-aqueous electrolyte. Comparing the component (A) with F 6 P ⁇ , F 4 B ⁇ and the like added to a general non-aqueous electrolyte, the calculation result of Gaussian 03 shows that the component (A) has stronger acid resistance. It is considered that it is difficult to be decomposed even at an oxidation potential of + 10V.
  • the potential window of the non-aqueous electrolyte can be expanded by adding the component (A).
  • the component (A) component has a thermal decomposition starting temperature of 400 ° C. or higher, it is excellent in the safety of the nonaqueous electrolytic solution and the suppression of deterioration.
  • X represents at least one element selected from boron, aluminum, silicon, phosphorus, and arsenic, and an element necessary for a lithium ion capacitor can be selected in a timely manner.
  • Z represents lithium or magnesium, and an element necessary for a lithium ion capacitor can be selected in a timely manner.
  • Examples of the component (A) include LiSi (CN) 3 , LiB (CN) 4 , LiAl (CN) 4 , LiP (CN) 6 , LiAs (CN) 6 , and other alkali / alkaline earth metals.
  • the combination (other alkali / alkaline earth metal salts) is preferred.
  • at least one selected from LiB (CN) 4 and LiP (CN) 6 is preferable, and LiB (CN) 4 is more preferable. preferable.
  • the compound shown by the said General formula (1) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the component (A) in the non-aqueous electrolyte is appropriately set depending on the use of the non-aqueous electrolyte, and is, for example, 1.0 ⁇ 10 ⁇ 1 with respect to the total mass of the non-aqueous electrolyte. It is preferably 2.0 to 10 ⁇ 10 0 [mmol / g], and more preferably 3.0 ⁇ 10 ⁇ 1 to 1.0 ⁇ 10 0 [mmol / g].
  • the solubility of the component (A) in the non-aqueous solvent can be secured, and the ion concentration in the non-aqueous electrolyte is sufficiently high, so that the ionic conductivity is high. .
  • the production method of the component (A) is not particularly limited, but as disclosed in JP 2010-13433 A, from a specific metal (Zn, Ga, Pd, Sn, Hg, Rh, Cu and Pb). by reacting one) cyanide and a boron compound containing a selected as the starting material, stable and high purity under mild conditions [B (CN) 4] - can be produced. Compared with conventionally used salts containing anions such as (PF 6 ) ⁇ and (BF 4 ) ⁇ , [B (CN) 4 ] ⁇ produced by the production method has a content of impurities such as moisture. Since there are few, it does not deteriorate an electrode in a charging / discharging cycle, and it is preferable.
  • the non-aqueous electrolyte of the lithium ion capacitor according to the present embodiment contains (B) a cyclic carbonate having at least one carbon-carbon unsaturated bond.
  • the component (B) can form a protective film on the negative electrode, and can suppress decomposition of the (C) carboxylic acid ester on the negative electrode.
  • the component (B) is preferably a compound represented by the following general formula (2).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group.
  • component (B) examples include vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3,4-diethyl vinylene carbonate, 3-propyl vinylene carbonate. 3,4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate (DVEC), and fluorinated vinylene carbonate. These may be used alone or in combination of two or more. In these compounds, part of the hydrogen atoms may be substituted with fluorine atoms.
  • the content of the component (B) in the non-aqueous electrolyte is appropriately set depending on the use of the non-aqueous electrolyte and the like, for example, 1.0 ⁇ 10 ⁇ 2 with respect to the total mass of the non-aqueous electrolyte. It is preferably ⁇ 4.0 ⁇ 10 0 [mmol / g], more preferably 1.0 ⁇ 10 ⁇ 1 to 2.0 ⁇ 10 0 [mmol / g]. When the content of the component (B) is in the above range, an appropriate protective film is formed without forming an excessive protective film on the negative electrode.
  • the increase in internal resistance by a decomposition product is suppressed because decomposition
  • a lithium ion capacitor exhibiting good charge / discharge characteristics is realized.
  • the component (B) is a poor solvent for the component (A), but if the content of the component (B) is in the above range, the solubility of the component (A) can be sufficiently secured. it can. Therefore, it is preferable that the content of the component (B) is in the above range in that a stable nonaqueous electrolytic solution in which the component (A) does not precipitate in a wide temperature range can be produced.
  • the non-aqueous electrolyte of the lithium ion capacitor according to the present embodiment contains (C) a carboxylic acid ester.
  • the component (C) is preferably a carboxylic acid ester having a cyclic ether structure, and more preferably a compound represented by the following general formula (3).
  • R 3 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an acetyl group.
  • component (C) examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), ⁇ -acetyl- ⁇ -butyrolactone. , ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -angelica lactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -hexanolactone, ⁇ -nonalactone, ⁇ -octanolactone, ⁇ -methyl- Examples thereof include ⁇ -decanolactone and derivatives thereof. These may be used alone or in combination of two or more. In these compounds, part of the hydrogen atoms may be substituted with fluorine atoms.
  • the component (A) can be dissolved at a high concentration
  • the content of the component (C) in the non-aqueous electrolyte is appropriately set depending on the use of the non-aqueous electrolyte, but is, for example, 1 to 20 [mmol / g with respect to the total mass of the non-aqueous electrolyte. It is preferably 5 to 15 [mmol / g]. It is preferable that the content of the component (C) is in the above range because the component (A) can be dissolved at a high concentration.
  • a chain carbonate ester can be further added to the non-aqueous electrolyte of the lithium ion capacitor according to the present embodiment.
  • (D) chain carbonate ester include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the like. These may be used alone or in combination of two or more.
  • the content of the (D) chain carbonate in the non-aqueous electrolyte is preferably 50% by volume or less, more preferably 0.1 to 30% by volume, and particularly preferably 0.1 to 20% by volume. .
  • the non-aqueous electrolyte of the lithium ion capacitor according to the present embodiment includes an organic solvent, ionic liquid, polymer electrolyte, inorganic that can be added to the non-aqueous electrolyte for a lithium ion capacitor as necessary. Components such as a solid electrolyte can be added.
  • Component (B) content and the component (C) a non-aqueous electrolyte relationship of the lithium ion capacitor of the present embodiment of the content of the content of the component (B) (M B) [mmol / g ] And the content (M C ) [mmol / g] of the component (C) (M B / M C ) is 0.001 to 0.5.
  • the ratio (M B / M C ) is preferably 0.005 to 0.35, and more preferably 0.02 to 0.1. When the ratio (M B / M C ) is within the above range, an appropriate protective film is formed without forming an excessive protective film on the negative electrode.
  • the ratio (M B / M C ) exceeds the above range, the solubility of the component (A) in the nonaqueous electrolytic solution is remarkably lowered, so that sufficient ionic conductivity cannot be ensured.
  • an excessive protective film due to the component (B) may be formed on the negative electrode particularly under high temperature conditions. The excessive protective coating hinders lithium ions from being smoothly inserted into and desorbed from the negative electrode, and the charge / discharge characteristics of the lithium ion capacitor may be significantly deteriorated.
  • Positive electrode and negative electrode As a positive electrode and a negative electrode of a lithium ion capacitor using the non-aqueous electrolyte, those generally used in lithium ion capacitors can be used.
  • the lithium ion capacitor according to the present embodiment for example, the following positive electrode active material and negative electrode active material can be used.
  • the positive electrode active material examples include activated carbon and a polyacene organic semiconductor (PAS) which is a heat-treated product of an aromatic condensation polymer and has a polyacene skeleton structure with an atomic ratio of hydrogen atom / carbon atom of 0.50 to 0.05. Etc.), and activated carbon is particularly preferable.
  • PES polyacene organic semiconductor
  • the negative electrode active material metallic lithium or a material capable of doping / dedoping lithium can be used.
  • Materials that can be doped / undoped with lithium include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and fired organic polymer compounds (phenol). Resin, furan resin and the like carbonized by firing at an appropriate temperature), carbon materials such as carbon fiber and activated carbon, polymers such as polyacetylene, polypyrrole, and polyacene, Li 4/3 Ti 5/3 O 4 , TiS 2 And lithium-containing transition metal oxides or transition metal sulfides.
  • carbon materials are preferable, and graphite is particularly preferable.
  • the positive electrode active material is kneaded with, for example, a binder and a conductive agent to prepare a paste, and the paste is applied to an aluminum foil current collector and processed into an electrode plate.
  • the negative electrode active material is kneaded with, for example, a binder and a conductive agent to prepare a paste, which is coated on a copper foil current collector and processed into an electrode plate. Any of conventionally known binders and conductive agents can be used.
  • the lithium ion capacitor according to the present embodiment is provided with a separator so as to be sandwiched between the positive electrode and the negative electrode. Such a separator plays a role of preventing a short circuit due to contact between the positive electrode and the negative electrode and retaining the non-aqueous electrolyte to ensure ionic conductivity.
  • a separator those generally used in lithium ion capacitors can be used, but a film-like microporous membrane is preferable.
  • the material of the separator include polyolefin such as polyethylene and polypropylene, and cellulose paper.
  • the shape of the lithium ion capacitor according to the present embodiment includes, for example, a cylindrical type and a laminate type, and the mode of the positive electrode, the negative electrode, and the separator may be appropriately changed according to the shape.
  • LiTCB lithium tetracyanoborate (manufactured by Nippon Shokubai Co., Ltd., model number “IX-1-NE-203”) LiPF6; lithium hexafluorophosphate (manufactured by Kishida Chemical Co., Ltd., model number “LBG-45864”)
  • VC vinylene carbonate (Kishida Chemical Co., Ltd., model number “LBG-84922”)
  • GBL ⁇ -butyrolactone (manufactured by Kishida Chemical Co., model number “LBG-11785”)
  • EC ethylene carbonate (Kishida Chemical Co., Ltd., model number “LBG-29015”)
  • EMC ethyl methyl carbonate (manufactured by Kishida Chemical Co., model number “LBG-31385”)
  • DEC diethyl carbonate (manufactured by Kishida Chemical Co., Ltd., model number “LBG
  • the solubility of the solute is sufficient, and it can be judged that the non-aqueous electrolyte is good as a non-aqueous electrolyte. If there is turbidity but no precipitate, it can be judged that it can be used as an electrolyte although it is close to saturation. Those in which precipitates are observed are not uniform in composition and are poor as an electrolytic solution, and cannot be applied to lithium ion capacitors.
  • the slurry for electrochemical device electrodes was prepared by stirring and mixing for 5 minutes at 1800 rpm for 1.5 minutes under vacuum. Apply the prepared slurry for an electrochemical device electrode to the surface of a current collector made of copper foil uniformly by a doctor blade method so that the film thickness after drying is 80 ⁇ m, and perform a drying treatment at 120 ° C. for 20 minutes. Thus, a negative electrode for a lithium ion capacitor was obtained.
  • the slurry for electrochemical device electrodes was prepared by stirring and mixing at 1800 rpm for 1.5 minutes under vacuum for 5 minutes, and the prepared slurry for electrochemical device electrodes on the surface of the current collector made of aluminum foil.
  • a positive electrode for a lithium ion capacitor was obtained by applying uniformly by a doctor blade method so that the film thickness after drying was 80 ⁇ m, and performing a drying treatment at 120 ° C. for 20 minutes.
  • the coulomb efficiency (%) expressed by the ratio of the discharge capacity to the charge capacity was calculated from the capacity charged and discharged in this way.
  • Table 1 also shows the discharge capacity under the condition of 0.3 mA and the Coulomb efficiency under the above conditions in the lithium ion capacitors of the examples and comparative examples.
  • the discharge capacity is 0.3 [mAh / g] or more at 0.3 mA, it can be determined that the capacity is sufficiently secured, and thus it is determined to be good.
  • the discharge capacity maintenance ratio at the 10th cycle is 50% or more, it can be judged that the stable protective coating formed on the negative electrode surface suppresses the irreversible reaction that occurs in the charge / discharge cycle.
  • the lithium ion capacitors according to Examples 1 to 4 have a large discharge capacity by using an electrolytic solution having a large potential window, and can be charged and discharged without degrading the electrolytic solution. Discharge capacity, coulomb efficiency, internal direct current resistance (DC-IR), and cycle characteristics were shown.
  • the electrolytic window is small and the potential window on the high potential side is small. Since it is less than 10 V, an electrolysis reaction of the non-aqueous electrolyte occurs in a high potential region. For this reason, the discharge capacity, coulomb efficiency, internal DC resistance value (DC-IR), and cycle characteristics are all poor, and it can be determined that the charge / discharge characteristics are poor.
  • LiPF 6 lithium hexafluorophosphate
  • the discharge capacity, the Coulomb efficiency, the internal direct current resistance value (DC-IR), and the cycle characteristics are all bad, and the charge / discharge characteristics can be judged as bad. .
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明に係るリチウムイオンキャパシタは、(A)下記一般式(1)で示される化合物と、(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルと、(C)カルボン酸エステルと、を含有し、前記(B)成分の含有量(M)[mmol/g]と前記(C)成分の含有量(M)[mmol/g]との比率(M/M)が0.001~0.5である非水電解液を備えることを特徴とする。 Z・[X(CN)(Y) …(1) (式(1)中、Xはホウ素、アルミニウム、ケイ素、リンおよび砒素から選択される少なくとも1種の元素を表す。Yはハロゲン元素を表す。Zはリチウムまたはマグネシウムを表す。mは3~6の整数を表し、nは0~5の整数を表す。但し、m+n≧3である。)

Description

リチウムイオンキャパシタ
 本発明は、リチウムイオンキャパシタに関する。
 近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。このようなリチウムイオンキャパシタにおいて、良好な充放電特性を得るためには、正極ないし負極の特性改良だけでは不十分であり、イオンの移送を担う電解液の特性改良が不可欠である。
 電解液としては、エチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン等のカルボン酸エステル等の非水溶媒にリチウムヘキサフルオロホスフェート(LiPF)のようなリチウム塩を溶解させた非水電解液が一般的に利用されている。例えば特開平11-97062号公報には、特にカルボン酸エステルの1種であるラクトン系化合物は、凝固点が低く、かつ高誘電率を有しているため、低温状態でも十分な伝導度を確保できることが開示されている。
 ところが、カルボン酸エステルは負極上で容易に還元分解されるため、充放電を繰り返すことにより電解液が劣化し、容量の低下や分解生成物による内部抵抗の増大を招来するという問題があった。この問題を改善するために、特開2005-101003号公報では、ビニレンカーボネートを電解液へ添加する技術が検討されている。これにより、負極上に保護被膜を形成させてカルボン酸エステルの分解を抑制し、充放電サイクルによる電解液の劣化を低減させることができる。
 一方、特開2004-6240号公報には、テトラシアノボレート(LiB(CN))のような広い電位窓を有するリチウム塩を電解液の溶質として用いることにより、高電圧および高エネルギー密度を有するリチウムイオンキャパシタを作製することが可能となることが開示されている。
 しかしながら、テトラシアノボレート(LiB(CN))のような広い電位窓を有するリチウム塩を電解液の溶質として用いたリチウムイオンキャパシタにおいて、充放電特性が劣化しにくいリチウムイオンキャパシタを作製するためには、どのような電解液組成とすればよいのか明らかではなかった。
 そこで、本発明に係る幾つかの態様は、上記課題を解決することで、高電圧、高エネルギー密度を有し、かつ充放電サイクルによる劣化を低減できるリチウムイオンキャパシタを提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係るリチウムイオンキャパシタの一態様は、
 (A)下記一般式(1)で示される化合物と、
 (B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルと、
 (C)カルボン酸エステルと、
を含有し、
 前記(B)成分の含有量(M)[mmol/g]と前記(C)成分の含有量(M)[mmol/g]との比率(M/M)が0.001~0.5である非水電解液を備えることを特徴とする。
 Z・[X(CN)(Y) …(1)
(式(1)中、Xはホウ素、アルミニウム、ケイ素、リンおよび砒素から選択される少なくとも1種の元素を表す。Yはハロゲン元素を表す。Zはリチウムまたはマグネシウムを表す。mは3~6の整数を表し、nは0~5の整数を表す。但し、m+n≧3である。)
 [適用例2]
 適用例1のリチウムイオンキャパシタにおいて、
 前記(A)成分が、LiB(CN)およびLiP(CN)から選択される少なくとも1種であることができる。
 [適用例3]
 適用例1または適用例2のリチウムイオンキャパシタにおいて、
 前記(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルが、下記一般式(2)で示される化合物であることができる。
Figure JPOXMLDOC01-appb-C000003
(式(2)中、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。)
 [適用例4]
 適用例1または適用例2のリチウムイオンキャパシタにおいて、
 前記(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルが、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートおよびフッ素化ビニレンカーボネートから選択される少なくとも1種であることができる。
 [適用例5]
 適用例1ないし適用例4のいずれか一例のリチウムイオンキャパシタにおいて、
 前記(C)カルボン酸エステルが、下記一般式(3)で示される化合物であることができる。
Figure JPOXMLDOC01-appb-C000004
(式(3)中、R~Rはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはアセチル基である。)
 [適用例6]
 適用例1ないし適用例4のいずれか一例のリチウムイオンキャパシタにおいて、
 前記(C)カルボン酸エステルが、γ-ブチロラクトンおよびその誘導体から選択される少なくとも1種であることができる。
 本発明に係るリチウムイオンキャパシタによれば、高電圧、高エネルギー密度を有し、かつ充放電サイクルによる劣化を低減させることができる。特にテトラシアノボレート(LiB(CN))のような広い電位窓を有するリチウム塩を電解液の溶質として用いた場合において、充放電特性の劣化を効果的に低減できるリチウムイオンキャパシタが提供される。
 以下、本発明の好適な実施の形態について詳細に説明する。
 1.リチウムイオンキャパシタ
 本発明の一実施形態に係るリチウムイオンキャパシタは、(A)下記一般式(1)で示される化合物(以下、単に「(A)成分」ともいう)と、(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(以下、単に「(B)成分」ともいう)と、(C)カルボン酸エステル(以下、単に「(C)成分」ともいう)と、を含有し、前記(B)成分の含有量(M)[mmol/g]と前記(C)成分の含有量(M)[mmol/g]との比率(M/M)が0.001~0.5である非水電解液を備えることを特徴とする。
 Z・[X(CN)(Y) …(1)
(式(1)中、Xはホウ素、アルミニウム、ケイ素、リンおよび砒素から選択される少なくとも1種の元素を表す。Yはハロゲン元素を表す。Zはリチウムまたはマグネシウムを表す。mは3~6の整数を表し、nは0~5の整数を表す。但し、m+n≧3である。)
 以下、本実施の形態に係るリチウムイオンキャパシタの非水電解液を構成する成分について詳細に説明する。
 1.1.非水電解液
 1.1.1.(A)成分
 本実施の形態に係るリチウムイオンキャパシタの非水電解液は、(A)前記一般式(1)で示される化合物を含有する。前記(A)成分は、非水電解液に電気伝導性を付与することができる溶質である。前記(A)成分と一般的な非水電解液に添加されているF、F等とを比較すると、Gaussian03の計算結果によれば(A)成分の方がより強い耐酸化性を有し、+10Vでの酸化電位においても分解されにくいと考えられる。そのため、(A)成分を添加することで、非水電解液の電位窓を拡大できると考えられる。このような非水電解液をリチウムイオンキャパシタに適用することによって、リチウムイオンキャパシタの作動電圧が向上し、高エネルギー密度の実現が期待できる。さらに、(A)成分は熱分解開始温度が400℃以上であるため、非水電解液の安全性や劣化の抑制にも優れている。
 前記一般式(1)中、Xは、ホウ素、アルミニウム、ケイ素、リンおよび砒素から選択される少なくとも1種の元素を表し、適時リチウムイオンキャパシタに必要な元素を選択することができる。Yはハロゲン元素を表すが、リチウムイオンキャパシタの充放電特性をより向上させる観点から、酸化還元耐性に優れたYを有しない化合物(すなわちn=0)が好ましい。Zは、リチウムまたはマグネシウムを表し、適時リチウムイオンキャパシタに必要な元素を選択することができる。
 前記(A)成分としては、例えば、LiSi(CN)、LiB(CN)、LiAl(CN)、LiP(CN)、LiAs(CN)や、その他のアルカリ/アルカリ土類金属との組合せ(その他のアルカリ/アルカリ土類金属の塩)が好適である。これらの中でも、非水溶媒への溶解性に優れる観点から、LiB(CN)およびLiP(CN)から選択される少なくとも1種であることが好ましく、LiB(CN)であることがより好ましい。また、前記一般式(1)で示される化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記非水電解液における(A)成分の含有量は、非水電解液の用途等により適宜設定することになるが、例えば非水電解液の全質量に対して、1.0×10-1~2.0×10[mmol/g]であることが好ましく、3.0×10-1~1.0×10[mmol/g]であることがより好ましい。(A)成分の含有量が前記範囲であると、(A)成分の非水溶媒への溶解性を確保できると共に、非水電解液中のイオン濃度が十分に高いためイオン伝導度が高く好ましい。
 前記(A)成分の製造方法は、特に制限されないが、特開2010-13433号公報に開示されているように、特定の金属(Zn、Ga、Pd、Sn、Hg、Rh、CuおよびPbから選択される1種)を含むシアン化合物とホウ素化合物とを出発原料として反応させることにより、穏やかな条件で安定かつ高純度な[B(CN)を製造することができる。従来使用されてきた(PFや(BF等のアニオンを含有する塩と比較して、前記製造方法により製造された[B(CN)は水分等の不純物含量が少ないため、充放電サイクルにおいて電極を劣化させることがなく好ましい。
 1.1.2.(B)成分
 本実施の形態に係るリチウムイオンキャパシタの非水電解液は、(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルを含有する。前記(B)成分は、負極上で保護被膜を形成することができ、(C)カルボン酸エステルの負極上での分解を抑制することができる。
 前記(B)成分としては、下記一般式(2)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。)
 前記(B)成分の具体例としては、ビニレンカーボネート(VC)、3-メチルビニレンカーボネート、3,4-ジメチルビニレンカーボネート、3-エチルビニレンカーボネート、3,4-ジエチルビニレンカーボネート、3-プロピルビニレンカーボネート、3,4-ジプロピルビニレンカーボネート、3-フェニルビニレンカーボネート、3,4-ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)、フッ素化ビニレンカーボネート等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。特にビニレンカーボネート、ビニルエチレンカーボネートおよびジビニルエチレンカーボネートから選択される少なくとも1種を用いると、負極上で効率良く保護被膜を形成することで(C)カルボン酸エステルの加水分解を抑制する効果がより高くなるため好ましい。
 前記非水電解液における(B)成分の含有量は、非水電解液の用途等により適宜設定することになるが、例えば非水電解液の全質量に対して、1.0×10-2~4.0×10[mmol/g]であることが好ましく、1.0×10-1~2.0×10[mmol/g]であることがより好ましい。(B)成分の含有量が前記範囲であると、負極上で過剰な保護被膜が形成されずに適度な保護被膜が形成される。また、(C)カルボン酸エステルの分解が抑制されることで、分解生成物による内部抵抗の増大が抑制される。これらの結果、良好な充放電特性を示すリチウムイオンキャパシタが実現される。なお、前記非水電解液において(B)成分は(A)成分の貧溶媒であるが、(B)成分の含有量が前記範囲であれば(A)成分の溶解度を十分に確保することができる。そのため、(B)成分の含有量が前記範囲であると、広範な温度範囲において(A)成分が析出することのない安定した非水電解液を作製することができる点で好ましい。
 1.1.3.(C)成分
 本実施の形態に係るリチウムイオンキャパシタの非水電解液は、(C)カルボン酸エステルを含有する。前記(C)成分は、環状エーテル構造を有するカルボン酸エステルであることが好ましく、下記一般式(3)で示される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(3)中、R~Rはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはアセチル基である。)
 前記(C)成分としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、β-メチル-γ-ブチロラクトン、α-アンゲリカラクトン、α-メチレン-γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ノナラクトン、γ-オクタノラクトン、γ-メチル-γ-デカノラクトン、およびこれらの誘導体等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。これらの化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。
 なお、前記(A)成分を高濃度で溶解できる観点から、前記例示した(C)成分の中でも、γ-ブチロラクトンおよびその誘導体から選択される少なくとも1種を用いることが特に好ましい。
 前記非水電解液における(C)成分の含有量は、非水電解液の用途等により適宜設定することになるが、例えば非水電解液の全質量に対して、1~20[mmol/g]であることが好ましく、5~15[mmol/g]であることがより好ましい。(C)成分の含有量が前記範囲にあると、前記(A)成分を高濃度で溶解させることができるため好ましい。
 1.1.4.その他の添加剤
 本実施の形態に係るリチウムイオンキャパシタの非水電解液には、さらに(D)鎖状炭酸エステルを添加することができる。(D)鎖状炭酸エステルを添加することで、非水溶媒の粘度が低下し、低温時におけるリチウムイオンキャパシタの充放電特性をさらに向上させることができる。(D)鎖状炭酸エステルとしては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。前記非水電解液における(D)鎖状炭酸エステルの含有量は、好ましくは50体積%以下、より好ましくは0.1~30体積%以下、特に好ましくは0.1~20体積%以下である。
 本実施の形態に係るリチウムイオンキャパシタの非水電解液には、前記例示した成分以外に、必要に応じてリチウムイオンキャパシタ用非水電解液に添加し得る有機溶媒、イオン液体、ポリマー電解質、無機固体電解質等の成分を添加することができる。
 1.1.5.(B)成分の含有量と(C)成分の含有量との関係
 本実施の形態に係るリチウムイオンキャパシタの非水電解液は、前記(B)成分の含有量(M)[mmol/g]と前記(C)成分の含有量(M)[mmol/g]との比率(M/M)が0.001~0.5であることを特徴としている。該比率(M/M)は、0.005~0.35であることが好ましく、0.02~0.1であることがより好ましい。比率(M/M)が前記範囲内にある場合、負極上で過剰な保護被膜が形成されずに適度な保護被膜が形成される。また、(C)カルボン酸エステルの分解が抑制されることで、分解生成物による内部抵抗の増大が抑制される。これらの結果、良好な充放電特性を示すリチウムイオンキャパシタが実現される。
 比率(M/M)が前記範囲未満の場合、負極上で(B)成分による十分な保護被膜を形成することができないため、(C)成分の分解を抑制することができない。したがって、充放電サイクルを繰り返すことにより、分解生成物による内部抵抗の増大を招来する。その結果、良好な充放電特性を示すリチウムイオンキャパシタを実現することができない。
 比率(M/M)が前記範囲を超える場合、非水電解液中における(A)成分の溶解性が著しく低下することにより、十分なイオン伝導度を確保できないため好ましくない。また、比率(M/M)が前記範囲を超える場合、特に高温条件下において負極上で(B)成分による過剰な保護被膜が形成されることがある。その過剰な保護被膜が妨げとなって、負極へのリチウムイオンの挿入、脱離がスムーズに行われなくなり、リチウムイオンキャパシタの充放電特性が著しく低下することがあるため好ましくない。
 1.2.正極および負極
 前記非水電解液を用いたリチウムイオンキャパシタの正極および負極としては、一般的にリチウムイオンキャパシタで用いられるものを使用できる。本実施の形態に係るリチウムイオンキャパシタには、例えば以下に示す正極活物質および負極活物質を使用できる。
 正極活物質としては、活性炭や、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等が挙げられるが、活性炭が特に好ましい。
 負極活物質としては、金属リチウム、リチウムをドープ・脱ドープすることが可能な材料を用いることができる。リチウムをドープ・脱ドープすることが可能な材料としては、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等の炭素材料やポリアセチレン、ポリピロール、ポリアセン等のポリマー、Li4/3Ti5/3、TiS等のリチウム含有遷移金属酸化物あるいは遷移金属硫化物が挙げられる。これらの負極活物質の中でも、炭素材料が好ましく、黒鉛が特に好ましい。
 正極活物質は、例えば結着剤および導電剤と混練してペーストを作製し、該ペーストをアルミ箔製の集電体に塗工して極板に加工される。また、負極活物質は、例えば結着剤および導電剤と混練してペーストを作製し、銅箔製の集電体に塗工して極板に加工される。前記結着剤および前記導電剤には、従来公知のものをいずれも使用することができる。
 1.3.セパレータ
 本実施の形態に係るリチウムイオンキャパシタには、正極と負極との間に挟まれるようにしてセパレータが設けられている。かかるセパレータは、正極と負極との接触に伴う短絡を防止し、前記非水電解液を保持してイオン伝導性を確保する役割を担っている。セパレータとしては、一般的にリチウムイオンキャパシタで用いられるものを使用することができるが、フィルム状の微多孔膜であることが好ましい。セパレータの材質としては、例えばポリエチレン、ポリプロピレン等のポリオレフィン、セルロース紙が挙げられる。
 1.4.使用態様
 本実施の形態に係るリチウムイオンキャパシタの形状としては、例えば円筒型、ラミネート型等があり、正極や負極、必要に応じてセパレータの態様をその形状に応じて適宜変更すればよい。
 2.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 2.1.非水電解液の調製および評価
 2.1.1.非水電解液の調製
 露点が-80℃以下となるようにAr置換されたグローブボックス内で、(A)成分としてリチウムテトラシアノボレート(株式会社日本触媒製、型番「IX-1-NE-203」)8.0g[6.6×10-2mol]と、(B)成分としてビニレンカーボネート(キシダ化学株式会社製、型番「LBG-84922」)5.0g[5.8×10-2mol]、(C)成分としてγ-ブチロラクトン(キシダ化学株式会社製、型番「LBG-11785」)87g[1.0mol]と、を混合し、実施例1のリチウムイオンキャパシタに使用する非水電解液を作製した。
 実施例2~4、比較例1~11に記載のリチウムイオンキャパシタに使用する非水電解液については、(A)成分、(B)成分、(C)成分、その他の成分を表1に記載の添加量と種類に変更したこと以外は実施例1と同様の方法により作製した。
 なお、表1における略称は下記の通りである。
・LiTCB;リチウムテトラシアノボレート(株式会社日本触媒製、型番「IX-1-NE-203」)
・LiPF6;6フッ化リン酸リチウム(キシダ化学株式会社製、型番「LBG-45864」)
・VC;ビニレンカーボネート(キシダ化学株式会社製、型番「LBG-84922」)
・GBL;γ-ブチロラクトン(キシダ化学株式会社製、型番「LBG-11785」)
・EC;エチレンカーボネート(キシダ化学株式会社製、型番「LBG-29015」)
・EMC;エチルメチルカーボネート(キシダ化学株式会社製、型番「LBG-31385」)
・DEC;ジエチルカーボネート(キシダ化学株式会社製、型番「LBG-23605」)
・PC;プロピレンカーボネート(キシダ化学株式会社製、型番「LBG-64950」)
 2.1.2.非水電解液の溶解性評価
 前記「2.1.1.非水電解液の調製」の項で調製した非水電解液10mLを、露点が-80℃以下となるようにAr置換されたグローブボックス内で20mLバイアル瓶に入れて密封し、常温にて16時間放置後外観を目視にて評価した。評価基準は以下の通りであり、その評価結果を表1に併せて示した。
「○」;透明である。
「△」;濁りが認められるものの沈殿物は生じていない。
「×」;濁りおよび沈殿物が認められる。
 非水電解液の外観が透明であると溶質の溶解性が十分であり非水電解液として良好と判断できる。濁りがあるが沈殿物はない場合は飽和状態に近いものの電解液として使用可能と判断できる。沈殿物が認められるものは、組成が均一ではなく電解液として不良であり、リチウムイオンキャパシタに適用することができない。
 2.2.リチウムイオンキャパシタセルの作製
 2.2.1.負極の作製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(ダイセル化学工業株式会社製、商品名「CMC2200」)1.5質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、水68質量部を投入し、60rpmで1時間攪拌を行った。その後、電気化学デバイス電極用バインダー(JSR株式社製、商品名「TRD2001」)1質量部(固形分換算)を加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電気化学デバイス電極用スラリーを調製した。銅箔よりなる集電体の表面に、調製した電気化学デバイス電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理することにより、リチウムイオンキャパシタ用負極を得た。
 2.2.2.正極の作製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に電気化学デバイス電極用バインダー(JSR株式会社製、商品名「TRD201A」)6.0質量部(固形分換算)、増粘剤(ダイセル化学工業株式会社製、商品名「CMC1120」)3.5質量部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「HS-100」)7.0質量部、正極活物質としてMSP-20S(関西熱化学株式会社製)84質量部(固形分換算)を投入し、60rpmで2時間攪拌を行った。得られたペーストに水を投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電気化学デバイス電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電気化学デバイス電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理することにより、リチウムイオンキャパシタ用正極を得た。
 2.2.3.負極リチウムハーフセルの組立て
 露点が-80℃以下となるようにAr置換されたグローブボックス内で、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)に、前記「2.2.1.負極の作製」で作製した負極を直径15.95mmに打ち抜き成型したものを載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに空気が入らないように前記「2.1.非水電解質の調製」で作製した電解液を500μL注入した。その後、Li金属箔を直径16.16mmに打ち抜き載置し、セルを封止することで負極とLi極からなるハーフセルを作製した。
 2.2.4.負極へのLiイオンプレドープ
 前記「2.2.3.負極リチウムハーフセルの組立て」で作製したハーフセルを充放電測定装置(北斗電工株式会社製、型番「HJ1001SM8A」、電池セル常温下)に接続して、0.3mAで8時間定電流充電を行い、負極にLiイオンをプレドープした。
 2.2.5.リチウムイオンキャパシタセルの組立て
 前記「2.2.4.負極へのLiイオンプレドープ」で作製したハーフセルを露点が-80℃以下となるようにAr置換されたグローブボックス内で解体し、Li金属箔を取り除き、代わりに前記「2.2.2.正極の作製」で作製した正極を載置し、セルを封止することでリチウムイオンキャパシタセルを作製した。
 2.3.充放電特性の評価
 2.3.1.放電容量およびクーロン効率の評価(基本充放電特性)
 前記「2.2.リチウムイオンキャパシタセルの作製」で作製したリチウムイオンキャパシタセルを、充放電測定装置に接続して放電容量およびクーロン効率の評価を行った。
 まず、定電流0.3mAにて充電を開始し、電圧が4.2Vになった時点でカットオフとした。その後、定電流0.3mAにて放電を開始し、電圧が3.2Vになった時点を放電完了(カットオフ)とした。
 充電容量に対する放電容量の比で表されるクーロン効率(%)は、このようにして充放電した容量から算出した。各実施例および各比較例のリチウムイオンキャパシタにおける0.3mAの条件における放電容量、および前記条件におけるクーロン効率を表1に併せて示す。
 0.3mAで放電容量が6.5[mAh/g]以上である場合には容量が十分確保できているため、良好と判断できる。
 0.3mAでのクーロン効率が88%以上である場合には、初期充放電時に効率良く負極表面に保護被膜が形成され、不可逆反応によるエネルギー損失が小さいため良好と判断できる。一方、88%未満である場合には、負極表面に保護被膜が効率良く形成されず不可逆反応によるエネルギー損失が大きいため不良と判断できる。
 2.3.2.内部直流抵抗値(DC-IR)の評価
 前記「2.3.1.放電容量およびクーロン効率の評価」の評価後に、同じセルを定電流0.6mAにて4.2Vまで充電した。その後、定電流0.6mAにて10秒間充電を行った際の電圧変化を読み取り、1分間休止した後、さらに定電流1.2mAにて10秒間放電を行った際の電圧変化を読み取った。電流値を0.6mAから1.2mA、1.8mA、3.0mA、5.0mAに変更したこと以外は同様の方法で充放電時の電圧を読み取った。
 次に、印加した電流値(A)を横軸、電圧値(V)を縦軸としたグラフを作成し、充放電各時において、プロット点を結んだ直線の勾配値を算出した。その勾配値をそれぞれ充電時および放電時の内部直流抵抗値(DC-IR)とした。各実施例および各比較例のリチウムイオンキャパシタにおける充電時および放電時のDC-IRを表1に併せて示す。
 充電時および放電時のDC-IRが5.5Ω以下である場合、負極表面に形成された保護被膜による抵抗が低いため良好と判断できる。
 2.3.3.サイクル特性の評価
 前記「2.3.2.内部直流抵抗値(DC-IR)の評価」の評価後に、同じセルを定電流0.3mAにて充電を開始し、電圧が4.2Vになった時点で充電完了(カットオフ)とした。その後、定電流0.3mAにて放電を開始し、電圧が3.2Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして10回充放電を繰り返し、10サイクル目の放電容量を算出した。
 このようにして測定した10サイクル目の放電容量を、1サイクル目の放電容量で割った値を10サイクル放電容量維持率(%)とした。各実施例および各比較例のリチウムイオン電池における10サイクル放電容量維持率を表1に併せて示す。
 10サイクル目の放電容量維持率が50%以上である場合、負極表面に形成された安定な保護被膜が充放電サイクルで起こる不可逆反応を抑制するため良好と判断できる。
Figure JPOXMLDOC01-appb-T000007
 2.4.評価結果
 実施例1~4に係るリチウムイオンキャパシタは、大きな電位窓を有する電解液を使用することにより大きな放電容量を備えると共に、電解液を劣化させることなく充放電することができるため、良好な放電容量、クーロン効率、内部直流抵抗値(DC-IR)、サイクル特性を示した。
 一方、(A)成分の代わりに一般的な電解質であるリチウムヘキサフルオロホスフェート(LiPF)を用いた比較例1、2に係るリチウムイオンキャパシタでは、電解窓が小さく、高電位側の電位窓が10V未満であるため、高電位域で非水電解液の電解反応が起こる。そのため、放電容量、クーロン効率、内部直流抵抗値(DC-IR)、サイクル特性がいずれも不良となり、充放電特性は不良と判断できる。
 (B)成分を含有しない比較例3に係るリチウムイオンキャパシタでは、放電容量、クーロン効率、内部直流抵抗値(DC-IR)、サイクル特性がいずれも不良であり、充放電特性は不良と判断できる。
 比較例4~5に係るリチウムイオンキャパシタでは、比率(M/M)が0.001未満である非水電解液を使用した。その結果、放電容量、クーロン効率、内部直流抵抗値(DC-IR)、サイクル特性がいずれも不良であり、充放電特性は不良と判断できる。
 比較例6~9に係るリチウムイオンキャパシタでは、一般的な非水電解液に使用されているビニレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等を使用した。しかしながら、非水電解液中に(A)成分が完全に溶解せず非水電解液を作製することができなかったため、評価試験を行うことができなかった。
 比較例10~11に係るリチウムイオンキャパシタでは、比率(M/M)が0.5を超えた非水電解液を使用した。しかしながら、非水電解液中に(A)成分が完全に溶解せず非水電解液を作製することができなかったため、評価試験を行うことができなかった。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。

Claims (6)

  1.  (A)下記一般式(1)で示される化合物と、
     (B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルと、
     (C)カルボン酸エステルと、
    を含有し、
     前記(B)成分の含有量(M)[mmol/g]と前記(C)成分の含有量(M)[mmol/g]との比率(M/M)が0.001~0.5である非水電解液を備えることを特徴とする、リチウムイオンキャパシタ。
     Z・[X(CN)(Y) …(1)
    (式(1)中、Xはホウ素、アルミニウム、ケイ素、リンおよび砒素から選択される少なくとも1種の元素を表す。Yはハロゲン元素を表す。Zはリチウムまたはマグネシウムを表す。mは3~6の整数を表し、nは0~5の整数を表す。但し、m+n≧3である。)
  2.  前記(A)成分が、LiB(CN)およびLiP(CN)から選択される少なくとも1種である、請求項1に記載のリチウムイオンキャパシタ。
  3.  前記(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルが、下記一般式(2)で示される化合物である、請求項1または請求項2に記載のリチウムイオンキャパシタ。
    Figure JPOXMLDOC01-appb-C000001
    (式(2)中、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。)
  4.  前記(B)炭素-炭素不飽和結合を少なくとも一つ有する環状炭酸エステルが、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートおよびフッ素化ビニレンカーボネートから選択される少なくとも1種である、請求項1または請求項2に記載のリチウムイオンキャパシタ。
  5.  前記(C)カルボン酸エステルが、下記一般式(3)で示される化合物である、請求項1ないし請求項4のいずれか一項に記載のリチウムイオンキャパシタ。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、R~Rはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはアセチル基である。)
  6.  前記(C)カルボン酸エステルが、γ-ブチロラクトンおよびその誘導体から選択される少なくとも1種である、請求項1ないし請求項4のいずれか一項に記載のリチウムイオンキャパシタ。
PCT/JP2012/050776 2011-02-03 2012-01-17 リチウムイオンキャパシタ WO2012105307A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137022856A KR20140027101A (ko) 2011-02-03 2012-01-17 리튬 이온 캐패시터
US13/983,428 US20140217322A1 (en) 2011-02-03 2012-01-17 Lithium ion capacitor
JP2012555782A JPWO2012105307A1 (ja) 2011-02-03 2012-01-17 リチウムイオンキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-021513 2011-02-03
JP2011021513 2011-02-03

Publications (1)

Publication Number Publication Date
WO2012105307A1 true WO2012105307A1 (ja) 2012-08-09

Family

ID=46602527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050776 WO2012105307A1 (ja) 2011-02-03 2012-01-17 リチウムイオンキャパシタ

Country Status (4)

Country Link
US (1) US20140217322A1 (ja)
JP (1) JPWO2012105307A1 (ja)
KR (1) KR20140027101A (ja)
WO (1) WO2012105307A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186568A1 (ja) * 2014-06-04 2015-12-10 株式会社トクヤマ 非水電解液およびそれを用いた蓄電デバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957932B1 (ja) 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
US9583278B2 (en) 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
CN104335394B (zh) 2012-09-11 2017-03-22 Jsr株式会社 用于制作保护膜的组合物和保护膜以及蓄电器件
CN108780707B (zh) * 2016-03-18 2021-06-01 国立大学法人信州大学 锂复合负极及混合电容器以及它们的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259618A (ja) * 2003-02-26 2004-09-16 Nec Corp 蓄電デバイス
JP2006286924A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2009067774A (ja) * 2006-12-25 2009-04-02 Nichicon Corp イオン性化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249495B2 (ja) * 2002-04-02 2009-04-02 株式会社日本触媒 イオン伝導性材料
US9243013B2 (en) * 2008-08-22 2016-01-26 Nippon Shokubai Co., Ltd. Ionic compound, method for producing the same, and ion-conductive material comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259618A (ja) * 2003-02-26 2004-09-16 Nec Corp 蓄電デバイス
JP2006286924A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2009067774A (ja) * 2006-12-25 2009-04-02 Nichicon Corp イオン性化合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186568A1 (ja) * 2014-06-04 2015-12-10 株式会社トクヤマ 非水電解液およびそれを用いた蓄電デバイス

Also Published As

Publication number Publication date
JPWO2012105307A1 (ja) 2014-07-03
US20140217322A1 (en) 2014-08-07
KR20140027101A (ko) 2014-03-06

Similar Documents

Publication Publication Date Title
EP3240094B1 (en) Electrolyte solution for secondary batteries, and secondary battery comprising the same
KR101546251B1 (ko) 전기화학 장치용 전해액 및 전기화학 장치
JP5637858B2 (ja) 電気二重層キャパシタ
JP6135219B2 (ja) 電解液およびこれを備えるリチウムイオン二次電池
KR20180025917A (ko) 이소시아나이드를 포함하는 리튬-이온 전지용 비수성 전해질
JP2014194870A (ja) ホウ素含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2012105307A1 (ja) リチウムイオンキャパシタ
KR101800930B1 (ko) 비수계 리튬이차전지용 첨가제와, 이를 포함하는 비수계 전해액, 전극 및 비수계 리튬이차전지
JP2013175427A (ja) ジスルホン酸ベンジルアミド化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP6572048B2 (ja) リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JPH0922722A (ja) リチウムイオン電池用電解液
WO2015115242A1 (ja) 非水電解液二次電池
CN111600073B (zh) 一种锂离子电池电解液
JP5398321B2 (ja) 二次電池用非水電解液及び非水電解液二次電池
JP5259996B2 (ja) リチウム二次電池用電解液、及びリチウム二次電池
JP2017108127A (ja) 電気二重層キャパシタ用非水系電解液及びそれを用いた電気二重層キャパシタ
US20210119261A1 (en) Electrochemical device
JP2009283473A5 (ja)
WO2014077226A1 (ja) 蓄電デバイス、およびそれに用いる電極並びに多孔質シート
JP2012238420A (ja) リチウムイオン二次電池
CN111354977A (zh) 锂离子电池电解液,其制备方法,包含其的锂电池
WO2019065288A1 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2009105028A (ja) アンモニウム塩、並びにそれを用いた電解質、電解液、添加剤及び蓄電デバイス
JP2019061835A (ja) リチウムイオン二次電池
JP4432397B2 (ja) 非水電解液およびそれを用いたリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022856

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983428

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12742741

Country of ref document: EP

Kind code of ref document: A1