WO2019065288A1 - リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019065288A1
WO2019065288A1 PCT/JP2018/034090 JP2018034090W WO2019065288A1 WO 2019065288 A1 WO2019065288 A1 WO 2019065288A1 JP 2018034090 W JP2018034090 W JP 2018034090W WO 2019065288 A1 WO2019065288 A1 WO 2019065288A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
lithium
electrolytic solution
Prior art date
Application number
PCT/JP2018/034090
Other languages
English (en)
French (fr)
Inventor
長谷川 智彦
宏郁 角田
佑輔 久米
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2019544575A priority Critical patent/JP6933260B2/ja
Priority to CN201880017716.9A priority patent/CN110419134B/zh
Priority to US16/495,569 priority patent/US11335955B2/en
Publication of WO2019065288A1 publication Critical patent/WO2019065288A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0054Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • the electrolyte solution for lithium ion secondary batteries is comprised from the lithium salt which is electrolyte, and the non-aqueous organic solvent.
  • the non-aqueous organic solvent is required to have a high dielectric constant to dissociate the lithium salt, to exhibit high ionic conductivity in a wide temperature range, and to be stable in the battery. Since it is difficult to achieve these requirements with one solvent, it is usually used by combining a high dielectric constant solvent typified by propylene carbonate, ethylene carbonate, etc. with a low viscosity solvent such as dimethyl carbonate, diethyl carbonate, etc. It is common to do.
  • the present invention has been made in view of the problems of the above-mentioned prior art, and provides a non-aqueous electrolyte for lithium ion secondary battery capable of improving rate characteristics and a lithium ion secondary battery using the same.
  • the purpose is
  • the non-aqueous electrolyte solution for a lithium ion secondary battery according to the present invention comprises 2.0 ⁇ 10 ⁇ 6 to 3.0 ⁇ 10 10 carboxylic acid esters and halide ions other than fluoride ions. -3 mol / L is characterized.
  • the non-aqueous electrolyte for a lithium ion secondary battery according to the present invention preferably further contains a halogenated cyclic carbonate represented by the following chemical formula (1).
  • X 1 and X 2 represent halogen or hydrogen excluding fluorine, provided that one of X 1 and X 2 is halogen excluding fluorine.
  • the halogenated cyclic carbonate represented by the chemical formula (1) has a lower electronegativity than fluorine in addition to the formation of a good SEI on the negative electrode to suppress the reductive decomposition of the carboxylic ester.
  • the incorporation of the halogen into the solid electrolyte membrane (SEI) of the negative electrode lowers the donor property, and the lithium ion in the SEI can be quickly transferred into the electrolytic solution by solvation in the discharge. This improves the rate characteristics.
  • the halogenated cyclic carbonate is further contained in the electrolyte in an amount of 1.0 ⁇ 10 ⁇ 6 to 3.0 ⁇ 10 ⁇ 3 mol / L. Is preferred.
  • the content of the halogenated cyclic carbonate is suitable, and the rate characteristics are further improved.
  • the carboxylic acid ester is represented by the following chemical formula (2).
  • R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms or a substituted alkyl group, and the total number of carbon atoms of R 1 and R 2 is 5 or less.
  • the carboxylic acid ester is propionic acid ester or acetic acid ester.
  • the halide ion other than the fluoride ion is a chloride ion.
  • a lithium ion secondary battery according to the present invention is characterized by comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and the non-aqueous electrolyte for the lithium ion secondary battery.
  • the positive electrode contains a lithium vanadium compound.
  • Lithium-ion secondary battery according to the present invention further, it is preferable that the lithium vanadium compound is LiVOPO 4.
  • a non-aqueous electrolyte for a lithium ion secondary battery capable of improving rate characteristics and a lithium ion secondary battery using the same are provided.
  • the lithium ion secondary battery 100 As shown in FIG. 1, the lithium ion secondary battery 100 according to this embodiment is disposed adjacent to each other between the plate-like negative electrode 20 and the plate-like positive electrode 10 facing each other, and between the negative electrode 20 and the positive electrode 10. And an electrolytic solution containing lithium ions, a case 50 for accommodating these in a sealed state, and one end of the negative electrode 20 are electrically connected. It has a lead 62 whose other end protrudes outside the case, and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case.
  • the positive electrode 10 has a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. Further, the negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.
  • the positive electrode current collector 12 may be any conductive plate material, and for example, aluminum or an alloy thereof, or a thin metal plate (metal foil) such as stainless steel can be used.
  • the positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive aid.
  • Electrode active material As a positive electrode active material, absorption and release of lithium ion, desorption and insertion (intercalation) of lithium ion, or doping and dedoping of counter anion (for example, PF 6 ⁇ ) of the lithium ion are reversible It is not particularly limited as long as it can be advanced, and known electrode active materials can be used.
  • lithium vanadium compound when used among the above-mentioned positive electrode active materials, when combined with the negative electrode and the electrolytic solution according to the present embodiment, the effect of improving the cycle characteristics is strongly obtained.
  • lithium vanadium compounds in particular LiVOPO 4 , the effect of improving cycle characteristics can be obtained more strongly.
  • the exact mechanism of the above-mentioned action is still unknown, it is thought that the vanadium ion eluted from the lithium vanadium compound migrates to the negative electrode and is involved in the formation of a good SEI.
  • the positive electrode binder bonds the positive electrode active materials to one another, and also bonds the positive electrode active material layer 14 and the positive electrode current collector 12.
  • the binder may be any one as long as the above-mentioned bonding is possible, for example, a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), cellulose, styrene butadiene rubber, ethylene / propylene rubber, polyimide Resin, polyamide imide resin, etc. may be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • cellulose cellulose
  • styrene butadiene rubber styrene butadiene rubber
  • ethylene / propylene rubber polyimide Resin
  • polyamide imide resin etc.
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer examples include polyacetylene, polythiophene, polyaniline and the like.
  • the ion conductive conductive polymer for example, those obtained by combining a polyether type polymer compound such as polyethylene oxide or polypropylene oxide with a lithium salt such as LiClO 4 , LiBF 4 or LiPF 6 are listed.
  • the content of the binder in the positive electrode active material layer 14 is not particularly limited, but when it is added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.
  • the conductive aid for the positive electrode is not particularly limited as long as it can improve the conductivity of the positive electrode active material layer 14, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, fine powders of metals such as copper, nickel, stainless steel and iron, and conductive oxides such as ITO.
  • the negative electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate such as copper (metal foil) can be used.
  • the negative electrode active material layer 24 is mainly composed of a negative electrode active material, a binder for a negative electrode, and a conductive additive for a negative electrode.
  • the negative electrode active material is not particularly limited as long as it can reversibly advance absorption and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and known electrode active materials can be used.
  • carbon-based materials such as graphite and hard carbon
  • silicon-based materials such as silicon oxide (SiO x ) metal silicon (Si)
  • metal oxides such as lithium titanate (LTO)
  • metal materials such as lithium, tin and zinc Can be mentioned.
  • the negative electrode binder is not particularly limited, and the same positive electrode binder as described above can be used.
  • the electrolytic solution according to the present embodiment contains 2.0 ⁇ 10 ⁇ 6 to 3.0 ⁇ 10 ⁇ 3 mol / L of carboxylic acid ester and a halide ion other than a fluoride ion.
  • the electrolyte solution which concerns on this embodiment further contains the halogenated cyclic carbonate represented by Chemical formula (1).
  • the halogenated cyclic carbonate represented by the chemical formula (1) has a lower electronegativity than fluorine in addition to the formation of a good SEI on the negative electrode to suppress the reductive decomposition of the carboxylic ester.
  • the incorporation of the halogen into the SEI lowers the donor property, and the discharge enables lithium ions in the SEI to move rapidly into the electrolyte by solvation. This improves the rate characteristics.
  • the halogenated cyclic carbonate is preferably contained in the electrolytic solution in an amount of 1.0 ⁇ 10 ⁇ 6 to 3.0 ⁇ 10 ⁇ 3 mol / L.
  • the content of the halogenated cyclic carbonate is suitable, and the rate characteristics are further improved.
  • the carboxylic acid ester is preferably represented by a chemical formula (2), and more preferably a propionic acid ester or an acetic acid ester.
  • the carboxylic acid ester is preferably contained in the electrolytic solution at 50% by volume or more and 90% by volume or less.
  • the halide ion other than the fluoride ion is preferably a chloride ion.
  • the electrolyte solution which concerns on this embodiment can use the solvent generally used for the lithium ion secondary battery other than the said carboxylic ester.
  • the solvent is not particularly limited, and examples thereof include cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), linear carbonate compounds such as diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and the like. It can be mixed and used in the ratio of
  • the electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery, and examples thereof include inorganic acid anion salts such as LiPF 6 , LiBF 4 and lithium bis oxalate borate, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.
  • inorganic acid anion salts such as LiPF 6 , LiBF 4 and lithium bis oxalate borate, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.
  • Example 1 (Production of positive electrode) 50 parts by mass of LiVOPO 4 as a lithium vanadium compound, 35 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 as a lithium nickel compound, 5 parts by mass of carbon black, 10 parts by mass of PVDF as N-methyl-2 -Dispersed in pyrrolidone (NMP) to prepare a slurry for forming a positive electrode active material layer.
  • the slurry was applied to one surface of a 20 ⁇ m thick aluminum metal foil so that the coating amount of the positive electrode active material was 9.0 mg / cm 2, and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded by the roller press, and produced the positive electrode.
  • the battery is charged to a battery voltage of 4.2 V by constant current charging at a charge rate of 1 C (a current value at which charging ends in 1 hour when performing constant current charging at 25 ° C.), and then discharging The battery is discharged until the battery voltage reaches 2.8 V by constant current discharge at a rate 5C (the current value at which charging ends in 0.2 hours when performing constant current charging at 25 ° C), and the 5C discharge capacity C 2 I asked for.
  • a charge rate of 1 C a current value at which charging ends in 1 hour when performing constant current charging at 25 ° C.
  • Example 2 A lithium ion secondary battery for evaluation of Example 2 was produced in the same manner as Example 1, except that the addition amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 3 A lithium ion secondary battery for evaluation of Example 3 was produced in the same manner as Example 1 except that the amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 4 A lithium ion secondary battery for evaluation of Example 4 was produced in the same manner as Example 1 except that the amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 5 A lithium ion secondary battery for evaluation of Example 5 was produced in the same manner as Example 1 except that the addition amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 6 A lithium ion secondary battery for evaluation of Example 6 was produced in the same manner as in Example 1 except that the halogenated carbonate used in production of the electrolytic solution was changed as shown in Table 1.
  • Example 7 A lithium ion secondary battery for evaluation of Example 7 was produced in the same manner as Example 6, except that the amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 8 A lithium ion secondary battery for evaluation of Example 8 was produced in the same manner as Example 6, except that the amount of the halogenated carbonate used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 9 A lithium ion secondary battery for evaluation of Example 9 was produced in the same manner as in Example 1 except that the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 10 A lithium ion secondary battery for evaluation of Example 10 was produced as in Example 9 except that the addition amount of the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 11 A lithium ion secondary battery for evaluation of Example 11 was produced as in Example 9 except that the addition amount of the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 12 A lithium ion secondary battery for evaluation of Example 12 was produced in the same manner as in Example 1 except that the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 13 A lithium ion secondary battery for evaluation of Example 13 was produced as in Example 12 except that the addition amount of the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 14 A lithium ion secondary battery for evaluation of Example 14 was produced as in Example 12 except that the addition amount of the halogenated carbonate used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 15 A lithium ion secondary battery for evaluation of Example 15 was produced in the same manner as Example 2, except that the carboxylic acid ester used in the preparation of the electrolytic solution was changed as shown in Table 1.
  • Example 16 A lithium ion secondary battery for evaluation of Example 16 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 17 A lithium ion secondary battery for evaluation of Example 17 was produced in the same manner as in Example 2 except that the carboxylic acid ester used for producing the electrolytic solution was changed as shown in Table 1.
  • Example 18 A lithium ion secondary battery for evaluation of Example 18 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 19 A lithium ion secondary battery for evaluation of Example 19 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 20 A lithium ion secondary battery for evaluation of Example 20 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 21 A lithium ion secondary battery for evaluation of Example 21 was produced in the same manner as Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 22 A lithium ion secondary battery for evaluation of Example 22 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in production of the electrolytic solution was changed as shown in Table 1.
  • Example 23 A lithium ion secondary battery for evaluation of Example 23 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 24 A lithium ion secondary battery for evaluation of Example 24 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in production of the electrolytic solution was changed as shown in Table 1.
  • Example 25 A lithium ion secondary battery for evaluation of Example 25 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in producing the electrolytic solution was changed as shown in Table 1.
  • Example 26 A lithium ion secondary battery for evaluation of Example 26 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 27 A lithium ion secondary battery for evaluation of Example 27 was produced in the same manner as in Example 23 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 28 A lithium ion secondary battery for evaluation of Example 28 was produced in the same manner as in Example 23 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 29 A lithium ion secondary battery for evaluation of Example 29 was produced in the same manner as in Example 23 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 30 A lithium ion secondary battery for evaluation of Example 30 was produced in the same manner as in Example 23 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 31 A lithium ion secondary battery for evaluation of Example 31 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 32 A lithium ion secondary battery for evaluation of Example 32 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 33 A lithium ion secondary battery for evaluation of Example 33 was produced in the same manner as in Example 2 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 34 A lithium ion secondary battery for evaluation of Example 34 was produced in the same manner as in Example 2 except that the lithium vanadium compound used in producing the positive electrode was changed as shown in Table 1.
  • Example 35 A lithium ion secondary battery for evaluation of Example 35 was produced in the same manner as in Example 2 except that the lithium vanadium compound used in the production of the positive electrode was changed as shown in Table 1.
  • Comparative Example 1 A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that the halogenated carbonate was not added in the production of the electrolytic solution.
  • Comparative Example 2 A lithium ion secondary battery for evaluation of Comparative Example 2 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 3 A lithium ion secondary battery for evaluation of Comparative Example 3 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 4 A lithium ion secondary battery for evaluation of Comparative Example 4 was produced in the same manner as in Example 34 except that the halogenated carbonate was not added in producing the electrolytic solution.
  • Comparative Example 5 A lithium ion secondary battery for evaluation of Comparative Example 5 was produced in the same manner as in Example 35 except that the halogenated carbonate was not added in producing the electrolytic solution.
  • the present invention provides a non-aqueous electrolyte for a lithium ion secondary battery capable of improving rate characteristics and a lithium ion secondary battery using the same.

Abstract

レート特性を改善することが可能なリチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池を提供すること。 カルボン酸エステルおよび、フッ化物イオン以外のハロゲン化物イオンを2.0×10-6~3.0×10-3mol/L含むリチウムイオン二次電池用非水電解液。

Description

リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池に関する。
 近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、このような状況下において、充放電容量が大きく、高エネルギー密度を有するリチウムイオン二次電池が注目されている。
 リチウムイオン二次電池用の電解液は、電解質であるリチウム塩と非水系の有機溶媒とから構成される。非水系の有機溶媒は、リチウム塩を解離させるために高い誘電率を有すること、広い温度領域で高いイオン伝導度を発現させること、及び電池中で安定であることが要求される。これらの要求を一つの溶媒で達成することは困難であるので、通常はプロピレンカーボネート、エチレンカーボネート等に代表される高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート等の低粘度溶媒とを組み合わせて使用するのが一般的である。
 リチウムイオン二次電池の高出力化においては、電解液を低粘度化させることは非常に有用である。例えば、低粘度溶媒の一つにカルボン酸エステルという溶媒があり、これを用いた場合に特に低温の出力特性の改善を図る技術が報告されている。(特許文献1)
特開2009-129719号
 しかしながら、従来技術の方法では未だ諸特性は満足されず、レート特性の更なる改善が求められている。
 本発明は上記従来技術の有する課題に鑑みてなされたものであり、レート特性を改善することが可能なリチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池を提供することを目的とする。
 上記課題を解決するため、本発明に係るリチウムイオン二次電池用非水電解液は、カルボン酸エステルおよび、フッ化物イオン以外のハロゲン化物イオンを2.0×10-6~3.0×10-3mol/L含むことを特徴とする。
 これによれば、フッ素よりも電気陰性度の低いハロゲンがSEI中に取り込まれることでドナー性が低下し、放電においてSEI中のリチウムイオンが溶媒和によって電解液中へと速やかに移動することが可能になる。これにより、レート特性が改善する。
 本発明に係るリチウムイオン二次電池用非水電解液はさらに、下記化学式(1)で表されるハロゲン化環状炭酸エステルを含むことが好ましい。
(ここで、XおよびXはフッ素を除くハロゲンまたは水素を示す。ただし、XとXのどちらか一方はフッ素を除くハロゲンである。)
Figure JPOXMLDOC01-appb-C000003
 これによれば、化学式(1)で表されるハロゲン化環状炭酸エステルは負極上で良好なSEIを形成してカルボン酸エステルの還元分解を抑制することに加え、フッ素よりも電気陰性度の低いハロゲンが負極の固体電解質膜(SEI)中に取り込まれることでドナー性が低下し、放電においてSEI中のリチウムイオンが溶媒和によって電解液中へと速やかに移動することが可能になる。これにより、レート特性が改善する。
 本発明に係るリチウムイオン二次電池用非水電解液はさらに、上記ハロゲン化環状炭酸エステルが、電解液中に1.0×10-6~3.0×10-3mol/L含まれることが好ましい。
 これによれば、ハロゲン化環状炭酸エステルの含有量として好適であり、レート特性が更に改善する。
 本発明に係るリチウムイオン二次電池用非水電解液はさらに、上記カルボン酸エステルが、下記化学式(2)で表されることが好ましい。
(ここで、RおよびRは炭素数1~4の直鎖状または分岐状のアルキル基または置換アルキル基であり、RとRの炭素数の合計が5以下である。)
Figure JPOXMLDOC01-appb-C000004
 これによれば、カルボン酸エステルとして好適であり、レート特性が更に改善する。
 本発明に係るリチウムイオン二次電池用非水電解液はさらに、上記カルボン酸エステルが、プロピオン酸エステルまたは酢酸エステルであることが好ましい。
 これによれば、カルボン酸エステルとして好適であり、レート特性が更に改善する。
 本発明に係るリチウムイオン二次電池用非水電解液はさらに、上記フッ化物イオン以外のハロゲン化物イオンが塩化物イオンであることが好ましい。
 これによれば、ハロゲン化物イオンとして好適であり、レート特性が更に改善する。
 本発明に係るリチウムイオン二次電池は、正極と、負極と、上記正極と上記負極の間に位置するセパレータと、上記リチウムイオン二次電池用非水電解液とを備えることを特徴とする。
 本発明に係るリチウムイオン二次電池はさらに、上記正極がリチウムバナジウム化合物を含むことが好ましい。
 本発明に係るリチウムイオン二次電池はさらに、前記リチウムバナジウム化合物がLiVOPOであることが好ましい。
 本発明によれば、レート特性を改善することが可能なリチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池が提供される。
本実施形態のリチウムイオン二次電池の模式断面図である。
 以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想到できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。
 <リチウムイオン二次電池>
 図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
 正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
 <正極>
 (正極集電体)
 正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
 (正極活物質層)
 正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
 (正極活物質)
 正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、化学式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物Li(M)(PO(ただし、M=VOまたはV、かつ、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
 上記正極活物質のうち、リチウムバナジウム化合物を用いた場合、本実施形態に係る負極および電解液と組み合わせた際に、サイクル特性の改善効果が強く得られる。リチウムバナジウム化合物の中でも、特にLiVOPOでサイクル特性の改善効果がより強く得られる。上記作用の正確なメカニズムはいまだ不明であるが、リチウムバナジウム化合物から溶出したバナジウムイオンが負極へ泳動し、良好なSEIの形成に関与していると考えられる。
 (正極用バインダー)
 正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
 正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5~5質量部であることが好ましい。
 (正極用導電助剤)
 正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
 <負極>
 (負極集電体)
 負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
 (負極活物質層)
 負極活物質層24は、負極活物質、負極用バインダー、負極用導電助剤から主に構成されるものである。
 (負極活物質)
 負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
 (負極用バインダー)
 負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
 (負極用導電助剤)
 負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
 <電解液>
 本実施形態に係る電解液は、カルボン酸エステルおよび、フッ化物イオン以外のハロゲン化物イオンを2.0×10-6~3.0×10-3mol/L含むものである。
 これによれば、フッ素よりも電気陰性度の低いハロゲンがSEI中に取り込まれることでドナー性が低下し、放電においてSEI中のリチウムイオンが溶媒和によって電解液中へと速やかに移動することが可能になる。これにより、レート特性が改善する。
 本実施形態に係る電解液はさらに、化学式(1)で表されるハロゲン化環状炭酸エステルを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
 これによれば、化学式(1)で表されるハロゲン化環状炭酸エステルは負極上で良好なSEIを形成してカルボン酸エステルの還元分解を抑制することに加え、フッ素よりも電気陰性度の低いハロゲンがSEI中に取り込まれることでドナー性が低下し、放電においてSEI中のリチウムイオンが溶媒和によって電解液中へと速やかに移動することが可能になる。これにより、レート特性が改善する。
 本実施形態に係る電解液はさらに、上記ハロゲン化環状炭酸エステルが、電解液中に1.0×10-6~3.0×10-3mol/L含まれることが好ましい。
 これによれば、ハロゲン化環状炭酸エステルの含有量として好適であり、レート特性が更に改善する。
 本実施形態に係る電解液はさらに、上記カルボン酸エステルが、化学式(2)で表されることが好ましく、プロピオン酸エステルまたは酢酸エステルであることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 これによれば、カルボン酸エステルとして好適であり、レート特性が更に改善する。
 本実施形態に係る電解液はさらに、上記カルボン酸エステルが、電解液中に50体積%以上90体積%以下含まれることが好ましい。
 これによれば、カルボン酸エステルの比率として好適であり、レート特性が更に改善する。
 本実施形態に係る電解液はさらに、上記フッ化物イオン以外のハロゲン化物イオンが塩化物イオンであることが好ましい。
 これによれば、ハロゲン化物イオンとして好適であり、レート特性が更に改善する。
 (その他の溶媒)
 本実施形態に係る電解液は、上記カルボン酸エステル以外にも一般にリチウムイオン二次電池に用いられている溶媒を用いることが出来る。上記溶媒としては特に限定はなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート化合物、等を任意の割合で混合して用いることができる。
 (電解質)
 電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
 以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 (正極の作製)
 リチウムバナジウム化合物としてLiVOPO50質量部、リチウムニッケル化合物としてLi(Ni0.80Co0.15Al0.05)O35質量部、カーボンブラック5質量部、PVDF10質量部をN-メチル-2-ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
 (負極の作製)
 天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN-メチル-2-ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
 (電解液の作製)
 カルボン酸エステルとしてプロピオン酸エチルを用い、体積比でEC:プロピオン酸エチル=30:70の組成比となるように調整し、これに1.0mol/Lの濃度となるようにLiPFを溶解させた。上記の溶液に、ハロゲン化炭酸エステルとして4-クロロ-1,3-ジオキソラン-2-オンを1.0×10-6mol/Lとなるように添加し、電解液を作製した。
 (評価用リチウムイオン二次電池の作製)
 上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れた。このアルミラミネートパックに、上記で作製した電解液を注入した後、真空シールし、評価用リチウムイオン二次電池を作製した。
 (5Cレート特性の測定)
 上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、充電レート0.2C(25℃で定電流充電を行ったときに5時間で充電終了となる電流値)の定電流充電で、電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で、電池電圧が2.8Vとなるまで放電を行い、初回放電容量Cを求めた。続いて、充電レート1C(25℃で定電流充電を行ったときに1時間で充電終了となる電流値)の定電流充電で、電池電圧が4.2Vとなるまで充電を行った後、放電レート5C(25℃で定電流充電を行ったときに0.2時間で充電終了となる電流値)の定電流放電で、電池電圧が2.8Vとなるまで放電を行い、5C放電容量Cを求めた。
 上記で求めた初回放電容量Cおよび5C放電容量Cから、下式に従い、5Cレート特性を求めた。得られた結果を表1に示す。
 5Cレート特性[%]=C/C×100
 [実施例2]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例2の評価用リチウムイオン二次電池を作製した。
 [実施例3]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例3の評価用リチウムイオン二次電池を作製した。
 [実施例4]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例4の評価用リチウムイオン二次電池を作製した。
 [実施例5]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例5の評価用リチウムイオン二次電池を作製した。
 [実施例6]
 電解液の作製で用いたハロゲン化炭酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例6の評価用リチウムイオン二次電池を作製した。
 [実施例7]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例6と同様として、実施例7の評価用リチウムイオン二次電池を作製した。
 [実施例8]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例6と同様として、実施例8の評価用リチウムイオン二次電池を作製した。
 [実施例9]
 電解液の作製で用いたハロゲン化炭酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例9の評価用リチウムイオン二次電池を作製した。
 [実施例10]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例9と同様として、実施例10の評価用リチウムイオン二次電池を作製した。
 [実施例11]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例9と同様として、実施例11の評価用リチウムイオン二次電池を作製した。
 [実施例12]
 電解液の作製で用いたハロゲン化炭酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例12の評価用リチウムイオン二次電池を作製した。
 [実施例13]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例12と同様として、実施例13の評価用リチウムイオン二次電池を作製した。
 [実施例14]
 電解液の作製で用いたハロゲン化炭酸エステルの添加量を、表1に示した通りに変更した以外は実施例12と同様として、実施例14の評価用リチウムイオン二次電池を作製した。
 [実施例15]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例15の評価用リチウムイオン二次電池を作製した。
 [実施例16]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例16の評価用リチウムイオン二次電池を作製した。
 [実施例17]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例17の評価用リチウムイオン二次電池を作製した。
 [実施例18]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例18の評価用リチウムイオン二次電池を作製した。
 [実施例19]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例19の評価用リチウムイオン二次電池を作製した。
 [実施例20]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例20の評価用リチウムイオン二次電池を作製した。
 [実施例21]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例21の評価用リチウムイオン二次電池を作製した。
 [実施例22]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例22の評価用リチウムイオン二次電池を作製した。
 [実施例23]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例23の評価用リチウムイオン二次電池を作製した。
 [実施例24]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例24の評価用リチウムイオン二次電池を作製した。
 [実施例25]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例25の評価用リチウムイオン二次電池を作製した。
 [実施例26]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例26の評価用リチウムイオン二次電池を作製した。
 [実施例27]
 電解液の組成比を、表1に示した通りに変更した以外は実施例23と同様として、実施例27の評価用リチウムイオン二次電池を作製した。
 [実施例28]
 電解液の組成比を、表1に示した通りに変更した以外は実施例23と同様として、実施例28の評価用リチウムイオン二次電池を作製した。
 [実施例29]
 電解液の組成比を、表1に示した通りに変更した以外は実施例23と同様として、実施例29の評価用リチウムイオン二次電池を作製した。
 [実施例30]
 電解液の組成比を、表1に示した通りに変更した以外は実施例23と同様として、実施例30の評価用リチウムイオン二次電池を作製した。
 [実施例31]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例31の評価用リチウムイオン二次電池を作製した。
 [実施例32]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例32の評価用リチウムイオン二次電池を作製した。
 [実施例33]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例2と同様として、実施例33の評価用リチウムイオン二次電池を作製した。
 [実施例34]
 正極の作製で用いたリチウムバナジウム化合物を、表1に示した通りに変更した以外は実施例2と同様として、実施例34の評価用リチウムイオン二次電池を作製した。
 [実施例35]
 正極の作製で用いたリチウムバナジウム化合物を、表1に示した通りに変更した以外は実施例2と同様として、実施例35の評価用リチウムイオン二次電池を作製した。
 [比較例1]
 電解液の作製で、ハロゲン化炭酸エステルを添加しなかったこと以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
 [比較例2]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例2と同様として、比較例2の評価用リチウムイオン二次電池を作製した。
 [比較例3]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例2と同様として、比較例3の評価用リチウムイオン二次電池を作製した。
 [比較例4]
 電解液の作製で、ハロゲン化炭酸エステルを添加しなかったこと以外は実施例34と同様として、比較例4の評価用リチウムイオン二次電池を作製した。
 [比較例5]
 電解液の作製で、ハロゲン化炭酸エステルを添加しなかったこと以外は実施例35と同様として、比較例5の評価用リチウムイオン二次電池を作製した。
 実施例2~35、および比較例1~5で作製した評価用リチウムイオン二次電池について、実施例1と同様に、5Cレート特性の測定を行った。結果を表1に示す。
 実施例1~35はいずれも、ハロゲン化炭酸エステルを添加しなかった比較例1に対し、300サイクル後容量維持率が改善することが確認された。
 実施例1~5の結果から、ハロゲン化炭酸エステルの添加量を最適化することで5Cレート特性がより改善することが確認された。
 実施例6~14の結果から、ハロゲン化炭酸エステルとして、4-クロロ-1,3-ジオキソラン-2-オンまたは4,5-ジクロロ-1,3-ジオキソラン-2-オンを用いると、5Cレート特性がより改善することが確認された。
 実施例15~17、および実施例22~26の結果から、カルボン酸の総炭素数を5以下とすることで、5Cレート特性がより改善することが確認された。
 実施例18~21、および実施例27~30の結果から、電解液の組成を最適化することで、5Cレート特性がより改善することが確認された。
 実施例31~33の結果から、カルボン酸エステルとしてプロピオン酸エステルまたは酢酸エステルを使用することで、5Cレート特性がより改善する効果が得られることが確認された。
 実施例34~35、および比較例4~5の結果から、リチウムバナジウム化合物としてLiVOPOを用いた場合、300サイクル後容量維持率がより改善することが確認された。
Figure JPOXMLDOC01-appb-T000007
 本発明により、レート特性を改善することが可能なリチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池が提供される。
 10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。

 

Claims (9)

  1.  カルボン酸エステルおよび、フッ化物イオン以外のハロゲン化物イオンを2.0×10-6~3.0×10-3mol/L含むリチウムイオン二次電池用非水電解液。
  2.  前記電解液が、下記化学式(1)で表されるハロゲン化環状炭酸エステルを含むことを特徴とする請求項1に記載のリチウムイオン二次電池用非水電解液。
    (ここで、XおよびXはフッ素を除くハロゲンまたは水素を示す。ただし、XとXのどちらか一方はフッ素を除くハロゲンである。)
    Figure JPOXMLDOC01-appb-C000001
  3.  前記ハロゲン化環状炭酸エステルが、電解液中に1.0×10-6~3.0×10-3mol/L含まれることを特徴とする請求項2に記載のリチウムイオン二次電池用非水電解液。
  4.  前記カルボン酸エステルが、下記化学式(2)で表されることを特徴とする請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池用非水電解液。
    (ここで、RおよびRは炭素数1~4の直鎖状または分岐状のアルキル基または置換アルキル基であり、RとRの炭素数の合計が5以下である。)
    Figure JPOXMLDOC01-appb-C000002
  5.  前記カルボン酸エステルが、プロピオン酸エステルまたは酢酸エステルであることを特徴とする請求項1乃至4のいずれか一項に記載のリチウムイオン二次電池用非水電解液。
  6.  前記フッ化物イオン以外のハロゲン化物イオンが、塩化物イオンであることを特徴とする請求項1乃至5のいずれか一項に記載のリチウムイオン二次電池用非水電解液。
  7.  正極と、負極と、上記正極と上記負極の間に位置するセパレータと、請求項1乃至6のいずれか一項に記載のリチウムイオン二次電池用非水電解液とを備えるリチウムイオン二次電池。
  8.  前記正極がリチウムバナジウム化合物を含むことを特徴とする請求項7に記載のリチウムイオン二次電池。
  9.  前記リチウムバナジウム化合物がLiVOPOであることを特徴とする請求項8に記載のリチウムイオン二次電池。

     
PCT/JP2018/034090 2017-09-26 2018-09-14 リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池 WO2019065288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019544575A JP6933260B2 (ja) 2017-09-26 2018-09-14 リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
CN201880017716.9A CN110419134B (zh) 2017-09-26 2018-09-14 锂离子二次电池用非水电解液及使用其的锂离子二次电池
US16/495,569 US11335955B2 (en) 2017-09-26 2018-09-14 Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-184834 2017-09-26
JP2017184834 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065288A1 true WO2019065288A1 (ja) 2019-04-04

Family

ID=65903173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034090 WO2019065288A1 (ja) 2017-09-26 2018-09-14 リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US11335955B2 (ja)
JP (1) JP6933260B2 (ja)
CN (1) CN110419134B (ja)
WO (1) WO2019065288A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598595B (zh) * 2023-07-19 2023-10-24 中南大学 一种锂金属电池用低温电解液及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140760A (ja) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd 二次電池用非水電解液及びこれを用いた非水電解液二次電池
JP2009164052A (ja) * 2008-01-09 2009-07-23 Sony Corp 電池
JP2015092476A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池
JP2016085867A (ja) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 粒子検出器
WO2017065145A1 (ja) * 2015-10-15 2017-04-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2017082303A (ja) * 2015-10-29 2017-05-18 Tdk株式会社 安定化リチウム粉、それを用いた負極、及びリチウムイオン二次電池
JP2017152126A (ja) * 2016-02-23 2017-08-31 Tdk株式会社 負極活物質、負極活物質を含有する負極及びリチウムイオン二次電池
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746794B2 (en) 2001-06-12 2004-06-08 Tech Drive, Inc Thermal runaway inhibitors
US20070287071A1 (en) 2006-06-11 2007-12-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
CN101090165A (zh) * 2006-06-14 2007-12-19 三洋电机株式会社 二次电池用非水电解液及使用了它的非水电解液二次电池
JP4492683B2 (ja) 2007-11-23 2010-06-30 トヨタ自動車株式会社 電池システム
EP2238643B1 (en) 2008-01-02 2014-03-26 LG Chem, Ltd. Pouch-type lithium secondary battery
JP5338151B2 (ja) 2008-06-16 2013-11-13 三菱化学株式会社 非水系電解液及び非水系電解液電池
JP5786856B2 (ja) * 2010-05-28 2015-09-30 旭硝子株式会社 二次電池用非水電解液および二次電池
EP2602855B1 (en) * 2010-08-05 2015-02-18 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
EP2822083B1 (en) 2012-04-20 2017-07-19 LG Chem, Ltd. Lithium secondary battery having improved rate characteristics
WO2014080871A1 (ja) * 2012-11-20 2014-05-30 日本電気株式会社 リチウムイオン二次電池
KR20140065768A (ko) 2012-11-21 2014-05-30 삼성에스디아이 주식회사 리튬 이차 전지 및 리튬 이차 전지용 음극
JP6098878B2 (ja) * 2013-04-17 2017-03-22 トヨタ自動車株式会社 非水電解液二次電池
CN103500850B (zh) * 2013-10-23 2016-01-20 山东大学 一种磷酸铁锂电池的低温电解液
WO2015088053A1 (ko) * 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
CN103825049B (zh) * 2014-03-04 2017-10-27 东风商用车有限公司 一种锂离子电池耐高温电解液
CN104505534A (zh) * 2014-09-15 2015-04-08 宁波维科电池股份有限公司 一种高压电解液及包含该电解液的锂离子电池
KR102221799B1 (ko) * 2014-10-22 2021-03-02 삼성에스디아이 주식회사 리튬 이차 전지
JP2016085837A (ja) * 2014-10-24 2016-05-19 Tdk株式会社 リチウムイオン二次電池
CN105826608A (zh) * 2016-05-25 2016-08-03 宁德新能源科技有限公司 一种电解液以及包括该电解液的锂离子电池
US11251430B2 (en) * 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140760A (ja) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd 二次電池用非水電解液及びこれを用いた非水電解液二次電池
JP2009164052A (ja) * 2008-01-09 2009-07-23 Sony Corp 電池
JP2015092476A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池
JP2016085867A (ja) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 粒子検出器
WO2017065145A1 (ja) * 2015-10-15 2017-04-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2017082303A (ja) * 2015-10-29 2017-05-18 Tdk株式会社 安定化リチウム粉、それを用いた負極、及びリチウムイオン二次電池
JP2017152126A (ja) * 2016-02-23 2017-08-31 Tdk株式会社 負極活物質、負極活物質を含有する負極及びリチウムイオン二次電池
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池

Also Published As

Publication number Publication date
CN110419134A (zh) 2019-11-05
JP6933260B2 (ja) 2021-09-08
US20200112060A1 (en) 2020-04-09
CN110419134B (zh) 2022-11-11
JPWO2019065288A1 (ja) 2019-12-19
US11335955B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
KR101607024B1 (ko) 리튬 이차전지
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
KR20080025002A (ko) 비수전해질 이차 전지 및 그의 제조 방법
KR20120089197A (ko) 전기화학 장치용 전해액 및 전기화학 장치
JP6812827B2 (ja) 非水電解液およびそれを用いた非水電解液電池
JP2010277701A (ja) 二次電池及びその製造方法
JP6992362B2 (ja) リチウムイオン二次電池
CN111052486B (zh) 非水电解质二次电池
JP6933260B2 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2018133284A (ja) 非水電解液およびそれを用いた非水電解液電池
JP6222389B1 (ja) 非水電解液およびそれを用いた非水電解液電池
JP2019061828A (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2019061827A (ja) リチウムイオン二次電池
JP2011034698A (ja) 非水電解液および非水電解液を用いたリチウム二次電池
JP2018133335A (ja) 非水電解液電池
JP2019145409A (ja) リチウムイオン二次電池
JP2019061835A (ja) リチウムイオン二次電池
JP2019061825A (ja) リチウムイオン二次電池
JP2019175652A (ja) リチウムイオン二次電池
JP2019160615A (ja) リチウムイオン二次電池
JP2019204725A (ja) リチウム二次電池
KR101651142B1 (ko) 사이클 수명이 개선된 리튬 이차전지
JP2018133282A (ja) リチウムイオン二次電池
JP2018160382A (ja) リチウムイオン二次電池
JP2018133281A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861742

Country of ref document: EP

Kind code of ref document: A1