RU2308761C2 - Система для обнаружения первого объекта, скрытого вторым объектом, способ визуального отображения первого объекта и способ представления на экране дисплея данных первого объекта - Google Patents

Система для обнаружения первого объекта, скрытого вторым объектом, способ визуального отображения первого объекта и способ представления на экране дисплея данных первого объекта Download PDF

Info

Publication number
RU2308761C2
RU2308761C2 RU2004110723/09A RU2004110723A RU2308761C2 RU 2308761 C2 RU2308761 C2 RU 2308761C2 RU 2004110723/09 A RU2004110723/09 A RU 2004110723/09A RU 2004110723 A RU2004110723 A RU 2004110723A RU 2308761 C2 RU2308761 C2 RU 2308761C2
Authority
RU
Russia
Prior art keywords
data
values
digital
digital image
display
Prior art date
Application number
RU2004110723/09A
Other languages
English (en)
Other versions
RU2004110723A (ru
Inventor
Джин Артур ГРИНДСТАФФ (US)
Джин Артур ГРИНДСТАФФ
Термэн Уод МАККЕЙ III (US)
Термэн Уод МАККЕЙ III
Сузан Хит Кэлвин ФЛЕТЧЕР (US)
Сузан Хит Кэлвин ФЛЕТЧЕР
Original Assignee
Интегрэф Софтвеа Текнолоджис Кампэни
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Интегрэф Софтвеа Текнолоджис Кампэни filed Critical Интегрэф Софтвеа Текнолоджис Кампэни
Publication of RU2004110723A publication Critical patent/RU2004110723A/ru
Application granted granted Critical
Publication of RU2308761C2 publication Critical patent/RU2308761C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Studio Circuits (AREA)
  • Studio Devices (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Processing Of Color Television Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

Изобретение относится к системам анализа цифровых изображений, в частности к системам представления в цифровых изображениях заслоняемых объектов. Техническим результатом является собственно создание способа представления в цифровом изображении заслоняемых объектов без воздействия на них специальных сигналов, достигается он за счет того, что предложен способ визуального отображения первого объекта, заслоняемого вторым объектом, в котором первый объект имеет цвет, контрастирующий с цветом второго объекта, а второй объект выполнен из материала, позволяющего проходить сквозь него видимому свету, причем количество видимого света, проходящего сквозь второй объект, недостаточно для того, чтобы первый объект был виден человеческим глазом. Способ включает получение цифрового изображения первого и второго объектов с использованием датчика видимого света. Цифровые данные изображения, принимаемые компьютерной системой, содержат как данные первого объекта, так и данные второго объекта, причем данные первого объекта и данные второго объекта содержат цветовую информацию, а величина контраста между первым и вторым объектами должна составлять приблизительно 10% полной шкалы так, что по цветовой шкале в 256 уровней различие составит приблизительно 25 уровней, далее данные второго объекта отфильтровывают, после чего значения, ассоциированные с данными первого объекта, увеличивают до тех пор, пока они не станут различимыми при воспроизведении на дисплее. 3 н. и 29 з.п. ф-лы, 6 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к анализу цифровых изображений. В частности, настоящее изобретение относится к представлению в цифровых изображениях заслоняемых объектов.
Уровень техники
Известны системы для наблюдения объектов, заслоняемых другими объектами. Например, рентгеновские детекторы и инфракрасные детекторы дают пользователю возможность подвергнуть объект облучению инфракрасным светом, рентгеновскими лучами либо иным излучением, отличающимся от видимого света, для того, чтобы увидеть заслоненные объекты.
В таких системах необходимо подвергнуть объект воздействию сигнала излучения для того, чтобы получить возможность его увидеть. Существует потребность в способе и системе, дающих возможность представить в цифровом изображении заслоняемые объекты, не подвергая их воздействию специального сигнала.
Раскрытие изобретения
В одном из вариантов выполнения, изобретение представляет способ визуального (зрительно воспринимаемого) отображения первого объекта, который заслонен вторым объектом. В данном способе, первый объект контрастирует по цвету со вторым объектом, а второй объект выполнен из материала, через который может проходить видимый свет. Количество видимого света, которое может проходить через второй объект, недостаточно для того, чтобы первый объект был виден человеческим глазом. В способе используется получение цифрового изображения первого и второго объектов посредством датчика видимого света, например, ПЗС камеры. Цифровые данные изображения, принимаемые компьютерной системой, содержат данные о первом объекте и о втором объекте. Следует понимать, что данные о первом объекте и данные о втором объекте содержат информацию о цвете. Величина контраста между первым и вторым объектом должна составлять приблизительно 10% полной шкалы так, что при цветовой шкале в 256 цветов разница составляет приблизительно 25 градаций. Компьютерная система в значительной мере отфильтровывает данные о втором объекте, и тогда значения, ассоциированные с данными о первом объекте, усиливаются до тех пор, пока данные не станут визуально различимыми.
Компьютерная система может создать гистограмму цифровых данных изображения, чтобы дать пользователю системы возможность выбрать данные о втором объекте на основе гистограммы. В данном варианте выполнения, гистограмма выводится на дисплей пользователю, и предоставляется механизм для пользователя, позволяющий выбирать данные из гистограммы. Шаг существенной фильтрации данных второго объекта и усиления данных первого объекта может быть осуществлен путем повышения уровня гамма-коррекции до значений, находящихся за пределами существующих графических программ. Например, величина гамма-коррекции может быть установлена превышающей 2,5, а в большинстве случаев - более 6. Фильтрация данных второго объекта также может быть выполнена посредством повышения яркости в комбинации с увеличением величины гамма-коррекции.
Значения данных первого объекта обычно увеличивают таким образом, что исходные данные первого объекта преобразуются в значения, где контрасты между градациями в данных различимы человеческим глазом при воспроизведении данных первого объекта на дисплее. Преобразование обычно производится таким образом, что исходные значения, представляющие собой значения, соответствующие низкой интенсивности света, которые не воспринимаются при воспроизведении на дисплее, преобразуются в значения, которые могут восприниматься человеческим глазом.
Способ может включать шаг превращения цветовой информации в градации яркости перед фильтрацией данных второго объекта и усиления/преобразования цветовой информации данных первого объекта.
Компьютерная система позволяет определить, является ли первый объект более светлым, чем второй объект, или более темным, чем второй объект. Если второй объект существенно светлее, чем первый объект, система может инвертировать данные первого и второго объектов так, что второй объект при воспроизведении изображения на мониторе перед фильтрацией будет казаться более темным. Фильтрация данных второго объекта может быть осуществлена путем уменьшения значений данных второго объекта до тех пор, пока они не сравняются с уровнем черного, что обычно соответствует нулевому значению по шкале 0-255.
В описанном способе может быть также использован компьютерный программный продукт для компьютера, содержащий компьютерный код. В одном варианте способ выполняется полностью автоматически. Способ также может быть выполнен в системе, которая включает камеру для получения цифровых изображений с использованием видимого света, причем создаваемое цифровой камерой цифровое изображение содержит данные, представляющие первый объект и второй объект. Система дополнительно включает процессор для приема цифрового изображения и обработки цифрового сигнала для фильтрации данных второго объекта и увеличения значений данных первого объекта до уровня, когда изображение становится различимым при его воспроизведении на дисплее.
Краткое описание чертежей
Признаки изобретения станут лучше понятны при ознакомлении с приведенным ниже подробным описанием и приложенными чертежами, где:
фиг.1 представляет конфигурацию, в которой осуществляется первый вариант выполнения изобретения для распознавания скрытых объектов;
фиг.2 представляет блок-схему, иллюстрирующую распознавание первого объекта, скрытого на телевизионном изображении вторым объектом;
фиг.3 представляет более подробную блок-схему шагов, выполняемых при распознавании скрытого объекта;
фиг.4 представляет гистограмму выборки;
фиг.5 представляет блок-схему, иллюстрирующую один из способов выполнения распознавания скрытого объекта; и
фиг.6 представляет блок-схему, иллюстрирующую автоматический вариант способа распознавания скрытого объекта.
Осуществление изобретения
В приведенном ниже описании термин "цифровой видеосигнал" подразумевает представление в цифровой форме последовательности сигналов изображений, которые могут быть последовательно воспроизведены на дисплее. Обычно цифровой видеосигнал содержит последовательность кадров, каждый из которых представляет отдельное изображение. Кадры, в свою очередь, могут быть также разделены, представляя собой совокупность пикселов. В приведенном описании термином "пиксел" обозначается одна точка изображения. Чем большее число пикселов содержится в изображении, тем выше разрешающая способность телевизионного изображения. Разрешающая способность обычно выражается количеством пикселов по длине и ширине, например разрешающая способность 800×600 соответствует 800 пикселам по длине изображения и 600 пикселам по ширине изображения.
Термин "яркость" будет означать свойство визуального восприятия, согласно которому площадка кажется испускающей больше или меньше света. Яркость представляет собой относительное выражение величины энергии, испускаемой источником видимого света. Термины "гамма" и "величина гамма-коррекции" обозначают показатель степени в степенном законе, выражающем зависимость яркости от напряжения. Термин "гамма-коррекция" означает введение нелинейности в зависимость выходного сигнала от входного с целью изменения переходной характеристики системы. Термином "нормальный видеосигнал "обозначается видеосигнал, полученный с использованием видимого света, в отличие от сигнала, полученного в инфракрасном свете, или при облучении изображаемого объекта каким-либо иным излучением, отличающимся от излучения диапазона видимого света. Термином "пористый материал" обозначается любой материал, через который может проходить часть падающего света.
В варианте выполнения настоящего изобретения представлен способ обнаружения скрытых объектов с использованием анализа кадров телевизионного изображения. В определенных условиях, объекты, прикрытые пористым материалом, могут быть выявлены в телевизионном изображении. Примерами пористого материала могут служить одежда (хлопчато-бумажная, шелковая и др.), ткань и стекло. Изображение скрытых объектов может быть получено, если скрытый объект и пористый материал имеют контрастирующие цвета. Контрастирующие цвета представляют собой цвета, которые, будучи преобразованными в шкалу яркости, различаются приблизительно на 10% в градациях яркости. Например, если имеется 256 уровней шкалы яркости, пористый материал и скрытый объект должны отличаться на 25 уровней или более.
На фиг.1 показана камера 100 цифрового изображения, получающая изображение в отраженном свете. Основная часть прямого света 105 отражается от пористого объекта 110. Малая часть прямого света 115 проходит сквозь пористый материал и отражается от скрытого объекта 120. Часть света, отраженного от скрытого объекта, проходит сквозь пористый материал и перехватывается датчиком 130 телевизионного изображения. Датчик 130 телевизионного изображения преобразует отраженный свет 105 и 115 от пористого материала и от скрытого материала в электрический сигнал 140, который обрабатывается процессором 150 цифрового изображения. Далее процессор 150 цифрового изображения направляет данные 155 изображения в память (запоминающее устройство) в цифровом формате, например коде RGB, для каждого пиксела/приемного элемента в датчике. Когда после этого данные 155 изображения воспроизводятся на экране дисплея, скрытый объект не виден благодаря тому, что значения параметров пикселов, относящихся к пористому материалу, значительно превосходят значения параметров для скрытого объекта. В результате, свет, испускаемый экраном дисплея, соответствующий пористому материалу, маскирует испускаемый экраном свет, обусловленный значениями параметров пикселей скрытого объекта. Вследствие этого человеческий глаз не может различить скрытый объект. Вообще человеческий глаз не в состоянии различать уровни яркости ниже 80 по шкале яркости 0-255. При этом значения яркости менее 80 при восприятии будут соответствовать черному. На фиг.1 скрытый объект показан сплошным, хотя скрытый объект также может быть и пористым.
На фиг.2 показана блок-схема шагов, необходимых для изменения данных цифрового изображения для представления на экране скрытого объекта. Способ осуществляется посредством компьютерной системы, использующей программы, обеспечивающие обработку телевизионных изображений и других изображений. Сначала, на шаге 200, принимается информация в виде цифровых данных, представляющих первое цифровое изображение/кадр. Затем эти данные преобразуются из данных цветного цифрового изображения в данные по градациям яркости. Затем, на шаге 210, производится фильтрация цифровых данных в градациях яркости. Фильтрация осуществляется следующим образом. Если пористый объект не является черным, все значения пикселей изменяются так, что значения пикселей, ассоциированные с пористым объектом, по умолчанию соответствуют уровню черного. Это может быть достигнуто использованием фильтра, отсекающего значения, превышающие пороговое значение яркости. В результате, оставшиеся значения, которые обычно представляют скрытые объекты, возрастают (шаг 220). Оставшиеся значения, которые не были установлены равными 0 (черное), увеличиваются так, что оказываются в интервале, который воспринимается визуально. Предположим, например, что при полном диапазоне яркостей, составляющем 0-255, значения, превышающие 100, будут увеличены. При таком преобразовании происходит расширение диапазона значений, при котором уровни контраста становятся достаточными для восприятия, а общий уровень яркости/интенсивности для пикселей, представляющих скрытые объекты, увеличивается таким образом, что пикселы становятся различимыми для человеческого глаза. Для специалиста среднего уровня должно быть понятно, что человеческий глаз плохо различает пикселы, имеющие близкие уровни яркости. Поэтому одним из назначений фильтра является растянуть значения яркостей пикселов с низким уровнем яркости так, чтобы контраст стал различимым для человеческого глаза.
На фиг.3 представлена более подробная блок-схема шагов, требующихся для распознавания скрытых объектов. Как было сказано выше, после получения цифровой информации компьютерной системой информация о цвете преобразуется в информацию по шкале яркостей способами, знакомыми специалистам среднего уровня. Тот же подход мог бы быть также использован и в отношении информации о цвете.
Сначала, на шаге 300, создается гистограмма цифровых данных изображения для первого изображения в последовательности изображений. Образец гистограммы показан на фиг.4. По вертикальной оси отложена вероятность появления значения, а по горизонтальной оси отложены значения яркости. Данная гистограмма показывает, как часто определенная интенсивность встречается в данном изображении. Гистограмма дает весовое соотношение уровней, позволяющее пользователю выбрать уровни малой интенсивности. В целом будут превалировать значения с высокой интенсивностью, а значения, плохо различимые (значения с низкой интенсивностью), будут уступать как по уровню интенсивности, так и по частоте появления. Таким образом, легко могут быть определены значения, видимые на дисплее, и удалены посредством фильтрации или иными способами, известными специалистам среднего уровня.
В одном из вариантов выполнения, компьютерная система позволяет пользователю наблюдать гистограмму и определить, пользуясь графическим представлением гистограммы на шаге 310, области с низким уровнем интенсивности света. Низкие уровни интенсивности света образуются при освещении видимым светом, но человеческий глаз не различает их при воспроизведении на экране дисплея. Поэтому пользователь может выбрать фильтр и отфильтровать, на шаге 320, весь другой свет (свет высокого уровня). Обычно свет с низким уровнем интенсивности может быть визуально определен и выбран пользователем компьютерной системы. После того, как фильтрация света высокой интенсивности выполнена, свет низкого уровня на шаге 330 преобразовывается в значения более высокого уровня с тем, чтобы на дисплее были представлены преобразованные значения. Эти значения также растянуты с тем, чтобы сделать контраст более сильным. Например, если граница между низкой и высокой интенсивностью составляет 40 по шкале 0-255, и значения располагаются в интервале яркостей между 135 и 255, контраст увеличен втрое так, что значения 1 и 2 стали бы теперь равными 135 и 139. Затем два преобразованных уровня малой интенсивности представляются на шаге 340 на дисплей пользователю системы. Если объект, представляемый уровнями низкой интенсивности, неразличим, пользователь на шаге 350 отвечает, что изображение неприемлемо. Пользователь дает ответ посредством устройства ввода пользователя, например клавиатуры или мыши. Далее способ предоставляет пользователю либо заново определить границу между низким и высоким уровнями интенсивности, либо предусмотреть новое преобразование значений низкой интенсивности так, что возрастает яркость значений, либо между ними усиливается контраст, либо то и другое. Система может также дать пользователю возможность выбрать новое значение для разделения, на шаге 350, значения низкого уровня интенсивности и значения высокого уровня интенсивности. Если пользователь сообщает, что скрытый объект виден, процесс останавливается.
Процедура может быть также осуществлена путем увеличения гамма-коррекции/или яркости, как показано на фиг.5, когда сначала на шаге 410 к цифровым данным изображения применяются значения яркости и/или гамма-коррекции. При увеличении уровня яркости в конце концов происходит насыщение до уровня белого света высокого уровня интенсивности, чем осуществляется фильтрация света высокого уровня интенсивности. После этого все значения, достигшие насыщения, могут быть исключены, оставив значения низкого уровня. Затем для увеличения оставшихся значений может быть использована гамма-коррекция. Изменение гаммы увеличивает значения интенсивности без чрезмерного увеличения шума, что произошло бы при простом пропорциональном увеличении яркости по всем значениям. Увеличение гаммы ведет к нелинейному увеличению интенсивности так, что новое значение интенсивности равно:
новая интенсивность = (текущая интенсивность/255)1/гамма
В силу нелинейного характера гамма-коррекции шум также возрастает нелинейно.
В данном варианте выполнения изобретения, используемые значения гамма-коррекции должны иметь большую величину, чем используется обычно в дисплеях на электронно-лучевой трубке (ЭЛТ). Обычно значение гамма-коррекции для данного варианта выполнения должно составлять от 6 до 10, в то время как стандартный дисплей на ЭЛТ имеет значение гамма-коррекции приблизительно 2,2-2,5, а в известных программах обработки телевизионных изображений максимальное значение гамма-коррекции составляет 5.
После фильтрации данных телевизионного изображения и усиления данных низкого уровня телевизионного изображения данные телевизионного изображения низкого уровня, представляющие текущий кадр, представляются на экране дисплея пользователю (шаг 420). Представленные пользователю данные могут также включать часть телевизионных данных высокого уровня интенсивности. Действуя в интерактивном режиме, пользователь может, на шаге 430, изменить значения яркости и гаммы, и результирующие значения будут снова представлены пользователю на дисплее. Посредством такой процедуры получается изображение, представленное светом низкого уровня. Когда изображение становится удовлетворительным, пользователь, на шаге 450, предлагает компьютерной системе записать измененные телевизионные данные в память телевизионных изображений. Обработка следующих телевизионных изображений производится аналогичным образом, пока все кадры не будут обработаны (шаг 480). Распознавание скрытого объекта считается законченным (шаг 490).
В первом примере способа распознавания скрытого объекта проводится анализ изображения человека в черной рубашке, под которой находится белый пистолет. Цифровое изображение человека получается при обычных условиях освещения. Если изображение представляется на экране дисплея, человеческим глазом можно увидеть только черную рубашку, которая имеет нулевое значение уровня для пикселов на экране. Проходящий сквозь нее свет, отражаемый сквозь нее белым пистолетом, при этом ослабляется настолько и имеет такой уровень интенсивности, что не воспринимается человеческим глазом. Хотя свет и не воспринимается, световая информация принимается датчиком цифрового устройства приема изображения. При увеличении значения гаммы и яркости значения, соответствующие черному, не увеличатся. Небольшое количество света, приходящего от белого пистолета, будет, однако, усилено, поскольку оно имеет ненулевое значение. Также будет усилен и некоторый шум и представлен на дисплее, но если для камеры достаточно света, в предпочтительном варианте выполнения, 500 лк или более, система ясно покажет белый пистолет. В другом примере проводится анализ изображения человека в белой рубашке с черным пистолетом под ней. В этом случае телевизионный сигнал инвертируется, благодаря чему происходит фильтрация данных с высокой интенсивностью так, что рубашка теперь кажется черной, имея нулевое значение интенсивности. Данные низкого уровня интенсивности преобразуются затем в интервал значений, в котором значения находятся в диапазоне различимости глазом, например между 100 и 255 по шкале 0-255. Это может быть достигнуто предварительным преобразованием данных в данные по шкале градаций яркости либо с использованием данных цвета, поступающих с цифрового датчика изображения. Кроме того, значения разносятся так, что расстояние между значениями увеличивается, в результате чего восприятие контраста человеческим глазом улучшается.
В третьем примере анализируется изображение человека в темно-серой рубашке, под которой находится светло-серый пистолет. Уровень интенсивности, соответствующий темно-серому костюму, снижается так, что устанавливается соответствующим черному. При этом светло-серый пистолет будет иметь некоторое значение яркости над уровнем черного. Значения, соответствующие светло-серому пистолету, вместе с шумом могут быть затем увеличены либо усилением яркости, либо посредством гамма-коррекции, в результате чего происходит фильтрация малых значений света от светло-серого пистолета и преобразование в значения, которые различимы человеческим глазом, как это было описано выше.
Эта процедура может быть автоматизирована, как показано на фиг.5. В одном варианте выполнения, на шаге 510 производится вычисление среднего значения по всем цифровым данным изображения. Среднее значение определяет положение значений высокой интенсивности. Далее, на шаге 520, определяется среднеквадратичное отклонение от среднего значения. Все значения в пределах одного среднеквадратичного отклонения ниже среднего значения, а также все значения выше среднего значения идентифицируются как значения высокой интенсивности (шаг 539). Затем значения высокой интенсивности на шаге 540 подвергаются фильтрации и исключаются из набора цифровых данных, составляющих изображение. Затем на шаге 550 производится преобразование значений низкого уровня в значения уровня, различимого глазом. Разница между значениями также возрастает так, что контраст между значениями более различим для глаза. Например, автоматическая система может определить наименьшее и наибольшее значение среди значений низкого уровня и вычесть эти значения для определения интервала. Затем этот интервал преобразуется в интервал различимого света. Например, если шкала яркостей составляет 0-255 уровней, и значения низкого уровня лежат в пределах уровней 1-41, интервал составляет 40. Человеческий глаз обычно различает уровни интенсивности более 80, поэтому интервал в 40 уровней преобразуется в интервал в 175 уровней (80-255). После этого значения данных низкого уровня воспроизводятся на экране дисплея (шаг 560).
Дальнейшая автоматизация системы может быть выполнена при преобразовании цветовых данных в данные шкалы яркости для дальнейшей обработки. Следует иметь ввиду, что хотя данные могут быть преобразованы в данные шкалы яркости для определения значений высокой интенсивности и низкой интенсивности, цветовая информация сохраняется и может быть использована для преобразования значений низкой интенсивности, например значения низкой интенсивности могут быть воспроизведены в цвете после преобразования до уровней, различимых глазом.
Для достижения наилучших результатов камера должна быть направлена относительно объекта под углом плюс/минус 40° от нормали к нему. Если наружная одежда очень светлая или белая, тогда телевизионный сигнал должен быть инвертирован, чтобы светлые объекты стали темными и выделялись контрастирующие объекты под пористым материалом. Исследуемый объект должен освещаться внешним источником, создающим освещенность 500 лк и более.
Следует заметить, что блок-схемы используются в настоящем описании для иллюстрации различных особенностей изобретения и не должны рассматриваться как ограничивающие настоящее изобретение какой-либо конкретной логической последовательностью или выполнением логических операций. Описанная логическая схема может быть разделена на различные логические группы (например, программы, модули, функции или подпрограммы) без изменения общих результатов или какого-либо иного отклонения от истиной области притязаний изобретения. Зачастую логические элементы могли добавляться, модифицироваться, исключаться, выполняться в ином порядке или выполняться с использованием других логических структур (например, логических вентилей, циклических базисных элементов и иных логических структур) без изменения общих результатов или какого-либо иного отклонения от истиной области притязаний изобретения.
Настоящее изобретение может быть выполнено во многих различных формах, включая использование компьютерной программной логики для процессора (например, микропроцессора, микроконтроллера, процессора цифрового сигнала или компьютера общего назначения), программируемой логики для использования с программируемым логическим устройством (например, программируемой пользователем вентильной матрицы (FPGA) или иным программируемым логическим устройством), дискретных компонентов, интегральных схем (например, специализированные интегральные схемы (ASIC)) либо любые иных средств, включая любые их комбинации, но и не ограничиваясь ими.
Компьютерная программная логика, выполняющая все или часть функций, описанных выше, может быть реализована в различных формах, например в форме исходного кода, в форме, исполняемой компьютером, и различных промежуточных формах (например, формах, генерируемых ассемблером, компилятором или устройством ввода позиций), не ограничиваясь только ими. Исходный код может включать последовательности команд компьютерных программ, реализованных на любом из различных языков программирования (например, объектная программа, язык ассемблера или язык высокого уровня, например Fortran, С, C++, JAVA или язык HTML) для использования с различными операционными системами или операционными средами. Исходный код может определять и использовать различные структуры данных и сообщений. Исходный код может быть в исполняемой компьютером форме (например, посредством интерпретирующей программы) либо исходный код может быть преобразован (например, посредством транслятора, ассемблера или компилятора) в код, исполняемый компьютером.
Компьютерная программа может быть записана в любой форме (например, в форме исходного кода, форме, исполняемой компьютером, либо промежуточной форме), либо постоянно, либо временно в среде запоминающего устройства, например полупроводникового запоминающего устройства (например, RAM, ROM, PROM, EEPROM или программируемая RAM с групповой перезаписью), в устройстве с магнитной памятью (например, дискета или несъемный диск), в оптическом запоминающем устройстве (например, CD-ROM), на PC-карте (например, карте ассоциации PCNCIA) или в другом запоминающем устройстве. Компьютерная программа может быть записана в любой форме в сигнале, который может передаваться к компьютеру с использованием различных способов связи, включая аналоговую связь, цифровую связь, оптическую связь, беспроводную связь, связь в сети и связь между сетями. Компьютерные программы могут распространяться в любой форме с использованием переносимой среды хранения с сопровождающей документацией в печатной или электронной форме (например, программы, упакованные в термоусадочную пленку, или магнитная лента), быть предустановленными в системе компьютера (например, в постоянной памяти системы или несъемном диске) или распространяться с сервера или электронной системы телеконференцсвязи по системе связи (например, Internet или Всемирной Сети).
Логические устройства (включая программируемую логику для использования с программируемыми логическими устройствами), выполняющие все или часть функций, описанных выше, могут быть разработаны с использованием традиционных методов вручную, либо могут быть разработаны, каптированы, смоделированы, либо представлены в виде электронного документа с использованием различных инструментов, например автоматизированного проектирования (CAD), языка описания аппаратных средств (например, VHDL или AHDL) либо языка программирования программируемых логических устройств (например, PALASM, ABEL или CUPL).
Настоящее изобретение может быть выполнено в иных конкретных формах в пределах области притязаний изобретения. Описанные варианты выполнения не имеют ограничивающего характера и должны рассматриваться во всех отношениях только в качестве примера.

Claims (32)

1. Способ визуального отображения первого объекта, контрастирующего по цвету со вторым объектом, который препятствует наблюдению первого объекта и сквозь который проходит видимый свет, отличающийся тем, что осуществляют прием компьютерной системой цифровых данных изображения, представляющих первый объект, заслоняемый вторым объектом, при этом цифровые данные изображения содержат по крайней мере данные, представляющие первый объект и второй объект, создаваемые путем отражения от них видимого света, затем осуществляют фильтрацию цифровых данных изображения, представляющих второй объект, посредством фильтрации значений параметров пикселей в градациях яркости или интенсивности их световой характеристики, и увеличивают остальные цифровые значения до уровня, обеспечивающего визуальную различимость первого объекта.
2. Способ по п.1, отличающийся тем, что дополнительно создают гистограммы цифровых данных изображения и осуществляют выбор данных второго объекта на основе гистограммы.
3. Способ по п.1, отличающийся тем, что фильтрацию данных второго объекта и увеличение значения данных первого объекта осуществляют по крайней мере увеличением гамма-коррекции.
4. Способ по п.3, отличающийся тем, что величина гамма-коррекции составляет более 2,5.
5. Способ по п.3, отличающийся тем, что величина гамма-коррекции равна или более 6.
6. Способ по п.1, отличающийся тем, что при увеличении значения данных первого объекта преобразуют данные первого объекта до значений, при которых контраст между уровнями данных достаточный для его обнаружения человеческим глазом при воспроизведении данных первого объекта на экране дисплея.
7. Способ по п.6, отличающийся тем, что преобразование выполняют до получения значений данных, которые при воспроизведении на экране дисплея различимы для человеческого глаза.
8. Способ по п.1, отличающийся тем, что увеличение значений данных первого объекта осуществляют по крайней мере увеличением яркости.
9. Способ по п.1, отличающийся тем, что первый объект и второй объект имеют контрастирующие цвета.
10. Способ по п.1, отличающийся тем, что первый объект и второй объект имеют контрастирующие цвета, отличающиеся в среднем более, чем на 25 уровней по шкале, имеющей 256 уровней.
11. Способ по п.1, отличающийся тем, что данные изображения представлены по шкале значений, при этом первый объект и второй объект имеют контрастирующие цвета, причем цветовые данные первого объекта и второго объекта отличаются приблизительно на десять процентов шкалы.
12. Способ по п.1, отличающийся тем, что процесс автоматизирован.
13. Способ по п.2, отличающийся тем, что процесс автоматизирован.
14. Способ по п.1, отличающийся тем, что данные первого объекта и данные второго объекта содержат цветовую информацию.
15. Способ по п.14, отличающийся тем, что дополнительно преобразуют цветовую информацию из данных первого объекта и данных второго объекта в градации по шкале яркости.
16. Способ представления на экране дисплея данных первого объекта, представляющих первый объект в цифровом изображении, заслоненного вторым объектом, сквозь который проходит видимый свет, причем первый и второй объекты имеют контрастирующие цвета, отличающийся тем, что осуществляют прием компьютерной системой цифровых данных первого и второго объектов, представляющих цифровое изображение и фильтрацию параметров пикселей данных первого и второго объектов в градациях яркости или интенсивности их световой характеристики, посредством которой воспроизводят на экране дисплея различимыми для глаза данные первого объекта, а данные второго объекта отсекают.
17. Способ по п.16, отличающийся тем, что дополнительно получают цифровые изображения первого объекта и второго объекта с использованием датчика видимого света, который вырабатывает данные первого объекта и данные второго объекта.
18. Способ по п.16, отличающийся тем, что при фильтрации преобразовывают данные первого объекта в масштабе, при котором контрасты между значениями данных при воспроизведении на дисплее видны человеческим глазом.
19. Способ по п.16, отличающийся тем, что дополнительно осуществляют представление данных первого объекта на экране дисплея.
20. Способ по п.19, отличающийся тем, что дополнительно обеспечивают ручную настройку фильтрации после представления данных первого объекта на экране дисплея.
21. Способ по п.16, отличающийся тем, что при осуществлении фильтрации создают изображаемую на дисплее гистограмму цифровых данных, представляющих цифровое изображение, предоставляют пользователю возможность выбора группы цифровых данных, представляющих цифровое изображение, удаляют выбранную группы из цифровых данных, представляющих цифровое изображение, и осуществляют настройку значений оставшихся цифровых данных с применением гамма-коррекции к цифровым данным посредством увеличения величины гамма-коррекции до различимости первого объекта при воспроизведении цифровых данных на экране дисплея.
22. Способ по п.16, отличающийся тем, что данные первого объекта и данные второго объекта содержат цветовую информацию.
23. Способ по п.22, отличающийся тем, что дополнительно осуществляют преобразование цветовой информации из данных первого объекта и данных второго объекта в градации по шкале яркости.
24. Способ по п.23, отличающийся тем, что если второй объект темнее первого объекта, проводят настройки по крайней мере данных второго объекта до выдачи практически всеми данными второго объекта нулевого сигнала при воспроизведении на дисплее.
25. Способ по п.23, отличающийся тем, что если второй объект существенно светлее первого объекта, проводят инвертирование данных первого и второго объектов, при котором второй объект представляется темнее при воспроизведении на экране дисплея.
26. Способ по п.25, отличающийся тем, что выполняют настройку по крайней мере данных второго объекта до выдачи практически всеми данными второго объекта нулевого сигнала при воспроизведении на дисплее.
27. Способ по п.25, отличающийся тем, что дополнительно осуществляют преобразование данных первого объекта в значения данных, которые видны при воспроизведении на дисплее, причем разница между значениями данных увеличена по сравнению с разницей между данными первого объекта.
28. Способ по п.26, отличающийся тем, что дополнительно осуществляют преобразование данных первого объекта в значения данных, при котором значения данных видны при воспроизведении на дисплее, причем разница между значениями данных увеличена по сравнению с разницей между данными первого объекта.
29. Система для обнаружения первого объекта, скрытого вторым объектом, отличающаяся тем, что она содержит цифровую камеру для получения цифрового изображения в видимом свете, которое содержит данные, представляющие первый объект и второй объект, и процессор для приема цифрового изображения и обработки цифрового изображения с фильтрацией значений параметров пикселей данных второго объекта в градациях яркости или интенсивности их световой характеристики и увеличением значений параметров пикселей данных первого объекта до различимого глазом уровня при воспроизведении на дисплее.
30. Система по п.29, отличающаяся тем, что процессор подключен с возможностью получения сигнала команды от пользователя и является средством увеличения величины гамма-коррекции.
31. Система по п.30, отличающаяся тем, что величина гамма-коррекции увеличена до значения, равного 5 или более.
32. Система по п.29, отличающаяся тем, что процессор является средством одновременного увеличения значения данных первого объекта, имеющих градации по шкале, и разницы между значениями данных первого объекта.
RU2004110723/09A 2001-09-07 2002-09-06 Система для обнаружения первого объекта, скрытого вторым объектом, способ визуального отображения первого объекта и способ представления на экране дисплея данных первого объекта RU2308761C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31816401P 2001-09-07 2001-09-07
US60/318164 2001-09-07

Publications (2)

Publication Number Publication Date
RU2004110723A RU2004110723A (ru) 2005-09-27
RU2308761C2 true RU2308761C2 (ru) 2007-10-20

Family

ID=23236945

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2004110724/09A RU2310289C2 (ru) 2001-09-07 2002-09-06 Способ (варианты) и устройство для идентификации цифровых видеоданных от нескольких источников, система телевизионного наблюдения
RU2004110722/09A RU2308816C2 (ru) 2001-09-07 2002-09-06 Способ (варианты) и система стабилизации изображения
RU2004110723/09A RU2308761C2 (ru) 2001-09-07 2002-09-06 Система для обнаружения первого объекта, скрытого вторым объектом, способ визуального отображения первого объекта и способ представления на экране дисплея данных первого объекта

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2004110724/09A RU2310289C2 (ru) 2001-09-07 2002-09-06 Способ (варианты) и устройство для идентификации цифровых видеоданных от нескольких источников, система телевизионного наблюдения
RU2004110722/09A RU2308816C2 (ru) 2001-09-07 2002-09-06 Способ (варианты) и система стабилизации изображения

Country Status (15)

Country Link
US (6) US7079701B2 (ru)
EP (3) EP1430444B1 (ru)
KR (3) KR100927918B1 (ru)
CN (4) CN101072364B (ru)
AU (3) AU2002327612B2 (ru)
BR (3) BRPI0212377B1 (ru)
CA (3) CA2459821C (ru)
CO (3) CO5570718A2 (ru)
HK (3) HK1069470A1 (ru)
IL (4) IL160760A0 (ru)
MX (3) MXPA04002211A (ru)
NZ (3) NZ531976A (ru)
RU (3) RU2310289C2 (ru)
WO (3) WO2003024095A1 (ru)
ZA (2) ZA200401972B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541125C2 (ru) * 2009-02-04 2015-02-10 Сони Корпорейшн Устройство обработки информации, способ обработки информации и программа
RU2741516C1 (ru) * 2017-10-09 2021-01-26 Хуавей Текнолоджиз Ко., Лтд. Способ обработки отображения и электронное устройство

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072364B (zh) 2001-09-07 2012-05-09 英特图形软件技术公司 使用颜色匹配的图像稳定化
US7489802B2 (en) * 2002-09-10 2009-02-10 Zeev Smilansky Miniature autonomous agents for scene interpretation
JP4307910B2 (ja) * 2003-03-07 2009-08-05 富士フイルム株式会社 動画像切り出し装置および方法並びにプログラム
JP3768968B2 (ja) 2003-03-28 2006-04-19 株式会社エヌ・ティ・ティ・ドコモ 通信端末及びプログラム
JP4017578B2 (ja) * 2003-09-19 2007-12-05 三洋電機株式会社 手ぶれ補正装置、手ぶれ補正方法および手ぶれ補正プログラムを記録した記録媒体
US7840067B2 (en) * 2003-10-24 2010-11-23 Arcsoft, Inc. Color matching and color correction for images forming a panoramic image
US7616220B2 (en) * 2003-12-23 2009-11-10 Intel Corporation Spatio-temporal generation of motion blur
US7506267B2 (en) * 2003-12-23 2009-03-17 Intel Corporation Compose rate reduction for displays
KR100562119B1 (ko) * 2004-04-29 2006-03-21 삼성탈레스 주식회사 동영상의 특성을 이용한 이미지의 정렬 방법
US7671916B2 (en) * 2004-06-04 2010-03-02 Electronic Arts Inc. Motion sensor using dual camera inputs
EP1782635A1 (en) * 2004-08-23 2007-05-09 Intergraph Software Technologies Company Real-time image stabilization
US20060120615A1 (en) * 2004-12-06 2006-06-08 Huiqiong Wang Frame compensation for moving imaging devices
CN101228549B (zh) * 2005-03-31 2012-10-17 本田技研工业株式会社 文件管理系统、文件管理方法
US7952612B2 (en) * 2006-06-22 2011-05-31 Nokia Corporation Method and system for image construction using multiple exposures
US20090010617A1 (en) * 2007-07-05 2009-01-08 International Business Machines Corporation Method and Apparatus for Optimizing Space Allocations for Digital Video Recordings
KR101392732B1 (ko) 2007-08-20 2014-05-08 삼성전자주식회사 손떨림에 의한 움직임 추정 장치 및 방법, 그를 이용한영상 촬상 장치
KR101268987B1 (ko) * 2007-09-11 2013-05-29 삼성전자주식회사 메타데이터를 자동적으로 생성/갱신하는 멀티미디어 데이터기록 방법 및 장치
US7800652B2 (en) * 2007-12-12 2010-09-21 Cyberlink Corp. Reducing video shaking
WO2009078132A1 (ja) * 2007-12-18 2009-06-25 Panasonic Corporation 画像再生装置、画像再生方法及び画像再生プログラム
US8493313B2 (en) * 2008-02-13 2013-07-23 Dolby Laboratories Licensing Corporation Temporal filtering of video signals
US8457371B2 (en) * 2008-04-18 2013-06-04 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US8164655B2 (en) * 2008-05-19 2012-04-24 Spatial Cam Llc Systems and methods for concurrently playing multiple images from a storage medium
US20100026822A1 (en) * 2008-07-31 2010-02-04 Itt Manufacturing Enterprises, Inc. Multiplexing Imaging System for Area Coverage and Point Targets
US20100235314A1 (en) * 2009-02-12 2010-09-16 Decisive Analytics Corporation Method and apparatus for analyzing and interrelating video data
US8458105B2 (en) * 2009-02-12 2013-06-04 Decisive Analytics Corporation Method and apparatus for analyzing and interrelating data
EP2355037A1 (en) * 2009-12-18 2011-08-10 Nxp B.V. Method of and system for determining an average colour value for pixels
WO2011149558A2 (en) 2010-05-28 2011-12-01 Abelow Daniel H Reality alternate
CN102457701B (zh) * 2010-11-02 2014-03-12 华为终端有限公司 图像显示处理方法及装置
JP4932027B1 (ja) * 2010-11-15 2012-05-16 株式会社ナナオ 映像表示方法およびそれを用いた液晶表示装置
JP6122269B2 (ja) 2011-12-16 2017-04-26 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US10715817B2 (en) * 2012-12-19 2020-07-14 Nvidia Corporation Apparatus and method for enhancing motion estimation based on user input
US9530310B2 (en) 2013-11-01 2016-12-27 Xerox Corporation Method and system for detecting and tracking a vehicle of interest utilizing a network of traffic image-capturing units
US10540564B2 (en) 2014-06-27 2020-01-21 Blinker, Inc. Method and apparatus for identifying vehicle information from an image
US9558419B1 (en) 2014-06-27 2017-01-31 Blinker, Inc. Method and apparatus for receiving a location of a vehicle service center from an image
US10733471B1 (en) 2014-06-27 2020-08-04 Blinker, Inc. Method and apparatus for receiving recall information from an image
US10572758B1 (en) 2014-06-27 2020-02-25 Blinker, Inc. Method and apparatus for receiving a financing offer from an image
US9760776B1 (en) 2014-06-27 2017-09-12 Blinker, Inc. Method and apparatus for obtaining a vehicle history report from an image
US10515285B2 (en) 2014-06-27 2019-12-24 Blinker, Inc. Method and apparatus for blocking information from an image
US9589202B1 (en) 2014-06-27 2017-03-07 Blinker, Inc. Method and apparatus for receiving an insurance quote from an image
US10867327B1 (en) 2014-06-27 2020-12-15 Blinker, Inc. System and method for electronic processing of vehicle transactions based on image detection of vehicle license plate
US9589201B1 (en) 2014-06-27 2017-03-07 Blinker, Inc. Method and apparatus for recovering a vehicle value from an image
US9754171B1 (en) 2014-06-27 2017-09-05 Blinker, Inc. Method and apparatus for receiving vehicle information from an image and posting the vehicle information to a website
US9818154B1 (en) 2014-06-27 2017-11-14 Blinker, Inc. System and method for electronic processing of vehicle transactions based on image detection of vehicle license plate
US9779318B1 (en) 2014-06-27 2017-10-03 Blinker, Inc. Method and apparatus for verifying vehicle ownership from an image
US9594971B1 (en) 2014-06-27 2017-03-14 Blinker, Inc. Method and apparatus for receiving listings of similar vehicles from an image
US9563814B1 (en) 2014-06-27 2017-02-07 Blinker, Inc. Method and apparatus for recovering a vehicle identification number from an image
US9892337B1 (en) 2014-06-27 2018-02-13 Blinker, Inc. Method and apparatus for receiving a refinancing offer from an image
US10579892B1 (en) 2014-06-27 2020-03-03 Blinker, Inc. Method and apparatus for recovering license plate information from an image
US9773184B1 (en) 2014-06-27 2017-09-26 Blinker, Inc. Method and apparatus for receiving a broadcast radio service offer from an image
US9600733B1 (en) 2014-06-27 2017-03-21 Blinker, Inc. Method and apparatus for receiving car parts data from an image
US9607236B1 (en) 2014-06-27 2017-03-28 Blinker, Inc. Method and apparatus for providing loan verification from an image
CN104599226B (zh) * 2015-02-14 2017-05-10 安徽大学 一种大容量隐写方法
US10019737B2 (en) * 2015-04-06 2018-07-10 Lewis Beach Image processing device and method
US10033926B2 (en) 2015-11-06 2018-07-24 Google Llc Depth camera based image stabilization
CN105282400B (zh) * 2015-11-20 2018-07-13 北京理工大学 一种基于几何插值的高效视频稳定方法
US11386759B2 (en) 2016-05-09 2022-07-12 Herbert S Kobayashi Three level detector signal for multicamera video alarm system for remote monitoring and method
US10679477B2 (en) 2016-05-09 2020-06-09 Herbert S Kobayashi Multicamera video alarm system for remote monitoring and method
KR101818129B1 (ko) * 2017-04-25 2018-01-12 동국대학교 산학협력단 나선 신경망 기법을 이용한 보행자 인식 장치 및 방법
US11526970B2 (en) * 2019-09-04 2022-12-13 Samsung Electronics Co., Ltd System and method for video processing with enhanced temporal consistency
JP7209653B2 (ja) * 2020-02-05 2023-01-20 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理方法、及びプログラム
CN111312127B (zh) * 2020-02-24 2023-07-28 北京京东方光电科技有限公司 旋转显示屏的显示画面调整方法及装置、旋转显示屏
US11620967B2 (en) * 2020-03-16 2023-04-04 Lewis S. Beach Image processing device and method
CN113534281A (zh) * 2020-04-14 2021-10-22 深圳市博利凌科技有限公司 用于感测物体表面之后隐藏物位置的扫描仪及方法

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652790A (en) * 1970-01-28 1972-03-28 Itt Search and tracking television system and method
US3891798A (en) * 1971-03-19 1975-06-24 Rockwell International Corp Tracker unit
US3952151A (en) * 1973-08-13 1976-04-20 Trw Inc. Method and apparatus for stabilized reproduction of remotely-sensed images
FR2302004A5 (fr) * 1973-08-31 1976-09-17 Thomson Csf Systeme de poursuite automatique d'une cible, procedant par analyse de contraste video
US3988533A (en) * 1974-09-30 1976-10-26 Video Tek, Inc. Video-type universal motion and intrusion detection system
US4120004A (en) * 1976-01-26 1978-10-10 Coutta John M Surveillance system
US4405940A (en) * 1977-05-31 1983-09-20 Westinghouse Electric Corp. Apparatus and method for preprocessing video frame signals
NL7801727A (nl) * 1978-02-16 1979-08-20 Hollandse Signaalapparaten Bv Drempelspanningsselectieschakeling.
EP0028933A3 (en) 1979-11-09 1981-06-03 Ascotts Ltd. Surveillance system
US4603430A (en) * 1984-09-21 1986-07-29 Hughes Aircraft Company Target discrimination utilizing median filters
JPS61166289A (ja) * 1985-01-18 1986-07-26 Hitachi Ltd 画像伝送システム
JP2528789B2 (ja) * 1985-06-26 1996-08-28 中央電子 株式会社 映像情報管理装置
DE3750703T2 (de) * 1986-03-25 1995-03-30 Nippon Oils & Fats Co Ltd Transparenter optischer Gegenstand und Verfahren zu seiner Herstellung.
DE3634414C2 (de) * 1986-10-09 1994-12-08 Thomson Brandt Gmbh Fernsehkamera mit einem Target
JPH0695008B2 (ja) 1987-12-11 1994-11-24 株式会社東芝 監視装置
KR920010034B1 (en) * 1988-03-31 1992-11-13 Toshiba Co Ltd Image track display apparatus
GB2220319B (en) * 1988-07-01 1992-11-04 Plessey Co Plc Improvements in or relating to image stabilisation
JP2563567B2 (ja) * 1989-03-20 1996-12-11 松下電器産業株式会社 揺れ補正装置
KR910004009A (ko) * 1989-07-27 1991-02-28 강진구 비디오 카메라의 자동촬영장치
US5175694A (en) * 1990-02-08 1992-12-29 The United States Of America As Represented By The Secretary Of The Navy Centroid target tracking system utilizing parallel processing of digital data patterns
KR100204101B1 (ko) * 1990-03-02 1999-06-15 가나이 쓰도무 화상처리장치
US5030984A (en) * 1990-07-19 1991-07-09 Eastman Kodak Company Method and associated apparatus for minimizing the effects of motion in the recording of an image
JP2863818B2 (ja) * 1990-08-31 1999-03-03 工業技術院長 動画像の変化点検出方法
US5243418A (en) * 1990-11-27 1993-09-07 Kabushiki Kaisha Toshiba Display monitoring system for detecting and tracking an intruder in a monitor area
DE69215733T2 (de) * 1991-04-12 1997-04-10 Victor Company Of Japan Vorrichtung zur Detektion der relativen Bewegung zwischen Inhalten von aufeinanderfolgenden Halbbildern eines Videosignals
EP0520765B1 (en) * 1991-06-25 1999-05-12 Canon Kabushiki Kaisha Movement vector detecting method/apparatus and encoding method/apparatus using such method/apparatus
US5164827A (en) * 1991-08-22 1992-11-17 Sensormatic Electronics Corporation Surveillance system with master camera control of slave cameras
US5657402A (en) * 1991-11-01 1997-08-12 Massachusetts Institute Of Technology Method of creating a high resolution still image using a plurality of images and apparatus for practice of the method
US6469746B1 (en) * 1992-12-28 2002-10-22 Sanyo Electric Co., Ltd. Multi-vision screen adapter
WO1994017636A1 (en) 1993-01-29 1994-08-04 Bell Communications Research, Inc. Automatic tracking camera control system
US5473369A (en) * 1993-02-25 1995-12-05 Sony Corporation Object tracking apparatus
JP3734829B2 (ja) * 1993-06-04 2006-01-11 サーノフ・コーポレーション 電子画像安定化システム及び方法
JPH0773308A (ja) * 1993-09-03 1995-03-17 Matsushita Electric Ind Co Ltd デジタル画像処理装置
JP3123587B2 (ja) 1994-03-09 2001-01-15 日本電信電話株式会社 背景差分による動物体領域抽出方法
CA2125300C (en) * 1994-05-11 1999-10-12 Douglas J. Ballantyne Method and apparatus for the electronic distribution of medical information and patient services
DE4417128A1 (de) 1994-05-16 1995-12-14 Elnic Gmbh Bilderfassungs- und -verarbeitungsverfahren insbesondere zur Steuerung von Vorrichtungen sowie zugehöriges Bilderfassungs- und -verarbeitungssystem
US5635982A (en) 1994-06-27 1997-06-03 Zhang; Hong J. System for automatic video segmentation and key frame extraction for video sequences having both sharp and gradual transitions
US20020186874A1 (en) * 1994-09-07 2002-12-12 Jeffrey H. Price Method and means for image segmentation in fluorescence scanning cytometry
JP2902966B2 (ja) * 1994-12-16 1999-06-07 三洋電機株式会社 手振れ補正装置およびそれを用いたビデオカメラ
KR960028217A (ko) 1994-12-22 1996-07-22 엘리 웨이스 움직임 검출 카메라 시스템 및 방법
JPH08186760A (ja) * 1994-12-28 1996-07-16 Philips Japan Ltd 画揺れ補正装置
JP3268953B2 (ja) 1995-02-27 2002-03-25 三洋電機株式会社 追尾領域設定装置,動きベクトル検出回路およびそれを用いた被写体追尾装置
US5821985A (en) * 1995-02-28 1998-10-13 Nec Corporation Multi-point videoconference system having a fixed control station for data transfer
JP3892059B2 (ja) 1995-03-07 2007-03-14 松下電器産業株式会社 動物体追跡装置
US5973733A (en) * 1995-05-31 1999-10-26 Texas Instruments Incorporated Video stabilization system and method
JPH10509298A (ja) * 1995-09-15 1998-09-08 インターヴァル リサーチ コーポレイション 複数のビデオ画像の圧縮方法
US6018562A (en) * 1995-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
KR100188116B1 (ko) * 1995-12-28 1999-06-01 김광호 손떨림 영상 안정화 회로
US6108576A (en) 1996-03-18 2000-08-22 The Research Foundation Of City College Of New York Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
CA2173677C (en) * 1996-04-09 2001-02-20 Benoit Sevigny Processing image data
US5940139A (en) * 1996-08-07 1999-08-17 Bell Communications Research, Inc. Background extraction in a video picture
US5953055A (en) 1996-08-08 1999-09-14 Ncr Corporation System and method for detecting and analyzing a queue
US5915038A (en) * 1996-08-26 1999-06-22 Philips Electronics North America Corporation Using index keys extracted from JPEG-compressed images for image retrieval
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
US5751378A (en) 1996-09-27 1998-05-12 General Instrument Corporation Scene change detector for digital video
US5822542A (en) 1996-10-31 1998-10-13 Sensormatic Electronics Corporation Electronic and structural components of an intelligent video information management apparatus
GB2321358A (en) 1997-01-20 1998-07-22 O E M Project Management Ltd Video security system coupled to a fax modem
JP3317176B2 (ja) * 1997-02-06 2002-08-26 松下電器産業株式会社 映像伝送装置
US6360022B1 (en) * 1997-04-04 2002-03-19 Sarnoff Corporation Method and apparatus for assessing the visibility of differences between two signal sequences
WO1998056176A1 (en) * 1997-06-03 1998-12-10 Koninklijke Philips Electronics N.V. Navigating through television programs
JP4240554B2 (ja) * 1997-07-11 2009-03-18 ソニー株式会社 画像符号化装置および画像符号化方法、並びに画像復号化装置および画像復号化方法
US6128108A (en) * 1997-09-03 2000-10-03 Mgi Software Corporation Method and system for compositing images
JPH1185654A (ja) * 1997-09-12 1999-03-30 Matsushita Electric Ind Co Ltd 仮想wwwサーバ装置およびカメラ制御可能なwwwサーバ装置
GB2329541B (en) * 1997-09-17 2002-05-29 Sony Uk Ltd Security control system
US5973723A (en) * 1997-12-12 1999-10-26 Deluca; Michael Joseph Selective commercial detector and eliminator apparatus and method
US6363380B1 (en) * 1998-01-13 2002-03-26 U.S. Philips Corporation Multimedia computer system with story segmentation capability and operating program therefor including finite automation video parser
US6151336A (en) * 1998-02-11 2000-11-21 Sorrento Networks, Inc. Time division multiplexing expansion subsystem
US6847737B1 (en) * 1998-03-13 2005-01-25 University Of Houston System Methods for performing DAF data filtering and padding
US6795112B1 (en) * 1998-03-13 2004-09-21 General Instrument Corp. Composite video multiplexing scheme
US6211913B1 (en) * 1998-03-23 2001-04-03 Sarnoff Corporation Apparatus and method for removing blank areas from real-time stabilized images by inserting background information
GB9813632D0 (en) 1998-06-24 1998-08-26 Robinson Alan W Outside televised broadcast shadow compensator
US6493041B1 (en) * 1998-06-30 2002-12-10 Sun Microsystems, Inc. Method and apparatus for the detection of motion in video
US6714909B1 (en) * 1998-08-13 2004-03-30 At&T Corp. System and method for automated multimedia content indexing and retrieval
US6459822B1 (en) * 1998-08-26 2002-10-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Video image stabilization and registration
US6741656B1 (en) * 1998-12-16 2004-05-25 Matsushita Electric Industrial Co., Ltd. Image communication apparatus
CN1116649C (zh) * 1998-12-23 2003-07-30 皇家菲利浦电子有限公司 个性化视频分类与获取系统
AU2076199A (en) * 1999-01-29 2000-08-18 Mitsubishi Denki Kabushiki Kaisha Method of image feature encoding and method of image search
EP1081960B1 (en) 1999-01-29 2007-12-19 Sony Corporation Signal processing method and video/voice processing device
KR100442991B1 (ko) * 1999-02-01 2004-08-04 주식회사 팬택앤큐리텔 트리구조의 동영상 색인 기술자를 이용한 검색장치 및 그 방법
JP2003523647A (ja) * 1999-03-16 2003-08-05 セントラル リサーチ ラボラトリーズ リミティド 閉回路テレビジョン(cctv)カメラおよびシステム
FR2794880B1 (fr) * 1999-06-10 2001-12-14 Philippe Crochat Procede automatique de suivi d'une cible en mouvement par une camera electronique et dispositif pour sa mise en oeuvre
US6476858B1 (en) * 1999-08-12 2002-11-05 Innovation Institute Video monitoring and security system
US6694064B1 (en) * 1999-11-19 2004-02-17 Positive Systems, Inc. Digital aerial image mosaic method and apparatus
US6683995B2 (en) * 1999-12-23 2004-01-27 Eastman Kodak Company Method and apparatus for correcting large defects in digital images
JP2003519410A (ja) * 1999-12-30 2003-06-17 アプライド、サイエンス、フィクシャン、インク 可視光を使用してデジタルフィルムを現像するための改良されたシステムおよび方法
US6599036B2 (en) * 2000-02-03 2003-07-29 Applied Science Fiction, Inc. Film processing solution cartridge and method for developing and digitizing film
US6943920B2 (en) * 2000-02-03 2005-09-13 Eastman Kodak Company Method, system, and software for signal processing using pyramidal decomposition
AU2001236694A1 (en) * 2000-02-03 2001-12-17 Applied Science Fiction Method and system for self-service film processing
JP2001243477A (ja) * 2000-02-29 2001-09-07 Toshiba Corp 動画像による交通量解析装置
EP1264334B1 (en) * 2000-03-10 2009-02-18 Infotech, AG Method and apparatus for aligning a component on a substrate using digital feature separation
US20040125877A1 (en) 2000-07-17 2004-07-01 Shin-Fu Chang Method and system for indexing and content-based adaptive streaming of digital video content
DE20104329U1 (de) 2001-03-14 2001-05-31 Vtq Videotronik Gmbh Überwachungseinrichtung mit Sensoren
US20020168091A1 (en) * 2001-05-11 2002-11-14 Miroslav Trajkovic Motion detection via image alignment
TWI236294B (en) * 2001-05-11 2005-07-11 Ulead Systems Inc Method and device for capturing digital video
US6525658B2 (en) * 2001-06-11 2003-02-25 Ensco, Inc. Method and device for event detection utilizing data from a multiplicity of sensor sources
US6805501B2 (en) * 2001-07-16 2004-10-19 Eastman Kodak Company System and method for digital film development using visible light
US20050007452A1 (en) * 2001-09-07 2005-01-13 Mckay Therman Ward Video analyzer
CN101072364B (zh) 2001-09-07 2012-05-09 英特图形软件技术公司 使用颜色匹配的图像稳定化
US6831590B1 (en) * 2001-09-12 2004-12-14 Cyterra Corporation Concealed object detection
US6816622B2 (en) * 2001-10-18 2004-11-09 Microsoft Corporation Generating resized images using ripple free image filtering
US6944331B2 (en) * 2001-10-26 2005-09-13 National Instruments Corporation Locating regions in a target image using color matching, luminance pattern matching and hue plane pattern matching
EP1316933B1 (en) 2001-11-28 2006-08-09 Matsushita Electric Industrial Co., Ltd. Home security system
US6999613B2 (en) 2001-12-28 2006-02-14 Koninklijke Philips Electronics N.V. Video monitoring and surveillance systems capable of handling asynchronously multiplexed video
JP2006517366A (ja) 2003-01-23 2006-07-20 インターグラフ ハードウェア テクノロジーズ カンパニー 場面変化検出器を伴う映像コンテンツ解析系
EP1638340B1 (en) * 2003-06-23 2013-08-07 Sony Corporation Image processing method and device, and program
US7840067B2 (en) * 2003-10-24 2010-11-23 Arcsoft, Inc. Color matching and color correction for images forming a panoramic image
US7587086B2 (en) * 2004-06-04 2009-09-08 Microsoft Corporation Identifying selected pixels in a digital image
EP1782635A1 (en) * 2004-08-23 2007-05-09 Intergraph Software Technologies Company Real-time image stabilization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shteinshleiger V.B. et al, A New type of device to locate objects hidden under the clothes of people. Proceeding of cie. International conference on radar, Beijing, China, 15-18 oct. 2001, 227-230. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541125C2 (ru) * 2009-02-04 2015-02-10 Сони Корпорейшн Устройство обработки информации, способ обработки информации и программа
RU2741516C1 (ru) * 2017-10-09 2021-01-26 Хуавей Текнолоджиз Ко., Лтд. Способ обработки отображения и электронное устройство
US11137891B2 (en) 2017-10-09 2021-10-05 Huawei Technologies Co., Ltd. Display processing method and electronic device
US11693552B2 (en) 2017-10-09 2023-07-04 Huawei Technologies Co., Ltd. Display processing method and electronic device

Also Published As

Publication number Publication date
CN101072364A (zh) 2007-11-14
HK1074726A1 (en) 2005-11-18
HK1069470A1 (en) 2005-05-20
AU2002335713B2 (en) 2008-08-28
US20030048947A1 (en) 2003-03-13
US7436437B2 (en) 2008-10-14
CN101072364B (zh) 2012-05-09
US20040061786A1 (en) 2004-04-01
CN100359923C (zh) 2008-01-02
WO2003024112A1 (en) 2003-03-20
CO5570718A2 (es) 2005-10-31
US20030048282A1 (en) 2003-03-13
IL160760A0 (en) 2004-08-31
ZA200401970B (en) 2007-01-31
KR100927918B1 (ko) 2009-11-19
BRPI0212375B1 (pt) 2016-05-24
RU2310289C2 (ru) 2007-11-10
US6654049B2 (en) 2003-11-25
RU2004110724A (ru) 2005-09-27
BR0212375A (pt) 2006-03-01
EP1428378A1 (en) 2004-06-16
EP1428378B1 (en) 2013-03-20
NZ531974A (en) 2005-08-26
CO5650190A2 (es) 2006-06-30
US7477797B2 (en) 2009-01-13
BR0212546A (pt) 2006-05-23
KR20040048408A (ko) 2004-06-09
AU2002327612B2 (en) 2008-01-17
CN1299240C (zh) 2007-02-07
US20030048359A1 (en) 2003-03-13
WO2003030103A8 (en) 2005-01-06
NZ531975A (en) 2007-11-30
KR20040054679A (ko) 2004-06-25
CA2459732C (en) 2017-07-11
CO5580855A2 (es) 2005-11-30
MXPA04002210A (es) 2005-02-17
EP1430444A1 (en) 2004-06-23
EP1430444B1 (en) 2013-05-08
IL160759A (en) 2010-04-15
HK1073038A1 (en) 2005-09-16
NZ531976A (en) 2007-07-27
EP1428389A1 (en) 2004-06-16
US7310110B2 (en) 2007-12-18
IL160758A0 (en) 2004-08-31
IL160759A0 (en) 2004-08-31
AU2002336445B2 (en) 2007-11-01
ZA200401972B (en) 2004-09-15
BRPI0212377B1 (pt) 2015-10-27
KR100888095B1 (ko) 2009-03-11
US8233044B2 (en) 2012-07-31
CN1554073A (zh) 2004-12-08
WO2003030103A1 (en) 2003-04-10
CA2459732A1 (en) 2003-04-10
CA2459823C (en) 2012-04-03
KR20040047814A (ko) 2004-06-05
MXPA04002209A (es) 2005-02-17
RU2308816C2 (ru) 2007-10-20
RU2004110723A (ru) 2005-09-27
RU2004110722A (ru) 2005-09-27
KR100919340B1 (ko) 2009-09-25
US20080095437A1 (en) 2008-04-24
WO2003024095A1 (en) 2003-03-20
US7079701B2 (en) 2006-07-18
CA2459823A1 (en) 2003-03-20
US20060215926A1 (en) 2006-09-28
CN1593061A (zh) 2005-03-09
CN100559873C (zh) 2009-11-11
BR0212377A (pt) 2006-10-03
CN1554184A (zh) 2004-12-08
CA2459821C (en) 2011-01-11
MXPA04002211A (es) 2005-02-17
CA2459821A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
RU2308761C2 (ru) Система для обнаружения первого объекта, скрытого вторым объектом, способ визуального отображения первого объекта и способ представления на экране дисплея данных первого объекта
AU2002335713A1 (en) Concealed object recognition
US6101289A (en) Method and apparatus for unencumbered capture of an object
RU2533855C2 (ru) Способ преобразования входных данных изображения в выходные данные изображения, блок преобразования изображения для преобразования входных данных изображения в выходные данные изображения, устройство обработки изображения, устройство отображения
JP2004526179A (ja) 画像構図評価方法および装置
CN110008969A (zh) 图像显著性区域的检测方法和装置
US20040041924A1 (en) Apparatus and method for processing digital images having eye color defects
CN109803096A (zh) 一种基于脉冲信号的显示方法和系统
JPH06130513A (ja) フィルム形式を識別する方法
JPH11341501A (ja) 電子写真撮像装置、電子写真撮像方法、電子写真撮像制御プログラムを記録した媒体
CN111510697B (zh) 图像处理设备、图像处理方法和存储介质
JP2003230154A (ja) 顕微鏡用デジタルカメラ
KR101634246B1 (ko) 피사체 부각 정보를 제공하는 방법 및 이를 위한 디지털 촬영 장치
US6963364B2 (en) Method of improving a signal in a sequence of images acquired with a digital color video camera
JP2001045303A (ja) 画像2値化方法
JP3912063B2 (ja) 画像濃淡ムラの検出方法
JPH07134769A (ja) 画像合成におけるアンチエリアシング処理方法
JP2003016425A (ja) オブジェクト信号作成装置
JPH0997321A (ja) 画像表示方法
JPH06233315A (ja) カラー画像信号のための領域分離装置
KR100537028B1 (ko) 실시간 물체추출 시스템 및 방법
JP2004234133A (ja) 画像処理装置
JP2010199866A (ja) 画像処理装置
JP2001228051A (ja) 点欠陥検出装置及びその方法
JPH05260371A (ja) 画像処理装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180907