RU2119973C1 - Способ обработки травильного средства (варианты) - Google Patents

Способ обработки травильного средства (варианты) Download PDF

Info

Publication number
RU2119973C1
RU2119973C1 RU92004369/25A RU92004369A RU2119973C1 RU 2119973 C1 RU2119973 C1 RU 2119973C1 RU 92004369/25 A RU92004369/25 A RU 92004369/25A RU 92004369 A RU92004369 A RU 92004369A RU 2119973 C1 RU2119973 C1 RU 2119973C1
Authority
RU
Russia
Prior art keywords
copper
solution
chloride
etching agent
ions
Prior art date
Application number
RU92004369/25A
Other languages
English (en)
Other versions
RU92004369A (ru
Inventor
Миками Ясуйе (JP)
Миками Ясуйе
Иосаки Масааки (JP)
Иосаки Масааки
Сибасаки Масао (JP)
Сибасаки Масао
Original Assignee
Ниттецу Майнинг Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3281370A external-priority patent/JP2997110B2/ja
Priority claimed from JP3293127A external-priority patent/JP2698253B2/ja
Application filed by Ниттецу Майнинг Ко., Лтд. filed Critical Ниттецу Майнинг Ко., Лтд.
Publication of RU92004369A publication Critical patent/RU92004369A/ru
Application granted granted Critical
Publication of RU2119973C1 publication Critical patent/RU2119973C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • C25F7/02Regeneration of process liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Предложен новый способ обработки травильного средства, обеспечивающий удобство операций, снижение стоимости содержания и сооружения, а также надежности и эффективности использования газообразного хлора, получаемого в закрытых системах. Способ состоит из следующих этапов: обработка травильного средства, содержащего хлорид меди (1) или хлорид железа, содержащий медь, посредством электролиза с использованием диафрагмы для удаления осажденной в катодной камере меди; подача газообразного хлора, образующегося в анодной камере, в другое травильное средство, уже использованное в травильном процессе, и, таким образом, делая пригодным травильное средство к регенерации. Технический результат - удобство операций, снижение расходов на содержание оборудования. 2 с.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к способам, используемым при обработке травильных средств, в частности к способам обработки травильных средств, содержащих хлорид меди (I) или хлорид железа, включающий медь, в этом случае получаемый газообразный хлор используют для обработки других травильных средств с целью их регенерации.
Широко известно, что токопроводящие схемы, например интегрированные цепи в субстрате, выполняют, растворяя медь в других средах, отличающихся от тех, которые соответствуют токопроводящим линиям, используемым с помощью растворения хлорида меди (II) и/или хлорида железа (III).
Желательно регенерировать отходы травильных средств для повторного использования их в других травильных процессах, что предохраняет от загрязнения окружающую среду и удовлетворяет требованиям экономии, при этом отходы травильных средств, включающие хлорид меди (I) получают по следующей химической реакции:
CuCl2+ Cu __→ 2CuCl
или используют также отходы травильных процессов, в которых содержится растворенный хлорид железа (III). Предложены различные способы регенерации отходов травильных процессов, где из отработанных растворов выделяется медь и затем травильные средства регенерируются. Некоторые их этих способов уже применяют на практике.
В одном из наиболее типичных способов регенерации отходов травильных средств, содержащих хлорид меди (I), CuCl в отходах регенерируют в хлорид меди (II) CuCl2 с помощью соляной кислоты и перекиси водорода.
В этом способе, однако, все содержание меди, полученной при растворении находящейся на подложке медной фольги, накапливается в травильном растворе в виде хлорида меди (II) CuCl2, поэтому быстро растет избыточная концентрация CuCl2.
Соответственно избытку объема травильного раствора на заводе возникает необходимость в утилизационном баке для его хранения и возникает опасность загрязнения окружающей среды в процессе избавления от избытков травильных растворов или при их транспортировании.
Наряду с упомянутой выше обработкой в перекиси водорода,был предложен улучшенный способ травления, при котором отходы травильного раствора обрабатывают посредством электролитической обработки так, что травильный раствор регенерируется с превращением хлорида меди (I) CuCl2 в хлорид меди (II), CuCl2 при помощи хлора, выделяющегося на аноде; в этом способе отходы травильного раствора транспортируют, в то же самое время медь может быть электролитически удалена из осажденных полов меди, как металлической меди на катоде, к которому также транспортируют отходы. Этот способ раскрыт в патенте Японии N 56-17429 и был уже использован на практике.
В этой патентной публикации особо рекомендуется оборудование для обработки жидкофазной композиции в катодной камере электролизной ванны.
При реализации способа, основанного на удалении меди из травильного раствора путем электролиза, в соответствии с опубликованным японским патентом N 56-17429, однако, требуются сложные операции по контролю жидкофазной композиции и ее расхода при снабжении как катодной, так и анодной камер, по контролю баланса в давлении и т.д., поскольку жидкофазная композиция должна поддерживаться при пониженной концентрации меди, меньше чем 65 г/л для обоих видов хлоридов, как с медью (I), так и с медью (II), при условии, что отходы травильного раствора отдельно подаются в катодную и анодную камеры. Кроме того, в публикации не дано ясных рекомендаций относительно технологии получения газообразного хлора, без чего возникает опасность большого ухудшения окружающей среды образовавшимся газообразным хлором.
Однако детально известен электролизный процесс переработки использованного травильного раствора, содержащего хлорид железа (III). В этом случае отходы процесса травления разлагаются в электролитической ванне, имеющей диафрагму, между катодной и анодной камерами; в результате из ионов меди на катоде может быть получена металлическая медь и в то же самое время при окислении на стороне анода может быть регенерирован хлорид железа (III).
В ходе такого электролитического процесса травильный раствор, после растворения медных листов или фольги, покрывающих подложку заготовок печатных плат, содержит ионы трехвалентного железа, двухвалентного железа, ионы одновалентной меди и ионы двухвалентной меди, которые образовались в результате взаимодействия хлорида железа (III) и медной фольги. В процессе электролиза такого травильного раствора реакции электролитического восстановления в электролизной ванне у катода проходят в следующей последовательности:
Fe3++ e- __→ Fe2+
и затем,
Cu2++ 2e- __→ Cu++ e- __→ Cu .
Иными словами, в растворе сначала хлорид железа (III) превращается в хлорид железа (II), а затем хлорид меди (II) превращается в хлорид меди (I) и с этого времени начинает накапливаться металлическая медь. Если электролиз осуществляется непрерывно с применением аппаратуры замкнутого цикла для удаления меди, и если часть металлической меди выделяется на катоде, она в виде особого порошка металлической меди отслаивается от поверхности катода и, попадая в раствор, остается на дне ванны; хлориды FeCl3 или CuCl2, которые заново накопились в травильном растворе, реагируют следующим образом:
Figure 00000002

Соответственно этому медь, которая отложилась ранее, снова переходит в раствор, вследствие чего снижается эффективность восстановления меди. В дополнение к этому растворение обеспечивает увеличение содержания CuCl в регенерируемом растворе. Это в конечном счете приводит к снижению эффективности травления.
Принимая во внимание эти факты, в патенте Японии N 55-18558 был раскрыт способ непрерывного удаления меди при электролизе из отходов травильного процесса, содержащих хлорид железа (III), включающий медь, и восстановления хлорида железа (III); в этом случае электролитический восстановительный процесс разделяется на две стадии: на первой стадии хлорид железа (III) и хлорид меди (II) восстанавливаются до хлорида железа (II) и хлорида меди соответственно, и на второй стадии осаждается металлическая медь.
Способ удаления меди, основанный на процессе электролиза, осуществляемого по описанной выше патентной публикации, однако, имеет недостатки, т.к. требуется сложная установка, позволяющая выполнить операцию восстановления травильного раствора на первой стадии точно перед электролитическим осаждением меди и, вследствие этого, затрудняется контроль жидкофазной композиции. В добавление к этому, в аналогичном опубликованном патенте Японии N 56-17429 не описан способ обработки получаемого газообразного хлора. Поэтому имеются опасения относительно ухудшения окружающей рабочей среды в результате выделяемого газообразного хлора.
В данном случае, если и имеется одна возможность ограничения выделения металлической меди из отработанного травильного раствора, то она заключается в использовании так называемой цементации, при которой в обработанный травильный раствор вводят порошок железа, что дает возможность меди восстанавливаться за счет разницы в тенденциях к ионизации. Однако цементация дает избыток содержания железа в обрабатываемом растворе, повторное использование раствора является невозможным и от использования травильного раствора отказываются. В результате этого данный метод не гарантирует от загрязнения окружающей среды и не удовлетворяет требованиям экономии.
Краткое изложение изобретения
Целью изобретения является предложение способа обработки травильного средства в одной стадии электролитического процесса для того, чтобы избежать различных осложнений, которые, как указано, могут возникнуть в случае замкнутой системы как недостатки вышеуказанных известных способов, и посредством способа по изобретению обеспечивается удобство операций, снижение расходов на содержание оборудования, а также безопасное и эффективное использование газообразного хлора, получаемого в системе.
Другой целью изобретения является регенерация отходов травильного средства с высокой эффективностью, а также удаление меди, имеющей чистоту более чем 90%, из отходов путем использования как электролиз с диафрагмовой ячейкой и окисление с помощью газообразного хлора.
Еще одной целью изобретения является обеспечение удобства и надежности оборудования для подачи отработанного травильного раствора только в катодную камеру электролизной ванны, в противоположность известным способам, где отработанный травильный раствор подают и в катодную, и в анодные камеры.
В соответствии с данным изобретением цель достигается способом обработки травильного средства, включающим подачу травильного средства, содержащего хлорид меди (I), в катодную камеру электролизной ванны, отличающийся тем, что проводят обработку травильного средства, содержащего хлорид меди (I), посредством электролиза с использованием диафрагмы для удаления меди электролитическим осаждением в катодной камере, причем используют диафрагму, которая уменьшает электролитическое сопротивление и обеспечивает отсутствие диполей, подают в анодную камеру раствор после удаления меди, тем самым окисляя ионы одновалентной меди в ионы двухвалентной меди и получая газообразный хлор, подают газообразный хлор в абсорбционную башню, вводят полученный таким образом газообразный хлор в другое травильное средство, содержащее хлорид меди (I), тем самым делая раствор пригодным для окисления.
Еще одним вариантом изобретения является способ обработки травильного средства, включающий подачу травильного средства, содержащего хлорид меди (I), в катодную камеру электролизной ванны, отличающийся тем, что проводят обработку травильного средства, содержащего хлорид меди (I), посредством электролиза с использованием диафрагмы для удаления меди электролитическим осаждением в катодной камере, причем используют диафрагму, которая уменьшает электролитическое сопротивление и обеспечивает отсутствие диполей, смешивают раствор после удаления меди с другим травильным средством, содержащим хлорид меди (I), подают к смешанному раствору газообразный хлор, полученный на стадии удаления меди, таким образом окисляя смешанный раствор.
Для того, чтобы реализовать замкнутую систему для удаления меди на отдельной стадии /такая система ранее не была реализована/ необходимо было, чтобы в травильном средстве, содержащем хлорид железа (III), включающий медь, регулировалась и поддерживалась концентрация ионов трехвалентного железа и ионов меди менее чем 30 г/л и 20 г/л соответственно, в катодной растворе.
Электролитическая диафрагма, используемая в предлагаемом изобретении, является необходимой для осуществления процесса, она сообщает следующие качества:
(1) ограничивает подвижность комплексов солей меди или хлоридов железа в направлении от катодной камеры к анодной камере, осуществляя изоляцию между растворами, находящимися у анода и у катода, с тем, чтобы предотвратить их перемешивание под влиянием колебаний на поверхности раствора;
(2) уменьшает, насколько это возможно, электрическое сопротивление;
(3) играет роль фактора, обеспечивающего непроницаемость, особенно для хлора;
(4) исключает поляризацию самой по себе диафрагмы, т.е. обеспечивает электрическую нейтральность и отсутствие диполей. Такая диафрагма может быть выполнена из модоакрила /торговое название товара/, ацетатвинила, полиэфира, хлорида винилидена или подобных материалов.
Анод в электролитической ванне необходим для снижения перенапряжения при получении газообразного хлора. Он преимущественно выполняется из платины или может быть выполнен как "пространственно прочный" анод "dimensional stable anode" (обозначение по DSA), такой как (Ru-Sn) O2/Ti, (Ir-Pt)O2/Ti. В качестве материала для катода предпочтительнее использовать титан. Утилизация электродов, таким образом, специально предусматривается, благодаря тому, что кристаллы меди, которые нерастворимы в растворе, и легко отслаиваются от поверхности электрода.
В соответствии с изобретением травильное средство, образующееся в травильной ванне, т. е. травильный раствор, включающий хлорид меди (I) и непрореагировавший хлорид меди (II) или травильный раствор, содержащий ионы трехвалентного железа, ионы двухвалентного железа, ионы двухвалентной меди и ионы одновалентной меди, вначале транспортируют в катодную камеру электролизера. Затем внутри катодной камеры, в которой катодный раствор циркулирует, входя в катодную камеру и выходя из нее, ионы трехвалентного железа превращаются в ионы двухвалентного железа, после чего избыток ионов двухвалентной меди и ионов одновалентной меди восстанавливают и осаждаются на электроде, поэтому становится возможным удаление металлической меди.
Раствор, выходящий из катодной камеры с пониженной концентрацией меди, немедленно отделяют от циркуляционной системы и затем подают в анодную камеру, где ионы хлора, теряя свои электроны, образуют, таким образом, газообразный хлор. Газообразный хлор подают в абсорбционную башню. Раствор, который имеет теперь пониженную концентрацию хлора, поскольку из него образовался газообразный хлор, и в то же самое время ионы одновалентной меди электролитически окисляются в ионы двухвалентной меди, отделяют от циркуляционной системы анода и затем возвращают в травильную ванну как регенерированное травильное средство.
Травильное средство, образующееся в травильной ванне, т.е. травильное средство, включающее хлорид меди (I) и непрореагировавший хлорид меди (II) или травильное средство, содержащее ионы трехвалентного железа, ионы двухвалентного железа, ионы двухвалентной меди и ионы одновалентной меди, подают не только в электролизер, но и в абсорбционную башню. С помощью газообразного хлора, который образуется в электролизере и затем подается в абсорбционную башню, травильное средство, содержащее хлорид меди (I) и непрореагировавший хлорид меди (II), окисляется для регенерации согласно следующему уравнению химической реакции:
2CuCl+ Cl2 __→ 2CuCl2
Регенерированный таким образом хлорид меди (II) возвращается в травильную ванну в составе регенерированного травильного средства.
Травильное средство, содержащее ионы трехвалентного железа, ионы двухвалентной меди и ионы одновалентной меди, окисляется при регенерации согласно следующим уравнениям:
Figure 00000003

Раствор как регенерированного хлорида меди (II), так и хлорида железа (III) возвращают в составе регенерированного травильного средства в травильную ванну.
Раствор, который восстановлен при пониженных концентрациях меди в катодной камере и затем покидает камеру, может быть направлен прямо в травильное средство, подаваемое в абсорбционную башню. В этом случае ионы хлора и комплексы хлористой меди, которые направляются в сторону анода, проходят через диафрагму электролитической ванны, окисляются и, вследствие этого, образуется газообразный хлор.
Смешанные травильные средства регенерируют, вводя газообразный хлор в абсорбционную башню, и возвращают в травильную ванну, как регенерированное травильное средство.
В обычном способе электролиза назначаемая генерация газообразного хлора имеет мало возможностей. Необходимо отметить, однако, что в предлагаемом способе газообразный хлор позитивно используется для регенерации травильного средства в полностью замкнутой системе.
Кроме того, необходимо упомянуть, что конверсия хлорида меди (I) в хлорид меди (II) и/или конверсия хлорида меди (I) и хлорида железа (II) в хлорид меди (II) и хлорид железа (III) часто бывает необходима, и способ обработки по данному изобретению является важным для использования в различных областях технологии, независимых от заявленной области плат интегральных схем, т.к. он решает проблему загрязнения окружающей среды.
Подписи к рисункам
На фиг.1 - принципиальная схема технологических потоков, соответствующая первому варианту реализации изобретения; на фиг.2 - принципиальная схема технологических потоков, соответствующая второму варианту реализации изобретения
Детальное изложение предпочтительных вариантов реализации способа.
Предлагаемое изобретение дополнительно описано ниже с помощью примеров конкретной реализации.
Пример 1
В установке, принципиальная схема которой показана на фиг.1, травильное средство, содержащее 121 г/л меди (8,6 г/л ионов одновалентной меди) и 300 г/л хлора, при расходе 9,6 мл/мин подавали в катодную камеру /медный электрод/ в электролизере 1, имеющем диафрагму из модоакрила (modoacryl) в этой ванне поддерживали электролитическое напряжение 2,1 DCV. В катодной камере, где циркулирующий катодный раствор подводился и отводился, избыток ионов одновалентной и двухвалентной меди был электролитически осажден после восстановления. Химический анализ показал, что осажденный металл имел содержание меди 9,9%. Скорость получения осаждаемой меди составила 51,7 г/час, а мощность, необходимая для электролиза 1 гр меди, составила 2,03 Вт/г.
Раствор, отводимый из катодной камеры, с пониженной концентрацией меди, был доставлен из системы циркуляции в анодную камеру /электрод из (Ru-Sn)O2/Ti. В анодной камере ионы хлора теряли свои электроны, и, таким образом, образовался газообразный хлор, со скоростью 66,2 г/час. Этот газ подавали в абсорбционную башню 2. В растворе, циркулирующем в системе анода вследствие образования газообразного хлора уменьшалась концентрация хлора, при этом вследствие электролитического окисления ионы одновалентной меди превращались в ионы двухвалентной меди. Раствор, извлеченный из системы циркуляции, имел содержание меди 30,8 г/л (0,0 г/л ионов одновалентной меди) и хлора 185 г/л и был возвращен как регенерированное травильное средство в травильную ванну 3.
Травильный раствор, образовавшийся в травильной ванне 3, содержал меди 121 г/л (8,6 г/л ионов одновалентной меди) и хлора 300 г/л. Травильное средство подавали не только в электролизер 1, снабженный диафрагмой, но и в абсорбционную башню с расходом 200 мл/мин. Травильное средство окисляли газообразным хлором, который, после образования его в электролизере 1, подавали в абсорбционную башню 2. В результате раствор имел содержание меди 121 г/л (0,0 г/л ионов одновалентной меди) и хлора 304 г/л. Таким образом, было подтверждено, что в полученном растворе содержится хлорид меди (II). Этот раствор был возвращен как регенерированное травильное средство в травильную ванну 3.
Пример 2.
В установке, принципиальная схема которой показана на фиг.1, травильное средство, содержащее 87,4 г/л меди (0,0 г/л одновалентной меди), 100 г/л железа (23,4 г/л ионов двухвалентного железа) и 317 г/л хлора был вначале подан с расходом 4,1 мл/мин в катодную камеру /электрод из меди/, в электролизер 1, имеющий диафрагму из модоакрила /modoacryl/. В ванне поддерживали напряжение 2,1 DCV. Раствор, циркулировавший в катодной камере, содержал меди 13,3 г/л, железа 104,8 г/л и хлора 273 г/л, при этом в растворе поддерживали концентрацию ионов трехвалентного железа менее 30 г/л. В катодной камере раствор циркулировал, входя в нее и выходя из нее, при этом ионы трехвалентного железа электролитически восстанавливались в ионы двухвалентного железа и затем избыток ионов двухвалентной и одновалентной меди, электролитически восстанавливаясь, осаждался на поверхности катода. Химический анализ показал, что осажденный металл содержит 97,1% меди. Скорость осаждения меди составила 17,3 г/час, а мощность, необходимая для процесса электролиза 1 г меди, составила 3,64 ватт-час/г.
Раствор, выходящий из катодной камеры с пониженной концентрацией меди, подавали из системы циркуляции в анодную камеру/электрод из (Ru-Sn)O2/Ti. В анодной камере ионы хлора теряли свои электроны и образовывался газообразный хлор со скоростью 6,3 г/час. Этот газообразный хлор подавали в абсорбционную башню 2. В растворе циркуляционной системы анода концентрация хлора из-за образования газообразного хлора уменьшалась, вследствие этого при электролитическом окислении ионы двухвалентного железа и ионы одновалентной меди превращались в ионы трехвалентного железа и ионы двухвалентной меди соответственно. Раствор, извлеченный из системы циркуляции, имел содержание меди 15,7 г/л (0,0 г/л ионов двухвалентной меди), содержание железа 104 г/л (0,0 г/л ионов двухвалентного железа) и содержание хлора 247 г/л и возвращался как регенерированный травильный раствор в травильную ванну 3.
Травильный раствор, образовавшийся в травильной ванне 3, содержал меди 87,4 г/л (0,0 г/л ионов одновалентной меди), железа 100 г/л (23,4 г/л ионов двухвалентного железа) и хлора 317 г/л. Этот травильный раствор подавали с расходом 7 мл/мин в абсорбционную башню 2. Травильный раствор окисляли газообразным хлором, который, после получения в электролизере 1, подавали в абсорбционную башню 2. В результате в растворе содержалось меди 87,4 г/л (0,0 г/л ионов одновалентной меди), железа 100 г/л (0,0 г/л ионов двухвалентного железа) и хлора 332 г/л.
Таким образом, было подтверждено наличие в полученном растворе образовавшихся хлорида меди (II) и хлорида железа (III). Этот раствор возвращали как регенерированное травильное средство в травильную ванну 3.
Примеры 3
В установке, принципиальная схема которой показана на фиг.2, травильное средство, содержащее меди 121 г/л (8,9 г/л ионов одновалентной меди) и хлора 302 г/л, подавали с расходом 8,33 мл/мин в катодную камеру /электрод из меди/. Электролизер 1 был снабжен диафрагмой из модоакрила /modoactyl) в ванне поддерживали напряжение 2,0 DCV. В катодной камере раствор циркулировал, входя в нее и выходя из нее, при этом избыток ионов одновалентной и двухвалентной меди после восстановления электролитически осаждался. Химический анализ показал, что осажденный металл состоял из меди на 97,5%. Скорость осаждения меди составила 45,1 г/час, а мощность, необходимая для процесса электролиза 1 г меди, составила 2,3 ватт-час/г.
Раствор, который выходил из катодной камеры с пониженной концентрацией меди, смешивали с другим травильным раствором, содержащим меди 121 г/л (14,2 г/л ионов одновалентной меди) и хлора 302 г/л, этот раствор образовался в травильной ванне 3. Смесь растворов, содержащую меди 117 г/л (14,5 г/л ионов одновалентной меди) и хлора 297 г/л подавали с расходом 100 мл/мин в абсорбционную башню 2.
В анодной камере /электрод (Ru-Sn) O2/Ti электролизера 1 имелась диафрагма, ионы хлора, которые образовывались в катодной камере и перемещались в анодную камеру сквозь диафрагму, подвергались окислению; поэтому образовался газообразный хлор со скоростью 59,7 г/час. Образовавшийся газообразный хлор впускали в абсорбционную башню 2.
Смешанный раствор окисляли газообразным хлором. В результате в растворе содержалось меди 117% г (0,0 ионов одновалентной меди) и хлора 304 г/л. Так было подтверждено, что в получаемом растворе образуются хлориды меди (II). Этот раствор возвращали,как регенерированный травильный раствор в травильную ванну 3.
Пример 4
В установке, принципиальная схема которой показана на фиг.2, травильный раствор, содержащий меди 89,5 г/л (0,0 ионов одновалентной меди), железа 99,1 г/л (15,7 ионов двухвалентного железа) и хлора 318 г/л, сначала подавали с расходом 4,6 мл/мин в катодную камеру /электрод из меди/ электролизера 1, снабженного диафрагмой из модоакрила /modoacryl/, где ванна поддерживалась при электролитическом напряжении 2,6 DCV. Циркулирующий раствор катодной камеры содержал меди 6,8 г/л, железа 100 г/л и хлора 239 г/л, поддерживалась концентрация ионов трехвалентного железа менее 30 г/л. В катодной камере раствор циркулировал, входя в нее и выходя из нее, при этом ионы трехвалентного железа электролитически восстанавливались в ионы двухвалентного железа и затем избыток ионов двухвалентной и одновалентной меди, электролитически восстанавливаясь, осаждается на поверхности катода. Химический анализ показал, что осажденный металл содержал 96,6% меди. Скорость осаждения меди составила 22,7 г/час, а мощность, необходимая для процесса электролизера 1 г меди составила 4,58 ватт-час/г.
Раствор, выходящий из катодной камеры с пониженной концентрацией меди, смешивали с другим травильным раствором, образованным в травильной ванне 3. Смесь растворов содержала меди 36,6 г/л (0,0 г/л ионов одновалентной меди), железа 104 г/л (19,3 г/л ионов двухвалентного железа) и хлора 271 г/л, смесь растворов подавали в абсорбционную башню 2 с расходом 17,3 мл/мин.
В анодной камере /электрод из (Ru-Sn)O2/Ti электролизера 1 располагалась диафрагма; образующиеся в катодной камере ионы хлора, перемещаясь в анодную камеру сквозь диафрагму, окислялись, образуя газообразный хлор со скоростью 21,8 г/час. Полученный таким образом хлор впускали в абсорбционную башню 2.
Смесь растворов окислялась газообразным хлором. В результате этого получали раствор, содержащий меди 36,6 г/л (0,0 г/л ионов одновалентной меди), железа 104 г/л (0,0 г/л ионов двухвалентного железа) и хлора 292 г/л (8,7 г/л растворенного хлора). Так было подтверждено, что в полученном растворе содержатся образовавшиеся хлорид меди (II) и хлорид железа (III). Этот раствор был возвращен как регенерированный травильный раствор в травильную ванну 3.

Claims (2)

1. Способ обработки травильного средства, включающий подачу травильного средства, содержащего хлорид меди (1), в катодную камеру электролизной ванны, отличающийся тем, что проводят обработку травильного средства, содержащего хлорид меди (1), посредством электролиза с использованием диафрагмы для удаления меди электролитическим осаждением в катодной камере, причем используют диафрагму, которая уменьшает электрическое сопротивление и обеспечивает отсутствие диполей, подают в анодную камеру раствор после удаления меди, тем самым окисляя ионы одновалентной меди в ионы двухвалентной меди и получая газообразный хлор, подают газообразный хлор в абсорбционную башню, полученный таким образом газообразный хлор в другое травильное средство, содержащее хлорид меди (1), тем самым делая раствор пригодным для окисления.
2. Способ обработки травильного средства, включающий подачу травильного средства, содержащего хлорид меди (1), в катодную камеру электролизной ванны, отличающийся тем, что проводят обработку травильного средства, содержащего хлорид меди (1), посредством электролиза с использованием диафрагмы для удаления меди электролитическим осаждением в катодной камере, причем используют диафрагму, которая уменьшает электрическое сопротивление и обеспечивает отсутствие диполей, смешивают раствор после удаления меди с другим травильным средством, содержащим хлорид меди (1), подают к смешанному раствору газообразный хлор, полученный на стадии удаления меди, таким образом окисляя смешанный раствор.
RU92004369/25A 1991-10-28 1992-10-27 Способ обработки травильного средства (варианты) RU2119973C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3-281370 1991-10-28
JP3281370A JP2997110B2 (ja) 1991-10-28 1991-10-28 エッチング液の処理方法
JP3-293127 1991-11-08
JP3293127A JP2698253B2 (ja) 1991-11-08 1991-11-08 銅を含む塩化第二鉄エッチング液の処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU96124659/02A Division RU96124659A (ru) 1991-10-28 1996-12-30 Способ обработки травильного средства

Publications (2)

Publication Number Publication Date
RU92004369A RU92004369A (ru) 1995-06-19
RU2119973C1 true RU2119973C1 (ru) 1998-10-10

Family

ID=26554156

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92004369/25A RU2119973C1 (ru) 1991-10-28 1992-10-27 Способ обработки травильного средства (варианты)

Country Status (10)

Country Link
US (1) US5393387A (ru)
EP (1) EP0539792B1 (ru)
KR (1) KR100256895B1 (ru)
CN (1) CN1038950C (ru)
AU (1) AU655680B2 (ru)
CA (1) CA2081578C (ru)
DE (1) DE69219063T2 (ru)
MY (1) MY108734A (ru)
RU (1) RU2119973C1 (ru)
SG (1) SG46415A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685103C1 (ru) * 2017-11-21 2019-04-16 Дмитрий Юрьевич Тураев Реагентный метод регенерации солянокислого медно-хлоридного раствора травления меди
RU2715836C1 (ru) * 2019-07-23 2020-03-03 Тураев Дмитрий Юрьевич Реагентно-электролизный метод регенерации солянокислых медно-хлоридных растворов травления меди

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326341B2 (ja) * 2002-02-06 2009-09-02 新光電気工業株式会社 電解再生処理装置
DE10300597A1 (de) * 2003-01-10 2004-07-22 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Verfahren und Vorrichtung zur vollständigen Regenerierung von Metallchlorid-Ätzlösungen für Kupferwerkstoffe
CN101988199A (zh) * 2009-08-04 2011-03-23 章晓冬 微蚀液的循环再生及铜的回收装置
CN102807294A (zh) * 2011-05-31 2012-12-05 无锡尚德太阳能电力有限公司 处理已使用蚀刻液的再循环系统
CN103422154A (zh) * 2012-05-24 2013-12-04 叶福祥 电路板酸性废蚀刻液氯化亚铜(Cu+,CuCL)离子隔膜电积再生
CN104591255A (zh) * 2013-10-31 2015-05-06 孙立 一种利用氯化铜蚀刻废液制备微米级氧化铜的方法
CN203834017U (zh) * 2013-12-13 2014-09-17 陶克(苏州)机械设备有限公司 一种气体循环装置
CN104711636B (zh) * 2015-02-11 2018-09-25 昆山市益民环保技术开发有限公司 印刷电路板酸性蚀刻废液处理方法
CN106119852B (zh) * 2015-08-31 2019-09-03 叶旖婷 一种酸性氯化铜蚀刻液的电解回收及再生工艺
KR101799500B1 (ko) * 2017-06-19 2017-11-21 인천화학 주식회사 염화동 폐액을 이용한 황산동의 제조방법
CN108425116B (zh) * 2018-02-01 2019-10-22 深圳中科欧泰华环保科技有限公司 在酸性蚀刻生产线内采用三级循环吸收的处理方法及设备
CN109136985A (zh) * 2018-10-27 2019-01-04 揭阳市斯瑞尔环境科技有限公司 一种电解氯化铁蚀刻废液制取铁板和三氯化铁的方法
CN110468417B (zh) * 2019-09-09 2021-08-06 深圳中科欧泰华环保科技有限公司 一种五金蚀刻废液在线再生处理的方法及装置
CN113493915A (zh) * 2020-04-01 2021-10-12 健鼎(湖北)电子有限公司 酸性蚀刻废液的再生方法及系统
CN114318372B (zh) * 2022-01-18 2022-07-12 广东德同环保科技有限公司 一种循环电解三氯化铁吸收氯气的装置及方法
CN114657566B (zh) * 2022-05-23 2022-08-09 江油星联电子科技有限公司 一种电路板生产用药水再生装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794571A (en) * 1971-05-10 1974-02-26 Gen Electric Regeneration of ferric chloride copper etching solutions
US3761369A (en) * 1971-10-18 1973-09-25 Electrodies Inc Process for the electrolytic reclamation of spent etching fluids
JPS51119632A (en) * 1975-04-15 1976-10-20 Chiyuuoo Kk Process for treating etching agents
JPS5518558A (en) * 1978-07-27 1980-02-08 Kagaku Gijutsu Shinkoukai Recovering method for copper from ferric chloride etching waste solution containing copper
JPS55145175A (en) * 1979-04-28 1980-11-12 Kagaku Gijutsu Shinkoukai Recovering method of copper by electrolysis of copper chloride etching solution and its apparatus
JPS5617429A (en) * 1979-07-23 1981-02-19 Noriyuki Yoshida Inputting method for character and symbol to computer system with video interface
JPS5914097B2 (ja) * 1980-07-30 1984-04-03 新日本製鐵株式会社 靭性を改良せるフェライト系耐熱鋼
SU1019681A1 (ru) * 1981-01-29 1983-05-23 Предприятие П/Я В-2438 Устройство дл травлени печатных плат с непрерывной регенерацией раствора
US4604175A (en) * 1982-12-07 1986-08-05 Naumov Jury I Process for regeneration of iron-copper chloride etching solution
DE3303594A1 (de) * 1983-02-03 1984-08-09 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur regenerierung einer kupferhaltigen aetzloesung
DE3330349A1 (de) * 1983-08-23 1985-03-14 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur elektrochemischen kompensation der luftoxidation bei der elektrochemischen regenerierung von chloridhaltigen kupferaetzloesungen
JPS61246395A (ja) * 1985-04-23 1986-11-01 Toagosei Chem Ind Co Ltd 塩酸含有銅廃液の処理方法
JPH02254188A (ja) * 1989-03-27 1990-10-12 Kamioka Kogyo Kk 塩化銅溶液の電解処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685103C1 (ru) * 2017-11-21 2019-04-16 Дмитрий Юрьевич Тураев Реагентный метод регенерации солянокислого медно-хлоридного раствора травления меди
RU2715836C1 (ru) * 2019-07-23 2020-03-03 Тураев Дмитрий Юрьевич Реагентно-электролизный метод регенерации солянокислых медно-хлоридных растворов травления меди

Also Published As

Publication number Publication date
US5393387A (en) 1995-02-28
KR100256895B1 (ko) 2000-05-15
CN1038950C (zh) 1998-07-01
AU2719392A (en) 1993-04-29
MY108734A (en) 1996-11-30
DE69219063T2 (de) 1997-11-20
AU655680B2 (en) 1995-01-05
CA2081578C (en) 2003-04-29
CN1072737A (zh) 1993-06-02
EP0539792A1 (en) 1993-05-05
KR930008197A (ko) 1993-05-21
CA2081578A1 (en) 1993-04-29
EP0539792B1 (en) 1997-04-16
DE69219063D1 (de) 1997-05-22
SG46415A1 (en) 1998-02-20

Similar Documents

Publication Publication Date Title
RU2119973C1 (ru) Способ обработки травильного средства (варианты)
US4944851A (en) Electrolytic method for regenerating tin or tin-lead alloy stripping compositions
EP2165007B1 (en) A method for etching copper and recovery of the spent etching solution
US4280887A (en) Method of regenerating ammoniacal etching solutions useful for etching metallic copper
US4490224A (en) Process for reconditioning a used ammoniacal copper etching solution containing copper solute
US5248398A (en) Process for direct electrolytic regeneration of chloride-based ammoniacal copper etchant bath
US3788915A (en) Regeneration of spent etchant
US4265722A (en) Method of processing the surface of workpieces including particularly the etching of surfaces containing copper or copper alloys
Keskitalo et al. Analysis of key patents of the regeneration of acidic cupric chloride etchant waste and tin stripping waste
US1954664A (en) Electrolytic process for the regeneration of pickle liquor
US4107011A (en) Method of regeneration of spent etching solutions
US5085730A (en) Process for regenerating ammoniacal chloride etchants
US4604175A (en) Process for regeneration of iron-copper chloride etching solution
JP2777955B2 (ja) 脱銀又は銀の回収方法
US6309531B1 (en) Process for extracting copper or iron
JP2698253B2 (ja) 銅を含む塩化第二鉄エッチング液の処理方法
JP2927352B1 (ja) エッチング廃液リサイクル法及びその装置
JP2700982B2 (ja) エッチング処理装置
JP2006176353A (ja) 銅エッチング廃液から塩酸及び銅を回収する方法
JP2997110B2 (ja) エッチング液の処理方法
JP3088884B2 (ja) 銅を含む塩化鉄系廃液の再生方法
JPS54156345A (en) Purification of metal plating waste water
JPH05204097A (ja) ハロゲン化銅溶液の処理方法
JPH02254188A (ja) 塩化銅溶液の電解処理方法
EP0039837A1 (en) Process for the oxidation of ferrous ions to the ferric state in sulfate leach solutions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051028