PL218318B1 - Rekombinowany wirus krowianki Ankara (MVA), zawierająca go komórka, szczepionka lub kompozycja farmaceutyczna, sposób lub zestaw do jego otrzymywania, sekwencja DNA zawierająca genom tego wirusa oraz sposób wykrywania tego wirusa lub komórek nim zainfekowanych - Google Patents
Rekombinowany wirus krowianki Ankara (MVA), zawierająca go komórka, szczepionka lub kompozycja farmaceutyczna, sposób lub zestaw do jego otrzymywania, sekwencja DNA zawierająca genom tego wirusa oraz sposób wykrywania tego wirusa lub komórek nim zainfekowanychInfo
- Publication number
- PL218318B1 PL218318B1 PL372088A PL37208803A PL218318B1 PL 218318 B1 PL218318 B1 PL 218318B1 PL 372088 A PL372088 A PL 372088A PL 37208803 A PL37208803 A PL 37208803A PL 218318 B1 PL218318 B1 PL 218318B1
- Authority
- PL
- Poland
- Prior art keywords
- recombinant
- mva virus
- genes
- virus
- homologous
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims description 159
- 239000013598 vector Substances 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 42
- 229960005486 vaccine Drugs 0.000 claims abstract description 21
- 230000028993 immune response Effects 0.000 claims abstract description 15
- 241001465754 Metazoa Species 0.000 claims abstract description 9
- 239000003814 drug Substances 0.000 claims abstract description 7
- 238000003780 insertion Methods 0.000 claims description 116
- 230000037431 insertion Effects 0.000 claims description 116
- 241000700605 Viruses Species 0.000 claims description 113
- 241001183012 Modified Vaccinia Ankara virus Species 0.000 claims description 108
- 210000004027 cell Anatomy 0.000 claims description 76
- 238000012217 deletion Methods 0.000 claims description 49
- 230000037430 deletion Effects 0.000 claims description 48
- 208000015181 infectious disease Diseases 0.000 claims description 45
- 108091029795 Intergenic region Proteins 0.000 claims description 32
- 241000725619 Dengue virus Species 0.000 claims description 30
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 23
- 230000003612 virological effect Effects 0.000 claims description 19
- 238000000746 purification Methods 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 15
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims description 13
- 238000000338 in vitro Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 241000710831 Flavivirus Species 0.000 claims description 8
- 241000282412 Homo Species 0.000 claims description 8
- 206010046865 Vaccinia virus infection Diseases 0.000 claims description 7
- 238000004113 cell culture Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 208000007089 vaccinia Diseases 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims description 5
- 210000005260 human cell Anatomy 0.000 claims description 4
- 210000004962 mammalian cell Anatomy 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 239000002671 adjuvant Substances 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- 210000004102 animal cell Anatomy 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 229940079593 drug Drugs 0.000 claims 2
- 241000587120 Vaccinia virus Ankara Species 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 12
- 230000001939 inductive effect Effects 0.000 abstract description 4
- 206010012310 Dengue fever Diseases 0.000 description 42
- 208000025729 dengue disease Diseases 0.000 description 34
- 208000001490 Dengue Diseases 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 26
- 241000700618 Vaccinia virus Species 0.000 description 26
- 239000013612 plasmid Substances 0.000 description 23
- 239000012634 fragment Substances 0.000 description 22
- 239000013600 plasmid vector Substances 0.000 description 16
- 101150064860 PRM gene Proteins 0.000 description 15
- 239000000427 antigen Substances 0.000 description 15
- 108091007433 antigens Proteins 0.000 description 15
- 102000036639 antigens Human genes 0.000 description 15
- 230000006798 recombination Effects 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 14
- 238000002255 vaccination Methods 0.000 description 14
- 108700008625 Reporter Genes Proteins 0.000 description 13
- 238000010367 cloning Methods 0.000 description 13
- 230000006801 homologous recombination Effects 0.000 description 12
- 238000002744 homologous recombination Methods 0.000 description 12
- 238000001890 transfection Methods 0.000 description 12
- 238000005215 recombination Methods 0.000 description 11
- 230000002458 infectious effect Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 229930193140 Neomycin Natural products 0.000 description 9
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 9
- 229940031348 multivalent vaccine Drugs 0.000 description 9
- 229960004927 neomycin Drugs 0.000 description 9
- 208000035473 Communicable disease Diseases 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 241000700647 Variola virus Species 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 239000012894 fetal calf serum Substances 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- 229930182816 L-glutamine Natural products 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- 241000710842 Japanese encephalitis virus Species 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 241000700629 Orthopoxvirus Species 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000012678 infectious agent Substances 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 101150049281 PRM1 gene Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108010006785 Taq Polymerase Proteins 0.000 description 3
- 241000710772 Yellow fever virus Species 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 108091005948 blue fluorescent proteins Proteins 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 229940051021 yellow-fever virus Drugs 0.000 description 3
- 241000271566 Aves Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000700628 Chordopoxvirinae Species 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- 241000700625 Poxviridae Species 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 208000009714 Severe Dengue Diseases 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 201000002950 dengue hemorrhagic fever Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- -1 preferably C Proteins 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 229940075420 xanthine Drugs 0.000 description 2
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000700663 Avipoxvirus Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 208000027312 Bursal disease Diseases 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000178270 Canarypox virus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 241000272194 Ciconiiformes Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000710815 Dengue virus 2 Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 101000686824 Enterobacteria phage N4 Virion DNA-directed RNA polymerase Proteins 0.000 description 1
- 101001095863 Enterobacteria phage T4 RNA ligase 1 Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 101000644628 Escherichia phage Mu Tail fiber assembly protein U Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 1
- 101150062179 II gene Proteins 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241001569977 Penguinpox virus Species 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000223801 Plasmodium knowlesi Species 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical group C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 229940023605 dengue virus vaccine Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 235000013902 inosinic acid Nutrition 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 101150111412 npt gene Proteins 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229940024231 poxvirus vaccine Drugs 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000006825 purine synthesis Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/863—Poxviral vectors, e.g. entomopoxvirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24141—Use of virus, viral particle or viral elements as a vector
- C12N2710/24143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24111—Flavivirus, e.g. yellow fever virus, dengue, JEV
- C12N2770/24122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
Opis wynalazku
Niniejszy wynalazek dotyczy rekombinowanego pokswirusa zdolnego do ekspresji dwóch lub więcej obcych genów homologicznych. Wspomniane geny są heterologiczne względem genomu wirusa, lecz homologiczne wobec siebie nawzajem. Geny te pochodzą w szczególności z ściśle pokrewnych wariantów lub podtypów mikroorganizmu. Wynalazek dotyczy również sposobu otrzymywania takiego rekombinowanego pokswirusa i zastosowania go jako leku lub szczepionki. Ponadto, wynalazek związany jest ze sposobem oddziaływania, korzystnie indukowania odpowiedzi immunologicznej w żywych zwierzętach i u ludzi.
Tło wynalazku
Każdy żywy organizm jest stale atakowany przez czynniki zakaźne lub patogenne, takie jak bakterie, wirusy, grzyby lub pasożyty. Tak zwany układ immunologiczny zapobiega stałym infekcjom organizmu, chorobom lub zatruciom spowodowanym takimi czynnikami.
Układ immunologiczny ssaków można podzielić na dwie reakcje: swoistą i nieswoistą (wrodzoną), jednak obie te reakcje są ze sobą ściśle powiązane. Nieswoista odpowiedź immunologiczna jest natychmiastową obroną przed działaniem szerokiego spektrum obcych substancji i czynników infekcyjnych. Swoista odpowiedź immunologiczna jest indukowana po fazie lag, w sytuacji, gdy organizm pobudzony jest substancją, z którą styka się po raz pierwszy. Swoista odpowiedź immunologiczna opiera się głównie na produkcji swoistych antygenowo przeciwciał oraz powstawaniu makrofagów i limfocytów, np., cytotoksycznych komórek T (CTL). Swoista odpowiedź immunologiczna odpowiada za fakt, że osobnik, który przejdzie specyficzną infekcję uzyskuje ochronę przed tą specyficzną infekcją, lecz pozostaje wciąż podatny na inne choroby zakaźne. Ogólnie, druga infekcja tym samym lub bardzo podobnym czynnikiem infekcyjnym wywołuje znacznie łagodniejsze objawy lub nie towarzyszą jej żadne objawy.
Taka, tak zwana, odporność pozostaje na długi czas, w pewnych przypadkach nawet na całe życie. Powyższy efekt związany jest z pamięcią immunologiczną, która może zostać wykorzystana do celu szczepień.
Termin szczepienie dotyczy sposobu wzbudzania odporności u osobnika dzięki podaniu nieszkodliwej, częściowo lub całkowicie nieaktywnej postaci czynnika infekcyjnego, w celu oddziaływania, korzystnie indukowania odpowiedzi immunologicznej u tego osobnika. Prowadzi to do uzyskania pozostającej na długi czas, jeżeli nie - przez całe życie, odporności przeciwko specyficznemu czynnikowi zakaźnemu.
Ludzka ospa wywoływana jest wirusem krowianki. Wirus krowianki należy do rodziny Poxviridae, dużej rodziny wirusów DNA, replikujących w cytoplazmie komórek kręgowców i bezkręgowców.
Rodzinę Poxviridae można podzielić na dwie podrodziny Chordopoxvirinae oraz Etnomopoxvirinae, bazujące na grupie gospodarzy wywodzących się z kręgowców i owadów. Chordopoxvirinae obejmuje, oprócz innych, rodzaj Orthopoxviruses oraz Avipoxviruses (Fields Virology, wyd. Fields B.N., Lippincott-Raven Publishers, wyd. 3 1996, ISBN: 0-7817-0253-4, rozdz. 83).
Rodzaj Orthopoxviruses obejmuje wirus variola (ospy), czynnik wywołujący ospę ludzką, a także inne wirusy o znaczeniu ekonomicznym, np., wirusy ospy wielbłądów, krów, owiec, kóz, osłów i wirus krowianki. Wszystkie wirusy należące do tego rodzaju są genetycznie spokrewnione i posiadają podobną morfologię lub zakres gospodarzy. Endonukleazowe mapy restrykcyjne wykazały wysoki poziom identyczności sekwencji, do 90% odnotowany między różnymi członkami Orthopoxviruses (Mackett & Archard, [1979], J Gen Virol, 45: 683-701).
Wirus krowianki (VV) jest czynnikiem stosowanym przez przynajmniej 100 lat do szczepienia przeciwko ospie. Nie wiadomo, czy W jest nowym gatunkiem, pochodzącym od wirusa krów lub wirusa variola w wyniku długotrwałych seryjnych pasaży, żyjącym przedstawicielem obecnie wymarłego wirusa, czy może produktem rekombinacji genetycznej. Ponadto, podczas długiego okresu obecności VV powstało wiele szczepów tego wirusa. Wspomniane różne szczepy wykazują różną immunogenność i w różnym stopniu wywołują potencjalne komplikacje, najpoważniejsze z nich to po-krowiankowe zapalenie mózgu. Jednakże, wiele z tych szczepów było stosowanych do szczepienia przeciwko ospie. Na przykład, szczep NYCBOH, Western Reserve lub Wyeth były stosowane głównie w USA, natomiast szczep Ankara, Bern, Copenhagen, Lister i MVA stosowano do szczepienia w Europie. W wyniku światowego programu szczepienia różnymi szczepami VV, w 1980r. WHO ostatecznie ogłosiła skuteczne wyeliminowanie wirusa variola.
PL 218 318 B1
Obecnie, VV stosowany jest głównie jako szczep laboratoryjny. Przyjęto go za prototyp Orthopoxviruses, co również sprawiło, że stał się on jednym z najbardziej szczegółowo scharakteryzowanych wirusów (Fields Virology, wyd. Fields B.N., Lippincott-Raven Publishers, wyd. 3 1996, ISBN; 0-7817-0253-4, rozdz. 83 i 84).
VV i ostatnio również inne pokswirusy stosowano do insercji i ekspresji obcych genów. Podstawowa technika wstawiania obcych genów do żywego, infekcyjnego pokswirusa obejmuje rekombinację między sekwencjami DNA wirusa, flankującymi obcy element genetyczny w donorowym plazmidzie a sekwencjami homologicznymi, obecnymi w pomocniczym pokswirusie. Rekombinacja genetyczna jest ogólnie wymianą sekwencji homologicznych DNA między dwiema nićmi DNA. W przypadku pewnych wirusów, RNA może zastąpić DNA. Fragmenty homologiczne kwasu nukleinowego są fragmentami kwasu nukleinowego (DNA lub RNA), posiadającymi taki sam skład sekwencji zasad nukleotydowych. Rekombinacja genetyczna może przebiegać naturalnie w zainfekowanej komórce gospodarza podczas replikacji lub otrzymywania nowego genomu wirusowego. Zatem, rekombinacja genetyczna między genami wirusowymi może zajść podczas cyklu replikacyjnego wirusa, przebiegającego w komórce gospodarza, która jest jednocześnie zainfekowana dwoma lub więcej różnymi wirusami lub innymi produktami genetycznymi. Fragment DNA z pierwszego genomu ulega wymianie podczas otrzymywania fragmentu genomu drugiego infekcyjnego wirusa obecnego w komórce, w którym DNA jest homologiczny z DNA pierwszego genomu wirusowego.
Do osiągnięcia udanej ekspresji wstawionej sekwencji DNA w zmodyfikowanym wirusie infekcyjnym wymagane są dwa warunki. Pierwszym jest zapewnienie, aby insercja nastąpiła w nieistotnym obszarze wirusa, tak, by zmodyfikowany wirus pozostał żywy. Drugim warunkiem dla ekspresji wstawionego DNA jest obecność promotora w prawidłowej zależności z wstawionym DNA. Promotor powinien być położony powyżej sekwencji DNA, która ma ulec ekspresji.
Wykazano i omówiono użyteczność rekombinowanych VV, ekspresjonujących, np., antygen powierzchniowy wirusa zapalenia wątroby B (HBsAg), hemaglutyninę wirusa grypy (InfHA) lub antygen zarodnikowy z Plasmodium knowlesi, jako żywych szczepionek do celów zapobiegania chorobom zakaźnym (Smith i wsp. [1984] Biotechnology and Genetic Engineering Reviews 2, 383-407).
Kolejną zaletą VV jest zdolność przyjmowania wielu obcych substancji, genów lub antygenów do pojedynczego genomu VV (Smith & Moss [1983], Gene, 25(1): 21-28). Ponadto, stwierdzono, że możliwe jest wzbudzenie odporności na liczne heterologiczne choroby zakaźne, przy zastosowaniu pojedynczego szczepienia szczepionką poliwalentną (Perkus i wsp., [1985], Science, vol. 229, 981-984).
Przykład ekspresji różnych antygenów przez pojedynczy VV został opisany przez Bray i wsp. Wykazano, że rekombinowany W, zdolny do ekspresji trzech różnych białek strukturalnych serotypu 4 wirusa Dengue; mianowicie białka kapsydu (C), przedbłonowego (PrM), otoczki (E) oraz dwóch niestrukturalnych białek serotypu 4 wirusa Dengue: mianowicie NS1 i NS2a, wykazywał zdolność zapewnienia ochrony przed infekcją serotypem 4 wirusa Dengue u myszy (Bray i wsp. [1989], Virology 2853-2856).
Pod względem infekcji wywoływanych u ludzi, wirus Dengue wraz z jego czterema serotypami, od serotypu 1 wirusa Dengue (Den-1) do serotypu 4 wirusa Dengue (Den-4), jest jednym z najważniejszych członków rodzaju Flavivirus. Infekcje wirusem Dengue wywołują choroby, obejmujące od objawów grypopodobnych do poważnych lub śmiertelnych chorób, gorączki krwotocznej Dengue (DHF) z zespołem szoku (DSS). Dengue pozostaje ciągle głównym problemem zdrowotnym w gęsto zaludnionych obszarach tropikalnych lub podzwrotnikowych, w których występują liczne wektory moskitowe.
Zaniepokojenie spowodowane możliwością rozprzestrzenienia w wielu częściach świata infekcji Dengue i innych chorób indukowanych za pośrednictwem moskitów przez FIaviviruses, spowodowało nasilenie prób otrzymania szczepionki Dengue, która mogłaby zapobiegać zarówno gorączce Dengue (DF), jak i krwotocznej gorączce Dengue (DHF) oraz szczepionek użytecznych w ochronie zaszczepionych osobników przed infekcjami wywołanymi przez pewne lub wszystkie przenoszone przez moskity wirusy FIaviviruses.
Większość przypadków DF miała miejsce po pierwszej infekcji wywołanej przez którykolwiek z czterech serotypów wirusa, natomiast znaczny procent przypadków pojawienia się DHF odnotowano u jednostek zainfekowanych po raz drugi, jednak przez serotyp odmienny od pierwszego infekcyjnego serotypu wirusa Dengue. Powyższe obserwacje pozwoliły na wysunięcie hipotezy, że kolejna infekcja osobnika posiadającego przeciwciała przeciwko jednemu serotypowi wirusa Dengue, wywołana przez inny serotyp tego wirusa w odpowiedniej odległości czasowej, w pewnej liczbie przypadków może spowodować DHF.
PL 218 318 B1
Zgodnie z powyższym, szczepienia przeciwko jednemu serotypowi nie powodują pełnej ochrony przed infekcją wirusem Dengue, lecz jedynie przed infekcją tym konkretnym szczepem wirusa Dengue. Jeszcze ważniejsze jest to, że osoba zaszczepiona przeciwko jednemu serotypowi, narażona jest na poważne niebezpieczeństwo pojawienia się groźnych komplikacji, takich jak gorączka krwotoczna Dengue, gdy zostanie zainfekowana szczepem wirusa Dengue o odmiennym serotypie.
Zatem, istnieje potrzeba multiwalentnej szczepionki, zawierającej antygeny z wszystkich czterech serotypów wirusa Dengue.
Dotychczas, sugerowano otrzymywanie multiwalentnych szczepionek poprzez wymieszanie zestawu rekombinowanych VV, każdy VV kodujący sekwencje różnych wirusów (Moss, [1990] Immunology, 2, 317-327). Jednakże, takie szczepionki multiwalentne niosły ze sobą kilka niedogodności. Po pierwsze, kłopotliwe jest otrzymanie kilku niezależnych, rekombinowanych VV. Oprócz oddzielnych procesów produkcji, bardzo czasochłonna jest kontrola i zapewnienie jakości. Po drugie, infekcja mieszaniną rekombinowanych wirusów, ekspresjonujących różne sekwencje zawsze niesie ryzyko, że infekcja nie będzie szczególnie dobrze zrównoważona. Główne niebezpieczeństwo związane jest z tym, że możliwe jest, że jedynie poszczególne rekombinaty, a nie wszystkie zróżnicowane rekombinowane wirusy zawarte w multiwalentnej szczepionce, zainfekują docelową komórkę. Jedną z przyczyn może być nierówne rozłożenie rekombinowanych wirusów. Inną przyczyną mogą być zakłócenia między różnymi rekombinowanymi wirusami podczas infekcji pojedynczej komórki. Takie zakłócenia znane są jako zjawisko nadkażenia (superinfekcji).
W tym przypadku, jedynie pewne antygeny, a nie wszystkie zawarte w multiwalentnej szczepionce, będą ostatecznie ekspresjonowane z zainfekowanych komórek, a zatem, prezentowane układowi immunologicznemu pacjenta. W konsekwencji, ochrona immunologiczna będzie uzyskana jedynie przed pewnymi antygenami, lecz efekt jest daleki od zapewnienia całkowitej ochrony immunologicznej przed różnymi antygenami prezentowanymi lub możliwymi do zaprezentowania przez szczepionkę multiwalentną.
W przypadku szczepionki przeciwko infekcji wirusem Dengue, rozwiązanie, w którym wykorzystano multiwalentną szczepionkę posiada pewne niedogodności, pojawiające się, gdy różne sekwencje ekspresjonowane są w różnych ilościach lub w nieprzewidziany sposób, jak wykazano na przykładzie białka otoczki wirusa Dengue 2 (Deuble i wsp., [1988], J. Virol. 65; 2853). Ponadto, takie szczepienie jest bardzo niebezpieczne dla pacjenta. Niepełne szczepienie, przy użyciu zestawu rekombinowanych wirusów krowianki zapewnia jedynie odpowiedź immunologiczną chroniącą przed pewnymi, lecz nie przed wszystkimi serotypami wirusa Dengue. Niestety, w przypadku infekcji wirusem Dengue, niepełne szczepienie jest wysoko niewskazane, ze względu na wzrost ryzyka prowadzących do śmierci powikłań, takich jak gorączka krwotoczna Dengue.
Cel wynalazku
W świetle powyższych zagadnień, celem niniejszego wynalazku jest zapewnienie stabilnej, skutecznej i niezawodnej szczepionki przeciwko chorobom zakaźnym, które mogą być wywołane przez więcej niż jeden szczep, klad, wariant, podtyp lub serotyp mikroorganizmu wywołującego wspomnianą chorobę infekcyjną.
Kolejnym celem wynalazku jest zapewnienie stabilnej, skutecznej i pewnej szczepionki przeciwko infekcjom wirusem Dengue, która pozwoli na niezawodne szczepienie przeciwko wszystkim serotypom wirusa Dengue.
Istota wynalazku
Przedmiotem wynalazku jest rekombinowany wirus krowianki Ankara (MVA), charakteryzujący się tym, że zawiera przynajmniej dwie sekwencje homologiczne lub geny o identyczności co najmniej 50%, przy czym każda ze wspomnianych sekwencji homologicznych lub genów jest trwale wstawiona w różnym miejscu insercji genomu wirusowego.
Przedmiotem wynalazku jest również rekombinowany wirus MVA, charakteryzujący się tym, że zawiera przynajmniej dwie sekwencje homologiczne lub geny, przy czym wykazują one identyczność na poziomie przynajmniej 60%,
Korzystnie, sekwencje homologiczne lub geny wykazują identyczność na poziomie 65- 75%. Korzystnie, sekwencje zawierają homologiczne geny, w szczególności pochodzące z flaviwirusa. Korzystnie, flaviwirus jest wirusem Dengue. Korzystnie, geny są przynajmniej dwoma homologicznymi genami pochodzącymi z przynajmniej dwóch różnych serotypów wirusa. Korzystnie, geny są przynajmniej dwoma genami PrM, zwłaszcza genami 4 PrM. Korzystnie, geny homologiczne znajdują się pod kontrolą transkrypcyjną wczesnego/późnego promotora krowianki p7.5. Korzystnie, MVA jest
PL 218 318 B1
MVA-BN zdeponowanym w Europejskiej Kolekcji Zwierzęcych Kultur Komórkowych (ECACC) pod numerem V00083008. Korzystnie, wirus MVA przejawia ograniczoną replikację lub jest replikacyjnie inkompetentny w komórkach ssaczych, w tym w komórkach ludzkich. Korzystnie, sekwencje wstawione są w naturalnie występujących miejscach delecji i/albo w obszarze międzygenowym genomu wirusa.
Kolejnym przedmiotem wynalazku jest rekombinowany wirus MVA według wynalazku do stosowania jako lek lub szczepionka.
Kolejnym przedmiotem wynalazku jest szczepionka, która zawiera rekombinowanego wirusa MVA według wynalazku.
Kolejnym przedmiotem wynalazku jest kompozycja farmaceutyczna, która zawiera rekombinowanego wirusa MVA według wynalazku oraz farmaceutycznie dopuszczalny nośnik, rozcieńczalnik, adiuwant i/lub substancję dodatkową.
Kolejnym przedmiotem wynalazku jest rekombinowany wirus MVA według wynalazku, szczepionka według wynalazku albo kompozycja według wynalazku, do stosowania w oddziaływaniu na odpowiedź immunologiczną w żywych zwierzętach oraz ludziach.
Kolejnym przedmiotem wynalazku jest zastosowanie rekombinowanego wirusa MVA według wynalazku do wytwarzania leku, korzystnie do otrzymywania preparatu do oddziaływania na odpowiedź immunologiczną w żywych zwierzętach oraz ludziach.
Kolejnym przedmiotem wynalazku jest komórka in vitro lub ex vivo zawierająca rekombinowanego wirusa MVA według wynalazku.
Kolejnym przedmiotem wynalazku jest sposób in vitro lub ex vivo otrzymywania rekombinowanego wirusa MVA określonego powyżej, charakteryzujący się tym, że obejmuje etapy
- infekcji komórki wirusem MVA;
- transfekcji zainfekowanej komórki pierwszym wektorem zawierającym sekwencję przeznaczoną do prowadzenia do gen genomu wirusa MVA oraz genomową sekwencję wirusa MVA, zdolną do ukierunkowania integracji sekwencji przeznaczonej do insercji w miejscu insercji genomu wirusa MVA;
- identyfikacji, izolacji i ewentualnie oczyszczania otrzymanego rekombinowanego wirusa ospy;
- powtórzenia powyższych etapów przy użyciu rekombinowanego wirusa MVA uzyskanego w poprzednich etapach do infekcji komórki i dodatkowego wektora zawierającego dodatkową sekwencję przeznaczoną do wprowadzenia do genomu wirusa MVA, przy czym wspomniana sekwencja jest homologiczna z sekwencją z pierwszego wektora.
Kolejnym przedmiotem wynalazku jest zestaw do uzyskiwania rekombinowanego wirusa MVA określonego powyżej, który to zestaw zawiera;
- dwa lub więcej wektory, każdy z nich zawierający sekwencję, przy czym sekwencje zawarte w różnych wektorach są sekwencjami o identyczności przynajmniej 50%, a każda sekwencja jest flankowana przez sekwencję DNA wirusa MVA, zdolną do ukierunkowania integracji genu w genomie wirusa MVA, oraz
- środki do identyfikacji oraz/albo selekcji rekombinowanych wirusów ospy, posiadających wbudowane w ich genomie wspomniane sekwencje homologiczne.
Kolejnym przedmiotem wynalazku jest sekwencja DNA zawierająca genom rekombinowanego wirusa MVA określonego powyżej, przy czym wspomniana sekwencja DNA zawiera (i) przynajmniej dwie sekwencje homologiczne o identyczności przynajmniej 50%, które są wprowadzone w różnych miejscach insercji i (ii) przynajmniej część sekwencji genomu wirusa MVA, przy czym wspomniana część sekwencji z genomu wirusa MVA flankuje wspomniane sekwencje homologiczne.
Kolejnym przedmiotem wynalazku jest sposób in vitro lub ex vivo wykrywania komórek zainfekowanych rekombinowanym wirusem MVA określonym powyżej, charakteryzujący się tym, że obejmuje podawanie do wspomnianych komórek sekwencji DNA według wynalazku i wykrywanie wspomnianych komórek zainfekowanych rekombinowanym wirusem MVA.
Kolejnym przedmiotem wynalazku jest sposób in vitro lub ex vivo identyfikacji rekombinowanego wirusa MVA według wynalazku, charakteryzujący się tym, że obejmuje podawanie do wspomnianego wirusa sekwencji DNA według wynalazku i identyfikowanie rekombinowanego wirusa MVA.
Szczegółowy opis wynalazku
Niniejszy wynalazek opiera się na rozwiązaniu obejmującym homologiczne geny pokswirusowe, pochodzące z różnych szczepów, kladów, wariantów, podtypów lub serotypów mikroorganizmu wywołującego chorobę infekcyjną. Jak już wspomniano wyżej, istnieją, na przykład, 4 grupy, podtypy lub serotypy wirusa Dengue, wszystkie zawierające te same typy genów, takich jak, np., gen kodujący białko kapsydu (C), gen kodujący białko przedbłonowe (PrM) lub gen białka otoczki (E). Jednakże,
PL 218 318 B1 sekwencja kwasu nukleinowego tego samego typu genu nie jest całkowicie identyczna i idealnie homologiczna, odpowiednio we wszystkich 4 serotypach: Na przykład, porównanie sekwencji (przy użyciu Lasergene 4.05 Magalign, Macintosh) między genami PrM 30 serotypu 1, 2, 3 i 4 (PrM1-4) wirusa Dengue ujawniło identyczność sekwencji na poziomie 66.5-72.9%, tj., homologię w przybliżeniu 6575%. Podsumowując, odpowiednio, różnice i wariacje w genach różnych podtypów mikroorganizmów wywołujących choroby infekcyjne powodują fakt, że szczepienie przeciwko jednemu podtypowi nie zapewnia automatycznie ochrony przed infekcjami innymi wariantami tego mikroorganizmu. Stąd, pomysł otrzymania rekombinowanego wirusa, zawierającego ściśle pokrewne lub homologiczne geny pochodzące z różnych szczepów, kladów, wariantów, podtypów łub serotypów mikroorganizmu wywołującego chorobę infekcyjną. Jednakże, jak już wcześniej wspomniano, rekombinacja homologiczna między sekwencjami homologicznymi występuje podczas cyklu życiowego wirusa i przebiega nawet między sekcjami DNA nie w pełni homologicznymi. Zatem, oczekiwano, że insercja genów homologicznych w pojedynczym genomie wirusa spowoduje zajście rekombinacji homologicznej, a przez to, delecji wstawionych genów homologicznych.
Jednakże, po uzyskaniu rekombinowanego pokswirusa zawierającego w swoim genomie przynajmniej dwa obce geny o homologii przynajmniej 60%, stwierdzono nieoczekiwanie, że wspomniane geny homologiczne pozostają stabilnie wstawione do genomu wirusa.
Nawet, gdy geny homologiczne o homologii przynajmniej 50% wstawiane były w różnych miejscach insercji genomu wirusa, geny te również pozostawały stabilnie wstawione w genomie wirusowym. W tym przypadku, przypuszczano, że w wyniku rekombinacji między wspomnianymi genami homologicznymi nastąpi dodatkowo utrata genów wirusa, istotnych odpowiednio, dla jego amplifikacji i cyklu życiowego, tj., oczekiwano, że cykl życiowy wirusa będzie silnie zakłócony. Ponadto, częstość rekombinacji jest proporcjonalna do odległości między dwoma związanymi genami, oczekiwano, zatem, że częstość przypadków rekombinacji między dwoma lub więcej homologicznymi genami położonymi w różnych miejscach insercji będzie wysoka, przez co spowoduje delecje wspomnianych genów i/lub poważne zakłócenia. Zgodnie z powyższym, okazało się całkowicie zaskakującym, że nie zaszła żadna rekombinacja, jednak geny homologiczne pozostawały stabilnie wstawione w różnych miejscach insercji genomu wirusowego.
W stanie techniki znane są rekombinowane pokswirusy zawierające obcy DNA z wirusa należącego do Flavivirus, takie jak wirus Japońskiego Zapalenia Mózgu (JEV), wirus Żółtej Febry (YFV) i wirus Dengue (US Patent No. 5,514,375). Jednakże, każdy z genów pochodzących ze wspomnianych Flavivirus wstawiany był jedynie pojedynczo i w tym samym miejscu insercji. Ponadto, porównanie sekwencji za pomocą odpowiedniego programu komputerowego (Lasergene 4.05 Magalign, Macintosh) ujawniło homologię między wstawionymi do genomu pokswirusa genami a genami pochodzącymi z JEV na poziomie 20.2%-29.6%, z YFV: 29.2%-45.3% i z wirusa Dengue: 22.8%-29.5%.
Podobnego ujawnienia dokonano w WO 98/13500, gdzie opisano insercje antygenów wirusa Dengue w tym samym miejscu insercji zmodyfikowanego wirusa krowianki Ankara (MVA), szczególnie w miejscu delecji II.
W US Patent No. 5,338,683 opisano insercję genów gp 13 i 14 glikoproteiny wirusa opryszczki w dwóch różnych miejscach insercji jednego rekombinowanego pokswirusa; jednakże oba geny posiadały homologię jedynie na poziomie 25.2%.
Porównanie sekwencji między genem hemaglutyniny a nukleoproteiny wirusa grypy, wstawionym w tym samym miejscu insercji (miejsce delecji III) zmodyfikowanego wirusa krowianki Ankara (MVA) ujawniło homologię na poziomie 49.1% (US Patent No. 5,676,950; Sutter i wsp., [1994], Vaccine 12: 1032).
W US Patent No. 5,891,442 ujawniono rekombinowany pokswirus zawierający sekwencję kodującą poliproteinę VP2, VP3 i VP4 zakaźnej choroby kaletkowej. Wspomniane geny poddane fuzji, a następnie, wstawione w pojedynczym miejscu insercji wykazywały homologię 41.9%-50.3%.
Ponadto, w US Patent No. 6,217,882 opisano rekombinowany wektor wirusa ospy świń zawierający antygeny wodowstrętu rzekomego: gp50 i gp63 o homologii 52.7% wstawione w tym samym miejscu insercji.
Podsumowując, można stwierdzić, że zgodnie ze stanem techniki, geny homologiczne lub sekwencje o homologii przynajmniej 50% są wstawiane wszystkie w to samo miejsce lub pojedyncze miejsce insercji w genomie wirusa.
Zgodnie z niniejszym wynalazkiem, geny homologiczne lub sekwencje o homologii przynajmniej 50%, tj., homologii rzędu 50% - 100%, tj., o przynajmniej 50% identycznych zasad nukleotydowych. Geny lub sekwencje o homologii poniżej 50% mogą być uważane za heterologiczne. W świetle niniejPL 218 318 B1 szego wynalazku, termin „homologiczny” lub „homologia” stosowany jest, gdy geny lub sekwencje porównywane są ze sobą, natomiast termin gen „obcy”, sekwencja „egzogenna” lub „heterologiczna” stosowany jest, gdy geny lub sekwencje porównywane są z genomem pokswirusa; tj., wspomniane pojęcia odnoszą się do sekwencji DNA, nie związanej normalnie w naturze z pokswirusem według niniejszego wynalazku. Zgodnie z powyższym, wynalazek dotyczy rekombinowanego pokswirusa zawierającego przynajmniej dwa geny heterologiczne w porównaniu z genomem wirusa, lecz homologiczne wobec siebie nawzajem. Termin „geny” odnosi się do sekwencji kodujących, np., białka, polipeptydy, peptydy, antygeny itp. Białka, polipeptydy lub peptydy ulegające translacji z homologicznych genów pełnią taką samą funkcję i wykazują takie same właściwości funkcjonalne. Geny homologiczne pochodzą zazwyczaj z różnych, lecz spokrewnionych źródeł lub organizmów. Zgodnie z jedną z realizacji wynalazku, homologia sekwencji kodujących wynosi korzystnie 70% do 80%, korzystniej 80% do 90% lub 90% do 100%. Najkorzystniej, homologia jest na poziomie 65% do 75%.
Ze względu na to, że rekombinowany pokswirus według wynalazku zawiera istotną informację genetyczną w jednej pojedynczej jednostce infekcyjnej lub jedynie w jednej cząsteczce wirusa, nie ma niebezpieczeństwa pojawienia się nieregularnej infekcji i niezrównoważonej ekspresji różnych sekwencji homologicznych. Zatem, rekombinowany pokswirus według wynalazku, zawierający i zdolny do ekspresji kilku blisko czy nawet ściśle pokrewnych genów lub niemal identycznych sekwencji w jednej komórce infekcyjnej, jest szczególnie cenny w otrzymywaniu multiwalentnych szczepionek.
Zaleta ta jest szczególnie interesująca pod względem wprowadzania szczepionek przeciwko chorobom, które mogą być wywoływane przez kilka ściśle spokrewnionych szczepów lub serotypów wirusa, jak, np., wirusa Dengue. W Przykładach opisano rekombinowane pokswirusy zawierające geny homologiczne różnych serotypów wirusa Dengue.
Geny homologiczne lub sekwencje według niniejszego wynalazku mogą pochodzić z jakiegokolwiek mikroorganizmu, tak jak jakiegokolwiek wirusa, oprócz wektora wirusowego, jakichkolwiek bakterii, jakichkolwiek grzybów lub pasożytów. Korzystnie, geny homologiczne lub sekwencje pochodzą z zakaźnego lub patogennego mikroorganizmu, i korzystniej, z różnych szczepów lub kladów, wariantów, podtypów lub serotypów wspomnianego mikroorganizmu.
Termin „szczep” lub „klad” jest terminem technicznym, dobrze znanym specjalistom w dziedzinie, odnoszącym się do taksonomii mikroorganizmów. W systemie taksonomicznym sklasyfikowano wszystkie scharakteryzowane do tej pory mikroorganizmy w porządku hierarchicznym rodziny, rodzaju, gatunków, szczepów (Fields Virology, wyd. Fields B.N., Lippincott-Raven Publishers, 4 wyd. 2001). Kryterium przynależności do rodziny jest pokrewieństwo filogenetyczne, natomiast rodzaj obejmuje wszystkich członków o wspólnych właściwościach. Szczep zdefiniowany jest jako klasa politetyczna, która stanowi replikującą grupę o tym samym rodowodzie, zajmującą szczególną niszę ekologiczną. Termin „szczep” lub „klad” dotyczy mikroorganizmu, tj., wirusa, który wykazuje wspólną charakterystykę, jak podstawowe cechy morfologiczne lub struktura i organizacja genomu, lecz różni się właściwościami biologicznymi, jak zakres gospodarzy, tropizm tkankowy, występowanie geograficzne, atenuacja lub patogeniczność. Termin „warianty” lub „serotypy” pozwala na dalsze rozróżnienie między członkami tego samego szczepu, zwanymi również podtypami, wykazującymi poszczególne spektrum infekcji lub specyficzne właściwości antygenne, wywołane mniejszymi wariacjami genomowymi.
Zgodnie z kolejną realizacją wynalazku, geny lub sekwencje homologiczne wybierane są spośród wirusów, korzystnie wirusów, które należą do rodzaju Flavivirus, tak jak, korzystnie, lecz nie ograniczając, wirus Dengue, wirus West Nile lub wirus Japońskiego Zapalenia Mózgu; tych które należą do rodzaju Retroviruses, tak jak, korzystnie, lecz nie ograniczając, wirus nabytego ludzkiego niedoboru odporności (HIV); tych które należą do rodzaju Enteroviruses, tak jak, korzystnie, lecz nie ograniczając, wirusy chorób rąk, stóp i ust, EV71; które należą do rodzaju Rotaviruses, lub też należących do rodzaju Orthomyxoviruses, tak jak, korzystnie, lecz nie ograniczając, wirus grypy. Najkorzystniejsze są geny homologiczne pochodzące z FIavivirus.
Zgodnie z kolejną realizacją, geny homologiczne wybrane są spośród genów wirusa Dengue, korzystnie C, NS1 i/lub NS2, lub korzystnie E, korzystniej PrM. Najkorzystniej, geny homologiczne pochodzą z różnych serotypów wirusa, przy czym wspomniane geny mogą pochodzić z jednego, dwóch, trzech lub wszystkich czterech serotypów wirusa Dengue.
Zgonie z inną realizacją, geny homologiczne wybrane są spośród różnych szczepów lub kładów
HIV. Korzystnie, geny homologiczne wybrane są spośród sekwencji kodującej gag/pol, korzystniej z sekwencji kodującej env lub najkorzystniej, z kombinacji strukturalnych i/lub regulatorowych sekwencji kodujących HIV.
PL 218 318 B1
Wektor wirusowy odpowiedni do zastosowania w niniejszym wynalazku wybrany jest z grupy pokswirusów, które mogą być łatwo hodowane w wybranych komórkach gospodarza, jak, np., ptasie komórki gospodarza, lecz które wykazują silnie ograniczoną replikację lub w istocie nie replikują w organizmie człowieka lub komórkach ludzkich.
Zgodnie z kilkoma korzystnymi realizacjami, pokswirus według wynalazku wybrany jest z grupy obejmującej wirusy ospy kanarków (Plotkin i wsp. [1995] Dev Biol Stand.vol 84: str. 165-170. Taylor i wsp. [1995] Vaccine, vol. 13. No. 6: str. 539-549), wirusy ospy drobiu (Alfonso i wsp. [2000] J Virol, str. 3815-3831. Fields Virology, wyd. Fields B.N., Lippincott-Raven Publishers, wyd.4, 2001, rozdz. 85: str. 2916), wirusy ospy pingwinów (Stannard i wsp. [1998] J Gen Virol, 79, str. 1637-1649) lub ich pochodne. Ze względu na to, że wirusy te należą do rodzaju Avipoxvinis mogą być łatwo hodowane i amplifikowane w komórkach ptaków. Jednakże, w komórkach ssaków lub ludzkich wykazują ograniczoną replikację, co oznacza, że istotnie nie, lub prawie, nie produkują zakaźnych wirusów potomnych.
Zgodnie z kolejną realizacją niniejszego wynalazku, wirus krowianki, korzystnie atenuowany wirus krowianki, stosowany jest do otrzymywania rekombinowanych pokswirusów zawierających dwa lub więcej homologicznych genów.
Mimo że wiadomo, że wirusy krowianki (VV) mogą przeprowadzać rekombinację homologiczną krótkich sekwencji homologicznych i w ten sposób wywoływać delecję sekwencji homologicznych (Howley i wsp. [1996], Gene 172: 233-237), twórcy uzyskali rekombinowany wirus krowianki zawierający sekwencje homologiczne lub geny stabilnie wstawione do genomu wirusa. Wynik ten był szczególnie nieoczekiwany, ponieważ według Howely i wsp. już krótkie sekwencje do 300 par zasad (pz) były wystarczające do indukowania zmiany i delecji sekwencji homologicznych w wirusie krowianki. Specjalista w dziedzinie mógł, zatem przypuszczać, że dłuższe sekwencje będą z wysokim prawdopodobieństwem indukować rekombinację. Jednakże, zgodnie z niniejszym wynalazkiem, nawet sekwencje zawierające w pełni homologiczne geny mogą być stabilnie wstawiane do genomu wirusa krowianki.
Jednym, lecz nie ograniczającym, przykładem wirusa krowianki jest silnie atenuowany i o ograniczonym zakresie gospodarzy szczep Vaccinia, jakim jest zmodyfikowany wirus krowianki Ankara (MVA) (Sutter, G. i wsp. [1994], Vaccine 12; 1032-40). MVA otrzymano w wyniku około 570 pasaży szczepu Ankara wirusa krowianki (CVA) w fibroblastach embrionów kurcząt (praca przeglądowa Mayr, A. i wsp., Infection 3, 6-14 [1975]). W następstwie wspomnianych pasaży CVA utracił około 31 kilozasad informacji genomowej. Otrzymany szczep wirusa, MVA, został opisany jako posiadający silnie ograniczony zakres komórek gospodarza (Meyer, H. i wsp., J. Gen. Virol. 72, 1031- 1038 [1991]). Typowym szczepem MVA jest MVA 575, zdeponowany w Europejskiej Kolekcji Kultur Komórkowych, pod numerem depozytu ECACC V00120707.
W innej realizacji, szczep MVA-Vero lub jego pochodna mogą być zastosowane według wynalazku. Szczep MVA-Vero został zdeponowany w Europejskiej Kolekcji Kultur Komórkowych, pod numerem depozytu ECACC V99101431 i ECACC 01021411. Bezpieczeństwo MVA-Vero odzwierciedlają jego biologiczne, chemiczne i fizyczne właściwości, opisane w Międzynarodowym Zgłoszeniu Patentowym PCT/EPO1/02703. W porównaniu z normalnym MVA, MVA-Vero posiada jedną dodatkową delecję w genomie.
Termin „pochodne” wirusa według wynalazku dotyczy wirusów potomnych, wykazujących te same cechy charakterystyczne, jak wirus rodzicielski, lecz przejawiające różnice w jednej lub więcej części genomu.
Kolejna realizacja wynalazku dotyczy zastosowania MVA-BN. MVA-BN został zdeponowany w Europejskiej Kolekcji Kultur Komórkowych, pod numerem depozytu ECACC V00083008. Zastosowanie MVA-BN lub jego pochodnej pozwala na otrzymanie szczególnie bezpiecznej szczepionki wirusowej, ponieważ wykazano, że wirus MVA-BN jest bardzo silnie atenuowanym wirusem, pochodzącym od zmodyfikowanego wirusa krowianki Ankara. Zatem, w najkorzystniejszej realizacji, MVA-BN lub jego pochodne zawierające dwa lub więcej homologicznych genów według wynalazku jest użyty jako wektor wirusowy. Termin „pochodna MVA-BN” odnosi się do wirusa o takich samych właściwościach funkcjonalnych, jak MVA-BN. Cechy charakterystyczne MVA-BN, opis analizy biologicznej pozwalającej na ocenę, czy MVA jest MVA-BN i jego pochodną oraz sposoby umożliwiające otrzymanie MVA-BN lub jego pochodnych zawarto w WO 02/42480 (włączony tytułem referencji). Prostym sposobem stwierdzenia funkcjonalnych cech MVA-BN lub jego pochodnych jest jego atenuacja i brak replikacji w ludzkich komórkach HaCat.
W rekombinowanym pokswirusie według wynalazku ekspresja sekwencji egzogennej przebiega korzystnie pod kontrolą transkrypcyjnego elementu kontrolnego pokswirusa, korzystniej transkrypcyjnego
PL 218 318 B1 elementu kontrolnego MVA, wirusa ospy kanarków, wirusa ospy drobiu lub ospy pingwinów lub najkorzystniej, promotora wirusa krowianki. Transkrypcyjne elementy kontrolne pokswirusów według wynalazku obejmują ponadto każdy transkrypcyjny element kontrolny funkcjonalny w układzie pokswirusowym.
Insercja egzogennych sekwencji według wynalazku jest korzystnie ukierunkowana do nieistotnych regionów genomu wirusa. Nieistotnymi regionami są np., Ioci lub otwarte ramki odczytu (ORF) genów pokswirusowych, które nie są istotne dla cyklu życiowego pokswirusa. Obszary między genowe, obejmujące przestrzeń między dwiema ORF również uważane są za regiony nieistotne według wynalazku. W innej realizacji wynalazku, sekwencje egzogenne wstawiane są w naturalnie występujących miejscach delecji genomu MVA (ujawnionych w PCT/EP96/02926 włączonym tytułem referencji).
Orientacja wstawionego DNA nie ma wpływu na funkcjonalność lub stabilność rekombinowanego wirusa według wynalazku.
Ze względu na to, że rekombinowane pokswirusy według wynalazku wykazują ścisłe ograniczenia wzrostu, a zatem, są silnie atenuowane, są one idealne do leczenia szerokiej grupy ssaków, włączając ludzi, nawet ludzi z niedoborem odporności. Zatem, niniejszy wynalazek dotyczy również kompozycji farmaceutycznej, a także szczepionki służącej do indukcji odpowiedzi immunologicznej w żywym organizmie zwierzęcym, włączając ludzi.
Kompozycja farmaceutyczna może ogólnie obejmować jeden lub więcej z farmaceutycznie dopuszczalnych i/lub akceptowanych nośników, dodatków, antybiotyków, utrwalaczy, adiuwantów, rozcieńczalników i/lub stabilizatorów. Tego typu substancje pomocnicze mogą być wodą, roztworem soli fizjologicznej, glicerolem, etanolem, środkami nawilżającymi lub emulsyfikującymi, substancjami buforującymi pH itp. Odpowiednie nośniki są zazwyczaj rozległymi, wolno metabolizowanymi cząsteczkami, takimi jak białka, polisacharydy, kwasy polimlekowe, kwasy poliglikolowe, polimerowe aminokwasy, kopolimery aminokwasowe, agregaty lipidowe itp.
W celu otrzymania kompozycji szczepionek, rekombinowany MVA uzyskiwany jest w fizjologicznie dopuszczalnej postaci. Może być to dokonane w oparciu o doświadczenie w otrzymywaniu szczepionek przeciwko pokswirusom, stosowanych w szczepieniu przeciwko ospie (zgodnie z opisem wg Stickl, H. i wsp. [1974] Dtsch.med.Wschr. 99, 2386-2392). Na przykład, oczyszczony wirus przechowywany jest w -80°C, na poziomie miana 5x10E8 TCID50/ml, otrzymany w około 10 mM Tris, 140 mM NaCl, pH 7.4. W celu uzyskania preparatu szczepionki w zastrzyku, np., 10E2-10E8 cząsteczek rekombinowanego wirusa według wynalazku liofilizowanych jest w roztworze soli fizjologicznej buforowanej fosforanem (PBS), w obecności 2% peptonu i 1% ludzkiej albuminy, w ampułce, korzystnie w szklanej ampułce. Alternatywnie, zastrzyki szczepionki mogą być produkowane poprzez stopniowe suszenie sublimacyjne wirusa w formulacji. Formulacja ta może zawierać substancje dodatkowe, takie jak mannitol, dekstran, cukier, glicynę, laktozę lub poliwinylopirolidon lub inne dodatki, takie jak przeciwutleniacze lub gaz obojętny, stabilizatory lub odpowiednie do podawania in vivo białka rekombinowane (np., albumina surowicy ludzkiej). Następnie, szklana ampułka jest szczelnie zamykana i może być przechowywana w przedziale temperatur od 4°C do temperatury pokojowej przez kilka miesięcy. Jednakże, dopóki nie ma potrzeby jej użycia, przechowywana jest korzystnie w temperaturach poniżej -20°C.
W celu szczepienia lub leczenia, liofilizat może zostać rozpuszczony w 0,1 do 0.5 ml wodnego roztworu, korzystnie roztworu soli fizjologicznej lub buforu Tris i podawany doukładowo lub domiejscowo, tj., pozajelitowo, podskórnie, dożylnie, domięśniowo, przez skaryfikację lub w jakikolwiek inny sposób podawania znany specjalistom w dziedzinie. Droga podawania, dawka i ilość podań może zostać w znany specjalistom w dziedzinie sposób zoptymalizowana. Jednakże, często, pacjent zaszczepiany jest drugim zastrzykiem około miesiąc do sześciu tygodni po pierwszym szczepieniu.
Rekombinowany wirus według wynalazku stosowany jest do wprowadzenia do komórki docelowej egzogennej sekwencji kodującej. Wprowadzenie egzogennej sekwencji kodującej do komórki docelowej może być wykorzystane do produkcji in vitro odpowiednio, białek, polipeptydów, peptydów, antygenów i epitopów. Ponadto, sposób wprowadzenia homologicznej lub heterologicznej sekwencji do komórek może być stosowany zarówno w terapii in vitro, jak i in vivo. W terapii in vitro, izolowane komórki, wcześniej zainfekowane (ex vivo) rekombinowanym pokswirusem według wynalazku, podawane są do żywego organizmu zwierzęcego w celu indukowania odpowiedzi immunologicznej. W terapii in vivo, w celu indukowania odpowiedzi immunologicznej, rekombinowany pokswirus według wynalazku podawany jest bezpośrednio do żywego organizmu zwierzęcego. W tym przypadku, komórki otaczające miejsce zaszczepienia są bezpośrednio infekowane in vivo przez wirus lub rekombinowany wirus według wynalazku. Po infekcji, komórki syntetyzują białka, polipeptydy, peptydy lub antygeny, kodowane przez egzogenne sekwencje kodujące, a następnie prezentują je lub ich część na powierzchni komórkowej.
PL 218 318 B1
Wyspecjalizowane komórki układu immunologicznego rozpoznają prezentowane obce białka, polipeptydy, peptydy, antygeny i epitopy i inicjują swoistą odpowiedź immunologiczną.
Sposoby otrzymywania rekombinowanych pokswirusów lub wprowadzania egzogennych sekwencji kodujących do genomu pokswirusowego są dobrze znane specjalistom w dziedzinie. Ponadto, metody zostały opisane w przykładach, mogą również zostać wywnioskowane lub skompletowane na podstawie następujących pozycji, podanych tytułem referencji;
- Molecular Cloning, A laboratory Manual. Wydanie drugie. Według J. Sambrook, E.F, Fritsch i T. Maniatis. Cold Spring Harbor Laboratory Press. 1989: opisano techniki i wiedzę dotyczącą standardowych technik biologii molekularnej, takich jak klonowanie DNA, izolacja RNA, technika western blotting, techniki amplifikacji RT-PCR i PCR,
- Virology Methods Manual. Według Brian WJ Mahy i Hillar O Kangro. Academic Press. 1996: opisano techniki operowania i manipulowania wirusami;
- Molecular Virology: A Practical Approach. Według AJ DAvison i RM Elliott. The Practical Approach Series. IRL Press at Oxford University Press. Oxford 1993. Rozdział 9: Expression of genes by Vaccinia virus vectors (Ekspresja genów w wektorach wirusa krowianki);
- Current Protocols in Molecular Biology. Wyd.: John Wiley i Son Inc. 1998. Rozdział 16, część IV: Expression of proteins in mammalian cells using Vaccinia viral vector: opisano techniki i wiedzę operowania, manipulowania i inżynierii genetycznej MVA.
W celu otrzymania rekombinowanych pokswirusów według wynalazku mogą być zastosowane różne sposoby:
Sekwencja DNA mająca być wstawiona do wirusa może zostać umieszczona w plazmidzie E.coli, do którego wstawiono DNA homologiczny z fragmentem DNA pokswirusa. W oddzielnym etapie, sekwencja DNA mająca być wstawiona, jest ligowana z promotorem. Takie połączenie promotorgen umieszczane jest w plazmidzie, w taki sposób, że jest ono flankowane z obu stron przez DNA homologiczny z sekwencją DNA flankującą region DNA pokswirusa, zawierający nieistotne locus. Otrzymany plazmid jest amplifikowany przez namnażanie bakterii E.coIi, po czym izolowany. Wyizolowany plazmid zawierający sekwencję genu DNA, który ma być włączony, jest transfekowany do kultury komórkowej, np., fibroblastów embrionu kurcząt (CEF), wraz z pokswirusem. Rekombinacja odpowiednio, między homologicznym DNA pokswirusa w plazmidzie i genomie wirusa pozwala na uzyskanie zmodyfikowanego pokswirusa, zawierającego sekwencje obcego DNA.
Zgodnie z korzystną realizacją, komórki odpowiedniej kultury komórkowej, tak, jak komórki CEF, są infekowane pokswirusem. Zainfekowane komórki są, następnie, transfekowane pierwszym wektorem plazmidowym, zawierającym obcy gen, korzystnie pod kontrolą transkrypcyjną elementu kontroli ekspresji pokswirusa. Jak wyjaśniono wyżej, wektor plazmidowy zawiera również sekwencje zdolne do ukierunkowywania insercji sekwencji egzogennej do wybranej części genomu pokswirusa. Dowolnie, wektor plazmidowy zawiera również kasetę obejmującą gen markerowy i/lub selekcyjny związany operacyjnie z promotorem pokswirusa. Odpowiednimi genami markerowymi lub selekcyjnymi są, np., geny kodujące zielone białko fluorescencyjne, β-galaktozydazę, neomycynę, fosforybozylotransferazę lub inne markery. Użycie kaset selekcyjnych lub markerowych ułatwia identyfikację i izolację otrzymanego rekombinowanego pokswirusa. Jednakże, rekombinowany pokswirus może również być identyfikowany za pomocą techniki PCR. Następnie, kolejne komórki infekowane są rekombinowanym pokswirusem uzyskanym jak opisano wyżej i transfekowane drugim wektorem zawierającym gen, homologiczny z genem zawartym w pierwszym wektorze. W tym przypadku, gen ten będzie włączony w różnych miejscach insercji genomu pokswirusowego. Drugi wektor również posiada różne sekwencje ukierunkowujące integrację genu homologicznego z genomem pokswirusa. Po zajściu rekombinacji homologicznej, możliwe jest wyizolowanie rekombinowanego wirusa zawierającego dwa homologiczne geny. W celu wprowadzenia więcej niż dwóch homologicznych genów do rekombinowanego wirusa, powtarzane są etapy infekcji i transfekcji przy użyciu do infekcji rekombinowanego wirusa wyizolowanego w poprzednich etapach i zastosowanie do transfekcji kolejnego wektora zawierającego inny gen homologiczny.
Alternatywnie, etapy infekcji i transfekcji, jak wyżej opisano są zamienne, tj., odpowiednia komórka może najpierw być transfekowana wektorem plazmidowym zawierającym obcy gen, a potem infekowana pokswirusem.
W kolejnej realizacji możliwe jest również wprowadzenie każdego homologicznego genu do różnego wirusa, jednoczesna infekcja komórki wszystkimi uzyskanymi rekombinowanymi wirusami i analiza skriningowa rekombinowanego produktu, obejmującego wszystkie geny homologiczne.
PL 218 318 B1
Wynalazek związany jest ponadto z zestawem zawierającym dwa lub więcej wektory plazmidowe zdolne do ukierunkowywania insercji ekspresjonowanych, homologicznych genów do genomu pokswirusa. Oprócz odpowiedniego miejsca klonowania tego typu wektory plazmidowe zawierają sekwencje zdolne do ukierunkowywania insercji egzogennej sekwencji do wybranych części genomu pokswirusowego. Dowolnie, takie wektory zawierają kasety genu selekcyjnego lub markerowego. Zestaw obejmuje ponadto środki i instrukcje do przeprowadzenia selekcji wirusów, które uległy rekombinacji pod względem jednego lub kilku genów homologicznych i dowolnie, gen selekcyjny lub markerowy, wstawiony za pomocą wspomnianych wektorów.
Zgodnie z kolejną realizacją, wynalazek obejmuje sekwencje DNA lub ich fragmenty pochodzące lub homologiczne z rekombinowanym pokswirusem według wynalazku. Takie sekwencje obejmują przynajmniej część egzogennej sekwencji zawierającej przynajmniej fragment jednego z homologicznych genów według wynalazku i przynajmniej fragment genomowej sekwencji pokswirusa według wynalazku, przy czym wspomniane sekwencje genomowe pokswirusa korzystnie flankują sekwencję egzogenną.
Tego typu sekwencje DNA mogą być zastosowane do identyfikowania lub izolowania wirusa lub jego pochodnych, np., poprzez wykorzystanie ich do otrzymywania starterów PCR, sond hybrydyzacyjnych lub w innych technikach szeregujących.
Krótki opis figur
Figura 1: Schematyczny obraz miejsc insercji dla czterech genów PrM (=przedbłonowe) (serotyp 1-4) w genomie MVA według Przykładu I.
Figura 2-9 i 12-17: Opis plazmidowego wektora insercji, wskazano nazwę wektora, jego wielkość i położenie istotnych sekwencji, takich jak;
AmpR = gen oporności na ampicylinę, bfp = gen niebieskiego białka fluorescencyjnego, dA = delecja A, dE = delecja E, d2 = delecja 2, Ecogpt = gen guanozynofosforybozylotransferazy z E.coli, EGFP = gen wzmocnionego zielonego białka fluorescencyjnego, F1 = sekwencja flankująca 1, F2 = sekwencja flankująca 2, I4L = obszar międzygenowy I4L, IGR = obszar międzygenowy, NPT II = gen oporności na neomycynę, P = promotor pokswirusa, pr7.5 = promotor 7.5 krowianki, PrM = gen białka przedbłonowego wirusa Dengue, numer wskazuje, z którego z czterech serotypów pochodzi, rpt = powtórzenie sekwencji flankującej.
Figura 10: Ocena przebiegu klonowania czterech różnych wektorów insercji (pBN49, pBN50, pBN50, pBN40, pBN39) za pomocą PCR. Każdy z plazmidów testowano stosując 4 różne kombinacje starterów (primerów) PCR. Każda kombinacja jest specyficzna dla jednej odrębnej sekwencji PrM włączonej w jednym, odrębnym miejscu insercji.
Figura 11: Weryfikacja techniką PCR rekombinowanych pokswirusów zawierających cztery homologiczne geny PrM wirusa Dengue (Przykład 1). W górnej części żelu widoczne są zróżnicowane wyniki PCR dla rekombinowanego wirusa, natomiast w dolnej części przedstawiono wyniki tych samych reakcji PCR dla plazmidów kontrolnych. Plazmidy zawierające sekwencje homologiczne nazwano pBN39, pBN49 lub pBN50. PrM oznacza wstawione geny białka przedbłonowego z wirusa Dengue, przy czym numery wskazują na jeden z czterech serotypów, z którego pochodzą. dA = delecja A, dE = delecja E, d2 = delecja 2, I4L = obszar międzygenowy I4L określa miejsce insercji egzogennego DNA.
Figura 18: Schematyczny obraz miejsc insercji trzech genów PrM (serotyp 2-4) w genomie MVA według Przykładu 2.
Figura 19; Weryfikacja techniką PCR rekombinowanych pokswirusów zawierających trzy homologiczne geny PrM wirusa Dengue wstawione w obszarach międzygenowych (Przykład 2). W górnej części widoczne są wyniki reakcji PCR specyficznych dla PrM2, na środku przedstawiono wyniki reakcji PCR specyficznej dla PrM3, a na dole wyniki reakcji PCR specyficznych dla PrM4. Obraz na ścieżce 8 odpowiada tym samym reakcjom PCR, przeprowadzonym na plazmidach kontrolnych. Ścieżka 2 odpowiada pustemu wektorowi kontrolnemu MVA. PrM oznacza wstawione geny białka przedbłonowego z wirusa Dengue, przy czym numery wskazują na jeden z czterech serotypów, z którego pochodzą. M = wagowy marker cząsteczkowy.
Poniższe przykłady obrazują niniejszy wynalazek. Dla specjalistów w dziedzinie pozostaje jasne, że opisane poniżej przykłady w żaden sposób nie mogą być rozumiane jako ograniczające zastosowanie technologii według niniejszego wynalazku.
P r z y k ł a d 1
Wektory insercji
Wektor insercji dla delecji A
PL 218 318 B1
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w tak zwanym miejscu, odpowiednio delecji A lub delecji 1, odpowiadającym pozycji 7608-7609 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących sąsiadujących z miejscem delecji A. Do wyizolowania sekwencji flankujących z genomowego DNA MVA-BN, zaprojektowano, stosując program komputerowy (DNAsis, Hitashi software engeneering, San Bruno, USA), odpowiednie startery PCR. Startery te obejmują miejsca enzymów restrykcyjnych, wykorzystane do klonowania sekwencji flankujących w wektorze plazmidowym. Pomiędzy takimi sekwencjami flankującymi wprowadzano kasetę genu selekcji, np., genu NPT II (oporności na neomycynę) pod kontrolą transkrypcyjną promotora wirusa ospy (pokswirusa). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji egzogennych, wstawianych w miejscu delecji A. Jeden tego typu wektor według wynalazku ujawniono na Fig. 2 (pBNX10).
Wektor insercji dla delecji E
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w tak zwanym miejscu, odpowiednio delecji E lub delecji 4, odpowiadającym pozycji 170480-170481 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących, sąsiadujących z miejscem delecji E. Wektor zaprojektowano i otrzymano zgodnie z powyższym opisem. Pomiędzy sekwencjami flankującymi umieszczano gen EGFP (zielone białko fluorescencyjne, Clonetech) pod kontrolą transkrypcyjną promotora wirusa ospy (pokswirusa). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji, wstawianych w miejscu delecji A. Jeden tego typu wektor według wynalazku ujawniono na Fig. 3 (pBNX32).
Wektor insercji dla delecji 2
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w tak zwanym miejscu delecji 2, odpowiadającym pozycji 20718-20719 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących, sąsiadujących z miejscem delecji 2. Wektor zaprojektowano i otrzymano zgodnie z powyższym opisem. Pomiędzy sekwencjami flankującymi umieszczono gen hbfp (humanizowane niebieskie białko fluorescencyjne, Pavalkis GN i wsp.) pod kontrolą transkrypcyjną promotora wirusa ospy (pokswirusa). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji, wstawianych w miejscu delecji 2. Jeden tego typu wektor według wynalazku ujawniono na Fig. 4 (pBNX36).
Wektor insercji dla międzygenowego obszaru, I4L
W celu uzyskania insercji egzogennych sekwencji w obszarze międzygenowym, między ORF I3L a I4L, odpowiadającym pozycji 56760 genomu, przygotowano wektor zawierający około 600 pz sekwencji flankujących, sąsiadujących z obszarem międzygenowym w locus I4L. Wektor zaprojektowano i otrzymano zgodnie z powyższym opisem. Pomiędzy sekwencjami flankującymi wprowadzano gen Ecogpt (lub gpt oznacza gen fosforybozylotransferazy wyizolowany z E.coli) pod kontrolą transkrypcyjną promotora pokswirusa. Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji, wstawianych w obszarze międzygenowym, w położeniu po I4L ORF. Jeden tego typu wektor według wynalazku ujawniono na Fig. 5 (pBNX39).
Otrzymywanie rekombinowanego pokswirusa zawierającego w swoim genomie kilka zintegrowanych genów homologicznych
Wektory insercji
Do wstawienia czterech genów PrM czterech serotypów wirusa Dengue w genomie MVA zastosowano cztery niezależne wektory rekombinacyjne.
Wektory te zawierają - jak opisano szczegółowo wyżej - sekwencje homologiczne z genomem MVA służące do ukierunkowywania insercji drogą rekombinacji homologicznej. Ponadto, każdy wektor zawiera kasetę genu selekcji lub reporterowego.
Sekwencje PrM czterech serotypów wirusa Dengue otrzymywano syntetycznie poprzez przyłączenie oligonukleotydów i powielenie techniką PCR. Otrzymano kasetę ekspresyjną klonując sekwencje PrM elementów promotorowych pokswirusa. Taka kaseta ekspresyjna była, następnie, klonowana w miejscu klonowania odpowiedniego wektora insercji.
W wyniku uzyskano wektor insercji dla delecji A, zawierający gen PrM serotypu 2 wirusa Dengue (Figura 6 - pBN39). Wektor insercji dla delecji 2 zawierał gen PrM serotypu 1 wirusa Dengue (Figura 7 - pBN49). Wektor insercji dla regionu międzygenowego I4L zawierał gen PrM serotypu 3 wirusa Dengue (Figura 8 - pBN50).
Wektor insercji dla delecji E zawierał gen PrM serotypu 4 wirusa Dengue (Figura 9 - pBN40).
Weryfikacja techniką PCR otrzymanych wektorów insercji
PL 218 318 B1
W celu potwierdzenia wyników klonowania przeprowadzono analizę produktów PCR. W technice PCR wykorzystano wybrane pary starterów będące kombinacją startera specyficznie wiążącego się ze specyficzną sekwencją flankującą, odpowiednią dla danego miejsca insercji i startera wybiórczo wiążącego się z jednym z wysoko homologicznych genów PrM wirusa Dengue.
Wektor insercji dla delecji A zawierający gen PrM z serotypu 2 wirusa Dengue analizowany był przy użyciu starterów oBN93 (CGCGGATCCATGCTGAACATCTTGAACAGGAGACGCAGA. SEQ ID NO: 1) i OBN477 (CATGATAAGAGATTGTATCAG. SEQ ID NO,; 2).
Wektor insercji dla delecji 2 zawierający gen PrM z serotypu 1 wirusa Dengue analizowany był przy użyciu starterów oBN194 (ATGTTGAACATAATGAACAGGAGGAAAAGATCTGTGACCATGCTCCTCATGCTGCTGCCC ACAGCCCTGGCGTTCCATCT. SEQ ID NO.; 3) oraz oBN476 (GATTTTGCTATTCAGTGGATGGATG. SEQ ID NO.; 4),
Wektor insercji dla obszaru międzygenowego I4L zawierający gen PrM z serotypu 3 wirusa Dengue analizowany był przy użyciu starterów oBN255 (CCTTAATCGAATTCTCATGTCATGGATGGGGTAACCAGCATTAATAGT. SEQ ID NO.; 5) oraz oBN479 (GCTCCCATTCAATTCACATTGG. SEQ ID NO.; 6).
Wektor insercji dla delecji E zawierający gen PrM z serotypu 4 wirusa Dengue analizowany był przy użyciu starterów oBN210 (ATCCCATTCCTGAATGTGGTGTTAAAGCTACTGAGCGCTTCTCTCGTCTCCGTTCTCCGC TCTGGGTGCATGTCCCATAC. SEQ ID NO.; 7) oraz oBN478 (GTACATGGATGATATAGATATG SEQ ID NO.; 8).
Eksperymenty PCR przeprowadzono w aparacie Thermal cycler GeneAmp 9700 (Perkin Elmer) stosując zestaw polimerazy DNA Taq, zawierający 10x bufor PCR, bufor MgCb oraz polimerazę DNA Taq (Roche, nr kat. 201205) lub jej ekwiwalent.
Ogólnie, reakcje PCR prowadzono w całkowitej objętości reakcji 50 μ|, zawierającej 45 μΐ mieszaniny mastermix, próbkę DNA i w razie potrzeby, ddH2O. Mieszanina mastermix powinna być otrzymana z 30.75 μ| ddH2O, 5 μ| 10xbufor, 1 μ| mieszaniny dNTP (10 mM każdy), 2.5 μ| każdego ze starterów (5 pmol/μΙ), 3 μΙ MgCly(25 mM) oraz 0.25 μΙ polimerazy Taq (5 U/μΙ).
Amp|ifikacja przebiegała według następującego programu:
| 1) denaturacja; | 4 min 94°C | |
| 2) 30 cykli | ||
| Denaturacja: | 30 s | 94°C |
| Asocjacja: | 30 s | 55°C |
| Elongacja: | 1-3 min | 72°C |
| 3) Elongacja | 7 min | 72°C |
4) Zatrzymanie i pozostawienie w 4°C
W zależności od wielkości wstawianego genu, czas elongacji powinien wynosić przyn aj mniej 1 min/kz.
Na podstawie wyników PCR przedstawionych na Fig. 10 wykazano specyficzność poszczególnych kombinacji starterów względem pojedynczego miejsca insercji.
Łączne zastosowanie startera oBN194/oBN476 jest specyficzne dla delecji 2 i wstawienia PrM1. Oczekiwany fragment PCR plazmidu pBN49 posiada długość 678 pz (przedstawiono na ścieżce 3, górna część żelu).
Łączne zastosowanie startera oBN255/oBN479 jest specyficzne dla międzygenowego obszaru I4L i wstawienia PrM3. Oczekiwany fragment PCR plazmidu pBN50 posiada długość 825 pz (przedstawiono na ścieżce 9, górna część żelu).
Łączne zastosowanie startera oBN210/oBN478 jest specyficzne dla delecji E i wstawienia PrM4. Oczekiwany fragment PCR plazmidu pBN40 posiada długość 607 pz (przedstawiono na ścieżce 5, dolna część żelu).
Łączne zastosowanie startera oBN93/oBN477 jest specyficzne dla delecji A i wstawienia PrM2. Oczekiwany fragment PCR plazmidu pBN39 posiada długość 636 pz (przedstawiono na ścieżce 11, dolna część żelu).
Otrzymanie rekombinowanego MVA drogą rekombinacji homologicznej
W celu uzyskania ekspresji obcych genów w rekombinowanym MVA, geny te wstawiane były do genomu wirusowego dzięki procesowi zwanemu rekombinacją homologiczną. W związku z powyż14
PL 218 318 B1 szym, pożądane, obce geny klonowano zgodnie z powyższym opisem do wektora insercji. Wektor ten musiał być użyty do transfekcji po infekcji komórek wirusem MVA-BN. Rekombinacja będzie przebiegać w cytoplazmie zainfekowanych i transfekowanych komórek. Dzięki wykorzystaniu kasety genu selekcji/reporterowego, również zawartej w wektorze insercji, możliwe jest zidentyfikowanie i wyizolowanie komórek zawierających rekombinowane wirusy. Rekombinacja homologiczna w celu uzyskania rekombinacji homologicznej, komórki BHK (nerki młodego chomika) lub komórki CEF (pierwotne fibroblasty embrionu kurcząt) zaszczepiano na 6 studzienkowych płytkach stosując DMEM (podłoże Dulbecco's Modified Eagles Medium, Gibco BRL) + 10% płodową surowicę cielęcą (FCS) lub VP-SFM (Gibco BRL) + 4 mmol/1 L-glutaminy w przypadku procesu bez dodatku surowicy.
Konieczne by komórki znajdowały się w fazie wzrostu, a zatem, w dniu transfekcji powinny osiągnąć konfluencję 60-80%. Komórki zliczano przed zaszczepieniem, ponieważ do określenia poziomu multiplikacji infekcji (moi) musi być znana ich ilość.
Do infekcji zastosowano roztwór wyjściowy MVA, rozcieńczony w DMEM/FCS lub VP-SFM/Lglutaminie, tak by 500 μΐ rozcieńczenia zawierało odpowiednią ilość wirusa, pozwalającego na uzyskanie moi na poziomie 0.01. Komórki zbierano, po czym ponownie rozdzielano po zaszczepieniu. Usuwano podłoże a komórki infekowano 500 μΐ rozcieńczonego wirusa, mieszając przez godzinę w temperaturze pokojowej. Usuwano inokulum i przemywano komórki DMEM/VP-SFM. Zainfekowane komórki pozostawiano w 1.6 ml odpowiednio, DMEM/FCS i VP-SFM/L-glutaminy i prowadzono reakcję transfekcji (Qiagen Effectene Kit).
Do transfekcji zastosowano zestaw transfekcyjny „Effectene” (Qiagen). Mieszaninę transfekcyjną otrzymywano dodając 1-5 μg zlinearyzowanego wektora insercji (całkowita ilość dla wielokrotnej transfekcji) do buforu EC, osiągając objętość końcową 150 pi. Następnie dodano 8.0 μl enhancera (wzmacniacza) na pg DNA, wstrząśnięto i inkubowano w temperaturze pokojowej przez 5 minut. W kolejnym etapie, po wstrząśnięciu roztworu, dodano 25 μΐ Effectene na pg DNA, gruntownie mieszano wytrząsając i inkubowano w temperaturze pokojowej przez 10 min. Dodano 600 μΐ odpowiednio, DMEM/FCS i VP-SFM/L-glutaminy, wymieszano, a następnie całkowitą mieszaninę transfekcyjną dodawano do komórek, już pokrytych podłożem. W celu wymieszania reakcji transfekcji delikatnie poruszano płytkami. Całonocna inkubacja przebiegała w 37°C, w atmosferze 5% CO2. Następnego dnia podłoże usuwano i zastępowano świeżym roztworem DMEM/FCS lub VP-SFM/L-glutaminy. Inkubację kontynuowano do 3 dnia.
Komórki gromadzono zeskrobując do podłoża, zawiesinę komórkową przenoszono do odpowiednich probówek i zamrażano w -20°C w przypadku krótkotrwałego przechowywania lub w -80°C, dla długotrwałego przechowywania.
Wstawienie PrM4 do MVA
W pierwszym etapie, komórki infekowano MVA-BN według wyżej opisanego protokołu, i dodatkowo transfekowano wektorem insercji pBN40, zawierającym gen PrM z serotypu 4 wirusa Dengue oraz gen EGFP, jako gen reporterowy. Ze względu na to, że transfekowany wektor zawiera gen reporterowy, EGFP, zsyntetyzowane białko jest możliwe do wykrycia w komórkach najpóźniej trzeciego dnia po infekcji rekombinowanym wirusem. Tak uzyskane rekombinowane wirusy oczyszczano stosując oczyszczanie na płytkach, metodą „łysinek”.
W celu oczyszczenia na płytkach zainfekowanych komórek (fluorescencyjnych lub zabarwionych) są one izolowane i przenoszone końcówką pipety do podłoża, zawieszane i zasysane w 200 μΐ PBS lub podłoża. Następnie nowa płytka hodowlana zawierająca około 10E6 komórek jest infekowana 100 μΙ zawieszonych komórek. Po 48 godz. komórki są przenoszone do 300 μΐ PBS. Z zawiesiny ekstrahowany jest DNA i analizowany techniką PCR. Wybierany jest klon wykazujący oczekiwany prążek i nowe, 6 studzienkowe płytki są infekowane różnymi ilościami tego wirusa. Pokrycie studzienek 1% agarozą zapobiega dalszemu rozprzestrzenianiu się wirusa. Po 48 godz. izolowane są zainfekowane i zawierające rekombinowany wirus komórki.
Procedura ta powtarzana jest aż do momentu zaniknięcia dzikiego typu MVA-BN, czyli gdy jest on niemożliwy do wykrycia techniką PCR.
Po czterech cyklach oczyszczania na płytkach rekombinowanych wirusów, identyfikowano MVA-PrM4 przy użyciu techniki PCR i zastosowaniu pary starterów powod ujących wybiórczą amplifikację oczekiwanego miejsca insercji (jak opisano wyżej, oBN210 oraz oBN478) oraz jako kontrolę, parę starterów specyficznie rozpoznającą jako miejsce insercji delecję E (oBN453; GTTGAAGGATTCACTTCCGTGGA, SEQ ED NO.: 9 i oBN454 GCATTCACAGATTCTATTGTGAGTC, SEQ ID NO : 10).
PL 218 318 B1
Wstawienie PrM2 do MVA-PrM4
Komórki infekowano MVA-PrM4 według wyżej opisanego protokołu, i dodatkowo transfekowano wektorem insercji pBN39, zawierającym gen PrM z serotypu 2 wirusa Dengue oraz gen NPT II, gen oporności na neomycynę , jako gen selekcyjny. W celu oczyszczenia rekombinowanego MVA, ekspresjonującego gen oporności na antybiotyk, polecane jest przed oczyszczeniem na płytkach metodą „łysinek”, przeprowadzenie trzech cykli amplifikacji wirusa w warunkach selekcji. Selekcję pod kątem aktywności neomycynofosfotransferazy umożliwia dodanie do podłoża G418. G418 jest pochodną neomycyny i inhibituje biosyntezę białek poprzez zakłócenie aktywności rybosomów. Aktywność genu NPT eliminuje działanie G418 poprzez reakcję fosforylacji.
Po 16 cyklach oczyszczania na płytkach w warunkach selekcji neomycyną, rekombinowane wirusy, MVA-PrM4/PrM2, identyfikowano przy użyciu techniki PCR, przy zastosowaniu pary starterów powodujących wybiórczą amplifikację oczekiwanego miejsca insercji (jak opisano wyżej, oBN93 oraz oBN477) oraz jako kontrolę, parę starterów specyficznie rozpoznającą jako miejsce insercji delecję A (jak opisano wyżej, OBN477) oraz oBN452: GTTTCATCAGAAATGACTCCATGAAA, SEQ ID.NO.: 11). Ponadto, weryfikowano również insercję PrM4 w miejscu delecji E, stosując pary starterów: oBN210-oBN478 oraz oBN453 - oBN454.
Wstawienie PrM1 do MVA
W pierwszym etapie, komórki infekowano MVA-BN według wyżej opisanego protokołu, i dodatkowo transfekowano wektorem insercji pBN49, zawierającym gen PrM z serotypu 1 wirusa Dengue oraz gen humanizowanego białka niebieskiej fluorescencji hbfp, jako gen reporterowy. Zsyntetyzowane białko hbfp jest możliwe do wykrycia w komórkach najpóźniej trzeciego dnia po infekcji rekombinowanym wirusem. Tak uzyskane rekombinowane wirusy oczyszczano stosując oczyszczanie na płytkach, metodą „łysinek”.
Po 10 cyklach oczyszczania na płytkach, rekombinowane wirusy, MVA-PrM1, identyfikowano przy użyciu techniki PCR, przy zastosowaniu pary starterów powodujących wybiórczą amplifikację oczekiwanego miejsca insercji (jak opisano wyżej, oBN194 oraz oBN476) oraz jako kontrolę, parę starterów specyficznie rozpoznającą jako miejsce insercji delecję 2 (oBN54: CGGGGTACCCGACGAACAAGGAACTGTAGCAGAGGCATC, SEQ ID NO.: 12 oraz OBN56: AACTGCAGTTGTTCGTATGTCATAAATTCTTTAATTAT, SEQ ID NO.: 13).
Wstawienie PrM3 do MVA
W pierwszym etapie, komórki infekowano MVA-BN według opisanego wyżej protokołu, i dodatkowo transfekowano wektorem insercji pBN50, zawierającym gen PrM z serotypu 3 wirusa Dengue oraz gen Ecogptp (Ecogptp lub w skrócie gpt oznacza gen fosforybozylotransferazy), jako gen reporterowy. Tak uzyskane rekombinowane wirusy oczyszczano stosując 3 cykle oczyszczania na płytkach, metodą „łysinek” w warunkach selekcji metabolizmu fosforybozylotransferazy przez dodanie kwasu mykofenolowego, ksantyny i hipoksantyny. Kwas mykofenolowy (MPA) inhibituje dehydrogenazę monofosforanu inozyny i powoduje blokadę syntezy puryn i inhibicję replikacji wirusa w większości linii komórkowych. Ta blokada może być ominięta poprzez ekspresję Ecogpt z konstytutywnego promotora i dostarczenie substratów ksantyny i hipoksantyny.
Uzyskane rekombinowane wirusy, MVA-PrM3, identyfikowano przy użyciu techniki PCR, przy zastosowaniu pary starterów powodujących wybiórczą amplifikację oczekiwanego miejsca insercji (jak opisano wyżej, oBN255 oraz oBN479) oraz jako kontrolę, parę starterów specyficznie rozpoznającą jako miejsce insercji I4L (oBN499: CAACTCTCTTCTTGATTACC, SEQ ID NO.: 14 oraz oBN500: CGATCAAAGTCAATCTATG; SEQID NO.: 15).
Jednoczesna infekcja MVA-PrM1 oraz MVA-PrM3
Komórki infekowano równą ilością MVA-PrM1 oraz MVA-PrM3 zgodnie z powyższym protokołem. Po 3 cyklach oczyszczania niebiesko fluoryzujących klonów na płytkach w warunkach selekcji metabolizmu fosforybozylotransferazy, rekombinowane wirusy analizowano techniką PCR stosując pary starterów (jak opisano wyżej. oBN255 i OBN479. OBN499 i oBN500. oBN194 i oBN476. oBN54 i oBN56). Uzyskane rekombinowane wirusy nazwano MVA-Pr1/PrM3,
Jednoczesna infekcja MVA-PrM1/PrM3 oraz MVA-PrM2/PrM4
Komórki infekowano zgodnie z powyższym protokołem równą ilością MVA-PrM1/PrM3 oraz
MVA-PrM2/PrM4. Wykonano oczyszczenie na płytkach w warunkach selekcji metabolizmu fosforybozylotransferazy i neomycyny. Rekombinowane wirusy indukujące zieloną i niebieską fluorescencję izolowano i analizowano techniką PCR stosując pary starterów (jak opisano wyżej: oBN255 i oBN479.
PL 218 318 B1 oBN499 i oBN500. oBN194 i oBN476, oBN54 i oBN56. oBN93 i oBN477. oBN477 i oBN452. oBN210 i oBN478. oBN453 i oBN454).
Wyniki analizy PCR rekombinowanego wirusa (klon 20) zawierającego wszystkie cztery geny PrM przedstawiono na Figurze 11. W górnej części żelu uwidoczniono różne wyniki PCR dla rekombinowanego wirusa, w niższej części żelu zamieszczono wyniki tych samych reakcji PCR dla kontrolnych plazmidów (jak wskazano). Ścieżka 1, 10 i 11 zawiera 1 kz i 100pz marker molekularny.
Łączne zastosowanie startera oBN210/oBN478 jest specyficzne dla delecji E i insercji PrM4. Oczekiwany fragment PCR rekombinowanego wirusa i plazmidu pBN40 posiada długość 607 pz (przedstawiono na ścieżce 2).
Łączne zastosowanie startera oBN453/oBN454 jest specyficzne dla delecji E.
Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 2.7 kz, oczekiwany prążek dla dzikiego typu wirusa wynosi 2.3 kz (przedstawiono na ścieżce 3). Możliwe jest również zidentyfikowanie w górnej części żelu prążka specyficznego dla dzikiego typu wirusa. Oznacza to, że preparat rekombinowanego wirusa nie jest jeszcze całkowicie oczyszczony z dzikiego typu wirusa. Konieczne jest w tym wypadku dalsze oczyszczanie na płytkach metodą „łysinek”.
Łączne zastosowanie startera oBN93/oBN477 jest specyficzne dla delecji A i insercji PrM2. Oczekiwany fragment PCR rekombinowanego wirusa i plazmidu pBN39 posiada długość 636 pz (przedstawiono na ścieżce 4).
Łączne zastosowanie startera oBN477/oBN452 jest specyficzne dla delecji A. Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 4.1 kz, oczekiwany prążek dla dzikiego typu wirusa wynosi 2.7 kz (przedstawiono na ścieżce 5). Możliwe jest również zidentyfikowanie w górnej części żelu prążka specyficznego dla dzikiego typu wirusa.
Łączne zastosowanie startera oBN255/oBN479 jest specyficzne dla międzygenowego obszaru I4L i insercji PrM3. Oczekiwany fragment PCR rekombinowanego wirusa i plazmidu pBN50 posiada długość 825 pz (przedstawiono na ścieżce 6).
Łączne zastosowanie startera oBN499/oBN500 jest specyficzne dla międzygenowego obszaru I4L. Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 1.0 kz, oczekiwany prążek dla dzikiego typu wirusa wynosi 0.3 kz (przedstawiono na ścieżce 7).
Łączne zastosowanie startera oBN194/oBN476 jest specyficzne dla delecji 2 i insercji PrM1. Oczekiwany fragment PCR rekombinowanego wirusa i plazmidu pBN49 posiada długość 678 pz (przedstawiono na ścieżce 8).
Łączne zastosowanie startera oBN54/oBN56 jest specyficzne dla delecji 2. Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 1.6 kz, oczekiwany prążek dla dzikiego typu wirusa wynosi 0.9 kz (przedstawiono na ścieżce 9). Możliwe jest również zidentyfikowanie w górnej części żelu prążka specyficznego dla dzikiego typu wirusa.
Alternatywnie, możliwe jest otrzymanie 4 różnych wirusów, jednoczesna infekcja komórek wszystkimi czterema wirusami i selekcja rekombinowanych wirusów.
Realizacja może być polepszona również przez zastosowanie rekombinowanych wektorów zawierających dodatkowe markery selekcyjne lub odpornościowe.
P r z y k ł a d 2
Wektory insercji
Wektor rekombinacji dla międzygenowego obszaru 136-137 (IGR 136-137)
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w tak zwanym obszarze międzygenowym (IGR) 136-137 odpowiadającym pozycji 129.940 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących sąsiadujących z miejscem insercji. Do wyizolowania sekwencji flankujących z genomowego DNA z MVA-BN zaprojektowano odpowiednie startery PCR. Startery te obejmują miejsca enzymów restrykcyjnych, wykorzystane do klonowania sekwencji flankujących w wektorze plazmidowym. Pomiędzy takimi sekwencjami flankującymi wprowadzano kasetę genu selekcji, np., genu NPT II (oporności na neomycynę) pod kontrolą transkrypcyjną promotora wirusa ospy (pokswirusa) (P). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji egzogennych, wstawianych do IGR 136-137 (PacI). Jeden tego typu wektor według wynalazku ujawniono na Fig. 12 (pBNX67).
Wektor rekombinacji dla międzygenowego obszaru 07-08 (IGR 07-08)
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w obszarze międzygenowym (IGR) 07-08 odpowiadającym pozycji 12.800 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących sąsiadujących z miejscem insercji. Do wyizolowania
PL 218 318 B1 sekwencji flankujących z genomowego DNA z MVA-BN zaprojektowano odpowiednie startery PCR. Startery te obejmują miejsca enzymów restrykcyjnych, wykorzystane do klonowania sekwencji flankujących w wektorze plazmidowym. Pomiędzy takimi sekwencjami flankującymi wprowadzano kasetę genu selekcji, np., genu Ecogpt (guaninofosforybozylotransferaza) pod kontrolą transkrypcyjną promotora wirusa ospy (P). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji egzogennych, wstawianych do IGR 07-08 (Pacl). Jeden tego typu wektor według wynalazku ujawniono na Fig. 13 (pBNX88).
Wektor rekombinacji dla między genowego obszaru 44-45 (IGR 44-45)
W celu uzyskania insercji egzogennych sekwencji do genomu MVA w obszarze międzygenowym (IGR) 44-45 odpowiadającym pozycji 37.330 genomu, przygotowano wektor plazmidowy zawierający około 600 pz sekwencji flankujących sąsiadujących z miejscem insercji. Do wyizolowania sekwencji flankujących z genomowego DNA z MVA-BN zaprojektowano odpowiednie startery PCR. Startery te obejmują miejsca enzymów restrykcyjnych, wykorzystane do klonowania sekwencji flankujących w wektorze plazmidowym. Pomiędzy takimi sekwencjami flankującymi wprowadzano kasetę genu selekcji, np., genu NPT II (oporności na neomycynę) pod kontrolą transkrypcyjną promotora wirusa ospy (P). Ponadto, istnieje miejsce klonowania dla insercji dodatkowych genów lub sekwencji egzogennych, wstawianych do IGR 44-45 (Pad). Jeden tego typu wektor według wynalazku ujawniono na Fig. 14 (pBNX87).
Otrzymywanie rekombinowanych pokswirusów zawierających kilka homologicznych genów zintegrowanych w ich genomie
Wektory insercji
W celu uzyskania insercji trzech genów PrM serotypu 2, 3 i 4 wirusa Dengue w genomie MVA, zastosowano trzy niezależne wektory rekombinacyjne.
Wektory te zawierają - jak opisano szczegółowo wyżej - sekwencje homologiczne z genomem MVA, do ukierunkowywania insercji drogą rekombinacji homologicznej. Ponadto, każdy wektor zawiera kasetę genu selekcji i reporterowego. Sekwencje PrM trzech serotypów wirusa Dengue otrzymano syntetycznie, zgodnie z opisem w Przykładzie 1.
W wyniku uzyskano wektor insercyjny dla IGR136-137, zawierający PrM serotypu 4 wirusa Dengue (Fig. 15 - pBN27). Wektor insercyjny dla IGR 07-08 zawierał PrM serotypu 2 wirusa Dengue (Fig. 16 - pBN34) a wektor insercyjny dla IGR 44-45 zawierał PrM serotypu 3 wirusa Dengue (Fig. 17 pBN47).
Otrzymywanie rekombinowanego MVA drogą rekombinacji homologicznej
Otrzymywanie rekombinowanego MVA drogą rekombinacji homologicznej przebiegało zgodnie z opisem w Przykładzie 1. Miejsca insercji dla PrM4, PrM3 i PrM2 w genomie MVA wskazano na Fig. 18.
Insercja PrM 4 do MVA
W pierwszym etapie, komórki infekowano MVA-BN zgodnie z opisanym wyżej protokołem i transfekowano dodatkowo wektorem insercji pBN27 zawierającym gen PrM serotypu 4 wirusa Dengue i gen EGFP jako gen reporterowy. Ze względu na to, że transfekowany wektor zawiera gen reporterowy, EGFP, zsyntetyzowane białko jest wykrywalne najpóźniej trzeciego dnia w zainfekowanych rekombinowanym wirusem komórkach. Otrzymane w ten sposób rekombinowane wirusy muszą być oczyszczone jak opisano w Przykładzie 1, metodą „łysinek” oczyszczania na płytkach. Po czterech cyklach oczyszczania na płytkach rekombinowanych wirusów, identyfikowano obecność MVA- PrM4, stosując technikę PCR i parę starterów wybiórczo powielających miejsce insercji IGR136-137 (oBN1008: gataccgatcacgttcta. SEQ ID NO.: 16; oraz oBN1009 ggatatgattatgtagag. SEQID NO.: 17).
Insercja PrM 2 do MVA
Komórki infekowano MVA-PrM4 zgodnie z opisanym wyżej protokołem i transfekowano dodatkowo wektorem insercji pBN34 zawierającym gen PrM serotypu 2 wirusa Dengue i gen BFP jako gen reporterowy. Ze względu na to, że transfekowany wektor zawiera gen reporterowy, BFP, zsyntetyzowane białko jest wykrywalne najpóźniej trzeciego dnia w zainfekowanych rekombinowanym wirusem komórkach. Otrzymane w ten sposób rekombinowane wirusy muszą być oczyszczon e jak opisano w Przykładzie 1, metodą „łysinek” oczyszczania na płytkach. Po sześciu cyklach oczyszczania na płytkach rekombinowanego wirusa MVA-PrM4+PrM2, był on pasażowany i amplifikowany, po czym otrzymywano wyjściowy roztwór wirusa. Rekombinowany wirus identyfikowano stosując technikę PCR i parę starterów wybiórczo powielających miejsce insercji IGR07- 08 (oBN 903; ctggataaatacgaggacgtg. SEQ ID NO.: 18; oraz oBN 904: gacaattatccgacgcaccg; SEQID NO.: 19).
PL 218 318 B1
Insercja PrM 3 do MVA
Komórki infekowano MVA-PrM2+4 zgodnie z opisanym wyżej protokołem i transfekowano dodatkowo wektorem insercji pBN47 zawierającym gen PrM serotypu 3 wirusa Dengue i gen EGFP jako gen reporterowy. Ze względu na to, że transferowany wektor zawiera gen reporterowy, EGFP, zsyntetyzowane białko jest wykrywalne najpóźniej trzeciego dnia w zainfekowanych rekombinowanym wirusem komórkach. Otrzymane w ten sposób rekombinowane wirusy muszą być oczyszczone jak opisano w Przykładzie 1, metodą „łysinek” oczyszczania na płytkach, Po trzech cyklach oczyszczania na płytkach rekombinowanych wirusów, identyfikowano obecność MVA-PrM4+3+2, stosując technikę PCR i parę starterów wybiórczo powielających miejsce insercji IGR44- 45 (oBN904: cgttagacaacacaccgacgatgg. SEQ ID NO.: 20; oraz oBN905 cggatgaaaaatttttggaag. SEQ ED NO.: 21).
Wyniki analizy PCR rekombinowanego wirusa zawierającego trzy geny PrM wirusa Dengue przedstawiono na Fig. 19. Eksperymenty PCR zostały przedstawione i opisane w Przykładzie 1. Zastosowanie razem startera oBN1008 i oBN1009 jest specyficzne dla IGR 136-137, który zawiera insercję PrM4 (Fig. 19, umieszczone na dole strony zdjęcie żelu). Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 1kz (przedstawiono na ścieżce 4, 5 i 6) w przypadku kontroli pozytywnej plazmidowej (ścieżka 8). Dla pustego wektora kontrolnego, pozbawionego PrM 4, oczekiwany fragment jest długości 190 pz (ścieżka 2). Na ścieżce M zobrazowano molekularny marker wagowy, natomiast ścieżki 1, 3 i 7 pozostały puste. Łączne zastosowanie starterów oBN902 i oBN903 jest specyficzne dla IGR07-08, zawierającego insercję PrM2 (Fig. 19, górny obraz żelu). Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 960 pz (przedstawiono na ścieżce 4-6), przy pozytywnej kontroli plazmidowej (ścieżka 8). Dla pustego wektora kontrolnego, pozbawionego PrM 2, oczekiwany fragment jest długości 190 pz (ścieżka 2). Kombinacja startera oBN904 i oBN905 jest specyficzna dla IGR44-45, zawierającego insercję PrM3 (Fig. 19, zdjęcie środkowe). Oczekiwany fragment PCR rekombinowanego wirusa posiada długość 932pz (przedstawiono na ścieżce 4-6) w przypadku kontroli pozytywnej plazmidu (ścieżka 8). Dla pustego wektora kontrolnego, pozbawionego PrM 2, oczekiwany fragment jest długości 185 pz (ścieżka 2).
Claims (25)
1. Rekombinowany wirus krowianki Ankara (MVA), znamienny tym, że zawiera przynajmniej dwie sekwencje homologiczne lub geny o identyczności co najmniej 50%, przy czym każda ze wspomnianych sekwencji homologicznych lub genów jest trwale wstawiona w różnym miejscu insercji genomu wirusowego.
2. Rekombinowany wirus MVA, znamienny tym, że zawiera przynajmniej dwie sekwencje homologiczne lub geny, przy czym wykazują one identyczność na poziomie przynajmniej 60%.
3. Rekombinowany wirus MVA według zastrz. 1 albo 2, znamienny tym, że sekwencje homologiczne lub geny wykazują identyczność na poziomie 65-75%.
4. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 3, znamienny tym, że sekwencje zawierają homologiczne geny.
5. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 4, znamienny tym, że geny homologiczne pochodzą z flaviwirusa.
6. Rekombinowany wirus MVA według zastrz. 5, znamienny tym, że flaviwirus jest wirusem Dengue.
7. Rekombinowany wirus MVA według zastrz. 5 albo 6, znamienny tym, że geny są przynajmniej dwoma homologicznymi genami pochodzącymi z przynajmniej dwóch różnych serotypów wirusa.
8. Rekombinowany wirus MVA według jednego z zastrz. od 5 do 7, znamienny tym, że geny są przynajmniej dwoma genami PrM.
9. Rekombinowany wirus MVA według jednego z zastrz. od 5 do 8, znamienny tym, że geny są genami 4 PrM.
10. Rekombinowany wirus MVA według zastrz. 8 albo 9, znamienny tym, że geny homologiczne znajdują się pod kontrolą transkrypcyjną wczesnego/późnego promotora krowianki p7.5.
11. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 10, znamienny tym, że MVA jest MVA-BN zdeponowanym w Europejskiej Kolekcji Zwierzęcych Kultur Komórkowych (ECACC) pod numerem V00083008.
PL 218 318 B1
12. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 11, znamienny tym, że wirus MVA przejawia ograniczoną replikację lub jest replikacyjnie inkompetentny w komórkach ssaczych, w tym w komórkach ludzkich.
13. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 12, znamienny tym, że sekwencje wstawione są w naturalnie występujących miejscach delecji i/albo w obszarze międzygenowym genomu wirusa.
14. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 13, znamienny tym, że służy jako lek lub szczepionka.
15. Szczepionka, znamienna tym, że zawiera rekombinowanego wirusa MVA według jednego z zastrz. od 1 do 13.
16. Kompozycja farmaceutyczna, znamienna tym, że zawiera rekombinowanego wirusa MVA określonego w jednym z zastrz. od 1 do 13 oraz farmaceutycznie dopuszczalny nośnik, rozcieńczalnik, adiuwant i/lub substancję dodatkową.
17. Rekombinowany wirus MVA według jednego z zastrz. od 1 do 13, szczepionka według zastrz. 15 albo kompozycja według zastrz. 16, do stosowania w oddziaływaniu na odpowiedź immunologiczną w żywych zwierzętach oraz ludziach.
18. Zastosowanie rekombinowanego wirusa MVA według jednego z zastrz. od 1 do 13 do wytwarzania leku.
19. Zastosowanie według zastrz. 18 do otrzymywania preparatu do oddziaływania na odpowiedź immunologiczną w żywych zwierzętach oraz ludziach
20. Komórka in vitro lub ex vivo zawierająca rekombinowanego wirusa MVA według jednego z zastrz. od 1 do 13.
21. Sposób in vitro lub ex vivo otrzymywania rekombinowanego wirusa MVA określonego w jednym z zastrz. od 1 do 13, znamienny tym, że obejmuje etapy
- infekcji komórki wirusem MVA;
- transfekcji zainfekowanej komórki pierwszym wektorem zawierającym sekwencję przeznaczoną do prowadzenia do gen genomu wirusa MVA oraz genomową sekwencję wirusa MVA, zdolną do ukierunkowania integracji sekwencji przeznaczonej do insercji w miejscu insercji genomu wirusa MVA;
- identyfikacji, izolacji i ewentualnie oczyszczania otrzymanego rekombinowanego wirusa ospy;
- powtórzenia powyższych etapów przy użyciu rekombinowanego wirusa MVA uzyskanego w poprzednich etapach do infekcji komórki i dodatkowego wektora zawierającego dodatkową sekwencję przeznaczoną do wprowadzenia do genomu wirusa MVA, przy czym wspomniana sekwencja jest homologiczna z sekwencją z pierwszego wektora.
22. Zestaw do uzyskiwania rekombinowanego wirusa MVA określonego w jednym z zastrz. od 1 do 13, znamienny tym, że zawiera
- dwa lub więcej wektory, każdy z nich zawierający sekwencję, przy czym sekwencje zawarte w różnych wektorach są sekwencjami o identyczności przynajmniej 50%, a każda sekwencja jest flankowana przez sekwencję DNA wirusa MVA, zdolną do ukierunkowania integracji genu w genomie wirusa MVA, oraz
- środki do identyfikacji oraz/albo selekcji rekombinowanych wirusów ospy, posiadających wbudowane w ich genomie wspomniane sekwencje homologiczne.
23. Sekwencja DNA zawierająca genom rekombinowanego wirusa MVA określonego w jednym z zastrz. od 1 do 13, znamienna tym, że wspomniana sekwencja DNA zawiera (i) przynajmniej dwie sekwencje homologiczne o identyczności przynajmniej 50%, które są wprowadzone w różnych miejscach insercji i (ii) przynajmniej część sekwencji genomu wirusa MVA, przy czym wspomniana część sekwencji z genomu wirusa MVA flankuje wspomniane sekwencje homologiczne.
24. Sposób in vitro lub ex vivo wykrywania komórek zainfekowanych rekombinowanym wirusem MVA określonym w jednym z zastrz. od 1 do 13, znamienny tym, że obejmuje podawanie do wspomnianych komórek sekwencji DNA według zastrz. 23 i wykrywanie wspomnianych komórek zainfekowanych rekombinowanym wirusem MVA.
25. Sposób in vitro lub ex vivo identyfikacji rekombinowanego wirusa MVA według jednego z zastrz. od 1 do 13, znamienny tym, że obejmuje podawanie do wspomnianego wirusa sekwencji DNA według zastrz. 23 i identyfikowanie rekombinowanego wirusa MVA.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DKPA200200752 | 2002-05-16 | ||
| DKPA200200753 | 2002-05-16 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| PL372088A1 PL372088A1 (pl) | 2005-07-11 |
| PL218318B1 true PL218318B1 (pl) | 2014-11-28 |
Family
ID=29551228
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PL372088A PL218318B1 (pl) | 2002-05-16 | 2003-05-14 | Rekombinowany wirus krowianki Ankara (MVA), zawierająca go komórka, szczepionka lub kompozycja farmaceutyczna, sposób lub zestaw do jego otrzymywania, sekwencja DNA zawierająca genom tego wirusa oraz sposób wykrywania tego wirusa lub komórek nim zainfekowanych |
| PL372093A PL216760B1 (pl) | 2002-05-16 | 2003-05-14 | Rekombinowany modyfikowany wirus krowianki Ankara oraz sposób jego otrzymywania i zastosowania |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PL372093A PL216760B1 (pl) | 2002-05-16 | 2003-05-14 | Rekombinowany modyfikowany wirus krowianki Ankara oraz sposób jego otrzymywania i zastosowania |
Country Status (22)
| Country | Link |
|---|---|
| US (14) | US7338662B2 (pl) |
| EP (3) | EP2253709B1 (pl) |
| JP (4) | JP4895505B2 (pl) |
| KR (4) | KR101005630B1 (pl) |
| CN (6) | CN100494388C (pl) |
| AT (1) | ATE315660T1 (pl) |
| AU (4) | AU2003242540A1 (pl) |
| BR (2) | BRPI0311178B8 (pl) |
| CA (3) | CA2481799C (pl) |
| DE (1) | DE60303218T2 (pl) |
| DK (2) | DK1506301T3 (pl) |
| EA (3) | EA007811B1 (pl) |
| ES (1) | ES2256776T3 (pl) |
| IL (4) | IL164177A0 (pl) |
| MX (2) | MXPA04010713A (pl) |
| NO (3) | NO334273B1 (pl) |
| NZ (2) | NZ536501A (pl) |
| PL (2) | PL218318B1 (pl) |
| PT (1) | PT1407033E (pl) |
| SI (1) | SI1407033T1 (pl) |
| UA (1) | UA82479C2 (pl) |
| WO (2) | WO2003097846A1 (pl) |
Families Citing this family (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4101327C1 (pl) * | 1991-01-18 | 1991-10-24 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | |
| UA76731C2 (uk) * | 2000-11-23 | 2006-09-15 | Баваріан Нордік А/С | Штам mva-bn модифікованого вірусу коров'ячої віспи ankara, фармацевтична композиція, вакцина, застосування mva-bn для приготування лікарського препарату та для приготування вакцини, спосіб введення гомологічної і/або гетерологічної послідовності нуклеїнової кислоти в клітини-мішені in vitro, спосіб одержання пептиду або білка, спосіб одержання mva-bn, клітина, набір для основної/бустерної імунізації |
| WO2003088994A2 (en) * | 2002-04-19 | 2003-10-30 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
| DK1506301T3 (da) | 2002-05-16 | 2014-07-21 | Bavarian Nordic As | Rekombinant poxvirus, der udtrykker homologe gener, der er indsat i poxvirusgenomet |
| US7501127B2 (en) | 2002-05-16 | 2009-03-10 | Bavarian Nordic A/S | Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of Modified Vaccinia virus Ankara |
| ES2305514T5 (es) * | 2002-09-05 | 2019-06-14 | Bavarian Nordic As | Método para la amplificación de un poxvirus en condiciones exentas de suero |
| US7638134B2 (en) | 2003-02-20 | 2009-12-29 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Insertion sites in fowlpox vectors |
| GB2402391A (en) * | 2003-06-04 | 2004-12-08 | Oxxon Pharmaccines Ltd | Fowlpox recombinant genome |
| EP1807508A4 (en) * | 2004-11-05 | 2008-03-12 | Us Gov Health & Human Serv | METHODS FOR PREPARING CELLS AND VIRUSES |
| SI1855720T2 (sl) | 2005-02-23 | 2023-07-31 | Bavarian Nordic A/S | Uporaba modificiranega poksvirusa za hitro indukcijo imunosti proti poksvirusu ali drugim povzročiteljem infekcij |
| US8741633B2 (en) * | 2006-05-19 | 2014-06-03 | Glycofi, Inc. | Recombinant vectors |
| US9133478B2 (en) | 2006-08-25 | 2015-09-15 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Modified vaccinia Ankara (MVA) virus recombinants comprising heterologous coding sequences inserted into the intergenic regions between essential genes |
| WO2008100292A2 (en) | 2006-10-16 | 2008-08-21 | Genelux Corporation | Modified vaccinia virus strains for use in diagnostic and therapeutic methods |
| US8241638B2 (en) * | 2006-11-09 | 2012-08-14 | The United States Of America As Represented By The Secretary Of The Navy | Induction of an immune response against dengue virus using the prime-boost approach |
| US8440202B2 (en) * | 2006-11-09 | 2013-05-14 | The United States Of America As Represented By The Secretary Of The Navy | Induction of an immune response against dengue virus using the prime-boost approach |
| EP2390340A3 (en) * | 2007-01-30 | 2012-02-22 | Transgene SA | vector encoding Papillomavirus E1 and E2 polypeptides with reduced percentage of identity |
| US8268327B2 (en) | 2007-04-27 | 2012-09-18 | Bavarian Nordic A/S | Immediate protection against pathogens via MVA |
| RU2462513C2 (ru) * | 2007-05-15 | 2012-09-27 | Трансген С.А. | Векторы для множественной генной экспрессии |
| CN101849013A (zh) * | 2007-05-30 | 2010-09-29 | 惠氏有限责任公司 | 猫抗原的浣熊痘病毒表达基因 |
| TW200907058A (en) * | 2007-05-30 | 2009-02-16 | Wyeth Corp | Raccoon poxvirus expressing rabies glycoproteins |
| DK2207564T3 (en) * | 2007-10-18 | 2017-01-16 | Bavarian Nordic As | USE OF VAT FOR TREATMENT OF PROSTATACANCES |
| EP2303322A1 (en) * | 2008-06-20 | 2011-04-06 | Bavarian Nordic A/S | Recombinant modified vaccinia virus measles vaccine |
| KR100894430B1 (ko) * | 2008-11-11 | 2009-04-22 | 시스템디엔디(주) | 초음파, 음향 및 온도변화를 이용한 밸브의 유체누설 측정장치 및 이를 이용한 유체누설 측정방법 |
| US8999637B2 (en) * | 2008-11-21 | 2015-04-07 | Bavarian Nordic A/S | Vector comprising multiple homologous nucleotide sequences |
| US8580276B2 (en) | 2009-06-05 | 2013-11-12 | City Of Hope | Genetically stable recombinant modified vaccinia ankara (rMVA) vaccines and methods of preparation thereof |
| US20120135032A1 (en) | 2009-10-08 | 2012-05-31 | Bavarian Nordic A/S | Generation of a broad t-cell response in humans against hiv |
| DK2488649T3 (da) | 2009-10-16 | 2019-06-17 | Us Health | Rekombinant modificeret vaccinia ankara (mva)-vaccinia-virus indeholdende restrukturerede insertionssteder |
| US20110159031A1 (en) * | 2009-12-22 | 2011-06-30 | Baxter International Inc. | Vaccine to Influenza A Virus |
| CA2793772A1 (en) * | 2010-03-26 | 2011-09-29 | Emergent Product Development Gaithersburg Inc. | Ectodomains of influenza matrix 2 protein, expression system, and uses thereof |
| WO2012010280A1 (en) | 2010-07-20 | 2012-01-26 | Bavarian Nordic A/S | Method for harvesting expression products |
| US20120328649A1 (en) * | 2010-09-23 | 2012-12-27 | Baxter Healthcare S.A. | Recombinant Viral Vectors and Methods for Inducing an Immune Response to Yellow Fever Virus |
| US9173933B2 (en) | 2010-10-15 | 2015-11-03 | Bavarian Nordic A/S | Recombinant modified vaccinia virus Ankara influenza vaccine |
| CA2836299A1 (en) | 2011-04-15 | 2012-10-18 | Genelux Corporation | Clonal strains of attenuated vaccinia viruses and methods of use thereof |
| DK2788021T3 (en) | 2011-12-09 | 2017-04-10 | Bavarian Nordic As | POXVIRUS VECTOR FOR EXPRESSION OF BACTERIAL ANTIGENES CONNECTED TO TETANANOX INFRAGMENT C |
| EP2620446A1 (en) | 2012-01-27 | 2013-07-31 | Laboratorios Del Dr. Esteve, S.A. | Immunogens for HIV vaccination |
| KR20150021088A (ko) | 2012-06-05 | 2015-02-27 | 디 오스트레일리언 내셔널 유니버시티 | 인터루킨-4 길항제를 이용한 백신접종 |
| EA201891945A3 (ru) | 2012-08-01 | 2019-05-31 | Бавариан Нордик А/С | Вакцина рекомбинантного модифицированного вируса осповакцины анкара (mva) респираторно-синцитиального вируса (rsv) |
| WO2014043535A1 (en) | 2012-09-14 | 2014-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions for the treatment of cancer |
| WO2014055960A1 (en) | 2012-10-05 | 2014-04-10 | Genelux Corporation | Energy absorbing-based diagnostic and therapeutic methods employing nucleic acid molecules encoding chromophore-producing enzymes |
| AU2013331328B2 (en) | 2012-10-19 | 2018-05-31 | Bavarian Nordic A/S | Methods and compositions for the treatment of cancer |
| US11173206B2 (en) * | 2013-03-15 | 2021-11-16 | Sementis Limited | Immune modulation |
| DE102013004595A1 (de) | 2013-03-15 | 2014-09-18 | Emergent Product Development Germany Gmbh | RSV-Impfstoffe |
| WO2014139587A1 (en) * | 2013-03-15 | 2014-09-18 | Okairòs Ag | Improved poxviral vaccines |
| WO2015103438A2 (en) | 2014-01-02 | 2015-07-09 | Genelux Corporation | Oncolytic virus adjunct therapy with agents that increase virus infectivity |
| KR101645642B1 (ko) | 2014-10-16 | 2016-08-11 | 대한민국 | Kvac103 유래의 재조합 백시니아 바이러스 |
| KR101623498B1 (ko) | 2014-10-16 | 2016-05-24 | 대한민국 | 약독화 백시니아 바이러스주 kvac103 |
| JP2018510143A (ja) | 2015-02-25 | 2018-04-12 | メモリアル スローン ケタリング キャンサー センター | 不活化非複製改変ワクシニアウイルスアンカラ(mva)の固形腫瘍のための単独療法又は免疫チェックポイント遮断剤併用における使用 |
| CA2982896A1 (en) | 2015-04-17 | 2016-10-20 | Memorial Sloan Kettering Cancer Center | Use of modified vaccinia ankara virus (mva) or mva with a deletion of virulence factor e8 as immunotherapeutic agent against solid tumors |
| KR20160140075A (ko) * | 2015-05-29 | 2016-12-07 | 코오롱생명과학 주식회사 | 폭스바이러스 유래 프로모터 및 이를 포함하는 벡터 |
| CA2987159A1 (en) * | 2015-06-15 | 2016-12-22 | Bavarian Nordic A/S | Recombinant modified vaccinia virus ankara (mva) foot and mouth disease virus (fmdv) vaccine |
| FR3042121A1 (fr) | 2015-10-08 | 2017-04-14 | Jean-Marc Limacher | Composition anti-tumorale |
| CN106591361A (zh) * | 2015-10-20 | 2017-04-26 | 钱文斌 | 一种重组痘溶瘤病毒及其构建方法和应用 |
| AU2017206102C1 (en) | 2016-01-08 | 2022-02-10 | Geovax Inc. | Compositions and methods for generating an immune response to a tumor associated antigen |
| DK3407910T3 (da) | 2016-01-29 | 2022-07-18 | Bavarian Nordic As | Rekombinant modificeret vaccinia virus ankara (mva)-vaccine mod hesteencephalitisvirus |
| US20190030157A1 (en) * | 2016-02-03 | 2019-01-31 | Geovax Inc. | Compositions and Methods for Generating an Immune Response to a Flavivirus |
| SG11201807022XA (en) | 2016-02-25 | 2018-09-27 | Memorial Sloan Kettering Cancer Center | Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors |
| CN116440176A (zh) | 2016-02-25 | 2023-07-18 | 纪念斯隆凯特琳癌症中心 | 具有胸苷激酶缺失和具有或不具有人flt3l或gm-csf表达的复制型减毒痘苗病毒 |
| WO2017192418A1 (en) | 2016-05-02 | 2017-11-09 | Janssen Vaccine & Prevention B.V. | Therapeutic hpv vaccine combinations |
| JP2019528271A (ja) * | 2016-08-19 | 2019-10-10 | セメンティス リミテッド | ウイルスワクチン |
| US20200024610A1 (en) * | 2016-09-30 | 2020-01-23 | Monsanto Technology Llc | Method for selecting target sites for site-specific genome modification in plants |
| CN111107872A (zh) | 2017-05-12 | 2020-05-05 | 纪念斯隆-凯特林癌症中心 | 有用于癌症免疫疗法的牛痘病毒突变体 |
| CA3066573A1 (en) * | 2017-06-15 | 2018-12-20 | Janssen Vaccines & Prevention B.V. | Poxvirus vectors encoding hiv antigens, and methods of use thereof |
| US11311612B2 (en) | 2017-09-19 | 2022-04-26 | Geovax, Inc. | Compositions and methods for generating an immune response to treat or prevent malaria |
| CN112512568A (zh) | 2018-05-11 | 2021-03-16 | 希望之城 | 遗传修饰的重组痘苗安卡拉(rmva)疫苗改善的稳定性及其制备方法 |
| JP2021535730A (ja) * | 2018-05-11 | 2021-12-23 | シティ・オブ・ホープCity of Hope | 複数の部位メガロウイルス(cmv)抗原の発現のためのmvaベクター及びその使用 |
| WO2020056424A1 (en) | 2018-09-15 | 2020-03-19 | Memorial Sloan Kettering Cancer Center | Recombinant poxviruses for cancer immunotherapy |
| CN111979204B (zh) * | 2019-05-24 | 2023-10-13 | 杭州功楚生物科技有限公司 | 携带海绵凝集素基因的溶瘤痘苗病毒、构建方法及用途 |
| AU2020384323A1 (en) | 2019-11-14 | 2022-06-02 | Aelix Therapeutics, S.L. | Dosage regimens for vaccines |
| EP3842065A1 (en) * | 2019-12-23 | 2021-06-30 | Transgene | Process for designing a recombinant poxvirus for a therapeutic vaccine |
| US20210299245A1 (en) * | 2020-03-31 | 2021-09-30 | Sementis Limited | Attenuated poxvirus vector based vaccine for protection against covid-19 |
| EP4288076A4 (en) | 2021-02-02 | 2025-01-22 | Geovax, Inc. | VIRAL CONSTRUCTS FOR USE IN ENHANCING T CELL PRIMING DURING VACCINATION |
| JP2025522951A (ja) | 2022-07-08 | 2025-07-17 | ヴァイロミスル インコーポレイテッド | 腫瘍溶解性ワクシニアウイルスおよび組換えウイルスならびにその使用方法 |
| FR3160186A1 (fr) | 2024-03-13 | 2025-09-19 | Odimma Therapeutics | Vecteur non-viral pour transcription augmentee |
Family Cites Families (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5338683A (en) * | 1981-12-24 | 1994-08-16 | Health Research Incorporated | Vaccinia virus containing DNA sequences encoding herpesvirus glycoproteins |
| JPH0795956B2 (ja) * | 1986-09-22 | 1995-10-18 | 京都大学長 | ポックスウイルス由来発現制御領域 |
| US5093258A (en) * | 1988-08-26 | 1992-03-03 | Therion Biologics Corporation | Recombinant fowlpox virus and recombination vector |
| US5225336A (en) * | 1989-03-08 | 1993-07-06 | Health Research Incorporated | Recombinant poxvirus host range selection system |
| US5651972A (en) | 1989-04-21 | 1997-07-29 | University Of Florida Research Foundation, Inc. | Use of recombinant swine poxvirus as a live vaccine vector |
| MY109299A (en) * | 1990-08-15 | 1996-12-31 | Virogenetics Corp | Recombinant pox virus encoding flaviviral structural proteins |
| US5514375A (en) | 1990-08-15 | 1996-05-07 | Virogenetics Corporation | Flavivirus recombinant poxvirus vaccine |
| US6893845B1 (en) * | 1990-09-28 | 2005-05-17 | Applied Molecular Evolution, Inc. | Surface expression libraries of heteromeric receptors |
| ATE247163T1 (de) * | 1991-03-07 | 2003-08-15 | Virogenetics Corp | Gentechnologisch hergestellter stamm für impfstoffe |
| BE1004877A3 (fr) * | 1991-05-27 | 1993-02-16 | Solvay | Virus de l'avipox recombinant, culture de cellules infectees par ce virus et vaccins pour la volaille derives de ce virus. |
| FR2679249B1 (fr) * | 1991-07-15 | 1993-11-26 | Centre Nal Recherc Scientifique | Souches de levure avec integration stable de genes heterologues. |
| WO1993003145A1 (en) | 1991-07-26 | 1993-02-18 | Virogenetics Corporation | Infectious bursal disease virus recombinant poxvirus vaccine |
| EP0561034B1 (en) * | 1991-08-26 | 1999-06-09 | IMMUNO Aktiengesellschaft | Direct molecular cloning of a modified chordopox virus genome |
| DE69133333T2 (de) | 1991-08-26 | 2004-07-29 | Baxter Healthcare S.A. | Ein intaktes FPV-tk-Gen enthaltender rekombinanter Virus der Vogelpocken |
| US5676950A (en) | 1994-10-28 | 1997-10-14 | University Of Florida | Enterically administered recombinant poxvirus vaccines |
| UA68327C2 (en) * | 1995-07-04 | 2004-08-16 | Gsf Forschungszentrum Fur Unwe | A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals |
| EP0753581A1 (en) * | 1995-07-10 | 1997-01-15 | Immuno Ag | Improved recombinant eukaryotic cytoplasmic viruses, method for their production and their use as vaccines |
| DE19629828A1 (de) * | 1996-07-24 | 1998-01-29 | Bayer Ag | Carbanilide |
| US6869793B2 (en) * | 1996-09-24 | 2005-03-22 | Bavarian Nordic Research Institute | Recombinant MVA virus expressing dengue virus antigens, and the use thereof in vaccines |
| AUPP380598A0 (en) * | 1998-05-29 | 1998-06-25 | Commonwealth Scientific And Industrial Research Organisation | Genetically manipulated entomopoxvirus |
| US6252871B1 (en) | 1998-07-01 | 2001-06-26 | Powerwave Technologies, Inc. | Switchable combiner/splitter |
| US20040265324A1 (en) * | 1999-03-23 | 2004-12-30 | Cardosa Mary Jane | Recombinant MVA virus expressing dengue virus antigens, and the use thereof in vaccines |
| CA2372709C (en) * | 1999-05-28 | 2011-10-25 | Stefan Wintersperger | Vector for integration of heterologous sequences into poxviral genomes |
| WO2001068820A1 (en) * | 2000-03-14 | 2001-09-20 | Anton Mayr | Altered strain of the modified vaccinia virus ankara (mva) |
| CA2341356C (en) | 2000-04-14 | 2011-10-11 | Transgene S.A. | Poxvirus with targeted infection specificity |
| EP1326990B1 (en) * | 2000-08-29 | 2007-09-19 | Wyeth Holdings Corporation | Packaging of positive-strand rna virus replicon particles |
| UA76731C2 (uk) | 2000-11-23 | 2006-09-15 | Баваріан Нордік А/С | Штам mva-bn модифікованого вірусу коров'ячої віспи ankara, фармацевтична композиція, вакцина, застосування mva-bn для приготування лікарського препарату та для приготування вакцини, спосіб введення гомологічної і/або гетерологічної послідовності нуклеїнової кислоти в клітини-мішені in vitro, спосіб одержання пептиду або білка, спосіб одержання mva-bn, клітина, набір для основної/бустерної імунізації |
| US7501127B2 (en) | 2002-05-16 | 2009-03-10 | Bavarian Nordic A/S | Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of Modified Vaccinia virus Ankara |
| DK1506301T3 (da) * | 2002-05-16 | 2014-07-21 | Bavarian Nordic As | Rekombinant poxvirus, der udtrykker homologe gener, der er indsat i poxvirusgenomet |
| UA85379C2 (ru) * | 2002-11-25 | 2009-01-26 | Бавариан Нордик А/С | Рекомбинантный поксвирус, содержащий как минимум два ati промотора коровьей оспы |
-
2003
- 2003-05-14 DK DK03735384T patent/DK1506301T3/da active
- 2003-05-14 EA EA200401507A patent/EA007811B1/ru not_active IP Right Cessation
- 2003-05-14 EP EP10008120.7A patent/EP2253709B1/en not_active Expired - Lifetime
- 2003-05-14 CN CNB038111225A patent/CN100494388C/zh not_active Expired - Lifetime
- 2003-05-14 CN CN038111063A patent/CN1653183B/zh not_active Expired - Lifetime
- 2003-05-14 ES ES03752741T patent/ES2256776T3/es not_active Expired - Lifetime
- 2003-05-14 IL IL16417703A patent/IL164177A0/xx active IP Right Grant
- 2003-05-14 KR KR1020047018293A patent/KR101005630B1/ko not_active Expired - Lifetime
- 2003-05-14 CN CN2012101928085A patent/CN102703393A/zh active Pending
- 2003-05-14 CA CA2481799A patent/CA2481799C/en not_active Expired - Lifetime
- 2003-05-14 CN CN2012101926963A patent/CN102719408A/zh active Pending
- 2003-05-14 BR BRPI0311178A patent/BRPI0311178B8/pt not_active IP Right Cessation
- 2003-05-14 EP EP20030735384 patent/EP1506301B1/en not_active Expired - Lifetime
- 2003-05-14 KR KR1020117031095A patent/KR20120002627A/ko not_active Withdrawn
- 2003-05-14 PL PL372088A patent/PL218318B1/pl unknown
- 2003-05-14 SI SI200330215T patent/SI1407033T1/sl unknown
- 2003-05-14 DE DE2003603218 patent/DE60303218T2/de not_active Expired - Lifetime
- 2003-05-14 CA CA2481521A patent/CA2481521C/en not_active Expired - Lifetime
- 2003-05-14 EA EA200900180A patent/EA020230B1/ru not_active IP Right Cessation
- 2003-05-14 MX MXPA04010713A patent/MXPA04010713A/es active IP Right Grant
- 2003-05-14 AT AT03752741T patent/ATE315660T1/de active
- 2003-05-14 PT PT03752741T patent/PT1407033E/pt unknown
- 2003-05-14 IL IL16417203A patent/IL164172A0/xx unknown
- 2003-05-14 CN CN200910208520A patent/CN101831411A/zh active Pending
- 2003-05-14 KR KR1020047018165A patent/KR101041691B1/ko not_active Expired - Lifetime
- 2003-05-14 EP EP20030752741 patent/EP1407033B1/en not_active Expired - Lifetime
- 2003-05-14 AU AU2003242540A patent/AU2003242540A1/en not_active Abandoned
- 2003-05-14 WO PCT/EP2003/005047 patent/WO2003097846A1/en not_active Ceased
- 2003-05-14 EA EA200401506A patent/EA012160B1/ru not_active IP Right Cessation
- 2003-05-14 PL PL372093A patent/PL216760B1/pl unknown
- 2003-05-14 BR BR0310051A patent/BR0310051A/pt not_active IP Right Cessation
- 2003-05-14 JP JP2004506500A patent/JP4895505B2/ja not_active Expired - Lifetime
- 2003-05-14 US US10/510,189 patent/US7338662B2/en not_active Expired - Lifetime
- 2003-05-14 DK DK03752741T patent/DK1407033T3/da active
- 2003-05-14 UA UA20041109409A patent/UA82479C2/uk unknown
- 2003-05-14 JP JP2004506501A patent/JP4693092B2/ja not_active Expired - Lifetime
- 2003-05-14 KR KR1020107021891A patent/KR101138067B1/ko not_active Expired - Lifetime
- 2003-05-14 CA CA 2812019 patent/CA2812019A1/en not_active Abandoned
- 2003-05-14 AU AU2003236646A patent/AU2003236646B2/en not_active Expired
- 2003-05-14 WO PCT/EP2003/005045 patent/WO2003097845A1/en not_active Ceased
- 2003-05-14 NZ NZ536501A patent/NZ536501A/en not_active IP Right Cessation
- 2003-05-14 CN CN2011100588236A patent/CN102199628A/zh active Pending
- 2003-05-14 US US10/514,761 patent/US7550147B2/en not_active Expired - Lifetime
- 2003-05-14 NZ NZ536502A patent/NZ536502A/en not_active IP Right Cessation
- 2003-05-14 MX MXPA04011194A patent/MXPA04011194A/es active IP Right Grant
-
2004
- 2004-11-12 NO NO20044940A patent/NO334273B1/no not_active IP Right Cessation
- 2004-12-16 NO NO20045480A patent/NO336489B1/no not_active IP Right Cessation
-
2007
- 2007-11-15 US US11/985,510 patent/US9109233B2/en active Active
-
2008
- 2008-07-28 IL IL193087A patent/IL193087A/en active IP Right Grant
- 2008-07-28 IL IL19308808A patent/IL193088A/en active IP Right Grant
- 2008-12-09 AU AU2008255213A patent/AU2008255213B2/en not_active Expired
- 2008-12-19 US US12/339,743 patent/US20100173388A1/en not_active Abandoned
-
2009
- 2009-02-03 AU AU2009200380A patent/AU2009200380C1/en not_active Expired
- 2009-05-19 US US12/468,127 patent/US8034354B2/en not_active Expired - Lifetime
- 2009-05-19 US US12/468,120 patent/US7964374B2/en not_active Expired - Lifetime
-
2010
- 2010-08-05 JP JP2010176512A patent/JP5777199B2/ja not_active Expired - Lifetime
- 2010-08-05 JP JP2010176511A patent/JP2011004755A/ja active Pending
- 2010-09-30 US US12/894,550 patent/US20110053259A1/en not_active Abandoned
- 2010-09-30 US US12/894,589 patent/US20110053260A1/en not_active Abandoned
-
2011
- 2011-04-15 US US13/087,715 patent/US8288125B2/en not_active Expired - Fee Related
- 2011-04-15 US US13/087,649 patent/US8309326B2/en not_active Expired - Fee Related
- 2011-09-15 US US13/233,329 patent/US8414900B2/en not_active Expired - Fee Related
- 2011-09-16 US US13/234,230 patent/US8435543B2/en not_active Expired - Fee Related
- 2011-09-29 NO NO20111324A patent/NO20111324A1/no not_active Application Discontinuation
-
2012
- 2012-02-13 US US13/371,580 patent/US20120178157A1/en not_active Abandoned
-
2013
- 2013-05-02 US US13/886,093 patent/US8741308B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7338662B2 (en) | Recombinant poxvirus expressing homologous genes inserted into the foxviral genome | |
| US8197822B2 (en) | Method for the production of human immunodeficiency virus (HIV) proteins utilizing modified vaccinia virus ankara (MVA) recombinants comprising HIV genes inserted into one or more intergenic regions (IGRs) | |
| HK1171249A (en) | Recombinant poxvirus expressing homologous genes inserted into the poxviral genome | |
| HK1156979A (en) | Recombinant poxvirus expressing homologous genes inserted into the poxviral genome | |
| HK1170772A (en) | Recombinant poxvirus expressing homologous genes inserted into the poxviral genome | |
| HK1076642B (en) | Recombinant poxvirus expressing homologous genes inserted into the poxviral genome | |
| HK1144700A (en) | Recombinant poxvirus expressing homologous genes inserted into the poxviral genome |