KR20180101174A - 단결정 제조 장치 - Google Patents

단결정 제조 장치 Download PDF

Info

Publication number
KR20180101174A
KR20180101174A KR1020180013394A KR20180013394A KR20180101174A KR 20180101174 A KR20180101174 A KR 20180101174A KR 1020180013394 A KR1020180013394 A KR 1020180013394A KR 20180013394 A KR20180013394 A KR 20180013394A KR 20180101174 A KR20180101174 A KR 20180101174A
Authority
KR
South Korea
Prior art keywords
crucible
single crystal
heating element
alloy
furnace
Prior art date
Application number
KR1020180013394A
Other languages
English (en)
Other versions
KR102492855B1 (ko
Inventor
케이고 호시카와
야스유키 후지와라
케이이치 코하마
신지 나카니시
타쿠미 코바야시
에츠코 오바
Original Assignee
후지코시 기카이 고교 가부시키가이샤
고쿠리츠 다이가쿠 호우징 신슈 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지코시 기카이 고교 가부시키가이샤, 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 filed Critical 후지코시 기카이 고교 가부시키가이샤
Publication of KR20180101174A publication Critical patent/KR20180101174A/ko
Application granted granted Critical
Publication of KR102492855B1 publication Critical patent/KR102492855B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

발열체의 장수명화가 도모될 수 있고, 비용의 저감화가 도모될 수 있는 단결정 제조 장치를 제공한다.
본 발명에 관한 단결정 제조 장치(10)는 기체(12)와, 그 기체(12)상에 배설된 내열성을 갖는 통형상의 로본체(14)와, 그 로본체(14)를 폐색하는 덮개체(16)와, 로본체(14) 내에 배설된 발열체(20)와, 그 발열체(20)를 고주파 유도 가열에 의해 가열하는 고주파 코일(22)과, 발열체(20)에 의해 가열되는 도가니(28)를 구비하고, 산화 분위기 중에서, 금속산화물의 단결정을 제조하는 단결정 제조 장치(10)로서, 발열체(20)가, Pt계 합금으로 이루어지고, 전면에 지르코니아 코트를 시행하고 있는 것을 특징으로 한다.

Description

단결정 제조 장치{SINGLE CRYSTAL MANUFACTURING EQUIPMENT}
본 발명은, 산화갈륨 단결정 등의 산화물 단결정의 제조 장치에 관한 것이다.
파워 디바이스용 와이드 갭 반도체 등으로서 사용되는 산화갈륨의 단결정의 제조 장치가 특허 문헌 1에 나타나 있다.
즉, 특허 문헌 1에는 내열성을 갖는 통형상의 로본체(爐本體)와, 그 로본체를 폐색하는 덮개체와, 상기 로본체 내에 배설된 발열체와, 그 발열체를 고주파 유도 가열에 의해 가열하는 고주파 코일과, 상기 발열체에 의해 가열되는 도가니를 구비하고, 산화 분위기 중에서, 산화갈륨의 단결정을 제조하는 제조 장치로서, 상기 도가니가, Rh 함유량이 10∼30wt%의 Pt-Rh(백금 로듐) 합금제이고, 상기 발열체가, Rh 함유량이 30wt%의 Pt-Rh 합금제인 산화갈륨 단결정(특히 β-Ga2O3 단결정)의 제조 장치가 나타나 있다.
이 특허 문헌 1에 나타나는 산화갈륨 단결정의 제조 장치는 상기한 바와 같이, 도가니나 발열체에 Pt-Rh 합금제의 것을 사용함에 의해 다음과 같은 이점이 있다.
즉, Pt단독의 융점은 약 1768℃이지만, Rh 함유량이 10∼30wt%의 Pt-Rh 합금으로 함에 의해, 그 융점은 약 1850∼1930℃가 되고, 산화갈륨의 융점 1795℃보다도 도움이 되게 높아지기 때문에, 도가니 및 발열체에 상기 Pt-Rh 합금제의 것을 사용함에 의해, 높은 융점의 산화갈륨이라도, 그 단결정을 알맞게 제조할 수 있다.
또한, 상기한 바와 같이, Rh 함유량이 10∼30wt%의 Pt-Rh 합금은, 그 융점이 1850∼1930℃로 높기 때문에, 산화물 단결정의 제조 방법에 있어서도, VB법, CZ법, EFG법 등 여러가지에 걸쳐서 적용할 수 있다.
특히, Pt-Rh 합금은, 산화하기 어려운 Pt의 합금으로 되어 있기 때문에, 산화성 분위기 중에서의 결정 육성을 행할 수 있어서, 산소 결핍 결함이 없는 양호한 품질의 결정을 육성할 수 있는 점이 유리하게 된다.
특허 문헌 1 : 일본 특개2016-79080호 공보
그렇지만, 발명자 등이 예의 검토한 바, 상기 Rh 함유량이 10∼30wt%의 Pt-Rh 합금제의 재료라도, 산화 분위기 중에서, 또한 고온에서의 사용에는 다음과 같은 과제가 있는 것이 판명되었다.
즉, 상기한 바와 같이 Pt는 내산화성이 강하지만, Rh은 산화하기 쉽기 때문에, Pt-Rh 합금의 경우라도, 장시간 사용하면 점차로 Rh가 Pt로부터 유리되어, 산화 분해하여 비산하기 쉬워진다. 이와 같이, Rh가 비산하여 버리면 합금의 조성 비율이 변화하고, 융점이 저하되어 버리기 때문에 사용할 수 없게 된다. 도가니의 경우는 1회용의 경우가 많기 때문에, 그다지 문제로 되지 않지만, 발열체의 경우는 수명이 짧음에 의해 교환 빈도가 높아지고, 비용 상승을 피할 수가 없다는 과제가 있다.
본 발명은 상기 과제를 해결하기 위해 이루어지고, 그 목적으로 하는 바는 발열체의 장수명화를 도모할 수 있고, 비용의 저감화를 도모할 수 있는 단결정 제조 장치를 제공하는 것에 있다.
본 발명에 관한 단결정 제조 장치는 기체와, 그 기체상에 배설된 내열성을 갖는 통형상의 로본체와, 그 로본체를 폐색하는 덮개체와, 상기 로본체 내에 배설된 발열체와, 그 발열체를 고주파 유도 가열에 의해 가열하는 고주파 코일과, 상기 발열체에 의해 가열되는 도가니를 구비하고, 산화 분위기 중에서 금속산화물의 단결정을 제조하는 단결정 제조 장치로서, 상기 발열체가, Pt계 합금으로 이루어지고, 전면에 지르코니아 코트를 시행하고 있는 것을 특징으로 한다.
상기 발열체가 Pt-Rh 합금제, 특히 Rh 함유량이 10∼30wt%의 Pt-Rh 합금제라면 알맞다.
상기 발열체를 통형상으로 하고, 하부에 노치부를 마련하도록 할 수 있다.
또는 상기 발열체를 통형상으로 하고, 하부를 다른 부위보다도 박육으로 형성할 수 있다.
상기 로본체의 내벽을, 소요 높이를 갖는 링형상의 내열 부재를 복수 적층한 내열벽으로 형성함과 함께, 상기 링형상의 내열 부재에 복수의 분할편을 접합하여 링형상으로 형성한 것을 사용할 수 있다.
상기 금속산화물에, Pt의 융점보다도 높은 융점을 갖는 재료를 사용할 수 있다.
β-Ga2O3의 단결정을 제조하는 경우, 상기 도가니에 Pt-Rh 합금제, 특히 Rh 함유량이 10∼30wt%의 Pt-Rh 합금제의 것을 사용하면 알맞다.
탄탈산리튬(LiTaO3 : LT)의 단결정을 제조하는 경우, 상기 도가니에 Pt제 또는 Pt합금제의 것을 사용할 수 있다.
본 발명에 관한 단결정 제조 장치에 의하면, 고주파 유도 가열로로서, 그 발열체에 지르코니아 코트된 백금계 합금제의 것을 사용하고 있기 때문에, 백금과의 합금 성분의 산화 분해를 방지할 수 있고, 발열체를 반복 사용할 수가 있어서, 비용적으로 유리함과 함께, 산화 분해물의 결정 중으로의 용입(溶入)을 방지할 수가 있어서 고품질의 금속산화물 단결정의 제조를 행할 수 있다는 효과를 이룬다.
도 1은 단결정 제조 장치의 구성을 도시하는 단면도.
도 2는 도가니를 지지하는 부위의 구성을 도시하는 확대 단면도.
도 3은 링형상의 내열 부재를 도시하는 사시도.
도 4는 로본체의 사시도.
도 5는 지르코니아의 코팅 전의 발열체의 사진.
도 6은 지르코니아의 코팅 후의 발열체의 사진.
도 7은 발열체의 사용 회수에 대한 누적 감소 중량을 도시하는 그래프.
도 8은 도가니 내에서 1방향 응고된 전형적인 3종류의 결정 사진.
도 9A는 양면 경면 연마 기판에 관해, 크로스 니콜 관찰을 행한 결과를 도시하는 사진.
도 9B는 양면 경면 연마 기판에 관해, 투과 X선 토포그래프 관찰을 행한 결과를 도시하는 사진.
도 9C는 도 9B의 사진에서, 거의 <010> 방향으로 국소적으로 나열하는 전위(轉位) 피트열을 도시하는 확대 사진.
도 9D는 도 9B의 사진에서, <010> 방향으로 10∼수10㎛ 사이즈로 선형상으로 나열하는 결함을 도시하는 확대 사진.
도 10A는 로내 온도 분포를 도시하는 그래프.
도 10B는 도 10A에서의 a부분의 확대도.
도 11은 VGF법에 의할 때의 로내 온도 제어를 한 때의 로내 온도의 프로파일의 한 예를 도시하는 그래프.
도 12는 도 11에 도시하는 로내 온도 제어를 한 때의 온도 제어 플로우도.
도 13은 도 11에 도시하는 로내 온도 제어를 한 때의, 고주파 코일 출력에 대한 로내 온도의 추종성을 도시하는 그래프.
도 14는 백금 100%의 도가니를 사용하고, 도 1에 도시하는 고주파 가열로에 의해, 도 11에 도시하는 로내 온도 프로파일로, VGF법에 의해 결정 육성을 행하여 얻어진 탄탈산리튬 단결정의 사진.
(제조 장치의 구성례)
도 1은 본 실시의 형태에 관한 단결정 제조 장치(10)의 구성례를 도시한다. 이 단결정 제조 장치(10)는 산화 분위기 중(특히 대기 중)에서, 수직 브리지 맨(VB)법 또는 수직 온도 구배 응고(VGF)법 등에 의해 산화갈륨 단결정이나 탄탈산리튬 등의 금속산화물의 단결정을 육성하는 장치로 되어 있다.
도 1에서, 기체(12)상에, 로본체(14)가 배설되어 있다. 기체(12)에는 냉각수가 통류된 냉각 기구(도시 생략)가 마련되어 있다.
로본체(14)는 전체로서 통형상을 이루고, 1900℃ 정도까지의 고온에 견딜수 있는 내열성을 갖는 구조로 형성되어 있다.
로본체(14)의 개구부를 덮개체(16a, 16b, 16c)에 의해 폐색 가능하게 되어 있다.
또한, 로본체(14)의 하부는 여러 가지의 내열 재료가 적층된 저부(18)로 되어 있다.
로본체(14) 내에서, 저부(18)상에 발열체(20)가 재치되어 있다.
본 실시의 형태에서의 발열체(20)는 Pt계 합금으로 이루어지고, 전면에 지르코니아 코트를 시행하고 있다. 발열체(20)는 로본체(14)에 권회된 고주파 코일(22)에 의한 유도 가열에 의해 가열된다. 즉, 본 실시의 형태에 관한 단결정 제조 장치(10)는 고주파 유도 가열로로 되어 있다.
또한, 도시하지 않지만, 고주파 코일(22)에의 공급 전력(출력)을 제어하는 제어부가 마련되어 있다. 제어부는 수동 조작에 의해 통전량을 변경하는 것이라도, 소요되는 입력 프로그램에 따라서 시간마다의 통전량을 자동 제어 하는 것이라도 좋다.
발열체(20)에 관해서는 후에 더욱 상세히 기술한다.
상기 저부(18) 및 기체(12)에는 상하 방향으로 관통하는 관통구멍이 마련되고, 이 관통구멍을 삽통하여 도가니 받이축(24)이 도시하지 않은 구동 기구에 의해 상하이동 자유롭게 및 축선을 중심으로 하여 회전 자유롭게 마련되어 있다. 도가니 받이축(24)도 알루미나 등의 고온에 견디는 내열 재료에 의해 형성되어 있다.
도가니 받이축(24)의 상단에는 지르코니아 등의 내열 재료로 이루어지는 어댑터(26)가 부착되고, 이 어댑터(26) 내에 도가니(28)가 재치되게 되어 있다. 도가니(28)는 발열체(20)에 의해 가열된다.
도 2는 어댑터(26)에 의해 도가니(28)를 지지하는 부위를 확대하여 도시한다. 도가니(28)는 어댑터(26)의 상부의 오목부형상으로 형성된 세트부(26a)에 세트한다. 세트부(26a)의 중심에는 어댑터(26)을 관통하는 상부측이 대경, 하부측이 소경이 되는 관통구멍이 개구한다. 관통구멍의 중도의 단차부에 열전대의 헤드(30)가 세트된다. 열전대의 헤드의 선단은, 어댑터(26)에 도가니(28)를 세트한 상태에서, 도가니(28)의 저면에 접촉하도록 배치된다.
열전대의 선재(31)의 타단은 도가니 받이축(24)의 내부를 통과하여 온도 검지기까지 인출된다.
도가니(28)의 종류에 관해서는 후에 상세히 기술한다.
계속해서, 다시 각 부분의 상세에 관해 설명한다.
로본체(14)는 도시한 실시의 형태에서는 내층측부터 차례로, 최내벽인 내열벽(32), 내통(34), 단열재층(36), 외통(38)의 4층 구조로 되어 있다. 또한, 부호 40은 커버 부재이다.
내열벽(32)은, 도 3, 도 4에 도시하는 바와 같이, 6개의 분할편(32a)이 접합되어 소요 높이를 갖는 링형상으로 형성된 내열 부재(32b)가, 상하 방향으로 복수 적층되어 통형상으로 형성되어 있다. 링형상으로 형성된 내열 부재(32b)는 도 4에 명확한 바와 같이, 상하 인접하는 링형상의 내열 부재(32b)의 각 분할편(32a)이, 둘레 방향에 서로 어긋나게 적층되도록 배치하면 좋다.
내열 부재(32b)는 특히 한정되는 것은 아니지만, 알루미나제, 또는 2000℃ 정도까지의 온도에 대한 내열성을 갖는 지르코니아제로 하는 것이 알맞다.
내열벽(32)은 전체를 통형상으로 형성되고, 상단은 상기 덮개체(16a)에 의해 폐색된다.
내통(34), 외통(38)도 알루미나 등의 내열 부재에 의해 형성되어 있다. 내통(34)은 상기 덮개체(16b)에 의해 폐색되어 있다. 외통(38)도 상기 덮개체(16c)에 의해 폐색되어 있다. 내통(34) 및 외통(38)의 사이에 단열재가 충전되어 상기 단열재층(36)이 형성되어 있다.
단열재층(36)의 단열재는 알루미나 파이버가 소요 밀도로 굳혀진 것으로, 포러스상(狀)을 이루고, 내열성을 가짐과 함께, 단열성을 갖는 것으로 형성되어 있다.
외통(38)의 덮개체(16c)상에도 단열재를 실은 단열재층(42)이 형성되어 있다.
다음에 발열체(20)에 관해 설명한다.
발열체(20)는 Pt계 합금으로 이루어지고, 표리를 포함한 전체면에 지르코니아 코트를 시행하고 있다.
발열체(20)는 천장을 갖는 통형상을 이룬다. 도 5는 지르코니아를 코팅하기 전의 발열체(20)의 사진을 도시하고, 표면이 광택면으로 되어 있다. 도 6은 지르코니아를 코팅 한 후의 발열체(20)의 사진을 도시하고, 표면이 유백색의 무광택상태(梨地狀)로 되어 있다.
발열체(20)에의 지르코니아의 코팅은, 용사법 등에 의해 행할 수 있다. 지르코니아 코트의 두께는 특히 한정되지 않지만, 수십∼수백㎛의 두께가 알맞다. 지르코니아 코트는 너무 두꺼우면 열이력에 의한 신축에 의해 균열, 박리될 우려가 있다. 한편 지르코니아 코트는 너무 얇으면 필요한 내열성이나, Rh의 비산 방지성을 얻을 수가 없다.
발열체(20)로는 Pt-Rh, Pt-Mo, Pt-W, Pt-Ir, Pt-Re 합금 등의 Pt계 합금제의 것을 사용할 수 있지만, Pt-Rh 합금제의 것이 알맞다. 그 합금 조성으로서, Rh 함유량이 10∼30wt%의 Pt-Rh 합금제로 하면 보다 알맞다. Rh 함유량이 10∼30wt%의 Pt-Rh 합금제로 함에 의해, 그 융점이 약 1850∼1930℃가 되고, 산화갈륨의 융점 1795℃보다도 도움이 되게 높아짐으로써, 발열체(20)에 상기 Pt-Rh 합금제의 것을 사용함에 의해, 높은 융점의 산화갈륨이라도, 그 단결정을 알맞게 제조할 수 있다.
그런데, 발명자 등이 예의 검토한 바, 상기한 바와 같이, 발열체(20)에, Rh 함유량이 10∼30wt%의 Pt-Rh 합금제의 것을 사용한 경우에도, 고온에서 장기에 걸쳐서 사용하면, 점차로 Rh가 Pt로부터 유리되고, 산화 분해하여 비산하기 쉬워지는 것이 판명되었다. 이와 같이, Rh가 비산하여 버리면 합금의 조성 비율이 변화하고, 융점이 저하되어 버리기 때문에 고온에서의 사용에 견딜 수 없게 되는 점은 상기한 바와 같다.
도 7은, 지르코니아 코트 있음과, 지르코니아 코트 없음의 발열체(20)의, 사용 회수에 있어서의 중량 감소를 도시하는 그래프이다. 이 시험은, 사용 회수 경과의 그때마다, 발열체(20)를 로 내로부터 취출하여 그 중량을 측정함에 의해 행하였다.
도 7에 도시하는 바와 같이, 지르코니아 코트 없음의 발열체(20)를 사용한 경우, 적은 사용 회수에서, 그 중량 감소가 현저하다. 한편, 지르코니아 코트를 시행한 발열체(20)를 사용한 경우에는 중량 감소는 완만하고, 수명이 길어짐을 알 수 있다. 구체적으로는 50회 이상 반복 사용할 수 있고, 또한, 1700℃ 이상의 상태를 누계 600시간 이상 사용하고 있다. 발열체(20)의 중량 감소는 Pt-Rh 합금제의 발열체에 있어서, Pt는 산화하기 어렵고, 한편 Rh은 산화하기 쉬운 것이기 때문에, 고온에서의 사용에 의해, Rh가 합금으로부터 점차로 분리하고, 산화 분해하고, 비산함에 의한다고 생각된다. 발열체(20)에 지르코니아 코트를 시행함에 의해, 발열체(20)의 산소와의 접촉을 가급적 억제할 수 있고, Rh의 비산을 방지할 수 있다.
또한 도시하지 않지만, 발열체(20)의 하부에, 슬릿 등의 노치부를 마련하든지, 또는 발열체(20) 하부를 다른 부위보다도 박육으로 형성하면 알맞다.
이에 의해, 고주파 코일(22)로부터의 가열에 의한 발열체(20) 하부의 발열량이 다른 부위보다도 낮게 억제되고, Rh의 비산을 보다 효과적에 억제된다.
발열체(20)는 사파이어 등의 단열재로 이루어지는 저부(18)상에 재치되는데, 발열체(20)의 저부의 발열량이 낮게 억제되기 때문에, 발열체(20)의 저부(18)와의 결착이 억제되고, 또한 그에 의한 지르코니아 코트의 박리도 억제되기 때문에, 발열체(20)의 노출이 억제되고, Rh의 비산이 억제된다.
도가니(28)에서의 결정의 육성은, 발열체(20) 내 상부의 균열존에서 행하여지기 때문에, 발열체(20) 하부에서의 발열이 낮게 억제되어도, 결정의 육성에는 지장이 없다.
다음에 도가니(28)에 관해 설명한다.
β-Ga2O3 결정의 제조에서는 도가니(28)의 재료로서 백금계 합금 재료, 알맞게 은 Pt-Rh 의 합금 재료를 사용한다.
도가니(28)에, Pt계 합금 재료, 특히 Pt-Rh계 합금 재료를 사용함에 의해, 대기중임에도 불구하고, 예를 들면 Ir 단독의 경우와 상위하게, 도가니(28)의 산화를 방지할 수 있고, 한편으로, 산소가 풍부한 대기중에서 결정 육성하기 때문에, 산소 결핍 결함이 없는 산화갈륨의 결정 육성을 행할 수 있다.
도가니(28)에, 백금계 합금 재료의 것을 사용할 때에는 산화갈륨 이외의, Pt의 융점보다도 높은 융점을 갖는 금속산화물의 결정의 육성도 행할 수 있다.
탄탈산리튬(LiTaO3 : LT) 단결정의 제조에서는 도가니 재료로서 백금계 재료를 사용한다. 백금 100%의 것이 바람직하지(또한, 백금 100%란, 제조할 때에 불가피적으로 혼입되어 오는 1% 미만의 불순물을 함유하는 것도 포함한다)만, 순도 95wt% 이상의 것이라도 좋다. 5wt% 정도의, 예를 들면 로듐(Rh)이 들어간 것이라도 좋다. 5wt% 정도의 로듐이라면, 결정 중으로의 로듐의 용출을 낮게 할 수 있고, 결정의 품질에 그다지 악영향을 주지 않는다. 또한, 로듐이 혼입됨에 의해, 도가니의 융점이 높아지기 때문에, 이 점에서, 도가니의 변형을 유효하게 억제할 수 있다.
도가니(28)에, 백금 재료를 사용함에 의해, 대기중임에도 불구하고, 예를 들면 Ir 단독의 경우와 상위하게, 도가니(28)의 산화를 방지할 수 있고, 한편으로, 산소가 풍부한 대기중에서 결정 육성하기 때문에, 산소 결핍 결함이 없는 고품질의 탄탈산리튬 단결정의 결정 육성을 행할 수 있다.
[실시례]
이하에서는 도 1에 도시하는 단결정 제조 장치(10)을 사용하여 β-Ga2O3의 단결정 및 LiTaO3의 단결정을 제조한 실시례를 나타낸다.
(β-Ga2O3의 결정 육성의 실시례)
도 1에 도시하는 VB(수직 브리지만)로 내에서 종자없음 1방향 응고 β-Ga2O3 결정 육성을 시도하였다. 내경 25㎜, 높이 50㎜의 Pt-Rh계 합금제의 도가니에 β-Ga2O3 소결체 원료를 충전하고, β-Ga2O3의 융점(약 1795℃) 부근의 온도 구배를 5∼10℃/㎝가 되도록 온도 분포를 설정한 1800℃ 이상의 공기 중 고온로(도 1에 도시하는 장치) 내에서 전융해 시켰다. 그 후 도가니 이동 및 로내 온도 강하를 병용하고 1방향 응고를 행하였다. 냉각 후, 도가니를 벗겨서 성장 결정을 취출하였다.
상기 1방향 응고 β-Ga2O3 결정 육성으로 얻어진 전형적인 3종류의 결정의 결정 사진을 도 8에 도시하였다. 결정(A)은 전부가 다결정 성장한 경우이다. 결정(B)은 다결정 성장으로부터 돌연 단결정 성장으로 변화한 경우이다. 결정(C)은 저면부터 상단까지 단결정 성장한 경우이다. 결정(B)의 상부 단결정 부분 및 단결정(C)은, X선 회절과 특징적인 정벽 관찰로부터, 어느 것도 <100> 방향으로 (100)면의 패싯(facet) 성장하고 있는 것, 또한 (100)면과 약 104°에 (001) 패싯면이 나타나고, 이들 2개의 패싯면에 수직한 방향이 <010> 방향인 것이 동정되었다. <100> 방향보다도 <010> 방향의 성장 속도가 약 1자릿수 빠른, 강한 성장 속도 이방성이기 위해, 종자 없이도 높은 확률로, <100> 방향으로 (100)면 패싯 성장하는 것이 확인되었다.
또한, 얻어진 단결정으로부터 성장 방향에 수직한 (100)면 기판을 절단하여 두께 약 0.5㎜의 양면 경면 연마 기판을 얻었다. 이러한 기판 시료에 관해, 크로스 니콜 관찰, X선 토포그래프 관찰, KOH 에칭 후 광학 현미경 관찰을 행하였다.
크로스 니콜 관찰 결과를 도 9A에 도시하였다. 이 관찰 방법에서 검출 가능한 소경각(小傾角) 경계가 없는 단결정 기판인 것을 알았다. 같은 기판의 투과 X선 토포그래프 사진을 도 9B에 도시하였다. 외주부의 일부를 제외하고 투과 X선 회절상을 얻어졌다. 외주부의 화상이 결락한 부분(백색부)은, 고전위 밀도 영역, 또는 크로스 니콜 법으로는 검출할 수 없는 약간의 경각에 상당한다. 거의 <010> 방향으로 국소적으로 나열하는 전위 피트열을 도 9C에 도시하였다. 이 밀도는 2×103개/㎠ 정도였다. 도 9B의 X선 토포그래프 사진의 백색 부분에 상당하는 영역에는 5×105개/㎠ 정도의 고밀도 전위 피트가 존재하고 있다. 또한, X선 토포그래프상과는 대응하지 않는 <010> 방향으로 10∼수10㎛ 사이즈로 선형상으로 나열하는 결함을 도 9D에 도시하였다. 이 결함은 에칭 없이도 관찰되는 것으로, 선형상 결함이라고 생각된다.
본 실시례에서, 도가니(28)는 1회용이였지만, Pt-Rh 합금제로 전면에 지르코니아 코트를 시행한 발열체(20)는 50회 이상의 결정 육성에 반복하여 사용할 수 있다.
(LiTaO3의 결정 육성의 실시례)
VB법에 의한 탄탈산리튬 단결정의 결정 육성을 다음과 같이 하여 행한다.
우선, 미리 계측한 고주파 코일(22)의 출력과 로본체 내 온도(이하 로내 온도라고 한다) 데이터에 의거하여 고주파 코일(22)을 소요 출력으로 출력시켜서, 미리 도 10A에 도시하는 바와 같은 로내 온도 분포가 되도록, 로내를 승온시킨다. 또한, 도 10B는 도 10A에서의 a부의 확대도이다. 뒤이어 탄탈산리튬의 종자 결정과 탄탈산리튬의 원재료를 수용한 도가니(28)를 어댑터(26)에 싣고서, 도가니 받이축(24)를 상승시켜서, 도가니(28)를 균열존까지 상승시켜, 탄탈산리튬을 융해시킨다. 뒤이어 도가니 축받이(24)을 강하시켜서, 도가니(28)를 노외에서 냉각함에 의해 융해한 탄탈산리튬을 고화, 결정화시켜 탄탈산리튬 단결정을 얻을 수 있다.
그 후, 로내 온도를 적절히 온도까지 강하시켜서, 로내에 재차 도가니를 상승시켜서, 필요에 응하여 결정의 어닐 처리를 할 수 있다.
도가니(28)로부터 탄탈산리튬 단결정을 취출하려면, 백금제의 도가니(28)를 가위 등에 의해 잘라 찢어서, 결정을 취출하도록 한다. 잘라 찢은 도가니(28)는 융해하여 재사용할 수 있다. 또한, 도가니(28)는 잘라 찢는 것이 용이하도록, 두께 0.5㎜ 이하(알맞게는 0.1∼0.2㎜)의 백금제로 하면 좋다.
VGF법에 의한 탄탈산리튬 단결정의 결정 육성의 경우에도, 미리 도 10A에 도시하는 바와 같은 로내 온도 분포가 되도록, 발열체(20)를 가열할 때의 고주파 코일(22)의 출력을 파악하여 두도록 한다.
VGF법에 의한 탄탈산리튬 단결정의 결정 육성에는 탄탈산리튬의 종자 결정과 탄탈산리튬의 원재료를 수용한 도가니(28)를 어댑터(26)에 싣고서, 도가니 받이축(24)를 상승시켜서, 도가니(28)를, 미리 로내의 균열존이 되어야 할 높이 위치까지 상승시켜 둔다. 뒤이어, 고주파 코일(22)을 소요 출력으로 작동시켜, 로내 온도를 도 10A에 도시하는 바와 같은 온도 분포가 되도록 상승시켜, 탄탈산리튬을 융해시킨다. 뒤이어 로내 온도를 강하시켜서 탄탈산리튬을 고화, 결정화시켜서 탄탈산리튬 단결정을 얻을 수 있다. VGF법에 의할 때는 도가니(28)를 소요 높이 위치에 고정 배치하여 로내 온도를 상승, 하강시키는 것이기 때문에, 온도 하강시에 어닐 처리를 동시에 행할 수 있는 이점이 있다. 또한, 결정 육성할 때에, 로내 온도를 상승, 강하시키는 것이기 때문에, 온도 제어를 세밀하게 정밀도 좋게 행할 수 있기 때문에, 보다 고품질의 탄탈산리튬 단결정을 얻을 수 있다.
도 11에, VGF법에 의할 때의 로내 온도 제어할 때의 로내 온도의 프로파일의 한 예를 도시한다. 또한 도 12에 그때의 온도 제어 플로를 도시한다. 도 13은, 고주파 코일(22)의 출력에 대한 로내 온도의 추종성을 도시하는 그래프이다.
공정 S1에서, 도가니(28)에 탄탈산리튬의 종자 결정과 탄탈산리튬의 원재료를 수납하고, 도가니(28)를 로내의 소정 위치(상기 균열존이 되어야 할 위치)까지 상승시켜 둔다. 로내 온도는 실온이다.
공정 S2에서, 고주파 코일(22)의 출력을 비교적 급격하게 상승시켜, 로내 온도가 약 1295℃가 될 때까지, 로내 온도를 급상승시킨다. 이때의 시간은 약 600분. 이에 의해 택트 타임을 단축할 수 있다. 출력을 급상승시키기 때문에 로내 온도의 추종성은 낮다(도 13).
공정 S3로는 고주파 코일(22)의 출력을 일정하게 하여 로내의 온도를 일정하게 유지하여 로내의 온도를 안정화한다. 이때의 시간은 약 650분이 된다. 단, 금후의 실시에서, 로내 온도 안정화에 650분을 필요로 하는 일은 없고, 360분 정도로 충분하다.
뒤이어 공정 S4에서, 재차 고주파 코일(22)의 출력을 재차 급상승시켜서 로내 온도를 종자 붙임 온도의 바로 앞인 약 1500℃까지 상승시킨다. 이때의 시간은 약 230분니 된다. 공정 S3로 로내 온도를 안정화하여 로내 온도 분포를 균일화하고 있기 때문에, 고주파 코일(22)의 출력에 대한 로내 온도 상승의 추종성은 높다(도 13).
뒤이어 공정 S5에서, 고주파 코일(22)의 출력 상승을 낮게 억제하여 로내 온도, 즉 도가니(28)의 온도가 종자 붙임 온도가 될 때까지 천천히 온도 상승시킨다. 이때의 시간은 약 150분이 된다. 이와 같이, 로내 온도를 천천히 상승시킴으로써, 도가니(28)의 온도가, 종자 붙임 온도(약 1586℃)를 오버슈트하는 것을 방지할 수 있다.
그리고 공정 S6에서, 고주파 코일(22)의 출력을 일정하게 하여 도가니(28)의 온도를 약 1586℃로 일정하게 하여 원재료의 탄탈산리튬을 용해하고, 종자 부임을 행한다. 이때의 시간은 약 180분이 된다. 또한, 도가니(28)의 온도는 도가니(28)의 저부의 온도를 열전대의 헤드(30)로 계측하고 있기 때문에, 도가니(28) 내의 온도는 이보다도 높은, 약 1650℃로 상승하고 있다고 생각된다.
상기한 바와 같이, 공정 S5에서 로내 온도를 천천히 상승시켜서, 도가니(28)의 온도가, 종자 붙임 온도(약 1586℃ : 도가니 내의 실제의 종자 붙임 온도는 1650℃)를 오버슈트하는 것을 방지하도록 하고 있기 때문에, 탄탈산리튬의 단결정화를 정밀도 좋게, 또한 효율적으로 행하게 할 수 있다. 또한, 도가니(28)를 과가열하는 일이 없기 때문에, 백금제의 도가니(28)가 연화하여 변형하는 등의 부적합함이 발생하지 않는다. 또한, 공정 S5 및 S6에서의, 고주파 코일(22)의 출력에 대한 로내 온도 상승의 추종성은 당연하지만 높다(도 13).
이와 같이, 온도 제어를 세밀하게 정밀도 좋게 행할 수 있는 제조 장치를 제작하고, 로내 온도 상승의 추종성이 높은 제어를 실행함에 의해, 백금 도가니를 연화, 변형시키는 일 없이 사용할 수 있다.
또한, 백금 도가니의 온도를 백금 융점(1768℃)보다도 50℃ 정도 낮아지도록 하면 좋음을 알았다.
뒤이어, 공정 S7에서, 고주파 코일(22)의 출력을 약간 저하시켜서, 로내 온도, 따라서 도가니(28)의 온도를 약 1425℃까지 천천히 저하시켜, 융해한 탄탈산리튬을 고화, 결정화시킨다. 이때의 시간은 약 3010분이 된다. 이 공정 S7에서의, 고주파 코일(22)의 출력에 대한 로내 온도 하강의 종성은 높다(도 13). 이 공정 S7에서, 실질적으로 어닐 처리도 이루어진다.
그리고, 공정 S8에서, 고주파 코일(22)의 출력을 비교적 급격하게 저하시켜서, 로내 온도를 실온에 까지 저하시키고, 결정 육성을 종료한다. 공정 S8의 시간은, 약 2660분이 된다. 공정 S8에서, 고주파 코일(22)의 출력에 대한 로내 온도하강의 추종성은 낮다(도 13).
상기한 바와 같이, 도 11, 도 12에 도시하는 로내 온도 제어의 실시의 형태에서, 공정 S1, S2, S3, S8에서는 고주파 코일(22)의 출력 변화에 대해 로내 온도가 지연되게 추종하고 있지만, 정밀한 온도 제어를 필요로 한 공정 S4∼S7, 특히 공정 S5∼S7에서는 고주파 코일(22)의 출력 변화에 대한 로내 온도의 추종성은 높다. 이것은, 정밀한 온도 제어를 필요로 하는 공정 S5∼S7에서, 필요로 하는 정확한 온도 제어가 가능한 것을 의미하고, 고품질의 탄탈산리튬 단결정을 육성할 수 있고, 또한, 도가니(28)를 변형시키는 일 없이 결정의 육성을 할 수 있다.
도 14는 백금 100%의 도가니를 사용하고, 도 1에 도시하는 고주파 가열로에 의해, 도 11에 도시하는 로내 온도 프로파일로, VGF법에 의해 결정 육성을 행하여 얻어진 탄탈산리튬 단결정의 사진이다.
또한, 도 11, 도 12에 도시하는 로내 온도의 프로파일 및 제어 플로는 한 예이고, 이것으로 한정되는 것이 아니다.
상기한 바와 같이, 본 실시례에서는 온도 구배를 작게 할 수 있는 VB법 또는 VGF법을 채용함에 의해, 로내 온도 분포의 균일화가 도모되고, 로내 최고 온도를 낮게 억제할 수 있기 때문에, 탄탈산리튬과의 융점차가 작은 백금제의 도가니를, 연화, 변형시키는 일 없이 사용할 수 있다. 그리고, 백금제의 도가니를 사용할 수 있기 때문에, 도가니 재료의 결정 중으로의 융해가 거의 없고, 로내 온도 제어를 정밀하게 행할 수 있는 것과 어울려서, 고품질의 탄탈산리튬 단결정의 육성을 할 수 있다는 효과를 이룬다.
또한, 산화 분위기(대기중)에서 탄탈산리튬 단결정의 결정 육성을 할 수 있기 때문에, 예를 들면 Ir(이리듐)제 도가니를 사용하는 경우와 같이, 불활성 가스 등의 도입이 필요하지 않고, 장치의 소형화를 도모할 수 있음과 함께, 어닐 처리도 용이하게 행할 수 있다는 이점이 있다.
이상, 각 실시례의 결과에 의해, 산화갈륨과 탄탈산리튬의 단결정의 육성을 확인하고 있고, 본 실시의 형태에서의 단결정 제조 장치에 의하면, 융점이 1800℃ 정도까지의 금속산화물에 있어서의, 단결정의 상업적 제조를 실현 가능하게 할 수도 있다.

Claims (12)

  1. 기체와, 그 기체상에 배설된 내열성을 갖는 통형상의 로본체와, 그 로본체를 폐색하는 덮개체와, 상기 로본체 내에 배설된 발열체와, 그 발열체를 고주파 유도 가열에 의해 가열하는 고주파 코일과, 상기 발열체에 의해 가열되는 도가니를 구비하고, 산화 분위기 중에서, 금속산화물의 단결정을 제조하는 단결정 제조 장치로서,
    상기 발열체가, Pt계 합금으로 이루어지고, 전면에 지르코니아 코트를 시행하고 있는 것을 특징으로 하는 단결정 제조 장치.
  2. 제1항에 있어서,
    상기 발열체가 Pt-Rh 합금제인 것을 특징으로 하는 단결정 제조 장치.
  3. 제2항에 있어서,
    상기 발열체가, Rh 함유량이 10∼30wt%의 Pt-Rh 합금제인 것을 특징으로 하는 단결정 제조 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 발열체가 통형상을 이루고, 하부에 노치부를 갖는 것을 특징으로 하는 단결정 제조 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 발열체가 통형상을 이루고, 하부가 다른 부위보다도 박육으로 형성되어 있는 것을 특징으로 하는 단결정 제조 장치.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 로본체의 내벽이, 소요 높이를 갖는 링형상의 내열 부재가 복수 적층된 내열벽으로 형성되어 있음과 함께, 상기 링형상의 내열 부재가 복수의 분할편이 접합되고 링형상으로 형성되어 있는 것을 특징으로 하는 단결정 제조 장치.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 금속산화물이, Pt의 융점보다도 높은 융점을 갖는 것을 특징으로 하는 단결정 제조 장치.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 도가니가, Pt-Rh 합금제이고, β-Ga2O3의 단결정을 제조하는 것을 특징으로 하는 단결정 제조 장치.
  9. 제7항에 있어서,
    상기 도가니가, Pt-Rh 합금제이고, β-Ga2O3의 단결정을 제조하는 것을 특징으로 하는 단결정 제조 장치.
  10. 제8항에 있어서,
    상기 도가니가, Rh 함유량이 10∼30wt%의 Pt-Rh 합금제인 것을 특징으로 하는 단결정 제조 장치.
  11. 제9항에 있어서,
    상기 도가니가, Rh 함유량이 10∼30wt%의 Pt-Rh 합금제인 것을 특징으로 하는 단결정 제조 장치.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 도가니가 Pt제이고, LiTaO3의 단결정을 제조하는 것을 특징으로 하는 단결정 제조 장치.
KR1020180013394A 2017-03-02 2018-02-02 단결정 제조 장치 KR102492855B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-039286 2017-03-02
JP2017039286A JP6641317B2 (ja) 2017-03-02 2017-03-02 単結晶製造装置

Publications (2)

Publication Number Publication Date
KR20180101174A true KR20180101174A (ko) 2018-09-12
KR102492855B1 KR102492855B1 (ko) 2023-01-31

Family

ID=63171162

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180013394A KR102492855B1 (ko) 2017-03-02 2018-02-02 단결정 제조 장치

Country Status (7)

Country Link
US (1) US10280530B2 (ko)
JP (1) JP6641317B2 (ko)
KR (1) KR102492855B1 (ko)
CN (1) CN108531990A (ko)
DE (1) DE102018203131A1 (ko)
RU (1) RU2749825C2 (ko)
TW (1) TWI746769B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800468B2 (ja) * 2018-10-11 2020-12-16 国立大学法人信州大学 酸化ガリウム結晶の製造装置及び酸化ガリウム結晶の製造方法並びにこれらに用いる酸化ガリウム結晶育成用のるつぼ
JP7258293B2 (ja) * 2019-08-29 2023-04-17 不二越機械工業株式会社 酸化ガリウム結晶育成用るつぼ
JP7308715B2 (ja) * 2019-10-04 2023-07-14 信越化学工業株式会社 単結晶育成装置
US11674239B2 (en) * 2020-02-27 2023-06-13 Fujikoshi Machinery Corp. Gallium oxide crystal manufacturing device
JP7403098B2 (ja) * 2020-02-27 2023-12-22 不二越機械工業株式会社 酸化ガリウム単結晶育成用るつぼ
WO2021243707A1 (zh) * 2020-06-05 2021-12-09 眉山博雅新材料有限公司 无需退火的高均一性晶体生长方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210512A (ja) * 1984-04-04 1985-10-23 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法
JP2009018987A (ja) * 2007-07-10 2009-01-29 Commissariat A L'energie Atomique 熱伝導率を調整することによって結晶質材料のブロックを製造するための装置
JP2012132071A (ja) * 2010-12-22 2012-07-12 Tanaka Kikinzoku Kogyo Kk 高温装置の揮発損失防止方法
JP2016079080A (ja) 2014-10-21 2016-05-16 国立大学法人信州大学 β−Ga2O3結晶の製造方法及び製造装置並びにるつぼ容器
JP2016200254A (ja) * 2015-04-14 2016-12-01 住友金属鉱山株式会社 断熱構造体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2311028A (en) * 1939-12-20 1943-02-16 Chaston Jack Chambers Electric heating element
US3470017A (en) * 1965-11-05 1969-09-30 Bell Telephone Labor Inc Iridium crucibles and technique for extending the lifetime thereof by coating with zirconium or zirconium oxide
JPS49131301U (ko) * 1973-03-16 1974-11-12
JPS604599B2 (ja) * 1976-03-17 1985-02-05 株式会社東芝 タンタル酸リチウム単結晶の製造方法
US4632817A (en) * 1984-04-04 1986-12-30 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
JPS62212228A (ja) * 1986-03-13 1987-09-18 Tanaka Kikinzoku Kogyo Kk 高温用白金容器
JPH02239181A (ja) * 1989-03-10 1990-09-21 Sumitomo Metal Mining Co Ltd 結晶成長装置および方法
RU2049761C1 (ru) * 1992-04-22 1995-12-10 Поляк Борис Иосифович Состав покрытия для повышения срока службы карбидкремниевых электронагревателей
CN1080334A (zh) * 1992-06-17 1994-01-05 中国科学院上海光学精密机械研究所 保护铱坩埚生长掺四价铬高温氧化物晶体的方法
JP3520957B2 (ja) * 1997-06-23 2004-04-19 シャープ株式会社 多結晶半導体インゴットの製造方法および装置
JP3625052B2 (ja) * 2000-11-01 2005-03-02 川崎重工業株式会社 雑固体廃棄物溶融用高周波誘導炉、誘導加熱体及び雑固体廃棄物溶融方法
US20080057275A1 (en) * 2006-08-31 2008-03-06 Paul Richard Grzesik Method and apparatus for minimizing oxidation pitting of refractory metal vessels
CN101070608B (zh) * 2006-12-29 2010-06-23 嘉兴学院 旋转多坩埚下降法晶体生长系统
JP2009052764A (ja) * 2007-08-23 2009-03-12 Sharp Corp 高周波誘導炉およびそれを用いた溶融物製造方法
WO2010024940A2 (en) * 2008-08-29 2010-03-04 Corning Incorporated Protective coating and method
JP2015021144A (ja) * 2013-07-16 2015-02-02 株式会社フルヤ金属 耐熱性部品及びその製造方法
CN107177885B (zh) * 2017-05-05 2019-10-18 同济大学 一种氧化镓单晶闪烁体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210512A (ja) * 1984-04-04 1985-10-23 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法
JP2009018987A (ja) * 2007-07-10 2009-01-29 Commissariat A L'energie Atomique 熱伝導率を調整することによって結晶質材料のブロックを製造するための装置
JP2012132071A (ja) * 2010-12-22 2012-07-12 Tanaka Kikinzoku Kogyo Kk 高温装置の揮発損失防止方法
JP2016079080A (ja) 2014-10-21 2016-05-16 国立大学法人信州大学 β−Ga2O3結晶の製造方法及び製造装置並びにるつぼ容器
JP2016200254A (ja) * 2015-04-14 2016-12-01 住友金属鉱山株式会社 断熱構造体

Also Published As

Publication number Publication date
DE102018203131A1 (de) 2018-09-06
KR102492855B1 (ko) 2023-01-31
CN108531990A (zh) 2018-09-14
US10280530B2 (en) 2019-05-07
RU2018107517A3 (ko) 2020-12-07
TW201839191A (zh) 2018-11-01
US20180251908A1 (en) 2018-09-06
RU2749825C2 (ru) 2021-06-17
JP2018145029A (ja) 2018-09-20
RU2018107517A (ru) 2019-09-02
JP6641317B2 (ja) 2020-02-05
TWI746769B (zh) 2021-11-21

Similar Documents

Publication Publication Date Title
KR20180101174A (ko) 단결정 제조 장치
KR102374317B1 (ko) 산화갈륨 결정의 제조 장치 및 산화갈륨 결정의 제조 방법
JP5526666B2 (ja) サファイア単結晶の製造装置
JP5633732B2 (ja) サファイア単結晶の製造方法およびサファイア単結晶の製造装置
JP6800468B2 (ja) 酸化ガリウム結晶の製造装置及び酸化ガリウム結晶の製造方法並びにこれらに用いる酸化ガリウム結晶育成用のるつぼ
TWI555886B (zh) 藍寶石單結晶之製造裝置
JP6989855B2 (ja) β-Ga2O3単結晶製造装置およびこれに用いる発熱体
KR20180032176A (ko) 탄탈산리튬 결정의 제조 장치 및 탄탈산리튬 결정의 제조 방법
KR101934189B1 (ko) SiC 단결정 및 그 제조 방법
JP7102970B2 (ja) ニオブ酸リチウム単結晶の製造方法
JP7155968B2 (ja) 単結晶育成用ルツボ及び単結晶製造方法
JP6846724B2 (ja) 酸化ガリウム結晶の製造装置および酸化ガリウム結晶の製造方法
JP2006182626A (ja) 板状結晶の製造装置および製造方法
JP2013256424A (ja) サファイア単結晶育成装置
JP7023458B2 (ja) 単結晶育成方法
JP2016132599A (ja) サファイア単結晶製造装置、及びサファイア単結晶の製造方法
JP2016169112A (ja) サファイア単結晶の製造方法
JP2018168020A (ja) SiC単結晶の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant