KR20140037930A - 수용성 다이 부착 필름을 이용한 레이저 및 플라즈마 에칭 웨이퍼 다이싱 - Google Patents
수용성 다이 부착 필름을 이용한 레이저 및 플라즈마 에칭 웨이퍼 다이싱 Download PDFInfo
- Publication number
- KR20140037930A KR20140037930A KR1020147001007A KR20147001007A KR20140037930A KR 20140037930 A KR20140037930 A KR 20140037930A KR 1020147001007 A KR1020147001007 A KR 1020147001007A KR 20147001007 A KR20147001007 A KR 20147001007A KR 20140037930 A KR20140037930 A KR 20140037930A
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductor wafer
- mask
- die attach
- dicing
- attach film
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 138
- 239000004065 semiconductor Substances 0.000 claims abstract description 95
- 230000008569 process Effects 0.000 claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 238000000059 patterning Methods 0.000 claims abstract description 31
- 239000007864 aqueous solution Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims description 57
- 239000000463 material Substances 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 238000001020 plasma etching Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 5
- 239000003929 acidic solution Substances 0.000 claims description 4
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 229920002307 Dextran Polymers 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- 239000004584 polyacrylic acid Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 abstract description 112
- 239000010410 layer Substances 0.000 description 69
- 210000002381 plasma Anatomy 0.000 description 29
- 239000002609 medium Substances 0.000 description 15
- 230000015654 memory Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000000608 laser ablation Methods 0.000 description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 7
- 238000002679 ablation Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000003698 laser cutting Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- URQUNWYOBNUYJQ-UHFFFAOYSA-N diazonaphthoquinone Chemical compound C1=CC=C2C(=O)C(=[N]=[N])C=CC2=C1 URQUNWYOBNUYJQ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- WGXGKXTZIQFQFO-CMDGGOBGSA-N ethenyl (e)-3-phenylprop-2-enoate Chemical compound C=COC(=O)\C=C\C1=CC=CC=C1 WGXGKXTZIQFQFO-CMDGGOBGSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3081—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L21/6836—Wafer tapes, e.g. grinding or dicing support tapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/16—Composite materials, e.g. fibre reinforced
- B23K2103/166—Multilayered materials
- B23K2103/172—Multilayered materials wherein at least one of the layers is non-metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Dicing (AREA)
- Laser Beam Processing (AREA)
- Drying Of Semiconductors (AREA)
- Die Bonding (AREA)
Abstract
반도체 웨이퍼들을 다이싱하는 방법들이 설명되며, 각각의 웨이퍼는 복수의 집적 회로들을 갖는다. 방법은 반도체 웨이퍼 위에 마스크를 형성하는 단계를 포함한다. 반도체 웨이퍼는 수용성 다이 부착 필름 상에 배치된다. 마스크는 집적 회로들을 커버하고 보호한다. 상기 마스크를 레이저 스크라이빙 프로세스에 의해 패터닝하여, 갭들을 갖는 패터닝된 마스크를 제공한다. 패터닝은 집적 회로들 사이의 반도체 웨이퍼의 영역들을 노출시킨다. 이후, 패터닝된 마스크 내의 갭들을 통해서 반도체 웨이퍼가 에칭되어, 싱귤레이트된(singulated) 집적 회로들을 형성한다. 이후, 수용성 다이 부착 필름이 수용액에 의해 패터닝된다.
Description
본 발명의 실시예들은 반도체 프로세싱 분야에 관한 것이고 그리고, 특히, 반도체 웨이퍼들을 다이싱하는 방법들에 관한 것이며, 각각의 웨이퍼는 복수의 집적 회로들을 상부에 갖는다.
반도체 웨이퍼 프로세싱에서, 집적 회로들은 실리콘 또는 다른 반도체 재료로 이루어진 웨이퍼(또한 기판이라고도 지칭됨) 상에 형성된다. 일반적으로, 반도체성, 전도성 또는 절연성의 다양한 재료들의 층들이 집적 회로들을 형성하기 위해 이용된다. 이러한 재료들은, 집적 회로들을 형성하기 위해 다양한 주지의(well-known) 프로세스들을 이용하여 도핑되고, 증착되고 그리고 에칭된다. 각각의 웨이퍼를 프로세싱하여, 다이스(dice)로서 공지된, 집적 회로들을 포함하는 많은 수의 개별적인 영역들을 형성한다.
집적 회로 형성 프로세스 이후에, 웨이퍼는, 패키징을 위해 또는 보다 큰 회로들 내에서의 패키징되지 않은(unpackaged) 형태의 사용을 위해 개별적인 다이(die)를 서로로부터 분리하기 위해 "다이싱된다(diced)". 웨이퍼 다이싱을 위해 이용되는 2개의 주요 기술들은 스크라이빙(scribing) 및 쏘잉(sawing)이다. 스크라이빙을 이용하게 되면, 다이아몬드 선단형 스크라이브(diamond tipped scribe)가, 미리-형성된 스크라이브 라인들을 따라 웨이퍼 표면을 가로질러서 이동된다. 이러한 스크라이브 라인들은 다이스 사이의 공간들을 따라서 연장한다. 이러한 공간들은 일반적으로 "스트리트(street)들"로서 지칭된다. 다이아몬드 스크라이브는 스트리트들을 따라서 웨이퍼 표면 내에 얕은 스크래치(scratch)들을 형성한다. 예를 들어 롤러를 이용하여 압력을 인가하게 되면, 웨이퍼는 스크라이브 라인들을 따라서 분리된다. 웨이퍼 내의 파괴(breaks)는 웨이퍼 기판의 결정 격자 구조를 따른다. 스크라이빙은 두께가 약 10 mils(천분의 1인치) 또는 그 미만인 웨이퍼들에 대해서 이용될 수 있다. 보다 두꺼운 웨이퍼들에 대해서는, 쏘잉이 다이싱을 위한 현재의 바람직한 방법이다.
쏘잉을 이용하게 되면, 높은 분당 회전수들로 회전하는 다이아몬드 선단형 톱(saw)이 웨이퍼 표면과 접촉하고 그리고 스트리트들을 따라서 웨이퍼를 쏘잉한다. 웨이퍼는 필름 프레임에 걸쳐서 연신된(stretched) 접착 필름(adhesive film)과 같은 지지 부재 상에 장착되며, 그리고 톱은 수직 및 수평 스트리트들 모두에 대해서 반복적으로 적용된다. 스크라이빙 또는 쏘잉의 하나의 문제는, 다이스의 절단된 엣지들을 따라서 칩(chip)들 및 가우지(gouge)들이 형성될 수 있다는 것이다. 또한, 균열(crack)들이 형성될 수 있고, 다이스의 엣지들로부터 기판 내로 전파(propagate)될 수 있고 그리고 집적 회로를 불능이 되게 할 수 있다. 칩핑(chipping) 및 균열은 특히 스크라이빙에 대해 문제가 되는데, 왜냐하면 정사각형 또는 직사각형 다이의 단지 하나의 측부(side) 만이 결정 구조의 <110> 방향으로 스크라이빙될 수 있기 때문이다. 결과적으로, 다이의 다른 측부의 클리빙(cleaving)은 들쭉날쭉한(jagged) 분리 라인을 초래한다. 칩핑 및 균열 때문에, 집적 회로들에 대한 손상을 방지하기 위해서는 웨이퍼 상의 다이스 사이에 부가적인 간격이 요구되고, 예를 들어, 칩들 및 균열들은 실제 집적 회로들로부터 거리를 두고 유지된다. 간격 요건들의 결과로서, 표준 크기의 웨이퍼 상에 많은 다이스가 형성될 수 없으며 그리고, 그렇지 않으면 회로망(circuitry)을 위해 사용될 수 있는 웨이퍼 부지(real estate)가 낭비된다. 톱의 이용은 반도체 웨이퍼 상의 부지의 낭비를 악화시킨다. 톱의 블레이드(blade)는 두께가 대략 15 미크론이다. 따라서, 톱에 의해 만들어진 컷팅 주위의 균열 및 다른 손상이 집적 회로들을 손상시키지 않도록 보장하기 위해, 각각의 다이스의 회로망이 300 내지 500 미크론 만큼 종종 분리되어야 한다. 또한, 컷팅 후에, 쏘잉 프로세스로부터 초래된 입자들 및 다른 오염물질들을 제거하기 위해, 각각의 다이는 실질적인(substantial) 세정을 필요로 한다.
플라즈마 다이싱이 또한 이용되어 왔지만, 또한 한계들을 가질 수 있다. 예를 들어, 플라즈마 다이싱의 실시를 방해하는 하나의 한계는 비용일 수 있다. 레지스트를 패터닝하기 위한 표준 리소그래피 동작은 실시 비용을 터무니없이 높일 수 있다. 플라즈마 다이싱의 실시를 아마도 방해할 수 있는 다른 한계는, 스트리트들을 따라서 다이싱함에 있어서 일반적으로 만나게 되는(encountered) 금속들(예를 들어, 구리)의 플라즈마 프로세싱이 생산 문제들 또는 처리량(throughput) 한계들을 생성할 수 있다는 것이다.
본 발명의 실시예들은 반도체 웨이퍼들을 다이싱하는 방법들을 포함하고, 각각의 웨이퍼는 복수의 집적 회로들을 상부에 갖는다.
일 실시예에서, 복수의 집적 회로들을 갖는 반도체 웨이퍼를 다이싱하는 방법은 반도체 웨이퍼 위에 마스크를 형성하는 단계를 포함한다. 반도체 웨이퍼는 수용성(water-soluble) 다이 부착 필름 상에 배치된다. 마스크는 집적 회로들을 커버하고 보호한다. 이후, 상기 마스크를 레이저 스크라이빙 프로세스(laser scribing process)로 패터닝하여, 갭들을 갖는 패터닝된 마스크를 제공함으로써, 집적 회로들 사이의 반도체 웨이퍼의 영역들을 노출시킨다. 이후, 패터닝된 마스크 내의 갭들을 통해 반도체 웨이퍼가 에칭되어, 싱귤레이트된(singulated) 집적 회로들을 형성한다. 이후, 수용성 다이 부착 필름은 수용액(aqueous solution)에 의해 패터닝된다.
다른 실시예에서, 반도체 웨이퍼를 다이싱하기 위한 시스템은 팩토리 인터페이스(factory interface)를 포함한다. 레이저 스크라이브 장치가 팩토리 인터페이스와 커플링되며, 그리고 레이저를 포함한다. 플라즈마 에칭 챔버가 또한 팩토리 인터페이스와 커플링된다. 습식/건식 스테이션이 또한 팩토리 인터페이스와 커플링된다. 습식/건식 스테이션은 수용성 다이 부착 필름을 패터닝하도록 구성된다.
다른 실시예에서, 복수의 집적 회로들을 갖는 반도체 웨이퍼를 다이싱하는 방법은 실리콘 기판 위에 마스크를 형성하는 단계를 포함한다. 실리콘 기판은 수용성 다이 부착 필름 상에 배치된다. 마스크는 실리콘 기판 상에 배치된 집적 회로들을 커버 및 보호한다. 집적 회로들은 저(low) K 재료의 층 및 구리의 층 위에 배치된 실리콘 이산화물의 층으로 이루어진다. 마스크, 실리콘 이산화물의 층, 저 K 재료의 층, 및 구리의 층은 레이저 스크라이빙 프로세스에 의해 패터닝되어, 집적 회로들 사이의 실리콘 기판의 영역들을 노출시킨다. 이후, 실리콘 기판이 갭들을 통해 에칭되어, 싱귤레이트된 집적 회로들을 형성한다. 이후, 수용성 다이 부착 필름이 수용성 용액에 의해 패터닝된다.
도 1은 본 발명의 일 실시예에 따른, 복수의 집적 회로들을 포함하는 반도체 웨이퍼를 다이싱하는 방법에서의 동작들을 나타내는 흐름도이다.
도 2a는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작(102)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 2b는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작(104)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 2c는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작들(106 및 108)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 3은 본 발명의 일 실시예에 따른, 반도체 웨이퍼 또는 기판의 스트리트 영역에서 이용될 수 있는 재료들의 스택(stack)의 횡단면도를 도시한다.
도 4a-4f는 본 발명의 일 실시예에 따른, 반도체 웨이퍼를 다이싱하는 방법에서의 다양한 동작들의 횡단면도들을 도시한다.
도 5는 본 발명의 일 실시예에 따른, 웨이퍼들 또는 기판들의 레이저 및 플라즈마 다이싱을 위한 툴 레이아웃(tool layout)의 블록도를 도시한다.
도 6은 본 발명의 일 실시예에 따른, 예시적인 컴퓨터 시스템의 블록도를 도시한다.
도 2a는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작(102)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 2b는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작(104)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 2c는 본 발명의 일 실시예에 따른, 도 1의 흐름도의 동작들(106 및 108)에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도를 도시한다.
도 3은 본 발명의 일 실시예에 따른, 반도체 웨이퍼 또는 기판의 스트리트 영역에서 이용될 수 있는 재료들의 스택(stack)의 횡단면도를 도시한다.
도 4a-4f는 본 발명의 일 실시예에 따른, 반도체 웨이퍼를 다이싱하는 방법에서의 다양한 동작들의 횡단면도들을 도시한다.
도 5는 본 발명의 일 실시예에 따른, 웨이퍼들 또는 기판들의 레이저 및 플라즈마 다이싱을 위한 툴 레이아웃(tool layout)의 블록도를 도시한다.
도 6은 본 발명의 일 실시예에 따른, 예시적인 컴퓨터 시스템의 블록도를 도시한다.
반도체 웨이퍼들을 다이싱하는 방법들이 설명되며, 각각의 웨이퍼는 복수의 집적 회로들을 상부에 갖는다. 하기의 설명에서, 본 발명의 실시예들의 완전한 이해를 제공하기 위해, 레이저 스크라이빙 및 플라즈마 에칭 싱귤레이션 프로세스들을 위한 수용성 다이 부착 필름들과 같은, 많은 구체적인 상세사항들이 기술된다. 본 발명의 실시예들이 이러한 구체적인 상세사항들이 없이도 실행될 수 있다는 것이 당업자에게 명백할 것이다. 다른 경우들에서, 본 발명의 실시예들을 불필요하게 모호하게 하지 않도록, 집적 회로 제조와 같은, 주지의 양상들에 대해서는 상세하게 설명하지 않는다. 또한, 도면들에 도시된 다양한 실시예들은 설명적인 표현들이며 그리고 반드시 규모(scale)대로 그려진 것이 아님을 이해해야 한다.
초기 레이저 스크라이브 및 후속 플라즈마 에칭을 포함하는 하이브리드 웨이퍼 또는 기판 다이싱 프로세스가 다이 싱귤레이션을 위해 실시될 수 있다. 레이저 스크라이브 프로세스를 이용하여, 마스크, 유기 및 무기 유전체 층들, 및 디바이스 층들을 깨끗하게 제거할 수 있다. 이후, 웨이퍼 또는 기판의 노출 시에, 또는 웨이퍼 또는 기판의 부분적인 에칭 시에, 레이저 에칭 프로세스가 종료될 수 있다. 이후, 다이싱 프로세스의 플라즈마 에칭 부분을 사용하여, 벌크(bulk) 단결정 실리콘을 통해서와 같이, 웨이퍼 또는 기판의 벌크를 통해서 에칭하여, 다이 또는 칩 싱귤레이션 또는 다이싱을 산출할 수 있다. 레이저 스크라이브 및 플라즈마 에칭 프로세스와 함께 이용하기 위한 적합한 다이 부착 필름은, 수용액에 의해 에칭되거나 부분적으로 용해될 수 있는 수용성 다이 부착 필름일 수 있다.
싱귤레이션 프로세스의 일부로서, 다이싱될(to-be-diced) 디바이스 웨이퍼가 캐리어 테이프 또는 캐리어 웨이퍼 상에 장착된다. 다이 부착 필름(die attach film, DAF)이 캐리어 웨이퍼(또는 테이프)와 디바이스 웨이퍼 사이에 도포되어, 다이싱 동안 디바이스 웨이퍼를 홀딩한다. 다이싱 프로세스를 완료한 후, 다이 부착 필름이 또한 싱귤레이트될 수 있다. 다이 부착 필름을, 디바이스 웨이퍼에 여전히 부착되어 있는 동안, 싱귤레이트하는 것은, 후속하는 패키징 및 어셈블리 프로세스들을 위해 상기 싱귤레이트된 다이들을 제거하는 것을 가능하게 한다. 다이 부착 필름의 싱귤레이션은 전형적으로, 다이 부착 필름/캐리어 테이프 인터페이스에서 중지하기 위해 레이저 컷(cut)들이 요구되는 레이저 컷팅(laser cutting)에 의해 수행된다.
다이 부착 필름을 레이저 컷팅하는 것에 의한 2개의 문제들은 처리량 및 다이스 오염이다. 예를 들어, 다이 부착 필름을 컷팅하기 위해 레이저를 이용하는 것의 하나의 가능한 단점은 낮은 처리량이다. 레이저 컷팅 다이 부착 필름 프로세스에서, 다이 부착 필름으로부터의 부스러기(debris)가 다이스의 측벽 및 상부 표면 상에 튀길(splash) 수 있다. 다이 부착 필름은 또한 탄화(carbonize)될 수 있다. 요구되는 수율(yield)을 달성하기 위해, 이러한 오염을 제거하기 위하여 후속하는 세정 프로세스들이 요구될 수 있다. 다이 부착 필름 레이저 컷팅 이후의 세정 단계를 제거하기 위한 많은 노력이 이루어졌지만, 거의 성공하지 않았거나 아예 성공하지 못하였다. 또한, 각각의 다이의 후면측 상의 다이 부착 필름을 세정하는 것은 그 자체의 문제들의 세트를 제기(pose)할 수 있다. 예를 들어, 다이 부착 필름의 레이저 컷팅 동안, 싱귤레이트되는 다이스는 레이저 방사의 추가의 노출을 받게 되는데, 이는 다이스에 열 손상 또는 부스러기를 잠재적으로 전달한다. 본 발명의 일 실시예에 따르면, 수용성 다이 부착 필름이 싱귤레이션 프로세스에서 이용되며, 레이저 대신에, 수용액에 의해 패터닝된다.
도 1은 본 발명의 일 실시예에 따른, 복수의 집적 회로들을 포함하는 반도체 웨이퍼를 다이싱하는 방법에서의 동작들을 나타내는 흐름도(100)이다. 도 2a-2c는 본 발명의 일 실시예에 따른, 흐름도(100)의 동작들에 상응하는, 반도체 웨이퍼를 다이싱하는 방법을 수행하는 동안의 복수의 집적 회로들을 포함하는 반도체 웨이퍼의 횡단면도들을 도시한다.
흐름도(100)의 동작(102), 및 상응하는 도 2a을 참조하면, 마스크(202)가 반도체 웨이퍼 또는 기판(204) 위에 형성된다. 웨이퍼 또는 기판(204)은 수용성 다이 부착 필름(214) 상에 배치된다. 마스크(202)는 반도체 웨이퍼(204)의 표면 상에 형성된 집적 회로들(206)을 커버하고 보호한다. 마스크(202)는 또한 각각의 집적 회로들(206) 사이에 형성된 개재하는(intervening) 스트리트들(207)을 커버한다.
본 발명의 일 실시예에 따르면, 마스크(202)를 형성하는 것은, 제한되는 것은 아니지만, 포토-레지스트 층 또는 I-라인 패터닝 층과 같은 층을 형성하는 것을 포함한다. 예를 들어, 포토-레지스트 층과 같은 폴리머 층은, 그렇지 않으면 리소그래피 프로세스에서 이용하기에 적합한 재료로 이루어질 수 있다. 일 실시예에서, 포토-레지스트 층은, 제한되는 것은 아니지만, 248 나노미터(nm) 레지스트, 193 nm 레지스트, 157 nm 레지스트, 극자외선(extreme ultra-violet; EUV) 레지스트, 또는 다이아조나프토퀴논 감광제(diazonaphthoquinone sensitizer)를 갖는 페놀 수지 매트릭스(phenolic resin matrix)와 같은 포지티브(positive) 포토-레지스트 재료로 이루어진다. 다른 실시예에서, 포토-레지스트 층은, 제한되는 것은 아니지만, 폴리-시스-이소프렌(poly-cis-isoprene) 및 폴리-비닐-신나메이트(poly-vinyl-cinnamate)와 같은 네거티브(negative) 포토-레지스트 재료로 이루어진다.
일 실시예에서, 반도체 웨이퍼 또는 기판(204)은, 제조 프로세스를 견디기에 적합하고 그리고 반도체 프로세싱 층들이 상부에 적절하게 배치될 수 있는 재료로 이루어진다. 예를 들어, 일 실시예에서, 반도체 웨이퍼 또는 기판(204)은, 제한되는 것은 아니지만, 결정(crystalline) 실리콘, 게르마늄, 또는 실리콘/게르마늄과 같은, Ⅳ 족-기반의 재료로 이루어진다. 구체적인 실시예에서, 반도체 웨이퍼(204)를 제공하는 것은 단결정(monocrystalline) 실리콘 기판을 제공하는 것을 포함한다. 특정 실시예에서, 단결정 실리콘 기판은 불순물 원자들로 도핑된다. 다른 실시예에서, 반도체 웨이퍼 또는 기판(204)은, 예를 들어, 발광 다이오드(LED)들의 제조에 이용되는 Ⅲ-Ⅴ 재료 기판과 같은, Ⅲ-Ⅴ 재료로 이루어진다.
일 실시예에서, 반도체 웨이퍼 또는 기판(204) 내에 또는 그 상부에, 집적 회로들(206)의 일부로서, 반도체 디바이스들의 어레이가 배치된다. 그러한 반도체 디바이스들의 예들에는, 제한되는 것은 아니지만, 실리콘 기판 내에 제조되고 그리고 유전체 층 내에 인케이싱되는(encased) 메모리 디바이스들 또는 상보형 금속-산화물-반도체(CMOS) 트랜지스터들이 포함된다. 복수의 금속 배선(interconnect)들이 상기 디바이스들 또는 트랜지스터들 위에, 그리고 주위의 유전체 층들 내에 형성될 수 있으며, 그리고 집적 회로들(206)을 형성하기 위해 디바이스들 또는 트랜지스터들을 전기적으로 커플링하는 데에 이용될 수 있다. 전도성 범프들 및/또는 패시베이션 층들이 배선 층들 위에 형성될 수 있다. 스트리트들(207)을 구성하는 재료들은, 집적 회로들(206)을 형성하는 데에 이용되는 재료들과 유사하거나 동일할 수 있다. 예를 들어, 스트리트들(207)은 유전체 재료들, 반도체 재료들, 및 메탈라이제이션(metallization)의 층들로 이루어질 수 있다. 일 실시예에서, 스트리트들(207) 중 하나 또는 둘 이상은 집적 회로들(206)의 실제 디바이스들과 유사한 테스트 디바이스들을 포함한다.
흐름도(100)의 동작(104), 및 상응하는 도 2b를 참조하면, 마스크(202)가 레이저 스크라이빙 프로세스에 의해 패터닝되어, 갭들(210)을 갖는 패터닝된 마스크(208)를 제공함으로써, 집적 회로들(206) 사이의 반도체 웨이퍼 또는 기판(204)의 영역들을 노출시킨다. 따라서, 집적 회로들(206) 사이에 처음에(originally) 형성된 스트리트들(207)의 재료를 제거하기 위해, 레이저 스크라이빙 프로세스가 이용된다. 본 발명의 일 실시예에 따르면, 레이저 스크라이빙 프로세스에 의해 마스크(202)를 패터닝하는 것은, 도 2b에 도시된 바와 같이, 집적 회로들(206) 사이의 반도체 웨이퍼(204)의 영역들 내로 부분적으로 트렌치들(212)을 형성하는 것을 포함한다.
일 실시예에서, 레이저 스크라이빙 프로세스에 의해 마스크(202)를 패터닝하는 것은, 펨토초 범위의 펄스 폭을 갖는 레이저를 이용하는 것을 포함한다. 구체적으로, 가시 스펙트럼 또는 자외선(UV) 또는 적외선(IR) 범위들의 파장(세개 다 합쳐서(totaling) 광대역 광학적 스펙트럼)을 갖는 레이저를 이용하여, 펨토초-기반의 레이저 즉, 대략적으로 펨토초(10-15 초)의 펄스 폭을 갖는 레이저를 제공할 수 있다. 일 실시예에서, 삭마는 파장 의존적이 아니거나 또는 본질적으로 파장 의존적이 아니며, 그에 따라 복합(complex) 필름들, 예를 들어 마스크(202)의 필름들, 스트리트들(207), 및 가능하게는, 반도체 웨이퍼 또는 기판(204)의 일부에 대해 적합하다.
펄스 폭과 같은 레이저 파라미터들의 선택이, 깨끗한(clean) 레이저 스크라이브 컷(laser scribe cut)들을 달성하기 위해 칩핑, 마이크로균열(microcrack)들 및 박리(delamination)를 최소화하는 성공적인 레이저 스크라이빙 및 다이싱 프로세스를 개발하는 데에 있어서 중요할 수 있다. 레이저 스크라이브 컷이 깨끗할수록, 최종의 다이 싱귤레이션을 위해 수행될 수 있는 에칭 프로세스가 보다 원활해진다(smoother). 반도체 디바이스 웨이퍼들에서는, 전형적으로, 상이한 재료 타입들(예를 들어, 전도체들, 절연체들, 반도체들) 및 두께들의 많은 기능 층들이 상부에 배치된다. 그러한 재료들은, 제한되는 것은 아니지만, 폴리머들과 같은 유기 재료들, 금속들, 또는 실리콘 이산화물 및 실리콘 질화물과 같은 무기 유전체들을 포함할 수 있다.
웨이퍼 또는 기판 상에 배치된 개별적인 집적 회로들 사이의 스트리트는 집적 회로들 자체와 유사한 또는 동일한 층들을 포함할 수 있다. 예를 들어, 도 3은 본 발명의 일 실시예에 따른, 반도체 웨이퍼 또는 기판의 스트리트 영역에서 이용될 수 있는 재료들의 스택의 횡단면도를 도시한다.
도 3을 참조하면, 스트리트 영역(300)은, 도시된 상대적인 두께들을 갖는, 실리콘 기판의 상단부 부분(top portion)(302), 제 1 실리콘 이산화물 층(304), 제 1 에칭 중지 층(306), (예를 들어, 실리콘 이산화물에 대해 4.0의 유전 상수 보다 작은 유전 상수를 갖는) 제 1 저 K 유전체 층(308), 제 2 에칭 중지 층(310), 제 2 저 K 유전체 층(312), 제 3 에칭 중지 층(314), USG(undoped silica glass) 층(316), 제 2 실리콘 이산화물 층(318), 및 포토-레지스트의 층(320)을 포함한다. 구리 메탈라이제이션(322)이 제 1 및 제 3 에칭 중지 층들(306 및 314) 사이에 그리고 제 2 에칭 중지 층(310)을 통해서 배치된다. 구체적인 실시예에서, 제 1, 제 2, 및 제 3 에칭 중지 층들(306, 310, 및 314)은 실리콘 질화물로 이루어지는 한편, 저 K 유전체 층들(308 및 312)은 탄소-도핑된 실리콘 산화물 재료로 이루어진다.
통상적인 레이저 조사(irradiation)(예를 들어, 나노초-기반의 또는 피코초-기반의 레이저 조사) 하에서, 스트리트(300)의 재료들은 광학적 흡수 및 삭마 메커니즘들의 측면에서 매우 상이하게 작용한다(behave). 예를 들어, 실리콘 이산화물과 같은 유전체 층들은 정상 조건들 하에서 상업적으로 이용가능한 모든 레이저 파장들에 대해 본질적으로 투명하다. 대조적으로, 금속들, 유기물(organic)들(예를 들어, 저 K 재료들) 및 실리콘은, 특히 나노초-기반의 또는 피코초-기반의 레이저 조사에 응답하여, 광자들을 매우 용이하게 결합시킬 수 있다. 하지만, 일 실시예에서, 펨토초-기반의 레이저 프로세스는, 저 K 재료의 층 및 구리의 층을 삭마하기에 앞서서 실리콘 이산화물의 층을 삭마함으로써, 실리콘 이산화물의 층, 저 K 재료의 층, 및 구리의 층을 패터닝하는 데에 이용된다. 구체적인 실시예에서, 대략적으로 400 펨토초와 같은 또는 그 미만의 펄스들이, 마스크, 스트리트, 및 실리콘 기판의 일부를 제거하기 위해 펨토초-기반의 레이저 조사 프로세스에서 이용된다.
본 발명의 일 실시예에 따르면, 적합한 펨토초-기반의 레이저 프로세스들은, 다양한 재료들에서 비선형적인 상호작용들을 일반적으로 일으키는 높은 피크 강도(방사조도(irradiance))를 특징으로 한다. 그러한 하나의 실시예에서, 펨토초 레이저 소스들은, 비록 100 펨토초 내지 400 펨토초 범위가 바람직하기는 하지만, 대략적으로 10 펨토초 내지 500 펨토초 범위의 펄스 폭을 갖는다. 일 실시예에서, 펨토초 레이저 소스들은, 비록 540 나노미터 내지 250 나노미터 범위가 바람직하기는 하지만, 대략적으로 1570 나노미터 내지 200 나노미터 범위의 파장을 갖는다. 일 실시예에서, 레이저 및 상응하는 광학 시스템은, 비록 대략적으로 5 미크론 내지 10 미크론 범위가 바람직하기는 하지만, 대략적으로 3 미크론 내지 15 미크론 범위의 작업 표면(work surface)에서 초점(focal spot)을 제공한다.
작업 표면에서의 공간적인 빔 프로파일은 단일 모드(가우시안(Gaussian))일 수 있거나, 또는 성형된(shaped) 톱-햇 프로파일(top-hat profile)을 가질 수 있다. 일 실시예에서, 레이저 소스는, 대략적으로 500㎑ 내지 5㎒ 범위가 바람직하기는 하지만, 대략적으로 200㎑ 내지 10㎒ 범위의 펄스 반복 레이트를 갖는다. 일 실시예에서, 레이저 소스는, 비록 대략적으로 1 μJ 내지 5 μJ 범위가 바람직하기는 하지만, 대략적으로 0.5 μJ 내지 100 μJ 범위의 펄스 에너지를 작업 표면에 전달한다. 일 실시예에서, 레이저 스크라이빙 프로세스는, 비록 대략적으로 600 mm/sec 내지 2 m/sec의 범위가 바람직하기는 하지만, 대략적으로 약 500 mm/sec 내지 5 m/sec 범위의 속도로 워크피스(work piece) 표면을 따라서 작동한다(run).
스크라이빙 프로세스는 단지 단일 패스로 또는 다중 패스들로 작동할 수 있지만, 일 실시예에서는, 바람직하게는 1-2 패스들로 작동할 수 있다. 일 실시예에서, 워크피스 내의 스크라이빙 깊이는 대략적으로 5 미크론 내지 50 미크론 범위의 깊이, 바람직하게는 대략적으로 10 미크론 내지 20 미크론 범위의 깊이이다. 레이저는 주어진 펄스 반복 레이트에서 단일 펄스들의 트레인으로, 또는 펄스 버스트(burst)들의 트레인으로 인가될 수 있다. 일 실시예에서, 발생되는 레이저 빔의 커프 폭(kerf width; 절단 폭)은, 비록 실리콘 웨이퍼 스크라이빙/다이싱에서는 디바이스/실리콘 인터페이스에서 측정되는 대략적으로 6 미크론 내지 10 미크론의 범위가 바람직하기는 하지만, 대략적으로 2 미크론 내지 15 미크론 범위이다.
무기 유전체들(예를 들어, 실리콘 이산화물)의 이온화(ionization)를 달성하기 위해 그리고 무기 유전체들의 직접적인 삭마 이전에 하부층(underlayer) 손상에 의해 야기되는 박리 및 칩핑을 최소화하기 위해 충분히 높은 레이저 강도를 제공하는 것과 같은, 이득들 및 장점들을 갖는 레이저 파라미터들이 선택될 수 있다. 또한, 파라미터들은, 정밀하게 제어되는 삭마 폭(예를 들어, 커프 폭) 및 깊이를 이용하여 산업적인 적용예들에 대해 의미있는(meaningful) 프로세스 처리량을 제공하도록 선택될 수 있다. 상기 설명한 바와 같이, 피코초-기반의 그리고 나노초-기반의 레이저 삭마 프로세스들과 비교하여, 펨토초-기반의 레이저가 그러한 장점들을 제공하는 데에 있어서 훨씬 더 적합하다. 하지만, 심지어 펨토초-기반의 레이저 삭마의 스펙트럼 내에서도, 특정 파장들이 다른 파장들 보다 더 양호한 성능을 제공할 수 있다. 예를 들어, 일 실시예에서, UV 범위 내의 또는 그에 보다 근접한 파장을 갖는 펨토초-기반의 레이저 프로세스가, IR 범위 내의 또는 그에 보다 근접한 파장을 갖는 펨토초-기반의 레이저 프로세스 보다 더 깨끗한 삭마 프로세스를 제공한다. 그러한 구체적인 실시예에서, 반도체 웨이퍼 또는 기판 스크라이빙에 적합한 펨토초-기반의 레이저 프로세스는 대략적으로 540 나노미터와 같은 또는 그 미만의 파장을 갖는 레이저를 기초로 한다. 그러한 특정 실시예에서, 대략적으로 540 나노미터와 같은 또는 그 미만의 파장을 갖는 레이저의 대략적으로 400 펨토초와 같은 또는 그 미만의 펄스들이 이용된다. 하지만, 대안적인 실시예에서는, 이중 레이저 파장들(예를 들어, IR 레이저와 UV 레이저의 조합)이 이용된다.
흐름도(100)의 동작(106), 및 상응하는 도 2c를 참조하면, 싱귤레이트된 집적 회로들(206)을 형성하기 위해, 패터닝된 마스크(208) 내의 갭들(210)을 통해서 반도체 웨이퍼(204)를 에칭한다. 본 발명의 일 실시예에 따르면, 반도체 웨이퍼(204)를 에칭하는 것은, 도 2c에 도시된 바와 같이, 레이저 스크라이빙 프로세스로 형성된 트렌치들(212)을 에칭함으로써, 반도체 웨이퍼(204)를 완전히 통해서 최종적으로 에칭하는 것을 포함한다.
일 실시예에서, 반도체 웨이퍼(204)를 에칭하는 것은 플라즈마 에칭 프로세스를 이용하는 것을 포함한다. 일 실시예에서, 실리콘-관통 비아(through-silicon via) 타입 에칭 프로세스가 이용된다. 예를 들어, 구체적인 실시예에서, 반도체 웨이퍼(204)의 재료의 에칭 레이트는 분당 25 미크론 보다 크다. 초고밀도(ultra-high-density) 플라즈마 소스가 다이 싱귤레이션 프로세스의 플라즈마 에칭 부분을 위해 이용될 수 있다. 그러한 플라즈마 에칭 프로세스를 수행하기에 적합한 프로세스 챔버의 예로는, 미국 캘리포니아 서니베일에 소재하는 Applied Materials로부터 입수할 수 있는 Applied Centura SilviaTM Etch 시스템이 있다. Applied Centura SilviaTM Etch 시스템은 용량성 및 유도성 RF 결합을 조합하는데, 이는 자기성 증강(magnetic enhancement)에 의해 제공되는 개선들을 갖는 것과 마찬가지로, 용량성 결합 만을 가지고 가능했던 것 보다 이온 밀도 및 이온 에너지의 훨씬 더 독립적인 제어를 제공한다. 이러한 조합은 이온 밀도를 이온 에너지로부터 효과적으로 디커플링(decoupling)할 수 있게 하며, 그에 따라, 매우 낮은 압력들에서도, 높은, 잠재적으로 불리한(damaging) DC 바이어스 레벨들 없이 비교적 높은 밀도의 플라즈마들을 달성할 수 있게 한다. 이는 예외적으로 넓은 프로세스 윈도우(window)를 초래한다. 하지만, 실리콘을 에칭할 수 있는 임의의 플라즈마 에칭 챔버가 이용될 수 있다. 예시적인 실시예에서, 깊은(deep) 실리콘 에칭을 이용하여, 본질적으로 정밀한 프로파일 제어 및 실질적으로 스캘럽이 없는(scallop-free) 측벽들을 유지하면서, 통상적인 실리콘 에칭 레이트들의 대략 40% 보다 큰 에칭 레이트로 단결정 실리콘 기판 또는 웨이퍼(204)를 에칭한다. 구체적인 실시예에서, 실리콘-관통 비아 타입 에칭 프로세스가 이용된다. 에칭 프로세스는 반응 가스(reactive gas)로부터 발생되는 플라즈마를 기초하며, 상기 반응 가스는 일반적으로 불소-기반의 가스, 예를 들어 SF6, C4F8, CHF3, XeF2, 또는 비교적 빠른 에칭 레이트로 실리콘을 에칭할 수 있는 임의의 다른 반응물 가스(reactant gas)이다.
흐름도(100)의 동작(108), 및 상응하는 도 2c를 다시 참조하면, 각각의 싱귤레이트된 집적 회로들(206) 상에 다이 부착 필름 부분들(216)을 제공하기 위해, 수용성 다이 부착 필름(214)이 패터닝된다. 일 실시예에서, 수용성 다이 부착 필름(214)은 수용액에서의 습식 에칭에 의해 패터닝된다. 일 실시예에서, 수용성 다이 부착 필름(214)은, 도 2c에 도시된 바와 같이, 싱귤레이션 프로세스의 레이저 스크라이브 및 플라즈마 에칭 부분들 이후의 시퀀스에서 패터닝된다. 일 실시예에서, 도 2c에 도한 도시된 바와 같이, 싱귤레이션 프로세스의 레이저 스크라이브 및 플라즈마 에칭 부분들 이후, 패터닝된 마스크(208)가 제거된다. 도 4a-4f와 관련하여 하기에서 더 상세히 설명되는 바와 같이, 패터닝된 마스크(208)는, 수용성 다이 부착 필름(214)의 패터닝 이전에, 패터닝 동안에, 또는 패터닝 이후에 제거될 수 있다.
따라서, 흐름도(100) 및 도 2a-2c를 다시 참조하면, 마스크 층을 통해서, (메탈라이제이션을 포함하는) 웨이퍼 스트리트들을 통해서, 그리고 실리콘 기판 내로 부분적으로, 초기 레이저 삭마에 의해 웨이퍼 다이싱이 수행될 수 있다. 레이저 펄스 폭은 펨토초 범위로 선택될 수 있다. 그런 다음, 후속하는 실리콘 관통의(through-silocon) 깊은 플라즈마 에칭에 의해, 다이 싱귤레이션이 완료될 수 있다. 또한, 수용성 다이 부착 필름의 노출된 부분들의 용해(dissolution)는 싱귤레이트된 집적 회로들을 제공하기 위해 수행되며, 집적 회로들 각각은 상부에 다이 부착 필름의 부분을 갖는다. 또한, 마스크 층은 상기 프로세스 동안 또는 프로세스 이후에 제거될 수 있다. 본 발명의 일 실시예에 따르면, 다이싱을 위한 재료들 스택의 구체적인 예가 도 4a-4d와 관련하여 하기에서 설명된다.
도 4a를 참조하면, 하이브리드 레이저 삭마 및 플라즈마 에칭 다이싱을 위한 재료들 스택은 마스크 층(402), 디바이스 층(404), 및 기판(406)을 포함한다. 마스크 층, 디바이스 층, 및 기판은, 백킹 테이프(backing tape)(410)에 부착되는 다이 부착 필름(die attach film)(408) 위에 배치된다. 일 실시예에서, 마스크 층(402)은, 마스크(202)와 관련하여 상기 설명된 포토-레지스트 층들과 같은 포토-레지스트 층이다. 디바이스 층(404)은 하나 또는 둘 이상의 금속 층들(예를 들어, 구리 층들) 위에 배치된 무기 유전체 층(예를 들어, 실리콘 이산화물) 및 하나 또는 둘 이상의 저 K 유전체 층들(예를 들어, 탄소-도핑된 산화물 층들)을 포함한다. 디바이스 층(404)은 또한 집적 회로들 사이에 배열된 스트리트들을 포함하고, 이러한 스트리트들은 집적 회로들과 동일한 또는 유사한 층들을 포함한다. 일 실시예에서, 기판(406)은 벌크(bulk) 단결정 실리콘 기판이다.
일 실시예에서, 수용성 다이 부착 필름(408)은, 수성 매질(aqueous media)에서 쉽게 용해가능한 다이 부착 필름이다. 예를 들어, 일 실시예에서, 수용액 다이 부착 필름(408)은, 알칼리 용액, 산성 용액 중 하나 또는 둘 이상 내에서, 또는 탈이온수 내에서 가용성인 물질로 이루어진다. 수용성 다이 부착 필름(408)은 박형화된(thinned) 또는 얇은 웨이퍼 또는 기판을 백킹 테이프(410)에 본딩하기에 적합할 수 있다. 일 실시예에서, 수용성 다이 부착 필름(408)은 대략 5-60 미크론 범위의 두께를 갖는다. 구체적인 실시예에서, 수용성 다이 부착 필름(408)은 대략 20 미크론의 두께를 갖는다.
일 실시예에서, 수용성 다이 부착 필름(408)은, 예를 들어 대략 50-160℃ 범위에서의 가열과 같은, 가열 프로세스 시에 자신의 수용성(water solubility)을 유지한다. 예를 들어, 일 실시예에서, 수용성 다이 부착 필름(408)은, 레이저 및 플라즈마 에칭 싱귤레이션 프로세스에서 이용되는 챔버 조건들에 대한 노출 이후에 수용액들 내에서 가용성이다. 일 실시예에서, 수용성 다이 부착 필름(408)은, 제한되는 것은 아니지만, 폴리비닐 알코올, 폴리아크릴산, 덱스트란, 폴리메타크릴산(polymethacrylic acid), 폴리에틸렌 이민, 또는 폴리에틸렌 산화물(polyethylene oxide)과 같은 재료로 이루어진다. 구체적인 실시예에서, 수용성 다이 부착 필름(408)은 수용액 내에서 대략적으로 분당 1-15 미크론 범위, 더 특정하게는, 대략적으로 분당 1.3 미크론의 에칭 레이트를 갖는다. 다른 구체적인 실시예에서, 수용액 다이 부착 필름(408)은 스핀-온 기법에 의해 디바이스 층(404) 위에 형성된다.
일 실시예에서, 벌크 단결정 실리콘 기판(406)은, 다이 부착 필름(408)에 부착되기 전에, 후면측(backside)으로부터 박형화된다. 그러한 하나의 실시예에서, 박형화는 디바이스 층(404) 위에 마스크(402)를 형성하거나 배치한 이후에 수행된다. 하지만, 그러한 다른 실시예에서, 박형화는 디바이스 층(404) 위에 마스크(402)를 형성하거나 배치하기 전에 수행된다. 박형화는 후면측 그라인드 프로세스(backside grind process)에 의해 수행될 수 있다. 일 실시예에서, 벌크 단결정 실리콘 기판(406)은 대략 50 -100 미크론 범위의 두께로 박형화된다. 일 실시예에서, 이러한 박형화는 레이저 삭마 및 플라즈마 에칭 다이싱 프로세스에 이전에 수행된다는 것을 주목하는 것이 중요하다. 일 실시예에서, 디바이스 층(404)은 대략 2-3 미크론 범위의 두께를 갖는다.
도 4b를 참조하면, 마스크(402), 디바이스 층(404) 및 기판(406)의 일부가 레이저 스크라이빙 프로세스(412)에 의해 패터닝되어, 기판(406) 내에 트렌치들(414)을 형성한다. 일 실시예에서, 레이저 스크라이빙 프로세스(412)는 펨토초-기반의 레이저 스크라이빙 프로세스(412)이다. 일 실시예에서, 마스크(402)는 레이저 스크라이빙 프로세스(412)에 의해 컷팅되어, 레이저 스크라이빙 프로세스(412)에 의해 발생되는 부스러기를 운반하는 기능을 한다.
도 4c를 참조하면, 실리콘-관통의 깊은 플라즈마 에칭 프로세스(416)를 이용하여, 트렌치(414)를 다이 부착 필름(408)까지 아래로 연장함으로써, 다이 부착 필름(408)의 상단부 부분을 노출시키고 그리고 실리콘 기판(406)을 싱귤레이트한다. 디바이스 층(404)은, 실리콘-관통의 깊은 플라즈마 에칭 프로세스(416) 동안, 마스크(402)에 의해 보호된다.
도 4d를 참조하면, 싱귤레이션 프로세스는 다이 부착 필름(408)을 패터닝하는 것을 더 포함할 수 있다. 일 실시예에서, 수용성 다이 부착 필름(408)은 수성 매칠 내에서의 적어도 부분적인 용해에 의해 패터닝된다. 예를 들어, 일 실시예에서, 수용성 다이 부착 필름(408)은, 제한되는 것은 아니지만, 알칼리 용액, 산성 용액, 또는 탈이온수와 같은 용액 내에서 적어도 부분적으로 용해된다. 패터닝은 배킹 테이프(410)의 상부 부분을 노출시키고, 수용성 다이 부착 필름(408)을 싱귤레이트하여, 다이 부착 필름 부분들(418)을 제공한다.
따라서, 본 발명의 일 실시예에 따르면, 수용성 다이 부착 필름은 싱귤레이션을 위해 디바이스 웨이퍼에 도포된다. 수용성 다이 부착 필름은 캐리어 테이퍼(carrier taper) 또는 캐리어 웨이퍼 상에 도포된다. 레이저 스크라이빙 및 후속 실리콘 에칭 프로세스들 이후, 웨이퍼 스트리트들을 따라 다이 부착 필름들의 부분들이 노출되는 동안 다이들이 싱귤레이트된다. 이후, 일 실시예에서, 싱귤레이트된 디바이스 웨이퍼는 물-기반 용액(water-based solution)에 의해 딥핑(dipping) 또는 스프레이(spray)되어, 웨이퍼 스트리트들을 다라서 다이 부착 필름을 패터닝한다.
수용성 다이 부착 필름의 패터닝은, 싱귤레이트된 다이스 아래의 대부분의 다이 부착 필름이 유지되도록 하면서, 수용성 다이 부착 필름의 노출된 부분들을 그 전체 두께를 통해서 완전히 용해시키는 것을 포함할 수 있다. 구체적인 실시예에서, 다이 부착 필름의 개방된(open) 또는 노출된 영역들은 대략적으로 10-60 미크론 범위의 폭을 가지며, 그리고 다이 부착 필름은 대략적으로 단지 5-50 미크론 범위의 두께를 갖는다. 한편, 다이 크기는 대략적으로 7 밀리미트 × 7 밀리미터 또는 그 보다 큰 범위이다. 따라서, 일 실시예에서, 각각의 다이 아래의 다이 부착 필름의 대부분은 유지된다. 예를 들어, 도 4e는 이상적인 결과를 도시하는 바, 여기서, 패터닝 이후 유지되는 수용성 다이 부착 필름의 부분들(418)은 개별화된 다이(406)의 엣지들과 같은 높이(flush with)이다. 다른 예에서, 도 4f는, 패터닝 이후 유지되는 수용성 다이 부착 필름의 부분들(418)이 개별화된 다이(406)의 엣지들을 약간 언더컷팅(undercutting)하는 결과적인 수용액 패터닝을 도시한다.
추가적인 실시예들은, 후속적으로, 백킹 테이프(410)로부터 기판(406)의 싱귤레이트된 부분들을 (예를 들어, 개별적인 집적 회로들로서) 제거하는 것을 포함할 수 있다. 일 실시예에서, 싱귤레이트된 다이 부착 필름(408)의 부분들(418)은 기판(406)의 싱귤레이트된 부분들의 후면측들 상에서 유지된다. 일 실시예에서, 싱귤레이트된 집적 회로들은 패키징을 위해 백킹 테이프(410)로부터 제거된다. 그러한 하나의 실시예에서, 다이 부착 필름(408)의 부분들(418)은 각각의 집적 회로의 후면측 상에 유지되며, 최종 패키징에 포함된다. 하지만, 다른 실시예에서, 다이 부착 필름(408)의 부분들(418)은, 예를 들어 연장된 수용액 처리에 의해, 싱귤레이션 프로세스 동안 또는 그 이후에 제거된다.
추가의 실시예들은 마스크(402)의 나머지 부분들이 제거를 포함할 수 있다. 마스크(402)는 수용성 다이 부착 필름(408)의 패터닝 이전에, 패터닝 동안에, 또는 패터닝 이후에 제거될 수 있다. 일 실시예에서, 마스크(402)는 또한 수용성 재료로 이루어지며, 그리고 마스크(402)는 수용성 다이 부착 필름(408)의 패터닝 동안 제거된다.
도 2a-2c를 다시 참조하면, 복수의 집적 회로들(206)은, 대략 10 미크론 또는 그 보다 작은 폭을 갖는 스트리트들(207)에 의해 분리될 수 있다. 펨토초-기반의 레이저 스크라이빙 접근법의 이용은, 레이저의 엄격한(tight) 프로파일 제어에 적어도 부분적으로 기인하여, 집적 회로들의 레이아웃에서의 그러한 압축(compaction)을 가능하게 할 수 있다. 하지만, 그렇지 않으면 펨토초-기반의 레이저 스크라이빙 프로세스에 의해 가능하다고 할지라도, 스트리트 폭을 10 미크론 미만으로 감소시키는 것이 항상 바람직한 것은 아님을 이해해야 한다. 예를 들어, 일부 응용들은, 집적 회로들을 분리하는 스트리트들 내에 더미 또는 테스트 디바이스들을 제조하기 위해, 적어도 40 미크론의 스트리트 폭을 요구할 수 있다. 일 실시예에서, 복수의 집적 회로들(206)은 비-제한적(non-restricted) 또는 프리폼 레이아웃(freeform layout)으로 반도체 웨이퍼 또는 기판(204) 상에 배열될 수 있다.
단일 프로세스 툴이, 수용성 다이 부착 필름의 이용을 포함하는 하이브리드 레이저 삭마 및 플라즈마 에칭 싱귤레이션 프로세스에서의 많은 또는 모든 동작들을 수행하도록 구성될 수 있다. 예를 들어, 도 5는 본 발명의 일 실시예에 따른, 웨이퍼들 또는 기판들의 레이저 및 플라즈마 다이싱을 위한 툴 레이아웃의 블록도를 도시한다.
도 5를 참조하면, 프로세스 툴(500)은 팩토리 인터페이스(FI)(502)를 포함하며, 이러한 팩토리 인터페이스(FI)(502)에는 복수의 로드 록들(load locks)(504)이 커플링되어 있다. 클러스터 툴(506)이 팩토리 인터페이스(502)와 커플링된다. 클러스터 툴(506)은 플라즈마 에칭 챔버(508)를 포함한다. 레이저 스크라이브 장치(510)가 또한 팩토리 인터페이스(502)에 커플링된다. 프로세스 툴(500)의 전체적인 풋프린트는, 일 실시예에서, 도 5에 도시된 바와 같이, 대략 3500 밀리미터(3.5 미터) × 대략 3800 밀리미터(3.8 미터) 일 수 있다.
일 실시예에서, 레이저 스크라이브 장치(510)는 레이저를 하우징한다. 그러한 하나의 실시예에서, 레이저는 펨토초-기반의 레이저이다. 레이저는, 상기 설명한 레이저 삭마 프로세스들과 같은, 마스크의 이용을 포함하는 하이브리드 레이저 및 에칭 싱귤레이션 프로세스의 레이저 삭마 부분을 수행하기에 적합하다. 일 실시예에서, 이동가능한 스테이지가 또한 레이저 스크라이브 장치(500)에 포함되고, 상기 이동가능한 스테이지는 웨이퍼 또는 기판(또는 그 캐리어)을 레이저에 대해서 이동시키도록 구성된다. 구체적인 실시예에서, 레이저가 또한 이동가능하다. 레이저 스크라이브 장치(1210)의 전체적인 풋프린트는, 일 실시예에서, 도 5에 도시된 바와 같이, 대략 2240 밀리미터 × 대략 1270 밀리미터일 수 있다.
일 실시예에서, 플라즈마 에칭 챔버(508)는, 복수의 집적 회로들을 싱귤레이트하기 위해, 패터닝된 마스크 내의 갭들을 통해서 웨이퍼 또는 기판을 에칭하도록 구성된다. 그러한 하나의 실시예에서, 플라즈마 에칭 챔버(508)는 깊은 실리콘 에칭 프로세스를 수행하도록 구성된다. 구체적인 실시예에서, 플라즈마 에칭 챔버(508)는, 미국 캘리포니아 서니베일에 소재하는 Applied Materials로부터 입수할 수 있는 Applied Centura SilviaTM Etch 시스템이다. 플라즈마 에칭 챔버(508)는, 단결정 실리콘 기판들 또는 웨이퍼들 상에 또는 그 내부에 하우징되는 싱귤레이트된 집적 회로들을 생성하기 위하여 이용되는 깊은 실리콘 에칭을 위해 구체적으로 설계될 수 있다. 일 실시예에서, 고밀도 플라즈마 소스가 플라즈마 에칭 챔버(508) 내에 포함되어, 높은 실리콘 에칭 레이트들을 촉진한다. 일 실시예에서, 하나 초과의 에칭 챔버가 프로세스 툴(500)의 클러스터 툴(506) 부분 내에 포함되어, 싱귤레이션 또는 다이싱 프로세스의 높은 제조 처리량을 가능하게 한다.
팩토리 인터페이스(502)는 레이저 스크라이브 장치(510)를 갖는 외부 제조 설비와 클러스터 툴(506) 사이의 인터페이스에 대한 적합한 대기 포트(atmospheric port)일 수 있다. 팩토리 인터페이스(502)는, 저장 유닛들(예를 들어, 전면 개방형 통합 포드(front opening unified pod)들)로부터 클러스터 툴(506) 또는 레이저 스크라이브 장치(510)로 또는 양자 모두로 웨이퍼들(또는 그 캐리어들)을 이송하기 위한 아암들 또는 블레이드들을 갖는 로봇들을 포함할 수 있다.
클러스터 툴(506)은 싱귤레이션 방법의 기능들을 수행하기에 적합한 다른 챔버들을 포함할 수 있다. 예를 들어, 일 실시예에서, 부가적인 에칭 챔버 대신에, 증착 챔버(512)가 포함된다. 증착 챔버(512)는, 웨이퍼 또는 기판의 레이저 스크라이빙에 앞서서, 웨이퍼 또는 기판의 디바이스 층 상에서의 또는 디바이스 층 보다 위에서의 마스크 증착을 위해 구성될 수 있다. 그러한 하나의 실시예에서, 증착 챔버(512)는 포토-레지스트 층을 증착하는 데에 적합하다.
일 실시예에서, 습식/건식 스테이션(514)이 수용성 다이 부착 필름을 모두 함께 패터닝 또는 제거하기 위해 포함된다. 습식/건식 스테이션은 또한, 기판 또는 웨이퍼의 레이저 스크라이브 및 플라즈마 에칭 싱귤레이션 프로세스에 후속하여, 잔류물들 및 파편(fragment)들을 세정하거나 마스크를 제거하기에 적합할 수 있다. 일 실시예에서, 계측 스테이션(metrology station)이 또한 프로세스 툴(500)의 컴포넌트로서 포함된다.
본 발명의 실시예들은, 본 발명의 실시예들에 따른 프로세스를 수행하도록 컴퓨터 시스템(또는 다른 전자 디바이스들)을 프로그래밍하는 데에 이용될 수 있는, 명령어들이 그 위에 저장되어 있는 머신-판독가능한 매체를 포함할 수 있는, 컴퓨터 프로그램 제품, 또는 소프트웨어로서 제공될 수 있다. 일 실시예에서, 컴퓨터 시스템은 도 5와 관련하여 설명된 프로세스 툴(1200)과 커플링된다. 머신-판독가능한 매체는 머신(예를 들어, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장 또는 전달하기 위한 임의의 메커니즘을 포함한다. 예를 들어, 머신-판독가능한(예를 들어, 컴퓨터-판독가능한) 매체는, 머신(예를 들어, 컴퓨터) 판독가능한 저장 매체(예를 들어, 판독 전용 메모리("ROM"), 랜덤 액세스 메모리("RAM"), 자기 디스크 저장 매체들, 광학 저장 매체들, 플래시 메모리 디바이스들, 등), 머신(예를 들어, 컴퓨터) 판독가능한 전송 매체(전기적, 광학적, 음향적 또는 다른 형태의 전파되는 신호들(예를 들어, 적외선 신호들, 디지털 신호들, 등)) 등을 포함한다.
도 6은 컴퓨터 시스템(600)의 예시적인 형태의 머신의 개략적인 표현을 도시하며, 상기 머신 내에서, 머신으로 하여금 본 명세서에서 설명된 방법론(methodology)들 중 임의의 하나 또는 둘 이상을 수행하게 하기 위한 명령들의 세트가 실행될 수 있다. 대안적인 실시예들에서, 머신은 근거리 통신망(LAN), 인트라넷, 엑스트라넷, 또는 인터넷으로 다른 머신들에 연결(예를 들어, 네트워킹(networked))될 수 있다. 머신은 클라이언트-서버 네트워크 환경의 서버 또는 클라이언트 머신으로서, 또는 피어-투-피어(peer-to-peer)(또는 분산형) 네트워크 환경의 피어 머신으로서 동작할 수 있다. 머신은 개인용 컴퓨터(PC), 타블렛 PC, 셋탑 박스(STB), 개인용 휴대 정보 단말기(PDA), 셀룰러 전화기, 웹 어플라이언스(web appliance), 서버, 네트워크 라우터, 스위치 또는 브리지, 또는 해당 머신에 의해서 취해질 액션(action)들을 명시하는 명령들의 세트를 (순차적으로 또는 다른 방식으로) 실행할 수 있는 임의의 머신일 수 있다. 추가적으로, 단지 하나의 머신 만이 예시되지만, "머신"이라는 용어는 또한 본 명세서에서 설명된 방법론들 중 임의의 하나 또는 둘 이상을 수행하기 위해 개별적으로 또는 공동으로 명령들의 세트(또는 복수의 세트들)를 실행하는 머신들(예를 들어, 컴퓨터들)의 임의의 집합을 포함하는 것으로 받아들여져야 한다.
예시적인 컴퓨터 시스템(600)은, 버스(630)를 통해 서로 통신하는, 프로세서(602), 메인 메모리(604)(예를 들어, 판독 전용 메모리(ROM), 플래시 메모리, 동적 랜덤 액세스 메모리(DRAM) 예를 들어, 동기식 DRAM(SDRAM), 또는 램버스 DRAM(RDRAM) 등), 정적 메모리(606)(예를 들어, 플래시 메모리, 정적 랜덤 액세스 메모리(SRAM) 등), 및 보조 메모리(secondary memory)(618)(예를 들어, 데이터 저장 디바이스)를 포함한다.
프로세서(602)는 마이크로프로세서, 중앙 처리 장치 등과 같은 하나 또는 둘 이상의 범용 프로세싱 디바이스들을 나타낸다. 보다 구체적으로, 프로세서(602)는 복합 명령 세트 컴퓨팅(CISC) 마이크로프로세서, 축소 명령 세트 컴퓨팅(RISC) 마이크로프로세서, 매우 긴 명령어(VLIW) 마이크로프로세서, 다른 명령 세트들을 구현하는 프로세서, 또는 명령 세트들의 조합을 구현하는 프로세서들일 수 있다. 프로세서(602)는 또한 주문형 집적 회로(ASIC), 필드 프로그래머블 게이트 어레이(FPGA), 디지털 신호 프로세서(DSP), 네트워크 프로세서 등과 같은 하나 또는 둘 이상의 특수 목적 프로세싱 디바이스들일 수 있다. 프로세서(602)는 본 명세서에서 설명되는 동작들을 수행하기 위한 프로세싱 로직(626)을 실행하도록 구성된다.
컴퓨터 시스템(600)은 네트워크 인터페이스 디바이스(608)를 더 포함할 수 있다. 컴퓨터 시스템(600)은 또한 비디오 디스플레이 유닛(610)(예를 들어, 액정 디스플레이(LCD), 발광 다이오드 디스플레이(LED), 또는 음극선관(CRT)), 영숫자(alphanumeric) 입력 디바이스(612)(예를 들어, 키보드), 커서 제어 디바이스(614)(예를 들어, 마우스) 및 신호 생성 디바이스(616)(예를 들어, 스피커)를 포함할 수 있다.
보조 메모리(618)는, 본 명세서에서 설명된 방법론들 또는 기능들 중 임의의 하나 또는 둘 이상을 구현하는 명령들(예를 들어, 소프트웨어(622))의 하나 또는 둘 이상의 세트들이 저장되어 있는 머신-액세스가능한 저장 매체(또는, 보다 구체적으로는, 컴퓨터-판독가능한 저장 매체)(631)를 포함할 수 있다. 소프트웨어(622)는 또한, 컴퓨터 시스템(600)에 의한 소프트웨어의 실행 동안에 프로세서(602) 내에서 및/또는 메인 메모리(604) 내에서 완전히 또는 적어도 부분적으로 상주할 수 있고, 메인 메모리(604) 및 프로세서(602)는 머신-판독가능한 저장 매체들을 또한 구성한다. 소프트웨어(622)는 또한, 네트워크 인터페이스 디바이스(608)에 의해 네트워크(620)를 통해 송신 또는 수신될 수 있다.
머신-액세스가능한 저장 매체(631)가 예시적인 실시예에서 단일 매체인 것으로 도시되어 있지만, "머신-판독가능한 저장 매체"라는 용어는 명령들의 하나 또는 둘 이상의 세트들을 저장하는 단일 매체 또는 복수의 매체들(예를 들어, 중앙식 또는 분산식 데이터베이스, 및/또는 연관 캐쉬들(associated caches) 및 서버들)을 포함하는 것으로 받아들여져야 한다. "머신-판독가능한 저장 매체"라는 용어는 또한, 머신에 의한 실행을 위한 명령들의 세트를 저장 또는 인코딩할 수 있고, 그리고 머신으로 하여금 본 발명의 방법론들 중 임의의 하나 또는 둘 이상을 수행하게 하는 임의의 매체를 포함하는 것으로 받아들여져야 한다. 그에 따라, "머신-판독가능한 저장 매체"라는 용어는, 제한되는 것은 아니지만, 고상 메모리들 및, 광학 및 자기 매체들을 포함하는 것으로 받아들여져야 한다.
본 발명의 일 실시예에 따르면, 머신-액세스가능한 저장 매체는 그 위에 저장되어 있는 명령들을 가지며, 이러한 명령들은 데이터 프로세싱 시스템으로 하여금 복수의 집적 회로들을 갖는 반도체 웨이퍼를 다이싱하는 방법을 수행하게 한다. 이러한 방법은 반도체 웨이퍼 위에 마스크를 형성하는 단계를 포함한다. 반도체 웨이퍼는 수용성 다이 부착 필름 상에 배치된다. 마스크는 집적 회로들을 커버하고 보호한다. 이후, 상기 마스크가 레이저 스크라이빙 프로세스에 의해 패터닝되어, 갭들을 갖는 패터닝된 마스크를 제공한다. 반도체 웨이퍼의 영역들은 집적 회로들 사이에서 노출된다. 이후, 패터닝된 마스크 내의 갭들을 통해 반도체 웨이퍼가 에칭되어, 싱귤레이트된 집적 회로들을 형성한다. 이후, 수용성 다이 부착 필름이 수용액에 의해 패터닝된다.
이와 같이, 반도체 웨이퍼들을 다이싱하는 방법들이 개시되었으며, 각각의 웨이퍼는 복수의 집적 회로들을 갖는다. 본 발명의 일 실시예에 따르면, 복수의 집적 회로들을 갖는 반도체 웨이퍼를 다이싱하는 방법은 반도체 웨이퍼 위에 마스크를 형성하는 단계를 포함한다. 반도체 웨이퍼는 다이 부착 필름 상에 배치된다. 마스크는 집적 회로들을 커버하고 보호한다. 방법은 또한, 갭들을 갖는 패터닝된 마스크를 제공하기 위해, 상기 마스크를 레이저 스크라이빙 프로세스에 의해 패터닝하는 단계를 포함하며, 그에 따라 집적 회로들 사이의 반도체 웨이퍼의 영역들을 노출시킨다. 방법은 또한, 패터닝된 마스크 내의 갭들을 통해서 반도체 웨이퍼를 에칭하여, 싱귤레이트된 집적 회로들을 형성한다. 방법은 또한, 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계를 포함한다. 일 실시예에서, 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는, 대략적으로 분당 1-15 미크론 범위의 에칭 레이트로 수용성 다이 부착 필름을 싱귤레이트하는 단계를 포함한다. 일 실시예에서, 반도체 웨이퍼 위에 마스크를 형성하는 단계는 수용성 마스크를 형성하는 단계를 포함하며, 그리고 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는 수용성 마스크를 제거하는 단계를 더 포함한다.
Claims (15)
- 복수의 집적 회로들을 포함하는 반도체 웨이퍼를 다이싱(dicing)하는 방법으로서,
수용성 다이 부착 필름(water-soluble die attach film) 상에 배치된 상기 반도체 웨이퍼 위에 마스크를 형성하는 단계 ― 상기 마스크는 상기 집적 회로들을 커버하고 보호함 ―;
갭(gap)들을 갖는 패터닝된 마스크를 제공하여 상기 집적 회로들 사이의 상기 반도체 웨이퍼의 영역들을 노출시키기 위해, 상기 마스크를 레이저 스크라이빙 프로세스에 의해 패터닝하는 단계;
싱귤레이트된(singulated) 집적 회로들을 형성하기 위해, 상기 패터닝된 마스크 내의 상기 갭들을 통해서 상기 반도체 웨이퍼를 에칭하는 단계; 및
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 1 항에 있어서,
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는,
대략적으로 분당 1-15 미크론 범위의 에칭 레이트로 상기 수용성 다이 부착 필름을 싱귤레이트하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 1 항에 있어서,
수용성 다이 부착 필름 상에 배치된 상기 반도체 웨이퍼 위에 마스크를 형성하는 단계는,
폴리비닐 알코올, 폴리아크릴산, 덱스트란, 폴리메타크릴산(polymethacrylic acid), 폴리에틸렌 이민, 또는 폴리에틸렌 산화물(polyethylene oxide)로 이루어지는 그룹으로부터 선택되는 재료를 포함하는 필름 상에 배치된 상기 반도체 웨이퍼 위에 상기 마스크를 형성하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 3 항에 있어서,
상기 필름의 두께는 대략적으로 5-60 미크론 범위인,
반도체 웨이퍼를 다이싱하는 방법. - 제 1 항에 있어서,
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는,
알칼리 용액, 산성 용액, 및 탈이온수로 이루어지는 그룹으로부터 선택되는 용액을 이용하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 1 항에 있어서,
상기 반도체 웨이퍼 위에 마스크를 형성하는 단계는 수용성 마스크를 형성하는 단계를 포함하고,
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는 상기 수용성 마스크를 제거하는 단계를 더 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 1 항에 있어서,
상기 마스크를 레이저 스크라이빙 프로세스에 의해 패터닝하는 단계는 펨토초-기반의(femtosecond-based) 레이저 스크라이빙 프로세스에 의해 패터닝하는 단계를 포함하고,
상기 패터닝된 마스크 내의 상기 갭들을 통해서 상기 반도체 웨이퍼를 에칭하는 단계는 고 밀도 플라즈마 에칭 프로세스를 이용하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 복수의 집적 회로들을 포함하는 반도체 웨이퍼를 다이싱하기 위한 시스템으로서,
팩토리(factory) 인터페이스;
상기 팩토리 인터페이스와 커플링된 레이저 스크라이브 장치;
상기 팩토리 인터페이스와 커플링된 플라즈마 에칭 챔버; 및
상기 팩토리 인터페이스와 커플링된 습식/건식 스테이션 ― 상기 습식/건식 스테이션은 수용성 다이 부착 필름을 패터닝하도록 구성됨 ― 을 포함하는,
반도체 웨이퍼를 다이싱하기 위한 시스템. - 제 8 항에 있어서,
상기 습식/건식 스테이션은, 알칼리 용액, 산성 용액, 및 탈이온수로 이루어지는 그룹으로부터 선택되는 수용액을 전달하도록 구성되는,
반도체 웨이퍼를 다이싱하기 위한 시스템. - 제 9 항에 있어서,
상기 습식/건식 스테이션은, 홀딩 탱크(holding tank)를 채움으로써 또는 스프레잉(spraying)에 의해, 상기 수용액을 전달하도록 구성되는,
반도체 웨이퍼를 다이싱하기 위한 시스템. - 제 8 항에 있어서,
상기 플라즈마 에칭 챔버 및 상기 습식/건식 스테이션은, 상기 팩토리 인터페이스와 커플링된 클러스터 툴 상에 하우징되며(housed),
상기 클러스터 툴은 수용성 마스크를 형성하도록 구성된 증착 챔버를 더 포함하는,
반도체 웨이퍼를 다이싱하기 위한 시스템. - 제 11 항에 있어서,
상기 습식/건식 스테이션은 상기 수용성 다이 부착 필름을 패터닝하는 동안 상기 수용성 마스크를 제거하도록 구성되는,
반도체 웨이퍼를 다이싱하기 위한 시스템. - 복수의 집적 회로들을 포함하는 반도체 웨이퍼를 다이싱하는 방법으로서,
수용성 다이 부착 필름 상에 배치된 실리콘 기판 위에 마스크를 형성하는 단계 ― 상기 마스크는 상기 실리콘 기판 상에 배치된 집적 회로들을 커버 및 보호하며, 상기 집적 회로들은 저(low) K 재료의 층 및 구리의 층 위에 배치된 실리콘 이산화물의 층을 포함함 ―;
상기 집적 회로들 사이의 상기 실리콘 기판의 영역들을 노출시키기 위해, 상기 마스크, 상기 실리콘 이산화물의 층, 상기 저 K 재료의 층, 및 상기 구리의 층을 레이저 스크라이빙 프로세스에 의해 패터닝하는 단계;
싱귤레이트된 집적 회로들을 형성하기 위해, 노출된 영역들을 통해서 상기 실리콘 기판을 에칭하는 단계; 및
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 13 항에 있어서,
상기 수용성 다이 부착 필름을 수용액에 의해 패터닝하는 단계는,
대략적으로 분당 1-15 미크론 범위의 에칭 레이트로 상기 수용성 다이 부착 필름을 싱귤레이트하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법. - 제 13 항에 있어서,
수용성 다이 부착 필름 상에 배치된 상기 반도체 웨이퍼 위에 마스크를 형성하는 단계는,
폴리비닐 알코올, 폴리아크릴산, 덱스트란, 폴리메타크릴산, 폴리에틸렌 이민, 또는 폴리에틸렌 산화물로 이루어지는 그룹으로부터 선택되는 재료를 포함하는 필름 상에 배치된 상기 반도체 웨이퍼 위에 상기 마스크를 형성하는 단계를 포함하는,
반도체 웨이퍼를 다이싱하는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/161,045 US8507363B2 (en) | 2011-06-15 | 2011-06-15 | Laser and plasma etch wafer dicing using water-soluble die attach film |
US13/161,045 | 2011-06-15 | ||
PCT/US2012/039209 WO2012173760A2 (en) | 2011-06-15 | 2012-05-23 | Laser and plasma etch wafer dicing using water-soluble die attach film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140037930A true KR20140037930A (ko) | 2014-03-27 |
KR101910398B1 KR101910398B1 (ko) | 2018-10-22 |
Family
ID=47353995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147001007A KR101910398B1 (ko) | 2011-06-15 | 2012-05-23 | 수용성 다이 부착 필름을 이용한 레이저 및 플라즈마 에칭 웨이퍼 다이싱 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8507363B2 (ko) |
JP (2) | JP6516470B2 (ko) |
KR (1) | KR101910398B1 (ko) |
CN (1) | CN103650115B (ko) |
TW (2) | TWI451491B (ko) |
WO (1) | WO2012173760A2 (ko) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8673741B2 (en) * | 2011-06-24 | 2014-03-18 | Electro Scientific Industries, Inc | Etching a laser-cut semiconductor before dicing a die attach film (DAF) or other material layer |
US8969177B2 (en) * | 2012-06-29 | 2015-03-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film |
US8845854B2 (en) * | 2012-07-13 | 2014-09-30 | Applied Materials, Inc. | Laser, plasma etch, and backside grind process for wafer dicing |
US8940619B2 (en) * | 2012-07-13 | 2015-01-27 | Applied Materials, Inc. | Method of diced wafer transportation |
US8859397B2 (en) | 2012-07-13 | 2014-10-14 | Applied Materials, Inc. | Method of coating water soluble mask for laser scribing and plasma etch |
US9236305B2 (en) * | 2013-01-25 | 2016-01-12 | Applied Materials, Inc. | Wafer dicing with etch chamber shield ring for film frame wafer applications |
US9034734B2 (en) | 2013-02-04 | 2015-05-19 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for plasma etching compound semiconductor (CS) dies and passively aligning the dies |
US9620379B2 (en) * | 2013-03-14 | 2017-04-11 | Applied Materials, Inc. | Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch |
US8883614B1 (en) * | 2013-05-22 | 2014-11-11 | Applied Materials, Inc. | Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach |
WO2015023287A1 (en) * | 2013-08-15 | 2015-02-19 | Applied Materials, Inc. | Method of coating water soluble mask for laser scribing and plasma etch |
US9219011B2 (en) | 2013-08-29 | 2015-12-22 | Infineon Technologies Ag | Separation of chips on a substrate |
US20150079760A1 (en) * | 2013-09-19 | 2015-03-19 | Wei-Sheng Lei | Alternating masking and laser scribing approach for wafer dicing using laser scribing and plasma etch |
US9299611B2 (en) * | 2014-01-29 | 2016-03-29 | Applied Materials, Inc. | Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance |
US9610543B2 (en) | 2014-01-31 | 2017-04-04 | Infineon Technologies Ag | Method for simultaneous structuring and chip singulation |
US9076860B1 (en) * | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
US20150287638A1 (en) * | 2014-04-04 | 2015-10-08 | Jungrae Park | Hybrid wafer dicing approach using collimated laser scribing process and plasma etch |
US8932939B1 (en) | 2014-04-14 | 2015-01-13 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
US9472458B2 (en) * | 2014-06-04 | 2016-10-18 | Semiconductor Components Industries, Llc | Method of reducing residual contamination in singulated semiconductor die |
JP6342738B2 (ja) * | 2014-07-24 | 2018-06-13 | 株式会社Screenホールディングス | データ補正装置、描画装置、検査装置、データ補正方法、描画方法、検査方法およびプログラム |
DE102014117591A1 (de) | 2014-12-01 | 2016-06-02 | Osram Opto Semiconductors Gmbh | Halbleiterchip, Verfahren zur Herstellung einer Vielzahl an Halbleiterchips und Verfahren zur Herstellung eines elektronischen oder optoelektronischen Bauelements und elektronisches oder optoelektronisches Bauelement |
CN104465360A (zh) * | 2014-12-25 | 2015-03-25 | 安徽安芯电子科技有限公司 | 晶圆及其刻蚀方法 |
US10163709B2 (en) | 2015-02-13 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
US9418895B1 (en) | 2015-03-14 | 2016-08-16 | International Business Machines Corporation | Dies for RFID devices and sensor applications |
US9472411B1 (en) | 2015-03-27 | 2016-10-18 | International Business Machines Corporation | Spalling using dissolvable release layer |
JP6492287B2 (ja) * | 2015-10-01 | 2019-04-03 | パナソニックIpマネジメント株式会社 | 素子チップの製造方法および電子部品実装構造体の製造方法 |
US9793132B1 (en) | 2016-05-13 | 2017-10-17 | Applied Materials, Inc. | Etch mask for hybrid laser scribing and plasma etch wafer singulation process |
US9991164B2 (en) * | 2016-06-22 | 2018-06-05 | Semiconductor Components Industries, Llc | Semiconductor die singulation methods |
JP6765949B2 (ja) * | 2016-12-12 | 2020-10-07 | 株式会社ディスコ | ウェーハの加工方法 |
CN108249389A (zh) * | 2016-12-29 | 2018-07-06 | 清华大学 | 一种利用糖作掩模的微纳加工方法 |
US11158540B2 (en) * | 2017-05-26 | 2021-10-26 | Applied Materials, Inc. | Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process |
US10363629B2 (en) * | 2017-06-01 | 2019-07-30 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
US10727178B2 (en) * | 2017-11-14 | 2020-07-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Via structure and methods thereof |
CN110634796A (zh) | 2018-06-25 | 2019-12-31 | 半导体元件工业有限责任公司 | 用于处理电子管芯的方法及半导体晶圆和管芯的切单方法 |
US10916474B2 (en) | 2018-06-25 | 2021-02-09 | Semiconductor Components Industries, Llc | Method of reducing residual contamination in singulated semiconductor die |
US10607889B1 (en) * | 2018-09-19 | 2020-03-31 | Semiconductor Components Industries, Llc | Jet ablation die singulation systems and related methods |
JP7171138B2 (ja) * | 2018-12-06 | 2022-11-15 | 株式会社ディスコ | デバイスチップの製造方法 |
JP7281764B2 (ja) * | 2019-03-14 | 2023-05-26 | パナソニックIpマネジメント株式会社 | 素子チップの製造方法 |
KR20200133072A (ko) | 2019-05-16 | 2020-11-26 | 삼성전자주식회사 | 이미지 센서 패키지 |
KR20210006565A (ko) | 2019-07-08 | 2021-01-19 | 삼성전자주식회사 | 플라즈마 다이싱 방법 |
CN117747455B (zh) * | 2024-02-21 | 2024-07-23 | 北京大学 | 基于激光加工的微凸点基板及制备方法、微凸点互联结构 |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049944A (en) | 1973-02-28 | 1977-09-20 | Hughes Aircraft Company | Process for fabricating small geometry semiconductive devices including integrated components |
US4339528A (en) | 1981-05-19 | 1982-07-13 | Rca Corporation | Etching method using a hardened PVA stencil |
US4684437A (en) * | 1985-10-31 | 1987-08-04 | International Business Machines Corporation | Selective metal etching in metal/polymer structures |
JPH0416085A (ja) | 1990-05-10 | 1992-01-21 | Tokyo Gas Co Ltd | 画像記録再生装置 |
KR100215338B1 (ko) | 1991-03-06 | 1999-08-16 | 가나이 쓰도무 | 반도체 장치의 제조방법 |
DE69427882T2 (de) * | 1993-02-01 | 2002-04-11 | Canon K.K., Tokio/Tokyo | Flüssigkristallanzeige |
JPH07142442A (ja) * | 1993-11-12 | 1995-06-02 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
US5593606A (en) | 1994-07-18 | 1997-01-14 | Electro Scientific Industries, Inc. | Ultraviolet laser system and method for forming vias in multi-layered targets |
JPH09216085A (ja) | 1996-02-07 | 1997-08-19 | Canon Inc | 基板の切断方法及び切断装置 |
EP1357584A3 (en) * | 1996-08-01 | 2005-01-12 | Surface Technology Systems Plc | Method of surface treatment of semiconductor substrates |
US6426484B1 (en) | 1996-09-10 | 2002-07-30 | Micron Technology, Inc. | Circuit and method for heating an adhesive to package or rework a semiconductor die |
US5920973A (en) | 1997-03-09 | 1999-07-13 | Electro Scientific Industries, Inc. | Hole forming system with multiple spindles per station |
JP3230572B2 (ja) | 1997-05-19 | 2001-11-19 | 日亜化学工業株式会社 | 窒化物系化合物半導体素子の製造方法及び半導体発光素子 |
US6057180A (en) | 1998-06-05 | 2000-05-02 | Electro Scientific Industries, Inc. | Method of severing electrically conductive links with ultraviolet laser output |
JP2000243721A (ja) * | 1999-02-19 | 2000-09-08 | Toshiba Corp | 半導体装置の製造装置 |
JP2001044144A (ja) | 1999-08-03 | 2001-02-16 | Tokyo Seimitsu Co Ltd | 半導体チップの製造プロセス |
JP2001110811A (ja) | 1999-10-08 | 2001-04-20 | Oki Electric Ind Co Ltd | 半導体装置の製造方法 |
JP4387007B2 (ja) | 1999-10-26 | 2009-12-16 | 株式会社ディスコ | 半導体ウェーハの分割方法 |
JP2001144126A (ja) | 1999-11-12 | 2001-05-25 | Matsushita Electric Ind Co Ltd | 半導体装置の製造方法および半導体装置 |
JP2001148358A (ja) | 1999-11-19 | 2001-05-29 | Disco Abrasive Syst Ltd | 半導体ウェーハ及び該半導体ウェーハの分割方法 |
US6300593B1 (en) | 1999-12-07 | 2001-10-09 | First Solar, Llc | Apparatus and method for laser scribing a coated substrate |
US6887804B2 (en) | 2000-01-10 | 2005-05-03 | Electro Scientific Industries, Inc. | Passivation processing over a memory link |
CA2395960A1 (en) | 2000-01-10 | 2001-07-19 | Electro Scientific Industries, Inc. | Laser system and method for processing a memory link with a burst of laser pulses having ultrashort pulsewidths |
WO2001074529A2 (en) | 2000-03-30 | 2001-10-11 | Electro Scientific Industries, Inc. | Laser system and method for single pass micromachining of multilayer workpieces |
CN1219319C (zh) | 2000-07-12 | 2005-09-14 | 电子科学工业公司 | 用于集成电路熔丝的单脉冲切断的紫外激光系统和方法 |
US6676878B2 (en) | 2001-01-31 | 2004-01-13 | Electro Scientific Industries, Inc. | Laser segmented cutting |
JP4109823B2 (ja) * | 2000-10-10 | 2008-07-02 | 株式会社東芝 | 半導体装置の製造方法 |
US6759275B1 (en) | 2001-09-04 | 2004-07-06 | Megic Corporation | Method for making high-performance RF integrated circuits |
US6642127B2 (en) | 2001-10-19 | 2003-11-04 | Applied Materials, Inc. | Method for dicing a semiconductor wafer |
JP3910843B2 (ja) | 2001-12-13 | 2007-04-25 | 東京エレクトロン株式会社 | 半導体素子分離方法及び半導体素子分離装置 |
US6706998B2 (en) | 2002-01-11 | 2004-03-16 | Electro Scientific Industries, Inc. | Simulated laser spot enlargement |
KR100451950B1 (ko) | 2002-02-25 | 2004-10-08 | 삼성전자주식회사 | 이미지 센서 소자 웨이퍼 소잉 방법 |
US20040137700A1 (en) | 2002-02-25 | 2004-07-15 | Kazuma Sekiya | Method for dividing semiconductor wafer |
JP2003257896A (ja) | 2002-02-28 | 2003-09-12 | Disco Abrasive Syst Ltd | 半導体ウェーハの分割方法 |
AU2003224098A1 (en) | 2002-04-19 | 2003-11-03 | Xsil Technology Limited | Laser machining |
JP2004031526A (ja) | 2002-06-24 | 2004-01-29 | Toyoda Gosei Co Ltd | 3族窒化物系化合物半導体素子の製造方法 |
US6582983B1 (en) | 2002-07-12 | 2003-06-24 | Keteca Singapore Singapore | Method and wafer for maintaining ultra clean bonding pads on a wafer |
JP4286497B2 (ja) | 2002-07-17 | 2009-07-01 | 新光電気工業株式会社 | 半導体装置の製造方法 |
JP3908148B2 (ja) | 2002-10-28 | 2007-04-25 | シャープ株式会社 | 積層型半導体装置 |
US20040157457A1 (en) * | 2003-02-12 | 2004-08-12 | Songlin Xu | Methods of using polymer films to form micro-structures |
JP2004273895A (ja) | 2003-03-11 | 2004-09-30 | Disco Abrasive Syst Ltd | 半導体ウエーハの分割方法 |
US7087452B2 (en) * | 2003-04-22 | 2006-08-08 | Intel Corporation | Edge arrangements for integrated circuit chips |
JP2004322168A (ja) | 2003-04-25 | 2004-11-18 | Disco Abrasive Syst Ltd | レーザー加工装置 |
JP4231349B2 (ja) | 2003-07-02 | 2009-02-25 | 株式会社ディスコ | レーザー加工方法およびレーザー加工装置 |
JP4408361B2 (ja) | 2003-09-26 | 2010-02-03 | 株式会社ディスコ | ウエーハの分割方法 |
US7128806B2 (en) | 2003-10-21 | 2006-10-31 | Applied Materials, Inc. | Mask etch processing apparatus |
JP4471632B2 (ja) | 2003-11-18 | 2010-06-02 | 株式会社ディスコ | ウエーハの加工方法 |
JP2005203541A (ja) | 2004-01-15 | 2005-07-28 | Disco Abrasive Syst Ltd | ウエーハのレーザー加工方法 |
US7459377B2 (en) | 2004-06-08 | 2008-12-02 | Panasonic Corporation | Method for dividing substrate |
US7804043B2 (en) | 2004-06-15 | 2010-09-28 | Laserfacturing Inc. | Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser |
US7687740B2 (en) | 2004-06-18 | 2010-03-30 | Electro Scientific Industries, Inc. | Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows |
US7507638B2 (en) | 2004-06-30 | 2009-03-24 | Freescale Semiconductor, Inc. | Ultra-thin die and method of fabricating same |
JP4018088B2 (ja) | 2004-08-02 | 2007-12-05 | 松下電器産業株式会社 | 半導体ウェハの分割方法及び半導体素子の製造方法 |
US7199050B2 (en) | 2004-08-24 | 2007-04-03 | Micron Technology, Inc. | Pass through via technology for use during the manufacture of a semiconductor device |
JP4018096B2 (ja) | 2004-10-05 | 2007-12-05 | 松下電器産業株式会社 | 半導体ウェハの分割方法、及び半導体素子の製造方法 |
US20060088984A1 (en) * | 2004-10-21 | 2006-04-27 | Intel Corporation | Laser ablation method |
US20060086898A1 (en) | 2004-10-26 | 2006-04-27 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus of making highly repetitive micro-pattern using laser writer |
US20060146910A1 (en) | 2004-11-23 | 2006-07-06 | Manoochehr Koochesfahani | Method and apparatus for simultaneous velocity and temperature measurements in fluid flow |
JP4288229B2 (ja) | 2004-12-24 | 2009-07-01 | パナソニック株式会社 | 半導体チップの製造方法 |
US7875898B2 (en) | 2005-01-24 | 2011-01-25 | Panasonic Corporation | Semiconductor device |
JP2006253402A (ja) * | 2005-03-10 | 2006-09-21 | Nec Electronics Corp | 半導体装置の製造方法 |
US7361990B2 (en) * | 2005-03-17 | 2008-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads |
JP4478053B2 (ja) | 2005-03-29 | 2010-06-09 | 株式会社ディスコ | 半導体ウエーハ処理方法 |
JP2006332078A (ja) * | 2005-05-23 | 2006-12-07 | Matsushita Electric Ind Co Ltd | 半導体チップの製造方法 |
JP4285455B2 (ja) | 2005-07-11 | 2009-06-24 | パナソニック株式会社 | 半導体チップの製造方法 |
JP4599243B2 (ja) | 2005-07-12 | 2010-12-15 | 株式会社ディスコ | レーザー加工装置 |
US20070079866A1 (en) * | 2005-10-07 | 2007-04-12 | Applied Materials, Inc. | System and method for making an improved thin film solar cell interconnect |
JP4769560B2 (ja) | 2005-12-06 | 2011-09-07 | 株式会社ディスコ | ウエーハの分割方法 |
JP4372115B2 (ja) | 2006-05-12 | 2009-11-25 | パナソニック株式会社 | 半導体装置の製造方法、および半導体モジュールの製造方法 |
US20070272666A1 (en) * | 2006-05-25 | 2007-11-29 | O'brien James N | Infrared laser wafer scribing using short pulses |
JP4480728B2 (ja) | 2006-06-09 | 2010-06-16 | パナソニック株式会社 | Memsマイクの製造方法 |
JP4544231B2 (ja) | 2006-10-06 | 2010-09-15 | パナソニック株式会社 | 半導体チップの製造方法 |
TWI324801B (en) * | 2007-02-05 | 2010-05-11 | Touch Micro System Tech | Method of protecting front surface structure of wafer and dividing wafer |
JP4840174B2 (ja) | 2007-02-08 | 2011-12-21 | パナソニック株式会社 | 半導体チップの製造方法 |
JP4840200B2 (ja) | 2007-03-09 | 2011-12-21 | パナソニック株式会社 | 半導体チップの製造方法 |
US7926410B2 (en) | 2007-05-01 | 2011-04-19 | J.R. Automation Technologies, L.L.C. | Hydraulic circuit for synchronized horizontal extension of cylinders |
JP5090789B2 (ja) * | 2007-05-30 | 2012-12-05 | 東京応化工業株式会社 | 貼り合わせ装置、接着剤の溶解を防ぐ方法、及び貼り合わせ方法 |
JP4488037B2 (ja) * | 2007-07-24 | 2010-06-23 | パナソニック株式会社 | 半導体ウェハの処理方法 |
JP5205012B2 (ja) | 2007-08-29 | 2013-06-05 | 株式会社半導体エネルギー研究所 | 表示装置及び当該表示装置を具備する電子機器 |
TWI419268B (zh) * | 2007-09-21 | 2013-12-11 | Teramikros Inc | 半導體裝置及其製造方法 |
JP4858395B2 (ja) | 2007-10-12 | 2012-01-18 | パナソニック株式会社 | プラズマ処理装置 |
JP5663826B2 (ja) * | 2008-02-26 | 2015-02-04 | 日立化成株式会社 | 接着シート、接着剤層付半導体ウェハ、並びに半導体装置及びその製造方法 |
US7859084B2 (en) | 2008-02-28 | 2010-12-28 | Panasonic Corporation | Semiconductor substrate |
JP5499454B2 (ja) * | 2008-03-11 | 2014-05-21 | 日立化成株式会社 | 感光性接着剤組成物、接着シート、接着剤パターン、接着剤層付半導体ウェハ、並びに半導体装置及びその製造方法 |
TWI360843B (en) * | 2008-03-19 | 2012-03-21 | Powertech Technology Inc | Method for wafer cutting |
JP2009260272A (ja) * | 2008-03-25 | 2009-11-05 | Panasonic Corp | 基板の加工方法および半導体チップの製造方法ならびに樹脂接着層付き半導体チップの製造方法 |
TW201006600A (en) | 2008-04-10 | 2010-02-16 | Applied Materials Inc | Laser-scribing platform and hybrid writing strategy |
US20100013036A1 (en) * | 2008-07-16 | 2010-01-21 | Carey James E | Thin Sacrificial Masking Films for Protecting Semiconductors From Pulsed Laser Process |
JP2010165963A (ja) * | 2009-01-19 | 2010-07-29 | Furukawa Electric Co Ltd:The | 半導体ウェハの処理方法 |
JP5456441B2 (ja) * | 2009-01-30 | 2014-03-26 | 日東電工株式会社 | ダイシングテープ一体型ウエハ裏面保護フィルム |
US8609512B2 (en) | 2009-03-27 | 2013-12-17 | Electro Scientific Industries, Inc. | Method for laser singulation of chip scale packages on glass substrates |
US10307862B2 (en) * | 2009-03-27 | 2019-06-04 | Electro Scientific Industries, Inc | Laser micromachining with tailored bursts of short laser pulses |
US8802545B2 (en) | 2011-03-14 | 2014-08-12 | Plasma-Therm Llc | Method and apparatus for plasma dicing a semi-conductor wafer |
US8703581B2 (en) * | 2011-06-15 | 2014-04-22 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
-
2011
- 2011-06-15 US US13/161,045 patent/US8507363B2/en active Active
-
2012
- 2012-05-23 CN CN201280033999.9A patent/CN103650115B/zh active Active
- 2012-05-23 JP JP2014515840A patent/JP6516470B2/ja active Active
- 2012-05-23 WO PCT/US2012/039209 patent/WO2012173760A2/en active Application Filing
- 2012-05-23 KR KR1020147001007A patent/KR101910398B1/ko active IP Right Grant
- 2012-05-25 TW TW101118731A patent/TWI451491B/zh not_active IP Right Cessation
- 2012-05-25 TW TW103100385A patent/TWI514459B/zh not_active IP Right Cessation
-
2013
- 2013-07-16 US US13/943,652 patent/US9224625B2/en active Active
-
2017
- 2017-04-27 JP JP2017087939A patent/JP6577514B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CN103650115B (zh) | 2016-06-15 |
JP6516470B2 (ja) | 2019-05-22 |
US20120322238A1 (en) | 2012-12-20 |
WO2012173760A2 (en) | 2012-12-20 |
US9224625B2 (en) | 2015-12-29 |
KR101910398B1 (ko) | 2018-10-22 |
TW201419398A (zh) | 2014-05-16 |
TWI451491B (zh) | 2014-09-01 |
CN103650115A (zh) | 2014-03-19 |
WO2012173760A3 (en) | 2013-02-28 |
JP2014523111A (ja) | 2014-09-08 |
JP6577514B2 (ja) | 2019-09-18 |
TW201250819A (en) | 2012-12-16 |
JP2017199910A (ja) | 2017-11-02 |
US8507363B2 (en) | 2013-08-13 |
TWI514459B (zh) | 2015-12-21 |
US20130299088A1 (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6577514B2 (ja) | 水溶性ダイアタッチフィルムを用いたレーザ・プラズマエッチングウェハダイシング | |
JP6642937B2 (ja) | フェムト秒レーザ及びプラズマエッチングを用いたウェハダイシング | |
KR101595916B1 (ko) | Uv-경화가능 접착 필름을 이용한 레이저 및 플라즈마 에칭 웨이퍼 다이싱 | |
US9076860B1 (en) | Residue removal from singulated die sidewall | |
KR102149409B1 (ko) | 물리적으로 제거가능한 마스크를 이용한 레이저 및 플라즈마 에칭 웨이퍼 다이싱 | |
US8883614B1 (en) | Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach | |
US8975163B1 (en) | Laser-dominated laser scribing and plasma etch hybrid wafer dicing | |
US8940619B2 (en) | Method of diced wafer transportation | |
KR102303589B1 (ko) | 마스크리스 하이브리드 레이저 스크라이빙 및 플라즈마 에칭 웨이퍼 다이싱 프로세스 | |
EP3869546A1 (en) | Wafer dicing from wafer backside and front side | |
US10661383B2 (en) | Mitigation of particle contamination for wafer dicing processes | |
KR20140022336A (ko) | 다중-펄스 버스트들을 갖는 펄스 트레인 레이저를 이용한 웨이퍼 다이싱 및 플라즈마 식각 | |
US20150079760A1 (en) | Alternating masking and laser scribing approach for wafer dicing using laser scribing and plasma etch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |