KR20090086277A - 탄소 나노튜브 주입 섬유 및 그 방법 - Google Patents

탄소 나노튜브 주입 섬유 및 그 방법 Download PDF

Info

Publication number
KR20090086277A
KR20090086277A KR1020097013883A KR20097013883A KR20090086277A KR 20090086277 A KR20090086277 A KR 20090086277A KR 1020097013883 A KR1020097013883 A KR 1020097013883A KR 20097013883 A KR20097013883 A KR 20097013883A KR 20090086277 A KR20090086277 A KR 20090086277A
Authority
KR
South Korea
Prior art keywords
fiber
fibers
catalyst
carbon
carbon nanotube
Prior art date
Application number
KR1020097013883A
Other languages
English (en)
Other versions
KR101218487B1 (ko
Inventor
튜샤 케이. 샤
슬레이드 에이치. 가드너
마크 알. 앨버딩
Original Assignee
록히드 마틴 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 록히드 마틴 코포레이션 filed Critical 록히드 마틴 코포레이션
Publication of KR20090086277A publication Critical patent/KR20090086277A/ko
Application granted granted Critical
Publication of KR101218487B1 publication Critical patent/KR101218487B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

탄소 나노튜브 주입된 섬유 및 그의 생성 방법이 개시된다. 나노튜브들은 상기 섬유에 촉매를 적용함에 의해 모섬유 상에서 직접적으로 합성된다. 탄소 나노튜브 주입된 섬유들의 특성은 상기 주입된 탄소 나노튜브들의 특성들뿐만 아니라 모섬유의 특성들의 조합일 것이다.
Figure P1020097013883
탄소 나노튜브 주입, 탄소 섬유, 모섬유, 섬유, 탄소, 합성

Description

탄소 나노튜브 주입 섬유 및 그 방법{CNT-INFUSED FIBER AND METHOD THEREFOR}
본 발명은 탄소 나노튜브 및 탄소 섬유에 관한 것이다.
섬유는 상업 항공술, 레크리에이션, 산업 이송 산업들과 같은 광범위의 다양한 산업들에 사용된다. 이들 및 다른 응용을 위해 널리 사용되는 섬유는 예를 들자면, 셀룰로오스 섬유(예, 비스코스 레이온, 면화 등), 유리 섬유, 탄소 섬유, 및 아라미드 섬유를 포함한다.
다수의 섬유를 포함한 생성물에서, 섬유는 복합 물질(예,섬유유리)의 형태로 존재한다. 복합 물질은 거시적인 스케일(macroscopic scale)에 있어서 형태나 구성이 다른 두 개 이상의 구성요소들의 혼성 결합이다. 복합 물질은 구성요소 단독으로 가지는 것도 아닌 특징들을 나타내는 한편, 상기 구성요소들은 상기 복합물 내에서 그들의 독특한 물리 화학적 본질을 보유하고 있다.
복합물의 두 핵심 구성요소들은 보강제와 수지 매트릭스를 포함한다. 섬유 기반 복합물에서, 섬유들은 보강제이다. 상기 수지 매트릭스는 섬유들을 소정의 위치 및 방위에 유지하며, 복합물 내의 섬유들 사이에서 하중전달 매체로서도 작용한다.
섬유들은 기계적 강도, 밀도, 전기 저항력, 열 전도성 등과 같은 어떤 특성들로 특징된다. 섬유들은 그들의 특징적 특성들, 특히 강도에 관련한 특성들을 복합물에 "제공(lend)"한다. 따라서, 섬유들은 주어진 응용물에 대한 복합물의 적합성을 측정하는데 중요한 역활을 담당한다.
복합물 내의 섬유 특성들의 이점을 실현하기 위해, 섬유들과 매트릭스 사이에 우수한 경계면(interface)이 있어야만 한다. 이는 일반적으로 "사이징(sizing)"으로 언급되는 표면 코팅의 사용으로 달성된다. 상기 사이징은 섬유와 수지 매트릭스 간에 모든 중요한 물리-화학적 결합을 제공하며, 따라서 복합물의 기계 화학적 특성들에 상당한 영향을 가진다. 사이징은 섬유의 제조 동안에 섬유에 적용된다.
실질상 모든 종래의 사이징은 그가 적용된 섬유들보다 낮은 계면강도를 가진다. 결과로서, 사이징 강도 및 계면 응력을 저항하는 그의 능력은 궁극적으로 전체 복합물의 강도를 결정한다.
환언하자면, 종래의 사이징을 사용하여, 결과하는 복합물은 섬유의 것과 같거나 보다 큰 강도를 가질 수 없다.
본 발명의 예시한 실시형태는 탄소 나노튜브가 주입된("CNT-infused") 섬유이다.
여기 개시된 CNT 주입 섬유에서, 탄소 나노튜브가 모섬유(parent fiber)에 "주입"된다. 여기 사용된 용어 "주입"은 물리적 또는 화학적으로 결합되는 것을 의미하며, "주입"은 물리적 또는 화학적으로 결합하는 방법을 의미한다. 탄소 나노튜브와 모섬유 간의 물리적 결합은 적어도 부분적으로 반데르발스 힘에 의한 것으로 알려져 있다. 탄소 나노튜브와 모섬유 간의 화학적 결합은 공유 결합인 것으로 알려져 있다.
그의 본래 특성과 무관하게 탄소 나노튜브와 모섬유 간에 형성된 결합은 무척 강건하며, CNT 주입된 섬유가 탄소 나노튜브 특성들 또는 특징들을 나타내거나 표현할 수 있게 하는 책임이 있다. 이는 일부 선행 기술의 방법들에 완전한 반대이며, 여기서 나노튜브는 용매 용액에 현탁/분산되어 손에 의해 섬유에 적용된다. 이미 형성된 탄소 나노튜브들 간의 강한 반데르발스 인력(attraction)으로, 그들을 섬유에 직접적으로 적용하기 위해 그들을 분리하는 것은 몹시 어렵다. 결과로서, 한 덩이가 된 나노튜브들은 섬유에 약하게 접착하며, 그들의 특징적 나노튜브 특성들은 모두 약하게 나타난다.
여기 개시된 상기 주입된 탄소 나노튜브들은 종래의 "사이징"에 대한 대체물로서 효과적으로 기능한다. 주입된 탄소 나노튜브들이 종래의 사이징 물질보다 물리특성의 관점에서 분자적으로 한층 강건하다는 것이 발견되었다. 또한, 상기 주입된 탄소 나노튜브들은 복합 물질의 섬유 내지 매트릭스의 경계면을 개선하고, 더 일반적으로는 섬유 내지 섬유의 경계면을 개선한다.
여기 개시된 CNT 주입된 섬유가 그의 특성들이 상기 주입된 탄소 나노튜브들의 특성들뿐 아니라 모섬유의 특성들의 조합일 것이라는 의미에서 그 자체로 복합 물질과 비슷하다. 결과적으로, 본 발명의 실시형태들은 상기 특성들이 결핍되거나 또는 부족한 정도로 상기 특성들을 가지는 섬유에 소망하는 특성들을 부과하는 방법을 제공한다. 따라서, 섬유들은 특정 응용 요건에 부응하기 위해 맞춰지거나 처리될 수 있다. 이러한 방식에서, 사실상 어떠한 종류의 섬유 유용성 및 가치가 향상될 수 있다.
CNT 주입된 섬유 형성 방법의 도시적 실시형태에 의하여, 나노튜브들이 모섬유 그자체 상의 적소에서(in place) 합성된다. 탄소 나노튜브들이 모섬유 상에서 합성된다는 것이 중요하다, 그렇지 않은 경우, 탄소 나노튜브들은 매우 혼란스럽게 될 것이며, 주입이 일어나지 않는다. 선행기술에서 보여진 바와 같이, 비주입된 탄소 나노튜브들은 그들의 특징적 특성들 중 어떤 것도 거의 부과하지 않는다.
상기 모섬유는 제한 없이 탄소 섬유, 그래파이트 섬유, 금속 섬유(예, 스틸, 알루미늄 등), 세라믹 섬유, 금속-세라믹 섬유, 유리 섬유, 셀루로오스 섬유, 아라미드 섬유를 포함하는 상이한 다양한 다른 종류의 섬유들 중 어떤 것일 수도 있다.
본 도시한 실시형태에서, 나노튜브들은 철, 니켈, 코발트, 또는 그의 조합과 같은 나노튜브-형성 촉매를 섬유에 적용하거나 주입함에 의해 모섬유 상에서 합성된다.
일 실시형태에서, CNT 주입 방법은:
모섬유로부터 사이징을 제거하는 단계;
나노튜브-형성 촉매를 모섬유에 적용하는 단계;
나노튜브-합성 온도로 상기 섬유를 가열하는 단계; 및
촉매를 적재한 모섬유 상에 탄소 플라즈마를 스프레이(spray)하는 단계를 포함한다.
일 실시 형태들에서, 주입된 탄소 나노튜브들은 단일벽의 나노튜브들이다. 일부 다른 실시형태들에서, 주입된 탄소 나노튜브들은 다중벽의 나노튜브들이다. 일부 추가 실시형태들에서, 주입된 탄소 나노튜브들은 단일벽 및 다중벽의 나노튜브들이다. 섬유의 일부 최종용도를 위하여, 일 형태 또는 다른 형태의 나노튜브 합성을 명령하는 단일벽 및 다중벽의 나노튜브들의 특징적 특성에 있어서 차이가 있다. 예를 들어, 단일벽의 나노튜브들은 우수한 전기도체인 반면, 다중벽의 나노튜브들은 아니다.
공동 계류중인 미국특허출원 제SN 10/455,767호(공보번호 제US 2004/0245088호)에 개시되며, 여기 참조로 병합된 탄소 나노튜브를 형성하는 방법 및 기술은 여기 기재된 방법으로 사용에 채용될 수 있다. 도시한 실시형태에서, 아세틸렌 가스는 서늘한 카본 플라즈마의 분출을 생성하기 위해 이온화된다. 상기 플라즈마는 촉매를 가지는 모섬유로 향하게 된다.
이전에 가리킨 바와 같이, 탄소 나노튜브들은 그들의 특징적 특성들(예, 뛰어난 기계 강도, 전기 저항력의 저조절, 고 열전도성 등)을 CNT 주입된 섬유에 제공한다. 상기 결과한 CNT 주입된 섬유가 이들 특성들을 표현하는 면적은 탄소 나노튜브들에 의한 모섬유 적용범위의 면적과 밀도의 함수이다.
본 도시한 실시형태의 변화에 있어서, CNT 주입은 개선된 필라멘트 와인딩 방법을 제공하는데 사용된다. 이러한 변화에서, 탄소 나노튜브들은 상술한 바와 같이 섬유들(예, 그래파이트 토우(graphite tow), 글라스 로빙(glass roving) 등) 상에 형성되며, 수지-함침된 CNT 주입 섬유를 생성하기 위해 수지조(resin bath)를 통과한다. 수지 함침 후에, 섬유는 분기용 결합구(delivery head)에 의해 회전 굴대(rotating mandrel)의 표면에 위치된다. 다음으로 섬유는 공지된 방식의 정밀한 기하학적 패턴으로 상기 굴대 상에 감긴다.
상술한 필라멘트 와인딩 방법은 파이프들, 튜브들 또는 수 금형(male mold)을 통해 특징적으로 생성된 다른 형태들을 제공한다. 그러나 여기 개시된 필라멘트 와인딩 방법들로부터 만들어진 형태들은 종래의 필라멘트 와인딩 방법들을 통해 생성된 것과 상이하다. 구체적으로, 여기 개시된 방법에서, 상기 형태들은 CNT 주입 섬유들을 포함하는 복합 물질들로 이루어진다. 따라서, 상기 형태들은 CNT 주입 섬유들에 의해 제공된 바와 같은 강화된 강도 등의 이익을 얻을 수 있다.
다양한 다른 모섬유들이 CNT 주입 섬유를 형성하기 위해 사용될 수 있으며,
최근, 광범위의 수지들 및 방법들과 호환할 수 있는 탄소 섬유 형태에 대한 수요가 있어 왔다. 사이징 물질은 이러한 호환성의 중요한 결정물이다. 예를 들어, 일부 자동차 차체 패널들에 사용되는 것과 같은 SMC(Sheet Molding Compound)에서 절단된 탄소섬유의 고른 분배를 제공하는데 매우 중요하다.
탄소 수요 및 그의 잠재적인 광범위한 응용성에도, 탄소 섬유는 호환성을 위해 에폭시 수지만으로 역사상 중요하게 사이즈되었다. 여기 개시된 방법에 따라 생성된 CNT 주입된 탄소 섬유는 주입 나노튜브들로 사이즈된 섬유를 제공함에 의해 이러한 문제를 해결하며, 이는 다양한 수지들 및 방법을 가지는 소망하는 광범위의 응용성을 제공한다.
다음 용어들은 첨부한 청구항을 포함한 이 명세서에서의 사용을 위해 정의된다:
소면(Carding) - 섬유들이 고른 필름으로 펼쳐지게 하는 방법
소면된 섬유 - 개방되어 소면된 섬유
피륙 - 섬유사 가닥을 직조하여 만들어진 보강재
연속식 필라멘트 가닥 - 많은 필라멘트로 구성된 섬유 묶음. 또한, 건 로빙(gun roving)을 언급할 경우; 스프레이업(spray-up)법에서 절단기 건(chopper gun)을 통해 공급되는 실 같은 섬유 또는 방적사의 집합.
연속식 가닥 조방사(Continuous Strand Roving) - 스프레이업 방법에서 절단기 건을 통해 공급되는 필라멘트들의 묶음.
직물 - 방적사들, 섬유들, 또는 필라멘트들을 섞어 짬에 의해 만들어지는 평면의 직물 구조.
섬유 - 천연적이거나 또는 가공된 직물의 기본 요소 및 다른 직물 구조를 형성하는 물질의 단위.
섬유 배향 - 섬유의 대부분이 동일한 방향에 있어, 상기 방향에서 고 강도인 매트 적층물 또는 비직조의 섬유 배치.
섬유 패턴 - 적층물 또는 주형의 표면에 있는 가시 섬유.
필라멘트 - 천연적(예, 실크 등)이거나 또는 가공된 일정치 않거나 또는 극단적인 길이의 단일 섬유. 전형적으로 미크론의 직경으로 제조딘 섬유들은 필라멘트사, 스테이플, 또는 토우로 변환되는 필라멘트로 압출 성형된다.
필라멘트 와인딩 - 회전 굴대 둘레에 있는 유리 필라멘트의 수지-함침된 가닥을 와인딩하는 것을 포함하는 방법.
필라멘트사 - 트위스트로 또는 트위스트되지 않고 집합된 연속식 필라멘트로 이루어진 방적사.
주입 - 화학 결합을 형성하기 위함.
수 금형(male mold) - 부품의 요면이 금형 표면에 의해 정밀하게 경계되는 볼록한 금형.
매트릭스 - 복합물 또는 적층물의 액체 성분
굴대 - 종이-, 직물-, 또는 수지-함침된 섬유가 파이프, 튜브 또는 용기를 형성하도록 둘레에 감기는 코어(core); 압축 성형에서, 파이프 또는 튜빙 다이(tubing die)의 중심 핑거.
인발공정 - 로드들, 튜브들, 및 영구 단면을 가진 구조 형상들의 제조에서 수지-함침된 조방사의 역방향 "분출". 상기 조방사는 수지의 깊은 탱크를 통과한 후에 소망하는 단면을 형성하기 위해 금형에서 빠진다.
수지 - 촉매화될 때, 고체 상태로 경화되는 액체 폴리머
조방사(roving) - 트위스트되고, 감쇄되며, 방적에 앞선 이물질이 없는 소면된 섬유의 연성 가닥.
사이징 - 필라멘트들과 매트릭스 사이의 우수한 접착을 도모하기 위한 목적으로 저들 필라멘트들의 형성 후에 즉시 상기 필라멘트들에 적용되며, 상기 필라멘트들이 복합 물질의 보강제로서 사용될 정도의 표면 처리.
스트레이-업 - 섬유들, 수지 및 촉매를 절단기 건을 사용하여 주형에 동시에 스프레이하는 방법.
가닥 - 트위스트 없이 단일의 소형 단위에 조합된 연속식 필라멘트들(또는 실버들)의 주요 묶음. 이들 필라멘트들(보통 51,102 또는 204)은 형성 작용에서 다함께 집합된다.
테이프 - 좁은 폭의 보강 직물 또는 매트.
토우(Tow) - 트위스트 없는 필라멘트들의 느슨한 가닥
트위스트 - 제조 공정 동안에 두 개의 방적사들이 회전되는 방향과 회전 수에 적용되는 용어.
직조된 조방사 직물 - 조방사 형태의 연속식 필라멘트로부터 직조된 중량 직물(Heavy fabric). 보통 중량이 1 제곱야드당 10-30 oz.
방적사(Yarn) - 직물 섬유, 필라멘트 또는, 직물을 형성하기 위해 편직, 직조, 합사, 또는 연합(intertwining)하는데 적합한 형태를 가진 물질의 연속식 가닥에 대한 총칭적 용어.
상기 나타낸 정의들과 같이, "섬유", "필라멘트", "방적사" 등과 같은 용어들은 뚜렷한 의미를 가진다. 그러나, 본 명세서 및 첨부된 청구항의 목적을 위해, 달리 표시되지 않으면, 상기 용어 "섬유"는 섬유 그 자체뿐 아니라 필라멘트, 방적사, 토우, 조방사, 직물 등을 나타내는 총칭적 용어로서 이 명세서에서 사용된다. 따라서, 구문 "CNT 주입된 섬유"는 "CNT 주입된 섬유", "CNT 주입된 필라멘트", "CNT 주입된 조방사" 등을 포함하는 것으로 이해한다.
도 1은 본 발명의 도시한 실시형태에 의하여 CNT 주입된 섬유를 생성하는 방법을 도시한다.
도 2는 CNT 주입된 섬유를 생성하기 위해 상기 도시한 방법을 실행하는 시스템을 도시한다.
도 3은 본 도시한 실시형태의 변동에 따른 필라멘트 와인딩 시스템을 도시한다.
도 1은 본 발명의 도시한 실시형태에 따른 CNT 주입된 섬유를 생성하기 위한 방법(100)의 흐름도이다.
본 발명의 방법(100)은,
나노튜브-형성 촉매를 모섬유에 적용하는 단계(102)과,
상기 모섬유를 탄소 나노튜브 합성에 충분한 온도로 가열하는 단계(104)와,
상기 총매가 적재된 섬유 상에 탄소 플라즈마를 스프레이하는 단계(106)를 포함한다.
모섬유에 탄소 나노튜브들을 주입하기 위해, 탄소 나노튜브들은 모섬유에서 직접적으로 합성된다. 본 도시한 실시형태에서, 단계(102)에 따라, 모섬유 상에 나노튜브-형성 촉매를 배치함에 의해 달성된다. 탄소 나노튜브 형성을 위한 적합한 촉매는 전이 금속 촉매(예, 철, 니켈, 코발트, 그의 조합 등)를 포함하지만 그에 한정되는 것은 아니다.
도 2에 관련하여 더 기술하는바, 촉매는 나노 크기의 촉매 입자들을 포함하 는 액체 용액으로서 제조된다. 합성된 나노튜브들의 직경은 금속 입자들의 크기에 비례한다.
본 도시한 실시형태에서, 탄소 나노튜브 합성은 플라즈마-강화된 화학기상증착 방법에 기반하며, 상승된 온도에서 발생한다. 상기 온도는 촉매의 함수이나, 전형적으로 약 500 내지 1000℃ 범위일 것이다. 이에 따라, 단계(104)는 탄소 나노튜브 합성을 지지하기 위해 전술한 범위의 온도로 모섬유를 가열하는 것을 요한다.
단계(106)에서, 탄소 플라즈마는 촉매가 적재된 모섬유 상에 스프레이된다. 플라즈마는 예를 들어, 기체를 이온화할 수 있는 전기장을 통해 기체를 함유한 탄소(아세틸렌, 에틸렌, 에탄올 등)를 통과함에 의해 생성될 수 있다.
나노튜브들은 금속 촉매의 사이트(site)에서 성장한다. 강력한 플라즈마-생성 전기장의 존재는 나노튜브 성장에 영향을 미칠 수 있다. 즉, 성장은 전기장의 방향을 따르기 쉽다. 플라즈마 스프레이 및 전기장의 기하학을 적절하게 조정함에 의해, 수직-배열된 탄소 나노튜브들(예, 섬유에 수직)이 합성된다. 일정한 온도하에, 플라즈마의 부재시에도, 밀접하게 공간배치된 나노튜브들은 수직 성장을 유지할 것이며, 카펫 또는 산림(forest)을 닮은 밀집한 배열이 결과한다.
도 2는 본 발명의 도시한 실시형태에 따른 CNT 주입된 섬유를 생성하기 위해 상기 도시한 방법을 실행하는 시스템을 묘사한다. 시스템(200)은 도시된 바와 같이 상호관계를 가지는 섬유 배당 및 인장부(fiber payout and tensioner station)(202), 섬유 확산기부(208), 사이징 제거부(sizing removal station)(210), CNT 주입부(CNT-infusion station)(212), 섬유 번들러부(fiber bundler station)(222), 및 섬유 흡수보빈(224)을 포함한다.
섬유 배당 및 인장부(202)는 배당 보빈(payout bobbin)(204)과 인장기(206)를 포함한다. 상기 배당보빈은 섬유(201)를 상기 공정에 전달하고, 상기 섬유는 인장기(206)를 통해 인장된다.
섬유(201)는 섬유 확산기부(208)로 전해진다. 상기 섬유 확산기는 섬유의 개별 요소들을 분리한다. 다양한 기술들 및 장치들이 섬유를 편평하고 일정한 지름의 바들(bars) 위 아래로, 또는 변동 지름의 바들 위 아래로, 또는 반지름 방향으로 확장한 홈들 및 니딩 롤러(kneading roller)를 가진 바들 위로, 진동성 바 등 위로 당기는 것과 같이, 섬유를 확산하는데 사용될 수 있다. 상기 섬유 확산은 더 많은 섬유 표면적을 노출시킴으로써 촉매 응용 및 플라즈마 응용과 같은 하류부분 동작의 유효성을 강화한다.
배당 및 인장부(202)와 섬유 확산기부(208)는 섬유 산업에서 일상적으로 사용되며, 본 기술분야의 당업자는 그의 설계 및 용도에 친숙할 것이다.
다음으로 섬유(201)는 사이징 제거부(210)로 이동한다. 이러한 사이징 제거부에서, 섬유(201)의 "사이징"이 제거된다. 전형적으로, 제거는 섬유의 사이징을 연소함(burning off)에 의해 달성된다.
적외선 히터, 머플 용광로 등을 포함하지만 이에 한정되지 않는 다양한 가열 수단이 이러한 목적으로 사용될 수 있다. 일반적으로, 비접촉의 가열 방법이 바람직하다. 일부 대안적인 실시형태들에서, 사이징 제거는 화학적으로 달성된다.
사이징을 연소하는데 필요한 온도 및 시간은 (1) 사이징 물질(예, 실란 등) 과 (2) 모섬유(201)(예, 유리, 셀룰로오스, 탄소 등) 본질의 함수로서 달라진다. 전형적으로, 연소 온도는 최소 약 650℃이다. 이 온도에서, 사이징의 연소가 종료를 보장하기 위해 15분을 취할 수 있다. 최소 연소온도 이상으로 온도를 증가시키는 것은 연소 시간을 줄일 수 있다. 열중량분석법은 사이징을 위한 최소 연소온도를 결정하기 위해 사용될 수 있다.
어떤 경우, 사이징 제거는 전체 CNT 주입 공정에서 느린 단계이다. 이러한 이유로, 일부 실시형태들에서, 사이징 제거국은 CNT 주입 방법에 정식으로(in proper)포함되지 않으며; 그보다, 따로(병행하여) 제거가 실행된다. 이러한 방식으로, 사이징이 없는 섬유 목록은 축적되어, 섬유 제거국을 포함하지 않는 CNT 주입 섬유 생산라인에서의 사용을 위해 스풀(spool)된다. 상기 실시형태들에서, 사이징이 없는 섬유는 배당 및 인장부(202)에서 스풀된다. 이러한 생산라인은 사이징 제거를 가지는 것보다 높은 속도로 동작될 수 있다.
사이징이 없는 섬유(205)는 도 2에 묘사된 방법과 시스템의 "심장"인 CNT 주입부(212)로 전달된다. CNT 주입부(212)는 촉매 적용부(214), 섬유 예열기부(216), 플라즈마 스프레이부(218), 및 섬유 가열기들(220)을 포함한다.
도 2에 묘사한 바와 같이, 사이징이 없는 섬유(205)는 먼저 촉매 적용부(catalyst application station)(214)로 진행한다. 일부 실시형태들에서, 섬유(205)는 촉매의 적용 이전에 냉각된다.
일부 실시형태들에서, 나노튜브-형성 촉매는 전이 금속의 나노미터 크기의 입자(예, 직경이 10 나노미터 등)들의 액체 용액이다. 나노튜브를 합성하는데 사용 하는 전형적인 전이 금속들은 철, 철산화물, 코발트, 니켈, 또는 그의 조합을 포함하지만 이에 한정되지는 않는다. 이들 전이 금속 촉매들은 미국 뉴햄프셔, 내셔아의 페로테크(Ferrotech of Nashua, NH)를 포함한 다양한 공급자들로부터 상업적으로 용이하게 이용가능하다.
일부 도시한 실시형태에서, 촉매 용액은 에어 스프레이(214)와 같이 섬유(205)에 스프레이된다. 일부 다른 실시형태들에서, 전이 금속 촉매는 증발 기술, 전해 증착 기술, 현탁액 침지(suspension dipping) 기술들 및 본 기술분야의 당업자에게 공지된 다른 방법들을 사용하여 모섬유 상에 증착된다. 일부 추가 실시형태들에서, 전이 금속 촉매는 금속 유기, 금속염 또는 기상운송(gas phase transport)을 촉진하는 다른 조성물로서 플라즈마 공급원료 기체에 첨가된다. 촉매는 주위 환경(진공 또는 불활성 대기가 요구되지 않는다)의 실내온도로 적용될 수 있다.
촉매가 적재된 섬유(207)는 이어서 섬유 예열기부(216)에서 가열된다. 주입 과정을 위해, 섬유는 연성될 때까지 가열되어야 한다. 일반적으로, 특정 섬유의 연성 온도에 대한 우수한 측정은 본 기술분야의 당업자에게 공지된 참조원들로부터 용이하게 획득된다. 이 온도가 특정 섬유를 위해 공지된 것이 아닌 정도로, 이는 실험에 의해 쉽게 판단될 수 있다. 섬유는 전형적으로 약 500 내지 1000℃ 범위의 온도로 가열된다. 다양한 가열 요소들이 적외선 가열기, 머플 용광로 등과 같은 섬유 예열기로서 사용될 수 있지만 이에 제한되는 것은 아니다.
예열 후에, 섬유(207)는 최종적으로 스프레이 노즐(218)을 가지는 플라즈마 스프레이부로 진행된다. 탄소 플라즈마는 예를 들어, 기체를 이온화할 수 있는 전 기장을 통해 기체를 함유하는 탄소(예, 아세틸렌, 에틸렌, 에탄올 등)를 통과하여 생성된다. 이러한 서늘한 탄소 플라즈마는 스프레이 노즐들(218)을 통해 섬유로 향하게 된다. 섬유는 플라즈마를 수신하기 위해 스프레이 노즐들의 약 1 cm 내에 증착된다. 일부 실시형태들에서, 가열기(200)는 섬유의 상승 온도를 유지하기 위해 플라즈마 스프레이어(plasma sprayer)의 섬유(207) 상에 배치된다.
CNT 주입 후에, CNT 주입된 섬유(209)는 섬유 번들러(222)에서 재-번들(re-bundle)된다. 이 동작은 섬유의 개별 가닥들을 재결합하고, 섬유 확산기부(208)에서 수행되었던 확산 동작을 효과적으로 역전한다.
상기 번들된, CNT 주입 섬유(209)는 저장을 위해 흡수 섬유 보빈(224)에 감긴다. CNT 주입된 섬유(209)는 복합 물질의 보강재로서 사용을 포함하지만 이에 제한되지 않는 다양한 응용물의 사용을 위해 준비된다.
상술한 동작의 일부는 불활성 대기 또는 진공 하에 수행되어야만 하며, 때문에 환경적 분리가 필요하다는 것이 주목된다. 예를 들어, 사이징이 섬유가 연소되는 것이라면, 섬유는 기체를 제거하고 산화를 방지하기 위해 환경분리되어야만 한다. 또한, 상기 주입 과정은 탄소의 산화를 방지하게 위해 불활성 분위기(예, 질소, 아르곤등) 하에 수행되어야만 한다. 편리하게 하기 위해, 시스템(200)의 일부 실시형태들에서, 환경분리는 섬유 배당 및 인장(생산라인 초기에)과 섬유 흡수(생산라인 말미에)를 제외하고, 모든 동작들에 제공된다.
도 3은 CNT 주입된 섬유가 필라멘트 와인딩 시스템(300)을 통해 실행되는 필라멘트 와인딩 방법의 부동작으로서 생성되는 본 발명의 추가 실시 형태이다.
시스템(300)은 도시된 바와 같이 상호 관계를 가진 섬유 크릴(fiber creel)(302), 탄소 나노튜브 주입부(226), 수지조(328), 및 필라멘트 와인딩 굴대(332)를 포함한다. 탄소 나노튜브 주입부(226)를 제외한 시스템(300)의 다양한 요소들은 종래의 필라멘트 와인딩 방법들에 존재한다. 다시, 도 3에 도시된 방법 및 시스템의 "심장"은 섬유 확산기부(208), (임의선택적인) 사이징 제거부(210), 및 CNT 주입부(212)를 포함하는 탄소 나노튜브 주입부(226)이다.
섬유 크릴(302)은 복수의 모섬유(201A-201H) 스풀들(spools)(204)을 포함한다. 섬유들(201A 내지 201H)의 트위스트 되지 않은 군은 "토우(tow)(303)"로서 집합적으로 언급된다. 상기 용어 "토우"가 일반적으로 그래파이트 섬유들의 군을 언급하며, 용어 "조방사(roving)"은 보통 유리 섬유들을 언급함을 유의해야 한다. 여기, 상기 용어 "토우"는 일반적으로 임의의 형태의 섬유를 언급하는 것으로 의미된다.
도시한 실시형태에서, 크릴(302)은 스풀들(204)을 수평 배향으로 유지한다. 각 스풀(206)로부터의 섬유는, 크릴(302)로부터 이동함에 따라 섬유들의 방향을 변경하는 소형으로 적절히 위치된 롤러들/인장기들(206)을 통해 탄소 나노튜브 주입부(226)로 이동한다.
일부 대안적인 실시형태들에서, 시스템(300)에서 사용되는 스풀된 섬유는 CNT 주입된 섬유(즉, 시스템(200)을 통해 생성된)임을 이해한다. 상기 실시형태들에서, 시스템(300)은 나노튜브 주입부(226) 없이 동작한다.
탄소 나노튜브 주입부(226)에서, 도 2와 관련하여, 토우(303)는 확산되며, 사이징이 제거되고, 나노튜브-형성 촉매가 적용되며, 상기 토우는 가열되고, 탄소 플라즈마는 섬유 상에서 스프레이된다.
나노튜브 주입부(226)를 관통한 후에, CNT 주입된 토우(307)는 수지조(328)로 전달된다. 상기 수지조는 CNT 주입된 섬유 및 수지를 포함하는 복합 물질의 생성을 위해 수지를 포함한다. 일부 중요한 상업적으로 가용한 수지-매트릭스계들은 일반 목적의 폴리에스테르(예, 오르토프탈릭 폴리에스테르 등), 개선된 폴리에스테르(예, 이소프탈산 폴리에스테르 등), 에폭시, 및 비닐 에스테르를 포함한다.
수지조는 다양한 방법으로 실행될 수 있으며, 두 방법이 하기에 기재된다. 도시한 실시형태에서, 수지조(328)은 용기(bath)에 증착된 연마한 회전 실린더(polished rotating cylinder)(예, 실린더(330))가 그가 회전함에 따라 수지를 발탁하는 닥터 블레이드 롤러 배스(doctor blade roller bath)로서 실행된다. 닥터 바(doctor bar)(도 3에 묘사하지 않음)는 실린더(330) 상에 정밀한 수지 필름 두께를 얻기 위해 상기 실린더에 압착되며, 여분의 수지를 상기 용기(bath)에 도로 밀어넣는다. 섬유 토우(307)가 실린더(330)의 상부를 뒤집어 씌어짐에 따라, 그것은 수지 필름에 접촉하여 적시어진다. 일부 다른 실시형태들에서, 수지조(328)는 섬유 토우(307)가 간단하게 수지에 잠기고, 이어서 여분의 수지를 제거하는 한 세트의 와이퍼 또는 롤러를 극복하는 담금조(immersion bath)로서 실현된다.
수지조(328)를 떠난 후, 수지에 적셔진 CNT 주입된 섬유 토우(309)는 다양한 링들, 작은 구멍들(eyelets) 및 전형적으로 분기용 결합구(delivery head) 뒤에 배치된 다중-핀 "콤브(comb)"(묘사되지 않음)을 관통한다. 상기 콤브는 섬유 토우 들(309)이 회전 굴대(332) 상의 단일 결합밴드(single combined band)에 다함께 들여와 질 때까지 분리되게 한다.
실시예
본 도시한 실시형태에 의하여 CNT 주입된 탄소 섬유가 형성되었다. 전류가 탄소 섬유(모섬유)를 관통하여, 에폭시 사이징 물질을 제거하기 위해 대략 800℃로 그것을 가열했다. 다음으로 상기 섬유는 실내 온도로 냉각되어, 전극들 사이에 클램핑되어 남겨졌다. 자성-유체 촉매가 에어로졸 스프레이 기술을 사용하여 섬유에 적용되었다. 상기 섬유는 건조되었으며, 챔버(chamber)가 폐쇄되어, 비워졌으며, 아르곤으로 채워졌다. 전류가 탄소 섬유를 다시 관통하여, 탄소 나노튜브 합성을 위해 대략 800℃로 그것을 가열했다. 기압 플라즈마 제트(atmospheric pressure plasma jet)를 이용한 13.56 MHz의 마이크로파 에너지를 사용하여 아세틸렌 전구체로부터 탄소 플라즈마가 생성되었다. 상기 플라즈마 제트의 운반 기체는 분당 표준 20 리터(slm)의 헬륨이었고, 아르곤은 1.2 slm으로 제공되었다. 상기 플라즈마 제트는 상기 플라즈마 제트가 분당 6 내지 12 인치의 속도로 섬유 길이를 이동가능하게 하는 로봇식 동작 제어 시스템에 고정되었다. CNT 주입된 섬유는 이어서 실내온도로 냉각되고, 챔버로부터 이동되었다. 주사전자현미경(SEM)은 모 탄소섬유의 표면에서의 탄소 나노튜브 형성을 보였다.
상술한 실시형태들은 본 발명을 단지 도시하는 것이며, 상술한 실시형태들의 다수의 변화가 본 발명의 범위를 벗어나지 나고 본 기술분야의 당업자에 의해 고안 될 수 있다는 것이 이해된다. 예를 들어, 이 명세서에서, 무수한 특정 세부사항들은 본 발명의 도시한 실시형태들의 이해 및 완전한 기재를 제공하기 위한 것이다. 그러나, 본 기술분야의 당업자는 본 발명이 상기 세부사항 중에 하나 이상이 없이도, 또는 다른 방법, 물질, 구성요소들을 가지고 실행될 수 있음을 인식할 것이다.
또한, 일부의 경우, 널리 공지된 구조, 물질, 또는 동작들이 도시한 실시형태의 불명료한 측면을 피하기 위해 상세히 기재되지 않거나 도시되지 않는다. 도면들에 나타난 다양한 실시형태들은 도시적이며, 반드시 일정한 비례로 확대/축소하여 그려진 것은 아니라는 것을 이해한다. " 하나의 실시형태", 또는 " 명세서 전체에 걸친 일 실시형태" 또는 "일부 실시형태들"에 대한 언급은 본 실시형태(들)와 관련하여 기재된 특정 특성, 구조, 물질, 또는 특징이 반드시 본 발명의 모든 실시형태들이 아닌 적어도 하나의 실시형태에 포함된다는 것을 의미한다. 결과적으로, 본 명세서 전체에 걸쳐 다양한 위치들에서의 구문 "하나의 실시형태에서" "일 실시형태에서" 또는 "일부 실시형태들에서"은 모두가 반드시 동일한 실시형태를 언급하는 것은 아니다. 또한, 특정 특성들, 구조들, 물질들, 또는 특징들은 하나 이상의 실시형태들에서 적절한 방식으로 결합될 수 있다. 따라서, 상기 변화들은 뒤따르는 청구항 및 그의 균등물의 범위 내에 포함되는 것으로 의도된다.
탄소 수요 및 그의 잠재적인 광범위한 응용성에도, 탄소 섬유는 호환성을 위해 에폭시 수지만으로 역사상 중요하게 사이즈되었다. 여기 개시된 방법에 따라 생 성된 CNT 주입된 탄소 섬유는 주입 나노튜브들로 사이즈된 섬유를 제공함에 의해 이러한 문제를 해결하며, 이는 다양한 수지들 및 방법을 가지는 소망하는 광범위의 응용성을 제공한다.

Claims (20)

  1. 모섬유의 표면 상에 탄소 나노튜브 형성 촉매를 배치하는 단계(a)와,
    탄소 나노튜브 주입된 섬유를 형성하기 위해 상기 모섬유 상에서 탄소 나노튜브들을 직접적으로 합성하는 단계(b)를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 모섬유 상에 상기 촉매를 배치하기 전에 상기 모섬유를 확산시키는 것을 더 포함하는 방법.
  3. 제 1항에 있어서,
    상기 모섬유 상에 상기 촉매를 배치하기 전에 상기 모섬유로부터 사이징 물질을 제거하는 단계를 더 포함하는 방법.
  4. 제 1항에 있어서,
    상기 촉매는 전이 금속 촉매인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 모섬유 상에 상기 촉매를 배치하는 단계는,
    (a) 액체에서 상기 촉매의 용액을 형성하는 단계와,
    (b) 상기 촉매 상에 상기 용액을 스프레이(spray)하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 모섬유 상에 연성 온도로 가열되는 상기 촉매를 배치한 후에 가열하는 것을 더 포함하는 방법.
  7. 제 1항에 있어서,
    약 500℃ 내지 1000℃ 사이의 온도로 가열되는 상기 모섬유 상에 상기 촉매를 배치한 후에 가열하는 것을 더 포함하는 방법.
  8. 제 1항에 있어서,
    상기 모섬유는 탄소 섬유이며, 상기 방법은 상기 모섬유 상에 상기 촉매를 배치한 후에 약 800℃로 가열된 상기 섬유를 가열하는 것을 더 포함하는 방법.
  9. 제 1항에 있어서,
    탄소 나노튜브를 합성하는 단계는,
    (a) 탄소 플라즈마를 형성하는 단계와,
    (b) 상기 탄소 플라즈마를 촉매가 적재된 모섬유로 향하게 하는 단계를 더 포함하는 방법.
  10. 제 1항에 있어서,
    상기 탄소 나노튜브 주입된 섬유에 수지를 적용하는 것을 더 포함하는 하는 방법.
  11. 제 10항에 있어서,
    상기 수지를 적용한 후에 상기 탄소 나노튜브 주입된 섬유가 굴대(mandrel)에 대하여 감기는 것을 더 포함하는 방법.
  12. 제 10항에 있어서,
    상기 모섬유는 그래파이트 토우(graphite tow)와 유리 조방사(glass roving)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법.
  13. 제 1항에 있어서,
    상기 모섬유 상에서 제1의 양(a first amount)의 상기 탄소 나노튜브들을 합성하는 것을 더 포함하며, 상기 제1의 양은 상기 탄소 나노튜브 주입된 섬유가 상기 모섬유에 의해 나타나는 제1군의 특성들로부터 다른 제2군의 특성들을 나타내도록 선택되는 것을 특징으로 하는 방법.
  14. 제 13항에 있어서,
    상기 제1군의 특성들과 상기 제2군의 특성들은 적어도 일부 동일한 특성들을 가지며, 더하여 상기 동일한 특성들 중에서 적어도 하나의 값은 상기 제1군과 제2군 간에 다른 것을 특징으로 하는 방법.
  15. 제 13항에 있어서,
    상기 탄소 나노튜브 주입된 섬유의 상기 제2군의 특성들은 상기 모섬유에 의해 나타난 상기 제1군의 특성들 가운데 포함되지 않은 하나의 특성을 포함하는 것을 특징으로 하는 방법.
  16. 제 1항에 있어서,
    제1량의 상기 탄소 나노튜브들을 배치하는 것을 더 포함하며, 상기 제1의 양은 상기 탄소 나노튜브 주입된 섬유의 인장 강도, 영률(Young's modulus), 밀도, 전기 전도성 및 열 전도성으로 이루어진 군으로부터 선택된 적어도 하나의 특성 값이 상기 모섬유의 상기 적어도 하나의 특성 값으로부터 다르게 선택되는 특징으로 하는 방법.
  17. 모섬유로부터 사이징 물질을 제거하는 단계와,
    사이징 제거 후에 상기 모섬유에 탄소 나노튜브 형성 촉매를 적용하는 단계와,
    상기 섬유를 적어도 500℃로 가열하는 단계와,
    상기 모섬유 상에 탄소 나노튜브들을 합성하는 단계를 포함하는 것을 특징으로 하는 방법.
  18. 모섬유와,
    상기 모섬유에 공유 결합된 탄소 나노튜브들을 가지는 탄소 나노튜브 주입된 섬유를 포함하는 것을 특징으로 하는 조성물.
  19. 제 18항에 있어서,
    상기 탄소 나노튜브 주입된 섬유의 전기 저항력은 상기 모섬유의 전기 저항력보다 낮은 것을 특징으로 하는 조성물.
  20. 상기 조성물이 수지를 더 포함하는 것을 특징으로 하는 제17항에 따른 탄소 나노튜브 주입 섬유.
KR1020097013883A 2007-01-03 2007-12-07 탄소 나노튜브 주입 섬유 및 그 방법 KR101218487B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/619,327 2007-01-03
US11/619,327 US8158217B2 (en) 2007-01-03 2007-01-03 CNT-infused fiber and method therefor

Publications (2)

Publication Number Publication Date
KR20090086277A true KR20090086277A (ko) 2009-08-11
KR101218487B1 KR101218487B1 (ko) 2013-01-04

Family

ID=39321521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097013883A KR101218487B1 (ko) 2007-01-03 2007-12-07 탄소 나노튜브 주입 섬유 및 그 방법

Country Status (11)

Country Link
US (2) US8158217B2 (ko)
EP (3) EP2115191B1 (ko)
JP (3) JP5079819B2 (ko)
KR (1) KR101218487B1 (ko)
AT (1) ATE557118T1 (ko)
AU (1) AU2007342249B2 (ko)
CA (1) CA2673891C (ko)
DK (3) DK2115191T3 (ko)
ES (3) ES2389402T3 (ko)
WO (1) WO2008085634A1 (ko)
ZA (1) ZA200904640B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119988A1 (en) * 2020-10-21 2022-04-21 NanoTubeTec Co., LTD Fabric with carbon nanotube fiber

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537339A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノ構造強化された複合体およびナノ構造強化方法
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US20100279569A1 (en) * 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US9725314B2 (en) * 2008-03-03 2017-08-08 Performancy Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom
US8585934B2 (en) * 2009-02-17 2013-11-19 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
JP5753102B2 (ja) * 2009-02-27 2015-07-22 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc ガス予熱方法を用いた低温cnt成長
US20100224129A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US20100260998A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
CA2757474A1 (en) * 2009-04-10 2010-10-14 Applied Nanostructured Solutions, Llc Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
WO2010124260A1 (en) 2009-04-24 2010-10-28 Lockheed Martin Corporation Cnt-infused emi shielding composite and coating
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
JP5744008B2 (ja) * 2009-04-27 2015-07-01 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 複合材料構造体を除氷するためのcntベース抵抗加熱
CN102421704A (zh) * 2009-04-30 2012-04-18 应用纳米结构方案公司 用于碳纳米管合成的紧密接近催化的方法和系统
WO2011014258A2 (en) 2009-07-31 2011-02-03 Massachusetts Institute Of Technology Systems and methods related to the formation of carbon-based nanostructures
KR20120036890A (ko) 2009-08-03 2012-04-18 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 복합재 섬유에 나노입자의 결합
US8409768B2 (en) * 2009-10-12 2013-04-02 Board Of Regents, The University Of Texas Systems Tuning of Fe catalysts for growth of spin-capable carbon nanotubes
US20110089958A1 (en) * 2009-10-19 2011-04-21 Applied Nanostructured Solutions, Llc Damage-sensing composite structures
JP5937009B2 (ja) * 2009-11-02 2016-06-22 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructured Solutions, Llc Cnt導入アラミド繊維材料及びそのための方法
AU2010350690A1 (en) * 2009-11-23 2012-04-19 Applied Nanostructured Solutions, Llc CNT-tailored composite air-based structures
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
EP2504164A4 (en) 2009-11-23 2013-07-17 Applied Nanostructured Sols CERAMIC COMPOSITE MATERIALS CONTAINING FIBER MATERIALS IMPREGNATED WITH CARBON NANOTUBES AND METHODS OF MAKING SAME
KR20120117998A (ko) * 2009-12-01 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 탄소 나노튜브 주입된 섬유 물질을 포함하는 금속 매트릭스 복합재 물질 및 그 제조방법
CN103079805B (zh) * 2009-12-14 2015-02-11 应用纳米结构方案公司 含有碳纳米管并入的纤维材料的防火复合材料和制品
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CN102712012A (zh) * 2010-01-22 2012-10-03 应用纳米结构方案公司 利用可缠绕长度的碳纳米管并入的纤维材料作为移动过滤介质的过滤系统以及与其有关方法
JP5830471B2 (ja) * 2010-02-02 2015-12-09 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 平行に配列されたカーボン・ナノチューブを含むカーボン・ナノチューブ導入繊維材料の生産方法
AU2011223743A1 (en) 2010-03-02 2012-08-30 Applied Nanostructured Solutions,Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8665581B2 (en) 2010-03-02 2014-03-04 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
CN102372252B (zh) * 2010-08-23 2016-06-15 清华大学 碳纳米管复合线及其制备方法
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CA2808242A1 (en) 2010-09-14 2012-03-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
CA2782976A1 (en) 2010-09-23 2012-03-29 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
US9233492B2 (en) * 2010-10-12 2016-01-12 Florida State University Research Foundation, Inc. Composite materials reinforced with carbon nanotube yarns
WO2012091789A1 (en) 2010-10-28 2012-07-05 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
US20130072077A1 (en) 2011-09-21 2013-03-21 Massachusetts Institute Of Technology Systems and methods for growth of nanostructures on substrates, including substrates comprising fibers
US9893363B2 (en) 2011-10-17 2018-02-13 Lockheed Martin Corporation High surface area flow battery electrodes
US8822057B2 (en) 2011-10-17 2014-09-02 Lockheed Martin Corporation High surface area flow battery electrodes
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US8470946B1 (en) 2012-08-20 2013-06-25 The Regents Of The University Of California Enhanced strength carbon nanotube yarns and sheets using infused and bonded nano-resins
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
WO2014089001A1 (en) 2012-12-05 2014-06-12 Ocv Intellectual Capital, Llc Post-coated carbon enhanced reinforcement tow and chopped strands and method for forming same
FR3000691B1 (fr) 2013-01-10 2015-02-13 Univ Haute Alsace Procede de preparation d'un materiau allonge muni de nanostructures de carbone greffees, appareil et produit associes
CN103088648B (zh) * 2013-01-25 2015-01-07 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
GB201412656D0 (en) 2014-07-16 2014-08-27 Imp Innovations Ltd Process
JP6489519B2 (ja) * 2014-10-23 2019-03-27 ニッタ株式会社 強化繊維の製造方法
JP2018012741A (ja) * 2014-11-25 2018-01-25 学校法人同志社 炭素繊維強化プラスチック
US9908978B2 (en) 2015-04-08 2018-03-06 Arevo Inc. Method to manufacture polymer composite materials with nano-fillers for use in additive manufacturing to improve material properties
US10829872B2 (en) * 2015-05-20 2020-11-10 University Of Maryland, College Park Composite materials with self-regulated infrared emissivity and environment responsive fibers
US11117311B2 (en) 2015-10-05 2021-09-14 Arevo, Inc. Amorphous polyaryletherketone and blends thereof for use in additive manufacturing
WO2017210238A1 (en) 2016-05-31 2017-12-07 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
JP2018065358A (ja) * 2016-10-21 2018-04-26 泰英 楠原 表面処理剤除去方法、並びに、これを用いた射出成形方法及びペレット製造方法
WO2019055155A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology LOW-RATE MANUFACTURE OF COMPOSITE MATERIAL DEFECTS
US10941491B2 (en) * 2017-09-25 2021-03-09 Raytheon Technologies Corporation Continuous multiple tow coating reactor
WO2019108616A1 (en) 2017-11-28 2019-06-06 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods for energy storage and/or use
US10427985B1 (en) 2018-03-06 2019-10-01 Lockheed Martin Corporation Engineered micro-voids for toughening ceramic composites
KR102104879B1 (ko) * 2018-11-23 2020-04-27 울산과학기술원 3차원 스트레인 센서 및 이의 제조방법

Family Cites Families (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939527B2 (ja) * 1981-01-14 1984-09-25 昭和電工株式会社 分枝を有する炭素繊維の製造法
US4530750A (en) 1981-03-20 1985-07-23 A. S. Laboratories, Inc. Apparatus for coating optical fibers
JPS58156512A (ja) * 1982-03-08 1983-09-17 Nippon Steel Corp 微小炭素繊毛が密生した繊維状炭素材
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
US4790052A (en) * 1983-12-28 1988-12-13 Societe Europeenne De Propulsion Process for manufacturing homogeneously needled three-dimensional structures of fibrous material
US5221605A (en) * 1984-10-31 1993-06-22 Igen, Inc. Luminescent metal chelate labels and means for detection
US5238808A (en) 1984-10-31 1993-08-24 Igen, Inc. Luminescent metal chelate labels and means for detection
US5310687A (en) * 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
US4707349A (en) 1986-02-28 1987-11-17 Hjersted Norman B Process of preparing a preferred ferric sulfate solution, and product
US4920917A (en) * 1987-03-18 1990-05-01 Teijin Limited Reactor for depositing a layer on a moving substrate
US5130194A (en) 1988-02-22 1992-07-14 The Boeing Company Coated ceramic fiber
US5093155A (en) * 1988-11-29 1992-03-03 Tonen Corporation Process for sizing reinforcing fiber by applying sulfone compounds containing sulfonyl groups and sized reinforcing fibers obtained thereby
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
US5173367A (en) 1991-01-15 1992-12-22 Ethyl Corporation Ceramic composites
US5246794A (en) 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
US20020085974A1 (en) 1992-01-15 2002-07-04 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US5946587A (en) 1992-08-06 1999-08-31 Canon Kabushiki Kaisha Continuous forming method for functional deposited films
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US5470408A (en) 1993-10-22 1995-11-28 Thiokol Corporation Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants
JP3571785B2 (ja) 1993-12-28 2004-09-29 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
AU4898296A (en) * 1995-03-14 1996-10-08 Thiokol Corporation Infrared tracer compositions
JP3119172B2 (ja) 1995-09-13 2000-12-18 日新電機株式会社 プラズマcvd法及び装置
JPH09115334A (ja) * 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
JPH09111135A (ja) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp 導電性ポリマー組成物
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
JP3740295B2 (ja) 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
EP0933343B1 (en) * 1998-01-29 2003-06-25 Coi Ceramics, Inc. Method for producing sized, coated ceramic fibers
US6863942B2 (en) * 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6455021B1 (en) 1998-07-21 2002-09-24 Showa Denko K.K. Method for producing carbon nanotubes
US7125534B1 (en) 1998-09-18 2006-10-24 William Marsh Rice University Catalytic growth of single- and double-wall carbon nanotubes from metal particles
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6221154B1 (en) * 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
US6331209B1 (en) 1999-04-21 2001-12-18 Jin Jang Method of forming carbon nanotubes
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US20030091496A1 (en) * 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6913075B1 (en) 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
EP1226093B1 (en) 1999-10-27 2011-01-05 William Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
US6506037B1 (en) * 1999-11-17 2003-01-14 Carrier Corporation Screw machine
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
FR2805179B1 (fr) * 2000-02-23 2002-09-27 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
EP1269797A4 (en) 2000-03-07 2006-06-21 Robert P H Chang CARBON NANOSTRUCTURES AND PROCESSES FOR PREPARING THE SAME
KR100360470B1 (ko) * 2000-03-15 2002-11-09 삼성에스디아이 주식회사 저압-dc-열화학증착법을 이용한 탄소나노튜브 수직배향증착 방법
US6479028B1 (en) 2000-04-03 2002-11-12 The Regents Of The University Of California Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction
US6653005B1 (en) 2000-05-10 2003-11-25 University Of Central Florida Portable hydrogen generator-fuel cell apparatus
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6908572B1 (en) * 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
US6451175B1 (en) * 2000-08-15 2002-09-17 Wisconsin Alumni Research Foundation Method and apparatus for carbon nanotube production
EP1182272A1 (fr) * 2000-08-23 2002-02-27 Cold Plasma Applications C.P.A. Procédé et dispositif permettant le dépôt de couches métalliques en continu par plasma froid
US6420293B1 (en) 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
US6653619B2 (en) 2000-09-15 2003-11-25 Agilent Technologies, Inc. Optical motion encoder with a reflective member allowing the light source and sensor to be on the same side
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
JP3912583B2 (ja) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
JP3981566B2 (ja) * 2001-03-21 2007-09-26 守信 遠藤 膨張炭素繊維体の製造方法
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
CA2442273A1 (en) 2001-03-26 2002-10-03 Eikos, Inc. Carbon nanotubes in structures and repair compositions
AUPR421701A0 (en) * 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
US7157068B2 (en) * 2001-05-21 2007-01-02 The Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
US7341498B2 (en) * 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US6783702B2 (en) * 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
KR100951013B1 (ko) 2001-07-27 2010-04-02 유니버시티 오브 서레이 탄소나노튜브의 제조방법
US7118693B2 (en) 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
US7329698B2 (en) * 2001-08-06 2008-02-12 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
ATE414675T1 (de) * 2001-08-29 2008-12-15 Georgia Tech Res Inst Zusammensetzungen, welche stäbchenförmige polymere und nanoröhrenförmige strukturen umfassen, sowie verfahren zur herstellung derselben
US7070472B2 (en) * 2001-08-29 2006-07-04 Motorola, Inc. Field emission display and methods of forming a field emission display
US6656339B2 (en) * 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
CA2470025C (en) * 2001-12-21 2012-02-21 Battelle Memorial Institute Carbon nanotube-containing structures, methods of making, and processes using same
JP4404961B2 (ja) 2002-01-08 2010-01-27 双葉電子工業株式会社 カーボンナノ繊維の製造方法。
TWI236505B (en) 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
JP3972674B2 (ja) * 2002-02-14 2007-09-05 東レ株式会社 炭素繊維その製造方法および炭素繊維強化樹脂組成物
JP4168676B2 (ja) 2002-02-15 2008-10-22 コニカミノルタホールディングス株式会社 製膜方法
JP3922039B2 (ja) 2002-02-15 2007-05-30 株式会社日立製作所 電磁波吸収材料及びそれを用いた各種製品
CN1176014C (zh) 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
JP4107475B2 (ja) * 2002-02-22 2008-06-25 三菱レイヨン株式会社 繊維強化複合材料用の補強繊維
US6546744B1 (en) * 2002-02-28 2003-04-15 Billy Cavender Recreational vehicle heat transfer apparatus
WO2003078317A1 (en) 2002-03-14 2003-09-25 Carbon Nanotechnologies, Inc. Composite materials comprising polar polyers and single-wall carbon naotubes
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US7405854B2 (en) * 2002-03-21 2008-07-29 Cornell Research Foundation, Inc. Fibrous micro-composite material
US6887451B2 (en) * 2002-04-30 2005-05-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Process for preparing carbon nanotubes
AU2003228881A1 (en) 2002-05-08 2003-11-11 Dana Corporation Methods and apparatus for plasma processing control
US7445817B2 (en) 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
FR2841233B1 (fr) 2002-06-24 2004-07-30 Commissariat Energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US6979947B2 (en) * 2002-07-09 2005-12-27 Si Diamond Technology, Inc. Nanotriode utilizing carbon nanotubes and fibers
US7153452B2 (en) 2002-09-12 2006-12-26 Clemson University Mesophase pitch-based carbon fibers with carbon nanotube reinforcements
FR2844510B1 (fr) * 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
WO2004027336A1 (en) 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
JP3735651B2 (ja) 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 カーボンナノファイバー分散樹脂繊維強化複合材料
US7431965B2 (en) 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
KR100720628B1 (ko) * 2002-11-01 2007-05-21 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
JP3969650B2 (ja) 2002-11-19 2007-09-05 日精樹脂工業株式会社 複合樹脂成形品におけるスキン層の層厚制御方法
WO2004070349A2 (en) 2002-11-27 2004-08-19 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
CN1290763C (zh) * 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
JP4514130B2 (ja) * 2002-12-20 2010-07-28 株式会社アルネアラボラトリ 光パルスレーザ
TWI304321B (en) * 2002-12-27 2008-12-11 Toray Industries Layered products, electromagnetic wave shielding molded articles and method for production thereof
ATE474658T1 (de) * 2003-03-07 2010-08-15 Seldon Technologies Llc Reinigung von flüssigkeiten mit nanomaterialien
US7419601B2 (en) 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
CN1286716C (zh) * 2003-03-19 2006-11-29 清华大学 一种生长碳纳米管的方法
US7074294B2 (en) 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
FR2854409B1 (fr) * 2003-04-30 2005-06-17 Centre Nat Rech Scient Procede d'obtention de fibres a haute teneur en particules colloidales et fibres composites obtenues
US7261779B2 (en) * 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
US7235159B2 (en) * 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050119371A1 (en) * 2003-10-15 2005-06-02 Board Of Trustees Of Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
JP2007515364A (ja) * 2003-10-16 2007-06-14 ザ ユニバーシティ オブ アクロン カーボンナノファイバ基板上のカーボンナノチューブ
KR100570634B1 (ko) 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
US7265175B2 (en) 2003-10-30 2007-09-04 The Trustees Of The University Of Pennsylvania Flame retardant nanocomposite
ES2291957T3 (es) 2003-11-07 2008-03-01 Bae Systems Plc Formacion de nanohilos metalicos.
EP1709213A4 (en) * 2004-01-15 2012-09-05 Nanocomp Technologies Inc SYSTEMS AND METHODS FOR SYNTHESIZING LONG LENGTH NANOSTRUCTURES
JP2005213700A (ja) * 2004-01-30 2005-08-11 National Institute For Materials Science 繊維径の異なる複合型繊維状炭素およびその製造方法
US20070189953A1 (en) 2004-01-30 2007-08-16 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same
JP2005219950A (ja) * 2004-02-04 2005-08-18 Nikon Corp 炭素材料、炭素材料の製造方法、ガス吸着装置及び複合材料
US7338684B1 (en) * 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US7628041B2 (en) 2004-02-27 2009-12-08 Alcatel-Lucent Usa Inc. Carbon particle fiber assembly technique
EP1737905B1 (en) * 2004-03-20 2007-10-24 Teijin Twaron B.V. Composite materials comprising ppta and nanotubes
CN100383213C (zh) 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US7144563B2 (en) 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
WO2006073454A2 (en) 2004-04-28 2006-07-13 University Of South Florida Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof
US20050260412A1 (en) * 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes
CN1705059B (zh) 2004-05-26 2012-08-29 清华大学 碳纳米管场发射装置及其制备方法
KR20050121426A (ko) * 2004-06-22 2005-12-27 삼성에스디아이 주식회사 탄소나노튜브 제조용 촉매의 제조 방법
FR2872826B1 (fr) 2004-07-07 2006-09-15 Commissariat Energie Atomique Croissance a basse temperature de nanotubes de carbone orientes
CA2577065C (en) * 2004-07-22 2015-02-03 William Marsh Rice University Polymer/carbon-nanotube interpenetrating networks and process for making same
US8080487B2 (en) * 2004-09-20 2011-12-20 Lockheed Martin Corporation Ballistic fabrics with improved antiballistic properties
FR2877262B1 (fr) * 2004-10-29 2007-04-27 Centre Nat Rech Scient Cnrse Fibres composites et fibres dissymetriques a partir de nanotubes de carbonne et de particules colloidales
TW200631111A (en) 2004-11-04 2006-09-01 Koninkl Philips Electronics Nv Nanotube-based circuit connection approach
US6988853B1 (en) * 2004-11-04 2006-01-24 Nehalem Marine Manufacturing Muted tidal regulator
WO2007015710A2 (en) 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
WO2006055679A2 (en) * 2004-11-16 2006-05-26 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
US7407901B2 (en) 2005-01-12 2008-08-05 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
US7811632B2 (en) 2005-01-21 2010-10-12 Ut-Battelle Llc Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays
US20060198956A1 (en) 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
CN100500555C (zh) 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
EP1885647A1 (en) 2005-04-22 2008-02-13 Seldon Technologies, LLC Article comprising carbon nanotubes and method of using the same for purifying fluids
CN100376478C (zh) 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
JP2006342011A (ja) * 2005-06-08 2006-12-21 Bridgestone Corp カーボンナノチューブ−炭素繊維複合体及びその製造方法
US7278324B2 (en) 2005-06-15 2007-10-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for detection of crack growth in a structure
KR101289256B1 (ko) * 2005-06-28 2013-07-24 더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마 탄소 나노튜브의 성장 및 수득 방법
US8313723B2 (en) * 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US20070110977A1 (en) * 2005-08-29 2007-05-17 Al-Haik Marwan S Methods for processing multifunctional, radiation tolerant nanotube-polymer structure composites
WO2007149109A2 (en) 2005-09-01 2007-12-27 Seldon Technologies, Inc Large scale manufacturing of nanostructured material
CN1927988A (zh) * 2005-09-05 2007-03-14 鸿富锦精密工业(深圳)有限公司 热界面材料及其制备方法
CN100482580C (zh) 2005-10-13 2009-04-29 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制备装置及方法
US8372470B2 (en) 2005-10-25 2013-02-12 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
US7709087B2 (en) * 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US8148276B2 (en) 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
EP1956110B1 (en) * 2005-11-30 2010-11-10 Shimane Prefectural Government Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber
US7592248B2 (en) 2005-12-09 2009-09-22 Freescale Semiconductor, Inc. Method of forming semiconductor device having nanotube structures
KR100745735B1 (ko) * 2005-12-13 2007-08-02 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 전계방출소자의제조방법
US7465605B2 (en) 2005-12-14 2008-12-16 Intel Corporation In-situ functionalization of carbon nanotubes
US8424200B2 (en) * 2005-12-19 2013-04-23 University Of Virginia Patent Foundation Conducting nanotubes or nanostructures based composites, method of making them and applications
TW200730436A (en) * 2005-12-19 2007-08-16 Advanced Tech Materials Production of carbon nanotubes
WO2007072584A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Vapor-grown carbon fiber and production process thereof
FR2895398B1 (fr) * 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre revetus d'un ensimage renfermant des nanoparticules.
FR2895397B1 (fr) * 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre et structures de fils de verre pourvus d'un revetement renfermant des nanoparticules.
US20080279753A1 (en) 2006-01-30 2008-11-13 Harutyunyan Avetik R Method and Apparatus for Growth of High Quality Carbon Single-Walled Nanotubes
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
US8124503B2 (en) 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
US7832983B2 (en) 2006-05-02 2010-11-16 Goodrich Corporation Nacelles and nacelle components containing nanoreinforced carbon fiber composite material
US7687981B2 (en) 2006-05-05 2010-03-30 Brother International Corporation Method for controlled density growth of carbon nanotubes
US20090186214A1 (en) 2006-05-17 2009-07-23 University Of Dayton Method of growing carbon nanomaterials on various substrates
JP2009537339A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノ構造強化された複合体およびナノ構造強化方法
US8337979B2 (en) * 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US7534648B2 (en) 2006-06-29 2009-05-19 Intel Corporation Aligned nanotube bearing composite material
US9095639B2 (en) 2006-06-30 2015-08-04 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US8389119B2 (en) 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
US20080053922A1 (en) * 2006-09-01 2008-03-06 Honsinger Charles P Jr Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same
JP2008056546A (ja) 2006-09-01 2008-03-13 Ihi Corp 炭素構造体の製造装置及び製造方法
CN101595251B (zh) 2006-10-05 2014-06-11 技术研究及发展基金有限公司 微管及其制备方法
KR100829001B1 (ko) 2006-12-07 2008-05-14 한국에너지기술연구원 유리섬유 또는 탄소섬유 위에 탄소나노와이어를 직접합성하는 방법 및 이를 이용한 강화복합체 제조 방법
US20080160302A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process
US20080160286A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified discontinuous glass fibers for use in the formation of thermoplastic fiber-reinforced composite articles
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US20100279569A1 (en) 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
TW200833861A (en) 2007-02-05 2008-08-16 Nat Univ Tsing Hua Method for growing carbon nanotubes directly on the carbon fiber
US20080247938A1 (en) 2007-04-05 2008-10-09 Ming-Chi Tsai Process of growing carbon nanotubes directly on carbon fiber
CN101286384B (zh) 2007-04-11 2010-12-29 清华大学 电磁屏蔽线缆
US8388795B2 (en) 2007-05-17 2013-03-05 The Boeing Company Nanotube-enhanced interlayers for composite structures
US7718220B2 (en) 2007-06-05 2010-05-18 Johns Manville Method and system for forming reinforcing fibers and reinforcing fibers having particulate protuberances directly attached to the surfaces
EP2011572B1 (en) * 2007-07-06 2012-12-05 Imec Method for forming catalyst nanoparticles for growing elongated nanostructures
US7785498B2 (en) * 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
KR20100050490A (ko) 2007-07-27 2010-05-13 다우 코닝 코포레이션 섬유 구조물 및 그 제조 방법
JP5336485B2 (ja) 2007-08-02 2013-11-06 ダウ グローバル テクノロジーズ エルエルシー 熱硬化性ポリマーの性能を向上させるための両親媒性ブロックコポリマーおよび無機ナノフィラー
WO2009023644A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
US20090047502A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced modularly constructed composite panel
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US7815820B2 (en) 2007-10-18 2010-10-19 General Electric Company Electromagnetic interference shielding polymer composites and methods of manufacture
CN101827975A (zh) 2007-10-23 2010-09-08 特种制纸株式会社 薄片状物及其制造方法
KR20090041765A (ko) * 2007-10-24 2009-04-29 삼성모바일디스플레이주식회사 탄소나노튜브 및 그 형성 방법, 하이브리드 구조 및 그형성 방법 및 발광 디바이스
US20090126783A1 (en) * 2007-11-15 2009-05-21 Rensselaer Polytechnic Institute Use of vertical aligned carbon nanotube as a super dark absorber for pv, tpv, radar and infrared absorber application
US8146861B2 (en) 2007-11-29 2012-04-03 Airbus Deutschland Gmbh Component with carbon nanotubes
KR100878751B1 (ko) 2008-01-03 2009-01-14 한국에너지기술연구원 셀룰로스 섬유를 이용한 촉매지지체, 이의 제조방법,촉매지지체 표면에 직접성장된 탄소나노튜브 및탄소나노튜브 표면에 나노금속 촉매가 담지된 담지촉매 및이의 제조방법
US20090191352A1 (en) 2008-01-24 2009-07-30 Nanodynamics, Inc. Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JP2009184892A (ja) 2008-02-08 2009-08-20 Dainippon Screen Mfg Co Ltd カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法
US9725314B2 (en) 2008-03-03 2017-08-08 Performancy Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom
WO2009110885A1 (en) 2008-03-03 2009-09-11 Performance Polymer Solutions, Inc. Continuous process for the production of carbon nanotube reinforced continuous fiber preforms and composites made therefrom
US7837905B2 (en) 2008-05-16 2010-11-23 Raytheon Company Method of making reinforced filament with doubly-embedded nanotubes
US20110159270A9 (en) * 2008-06-02 2011-06-30 Texas A & M University System Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof
US20100059243A1 (en) * 2008-09-09 2010-03-11 Jin-Hong Chang Anti-electromagnetic interference material arrangement
KR101420680B1 (ko) * 2008-09-22 2014-07-17 삼성전자주식회사 저항가열을 이용한 탄소섬유의 표면처리 장치 및 표면처리 방법
US8351220B2 (en) 2009-01-28 2013-01-08 Florida State University Research Foundation Electromagnetic interference shielding structure including carbon nanotube or nanofiber films and methods
JP5753102B2 (ja) 2009-02-27 2015-07-22 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc ガス予熱方法を用いた低温cnt成長
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US8052951B2 (en) 2009-04-03 2011-11-08 Ut-Battelle, Llc Carbon nanotubes grown on bulk materials and methods for fabrication
US20100272891A1 (en) 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100311866A1 (en) 2009-06-05 2010-12-09 University Of Massachusetts Heirarchial polymer-based nanocomposites for emi shielding
CN101698975B (zh) 2009-09-23 2011-12-28 北京航空航天大学 炭纳米管对炭化后的预氧丝预制体界面的改性方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119988A1 (en) * 2020-10-21 2022-04-21 NanoTubeTec Co., LTD Fabric with carbon nanotube fiber

Also Published As

Publication number Publication date
EP2261404B1 (en) 2012-08-22
DK2115191T3 (da) 2012-10-22
EP2290139A1 (en) 2011-03-02
ES2389402T3 (es) 2012-10-25
ES2392558T3 (es) 2012-12-11
JP5079819B2 (ja) 2012-11-21
JP2012193105A (ja) 2012-10-11
JP2010531934A (ja) 2010-09-30
US20120065300A1 (en) 2012-03-15
CA2673891A1 (en) 2008-07-17
DK2261404T3 (da) 2012-09-17
JP2015110859A (ja) 2015-06-18
WO2008085634A1 (en) 2008-07-17
EP2261404A1 (en) 2010-12-15
CA2673891C (en) 2014-08-19
KR101218487B1 (ko) 2013-01-04
EP2115191B1 (en) 2012-10-03
US20100276072A1 (en) 2010-11-04
ZA200904640B (en) 2010-04-28
EP2290139B1 (en) 2012-05-09
EP2115191A1 (en) 2009-11-11
ES2387950T3 (es) 2012-10-04
JP6066584B2 (ja) 2017-01-25
DK2290139T3 (da) 2012-07-23
AU2007342249A1 (en) 2008-07-17
JP6113769B2 (ja) 2017-04-12
US8158217B2 (en) 2012-04-17
AU2007342249B2 (en) 2012-08-23
ATE557118T1 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
KR101218487B1 (ko) 탄소 나노튜브 주입 섬유 및 그 방법
KR101770194B1 (ko) Cnt 주입 금속 섬유 물질 및 그 방법
AU2010328139B2 (en) CNT-infused fibers in thermoplastic matrices
AU2010321535B2 (en) CNT-infused fibers in thermoset matrices
JP5753102B2 (ja) ガス予熱方法を用いた低温cnt成長
KR101928128B1 (ko) 탄소나노구조를 함유하는 하이브리드 섬유의 대규모 제조 장치 및 방법 및 관련 물질
US20110171469A1 (en) Cnt-infused aramid fiber materials and process therefor
JP2015502311A (ja) 再利用可能な基材上にカーボンナノチューブを連続的に製造するためのシステム及び方法
AU2010313613A1 (en) CNT-infused ceramic fiber materials and process therefor
AU2012241120B2 (en) CNT-infused fibre and method therefor

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 7