KR101289256B1 - 탄소 나노튜브의 성장 및 수득 방법 - Google Patents

탄소 나노튜브의 성장 및 수득 방법 Download PDF

Info

Publication number
KR101289256B1
KR101289256B1 KR1020087001762A KR20087001762A KR101289256B1 KR 101289256 B1 KR101289256 B1 KR 101289256B1 KR 1020087001762 A KR1020087001762 A KR 1020087001762A KR 20087001762 A KR20087001762 A KR 20087001762A KR 101289256 B1 KR101289256 B1 KR 101289256B1
Authority
KR
South Korea
Prior art keywords
delete delete
catalyst
substrate
carbon nanotubes
carbon nanotube
Prior art date
Application number
KR1020087001762A
Other languages
English (en)
Other versions
KR20080094884A (ko
Inventor
다니엘 이. 레사스코
레안드로 발자노
리앙 장
Original Assignee
더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마 filed Critical 더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마
Publication of KR20080094884A publication Critical patent/KR20080094884A/ko
Application granted granted Critical
Publication of KR101289256B1 publication Critical patent/KR101289256B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01CCHEMICAL OR BIOLOGICAL TREATMENT OF NATURAL FILAMENTARY OR FIBROUS MATERIAL TO OBTAIN FILAMENTS OR FIBRES FOR SPINNING; CARBONISING RAGS TO RECOVER ANIMAL FIBRES
    • D01C5/00Carbonising rags to recover animal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Abstract

본 발명은 탄소 나노튜브, 특히 실리콘 웨이퍼와 같은 기판 상의 단층벽 탄소 나노튜브를 직접적으로 성장시키고, 이후 탄소 나노튜브를 중합체 막의 표면에 전달하거나, 기판으로부터 탄소 나노튜브를 별도로 수득하는 방법에 관한 것이다.

Description

탄소 나노튜브의 성장 및 수득 방법 {METHODS FOR GROWING AND HARVESTING CARBON NANOTUBES}
본 발명은 탄소 나노튜브를 제조하기 위한 촉매 및 이의 사용 방법의 분야에 관한 것이며, 보다 구체적으로 단층벽(sing-walled) 탄소 나노튜브, 및 탄소 나노튜브를 포함하는 중합체 및 생성물을 제조하는 방법에 관한 것이나, 이로 제한되는 것은 아니다.
탄소 나노튜브(CNT)는 먼저 다중층 동심 튜브 또는 다중벽 탄소 나노튜브(MWNT)로서 발견되고, 이후에 전이 금속 촉매의 존재 하에서 단층벽 탄소 나노튜브(SWNT)로서 발견된 풀 풀러렌 캡(full fullerene cap)을 갖는 흑연면의 이음매없는(seamless) 튜브이다. 탄소 나노튜브는 나노크기 전자 기기, 고강도 물질, 전계 방출, 주사탐침현미경분석용 팁 및 가스 저장을 포함하는 유망한 용도를 나타냈다.
일반적으로, 단층벽 탄소 나노튜브가 다중벽 탄소 나노튜브에 비해 이러한 용도에 사용하기에 바람직한 데, 그 이유는 단층벽 탄소 나노튜브가 유사한 직경의 다중벽 탄소 나노튜브보다 결함이 더 적고, 이에 따라 보다 강하며, 보다 전도성이기 때문이다. 결함은 MWNT에서보다 SWNT에서 덜 일어날 수 있는 데, 그 이유는 MWNT가 불포화 탄소 원자가들 간에 브릿지를 형성함으로써 간헐적인 결함을 허용할 수 있는 반면, SWNT는 결함을 보상할 만한 이웃하는 벽이 아예 존재하지 않기 때문일 것이다.
특히, SWNT는 방대한 적용 가능성을 보이는 특별한 화학적 및 물리적 특성을 나타낸다.
그러나, 특히 실제 적용에 필요한 양 및 형태에 있어서 CNT 및 SWNT의 유용성은 여전히 문제가 있다. 고품질 SWNT를 제조하기 위한 대규모 공정이 여전히 요구되고 있으며, 다양한 기술에 적용하기 위한 적합한 형태의 SWNT가 여전히 요구되고 있다. 본 발명은 이러한 요구를 만족시키고자 하는 것에 관련된다.
미국 특허 제 6,333,016호, 미국 특허 제 6,413,487호, 미국 공개 출원 제 2002/0165091호(미국 출원 번호 제 09/988,847호), 및 미국 공개 출원 제 2003/00914696호(미국 출원 번호 제 10/118,834호)를 포함하는 탄소 나노튜브를 제조하기 위한 촉매 및 방법에 관한 선행 미국 특허 및 출원은 그 전체 내용이 본원에 참고로 통합된다.
도 1은 기판 상에서 성장된 탄소 나노튜브의 현미경 사진(A) 및 (A)의 탄소 나노튜브에 대한 라만 스펙트럼(B)을 나타낸 것이다.
도 2는 기판 상에서 성장된 탄소 나노튜브의 현미경 사진(A) 및 (A)의 탄소 나노튜브에 대한 라만 스펙트럼(B)을 나타낸 것이다.
도 3은 기판 상에서 성장된 탄소 나노튜브의 현미경 사진(A) 및 (A)의 탄소 나노튜브에 대한 라만 스펙트럼(B)을 나타낸 것이다.
도 4는 평평한 표면으로부터 나노튜브의 중합체 전달 단계(A, B, C)를 도시한 개략도이다.
도 5는 평평한 표면으로부터 나노튜브의 3 단계의 중합체 전달 단계에서 나노튜브의 라만 스펙트럼을 나타낸 것이다.
도 6은 상이한 농도: (a) 0.38%, (b) 0.19% 및 (c) 0.02%의 촉매 농도로 실리콘 웨이퍼 상에 생성된 SWNT의 SEM 이미지를 나타낸 것이다. 농도는 총 금속 중량에 대한 것이다. 이러한 로딩(loading)은 (a) 16㎍/cm2, (b) 8㎍/cm2, 및 (c) 0.8㎍/cm2의 금속 면적 로딩에 상응한다.
도 7은 V-SWNT(Vertical Single-Walled Carbon Nanotube)의 구조적 특징을 나타낸다: (a) 임의의 정제 없이 실리콘 웨이퍼로부터 제거된 V-SWNT 물질의 TEM 이미지. (b) 파장 633nm (실선) 및 488nm (점선) 여기 레이저(excitation laser)로 생성된 V-SWNT의 라만 스펙트럼.
도 8은 상이한 농도: (a) 0.02중량%, (b) 0.19중량% 및 (c) 0.38중량%의 촉매 용액에 의한 상응하는 실리콘 웨이퍼의 SWNT의 SEM도(좌측 칼럼)과 AFM 이미지(우측 칼럼)의 단계별 비교를 나타낸 것이다. 농도(중량%)는 총 금속 중량에 관한 것이다. AFM 이미지는 실리콘 웨이퍼가 500℃로 오븐에서 소성된 후에 얻어진 것이다. SEM 이미지에서 모든 스케일바(scale bar)는 500nm이고, AFM 3-D 스퀘어(square)의 폭은 패널 a2에서 하나(이것은 5㎛이다)를 제외하고, 1㎛이다.
도 9는 V-SWNT의 3차원 구조에 대한 제안된 성장 메카니즘을 도시한 개략도 를 나타낸다: 좌에서 우로 1차원 단일 튜브 구조, 2차원 번들 구조, 및 3차원 구조이고, 이는 2D(xy) 그래스(grass) 또는 1D(z) 포레스트일 수 있다.
도 10은 급속 건조 공정(a) 및 그리드-마스크트 스퍼터 코팅(grid-masked sputter coating)(b)에 의해 패턴화된 SWNT의 정렬된 배열의 SEM 이미지를 나타낸다. 이미지는 저배율 확대(1) 및 고배율 확대(2)로 취해진 것이다.
도 11은 평평한 표면으로부터 탄소 나노튜브를 성장시키고 수득하는 연속 공정을 개략적으로 나타낸다.
도 12는 평평한 표면으로부터 탄소 나노튜브를 성장시키고 수득하는 또 다른 연속 방법을 개략적으로 나타낸다.
도 13은 공기 중에서 직접적으로 평평한 표면으로부터 탈착된 따른 V-SWNT의 SEM 이미지를 나타낸다. (A) 평평한 표면으로부터 부착된 V-SWNT의 SEM 이미지; (B) 평평한 표면으로부터 탈착된 V-SWNT의 SEM 이미지.
도 14는 금속 불순물의 부재를 보여주는 V-SWNT의 TEM 이미지를 나타낸다.
도 15는 V-SWNT의 상부 표면에 대한 상이한 입사각에서의 V-SWNT의 XANES 스펙트럼을 나타낸다.
도 16은 σ* 및 π* 피크 세기의 실험적 및 적합된 데이타를 갖는 그래프를 나타낸다.
도 17은 SEM에 의한 전형적인 V-SWNT 샘플의 상부도(A) 및 측면도(B)의 SEM 현미경 사진을 나타낸다.
도 18은 일련의 반응 시간에 대해 얻어진 V-SWNT의 SEM 이미지를 나타낸다. 이들 이미지에서 스케일바는 0, 30, 60초 및 3분 동안 1㎛이고, 10분 동안 2㎛이고, 30분 동안 5㎛이다.
도 19는 일련의 반응 시간: 하부에서 상부로 0.5분, 3분 및 10분에 대해 얻어진 V-SWNT의 라만 스펙트럼을 나타낸다. 이러한 3개의 곡선은 520cm-1에서 Si 밴드에 대해 표준화된 것이다. 삽입된 도면은 G 밴드에 대해 표준화된 경우, 0.5분(실선) 및 10분(점선)에 대해 각각 얻어진 V-SWNT의 G 밴드이다.
본 발명은 그 위에 존재하는 소량의 촉매 금속, 예를 들어, 코발트 및 몰리브덴을 함유하는 실리콘 웨이퍼와 같은 평평한 표면(기판) 상에서 CNT 함유 막, 및 바람직하게는 SWNT 함유 막을 제조하는 방법에 관한 것이다.
본원에서 생성된 탄소 나노튜브-중합체 막 복합체는 예를 들어, 전계 방출물질, 전기 전도성 중합체 막이 제조에 유용하거나 필요한 임의의 제품 또는 물질에서의 중합체의 충전제로서 사용될 수 있다. 평평한 표면 상에서 성장하는 CNT는 여러 수단(예를 들어, 평평한 표면의 전단, 초음파처리 및 화학적 에칭과 같은 박리를 포함하나, 이로 제한되는 것은 아니다)에 의해 평평한 표면으로부터 제거되어 어떠한 CNT 적용에 대해서도 사용될 수 있는 고순도 CNT를 생성한다. 또한, 평평한 표면-CNT 물질은 센서, 인터커넥트, 트랜지스터, 전계 방출 소자 및 그 밖의 소자와 같은 응용분야에 사용될 수 있다.
본 발명의 기판은 완전히 평평하거나(평평한 표면), 볼록면 및 오목면을 포함하는 만곡부를 가질 수 있는 연속(비-미립자)면 및 그 안에 하나 또는 그 초과의 트렌치를 갖는 표면을 갖는 기판을 포함한다. 또한, 상기 기판은 기판의 거시적 규모에 대해 작은 소정의 조도(roughness)를 나타낼 수 있다.
본원에 기술된 촉매에 대한 기판 또는 지지 물질로서 사용되는 것으로 고려되는 평평한 표면을 갖는 물질은 SiO2 층, Si3N4, Al2O3, MgO, 석영, 유리, 산화된 실리콘 표면, 탄화규소, ZnO, GaAs, GaP, GaN, Ge 및 InP를 함유하거나 함유하지 않는 SiO2, Si, 유기금속 실리카, p- 또는 n-도핑된 Si 웨이퍼의 웨이퍼 및 시트; 철, 강, 스테인레스강 및 몰리브덴과 같은 금속 시트, 및 알루미나, 마그네시아 및 티타니아와 같은 세라믹을 포함하거나 이로부터 구성될 수 있다(그러나, 이로 제한되는 것은 아니다).
본 발명에 사용되는 촉매 물질은 일 구체예에서 기판(예를 들어, 실리콘 웨이퍼) 상에서 특정 농도의 상이한 금속 용액을 증착시킴으로써 제조된다. 예를 들어, Co/Mo 촉매는 다양한 실리콘 웨이퍼를 코발트 니트레이트 및 암모늄 헵타몰리브데이트(또는 염화몰리브덴) 수용액으로 함침시켜 선택된 조성의 바이메탈(bimetallic) 촉매를 수득함으로써 제조될 수 있다[참조: 그 전부가 본원에 참고로 통합되는 미국 특허 제 6,333,016호]. 총 금속 로딩은 바람직하게는 0.001 내지 1000mg/sq cm이다. 금속의 증착 후, 촉매 기판은 바람직하게는 먼저 공기 중 실온에서 건조되고, 이후 오븐에서 예를 들어 100 내지 120℃에서 건조된 후, 끝으로 유동 공기 중에서 400 내지 600℃에서 소성된다.
탄소 나노튜브는 충진상 반응기(packed bed reactors), 구조상 촉매 반응기, 또는 이동상 반응기(예를 들어, 실시예 6에 보다 자세히 기술된 시스템에서와 같이 운반 메카니즘에 실려있는 촉매 기판을 갖는)와 같이 당해 공지된 상이한 반응기에서 이러한 촉매 기판 상에서 생성될 수 있다.
촉매 기판은 임의로 촉매 기판이 반응 조건에 노출되기 전에 예비 환원처리될 수 있다(예를 들어, 500℃에서, 또는 반응 온도 이하의 소정 온도에서 H2에 노출시킴으로써). 탄소 함유 기체(예를 들어, CO)에 노출되기 전에, 촉매 기판은 불활성 기체(예를 들어, He) 중에서 반응 온도(600℃ 내지 1050℃) 이하로 가열된다. 이후, 탄소 함유 기체(예를 들어, CO) 또는 기화된 액체(예를 들어, 에탄올)가 도입된다. 바람직하게는 1 내지 600분에 이르는 소정의 반응 기간 후, 그 위에 CNT를 지닌 촉매 기판은 실온과 같은 저온으로 냉각된다.
연속 또는 반연속 시스템에 있어서, 촉매 기판의 사전처리는 예를 들어 보다 많은 양의 촉매 기판을 사전 처리하기 위해 별도의 반응기에서 수행될 수 있으며, 이로써 촉매 기판은 추후 사용을 위해 탄소 나노튜브 제조 유닛에서 저장될 수 있다.
본 발명의 일 구체예에서, 촉매 기판은 바람직한 온도 범위 700 내지 950℃에서 CO의 불균등화(C 및 CO2로 분해)에 의해 선택적으로 SWNT를 생성한다[참조: 그 전부가 본원에서 참고로 통합되는 미국 출원 번호 제 10/118,834호].
촉매 코팅을 본 발명의 기판에 가하는 데 사용되는 촉매 전구체 용액은 바람직하게는 제 VIII족, 제 VIb족, 제 Vb족, 또는 레늄의 1종 이상의 금속, 또는 이로부터 2종 이상의 금속을 갖는 혼합물을 포함한다. 다르게는, 촉매 전구체 용액은 레늄(Re) 및 1종 이상의 제 VIII족 금속, 예컨대, Co, Ni, Ru, Rh, Pd, Ir, Fe 및/또는 Pt를 포함할 수 있다. Re/제 VIII족 촉매는 제 VIb족 금속, 예컨대, Cr, W, 또는 Wo 및/또는 제 Vb족 금속, 예컨대, Nb를 추가로 포함할 수 있다. 바람직하게는, 촉매 전구체 용액은 제 VIII족 금속 및 제 VIb족 금속, 예를 들어, Co 및 Mo를 포함한다.
본원에서 사용되는 표현 "유효량의 탄소 함유 기체"는 본원에 기술된 것과 같이 상승된 온도에서 평평한 촉매 표면 상에 탄소의 증착을 일으켜 그 위에 CNT를 형성시키기에 충분한 양으로 존재하는 기체상 탄소 종(이는 반응 온도로 가열하기 전에는 액체일 수 있다)을 의미한다.
본원의 다른 곳에서 주지되는 바와 같이, 본원에 기술된 바와 같은 촉매 기판은 평평한 지지 물질 상에 증착된 촉매 금속 조성물을 포함한다.
촉매 물질에서 제 VIb족 금속 및/또는 Re 및/또는 제 Vb족 금속에 대한 제 VIII족 금속의 비는 본원의 다른 곳에서 주지되는 바와 같이 SWNT의 수율, 및/또는 선택적 생성에 영향을 미칠 수 있다. Co(또는 다른 제 VIII족 금속) 대 제 VIb족 또는 다른 금속의 몰비는 바람직하게는 약 1:20 내지 약 20:1, 보다 바람직하게는 약 1:10 내지 약 10:1, 보다 더 바람직하게는 1:5 내지 약 5:1이고, 추가로, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 및 9:1를 포함하고, 이들 비는 포괄적으로 포함된다. 일반적으로, 존재하는 경우, Re 금속의 농도는 SWNT의 선택적 생성을 위해 사용되는 촉매 전구체 용액 및 촉매 조성물 중의 제 VIII족 금속(예를 들어, Co)의 농도를 초과한다.
촉매 전구체 용액은 바람직하게는 상기 기술된 바와 같이 실리콘 웨이퍼와 같은 평평한 지지 물질(기판) 또는 당해 공지되어 있는 그 밖의 평평한 물질 및 이러한 물질이 본원에서 기술되는 바와 같이 평평한 표면을 갖는 경우에 한하여 본원에서 기술된 바와 같은 그 밖의 지지체 상에 증착된다. 바람직하게는, 촉매 전구체 용액은 액체 전구체(촉매 용액)의 형태로 기판 상에 가해진다.
본원에서 사용될 수 있는 적합한 탄소 함유 기체 및 기화된 액체의 예는 포화 및 불포화 지방족 탄화수소, 예컨대, 메탄, 에탄, 프로판, 부탄, 헥산, 에틸렌 및 프로필렌; 일산화탄소; 산화된 탄화수소, 예컨대, 케톤, 알데히드, 및 에탄올 및 메탄올을 포함하는 알코올; 방향족 탄화수소, 예컨대, 톨루엔, 벤젠 및 나프탈렌; 및 이들의 혼합물, 예를 들어, 일산화탄소와 메탄의 혼합물이 포함된다. 탄소 함유 기체는 임의로, 희석 기체, 예컨대, 헬륨, 아르곤 또는 수소, 또는 기화된 액체, 예컨대, 수증기와 혼합될 수 있다.
촉매와 함께 사용하기에 바람직한 반응 온도는 약 600 내지 1200℃, 보다 바람직하게는 약 650 내지 1000℃, 매우 바람직하게는 750 내지 900℃이다.
일 구체예에서, SWNT는 촉매 기판 상에 생성된 총 CNT 생성물의 50% 이상을 차지할 수 있다. 추가로, SWNT는 총 CNT 생성물의 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5%, 98% 또는 99%를 차지할 수 있다.
또 다른 구체예에서, MWNT는 총 CNT 생성물의 50% 이상을 차지할 수 있다. 추가로, MWNT는 CNT 생성물의 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5%, 98% 또는 99%를 차지할 수 있다.
또 다른 구체예에서, 이중 벽 CNT는 총 CNT 생성물의 50% 이상을 차지할 수 있다. 추가로, 이중 벽 CNT는 CNT 생성물의 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5%, 98% 또는 99%를 차지할 수 있다.
다른 구체예에서, CNT 생성물은 SWNT, 이중 벽 CNT 및 MWNT의 혼합물을 포함할 수 있다.
본 발명은 하기 실시예에서 그 일면이 보다 자세히 이해되고 인지될 수 있도록 특정 바람직한 실시예와 관련지어 기술될 것이나, 본 발명을 이러한 특정 구체예로 제한하고자 하는 것은 아니다. 이와 반대로, 본 발명의 범위에 포함될 수 있는 모든 대체, 변형 및 등가물을 포함하는 것으로 의도된다. 따라서, 바람직한 구체예를 포함하는 하기 실시예는 본 발명의 실시를 예시하는 역할을 할 것이므로, 기술된 구체적인 사항들은 예를 들은 것이고, 본 발명의 바람직한 구체예 만을 자세히 논의할 목적을 위한 것이며, 포뮬레이션 절차 뿐만 아니라 본 발명의 원리 및 개념적 측면을 가장 유용하고 용이하게 이해되는 것으로 여겨지는 것을 제공할 의도로 제공된다.
실시예 1. SWNT 의 성장 및 수득
(1) 촉매 전구체 용액(촉매 조성물을 제조하기 위한)
코발트 염 용액: 0.3100g의 코발트 니트레이트를 이소프로판올과 같은 용매 에 용해시켜 충 중량이 23.75g과 같이 되도록 하여 Co 농도를 0.0442mmol/g이 되도록 하였다.
몰리브덴 염 용액: 후드 하에서 1g의 탈이온수를 0.9058g의 염화몰리브덴에 첨가하고, 잘 교반하여 모든 염화몰리브덴이 확실히 용해되어 갈색 용액을 형성하도록 하였다. 용액을 이소프로판올과 같은 용매로 25g으로 희석하여 Mo의 농도가 0.1326mmol/g이 되도록 하였다.
Co 및 Mo 용액을 동중량으로 혼합하고, 5%의 습윤제, 예컨대 테트라에틸오르쏘실리케이트 또는 하기 기술된 다른 용매를 첨가하였다. 제 VIII족, 제 VIb족, 제 Vb족에서 언급된 것들, 및 Re를 포함하는 상기 기술된 바와 같은 그 밖의 촉매 금속이 사용될 수 있다. 촉매 금속 성분을 용해시키는 데 사용될 수 있는 용매는 금속 전구체의 용해도 및 습윤제의 안정성에 따라, 메탄올, 에탄올, 이소프로판올, 그 밖의 알코올, 아세톤, 그 밖의 유기 용매, 산 및 물을 포함하나, 이로 제한되는 것은 아니다.
그 밖의 습윤제는 폴리실록산, 폴리카르보실란, 유기실라잔, 폴리실라잔, 알콕시드 유래된 실록산, 알킬-시클로실록산, 알킬-알콕시-실란, 폴리-알킬-실록산, 아미노-알킬-알콕시-실란 및 알킬-오르쏘실리케이트를 포함하는, 실리케이트, 실란, 및 유기실란을 포함하나 이로 제한되는 것은 아니다.
촉매 안정화제가 포함될 수 있으며, 폴리실록산, 폴리카르보실란, 유기실라잔, 폴리실라잔, 알콕시드 유래된 실록산, 알킬-시클로실록산, 알킬-알콕시-실란, 폴리-알킬-실록산, 아미노-알킬-알콕시-실란 또는 알킬-오르쏘실리케이트 뿐만 아 니라 유기티타네이트, 예컨대 티탄 알콕시드 또는 티타녹산; 유기 알루미녹시 화합물, 유기지르코네이트, 및 유기마그네슘 화합물(Mg 알콕시드 포함)을 포함하는 실리케이트, 실란, 및 유기실란을 포함하나 이로 제한되는 것은 아니다.
촉매 전구체 용액(예를 들어, Co, Mo)이 제조되어 즉시 사용되거나, 제조되어 추후 사용을 위해 저장될 수 있다.
(2) 실리콘 웨이퍼 기판 상의 촉매 전구체 용액(예를 들어, Co/ Mo )의 증착 - DSD(드롭-스프레드-드라이(Drop-Spread-Dry) 공정
본 실시예에서 증착 공정은 소량의 촉매 전구체 용액을 기판 상에 적하하는 것을 포함한다. 용액(코팅)을 기판 상에 스프레딩시켜 그 위에 균일한 층을 형성시키고, 신속하게 건조시켜 촉매 기판 상에 촉매 조성물을 형성시켰다.
다르게는, 촉매 전구체 용액이 분무, 코팅, 스핀 코팅, 침지, 스크린 프린팅(screen printing) 또는 당해 공지된 그 밖의 방법을 통해 기판 이동성 지지 시스템에 가해질 수 있다. 또한, 건조 공정이 야외 보다는 높은 상대 습도 및 낮은 공기 순환율을 유지시키도록 기판을 실온에서 방치하고 피복되게 함으로써 느리게 수행될 수 있다.
(3) 촉매 기판의 열적 전처리
이에 따라 생성된 Co/Mo 실리콘 웨이퍼(촉매 기판)은 10분 동안 100℃에서 오븐에서 건조된 후, 공기 중에서 500℃(또는 머플(muffle)에서 15분 동안 400 내지 600℃)에서 소성될 수 있다.
소성된 촉매 기판을 기체 흐름 방향과 병행한 1인치 직경의 석영 반응기에 넣고, 40분 이내 실온에서 500℃로의 가열 경사(heating ramp)로 500℃에서 순수한 H2의 1,000 표준 cc/min(sccm)에서 환원시키고, 추가 5분 동안 상기 온도에서 유지시켰다. 이후, 반응기로의 공급물을 순수한 He로 전환시키고, 온도를 10℃/min의 비율로 750℃로 상승시켰다. 건조 직후 또는 수일 동안 건조된 촉매 기판이 저장된 후 소성이 이루어질 수 있다. 소성 온도는 300 내지 650℃에서 달라질 수 있고, 소성 시간은 1 내지 30분에서 달라질 수 있다.
다르게는, 환원 온도는 400 내지 850℃에서 달라질 수 있으며, 환원 시간은 1 내지 30분에서 달라질 수 있다. 가열 절차는 1 내지 100℃/분의 경사를 이용하거나, 예열된 구역에 샘플을 도입시킴으로써 이루어질 수 있다.
(4) 촉매 기판 상에서의 SWNT 생성
a) 환원된 촉매 기판을 750℃에서 1,000sccm 흐름의 순수한 CO에 노출시켰다. 반응은 15psi의 순수한 CO 하에서 30분 동안 지속시켰다.
b) 반응 후, 시스템을 He 흐름 하에서 30분 동안 동일 온도에서 유지시키고, 끝으로 He 하에서 실온으로 냉각시켰다.
CO 기체 속도는 층류에서 난류로의 흐름 섭생(flwo regime)으로 1cm/min 내지 10m/min(표준 상태)에서 달라질 수 있다. 흐름 패턴은 배플(baffle) 또는 트렌치(trench)의 사용에 의해 변경될 수 있다. 다르게는, 공급물은 메탄, 에탄, 에틸렌, 에탄올 또는 본원의 다른 곳에서 기술된 바와 같은 그 밖의 물질로부터 선택될 수 있다. 또한, 물, 산소 또는 수소와 같은 보조공급 기체가 사용될 수 있다.
(5) 촉매 기판에서 다른 매체로의 SWNT 의 전달
a) 단계 4 후에, 폴리디메틸실록산(PDMS) 예비중합체(Sylgard-184)와 가교제의 혼합물을 SWNT/촉매 기판의 표면 상에 증착시켰다. PDMS 대 가교제의 중량비는 10:1이었다.
b) 중합체 막을 갖는 웨이퍼(즉, SWNT/촉매 기판)를 이후 오븐에 보내 60℃에서 2시간 동안 경화시켰다. 냉각시킨 후, 형성된 SWNT 함유 중합체 막을 실리콘 웨이퍼(촉매 기판)에서 박리시켰다. Si 웨이퍼 표면 및 중합체 표면 둘 모두에 대한 라만 특징화가 SWNT의 중합체로의 전달이 실질적으로(상당히) 완료되었음을 나타냈다.
그 위에 SWNT를 갖는 촉매 기판에 가해질 수 있는 중합체의 예로는 폴리프로필렌, 폴리에틸렌, 폴리아크릴아미드, 폴리카르보네이트, 폴리에틸렌 테레프탈레이트(PET), 폴리비닐클로라이드, 폴리스티렌, 폴리우레탄, 테플론, 사란(Saran), 폴리아크릴로니트릴, 폴리비닐아세테이트, 폴리비닐알코올, 폴리메틸 메타크릴레이트(PMMA), 폴리아크릴레이트, 폴리구아르검, 폴리에스테르, 및 폴리아미드, 예컨대, 나일론, 뿐만 아니라, 예를 들어 나노튜브 함유 촉매 기판(예컨대, 실시예에 기재된 것과 같은)에 가해지는 예비중합체를 가교함으로써 동일계에서 형성된 중합체를 포함하나, 이로 제한되는 것은 아니다.
유사하게, 전달 매체는 중합체 대신 금속일 수 있다. 이러한 경우, 금속 막이, 상이한 방법, 예컨대, 스퍼터링 또는 증발에 의해 CNT 상에 가해질 수 있다. 금속 막은 이후 다른 금속에 대해 용접되어 예를 들어 전기 컨택트를 형성하고, 표 면 특성을 변화시키고, 열 전도 및 유동학적 특성을 변화시킬 수 있다.
촉매 기판으로부터 전달 매체로의 CNT의 전달은 두개의 가능한 형태를 채택할 수 있다. 첫번째는, SWNT가 촉매 기판에 가해진 매트릭스내에 완전히 삽입되는 것이고, 두번째는 전달 매체가 단지 CNT 구조의 일부를 피복하고, 전달 후, CNT의 일부가 여전히 노출된 채로 존재하는 것이다.
하기에 개략적으로 나타낸 것은 브러시형 구조를 예시한 것이다. 그러나, 그 개념이 이러한 특정 구조로 제한되는 것이 아니며, CNT의 일부가 여전히 노출된 채로 있는 또 다른 것에도 적용된다.
실시예 2.
(A) 2-방향 어레이를 형성하는 촉매 기판 상에서의 SWNT 의 성장
촉매 기판 상에서 SWNT 밀도에 대한 기체 압력의 효과
SWNT를 상이한 CO 압력 하에서 750℃에서 30분 동안 Co-Mo/Si 웨이퍼 표면 상에서 성장시켰다. 촉매 기판(웨이퍼)는 실시예 1에 기술된 방법에 따라 제조하였다.
주사 전자 현미경(SEM)에 의해 관찰된, 형성된 CNT 구조가 도 1 및 2에 도시된다. 도 1a는 저압(15psig)에서의 SWNT의 성장을 보여주며, 도 2a보다는 SWNT의 밀도가 보다 낮은 것을 나타내고, 도 2a는 고압(80psig)에서 얻어진 보다 높은 SWNT 밀도를 보여주고 있다. 상응하는 라만 스펙트럼(도 1b 및 2b)는 SWNT의 존재에 대한 명백한 증거, 즉, SWNT의 특징인 강한 호흡(breathing) 모드 밴드(200 내 지 300cm-1에서), sp2 형태에서 정렬된 탄소 특징인 샤프한 G 밴드(1590cm-1), 및 sp3 형태에서 비정렬된 탄소의 특징인 낮은 D 밴드(1350cm-1)를 제시한다.
(B) 촉매 기판 상에서 SWNT 밀도에 대한 Co/ Mo 농도의 효과
상이한 Co/Mo 촉매 금속의 로딩을 갖는 두개의 표면에 대해 750℃에서 CO(P = 15psig) 하에서 30분 동안 SWNT를 성장시켰다.
도 1에서, Si 웨이퍼 상의 Co/Mo 금속 로딩은 16mg/sq cm이었다. 그 위에 성장된 SWNT는 도 1a에 도시된 바와 같이 밀도가 낮았다.
도 3에서, Si 웨이퍼 상의 Co/Mo 금속 로딩은 32mg/sq cm이었다. 그 위에 성장된 SWNT는 도 3a에 도시된 바와 같이 밀도가 높았다.
(Aa)의 결과에 대해, 라만 분석(도 1b 및 3b)은 SWNT의 특징인 강한 호흡 형태 밴드(200-300cm-1), 정렬된 탄소의 특징인 샤프한 G 밴드(1590cm-1), 및 비정렬된 탄소의 특징인 낮은 D 밴드(1350cm-1)를 갖는 SWNT의 존재를 명백하게 보여준다.
실시예 3.
(A) 촉매 기판으로부터 전달 매체로의 SWNT 의 전달
본 발명의 일 구체예에서, SWNT가 그 위에 촉매 물질을 지닌 촉매 기판 상에 형성된 후, SWNT는 SWNT를 지닌 촉매 기판 상에 증착된 중합체 막 또는 그 밖의 물질(예를 들어, 금속, 세라믹, 비정렬된 막, 엘라스코머 또는 탄소)을 포함하는 전달 매체에 전달된다(실시예 1의 단계 5 참조). 전달 매체는 이에 대한 SWNT의 고착을 증진시키기 위해 그 위에 접착 물질을 지닐 수 있다. 전달 공정의 개략도가 도 4에 도시된다. 도 4a는 그 위에 촉매 표면(20)을 갖는 기판(10) 및 촉매 표면(20) 상에 존재하는 SWNT 집합체(30)를 도시한 것이다. 전달 매체(40)(예를 들어, 중합체 물질)가 기판(10)의 촉매 표면(20)에, 그리고 SWNT 집합체(30)(도 4b)가해지며, 여기에서 전달 매체(40)가 경화되어(필요에 따라), 이것으로의 대부분의 SWNT 집합체(30)의 전달 및 고착 또는 포집이 일어나게 한다. 전달 매체(40) 및 이것으로 전달되는 SWNT 집합체(30)는 촉매 표면(20)(도 4c)으로부터 제거될 수 있다. 대부분의 SWNT 집합체(30)가 촉매 표면(20)으로부터 제거된 후, 촉매 표면(20) 상에는 잔류하는 SWNT 집합체(50)가 존재한다.
(B) 전달을 입증하는 Si 웨이퍼 및 중합체 표면의 특징화
도 5a 내지 5c는 SWNT 집합체가 전달된 후에 얻어진 상응하는 라만 스펙트럼을 갖는 상이한 단계를 도시한 것이다. 도 5a는 전달 전의 SWNT 집합체(30)의 라만 스펙트럼을 나타낸다. 이 스펙트럼은 고품질의 분명한 SWNT 핑거프린트(fingerprint), 즉, 강한 G 밴드, 약한 D 밴드 및 분명한 호흡 형태 밴드를 나타낸다. 도 5b는 SWNT 함유 Si 웨이퍼 상에 막을 형성시키고, 박리시킨 후의 중합체 물질(40)에 대한 SWNT의 라만 스펙트럼을 나타낸다. 이 라만 스펙트럼은 SWNT 집합체(30)의 대부분이 중합체 물질(40) 상에 전달되었음을 나타낸다. SWNT의 특징적인 모든 특성이 중합체 물질(40) 상에 분명하게 보여진다. 도 5c는 촉매 표면(20) 상에 잔류하는 소량의 SWNT 잔류물에 대한 라만 스펙트럼을 나타낸다. Si 웨이퍼의 표면 상의 SWNT의 양을 내부 보정(internal calibration)함으로써, Si 밴 드의 상대적 세기 및 탄소의 상대적 세기(예를 들어, 1590cm-1에서 G 밴드)를 알 수 있다.
실시예 4
(A) SWNT 형성물의 형태에 대한 촉매 로딩의 영향:
Si 기판 상의 수직 배향된 SWNT 의 생성
실시예 1에 기술된 제조 절차에 따라서, 금속 농도(0.001 내지 3.8중량%)를 달리하는 촉매 전구체 용액을, Co 및 Mo의 염을 이소프로판올에 용해시키고, Co:Mo 몰비를 1:3으로 일정하게 유지시킴으로써 제조하였다. 이후 단계는 실시예 1에서의 것과 동일하였다. 상기 기판 상에 이와 같이 생성된 SWNT를 라만 분광법, 전자 현미경법(SEM 및 TEM), 및 탐침현미경법(예를 들어, AFM)에 의해 특징화하였다.
도 6a 내지 6c는 이에 따른 SWNT 형성물의 형태에 대한 촉매 로딩의 극적인 효과를 나타낸다. 이러한 재현가능한 경향은 의심할 여지 없이 상기 촉매 용액의 농도가 기판 상의 SWNT 타입에 영향을 미친다는 것을 입증한다. SEM 이미지는 길이가 거의 40미크론인 수직 배열된 SWNT(V-SWNT 포레스트)가 0.19중량%의 총 금속(Co-Mo) 농도의 촉매 전구체 용액으로 함침된 기판 상에서 성장되었음을 분명하게 보여준다(도 6b). 대조적으로, 0.38중량%(도 6a) 및 0.02중량%(도 6c)의 촉매 전구체 용액으로 함침된 웨이퍼 상에서는, 반응 후에 SWNT의 랜덤 2차원 망상구조가 관찰되었다. 보다 높은 금속 농도(0.38중량%)를 갖는 샘플은 보다 낮은 금속 농도(0.02중량%)를 갖는 샘플보다 높은 나노튜브 밀도를 나타냈으나, 이들 어느 것도 이러한 실시예에서 사용된 조건 하에서 수직 성장하지는 않았다. 이 결과는 수직 성장을 일으키는 최적의 금속 표면 농도가 존재함을 시사한다. 또한, 보다 높은 농도(0.38중량%)의 촉매 전구체 용액으로 성장된 "SWNT 그래스"는 보다 낮은 농도(0.02중량%)의 촉매 전구체 용액으로 성장된 것보다 상당히 조밀한 것으로 관찰되었다. 보다 높거나(3.8중량% 이하), 보다 낮은(0.001중량%) 로딩을 갖는 그 밖의 농도가 연구되었으나, 이들 중 어느 것도 수직 배열된 SWNT를 생성하지 못하였다. 사실상, 가장 높은 농도(3.8중량%)가 탄소 섬유 및 다중벽 탄소 나노튜브를 형성되게 한 반면, 가장 낮은 촉매 농도(0.001중량%)는 대부분 산포되어 있는 SWNT의 얇은 번들(bundle)을 생성하였다.
(B) 구조적 분석
SEM에 의해 관찰된 "포레스트" 및 "그래스" 형성물을 구성하는 나노튜브의 구조적 특징을 추가로 라만 분광법 및 TEM에 의해 평가하였다(도 7). 라만 분광법은 D 및 G 밴드의 상대적 세기를 근거로 하여 SWNT 품질을 평가하는 널리 공지되어 있는 방법이다. TEM은 표면 상에 증착된 탄소 종(즉, SWNT, MWNT, 무정형 또는 나노섬유)의 특성을 직접적으로 확인시켜 준다. 이와 같이 생성된 V-SWNT 포레스트의 라만 스펙트럼(도 7b에 도시된 바와 같이)은 두개의 여기 레이저(633nm 및 488nm)로 수득되었다. 매우 낮은 D/G 비는 낮은 농도의 결함이 있는 나노튜브 또는 비정렬된 탄소 종(예를 들어, 나노섬유)을 갖는 고품질의 SWNT와 일치한다. 동시에, 방사형 호흡 형태 밴드(RBM)의 주파수는 식 ωRBM = 234/dSWNT + 10[cm-1]에 따 라, 나노튜브 직경에 대해 반비례하는 것으로 널리 공지되어 있다. 세개의 상이한 레이저로 얻어진 V-SWNT 샘플의 스펙트럼은, RBM 밴드가 광범위한 주파수 범위(130cm-1 내지 300cm-1)를 커버하며, 이는 일반적으로 높은 표면적의 실리카 상에 지지된 Co-Mo 촉매를 사용하는 방법에 의해 얻어진 것보다 훨씬 더 광범위한 분포인, 0.8 내지 1.9nm의 직경 범위에 상응한다는 것을 보여주었다. 또한, 이러한 직경의 광범위한 분포는 CoMoCAT 물질에서의 G 밴드에 대한 G- 및 G+ 분포의 보다 샤프한 라인 및 보다 명백한 분리와는 대조적으로, G- 및 G+ 특징의 수렴 및 G 밴드의 광범위한 베이스에 반영된다. 임의의 정제 없이 기판으로부터 직접 취해진 V-SWNT의 TEM 관측은 라만 스펙트럼(도 7b)과 일치하여 직경이 다른(도 7a) 나노튜브의 존재를 나타냈다. 동시에, TEM은 탄소의 다른 형태 없이 제조된 그대로의 V-SWNT의 순도에 대한 광대한 증거를 제공한다.
기판 상의 금속 로딩과 형성된 SWNT 형성물의 형태 간의 관계를 조사하기 위해, 본 발명자들은 표면의 3차원 프로파일을 제공하는 강력한 도구인 원자력 현미경법(AFM)을 사용하였다. 나노튜브의 성장 전에 촉매 표면의 형태를 조사함으로써, 본 발명자들은 V-SWNT 포레스트를 형성시키는 최적의 입자 분포를 확인할 수 있었다. 이러한 분석은, 세개의 상이한 금속 로딩에 대해 소성된 촉매/기판의 AFM 이미지 및 SWNT 형성물의 고배율 SEM 확대도를 대조하고 있는 도 8에 도시되어 있다. 도 8a1에서 AFM 이미지는 낮은 금속 농도(0.02중량%)를 갖는 함침 용액으로부터 생성된 촉매 입자가 작고, 빈약하였음을 분명하게 보여주고 있다. 이러한 금속 분포로부터, 2-차원 SWNT 그래스의 유사하게 빈약한 형성이 얻어졌다(도 8a2). 중간 금속 농도(0.19중량%)의 경우, 도 8b1에서 AFM은 비교적 균일한 크기를 갖는 나노 입자의 조밀한 집단을 입증하고 있다. 이들 입자 간의 평균 거리는 약 60 내지 70nm이다. TEM/EDXA 분석 뿐만 아니라 각-분해 XPS 분석은, 첨가된 Co 및 Mo 전부가 표면 상에 노출되어 잔류하는 것은 아님은 보여주었음을 유의해야 한다. 오히려, 이들 중 일부는 실리카 생성물의 층에 묻히게 되어 열 처리 동안에 촉매 안정화제 및 습윤제의 분해를 초래하였다. 도 8b2의 SEM 이미지는 V-SWNT 포레스트의 형성을 촉진하는 데 성공적이었음을 보여준다. 흥미롭게도, 나노튜브 번들의 밀도는 성장 전의 AFM에 의해 관찰된 촉매 입자의 밀도와 대략 동일하며, 이는 실질적으로 모든 촉매 입자가 나노튜브의 생성에 대해 활성임을 제안하는 것이다. 대조적으로, 도 8c2에 도시된 바와 같이 0.38중량% 금속 농도의 경우에서는, 어느 정도 더 큰 합금 입자가 평평한 표면 상에 형성되었으며, 가능하게는 SWNT 핵화에 적합하지 않은 보다 큰 코발트 클러스터가 생성되었고, SWNT를 성장시키는 최적 크기를 갖는 낮은 분율의 Co 클러스트가 여전히 큰 것들 사이에 잔류하였다. 이에 따라, SWNT 그래스의 보다 두꺼운 층이 도 8c1에서 도시된 바와 같이 성장하였다.
상당히 주목되는 또 다른 관찰결과로, V-SWNT의 탄소 증착물이 표면에 수직으로 직접적으로 관찰되고, SWNT 번들의 랜덤 망상구조가 포레스트의 상부 위에서 분명하게 나타난 반면, 상이한 각도에서의 관찰은 명백하게 도 8b1에 도시된 잘 배열된 구조를 나타내는 것으로 관찰된다. 이러한 경우에, 루트-성장 메카니즘이 작동하는 지에 대해서는 의심의 여지가 없다. 그러므로, 포레스트의 상부에서 관찰 된 나노튜브 부분은 반응의 제 1 단계 동안에 형성된 것이고, 정렬된 (수직-배향된) 성장은 단지 후에 나타나는 데, 이는 초기 단계에서 형성된 2차원 크러스트의 존재에 의해 제한된 듯하다. 초기에, 랜덤하게 배열된 SWNT의 층은 느슨한 망상구조로부터 조밀한 망상구조로 성장한다(도 9 참조). 이러한 망상 구조의 밀도는 촉매의 표면 농도에 의존한다. 저 농도의 촉매의 경우, 단지 다소 느슨한 구조가 형성된다. 대조적으로, 적합한 촉매 밀도를 갖는 영역에서, 조밀한 나노튜브 어레이는 다소 단단한 구조를 구성하는 크러스트(랜덤하게 배향된 탄소 나노튜브의 수평층)를 형성한다. 이러한 크러스트는 후에 나노튜브를 바닥으로부터 성장시킴으로써 들어 올려진다. 이는, 각각의 개별적 나노튜브가 완벽하게 곧지 않고, 각 나노튜브가 반드시 동일한 길이를 가질 필요가 없으면서, 전체 포레스트가 매끄러운 상부 표면을 갖기 때문에 그러한 것이다.
실시예 5:
기판 상에서의 수직 배향된 SWNT 패턴의 생성
실시예 4에 기재된 균일한 촉매 막 상에서의 균일한 나노튜브 성장 이외에, 기판 상에서의 SWNT의 성장에 대한 촉매 입자의 분포 효과를 추가로 입증하기 위해, 패턴화된 나노튜브 막을 두개의 상이한 방법에 의해 제조하였다. 한 방법에서는 패턴이 자연적으로 발생하였고, 다른 방법에서는 패턴화가 조절되었다. 자연적 패턴은 습윤 촉매 박막이 급속 건조율로 건조되는 경우에 형성되었다. 이 방법은 Si 기판 상에 촉매의 분리된 원형 점적이 분포되게 하였다. 대조적으로, 조절된 패턴화는 공기 중에서 저속 건조에 의해 제조되고 소성된, 이미 형성된 균질한 촉 매 막 상의 마스크를 사용하고, Au-Pd 막을 스퍼터링함으로써 수행되었다. 이러한 방식으로, Au-Pd 합금에 의해 커버되는 촉매의 일부가 선택적으로 탈활성되어, 이러한 영역에서는 나노튜브의 성장이 일어나지 않는다. 이에 따라, 나노튜브 포레스트는 단지 잔류하는 활성 촉매 영역으로부터 성장하였다. 촉매/웨이퍼 상에서 이와 같이 생성된 SWNT를 라만 분광법, 전자 현미경법(SEM 및 TEM) 및 탐침 현미경법(AFM)에 의해 특징화하였다.
자연적 패턴의 경우에서, 공기 중에서의 급속 건조는 촉매 농도가 다른 미세한 원형 영역을 형성한다. 수동 공정에 있어서, TEM 격자는 이미 증착된 Co-Mo 촉매를 보호하기 위한 마스크로서 사용되었다. 격자에 의해 커버되되지 않은 표면 부분은 표면 상의 스퍼터링된 Au/Pd 막에 의해 탈활성화되었다. 두가지 방법에 의해 얻어진 수득된 V-SWNT의 형성되는 패턴화된 성장이 도 10에 도시된다. 도 10a1은 급속 건조 방법에 의해 패턴화된 기판 상에서의 화산 형상 SWNT 어레이를 나타낸다. 고배율 확대된 이러한 화산 형상 중 어느 하나의 단면 이미지(도 10a2)는, 이들 화산 형상이 중간 부분에 2차의 랜덤 배열("그래스")를 가지면서, 고리의 가장자리에 인접하여 수직으로 배열된 SWNT를 포함한다는 것을 보여준다. 이미지(도 10a2)는 TEM 격자에 의해 한정되는 활성화된 촉매 영역 상에 성장된 평행한 V-SWNT 바를 보여준다. 엣지로부터 격자와 표면 사이의 공간으로의 Au-Pd의 확산으로 인해, 엣지 영역에서 촉매 농도의 구배가 존재한다. 이에 따라, 이러한 영역에서의 포레스트는 기판에 부착된 그래스로 지속적으로 연장되는 상부 상의 크러스트에 의해 외측을 향해 구부러진다.
실시예 6.
기판 상에서 탄소 나노튜브를 연속 생성하기 위한 시스템
또 다른 구체예에서, SWNT는 예를 들어 도 11 및 도 12에 도시된 연속 공정으로 기판(100)(본원의 다른 곳에서 정의된 바와 같이) 상에서 성장할 수 있다. 기판(100)은 연속 방식으로 직접적으로 이동할 수 있는 컨베이어 벨트와 같은 운반 어셈블리(110)에 인가된다. 촉매 전구체 용액(120)은 분무 메카니즘(130)에 의해, 또는 슬롯 다이(slot die), 로드(rod), 그라비어(gravure), 나이프(knife), 오버 롤(over roll) 및 리버스 롤(reverse roll)의 사용을 포함하는 그 밖의 적용 수단에 의해 기판(100)에 가해질 수 있다. 도시된 바와 같이, 예를 들어, 노(140, 150 및 160)는 컨베이어 어셈블리(110)가 촉매 기판(100)을 반응 영역(170)에 전달하여 이어서 촉매 기판(100)을 소성하고, 환원시켜, 이들 기판을 보다 촉매적으로 활성이게 하여 상이한 온도에서 나노튜브를 성장시킬 수 있도록 배치될 수 있다. 예를 들어, 유입구(180)에서, 공기가 반응 영역(170)에 유입되어 노(140)내 촉매 기판(100)을 소성시키고, H2가 반응 영역(170)내 유입구(190)에 유입되어 노(150)내 소성된 촉매 기판(100)을 환원시킬 수 있다. 이후, CO 또는 에탄올과 같은 탄소 함유 기체는 노(160)내 나노튜브를 생성하는 촉매 공정을 위한 탄소 함유 기체를 공급하도록 유입구(200)에서 반응 영역(170)으로 유입될 수 있다. SWNT 함유 촉매 기판(210)이 그 위의 SWNT(220)와 함께 노(160)로부터 배출됨에 따라, SWNT(220)는 이로부터 예를 들어 블레이드(230)에 의해, 또는 탱크를 지나 벨트를 통과시키고, 초음파처리를 사용하여 상기 나노튜브의 방출을 촉진시키거나, 나노튜브계를 전단계(기체 또는 액체)로 처리하거나, 나노튜브 코팅된 벨트/웹/플레이트를 점착성 물질과 접촉시키는 것을 포함하나, 이로 제한되는 것은 아닌 그 밖의 방법에 의해 수득될 수 있다. 기체는 반응 영역(170)으로부터 예를 들어 유출구(185, 195 및 205)를 통해 제거되거나 재순환될 수 있다(이로부터 재사용되거나 부산물이 제거된다). 이후, SWNT(220)가 수득된 촉매 기판(100)은 예를 들어, 이를 재순환 유닛(240)을 통과시킴으로써 컨베이어 어셈블리(100)로부터 제거되거나, 촉매 조성물(120) 만이 이로부터 제거될 수 있다. 이후, 새로운 기판(100)이 컨베이어 어셈블리(110)에 인가되거나, 새로운 촉매 전구체 용액(120)이 컨베이어 어셈블리(110)에 남아있는 기판(100)에 인가될 수 있다.
다르게는, SWNT 함유 촉매 기판(210)이 그 안에 삽입된 CNT를 갖는 전달 매체(예를 들어, 중합체 막)를 제조하기 위한, 본원에 다른 곳에서 기술된 방법에 사용될 수 있다(실시예 1-3 참조).
기판(100) 상의 촉매 전구체 용액(120)은 예를 들어 분무 또는 이를 대신하는 것 이후에 프린팅, 포토리소그래피 또는 레이저 라이팅(laser writing)을 통해 패턴화될 수 있다. 촉매 전구체 용액(120)의 제조 및 컨디셔닝은 오프라인으로 수행될 수 있다.
도 12에는 컨베이어 어셈블리(110a)에 배치되어 고정되어 있는 다수의 기판(100a)을 포함하는, 도 11의 구체예와 유사한 본 발명의 또 다른 형태가 도시되어 있다. 상기 기술된 바와 같이 촉매 전구체 용액(120a)은 예를 들어 분무 메카 니즘(130a) 또는 임의의 다른 적용가능한 방법을 통해 기판(100a)에 가해진다(기판(100a)이 컨베이어 어셈블리(100a)에 인가되기 전 또는 후에). 컨베이어 어셈블리(110a)는 촉매 기판(100a)을 반응 영역(170a)내 노(140a)에 전달하고, 이는 촉매 기판(100a)을 소성하기 위해 유입구(180a)를 통해 공기를 수용하고, 이후, 노(150a)에 전달되어 촉매 기판(110d)을 환원시키기 위해 유입구(190a)로부터 환원 기체를 수용하고, 이후, 노(160a)에 전달되고, 이는 촉매 기판(100a) 상에 SWNT 또는 CNT를 형성시키기 위해 반응 영역(170a)로부터 그리고 유입구(200a)로부터 상기 논의된 바와 같은 탄소 함유 기체를 수용하여 그 위에 SWNT(220a)를 갖는 SWNT 함유 촉매 기판(210a)을 형성한다. 이후, SWNT(220a)는 블레이드(230a)를 통해 또는 본원의 다른 곳에서 논의된 다른 수단에 의해 제거된다. 촉매 기판(100a)은 컨베이어 어셈블리(110a)에 잔류하고, 1회 또는 그 초과의 회수로 사용되어, 재순환되거나 제거되고 대체되기 전에 SWNT를 형성한다. 컨베이어 어셈블리(110a)에 잔류하는 촉매 기판(100a)은 궁극적으로 촉매 전구체 용액(120a)을 제거하도록 처리되거나 세정되어 컨베이어 어셈블리(110a)에 남게 되거나, 이로부터 완전히 제거되어 수동적으로 또는 자동적으로 새로운 기판(100a)으로 대체될 수 있다.
사용될 수 있는 연속 벨트의 다른 대안은 롤-투-롤 공정(언와인드(unwind) 및 리와인드(rewind)), 또는 컨베이어 벨트 상에 안치되는 기판 또는 플레이트의 연속적 공급을 포함할 수 있다.
또 다른 구체예에서, SWNT 함유 촉매 기판(210 또는 210a)으로부터 SWNT를 방출시키기 전에 어닐링 단계가 일어나는 것이 포함될 수 있다. 또한, SWNT의 방 출 전에, 작용성화 단계가 예를 들어 방사선 또는 플라즈마에 의해 일어날 수 있다. 이러한 공정의 형성되는 생성물은 SWNT 그 자체 또는 기판에 부착된 SWNT일 수 있다.
실시예 7
액체 중에서의 SWNT 의 제거
촉매 기판 상에 형성된 SWNT가 액체 매질로 전달되어야 경우, 이들을 촉매 기판으로부터 액체에 직접 전달함으로써 중간 단계를 피하는 것이 편리하다. 이러한 액체 매질로의 전달은 SWNT 함유 촉매 기판을 계면활성제 용액에 침지시킴으로써 달성될 수 있다. 간단한 실험에서, 2cm x 1cm 조각의 V-SWNT 함유 실리콘 웨이퍼를 7ml의 1.3mmol/lt NaDDBS 용액을 함유하는 바이알에 넣었다. 다른 계면활성제가 사용될 수도 있다. 초음파세척기에서 1분 동안 상기 샘플을 초음파처리한 후, V-SWNT 막을 탈착시키고, 실리콘 웨이퍼의 조각을 계면활성제 용액으로부터 제거하였다. 액체 매질 중의 나노튜브의 양호한 분산한 요구되는 경우, 웨이퍼가 계면활성제 용액으로부터 제거된 후에 나노튜브 번들을 파괴하기 위해 호른 초음파처리가 사용될 수 있다. 여전히 내부에 웨이퍼 조각을 지닌 계면활성제 용액의 호른 초음파처리는 기판으로부터 나오는 입자에 의해 샘플의 오염화를 초래할 수 있다.
유사한 실험을 나트륨 콜레이트, NaDDBS, CTAB 및 SDS를 포함하는 다른 계면활성제; 및 이소프로판올, 클로로포름, 디클로로벤젠, THF 및 상이한 아민을 포함하는 그 밖의 용매를 사용하여 수행하였다. 사용될 수 있는 또 다른 계면활성제로는 설피놀(Surfynol) CT324, 에어로졸(Aerosol) OS, 도우팍스(Dowfax) 2A1, 도우팍스 8390, 설피놀 CT131, 트리톤(Triton) X-100, 세랄루션(Ceralution) F, 트윈(Tween) 80, CTAT 및 설포닉(Surfonic) L24-7을 포함하나, 이로 제한되는 것은 아니다. 폴리사카라이드(예를 들어, 나트륨 카르복시메틸셀룰로오스)와 같은 그 밖의 화합물이 또한 액체 매질 중의 SWNT 분산성을 개선시키거나 표면의 습윤성을 변화시키기 위한 "계면활성제"로서 사용될 수 있다. 계면활성제 용액에 대한 대안으로서, 사용될 수 있는 그 밖의 용매로는, 알코올, 케톤, 알데히드, 에테르, 에스테르, 알칸, 알켄, 방향족 탄화수소 및 이들의 혼합물이 포함되나, 이로 제한되는 것은 아니다. 몇몇 경우에, 초음파세척기가 기판으로부터 V-SWNT 막을 제거하는 데 요구되지 않을 수 있으며, V-SWNT 막이 용액 중에 침지된 후에, 또는 V-SWNT의 상부 상에 액체를 흐르게 한 후에 그 자체로 벗겨질 수 있다. 몇몇 다른 경우에, 교반 또는 약한 교반이 초음파세척기에 대한 대안으로서 사용될 수 있다. V-SWNT를 액체 매질에 전달하기 위한 또 다른 방법은 V-SWNT 물질의 상부에 액체 막을 가하고, 액체를 동결시키기 위해 온도를 낮추고, V-SWNT를 함유하는 동결된 액체를 기계적으로 제거하고, V-SWNT를 함유하는 동결된 액체를 보다 많은 액체와 혼합하는 것으로 이루어진다. 다르게는, 비수직 배향의 SWNT 또는 MWNT를 포함하는 그 밖의 CNT가 이러한 방법을 사용하여 현탁될 수 있다.
실시예 8.
진공/공기 중에서의 SWNT 의 제거
기판 상에 생성된 나노튜브는 표면을 부드러운 주걱 또는 블레이드로 제거하거나 기판으로부터 막을 벗겨내는 것과 같은 여러 간단한 방법을 사용하여 공기 중 에서 직접적으로 촉매 기판으로부터 제거될 수 있다(도 13 참조). 일반적으로, 나노튜브 막의 두께가 증가함에 따라, 나노튜브 물질을 제거하기가 더욱 용이해졌음이 관찰되었다. 나노튜브를 성장시키는 데 사용된 촉매 기판에 대한 XPS 분석 및 촉매 기판으로부터 탈착된 후 V-SWNT 물질의 TEM 및 EDXA 분석에서는, 대부분의 촉매 물질(Co 및 Mo)이 촉매 기판 상에 남아있고, 나노튜브 물질은 금속 불순물을 함유하지 않아(도 14참조), CNT의 제거 동안에 기판으로부터 촉매 물질을 실질적으로 끌어당기지 않은 것으로 나타났다.
다르게는, 진동 또는 난류 기체 스트림이 기판으로부터 나노튜브 물질의 분리를 유도하기 위해 사용될 수 있다. 이러한 방법은 공기, 임의의 다른 기체 또는 진공 하에서 사용될 수 있다. 이러한 방법은 주위 온도에서, 또는 샘플이 주위 온도보다 높게 가열되거나 낮게 냉각된 후에 샘플로 수행될 수 있다.
실시예 9.
랜덤하게 배향된 나노튜브 크러스트의 형성으로 인한 기판 상의 성장 동안의 SWNT의 수직 배열
본 실시예에서는, 실리콘 기판 상에 지지된 Co-Mo 촉매 상의 수직 배열된 단층벽 탄소 나노튜브(또는 V-SWNT)의 성장에 대해 기술된다. 주사 전자 현미경법(SEM) 및 공진 라만 분광법에 의해 V-SWNT 성장의 시간 변화를 조사하였다. 랜덤하게 배향된 SWNT의 박층 또는 2차원 나노튜브 크러스트가 기판 상에 형성되는 동안에, 분명한 유도 기간이 확인되었다. 이러한 크러스트의 형성은 그 높이가 전체 구조를 함께 지지하는 단단한 나노튜브 크러스트에 의해 조절되는 수직 나노튜 브 "포레스트"의 조화된 성장에 의해 일어난다. 이에 따라, 모든 SWNT는 실질적으로 배열된 형태로 성장하게 된다. 완전히 성장한 SWNT 포레스트 샘플의 각 분해 x-선 흡수 단근 구조(angle-resolved x-ray absorption near edge structure) 연구가 얻어졌다. C(1s)-투-π*(C(1s)-to-π*) 및 C(1s)-투-σ*(C(1s)-to-σ*) 전이 세기를 입사각의 함수로서 정량화하였다. 완전하게 배향된 수직 나노튜브에 대해 예상될 수 있는 이론적 식으로부터 입사각에 의한 세기의 실험적 변동에 대한 상당한 편차가 낮은 입사각에서 관찰되었다. 이러한 편차는 기판의 상부면에 평행한 나노튜브 포레스트의 상부면 상의 나노튜브의 크러스트의 존재와 완전히 일치한다. 또한, 기판 상에서 성장한 SWNT의 상이한 형태에 대한 여러 예가 형성되는 SWNT 포레스트 위상에 대한 나노튜브 크러스트 구조의 효과를 입증하기 위해 제시된다.
(a) Si 웨이퍼 상에 지지된 Co 및 Mo의 촉매를 실시예 1에 기술된 바와 같이 제조하였다. 사전처리 후, 웨이퍼를 석영 반응기에 넣고, 유동 기체의 방향과 평행하게 배향시키고, 상기 기술된 바와 같이 SWNT 성장을 유도하였다.
(b) 촉매/웨이퍼(촉매 기판) 상에서 이와 같이 생성된 SWNT를 라만 분광법, 전자 현미경법(SEM 및 TEM), 및 각 분해 x-선 흡수 단근 구조 분광법(XANES)에 의해 특징화하였다. 각-분해 C K-엣지 XANES 스펙트럼을, 로렌스 버클리 내셔널 래보러토리(Lawrence Berkeley National Laborator(LBNL))에서 어드밴스드 라이트 소스(Advanced Light Source(ALS))의 휨자석 빔라인(beamline) 9.3.2.에서 총 전자 수율(TEY) 모드로 UHV 하에서 취하였다. XANES 데이타를 θ=10°("글랜싱(glancing) 기하학구조") 내지 θ=80°("정상 기하학구조") 범위에 이르는 다양 한 각도에서 수거하였으며, 여기에서 θ는 X선 빔의 전기 벡터의 방향과 수직 샘플 간의 각도를 나타낸다.
(c) XANES 특징화의 결과: 도 15는 SWNT 포레스트에 대한 상이한 입사각에서의 XANES 세기의 변화를 도시한 것이며, 여기에서 θ는 또한 X선 빔의 전계 벡터와 수직 샘플 간의 각도이다. XANES 스펙트럼에서 프리-엣지(pre-edge) 및 포스트-엣지(post-edge)는 각각 0 및 1로 표준화되었다. 다수개의 특징적인 피크가 각 셋트의 XANES 스펙트럼으로 확인될 수 있다. SWNT 포레스트의 C K-엣지 XANES 스펙트럼은 다른 사람들에 의해 보고된 바와 같이 흑연의 스펙트럼과 상당히 유사하다. 이러한 스펙트럼은 이러한 스펙트럼은 285.4eV 부근에서의 날카로운 C-Cπ* 전이, 291.5eV 부근에서의 날카로운 C-Cσ* 결합 여기, 292 내지 298 eV에서의 두개의 다른 σ* 전이 및 301 내지 309eV에서의 광범위한(σ+π) 전이에 의해 특징된다. 이러한 공진의 위치 및 폭은 C-C 단일 결합의 전형적인 것이다. 287 내지 290eV 영역에서 두개의 작은 피크는 SWNT 포레스트가 처리되는 동안에 도입된 산화된 표면 작용기로 할당될 수 있다. 이들은 π* C=O 및 σ* C-O 공진에 상응한다. 웃트카(Outka)와 그 동료들에 의해 제안된 방법에 따르면, XANES 스펙트럼이 일련의 가우시안(Gaussians), 탄소의 여기 엣지에 상응하는 역탄젠트 단계, 및 백그라운드로 맞춰진다.
SWNT의 로컬 오더(local order) 및 텍스쳐(texture)의 존재가 SWNT 포레스트의 XANES의 각 의존성(angular dependence)에서 관찰된다. 나노튜브의 포레스트에서, 나노튜브는 위쪽을 가르키는 것으로 예상된다. 싱크로트론(synchrotron) 광이 수평적으로 선형 편광되기 때문에, π* 전이의 세기는 편광 벡터에 대해 π* 오비탈의 배향에 대해 민감하다. 따라서, 나노튜브 시편에서 π* 오비탈이 입사 광자빔에 대해 부분적으로 배향되는 경우, 유입되는 광자에 대한 시편의 회전은 측정가능한 각 의존성을 나타낼 것이다. 수직 입사에서, 전계 E는 π* 오비탈로서 동일한 단면의 평평한 표면으로 존재하고, 이에 따라 π* 공진 피크는 글랜싱 각에서와는 반대로, 상기 각에서 가장 높을 것이다. 거꾸로 말하면, E가 표면에 대해 수직인 경우, 상기 전계는 튜브 축을 따라(z를 따라) 놓이며, π* 오비탈의 면에 수직이고, π* 공진의 세기는 이의 최소가 된다. 구체적으로, X선 빔의 입사각이 증대됨에 따라 π* 공진의 세기가 증가한다. π* 여기 XAS 세기에 대한 로컬 기여도는 로컬 정상 및 E의 스칼라 곱(scalar product)의 제곱에 비례한다. 분명하게, π* 공진 세기는 입사각의 사인-제곱 함수에 비례한다. π* 여기 대 입사각의 플롯은 도 16의 하부 패널에 도시된 바와 같이 사인-제곱 의존성을 나타낸다.
그러나, π* 오비탈에 직교하는 C-C σ* 오비탈은 반대 경향을 나타낼 것이다. σ* 오비탈은 두개의 수직 성분의 조합으로서 보여질 수 있으며, 도 16의 상부 패널에 도시된 바와 같이 수직 성분은 하나는 튜브축 방향(σ*//)에 평행하고, 다른 것은 원주 방향을 따른다(또한, 튜브축에 수직임, σ*⊥). 291.5eV에서 σ* 여기 XAS 세기에 대한 로컬 기여도는 두 성분의 제곱되는 스칼라 곱과 전기 편광 벡터의 합에 비례한다. 총 튜브 원주에 대한 모든 σ* 기여도를 구하는 간단한 계산으로, 본 발명자들은 291.5eV에서 σ* 결합된 공진의 세기가 (1+cos2θ)에 비례함을 발견하였다. 여기의 세기는 도 16에 도시된 바와 같이 입사각에 대해 코사인 -제곱 의존성을 갖는다. 이는, 그 공진이 튜브의 랜덤하게 분포된 차원에 적절한 입사각을 갖는 세기에 있어서 시스템적 변동이 있지 않은 것으로 나타난 SWNT 벅키페이퍼(buckypaper)에 대해 관측된 것과는 상당히 다르다. 시험 데이타로부터 맞춰진 데이타의 눈에 띄는 편차가 낮은 각도에서 σ* 및 π* 전이 둘 모두에 대해 관찰된다. 상기 논의된 메카니즘을 고려하면, V-SWNT의 상부에서 기판에 평행하게 배향된 나노튜브를 갖는 크러스트의 존재를 방해하는 것은 자명하다. 이러한 크러스트의 존재는 추가로 포레스트 상에서의, 랜덤 2차원 망상구조로 표면에 평행하게 배향된 SWNT를 나타내는 도 17의 SEM 이미지에 의해 지지된다.
(d) V-SWNT 성장에 대한 시간 변화
V-SWNT 구조의 형성에 대한 메카니즘을 조사하기 위해, 본 발명자들은 성장 과정의 각 단계에서 시스템을 검사하였다. V-SWNT의 형태는 상이한 반응 시간 후에 SEM에 의해 관찰하였다. 결과가 표 18에 도시된 시리즈로 요약된다. 탄소 증착이 없는 기판으로부터 시작하여, 짧은 SWNT 번들이 Co-Mo 입자에서 기하학적 및 조성적 차이로 인해 어느 정도 촉매적으로 우선되는 지점에서 30초 후에 발생하였다. 그러나, 이 단계에서, SWNT의 연속 막은 아직 형성되지 않았다. 다음 30초 동안, SWNT로 성장할 수 있는 캡을 핵화시킬 수 있는 거의 모든 입자가 활성화되었다. 이후, SWNT가 성장함으로써 캡을 들어올렸다. 이에 따라(60초 후에), 랜덤하게 배향된 SWNT의 박층이 직조되었다. 3분째에, 아래에 매우 짧게 배열된 SWNT 번들을 갖는 균일한 크러스트를 분명하게 볼 수 있었다. 상이한 성장 속도 및 랜덤한 배향으로 인한 SWNT 번들의 엉킴이 이 단계에서 나타났다. 대신, 각각 개별적 인 번들의 성장 속도는 크러스트에 의해 부여된 속박에 의해 평균화된다. 결과적으로(10분 및 30분), SWNT의 육안으로 균일한 성장 및 배열이 동시에 일어났다.
SEM 이외에, 공진 라만 분광분석을 시간 변화되는 V-SWNT 샘플 상에서 수행하였다. 도 19는 0.5분, 3분 및 10분에 생성된 V-SWNT의 라만 스펙트럼을 나타낸 것이다. 라만 특징은 V-SWNT에 대해 전형적인 1590cm-1에서 G 밴드, 1340cm-1에서 D 밴드, 및 150 내지 300cm-1에서 방사형 호흡 형태를 포함한다. 520cm-1에서의 피크는 실리콘 상의 비탄성 산란(inelastic scattering)의 특징이며, 이의 세기는 V-SWNT의 높이에 의해 결정되는 레이저의 초점면으로부터의 거리 및 SWNT에 의해 피복된 면적에 의존한다. 도 19에서, 세개의 스펙트럼은 Si 밴드에 대해 표준화된 것이며, V-SWNT의 양은 G 밴드의 크기에 의해 추정될 수 있다. G 밴드의 세기가 시간에 따라 증가한다는 것이 분명하게 나타난다. 흥미롭게도, 초기 모멘트(0.5분) 동안에 형성된 크러스트 및 10분 후에 형성된 V-SWNT에 대한 G 밴드들의 형상이 다르다. 표준화 후의 삽입도에 도시된 바와 같이, V-SWNT 샘플은 크러스트에 상응하는 G- 및 G+의 보다 날카로운 라인 및 보다 분명한 분리와는 대조적으로, 수렴형 G- 및 G+ 및 보다 넓은 피크 베이스를 나타낸다.
이 실시예에서 데이타는 (1) V-SWNT 포레스트의 성장이 엉킨 랜덤하게 배향된 SWNT로 이루어진 박층(크러스트)이 수직 배열된 SWNT의 성장을 위한 가이딩 표면으로서 초기에 형성되는 매우 중요한 단계(유도 기간으로서 언급됨)를 필요로 하며, (2) 나노튜브 크러스트가 형성된 후, 아래에 있는 SWNT의 후속 성장이 크러스 트에 의해 제한됨으로써 모든 나노튜브가 실질적으로 동일한 길이를 갖게 되는 것을 나타낸다.
본원에서 기술된 여러 조성, 성분, 요소 및 어셈블리의 구조 및 작동 또는 본원에 기술된 방법의 단계 또는 일련의 단계에서의 변경이 본 발명의 범위에서 출발하지 않고 이루어질 수 있다.

Claims (68)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 탄소 나노튜브 구조체로서,
    촉매 표면을 지닌 촉매 기판(catalytic flat substrate);
    랜덤하게 배향된 탄소 나노튜브를 포함하는 제 1 탄소 나노튜브; 및
    수직 배향된 탄소 나노튜브를 포함하는 제 2 탄소 나노튜브를 포함하고, 제 1 탄소 나노튜브층이 외측 크러스트(outer crust)로서 제 2 탄소 나노튜브층 상에 배치되어 제 2 탄소 나노튜브 층이 제 1 나노튜브층과 기판의 촉매 표면 사이에 위치하는 탄소 나노튜브 구조체.
  52. 제 51항에 있어서, 탄소 나노튜브가 단층벽 탄소 나노튜브인 탄소 나노튜브 구조체.
  53. 제 51항에 있어서, 촉매 기판이 SiO2, Si, p-도핑된 Si, n-도핑된 Si, SiO2 층을 지닌 p-도핑된 Si, SiO2 층을 지닌 n-도핑된 Si, Si3N4, Al2O3, MgO, 석영, 유리, 산화된 실리콘 표면, 탄화규소, ZnO, GaAs, GaP, GaN, Ge, InP, 철, 강, 스테인레스강, 몰리브덴, 알루미나, 마그네시아 및 티타니아, 또는 이들의 조합으로 이루어진 군으로부터 선택된 물질로부터 제조되는 탄소 나노튜브 구조체.
  54. 제 51항에 있어서, 촉매 표면이 그 위에 제 VIII족 금속, 제 VIb족 금속, 제 Vb족 금속, 및 Re로 이루어진 군으로부터 선택된 하나 또는 그 초과의 금속을 포함하는 촉매 아일랜드를 포함하는 탄소 나노튜브 구조체.
  55. 제 51항에 있어서, 촉매 아일랜드가 촉매 표면 상에 형성되며, 촉매 아일랜드는 평균 거리 30nm 내지 100nm로 이격되어 있는 탄소 나노튜브 구조체.
  56. 기판 상에 탄소 나노튜브 구조체를 형성시키는 방법으로서,
    기판을 제공하는 단계;
    촉매 금속 조성물을 제조하기 위해 촉매 금속, 표면 습윤제 및 촉매 안정화제를 포함하는 촉매 전구체 용액을 제공하는 단계;
    촉매 전구체 용액을 기판에 가하고, 촉매 전구체 용액을 건조시켜 기판 상에 촉매 조성물을 형성시킴으로써 촉매 기판을 형성시키는 단계; 및
    촉매 기판을 가열된 탄소 함유 기체 또는 기화된 액체에 노출시키는 단계를 포함하며,
    상기 촉매 기판을 가열된 탄소 함유 기체 또는 기화된 액체에 노출시키는 단계가 초기에 랜덤하게 배향된 탄소 나노튜브의 수평층을 생성하고, 이후 랜덤하게 배향된 탄소 나노튜브의 수평층과 촉매 기판 사이에 수직 배향된 탄소 나노튜브를 형성시키는 방법.
  57. 제 56항에 있어서, 탄소 나노튜브가 단층벽 탄소 나노튜브인 방법.
  58. 제 56항 또는 제 57항에 있어서, 촉매 금속 조성물의 촉매 안정화제 및 표면 습윤제가 실리케이트, 실란, 폴리실록산, 폴리카르보실란, 유기실라잔, 폴리실라잔, 알콕시드 유래된 실록산, 알킬-시클로실록산, 알킬-알콕시-실란, 폴리-알킬-실록산, 아미노-알킬-알콕시-실란 또는 알킬-오르쏘실리케이트, 및 티타늄 알콕사이드 또는 티타녹산; 유기 알루미녹시 화합물, 유기지르코네이트, 및 유기마그네슘 화합물로 이루어진 군으로부터 선택되는 방법.
  59. 제 56항 또는 제 57항에 있어서, 표면 습윤제 및 촉매 안정화제가 동일한 방법.
  60. 제 56항 또는 제 57항에 있어서, 촉매 금속 조성물의 촉매 금속이 제 VIII족 금속, 제 VIb족 금속, 제 Vb족 금속, 및 레늄으로 이루어진 군으로부터 선택된 하나 이상의 금속을 포함하는 방법.
  61. 제 56항 또는 제 57항에 있어서, 촉매 금속이 하나 이상의 제 VIII족 금속 및 하나 이상의 제 VIb족 금속을 포함하는 방법.
  62. 제 56항 또는 제 57항에 있어서, 촉매 금속이 Co 및 Mo인 방법.
  63. 제 56항 또는 제 57항에 있어서, 탄소 함유 기체 또는 기화된 액체가 메탄, 에탄, 프로판, 부탄, 헥산, 에틸렌 및 프로필렌; 일산화탄소; 케톤, 알데히드, 및 알코올; 방향족 탄화수소; 및 이들의 혼합물로 이루어진 군으로부터 선택되는 방법.
  64. 촉매 기판으로부터 탄소 나노튜브를 전달시키는 방법으로서,
    평평한 표면을 가지며, 랜덤하게 배향된 탄소 나노튜브의 수평층, 및 랜덤하게 배향된 탄소 나노튜브의 수평층과 촉매 기판의 평평한 표면 사이에 형성된 수직 배향된 탄소 나노튜브의 층을 포함하는 탄소 나노튜브 구조체를 지지하는 촉매 기판을 제공하는 단계;
    상기 2층 탄소 나노튜브 구조체가 전달 매질에 부착되거나 그 안에 삽입되도록 탄소 나노튜브를 부착하거나 가둘 수 있는 전달 매질을 2층 탄소 나노튜브 구조체에 가하는 단계; 및
    촉매 표면으로부터 전달 매질을 제거함으로써 촉매 기판으로부터 2층 탄소 나노튜브 구조체를 실질적으로 완전히 제거하는 단계를 포함하는 방법.
  65. 제 64항에 있어서, 전달 매질이 액체 또는 반액체로서 탄소 나노튜브 구조체에 가해지는 중합체 물질을 포함하는 방법.
  66. 제 64항 또는 제 65항에 있어서, 탄소 나노튜브 구조체가 탄소 나노튜브 구조체 상에 액체 막을 가하고, 온도를 낮추어 액체를 동결시키고, 동결된 액체 및 탄소 나노튜브 구조체를 기계적으로 제거함으로써 전달되는 방법.
  67. 제 64항 또는 제 65항에 있어서, 탄소 나노튜브가 전달 매질에 실질적으로 완전히 삽입되는 방법.
  68. 제 64항 또는 제 65항에 있어서, 탄소 나노튜브 구조체가 적어도 부분적으로 노출되도록 탄소 나노튜브가 전달 매질에 부분적으로만 삽입되는 방법.
KR1020087001762A 2005-06-28 2006-06-08 탄소 나노튜브의 성장 및 수득 방법 KR101289256B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69454505P 2005-06-28 2005-06-28
US60/694,545 2005-06-28
PCT/US2006/022603 WO2007055744A2 (en) 2005-06-28 2006-06-08 Methods for growing and harvesting carbon nanotubes

Publications (2)

Publication Number Publication Date
KR20080094884A KR20080094884A (ko) 2008-10-27
KR101289256B1 true KR101289256B1 (ko) 2013-07-24

Family

ID=38023725

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087001762A KR101289256B1 (ko) 2005-06-28 2006-06-08 탄소 나노튜브의 성장 및 수득 방법

Country Status (9)

Country Link
US (2) US7842387B2 (ko)
EP (1) EP1904670B1 (ko)
JP (1) JP5443756B2 (ko)
KR (1) KR101289256B1 (ko)
CN (1) CN101365830B (ko)
AT (1) ATE526437T1 (ko)
AU (1) AU2006312250B2 (ko)
CA (1) CA2613203C (ko)
WO (1) WO2007055744A2 (ko)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523822A (ja) * 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド 伸長した長さのナノ構造の合成のためのシステム及び方法
EP2202202B1 (en) * 2005-05-03 2018-02-21 Nanocomp Technologies, Inc. Carbon nanotube composite materials
AU2006345024C1 (en) 2005-07-28 2012-07-26 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7744793B2 (en) 2005-09-06 2010-06-29 Lemaire Alexander B Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US8815351B2 (en) * 2005-09-15 2014-08-26 The United States Of America As Represented By The Secretary Of The Air Force Method for attachment of silicon-containing compounds to a surface and for synthesis of hypervalent silicon-compounds
GB2431173B (en) * 2005-09-15 2010-01-13 Alexium Ltd Method for attachment of silicon-containing compounds to a surface
US9771264B2 (en) * 2005-10-25 2017-09-26 Massachusetts Institute Of Technology Controlled-orientation films and nanocomposites including nanotubes or other nanostructures
WO2007064148A1 (en) * 2005-11-29 2007-06-07 Semes Co., Ltd. System and method for producing carbon nanotubes
WO2007124477A2 (en) * 2006-04-21 2007-11-01 William Marsh Rice University Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US9181639B2 (en) 2006-05-19 2015-11-10 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
GB0617460D0 (en) * 2006-09-05 2006-10-18 Airbus Uk Ltd Method of manufacturing composite material
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8158217B2 (en) * 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US20100279569A1 (en) * 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US8709374B2 (en) * 2007-02-07 2014-04-29 Seldon Technologies, Llc Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
CN101239712B (zh) * 2007-02-09 2010-05-26 清华大学 碳纳米管薄膜结构及其制备方法
CN101315974B (zh) 2007-06-01 2010-05-26 清华大学 锂离子电池负极及其制备方法
US9061913B2 (en) * 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
FI20075482L (fi) * 2007-06-25 2008-12-26 Canatu Oy Kuituverkostot sekä menetelmä ja laite kuituverkostojen jatkuvasti tai erinä tapahtuvaan tuotantoon
EP2173655B1 (en) * 2007-07-09 2020-04-08 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
WO2009033082A2 (en) * 2007-09-06 2009-03-12 Boston Scientific Limited Medical devices containing silicate and carbon particles
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US8603246B2 (en) * 2008-01-30 2013-12-10 Palo Alto Research Center Incorporated Growth reactor systems and methods for low-temperature synthesis of nanowires
US7897209B2 (en) * 2008-04-16 2011-03-01 Zeon Corporation Apparatus and method for producing aligned carbon-nanotube aggregates
CN101567230B (zh) * 2008-04-25 2012-06-20 清华大学 透明导电薄膜的制备方法
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
JP4940190B2 (ja) * 2008-07-03 2012-05-30 株式会社東芝 カーボンナノチューブ製造装置
JP2010013319A (ja) * 2008-07-03 2010-01-21 Toshiba Corp ナノカーボン製造装置
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US9598285B2 (en) 2009-02-10 2017-03-21 Zeon Corporation Apparatus for producing aligned carbon nanotube aggregates
CN102325720A (zh) * 2009-02-10 2012-01-18 日本瑞翁株式会社 取向碳纳米管集合体生产用基材以及取向碳纳米管集合体的制造方法
JP5577356B2 (ja) * 2009-02-17 2014-08-20 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブを繊維上に含んで構成された複合材料
BRPI1008131A2 (pt) * 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100227134A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
US20100272891A1 (en) * 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
EP2417286B1 (en) * 2009-04-10 2015-05-20 Applied Nanostructured Solutions, Inc. Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100260931A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
CN102459727B (zh) * 2009-04-17 2015-04-15 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
CN102461361A (zh) * 2009-04-24 2012-05-16 应用纳米结构方案公司 并入cnt的emi屏蔽复合材料和涂层
AU2010245098B2 (en) * 2009-04-27 2014-11-13 Applied Nanostructured Solutions, Llc. CNT-based resistive heating for deicing composite structures
EP2429945A1 (en) * 2009-04-30 2012-03-21 Applied NanoStructured Solutions, LLC Method and system for close proximity catalysis for carbon nanotube synthesis
CN101905877B (zh) * 2009-06-02 2013-01-09 清华大学 碳纳米管膜的制备方法
WO2010147191A1 (ja) * 2009-06-17 2010-12-23 独立行政法人産業技術総合研究所 カーボンナノチューブの製造装置および製造方法
JP5649225B2 (ja) * 2009-07-01 2015-01-07 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols USE OF NANOPARTICLES IN COMPOSITE FIBERS
JP2011068509A (ja) * 2009-09-25 2011-04-07 Aisin Seiki Co Ltd カーボンナノチューブ複合体およびその製造方法
KR20110046102A (ko) * 2009-10-28 2011-05-04 한국표준과학연구원 탄소나노튜브 필름 및 그 제조방법
CA2779489A1 (en) * 2009-11-02 2011-05-05 Applied Nanostructured Solutions, Llc Cnt-infused aramid fiber materials and process therefor
US20120160966A1 (en) * 2009-11-23 2012-06-28 Applied Nanostructured Solutions, Llc Cnt-tailored composite space-based structures
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
EP2504164A4 (en) * 2009-11-23 2013-07-17 Applied Nanostructured Sols CERAMIC COMPOSITE MATERIALS CONTAINING FIBER MATERIALS IMPREGNATED WITH CARBON NANOTUBES AND METHODS OF MAKING SAME
WO2011142785A2 (en) * 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) * 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (pt) * 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
JP2013521656A (ja) 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置
BR112012021634A2 (pt) * 2010-03-02 2019-09-24 Applied Nanostructured Sols dispositivos elétricos contendo fibras de nanotubo de carbono infundidas e métodos para reprodução das mesmas.
JP2011207631A (ja) * 2010-03-29 2011-10-20 Cci Corp カーボンナノチューブ分散液の製造方法
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
TWI477438B (zh) * 2010-06-23 2015-03-21 Hon Hai Prec Ind Co Ltd 奈米線薄膜及其製造方法
KR101793683B1 (ko) * 2010-07-27 2017-11-03 한화테크윈 주식회사 그래핀 제조 방법
KR101767921B1 (ko) * 2010-08-11 2017-08-14 한화테크윈 주식회사 그래핀의 후처리 방법 및 이를 이용한 그래핀 제조 방법
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
US20120058352A1 (en) * 2010-09-02 2012-03-08 Applied Nanostructured Solutions, Llc Metal substrates having carbon nanotubes grown thereon and methods for production thereof
US8679381B1 (en) * 2010-09-07 2014-03-25 Stc.Unm Carbon fiber foam composites and methods for making the same
EP2616189B1 (en) 2010-09-14 2020-04-01 Applied NanoStructured Solutions, LLC Glass substrates having carbon nanotubes grown thereon and methods for production thereof
CN103118975A (zh) 2010-09-22 2013-05-22 应用奈米结构公司 具有碳纳米管成长于其上的碳纤维基板及其制造方法
JP5741897B2 (ja) * 2010-09-22 2015-07-01 アイシン精機株式会社 カーボンナノチューブ製造方法
BR112012017246A2 (pt) 2010-09-23 2016-03-22 Applied Nanostructured Solutins Llc fibra infundida por cnt como um fio autoblindado para linha de transmissão de energia aprimorada
US9305777B2 (en) * 2011-03-31 2016-04-05 Council Of Scientific And Industrial Research Catalyst free synthesis of vertically aligned CNTs on SiNW arrays
TWI528388B (zh) * 2011-06-09 2016-04-01 識驊科技股份有限公司 圖案化導電元件
US9390828B2 (en) 2011-07-01 2016-07-12 The University Of Kentucky Research Foundation Crystallographically-oriented carbon nanotubes grown on few-layer graphene films
US9388513B2 (en) 2011-07-01 2016-07-12 The University Of Kentucky Research Foundation Crystallographically-oriented carbon nanotubes grown on few-layer graphene films
KR101305705B1 (ko) * 2011-07-12 2013-09-09 엘지이노텍 주식회사 터치 패널 및 전극 제조 방법
CN102424375B (zh) * 2011-09-07 2013-11-13 钟国仿 一种制备碳纳米管垂直阵列的方法
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
ZA201205278B (en) * 2012-04-13 2013-04-24 Applied Nanostructured Sols Cns-shielded wires
WO2013158155A1 (en) * 2012-04-16 2013-10-24 Seerstone Llc Methods for using metal catalysts in carbon oxide catalytic converters
US9839896B2 (en) * 2012-06-12 2017-12-12 The George Washington University System and method for mass production of graphene platelets in arc plasma
US20130327637A1 (en) 2012-06-12 2013-12-12 The George Washington University System and method for mass production of graphene platelets in arc plasma
EP2961535B1 (en) 2013-02-28 2018-01-17 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
ES2943257T3 (es) 2013-06-17 2023-06-12 Nanocomp Technologies Inc Agentes exfoliantes-dispersantes para nanotubos, haces y fibras
JP6168911B2 (ja) * 2013-08-20 2017-07-26 日立造船株式会社 カーボンナノチューブの製造装置
CN104944407B (zh) * 2014-03-31 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104944408B (zh) * 2014-03-31 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN105197875B (zh) * 2014-06-19 2017-02-15 清华大学 图案化碳纳米管阵列的制备方法及碳纳米管器件
CN105329842B (zh) * 2014-06-18 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN105712314B (zh) * 2014-12-05 2017-12-01 清华大学 碳纳米管阵列的制备方法和碳纳米管膜的制备方法
WO2016099231A1 (ko) * 2014-12-19 2016-06-23 이화여자대학교 산학협력단 무기 나노입자-탄소나노튜브 복합체, 및 이의 제조 방법
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
WO2017033482A1 (ja) * 2015-08-24 2017-03-02 古河電気工業株式会社 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
NO345837B1 (en) * 2016-05-04 2021-08-30 Cealtech As Apparatus for large scale producing 3D graphene and method describing the same
WO2017210238A1 (en) 2016-05-31 2017-12-07 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
TWI755492B (zh) 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 基於碳納米管的熱界面材料及其製造和使用方法
CN107651666A (zh) * 2017-03-27 2018-02-02 江苏超电新能源科技发展有限公司 一种高密度水平定向碳纳米管的制备方法及其应用
CN106904597B (zh) * 2017-04-13 2018-10-19 合肥工业大学 一种以取向冷冻干燥技术制备碳纳米管的方法
CN108735969B (zh) 2017-04-24 2020-09-29 清华大学 锂离子电池负极及柔性锂离子电池
CN108735979B (zh) 2017-04-24 2020-12-04 清华大学 锂离子电池负极的制备方法
CN107265460B (zh) * 2017-05-26 2020-02-18 宁波工程学院 一种大宽厚比B掺杂SiC纳米带及其制备方法
CA3073661A1 (en) * 2017-08-22 2019-02-28 Ntherma Corporation Graphene nanoribbons, graphene nanoplatelets and mixtures thereof and methods of synthesis
US20190085138A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
EP3718157A4 (en) 2017-11-28 2021-09-29 Massachusetts Institute of Technology SEPARATORS INCLUDING ELONGATED NANOSTRUCTURES AND ASSOCIATED DEVICES AND PROCESSES FOR STORING AND / OR USING ENERGY
CN107986259B (zh) * 2017-11-30 2019-08-23 深圳市德方纳米科技股份有限公司 单壁碳纳米管及其制备方法和应用
CN108017572B (zh) * 2017-12-27 2023-10-17 江苏尚莱特医药化工材料有限公司 (s)-3-羟基哌啶的制备方法
US10501009B2 (en) * 2018-01-08 2019-12-10 Valeo North America, Inc. Bidirectional fiber panel
TW202012308A (zh) * 2018-07-27 2020-04-01 南韓商Lg化學股份有限公司 碳奈米管、其製備方法、以及含有該碳奈米管之用於一次電池的正極
US10707596B2 (en) * 2018-09-21 2020-07-07 Carbice Corporation Coated electrical connectors and methods of making and using thereof
JP2022526374A (ja) * 2019-04-03 2022-05-24 ナノコンプ テクノロジーズ,インク. カーボンナノチューブを製造するシステムおよび方法
US20220326609A1 (en) * 2019-06-03 2022-10-13 Rutgers, The State University Of New Jersey Sacrificial nanotransfer lithography for the metalization of plastics
US11417729B2 (en) 2019-08-29 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with channels formed of low-dimensional materials and method forming same
DE102020109756A1 (de) 2019-08-29 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Transistoren mit kanälen gebildet aus niedrigdimensionalenmaterialien und verfahren zum bilden derselben
WO2021216160A2 (en) * 2020-01-28 2021-10-28 Goodman Technologies LLC Orthogonal carbon-nanotube-based nanoforest for high-performance hierarchical multifunctional nanocomposites
CN111293013B (zh) * 2020-03-27 2021-06-04 中山大学 一种场发射冷阴极结构及其制造方法
CN116830832A (zh) * 2021-02-08 2023-09-29 威斯康星州男校友研究基金会 使用化学和地形图案化的衬底来选择性区域沉积高度对准的碳纳米管膜
CN113070083B (zh) * 2021-02-25 2022-09-13 福建师范大学 一种高效催化氧化丙烷催化剂及其制备方法
US20220306475A1 (en) * 2021-03-23 2022-09-29 Wisconsin Alumni Research Foundation Transfer of nanostructures using crosslinkable copolymer films
CN113979427B (zh) * 2021-12-10 2023-03-31 青岛科技大学 一种用铼做催化剂制备单壁碳纳米管的方法
KR102482828B1 (ko) * 2021-12-27 2022-12-29 한국캠브리지필터 주식회사 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US20040241896A1 (en) * 2003-03-21 2004-12-02 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
US20050042162A1 (en) * 2000-06-02 2005-02-24 Resasco Daniel E. Process and apparatus for producing single-walled carbon nanotubes
US20050112048A1 (en) * 2003-11-25 2005-05-26 Loucas Tsakalakos Elongated nano-structures and related devices

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645551A (en) * 1899-03-11 1900-03-20 Jasper N Clutter Coal-gate for locomotive-tenders.
US3645690A (en) 1968-01-22 1972-02-29 Beckman Instruments Inc Automated chemical analyzer
US3746657A (en) 1971-06-28 1973-07-17 Standard Oil Co Catalyst manufacturing process
US4361711A (en) 1981-12-18 1982-11-30 The Standard Oil Company Alcohols from olefins and synthesis gas
US4574120A (en) 1984-10-15 1986-03-04 Shell Oil Company Method for preparing high activity silica supported hydrotreating catalysts
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US6375917B1 (en) 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5154889A (en) 1986-08-07 1992-10-13 Fuji Photo Film Co., Ltd. Chemical analysis apparatus
US4847208A (en) 1987-07-29 1989-07-11 Bogen Steven A Apparatus for immunohistochemical staining and method of rinsing a plurality of slides
US5445327A (en) 1989-07-27 1995-08-29 Hyperion Catalysis International, Inc. Process for preparing composite structures
ZA907803B (en) 1989-09-28 1991-07-31 Hyperion Catalysis Int Electrochemical cells and preparing carbon fibrils
DE4004911C2 (de) 1990-02-16 1999-09-23 Horst Grochowski Verfahren und Vorrichtung zum Behandeln von wenigstens einem Fluid mittels eines als Schüttgut vorliegenden Feststoffes in einem Wanderbettreaktor
US5595707A (en) 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5225325A (en) 1990-03-02 1993-07-06 Ventana Medical Systems, Inc. Immunohistochemical staining method and reagents therefor
US6472217B1 (en) 1990-03-02 2002-10-29 Ventana Medical Systems, Inc. Slide aqueous volume controlling apparatus
US5425918A (en) 1990-07-18 1995-06-20 Australian Biomedical Corporation Apparatus for automatic tissue staining for immunohistochemistry
US5244787A (en) 1991-01-31 1993-09-14 Biogenex Laboratories Antigen retrieval in formalin-fixed tissues using microwave energy
US5273905A (en) 1991-02-22 1993-12-28 Amoco Corporation Processing of slide mounted material
US5696887A (en) 1991-08-05 1997-12-09 Biotek Solutions, Incorporated Automated tissue assay using standardized chemicals and packages
US5355439A (en) 1991-08-05 1994-10-11 Bio Tek Instruments Method and apparatus for automated tissue assay
US5232664A (en) 1991-09-18 1993-08-03 Ventana Medical Systems, Inc. Liquid dispenser
US5227038A (en) 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
JP2687794B2 (ja) 1991-10-31 1997-12-08 日本電気株式会社 円筒状構造をもつ黒鉛繊維
US5300203A (en) 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
FI915731A0 (fi) 1991-12-05 1991-12-05 Derek Henry Potter Foerfarande och anordning foer reglering av temperaturen i ett flertal prov.
US5578452A (en) 1992-01-16 1996-11-26 Biogenex Laboratories Enhancement of immunochemical staining in aldehyde-fixed tissues
US6573643B1 (en) 1992-03-16 2003-06-03 Si Diamond Technology, Inc. Field emission light source
US5316452A (en) 1992-05-11 1994-05-31 Gilbert Corporation Dispensing assembly with interchangeable cartridge pumps
US5947167A (en) 1992-05-11 1999-09-07 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
US5645114A (en) 1992-05-11 1997-07-08 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
US6180061B1 (en) 1992-05-11 2001-01-30 Cytologix Corporation Moving platform slide stainer with heating elements
US5591312A (en) 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
TW295579B (ko) 1993-04-06 1997-01-11 Showa Denko Kk
US5424054A (en) 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5641466A (en) 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
AU7211494A (en) 1993-06-28 1995-01-17 William Marsh Rice University Solar process for making fullerenes
JPH0822733B2 (ja) 1993-08-04 1996-03-06 工業技術院長 カーボンナノチューブの分離精製方法
US5439649A (en) 1993-09-29 1995-08-08 Biogenex Laboratories Automated staining apparatus
US5543378A (en) 1993-10-13 1996-08-06 E. I. Du Pont De Nemours And Company Carbon nanostructures encapsulating palladium
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP2611179B2 (ja) 1994-02-25 1997-05-21 工業技術院長 フラーレンの製造方法及び装置
US6632598B1 (en) 1994-03-11 2003-10-14 Biogenex Laboratories Deparaffinization compositions and methods for their use
US6451551B1 (en) 1994-03-11 2002-09-17 Biogenex Laboratories Releasing embedding media from tissue specimens
WO1995026925A1 (en) 1994-03-30 1995-10-12 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
JP3298735B2 (ja) 1994-04-28 2002-07-08 科学技術振興事業団 フラーレン複合体
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JP2590442B2 (ja) 1994-09-27 1997-03-12 工業技術院長 カーボンナノチューブの分離精製方法
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5551487A (en) 1995-03-10 1996-09-03 Hewlett-Packard Company Micro-dispenser for preparing assay plates
US5814290A (en) 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same
JP2873930B2 (ja) 1996-02-13 1999-03-24 工業技術院長 カーボンナノチューブを有する炭素質固体構造体、炭素質固体構造体からなる電子線源素子用電子放出体、及び炭素質固体構造体の製造方法
WO1997043116A1 (en) 1996-05-15 1997-11-20 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
EP0927331B1 (en) 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5839091A (en) 1996-10-07 1998-11-17 Lab Vision Corporation Method and apparatus for automatic tissue staining
US5804141A (en) 1996-10-15 1998-09-08 Chianese; David Reagent strip slide treating apparatus
US5958341A (en) 1996-12-23 1999-09-28 American Registry Of Pathology Apparatus for efficient processing of tissue samples on slides
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
JPH10241360A (ja) * 1997-02-24 1998-09-11 Kawasaki Steel Corp 半導体記憶装置
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US5948359A (en) 1997-03-21 1999-09-07 Biogenex Laboratories Automated staining apparatus
JP3183845B2 (ja) 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6489171B1 (en) 1997-04-18 2002-12-03 Cell Marque Corporation Chemical dispensing system and method
US6016917A (en) * 1997-04-24 2000-01-25 Peak International, Inc. Component carrier having a pocket including a pedestal
US6010193A (en) * 1997-07-14 2000-01-04 Honda Giken Kogyo Kabushiki Kaisha Anti-rattle guide assembly for supporting an armrest or other structure moveable between extended and retracted positions
US6221330B1 (en) 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
US6093574A (en) 1997-08-11 2000-07-25 Ventana Medical Systems Method and apparatus for rinsing a microscope slide
US6207408B1 (en) 1997-08-20 2001-03-27 University Of Miami High quality, continuous throughput, tissue fixation-dehydration-fat removal-impregnation method
US5919110A (en) * 1997-09-05 1999-07-06 Deese; Ronnie W. Geared cam locking differential
US6649368B1 (en) 1997-10-24 2003-11-18 Cell Marque Corporation Composition and method for treating tissue samples
US6582962B1 (en) 1998-02-27 2003-06-24 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
EP1056541B1 (en) 1998-02-27 2017-10-25 Ventana Medical Systems, Inc. System and method of dispensing reagent
US6855559B1 (en) 1998-09-03 2005-02-15 Ventana Medical Systems, Inc. Removal of embedding media from biological samples and cell conditioning on automated staining instruments
US6183693B1 (en) 1998-02-27 2001-02-06 Cytologix Corporation Random access slide stainer with independent slide heating regulation
US20030211630A1 (en) 1998-02-27 2003-11-13 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6096271A (en) 1998-02-27 2000-08-01 Cytologix Corporation Random access slide stainer with liquid waste segregation
US6495106B1 (en) 1998-03-24 2002-12-17 Biogenex Laboratories Automated staining apparatus
JP3415038B2 (ja) 1998-03-25 2003-06-09 株式会社島津製作所 カーボンの製造方法
US6014588A (en) * 1998-04-07 2000-01-11 Fitz; William R. Facet joint pain relief method and apparatus
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US6346189B1 (en) 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US7282260B2 (en) 1998-09-11 2007-10-16 Unitech, Llc Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
KR20070091696A (ko) * 1998-09-18 2007-09-11 윌리엄 마쉬 라이스 유니버시티 탄소 나노튜브들의 로프
DE69941294D1 (de) 1998-09-18 2009-10-01 Univ Rice William M Chemische derivatisierung von einwandigen kohlenstoffnanoröhren um ihre solvatation zu erleichtern und verwendung derivatisierter nanoröhren
US6479939B1 (en) 1998-10-16 2002-11-12 Si Diamond Technology, Inc. Emitter material having a plurlarity of grains with interfaces in between
CA2350099C (en) 1998-11-03 2008-05-20 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
US6544798B1 (en) 1999-02-26 2003-04-08 Ventana Medical Systems, Inc. Removal of embedding media from biological samples and cell conditioning on automated staining instruments
US6673620B1 (en) 1999-04-20 2004-01-06 Cytologix Corporation Fluid exchange in a chamber on a microscope slide
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
WO2001004634A1 (en) 1999-07-08 2001-01-18 Lee Angros Antigen recovery and/or staining apparatus and method
US6312303B1 (en) 1999-07-19 2001-11-06 Si Diamond Technology, Inc. Alignment of carbon nanotubes
US6403036B1 (en) 1999-09-29 2002-06-11 Ventana Medical Systems, Inc. Temperature monitoring system for an automated biological reaction apparatus
US6358473B1 (en) 1999-10-05 2002-03-19 Albert Coello Microscope slide heater
US6403931B1 (en) 1999-10-07 2002-06-11 Ventana Medical Systems, Inc. Slide heater calibrator and temperature converter apparatus and method
US6664722B1 (en) 1999-12-02 2003-12-16 Si Diamond Technology, Inc. Field emission material
US6401526B1 (en) 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
EP1149932A3 (en) * 2000-01-26 2003-09-10 Iljin Nanotech Co., Ltd. Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
US6599961B1 (en) 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6752977B2 (en) 2001-02-12 2004-06-22 William Marsh Rice University Process for purifying single-wall carbon nanotubes and compositions thereof
US7090819B2 (en) 2001-02-12 2006-08-15 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
US20030077515A1 (en) 2001-04-02 2003-04-24 Chen George Zheng Conducting polymer-carbon nanotube composite materials and their uses
US6596187B2 (en) 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
US6656339B2 (en) 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
MXPA04003996A (es) 2001-10-29 2004-07-23 Hyperion Catalysis Int Polimeros que contienen nanotubos de carbono funcionalizado.
US7138100B2 (en) 2001-11-21 2006-11-21 William Marsh Rice Univesity Process for making single-wall carbon nanotubes utilizing refractory particles
US6699457B2 (en) 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
JP3772754B2 (ja) * 2002-02-13 2006-05-10 東レ株式会社 カーボンナノチューブの連続製造方法および製造装置
US7148269B2 (en) 2002-03-11 2006-12-12 Trustees Of The University Of Pennsylvania Interfacial polymer incorporation of nanotubes
EP1494808B1 (en) 2002-04-15 2013-07-03 Ventana Medical Systems, Inc. Automated high volume slide staining system
WO2003091710A1 (en) 2002-04-26 2003-11-06 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having fixed slide platforms
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
JP3606855B2 (ja) 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
WO2004065294A2 (en) 2003-01-17 2004-08-05 Duke University Systems and methods for producing single-walled carbon nanotubes (swnts) on a substrate
CN1286716C (zh) * 2003-03-19 2006-11-29 清华大学 一种生长碳纳米管的方法
USD495425S1 (en) 2003-03-24 2004-08-31 Vision Biosystems, Limited Cover tile
JP3991157B2 (ja) * 2003-08-28 2007-10-17 日立造船株式会社 カーボンナノチューブの製造装置
US8541054B2 (en) * 2003-09-08 2013-09-24 Honda Motor Co., Ltd Methods for preparation of one-dimensional carbon nanostructures
WO2005033001A2 (en) * 2003-09-03 2005-04-14 Honda Motor Co., Ltd. Methods for preparation of one-dimensional carbon nanostructures
US20060057055A1 (en) 2003-12-15 2006-03-16 Resasco Daniel E Rhenium catalysts and methods for production of single-walled carbon nanotubes
EP1748837A4 (en) 2004-01-09 2009-11-11 Olga Matarredona CARBON NANOTUBLE PASTE AND USE METHODS
WO2006007393A1 (en) 2004-06-16 2006-01-19 North Carolina State University A process for preparing microrods using liquid-liquid dispersion
US20060104886A1 (en) 2004-11-17 2006-05-18 Luna Innovations Incorporated Pure-chirality carbon nanotubes and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US20050042162A1 (en) * 2000-06-02 2005-02-24 Resasco Daniel E. Process and apparatus for producing single-walled carbon nanotubes
US20040241896A1 (en) * 2003-03-21 2004-12-02 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
US20050112048A1 (en) * 2003-11-25 2005-05-26 Loucas Tsakalakos Elongated nano-structures and related devices

Also Published As

Publication number Publication date
US20110045179A1 (en) 2011-02-24
EP1904670B1 (en) 2011-09-28
CA2613203C (en) 2013-08-13
CN101365830B (zh) 2013-06-12
JP2008544939A (ja) 2008-12-11
WO2007055744A2 (en) 2007-05-18
US8349404B2 (en) 2013-01-08
CA2613203A1 (en) 2007-05-18
CN101365830A (zh) 2009-02-11
WO2007055744A3 (en) 2007-11-01
AU2006312250B2 (en) 2011-07-07
US20070092431A1 (en) 2007-04-26
ATE526437T1 (de) 2011-10-15
EP1904670A2 (en) 2008-04-02
EP1904670A4 (en) 2010-03-17
US7842387B2 (en) 2010-11-30
AU2006312250A1 (en) 2007-05-18
JP5443756B2 (ja) 2014-03-19
KR20080094884A (ko) 2008-10-27

Similar Documents

Publication Publication Date Title
KR101289256B1 (ko) 탄소 나노튜브의 성장 및 수득 방법
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
Cambaz et al. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC
Zhang et al. Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoMo catalyst particles
US7727504B2 (en) Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
US9187332B2 (en) Graphene sheet, graphene base including the same, and method of preparing the graphene sheet
Hart et al. Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation
JP4730707B2 (ja) カーボンナノチューブ合成用触媒及びその製造方法、触媒分散液、並びに、カーボンナノチューブの製造方法
US20070020168A1 (en) Synthesis of long and well-aligned carbon nanotubes
US20090136413A1 (en) Method for enhanced synthesis of carbon nanostructures
Seo et al. Synthesis and manipulation of carbon nanotubes
JP2008534425A (ja) 金属層から単層カーボンナノチューブを製造する方法
Yardimci et al. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst
Cartwright et al. The role of the sp2: sp3 substrate content in carbon supported nanotube growth
Das et al. Carbon nanotubes synthesis
Hart et al. Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces
Park et al. Position-controlled synthesis of single-walled carbon nanotubes on a transparent substrate by laser-induced chemical vapor deposition
Saito et al. Growth of carbon hybrid materials by grafting on pre-grown carbon nanotube surfaces
MX2008000293A (en) Methods for growing and harvesting carbon nanotubes
Ren et al. Technologies to achieve carbon nanotube alignment
Akter et al. Synthesis of Carbon Nanotube by Chemical Vapor Deposition (CVD) Method
Rahmanian et al. Carbon Nanotubes Grown by CO2 Laser-Induced Chemical Vapor Deposition on Quartz
Iwasaki et al. Low-temperature growth of vertically aligned single-walled carbon nanotubes by radical CVD
Lopez et al. Dependence of the single walled carbon nanotube length with growth temperature and catalyst density by chemical vapor deposition
Raghavan Synthesis of multi-walled carbon nanotubes by plasma enhanced microwave CVD using colloidal form of iron oxide as a catalyst

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170713

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180705

Year of fee payment: 6