WO2017033482A1 - カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材 - Google Patents

カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材 Download PDF

Info

Publication number
WO2017033482A1
WO2017033482A1 PCT/JP2016/057538 JP2016057538W WO2017033482A1 WO 2017033482 A1 WO2017033482 A1 WO 2017033482A1 JP 2016057538 W JP2016057538 W JP 2016057538W WO 2017033482 A1 WO2017033482 A1 WO 2017033482A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
carbon
aggregate
composite material
Prior art date
Application number
PCT/JP2016/057538
Other languages
English (en)
French (fr)
Inventor
雅重 渡邊
英樹 會澤
三好 一富
山下 智
吉則 風間
雄大 谷村
藤村 幸司
遠藤 守信
健司 竹内
雅嗣 藤重
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP16838830.4A priority Critical patent/EP3342752A4/en
Priority to CN201680044706.5A priority patent/CN107851476B/zh
Priority to JP2017536626A priority patent/JP6667536B2/ja
Publication of WO2017033482A1 publication Critical patent/WO2017033482A1/ja
Priority to US15/895,941 priority patent/US10392253B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a carbon nanotube aggregate composed of a bundle of a plurality of carbon nanotubes, a carbon nanotube composite material, and a carbon nanotube wire, and in particular, a carbon nanotube aggregate composed of carbon nanotubes for doping,
  • the present invention relates to a carbon nanotube composite material having different elements, and a carbon nanotube wire obtained by bundling a carbon nanotube aggregate or a carbon nanotube composite material.
  • electric wires composed of a core wire made of one or a plurality of wires and an insulating coating covering the core wire have been used.
  • the material of the wire constituting the core wire copper or a copper alloy is usually used from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS).
  • the cross-sectional area of the aluminum wire must be about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half of the mass of the pure copper wire, so the use of the aluminum wire is advantageous from the viewpoint of weight reduction.
  • the carbon nanotube is a single layer of a cylindrical body having a hexagonal lattice network structure, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, and is lightweight and has conductivity, current capacity, Because of its excellent properties such as elasticity and mechanical strength, it has attracted attention as a material that can replace metals used in power lines and signal lines.
  • the specific gravity of the carbon nanotube is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and the carbon nanotube alone is higher than copper (resistivity: 1.68 ⁇ 10 ⁇ 6 ⁇ ⁇ cm). Shows conductivity. Therefore, theoretically, if a carbon nanotube aggregate is formed by twisting a plurality of carbon nanotubes, further weight reduction and high electrical conductivity can be realized. However, when carbon nanotubes in the unit of ⁇ m to mm are produced by twisting carbon nanotubes in the unit of nm, contact resistance between carbon nanotubes and formation of internal defects increase, and the resistance value of the entire wire increases. Therefore, it is difficult to use the carbon nanotube as a wire as it is.
  • a double-walled and multi-walled carbon nanotube is subjected to a doping treatment using at least one kind of dopant.
  • doping treatment is performed by sputtering, spraying, dipping or gas phase introduction, and iodine, silver, chlorine, bromine, fluorine, gold, copper, aluminum
  • a carbon nanotube wire having a dopant containing sodium, iron, antimony, arsenic, or a combination thereof is prepared.
  • electrical characteristics such as high specific conductivity, low resistivity, high conductor allowable current, and thermal stability can be obtained (for example, Patent Document 1).
  • a resistivity of 1.55 ⁇ 10 ⁇ 5 ⁇ ⁇ cm can be obtained by a carbon nanotube aggregate in which two-layer carbon nanotubes are doped with iodine. That is, when compared with the resistivity of copper 1.68 ⁇ 10 ⁇ 6 ⁇ ⁇ cm and the resistivity of aluminum 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm, the resistivity of the carbon nanotube aggregate is higher by one digit or more, It cannot be said that it is sufficient as a wire substitute for copper and aluminum. In addition, since it is predicted that high performance and high functionality in each industrial field will advance rapidly and dramatically, realization of further low resistivity is demanded.
  • the object of the present invention is to realize a further reduction in resistance as compared with a conventional carbon nanotube aggregate and to realize a resistivity equivalent to that of copper or aluminum, thereby greatly improving electrical characteristics.
  • An object of the present invention is to provide a carbon nanotube aggregate, a carbon nanotube composite material, and a carbon nanotube wire.
  • a carbon nanotube aggregate composed of a plurality of carbon nanotubes having a layer structure of one or more layers, The ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the carbon nanotube aggregate is 75% or more, An aggregate of carbon nanotubes, wherein a G + / Gtotal ratio derived from semiconducting carbon nanotubes is 0.70 or more among peaks derived from a G band of a Raman spectrum in Raman spectroscopy.
  • the aggregate of carbon nanotubes according to (1) above wherein a G / D ratio, which is a ratio between the G band of the Raman spectrum and the D band derived from crystallinity, is 45 or more.
  • the plurality of carbon nanotubes are doped with one or more different elements or molecules selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron, and nitrogen.
  • the plurality of carbon nanotubes are doped with any one of different elements selected from the group consisting of lithium, rubidium, cesium, calcium, strontium, barium, fluorine, chlorine, bromine and iodine.
  • a carbon nanotube composite material comprising a carbon nanotube having a layer structure of one or more layers, and a heterogeneous element contained in the carbon nanotube, The closest distance between the carbon atom constituting the carbon nanotube and the atom of the different element is smaller than the distance between the carbon atom constituting the carbon nanotube and the center in the radial cross section of the carbon nanotube.
  • Carbon nanotube composite material is
  • the carbon nanotube composite material according to (7), wherein the closest distance is 2.0 angstroms or more and 4.0 angstroms or less.
  • the heterogeneous element is any element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, calcium, strontium, barium, fluorine, chlorine, bromine and iodine, The carbon nanotube composite material according to (7) above.
  • a carbon nanotube composite material comprising a carbon nanotube having a layer structure of one or more layers and a heterogeneous element contained in the carbon nanotube,
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the carbon nanotube composite material is 75% or more, Of the peaks derived from the G band of the Raman spectrum in Raman spectroscopy, the G + / Gtotal ratio derived from semiconducting carbon nanotubes is 0.70 or more,
  • the closest distance between the carbon atom constituting the carbon nanotube and the atom of the different element is smaller than the distance between the carbon atom constituting the innermost layer of the carbon nanotube and the center in the radial section of the innermost layer.
  • a carbon nanotube composite material (15) A carbon nanotube wire obtained by bundling a plurality of the carbon nanotube composite materials according to (14).
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the aggregate of carbon nanotubes is 75% or more, and Raman spectroscopy in Raman spectroscopy is performed.
  • the G + / Gtotal ratio derived from semiconducting carbon nanotubes is 0.70 or more. That is, the number of CNTs constituting the CNT aggregate is configured such that the CNTs having the number of layers (two or three layers) that can maximize the effect of the doping treatment are within the above range.
  • the resistance can be further reduced as compared with the conventional carbon nanotube wire, and the resistivity of copper is 1.68 ⁇ 10 ⁇ 6 ⁇ .
  • a resistivity substantially equal to the resistivity of cm or aluminum of 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm can be realized. Therefore, it is possible to provide a carbon nanotube aggregate that greatly improves electrical characteristics.
  • the carbon nanotube composite material includes a carbon nanotube having a layer structure of one or more layers, and a different element contained in the carbon nanotube, and the carbon atom and the different element constituting the carbon nanotube.
  • the closest distance to the atoms is smaller than the distance between the carbon atoms constituting the carbon nanotube and the center position in the radial cross section of the carbon nanotube.
  • FIG. 1 shows schematically the structure of the carbon nanotube wire which concerns on embodiment of this invention
  • (a) and (b) are the perspective view and electron microscope image of a carbon nanotube wire
  • (c) and (d) The perspective view of the bundle of carbon nanotubes and its electron microscope image
  • (e) and (f) show the perspective view of the carbon nanotube constituting the bundle of carbon nanotubes and its electron microscope image.
  • (A) And (b) is a graph which shows the wall number distribution and outer-diameter distribution of the some carbon nanotube which comprises the carbon nanotube aggregate
  • (A) to (d) are graphs for explaining the G + / Gtotal ratio of the aggregate of carbon nanotubes outside the scope of the present invention.
  • (A)-(d) is a graph explaining the G / D ratio in the Raman spectrum of the carbon nanotube aggregate in this embodiment.
  • (A) to (d) are graphs for explaining the G / D ratio of the aggregate of carbon nanotubes outside the scope of the present invention.
  • the amount of charge transfer between and. It is a figure which shows an example of the manufacturing apparatus which manufactures a carbon nanotube by the floating catalyst vapor phase growth method. It is an electron microscope image of the carbon nanotube aggregate manufactured in Example 1, (a) is a side image of the carbon nanotube aggregate, and (b) is a cross-sectional image of the carbon nanotube aggregate. It is an electron microscope image of the carbon nanotube composite material doped with the carbon nanotube aggregate manufactured in Example 3, (a) is a cross-sectional image of the composite material doped with iodine, (b) is potassium 2 shows a cross-sectional image of a doped composite material.
  • FIGS. 1A to 1F are diagrams schematically showing a configuration of a carbon nanotube wire according to an embodiment of the present invention.
  • the carbon nanotube wire in FIG. 1 shows an example, and the shape, size, etc. of each component according to the present invention are not limited to those in FIG.
  • a carbon nanotube wire 1 according to the present embodiment is a bundle of a plurality of carbon nanotubes 11, 11, ... (hereinafter referred to as a bundle of CNTs or a CNT aggregate), and a plurality of bundles 11 of these CNTs are twisted together.
  • the outer diameter of the CNT wire 1 is 0.01 to 1 mm.
  • the CNT bundle 11 is a bundle of a plurality of carbon nanotubes 11a, 11a,... (Hereinafter referred to as CNT), as shown in the enlarged views of FIGS.
  • CNT carbon nanotubes
  • the CNTs 11a constituting the bundle 11 of CNTs are cylindrical bodies having a single-layer structure or a multi-layer structure, and are called SWNT (single-walled nanotube) and MWNT (multi-walled nanotube), respectively.
  • SWNT single-walled nanotube
  • MWNT multi-walled nanotube
  • FIG. 1 (c) to (f) only CNTs having a two-layer structure are shown for convenience, but actually CNTs having a three-layer structure exist.
  • CNTs having a single-layer structure or a layer structure of four or more layers may be included in the bundle 11 of CNTs, but the amount is smaller than that of a CNT having a two-layer or three-layer structure.
  • the CNT 11a has a three-dimensional network structure in which two cylindrical bodies T1 and T2 having a hexagonal lattice network structure are arranged substantially coaxially, and is a DWNT (Double-Walled Nanotube). Called.
  • the hexagonal lattice which is a structural unit, is a six-membered ring in which a carbon atom is arranged at the apex, and these are continuously bonded adjacent to another six-membered ring.
  • the plurality of CNTs 11a, 11a,... Are doped with different elements / molecules by a doping process described later.
  • the property of the CNT 11a depends on the chirality of the cylindrical body as described above. Chirality is broadly divided into armchair type, zigzag type, and other chiral types. Armchair type is metallic, chiral type is semiconducting, and zigzag type shows intermediate behavior. Therefore, the conductivity of CNTs varies greatly depending on which chirality is present, and in order to improve the conductivity of CNT aggregates, it has been important to increase the proportion of armchair CNTs that exhibit metallic behavior. It was. On the other hand, it has been found that doping a chiral CNT having semiconducting properties with a substance (heterogeneous element) having an electron donating property or an electron accepting property exhibits a metallic behavior. In addition, in general metals, doping of different elements causes scattering of conduction electrons inside the metal, resulting in a decrease in conductivity. Similarly, when metallic CNTs are doped with different elements. , Causing a decrease in conductivity.
  • the CNTs having a number of layers that can maximize the effect of the doping treatment are configured to have a predetermined ratio, and the CNT aggregate The ratio of the number of semiconducting CNTs with respect to the total number of CNTs constituting the is optimized.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of CNTs constituting the CNT aggregate is 75% or more>
  • the CNT aggregate 11 configured by bundling a plurality of CNTs 11a, 11a,...
  • the ratio of the sum of the numbers is 75% or more.
  • An example of the result of measuring the number of CNT layers constituting the CNT aggregate 11 is shown in the graph of FIG.
  • N TOTAL the sum of the number of CNTs (3) having a structure
  • N TOTAL the sum of the number of CNTs (3) having a structure
  • CNTs with a small number of layers such as a two-layer structure or a three-layer structure have relatively higher conductivity than CNTs with a larger number of layers.
  • the dopant is introduced into the innermost layer of the CNT or in a gap between the CNTs formed by a plurality of CNTs.
  • the interlayer distance of CNT is equivalent to 0.335 nm which is the interlayer distance of graphite, and in the case of multilayer CNT, it is difficult in terms of size for the dopant to enter the interlayer.
  • the doping effect is manifested by introducing dopants inside and outside the CNT, but in the case of multi-walled CNT, the doping effect of the tube located inside the outermost layer and the innermost layer that is not in contact with the innermost layer becomes difficult to manifest. .
  • the doping effect of CNTs having a two-layer structure or a three-layer structure is the highest.
  • the dopant is often a highly reactive reagent that exhibits strong electrophilicity or nucleophilicity.
  • CNTs having a single-layer structure are less rigid than multilayers and are inferior in chemical resistance.
  • the present invention focuses on the number of CNTs having a two-layer structure or a three-layer structure included in the CNT aggregate.
  • the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is less than 75%, the ratio of CNTs having a single-layer structure or a multilayer structure of four or more layers increases, and the CNT aggregate as a whole is doped. The effect is reduced and high conductivity cannot be obtained. Therefore, the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is set to a value within the above range.
  • the outer diameter of the outermost layer of CNT constituting the CNT aggregate 11 is 5.0 nm or less.
  • An example of the result of measuring the outer diameter of the outermost layer of the plurality of CNTs constituting the CNT aggregate 11 is shown in the graph of FIG. In the figure, the outer diameter of the outermost layer of all CNTs constituting the CNT aggregate is 5.0 nm or less.
  • the CNT having an outer diameter of 2 nm to 2.9 nm is the largest, followed by 3 nm to 3.9 nm.
  • the porosity due to the gap between the CNTs and the innermost layer is increased, which is not preferable. .
  • ⁇ G + / Gtotal ratio derived from semiconducting CNT among the peaks derived from the G band of the Raman spectrum in Raman spectroscopy> is 0.70 or more>
  • a carbon-based substance is analyzed using Raman spectroscopy, a spectrum peak derived from in-plane vibration of a six-membered ring, called a G band, is detected near a Raman shift of 1590 cm ⁇ 1 .
  • the G band is split into two, and two spectrum peaks of the G + band and the G ⁇ band appear.
  • the spectrum analysis result in FIG. 4 corresponds to Example 1 described later.
  • the G + band corresponds to the longitudinal wave (LO) mode in the CNT axial direction
  • the G ⁇ band corresponds to the transverse wave (TO) mode perpendicular to the axial direction.
  • the peak of the G + band is 1590 cm regardless of the outer diameter of the CNT. Whereas it appears near -1 , the peak of the G-band appears shifted from the G + band in inverse proportion to the square of the outer diameter of the CNT.
  • the G band of metallic CNT appears as divided into a G + band and a G ⁇ band as described above, but its peak is small, and particularly the peak of the G + band is small.
  • the semiconducting CNT also splits into a G + band and a G ⁇ band, but the peak of the G + band is much larger than that of the metallic CNT. Therefore, when the ratio of the G + band in the G band is high, it is inferred that CNT exhibits a semiconducting behavior, and the same can be inferred in the CNT aggregate.
  • G + derived from semiconducting CNT with respect to Gtotal.
  • the band ratio (G + / Gtotal ratio) is 0.70 or more in area ratio. When the G + / Gtotal ratio is less than 0.70, the ratio of semiconducting CNTs is small, and good conductivity by doping treatment cannot be obtained.
  • FIGS. 5A to 5D show G bands detected for CNT aggregates that are outside the scope of the present invention.
  • 5A to 5D correspond to Comparative Examples 1 to 4 described later, respectively.
  • the CNT ratio of the two-layer or three-layer structure is 86% and the G + / Gtotal ratio is 0.61
  • the CNT aggregate of FIG. The CNT ratio of the structure is 5% or less (number of main CNT layers: 1), and the G + / Gtotal ratio is 0.70.
  • FIG. 5A the CNT ratio of the two-layer or three-layer structure is 86% and the G + / Gtotal ratio is 0.61
  • the CNT ratio of the structure is 5% or less (number of main CNT layers: 1), and the G + / Gtotal ratio is 0.70.
  • the CNT ratio of the two-layer or three-layer structure in the CNT aggregate, is 5% or less (the number of main CNT layers: 4 to 12), and the spectrum peak of the G band is not detected.
  • the CNT aggregate of 5 (d) the CNT ratio of the two-layer or three-layer structure is 5% or less (the number of main CNT layers: 15 or more layers), and the spectrum peak of the G band is not detected.
  • the resistivity is 1.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or more.
  • the D ′ band appearing in FIGS. 5C and 5D is a peak derived from a defect similarly to the D band.
  • a G / D ratio which is a ratio between the G band of the Raman spectrum and the D band derived from crystallinity.
  • the D band appears in the vicinity of a Raman shift of 1350 cm ⁇ 1 and can be said to be a peak of a spectrum derived from a defect.
  • the ratio of the D band to the G band (G / D ratio) is used as an index of the amount of defects in the CNT, and it is determined that the larger the G / D ratio, the fewer the defects in the CNT.
  • the G / D ratio which is the ratio between the G band of the Raman spectrum and the D band derived from crystallinity, is 45 or more.
  • the G / D ratio is less than 45, the crystallinity is low and good conductivity cannot be obtained.
  • FIGS. 7A to 7D are graphs for explaining the G / D ratio in the Raman spectrum of the carbon nanotube aggregate outside the scope of the present invention.
  • the G / D ratio is 52 in the CNT aggregate of FIG. 7A and the G / D ratio is 57 in the CNT aggregate of FIG. 7B
  • the G / D ratio is 57 in the CNT aggregate of FIG.
  • the G / D ratio is 3.1.
  • the CNT aggregate 11 has 75% or more of CNTs having the number of layers (two or three layers) that can maximize the effect of the doping process.
  • the G + / Gtotal ratio value indicating the ratio of the number of semiconducting CNTs to the total number of CNTs 11a, 11a,... Constituting the CNT aggregate 11 is 0.70 or more.
  • it has further reduced resistance, and is almost equivalent to copper resistivity 1.68 ⁇ 10 ⁇ 6 ⁇ ⁇ cm and aluminum resistivity 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm Can be achieved. Therefore, it is possible to provide a CNT aggregate that greatly improves electrical characteristics.
  • FIG. 8 is a diagram schematically showing a carbon nanotube composite material according to an embodiment of the present invention.
  • FIG. 8A is a diagram of a CNT composite material obtained by doping CNTs having a single-layer structure with lithium as a different element.
  • the partial top view which shows an example, (b) is the side view.
  • the CNT composite material 12a includes a CNT 13 having a single-layer structure and a different element 14 contained in the CNT.
  • the CNT 13 doped with the different element 14 is referred to as a CNT composite material. Since the atoms of the different element 14 are positioned inside the CNT 13, many carriers can be generated in the CNT 13.
  • the closest distance L1 between the center position Pc of the carbon atoms 13a constituting the CNT 13 and the center position Pd of the atoms of the heterogeneous element 14 is the cross section in the radial direction of the center position Pc of the carbon atoms 13a and the CNT 13. It is smaller than the distance L2 from the center position P (FIG. 8B). Further, it is preferable that the closest distance L1 between the carbon atom 13a constituting the CNT 13 and the atom of the heterogeneous element 14 is 2.0 angstroms (4) or more and 4.0 angstroms or less.
  • the CNT composite material 12 can be produced, for example, by heating in a vapor of doped atoms at a high temperature for several hours. Thereby, it is possible to obtain a CNT composite material in which the center position Pd of atoms of the different element 14 is shifted from the center position P of the CNT 13.
  • the atoms of the different element 14 are located inside the CNT 13 having a single-layer structure.
  • the present invention is not limited to this, and as shown in FIG. You may provide CNT16 which has a multilayer structure, and the different element 17 contained in the innermost layer 16-1 of this multilayer structure.
  • the CNT composite material preferably includes CNTs having a two-layer structure or a three-layer structure, and different elements located inside the innermost layer of the layer structure.
  • the closest distance L1 ′ between the center position Pc ′ of the carbon atom 16a constituting the innermost layer 16-1 of the CNT 13 and the center position Pd ′ of the atom of the heterogeneous element 17 is the center position Pc ′ of the carbon atom 16a.
  • the distance L2 ′ is smaller than the center position P ′ in the radial cross section of the innermost layer 16-1.
  • the closest distance L1 between the carbon atom 13a constituting the CNT 13 and the atom 14 of the different element is 2.0 angstroms ( ⁇ ) or more and 4.0 angstroms or less. If the closest distance L1 is set to a value within the above range, charge transfer is likely to occur as described above, and more carriers are generated in the innermost layer 16-1.
  • CNTs having a single-layer structure are used, focusing attention on dissimilar elements such as Group 1, Group 2 and Group 17 of the periodic table of the elements.
  • Stability of dopant (heterogeneous element), (ii) charge transfer amount, and (iii) mass increase ratio in the composite material were calculated and evaluated as follows. In the simulation in the first-principles calculation, the Cone-Sham equation based on Density Functional Theory (DFT) was used.
  • DFT Density Functional Theory
  • the calculation of the electronic state can be speeded up by expressing the exchange correlation potential representing the interaction between electrons as a functional of the electron density.
  • the exchange correlation potential was expressed by the GGA method (density gradient expansion method), and a plane wave basis function having a cutoff energy of 50 Ryd was used. Note that the cutoff energy is related to the number of wave functions used in the calculation, and the number of wave functions is proportional to the 3/2 power of the cutoff energy.
  • the k-point sampling number was 1 ⁇ 1 ⁇ 8. The calculation was performed using “Quantum-ESPRESSO” as calculation software.
  • the evaluation of stability is good when the adsorption energy is less than ⁇ 1.0 eV, “ ⁇ ”, when it is ⁇ 1.0 eV or more and less than 0.0 eV, almost when “ ⁇ ”, or 0.0 eV or more. Defect “x”.
  • the evaluation of the amount of charge transfer is performed by calculating the amount of charge transfer (number / dopant) between the carbon atom constituting the CNT and the atom of the different element located at the closest distance. Specifically, the CNT structure (distance) is refined by the software that performs the first principle calculation, and the charge transfer amount at that time is calculated.
  • the mass increase ratio was calculated by calculating the ratio of the mass of the CNT composite material to the mass of CNT when the carrier density was 1.0 ⁇ 10 21 pieces / cm 3 (carrier density corresponding to metallic CNT).
  • the dopant is lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), strontium (Sr), barium (Ba), fluorine (F), chlorine (Cl).
  • the adsorption energy will be less than 0.0 eV
  • the dopant will be stable, and the stable dopant will be located in the CNT, which is necessary for the electric wires such as temperature characteristics. Can exhibit stable characteristics.
  • the dopant is potassium, rubidium, cesium or barium, the adsorption energy is less than ⁇ 1.0 eV and the stability of the dopant is further improved.
  • the dopant is lithium, sodium, potassium, rubidium, cesium, strontium, barium, fluorine, chlorine, bromine or iodine
  • the absolute value of the amount of charge transfer from the dopant to CNT becomes 0.5 / dopant or more. It can be seen that the amount of charge transfer is good and the conductivity in the CNT is good.
  • the ratio of the mass of the CNT composite material to the mass of the CNT composing the CNT composite material is from 1.007 to
  • a carrier density equivalent to metallic CNT can be realized (Table 1).
  • the CNT having defects can also contain a dopant, and the dopant is lithium, sodium, potassium, rubidium, cesium, calcium (Ca), strontium, barium, fluorine, chlorine, bromine or iodine. If so, the adsorption energy is less than 0.0 eV, and the charge transfer amount is 0.5 / dopant or more.
  • the ratio of the mass of the CNT composite material to the mass of CNT is 1.007 to 1.226. Therefore, even when CNT having defects is used, it is understood that the dopant stability is good, the conductivity in the CNT is good, and the CNT can be doped with a larger amount of dopant. .
  • the CNT composite material according to the present invention has a certain effect in realizing high conductivity even if the CNT composite material has defects.
  • the dopant is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, calcium, strontium, barium, fluorine, chlorine, bromine and iodine
  • B the amount of charge transfer between the carbon atoms constituting the CNT and the dopant atoms located at the closest distance is 0.5 / dopant or more
  • C the mass of the CNT
  • the CNT composite material includes the CNT 13 having a layer structure of one or more layers and the dissimilar element 14 included in the CNT, and the carbon atoms 13a constituting the CNT 13
  • the closest distance L1 between the center position Pc and the center position Pd of the atoms of the different element 14 is smaller than the distance L2 between the center position Pc of the carbon atoms 14 constituting the CNT 13 and the center position P in the radial cross section of the CNT 13.
  • carriers are generated inside the CNT 13 and the number of carriers contributing to conductivity can be increased. Therefore, higher conductivity can be realized than the conventional CNT composite material subjected to the doping treatment. It is possible to provide the CNT composite material 12a with significantly improved mechanical characteristics.
  • the CNT aggregate of this embodiment is manufactured by the following method. First, a mixture containing a catalyst and a reaction accelerator is supplied to a carbon source by a floating catalyst vapor deposition (CCVD) method to generate a plurality of CNTs. At this time, a saturated hydrocarbon having a six-membered ring can be used as the carbon source, a metal catalyst such as iron can be used as the catalyst, and a sulfur compound can be used as the reaction accelerator. Further, in the present embodiment, in consideration of the fact that the ratio of SWNT decreases as the carrier gas flow rate increases, the ratio of CNTs having a two-layer or three-layer structure is increased by adjusting the raw material composition and spraying conditions.
  • CCVD floating catalyst vapor deposition
  • the raw material is supplied to the reaction furnace by spraying so that the mist particle size is about 20 ⁇ m. Thereafter, a bundle of a plurality of CNTs is twisted to produce a CNT aggregate.
  • the CNT aggregate obtained by CCVD contains a large amount of catalyst, amorphous carbon, and the like, and the original characteristics of the CNT aggregate can be obtained by a purification process for removing these.
  • the CNT obtained in the above step is heated at a predetermined temperature in the atmosphere, and the heated CNT is highly purified with a strong acid.
  • the doping process is preferably doped with one or more different elements or molecules selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron and nitrogen, more preferably nitric acid is doped. preferable.
  • the plurality of carbon nanotubes may be doped with any different element selected from the group consisting of lithium, rubidium, cesium, calcium, strontium, barium, fluorine, chlorine, bromine and iodine.
  • the dopant is injected into the CNT from the outer peripheral side, when the CNT is a multilayer (MWNT), the layer located on the outer peripheral side is preferentially doped, and the inner layer is hardly doped. Therefore, in this embodiment, the number ratio of CNTs having a two-layer or three-layer structure is set to 75% or more based on the assumption that the doping amount in the first to third layers is large and the doping amount is small in the fourth and subsequent layers. As a result, the doping amount of the entire CNT aggregate can be increased, and an excellent doping effect can be obtained.
  • MWNT multilayer
  • the resistivity is 6.9 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less. This resistivity is about 45% lower than the minimum resistivity of 1.55 ⁇ 10 ⁇ 5 ⁇ ⁇ cm in the prior art.
  • the resistivity of copper is slightly higher than that of 1.68 ⁇ 10 ⁇ 6 ⁇ ⁇ cm and that of aluminum is 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm, the resistance is in the same order ( ⁇ 10 ⁇ 6 ). Has achieved the rate. Therefore, if the CNT aggregate of the present embodiment is used as a wire substitute for copper or aluminum wire, weight reduction can be realized while maintaining the same resistivity as copper or aluminum.
  • the CNT aggregate and CNT composite material of the present embodiment are suitable as a wire material for electric wires for transmitting electric power and signals, and as a material for wire wires mounted on a moving body such as a four-wheeled vehicle. More preferred. This is because it is lighter than metal wires and is expected to improve fuel efficiency.
  • a wire harness having at least one carbon nanotube-coated electric wire may be configured.
  • Example 1 Using a floating catalyst vapor deposition (CCVD) method, a carbon source is placed inside an alumina tube 22 having an inner diameter of 60 mm and a length of 1600 mm heated to 1300 ° C. by an electric furnace 21 in a CNT manufacturing apparatus as shown in FIG.
  • Carrier gas G supplied hydrogen at 9.5 L / min.
  • the obtained CNTs were collected in a sheet form by the recovery machine 23, and the CNT aggregates were manufactured by winding and twisting them. Next, the obtained CNT aggregate was heated to 500 ° C. in the atmosphere, and further subjected to acid treatment to achieve high purity. Thereafter, nitric acid dope was applied to the highly purified CNT aggregate.
  • the peak detected at the highest intensity detected near 1590 cm -1 is the G + band
  • the peak observed near 1550-1590 cm -1 on the lower wave number side is the G-band.
  • al (G + peak area value + G ⁇ peak area value) ”
  • the G + / Gtotal ratio was calculated.
  • the G / D ratio was obtained from the Raman spectrum cut out in the same manner as described above, from the G band and the D band.
  • Each peak top height was calculated (detection intensity obtained by subtracting the baseline value from the peak top).
  • C Resistivity measurement of CNT composite material
  • Example 1 clear spectral peaks derived from the G band and the D band were observed in the vicinity of 1000 to 2000 cm ⁇ 1 . From the results shown in Table 1, in Example 1, the number of CNTs having a single-layer structure was small, and 85% of CNTs having a two-layer structure or a three-layer structure was included (FIG. 3A). Moreover, the diameter of CNT located in the outermost periphery of the produced
  • the G / D ratio which is an index of CNT crystallinity, is 73, and the G + / Gtotal obtained based on the G + band (1589 cm ⁇ 1 ) and the G ⁇ band (1563 cm ⁇ 1 ) is 0.81.
  • the resistivity was 6.3 ⁇ 10 ⁇ 6 ⁇ ⁇ cm, and a lower resistivity was obtained compared to the conventional one.
  • Example 2 the ratio of CNTs having a two-layer or three-layer structure is 78%, the G / D ratio is 47, G + / Gtotal is 0.77, and the resistivity is 6.9 ⁇ 10 ⁇ 6 ⁇ ⁇ cm. Thus, as in Example 1, a lower resistivity was obtained than in the prior art.
  • Comparative Example 1 the ratio of CNTs having a two-layer or three-layer structure is 86%, the G / D ratio is 66, G + / Gtotal is 0.61, and the G + / Gtotal ratio is outside the scope of the present invention. Therefore, the resistivity was inferior at 1.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Comparative Example 2 the ratio of CNTs having a two-layer or three-layer structure is 5% or less (the main CNT is a single-layer structure), the G / D ratio is 42, and the G + / Gtotal ratio is 0.70. Since the ratio of CNTs having a layer or three-layer structure is outside the range of the present invention, the resistivity was inferior to 2.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the ratio of CNTs having a two-layer or three-layer structure is 5% or less (main CNTs are four to twelve-layer structures), the G / D ratio is 1.3, and G + / Gtotal cannot be calculated ( G band spectral peak is not detected), and the ratio of CNT having a two-layer or three-layer structure, the G / D ratio, and the G + / Gtotal ratio are out of the range of the present invention.
  • Example 3 a CNT aggregate produced by the same manufacturing method as in Example 1 was prepared, and the CNT aggregate was doped with iodine instead of nitric acid as the dopant of Example 1. gave. Further, as Example 4, a CNT composite material was produced in the same manner as in Example 3 except that doping was performed instead of the dopant.
  • Comparative Examples 5 to 7 As Comparative Example 5, a CNT aggregate was produced by the same production method as in Example 1, and a material not subjected to doping was prepared. Further, as Comparative Example 6, a CNT composite material doped with iodine by the same manufacturing method as in Example 2 was prepared, and iodine as a dopant was compared with the CNT composite material of Example 2 in two layers or three. What was located in the center side of the innermost layer in CNT which has a layer structure was obtained. Further, as Comparative Example 7, a CNT composite material similar to that of Example 3 was prepared except that the dopant was replaced with potassium, and the dopant, potassium, was the innermost layer in the CNT having a two-layer or three-layer structure. The one located on the center side was obtained.
  • the closest distance between the innermost layer of CNT constituting the CNT composite material and the dopant was calculated as follows. Further, the resistivity of the CNT composite material was measured and evaluated by the same method as described above.
  • D Calculation of closest distance between innermost layer of CNT and dopant
  • the CNT composite material produced in Examples 3 and 4 was subjected to simulation by first-principles calculation using single-layer CNT, and each CNT composite The closest distance between the CNT innermost layer and the dopant in the material was calculated and evaluated. For the simulation in the first-principles calculation, calculation software “Quantum-ESPRESSO” was used, and the Cone-Sham equation based on the density functional theory (DFT) was used.
  • the exchange correlation potential was expressed by the GGA method. Furthermore, a plane wave basis function having a cut-off energy of 50 Ryd was used. The calculation was performed with the k-point sampling number set to 1 ⁇ 1 ⁇ 8. For confirmation, the closest distance between the inner layer of CNT and iodine was measured and collated with the calculated value. Using a CNT having a two-layer or three-layer structure doped with iodine, about 200 points were randomly measured from the TEM photograph of the CNT cross section after the doping, and the closest distance was obtained. As a result, the error of the calculated value of the closest distance by simulation with respect to the measured value of the closest distance (actually measured value) was less than 10%, and it was confirmed that the calculated value and the actually measured value almost coincided.
  • Example 3 As shown in Table 4, in Example 3, it was confirmed that iodine was located in the CNT innermost layer as shown in FIG. The closest distance between the CNT innermost layer and the iodine atom as the dopant was 3.61 mm, and the resistivity was 8.9 ⁇ 10 ⁇ 6 ⁇ ⁇ cm. Moreover, in Example 4, as shown in FIG.13 (b), it was confirmed that potassium is located in CNT innermost layer. The closest distance between the innermost layer of CNT and iodine as a dopant was 2.98 mm, and the resistivity was 9.6 ⁇ 10 ⁇ 6 ⁇ ⁇ cm.
  • Comparative Example 5 the resistance value was 7.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, which was inferior to the resistance values in Examples 3 and 4.
  • Comparative Example 6 iodine is located closer to the center of the CNT innermost layer than Example 3, and the resistance value is 5.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm. Inferior to value.
  • Comparative Example 7 potassium is located closer to the center side of the CNT innermost layer than Example 4, and the resistance value is 6.4 ⁇ 10 ⁇ 5 ⁇ ⁇ cm. Inferior to value. Therefore, it was found that when the closest distance between the CNT innermost layer and the dopant is 2.0 mm or more and 4.0 mm or less, lower resistance and higher conductivity can be realized as compared with the conventional CNT composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

従来のカーボンナノチューブ線材と比較して更なる低抵抗化を実現すると共に、銅やアルミニウムと同等の抵抗率を実現することができ、電気的特性を大幅に向上させたカーボンナノチューブ集合体を提供する。 CNT集合体(1)は、1層以上の層構造を有する複数のCNTの束(11),(11),・・・で構成されている。CNTの束11は、複数のCNT(11a),(11a),・・・が纏められた束状体である。CNT集合体(11)において、複数のCNT(11a),(11a),・・・の個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が75%以上であり、且つ、ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のCNTに由来するG+/Gtotal比が0.70以上である。

Description

カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
 本発明は、複数のカーボンナノチューブの束で構成されるカーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材に関し、特に、ドーピングを施すためのカーボンナノチューブで構成されるカーボンナノチューブ集合体、カーボンナノチューブ内に異種元素を有してなるカーボンナノチューブ複合材料、及びカーボンナノチューブ集合体あるいはカーボンナノチューブ複合材料を束ねてなるカーボンナノチューブ線材に関する。
 従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。
 上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。
 こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。
 カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10-6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブを撚り合わせてカーボンナノチューブ集合体を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブを撚り合わせて、μm~mm単位のカーボンナノチューブ集合体を作製した場合、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題があることから、カーボンナノチューブをそのまま線材として使用することが困難であった。
 そこで、カーボンナノチューブ集合体の導電性を向上させる方法の一つとして、構成単位であるカーボンナノチューブの網目構造(カイラリティ)を制御し、カーボンナノチューブにドーピング処理を施す方法が提案されている。
 例えば、2層及び多層のカーボンナノチューブに、少なくとも1種のドーパントを用いてドーピング処理を施す方法がある。本方法では、カーボンナノチューブを形成する際、或いはカーボンナノチューブ線材を形成した後に、スパッタリング、噴霧、浸漬あるいは気相導入によりドーピング処理を施し、ヨウ素、銀、塩素、臭素、フッ素、金、銅、アルミニウム、ナトリウム、鉄、アンチモン、ヒ素、あるいはこれらの組み合わせを含むドーパントを有するカーボンナノチューブ線材を作製する。これにより、高い比導電率、低い抵抗率、高い導体許容電流、および熱安定性などの電気的特性を得ることができるとされている(例えば、特許文献1)。
特表2014-517797号公報
 しかしながら、上記特許文献においては、2層のカーボンナノチューブにヨウ素をドーピングしたカーボンナノチューブ集合体で抵抗率1.55×10-5Ω・cmが得られることが開示されているにとどまる。すなわち、銅の抵抗率1.68×10-6Ω・cmやアルミニウムの抵抗率2.65×10-6Ω・cmと比較すると、上記カーボンナノチューブ集合体の抵抗率は一桁以上も高く、銅やアルミニウムに代替する線材として十分とは言えない。また、各産業分野における高性能化・高機能化が急速且つ飛躍的に進歩することが予測されることから、更なる低抵抗率の実現が求められている。
 本発明の目的は、従来のカーボンナノチューブ集合体と比較して更なる低抵抗化を実現すると共に、銅やアルミニウムと同等の抵抗率を実現することができ、電気的特性を大幅に向上させることができるカーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材を提供することにある。
 すなわち、上記課題は以下の発明により達成される。
 (1)1層以上の層構造を有する複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体であって、
 前記カーボンナノチューブ集合体を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
 ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のカーボンナノチューブに由来するG+/Gtotal比が0.70以上であることを特徴と
する、カーボンナノチューブ集合体。
 (2)前記ラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が、45以上であることを特徴とする、上記(1)記載のカーボンナノチューブ集合体。
 (3)前記複数のカーボンナノチューブに、硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子がドープされていることを特徴とする、上記(1)記載のカーボンナノチューブ集合体。
 (4)前記複数のカーボンナノチューブに、リチウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの異種元素がドープされていることを特徴とする、上記(1)記載のカーボンナノチューブ複合材料。
 (5)前記カーボンナノチューブの最外層の外径が、5.0nm以下であることを特徴とする、上記(1)~(4)のいずれかに記載のカーボンナノチューブ集合体。
 (6)上記(1)~(5)のいずれかに記載のカーボンナノチューブの複数が束ねられてなるカーボンナノチューブ線材。
 (7)1層以上の層構造を有するカーボンナノチューブと、前記カーボンナノチューブの内部に含まれる異種元素とを備えるカーボンナノチューブ複合材料であって、
 前記カーボンナノチューブを構成する炭素原子と前記異種元素の原子との最近接距離が、前記カーボンナノチューブを構成する炭素原子と当該カーボンナノチューブの径方向断面における中心との距離よりも小さいことを特徴とする、カーボンナノチューブ複合材料。
 (8)前記最近接距離が、2.0オングストローム以上4.0オングストローム以下であることを特徴とする、上記(7)記載のカーボンナノチューブ複合材料。
 (9)前記異種元素が、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの元素であることを特徴とする、上記(7)記載のカーボンナノチューブ複合材料。
 (10)前記カーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、上記(7)記載のカーボンナノチューブ複合材料。
 (11)前記カーボンナノチューブを構成する前記炭素原子と前記最近接距離に位置する前記異種元素の原子との間における電荷移動量が、前記異種元素1個当たり0.5個以上であることを特徴とする、上記(9)又は(10)記載のカーボンナノチューブ複合材料。
 (12)前記カーボンナノチューブの質量に対する前記カーボンナノチューブ複合材料の質量の比が、1.005~1.25であることを特徴とする、上記(9)~(11)のいずれかに記載のカーボンナノチューブ複合材料。
 (13)上記(7)~(12)のいずれかに記載のカーボンナノチューブ複合材料の複数が束ねられてなるカーボンナノチューブ線材。
 (14)1層以上の層構造を有するカーボンナノチューブと、前記カーボンナノチューブの内部に含まれる異種元素とを備えるカーボンナノチューブ複合材料であって、
前記カーボンナノチューブ複合材料を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
 ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のカーボンナノチューブに由来するG+/Gtotal比が0.70以上であり、
 前記カーボンナノチューブを構成する炭素原子と前記異種元素の原子との最近接距離が、前記カーボンナノチューブの最内層を構成する炭素原子と前記最内層の径方向断面における中心との距離よりも小さいことを特徴とする、カーボンナノチューブ複合材料。
 (15)上記(14)記載のカーボンナノチューブ複合材料の複数が束ねられてなるカーボンナノチューブ線材。
 本発明によれば、カーボンナノチューブ集合体を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、且つ、ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のカーボンナノチューブに由来するG+/Gtotal比が0.70以上である。すなわち、ドーピング処理の効果を最大限に引き出すことができる層数(2層又は3層)を有するCNTが上記範囲内の比率となるように構成し、且つ、CNT集合体を構成するCNTの個数に対する半導体性CNTの個数の割合を上記範囲内とすることで、従来のカーボンナノチューブ線材と比較して、更なる低抵抗化を実現し、また、銅の抵抗率1.68×10-6Ω・cmやアルミニウムの抵抗率2.65×10-6Ω・cmとほぼ同等の抵抗率を実現することができる。よって、電気的特性を大幅に向上させるカーボンナノチューブ集合体を提供することが可能となる。
 また、本発明によれば、カーボンナノチューブ複合材料が、1層以上の層構造を有するカーボンナノチューブと、該カーボンナノチューブの内部に含まれる異種元素とを備え、カーボンナノチューブを構成する炭素原子と異種元素の原子との最近接距離が、上記カーボンナノチューブを構成する炭素原子と当該カーボンナノチューブの径方向断面における中心位置との距離よりも小さい。これにより、カーボンナノチューブの内部にキャリアが生成され、導電性に寄与するキャリアを増大させることができるので、従来のドープ処理が施されたカーボンナノチューブ複合材料よりも高導電化を実現することでき、電気的特性を大幅に向上させたカーボンナノチューブ複合材料を提供することが可能となる。
本発明の実施形態に係るカーボンナノチューブ線材の構成を概略的に示す図であり、(a)及び(b)は、カーボンナノチューブ線材の斜視図と電子顕微鏡画像、(c)及び(d)は、カーボンナノチューブの束の斜視図とその電子顕微鏡画像、(e)及び(f)は、カーボンナノチューブの束を構成するカーボンナノチューブの斜視図とその電子顕微鏡画像を示す。 図1(e)のカーボンナノチューブの拡大斜視図である。 (a)及び(b)は、本実施形態に係るカーボンナノチューブ集合体を構成する複数のカーボンナノチューブの層数分布及び外径分布を示すグラフである。 本実施形態におけるカーボンナノチューブ集合体のラマンスペクトルにおけるG+/Gtotal比を説明するグラフである。 (a)~(d)は、本発明の範囲外であるカーボンナノチューブ集合体のG+/Gtotal比を説明するグラフである。 (a)~(d)は、本実施形態におけるカーボンナノチューブ集合体のラマンスペクトルにおけるG/D比を説明するグラフである。 (a)~(d)は、本発明の範囲外であるカーボンナノチューブ集合体のG/D比を説明するグラフである。 本発明の実施形態に係るカーボンナノチューブ複合材料を概略的に示す図であり、(a)は、単層構造を有するCNTに異種元素であるリチウムをドープさせてなるCNT複合材料の例を示す部分平面図、(b)はその側面図である。 複層構造を有するCNTにリチウムをドープさせてなるCNT複合材料の例を示す側面図である。 各異種元素を有するカーボンナノチューブ複合材料の特性を異種元素毎に示す図であり、(a)は吸着エネルギー、(b)はカーボンナノチューブを構成する炭素原子と最近接距離に位置する異種元素の原子との間の電荷移動量を示す。 浮遊触媒気相成長法によりカーボンナノチューブを製造する製造装置の一例を示す図である。 実施例1で製造されたカーボンナノチューブ集合体の電子顕微鏡画像であり、(a)はカーボンナノチューブ集合体の側面画像、(b)はカーボンナノチューブ集合体の断面画像である。 実施例3で製造されたカーボンナノチューブ集合体をドープしてなるカーボンナノチューブ複合材料の電子顕微鏡画像であり、(a)は、ヨウ素がドープされた複合材料の断面画像、(b)は、カリウムがドープされた複合材料の断面画像を示す。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
 図1(a)~(f)は、本発明の実施形態に係るカーボンナノチューブ線材の構成を概略的に示す図である。なお、図1におけるカーボンナノチューブ線材は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
 本実施形態に係るカーボンナノチューブ線材1(以下、CNT線材という)は、図1(a)及び(b)に示すように、1層以上の層構造を有する複数のカーボンナノチューブの束11,11,・・・(以下、CNTの束、あるいはCNT集合体という)で構成されており、これらCNTの束11の複数が撚り合わされてなる。CNT線材1の外径は、0.01~1mmである。
 CNTの束11は、図1(c)及び(d)の拡大図で示すように、複数のカーボンナノチューブ11a,11a,・・・(以下、CNTという)が纏められた束状体となっており、これら複数のCNTの軸方向がほぼ揃って配されている。
 また、CNTの束11を構成するCNT11aは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。図1(c)~(f)では便宜上、2層構造を有するCNTのみを記載しているが、実際には、3層構造を有するCNTが存在する。単層構造又は4層以上の層構造を有するCNTはCNTの束11に含まれてもよいが、2層又は3層構造を有するCNTに比べて少量である。
 CNT11aは、図2に示すように、六角形格子の網目構造を有する2つの筒状体T1,T2が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。また、複数のCNT11a,11a、・・・には、後述するドーピング処理により異種元素・分子がドープされている。
 CNT11aの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性、ジグザグ型はその中間の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なり、CNT集合体の導電性を向上させるには、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが重要とされてきた。一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性CNTに異種元素をドープした場合には、導電性の低下を引き起こす。
 このように、金属性CNT及び半導体性CNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性CNTと半導体性CNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では金属性CNTと半導体性CNTとを選択的に作り分けることは困難であり、金属性CNTと半導体性CNTが混在した状態で作製される。このため、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を向上させるには、異種元素・分子によるドーピング処理が効果的となるCNT構造を選択することが不可欠となる。
 そこで本実施形態では、低抵抗率のCNT集合体を得るために、ドーピング処理の効果を最大限に引き出すことができる層数を有するCNTが所定比率となるように構成し、且つ、CNT集合体を構成するCNTの総数に対する半導体性CNTの個数の割合を最適化する。
 <CNT集合体を構成する複数のCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が75%以上であること>
 本実施形態では、複数のCNT11a,11a,・・・を束ねて構成されるCNT集合体11において、複数のCNT11a、11a,・・・の個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が75%以上である。CNT集合体11を構成するCNTの層数を測定した結果の一例を図3のグラフに示す。同図において、CNT集合体11を構成するCNTの総数(186個)に対し、2層構造を有するCNTの個数(55個)と3層構造を有するCNTの個数(90個)との和の割合が78.0%(=145/186×100)である。すなわち、一のCNT集合体を構成する全CNTの総数をNTOTAL、上記全CNTのうち2層構造を有するCNT(2)の数の和をNCNT(2)、上記全CNTのうち3層構造を有するCNT(3)の数の和をNCNT(3)としたとき、下記式(1)で表すことができる。
   (NCNT(2)+NCNT(3))/NTOTAL×100(%)≧75(%) ・・・(1)
 2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。CNTの層間距離はグラファイトの層間距離である0.335nmと同等であり、多層CNTの場合その層間にドーパントが入り込むことはサイズ的に困難である。このことからドーピング効果はCNTの内部および外部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されることがある。よって本発明ではCNT集合体に含まれる2層構造又は3層構造を有するCNTの個数に着目する。また、2層又は3層構造のCNTの個数の和の比率が75%未満であると、単層構造或いは4層以上の複層構造を有するCNTの比率が高くなり、CNT集合体全体としてドーピング効果が小さくなり、高導電率が得られない。よって、2層又は3層構造のCNTの個数の和の比率を上記範囲内の値とする。
 また本実施形態では、CNT集合体11を構成するCNTの最外層の外径が5.0nm以下であるのが好ましい。CNT集合体11を構成する複数のCNTの最外層の外径を測定した結果の一例を図3(b)のグラフに示す。同図において、CNT集合体を構成する全CNTの最外層の外径はいずれも5.0nm以下である。特に、全CNTのうち、最外層の外径が2nm~2.9nmであるCNTが最も多く、次いで3nm~3.9nmが多い。CNT集合体11を構成するCNTの最外層の外径が5.0nmを超えると、CNT間および最内層の隙間に起因する空孔率が大きくなり、導電性が低下してしまうため、好ましくない。
 <ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のCNTに由来するG+/Gtotal比が0.70以上であること>
 ラマン分光法を用いて炭素系の物質を解析すると、ラマンシフト1590cm-1付近に、Gバンドと呼ばれる、六員環の面内振動に由来するスペクトルのピークが検出される。また、CNTでは、図4に示すように、その形状が円筒状であるためにGバンドが2つに分裂し、G+バンドとG-バンドの2つのスペクトルのピークが現れる。なお、図4のスペクトル分析結果は後述する実施例1に対応している。G+バンドはCNT軸方向の縦波(LO)モード、G-バンドは軸方向に垂直な横波(TO)モードにそれぞれ対応しており、G+バンドのピークは、CNTの外径に因らず1590cm-1付近に現れるのに対し、G-バンドのピークは、CNTの外径の2乗に反比例してG+バンドからシフトして現れる。
 また、金属性CNTのGバンドは、上述のようにG+バンドとG-バンドに分裂して現れるが、そのピークは小さく、特にG+バンドのピークが小さい。一方、半導体性CNTもG+バンドとG-バンドに分裂するが、そのG+バンドのピークは、金属性CNTのG+バンドと比較して非常に大きい。よって、GバンドにおけるG+バンドの比率が高い場合、CNTが半導体性の挙動を示すと推察され、CNT集合体においても同様に推察することができる。
 上記のようなスペクトルピークの特性を前提として、本実施形態のCNT集合体11では、図4に示すように、ラマンスペクトルのGバンドに由来するピークのうち、Gtotalに対する半導体性CNTに由来するG+バンドの比(G+/Gtotal比)が、面積比で0.70以上である。上記G+/Gtotal比が0.70未満であると、半導体性CNTの比率が少なく、ドーピング処理による良好な電導性を得ることができない。
 一方、図5(a)~(d)は、本発明の範囲外であるCNT集合体についてGバンドを検出したものである。なお図5(a)~(d)のスペクトル分析結果は、後述する比較例1~4にそれぞれ対応している。図5(a)のCNT集合体では、2層又は3層構造のCNT比率が86%で、G+/Gtotal比が0.61、図5(b)のCNT集合体では、2層又は3層構造のCNT比率が5%以下(主要なCNTの層数:1)、G+/Gtotal比が0.70である。また、図5(c)CNT集合体では、2層又は3層構造のCNT比率が5%以下(主要なCNTの層数:4~12)、Gバンドのスペクトルピークが未検出であり、図5(d)のCNT集合体では、2層又は3層構造のCNT比率が5%以下(主要なCNTの層数:15層以上)、Gバンドのスペクトルピークが未検出である。図5(a)~(d)に示すCNT集合体では、後述するように、いずれの抵抗率も1.3×10-5Ω・cm以上である。図5(c)及び(d)で現れるD’バンドは、Dバンドと同様に欠陥に由来するピークである。
 また本実施形態では、ラマンスペクトルのGバンドと、結晶性に由来するDバンドとの比であるG/D比が規定される。Dバンドは、ラマンシフト1350cm-1付近に現れ、欠陥に由来するスペクトルのピークとも言える。このGバンドに対するDバンドの比(G/D比)は、CNT中の欠陥量の指標として用いられ、G/D比が大きい程、CNT中の欠陥が少ないと判断される。
 本実施形態のCNT集合体11においては、ラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が45以上である。図6(a)~(d)に示すように、測定サンプルのばらつきを考慮してCNT集合体11の4点(n=1~4)を検出した結果、いずれもG/D比が45以上であることが分かる。具体的には、n=1ではG/D比が82(図6(a))、n=2ではG/D比が66(図6(b))、n=3ではG/D比が49(図6(c))、n=4ではG/D比が52(図6(d))である。上記G/D比が45未満であると、結晶性が低く、良好な導電性を得ることができない。
 一方、図7(a)~(d)は、本発明の範囲外におけるカーボンナノチューブ集合体のラマンスペクトルにおけるG/D比を説明するグラフである。なお図7(a)~(d)のスペクトル分析結果は、後述する比較例1~4にそれぞれ対応しており、後述する比較例では、測定値のバラつきを考慮し、全試料n=3での測定を実施して、その平均値を求めている。すなわち図7に示すグラフは、n=3のうちの任意の1点を示している。図7(a)のCNT集合体ではG/D比が52、図7(b)のCNT集合体ではG/D比が57であるものの、図7(c)のCNT集合体ではG/D比が1.2、図7(d)では、G/D比が3.1であり、図7(c)~(d)に示すCNT集合体では、後述するように抵抗率の平均値(n=3)が1.3×10-5Ω・cm以上である。
 上述したように、本実施形態によれば、CNT集合体11において、ドーピング処理の効果を最大限に引き出すことができる層数(2層又は3層)を有するCNTが75%以上となるように構成し、且つ、CNT集合体11を構成するCNT11a,11a,・・・の全個数に対する半導体性CNTの個数の割合を示すG+/Gtotal比の値を0.70以上とすることで、従来のCNT線材と比較して、更なる低抵抗化を実現し、また、銅の抵抗率1.68×10-6Ω・cmやアルミニウムの抵抗率2.65×10-6Ω・cmとほぼ同等の抵抗率を実現することができる。よって、電気的特性を大幅に向上させるCNT集合体を提供することが可能となる。
 <カーボンナノチューブ複合材料>
 図8は、本発明の実施形態に係るカーボンナノチューブ複合材料を概略的に示す図であり、(a)は、単層構造を有するCNTに異種元素であるリチウムをドープさせてなるCNT複合材料の例を示す部分平面図、(b)はその側面図である。
 図8(a)及び(b)に示すように、CNT複合材料12aは、単層構造を有するCNT13と、該CNTの内部に含まれる異種元素14とを備える。以下、本実施形態ではCNT13に異種元素14をドープさせたものをCNT複合材料と称する。CNT13の内部に異種元素14の原子が位置することで、CNT13内に多くのキャリアを生成することができる。
 このCNT複合材料12aでは、CNT13を構成する炭素原子13aの中心位置Pcと異種元素14の原子の中心位置Pdとの最近接距離L1が、炭素原子13aの中心位置PcとCNT13の径方向断面における中心位置Pとの距離L2よりも小さい(図8(b))。また、CNT13を構成する炭素原子13aと異種元素14の原子との最近接距離L1が、2.0オングストローム(Å)以上4.0オングストローム以下であるのが好ましい。このように炭素原子13aと異種元素14の原子との最近接距離L1を上記範囲内の値とすると、電荷移動が起こり易くなり、CNT13内部に導電性に寄与するキャリアがより多く生成される。
 CNT複合材料12は、例えばドープ原子の蒸気の中に高温で数時間加熱することによって製造することができる。これにより、異種元素14の原子の中心位置PdがCNT13の中心位置PからずれたCNT複合材料を得ることができる。
 図8(a)及び(b)では、単層構造であるCNT13の内部に異種元素14の原子が位置しているが、これに限らず、図9に示すように、CNT複合材料15aが、複層構造を有するCNT16と、該複層構造のうちの最内層16-1の内部に含まれる異種元素17とを備えてもよい。また、CNT複合材料は、2層構造又は3層構造を有するCNTと、当該層構造のうちの最内層の内部に位置する異種元素とを備えるのが好ましい。この場合、CNT13の最内層16-1を構成する炭素原子16aの中心位置Pc’と異種元素17の原子の中心位置Pd’との最近接距離L1’が、炭素原子16aの中心位置Pc’と最内層16-1の径方向断面における中心位置P’との距離L2’よりも小さい。
 また、CNT13を構成する炭素原子13aと異種元素の原子14との最近接距離L1が、2.0オングストローム(Å)以上4.0オングストローム以下であるのが好ましい。最近接距離L1を上記範囲内の値とすると、上記と同様に、電荷移動が起こり易くなり、最内層16-1の内部でキャリアがより多く生成される。
 上記のように構成されるCNT複合材料において、CNT構造が同じである場合、ドープされる異種元素の種類によってCNT複合材料の電気的特性が異なる。そこで本実施形態では、単層構造のCNTを使用し、主に元素周期表の1族、2族及び17族に類する異種元素に着目し、第一原理計算によるシミュレーションを実施して、各CNT複合材料における(i)ドーパント(異種元素)の安定性、(ii)電荷移動量及び(iii)質量増加割合を以下のように算出、評価した。
 第一原理計算でのシミュレーションでは、密度汎関数理論(Density Functional Theory, DFT)に基づくコーン・シャム方程式を用いた。密度汎関数理論では、電子間の相互作用を表す交換相関ポテンシャルを電子密度の汎関数で表すことにより、電子状態の計算を高速化できる利点がある。また、交換相関ポテンシャルをGGA法(密度勾配展開法)によって表現し、さらに、50Rydのカットオフエネルギーを有する平面波基底関数を用いた。なお、カットオフエネルギーは、計算に用いられる波動関数の数にかかわるものであり、波動関数の数はカットオフエネルギーの3/2乗に比例する。k点サンプリング数は、1×1×8とした。計算ソフトウェアとして、「Quantum-ESPRESSO」を用いて計算を行った。
 安定性の評価は、吸着エネルギーが-1.0eV未満である場合を良好「〇」、-1.0eV以上0.0eV未満である場合をほぼ良好「△」、0.0eV以上である場合を不良「×」とした。
 電荷移動量の評価は、CNTを構成する炭素原子と最近接距離に位置する当該異種元素の原子との間における電荷移動量(個/ドーパント)を算出することにより行う。具体的には、上記第一原理計算を行うソフトウェアにより、CNT構造(距離)を精密化し、そのときの電荷移動量を算出する。そして、ドーパントとCNTの間の電荷移動量が、ドーパント1個あたり1.2個以上である場合を極めて良好「◎」、0.8個/ドーパント以上1.2個/ドーパント未満である場合を良好「〇」、0.5個/ドーパント以上0.8個/ドーパント未満である場合をほぼ良好「△」、0.5個/ドーパント未満である場合を不良「×」とした。
 また、質量増加割合は、キャリア密度を1.0×1021個/cm(金属性CNTに相当するキャリア密度)とした場合の、CNTの質量に対するCNT複合材料の質量の比を算出した。
 先ず、欠陥が無いCNTを用いた場合のドーパントの安定性を、表1及び図10(a)に破線で示す。また、欠陥が無いCNTを用いた場合の電荷移動量及び質量増加割合を算出した結果を、表2及び図10(b)に破線で示す。
Figure JPOXMLDOC01-appb-T000001
 この結果、ドーパントが、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、ストロンチウム(Sr)、バリウム(Ba)、フッ素(F)、塩素(Cl)、臭素(Br)又はヨウ素(I)であると、吸着エネルギーが0.0eV未満となり、ドーパントの安定性が良好となり、CNT内に安定なドーパントが位置することで、温度特性などの電線に必要な特性を安定して発揮することができる。特にドーパントが、カリウム、ルビジウム、セシウム又はバリウムであると、吸着エネルギーが-1.0eV未満となり、ドーパントの安定性が更に良好であることが分かる。
 また、ドーパントが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ストロンチウム、バリウム、フッ素、塩素、臭素又はヨウ素であると、ドーパントからCNTへの電荷移動量の絶対値が0.5個/ドーパント以上となり、電荷移動量が良好で、CNT内での導電性が良好であることが分かる。
 このとき、上記群から選択されたドーパントを用いてドープしたときの質量増加割合として、CNT複合材料を構成するCNTの質量に対する当該CNT複合材料の質量の比(質量増加割合)は1.007~1.197であり、これによって金属性CNT相当のキャリア密度を実現することができる(表1)。
 次に、欠陥が在るCNTを用いた場合のドーパントの安定性を、表2及び図10(a)に実線で示す。また、欠陥が在るCNTを用いた場合の電荷移動量及び質量増加割合を算出した結果を、表2及び図10(b)の実線で示す。
Figure JPOXMLDOC01-appb-T000002
 この結果、欠陥が在るCNTにもドーパントを内在させることができ、且つ、ドーパントが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム(Ca)、ストロンチウム、バリウム、フッ素、塩素、臭素又はヨウ素であると、吸着エネルギーが0.0eV未満であり、電荷移動量が0.5個/ドーパント以上となる。またこのとき、CNTの質量に対するCNT複合材料の質量の比は、1.007~1.226である。よって、欠陥が在るCNTを用いた場合にも、ドーパントの安定性が良好であると共に、CNT内での導電性が良好であり、CNTに対してより多くの量のドーパントをドープできることが分かる。
 また、欠陥が在るCNTに異種元素をドープした場合、欠陥が無いCNTに同一の異種元素をドープした場合と比較して、欠陥が在るCNTを用いたCNT複合材料の吸着エネルギーが減少していることから、欠陥にドーパントを吸着させることで、ドーパントの安定性がより向上していると推察される。したがって、本発明に係るCNT複合材料においては、欠陥を有したCNT複合材料であっても高導電性を実現するにあたって一定の効果があることが示された。
 したがって、表1及び表2の結果から、(a)ドーパントが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの元素であり、(b)CNTを構成する炭素原子と最近接距離に位置するドーパントの原子との間における電荷移動量が、0.5個/ドーパント以上であり、また、(c)CNTの質量に対するCNT複合材料の質量の比が、1.005~1.25であると、ドーパントの安定性が良好であり、且つCNT内での導電性が良好であり、また、CNTに対してより多くの量のドーパントをドープできることが分かる。
 上述したように、本実施形態によれば、CNT複合材料が、1層以上の層構造を有するCNT13と、該CNTの内部に含まれる異種元素14とを備え、CNT13を構成する炭素原子13aの中心位置Pcと異種元素14の原子の中心位置Pdとの最近接距離L1が、CNT13を構成する炭素原子14の中心位置PcとCNT13の径方向断面における中心位置Pとの距離L2よりも小さい。これにより、CNT13の内部にキャリアが生成され、導電性に寄与するキャリアを増大させることができるので、従来のドープ処理が施されたCNT複合材料よりも高導電化を実現することができ、電気的特性を大幅に向上させたCNT複合材料12aを提供することが可能となる。
 <カーボンナノチューブ集合体の製造方法>
 本実施形態のCNT集合体は、以下の方法で製造される。先ず、浮遊触媒気相成長(CCVD)法により、炭素源に触媒及び反応促進剤を含む混合物を供給して、複数のCNTを生成する。このとき、炭素源には六員環を有する飽和炭化水素、触媒には鉄などの金属触媒、反応促進剤には硫黄化合物をそれぞれ用いることができる。また本実施形態では、キャリアガス流量の増加に伴ってSWNTの割合が減少する点を考慮し、原料組成及び噴霧条件を調整して2層又は3層構造を有するCNTの比率を高める。
 また、CNTの最外層の外径が5.0nm以下となるように触媒である鉄の大きさを調整するため、原料は噴霧によりミスト粒径が20μm前後となるよう反応炉に供給を行う。その後、複数のCNTの束を撚り合わせて、CNT集合体を作製する。
 その後、CNT集合体に酸処理を施すことで、残留した鉄触媒を除去する。CCVDによって得られるCNT集合体中には、触媒やアモルファスカーボンなどが多量に含まれており、これらを除去する高純度化プロセスによってCNT集合体の本来の特性を得ることができる。本実施形態では、上記工程にて得られたCNTを大気下、所定温度で加熱し、加熱後のCNTを強酸にて高純度化する。
 次いで、酸処理後のCNT集合体にドーピング処理を施す。ドーピング処理では、硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子がドープされるのが好ましく、硝酸がドープされるのがより好ましい。また、複数のカーボンナノチューブに、リチウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの異種元素がドープされてもよい。ドーパントは外周側からCNTに注入されるため、CNTが複層(MWNT)である場合には、より外周側に位置する層が優先的にドープされ、内部の層はドープされ難い。そこで本実施形態では、1層~3層のドーピング量が多く、4層目以降ではドーピング量が少なくなるとの推察に基づき、2層又は3層構造を有するCNTの個数比率が75%以上とすることにより、CNT集合体全体のドーピング量を増大させることができ、優れたドーピング効果が得られる。
 <カーボンナノチューブ集合体の電気的特性>
 上記製法にて得られた本実施形態のCNT集合体では、抵抗率が6.9×10-6Ω・cm以下である。この抵抗率は、上記従来技術における最小の抵抗率1.55×10-5Ω・cmと比較して、約45%の低抵抗化を実現している。また、銅の抵抗率1.68×10-6Ω・cmやアルミニウムの抵抗率2.65×10-6Ω・cmと比較すると若干高いものの、これらと同じオーダー(×10-6)の抵抗率を達成している。よって、本実施形態のCNT集合体を、銅あるいはアルミニウム線材に代わる線材として使用すれば、銅やアルミニウムと同等の抵抗率を維持しつつ、軽量化を実現することができる。
 以上、本発明の実施形態に係るCNT集合体及びCNT複合材料について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、上記実施形態のCNT集合体が束ねられてなるカーボンナノチューブ線材と、該カーボンナノチューブ線材の外周を被覆する被覆層とを備えるCNT被覆電線を構成してもよい。特に、本実施形態のCNT集合体及びCNT複合材料は、電力や信号を伝送するための電線用線材の材料として好適であり、四輪自動車などの移動体に搭載される電線用線材の材料としてより好適である。金属電線よりも軽量になり燃費の向上が期待されるためである。
 また、上記カーボンナノチューブ被覆電線を少なくとも1つを有するワイヤハーネスを構成してもよい。
 以下、本発明の実施例を説明する。なお本発明は、以下に示す実施例に限定されるものではない。
(実施例1~2)
 浮遊触媒気相成長(CCVD)法を用い、図11に示すようなCNT製造装置にて、電気炉21によって1300℃に加熱された、内径φ60mm、長さ1600mmのアルミナ管22内部に、炭素源であるデカヒドロナフタレン、触媒であるフェロセン、及び反応促進剤であるチオフェンを含む原料溶液Lを、スプレー噴霧により供給した。キャリアガスGは、水素を9.5L/minで供給した。得られたCNTを回収機23にてシート状に回収し、これを巻いて撚りをかけることによりCNT集合体を製造した。次に、得られたCNT集合体を、大気下において500℃に加熱し、さらに酸処理を施すことによって高純度化を行った。その後、高純度化したCNT集合体に対し、硝酸ドープを施した。図12(a)に示すような直径約180μmのCNT集合体を得た。
 次に、下記の方法にてCNT集合体の構造、特性を測定、評価した。
(a)CNT集合体を構成するCNTの層数及び外径の測定
 上記条件により生成したCNT集合体の断面を、図12(b)に示すように透過型電子顕微鏡で観察及び解析し、約200個のCNTのそれぞれの層数、及びCNT集合体の最外周に位置するCNTの外径を測定した。
(b)CNT集合体におけるG+/Gtotal比およびG/D比の測定
 ラマン分光装置(Thermo Fisher Scientific社製、装置名「ALMEGA XR」により、励起レーザ:532nm、レーザ強度:10%に減光、対物レンズ:50倍、露光時間:1秒×60回の条件にて測定し、ラマンスペクトルを得た。次に日本分光社製のスペクトル解析ソフトウェア「Spectra Manager」により、ラマンスペクトルの1000~2000cm-1のデータを切り出し、この範囲で検出されるピーク群をCurve Fittingにより分離解析を行った。尚、ベースラインは1000cm-1と2000cm-1での検出強度を結んだ線とする。Gバンドのうち、1590cm-1付近に検出される最も大きい強度で検出されるピークがG+バンド、これよりも低波数側で1550~1590cm-1付近に観測されるピークがG-バンドであり、”Gtotal=(G+ピークの面積値 + G-ピークの面積値)”と定義し、G+/Gtotal比を算出した。G/D比については上記と同様に切り出したラマンスペクトルから、GバンドとDバンドそれぞれのピークトップ高さ(ピークトップからベースラインの値を差し引いた検出強度)から算出した。
(c)CNT複合材料の抵抗率測定
 抵抗測定機(ケースレー社製、装置名「DMM2000」)にCNT複合材料を接続し、4端子法により抵抗測定を実施した。抵抗率は、r=RA/L(R:抵抗、A:CNT集合体の断面積、L:測定長さ)の計算式に基づいて抵抗率を算出した。
(比較例1~4)
 比較例1~4について、従来技術の製法にてCNT複合材料を得た。得られたCNT集合体におけるCNTの層数及び外径、CNT集合体の抵抗率、並びにG/D比及びG+/Gtotal比を、実施例と同様方法にて測定した。各比較例では、3点を測定し(n=3)、その平均値を求めた。
 上記実施例1~2及び比較例1~4の測定結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~2では、1000~2000cm-1付近に明瞭なGバンドとDバンドに由来するスペクトルピークが観測された。そして表1の結果から、実施例1では、1層構造のCNTは少なく、2層構造又は3層構造を有するCNTが85%含まれていた(図3(a))。また、生成したCNT集合体の最外周に位置するCNTの直径は、5.0nm以下であった(図3(b))。そして、CNTの結晶性の指標となるG/D比が73、G+バンド(1589cm-1)とG-バンド(1563cm-1)に基づいて得られるG+/Gtotalが0.81であり、このときの抵抗率が6.3×10-6Ω・cmとなり、従来と比べてより低い抵抗率が得られた。
 実施例2では、2層又は3層構造を有するCNTの比率が78%、G/D比が47、G+/Gtotalが0.77であり、抵抗率が6.9×10-6Ω・cmとなり、実施例1と同様、従来と比べてより低い抵抗率が得られた。
 一方、比較例1では、2層又は3層構造を有するCNTの比率が86%、G/D比が66、G+/Gtotalが0.61であり、G+/Gtotal比が本発明の範囲外であることから、抵抗率が1.3×10-5Ω・cmと劣った。
 比較例2では、2層又は3層構造を有するCNTの比率が5%以下(主要なCNTは、単層構造)、G/D比が42、G+/Gtotal比が0.70であり、2層又は3層構造を有するCNTの比率が本発明の範囲外であることから、抵抗率が2.1×10-4Ω・cmと劣った。
 比較例3では、2層又は3層構造を有するCNTの比率が5%以下(主要なCNTは、4層~12層構造)、G/D比が1.3、G+/Gtotalが算出不可(Gバンドのスペクトルピークが未検出)であり、2層又は3層構造を有するCNTの比率、G/D比及びG+/Gtotal比が本発明の範囲外であることから、抵抗率が3.9×10-4Ω・cmと劣った。
 比較例4では、2層又は3層構造を有するCNTの比率が5%以下(主要なCNTは、15層構造以上)、G/D比が2.2、G+/Gtotal比が算出不可(Gバンドのスペクトルピークが未検出)であり、2層又は3層構造を有するCNTの比率、G/D比及びG+/Gtotal比が本発明の範囲外であることから、抵抗率が7.0×10-4Ω・cmと劣った。
(実施例3~4)
 次に、実施例3として、実施例1と同様の製法にて作製したCNT集合体を準備し、当該CNT集合体に対し、実施例1のドーパントである硝酸に代えてヨウ素を用いてドーピングを施した。また、実施例4として、ドーパントをカリウムに代えてドーピングを施したこと以外は、実施例3と同様の方法にてCNT複合材料を作製した。
(比較例5~7)
 比較例5として、実施例1と同様の製法にてCNT集合体を作製し、ドーピングを施さないものを準備した。また、比較例6として、実施例2と同様の製法にてヨウ素ドープを施したCNT複合材料を作製し、ドーパントであるヨウ素が、実施例2のCNT複合材料と比較して、2層又は3層構造を有するCNTにおける最内層のより中心側に位置するものを得た。また、比較例7として、ドーパントをカリウムに代えたこと以外は、実施例3と同様のCNT複合材料を作製し、ドーパントであるカリウムが、2層又は3層構造を有するCNTにおける最内層のより中心側に位置するものを得た。
 そして、実施例3~4及び比較例5~7について、CNT複合材料を構成するCNTの最内層とドーパントとの最近接距離を以下の様に算出した。また、上記と同様の方法にてCNT複合材料の抵抗率を測定、評価した。
(d)CNT最内層とドーパントとの最近接距離の算出
 実施例3,4で生成したCNT複合材料について、単層構造のCNTを使用して第一原理計算によるシミュレーションを実施し、各CNT複合材料におけるCNT最内層とドーパントとの最近接距離を算出、評価した。
 第一原理計算でのシミュレーションには計算ソフトウェア「Quantum-ESPRESSO」を用い、密度汎関数理論(DFT)に基づくコーン・シャム方程式を用いた。また、交換相関ポテンシャルをGGA法によって表現した。更に、50Rydのカットオフエネルギーを有する平面波基底関数を用いた。k点サンプリング数を1×1×8として計算を行った。
 また、確認のため、CNT内層-ヨウ素の最近接距離を測定し、計算値と照合した。2層又は3層構造を有するCNTにヨウ素をドーピングしたものを用い、上記ドーピング後のCNT断面のTEM写真からランダムに約200点の測定を行ない、最近接距離を求めた。この結果、最近接距離の測定値(実測値)に対する、シミュレーションによる最近接距離の計算値の誤差は1割未満となり、計算値と実測値がほぼ一致することが確認できた。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例3では、図13(a)に示すようにCNT最内層にヨウ素が位置していることが確認された。また、CNT最内層とドーパントであるヨウ素原子との最近接距離が3.61Åであり、抵抗率が8.9×10-6Ω・cmであった。また、実施例4では、図13(b)に示すようにCNT最内層にカリウムが位置していることが確認された。また、CNT最内層とドーパントであるヨウ素との最近接距離が2.98Åであり、抵抗率が9.6×10-6Ω・cmであった。
 一方、比較例5では抵抗値が7.8×10-5Ω・cmであり、実施例3,4の抵抗値に対して劣った。また、比較例6では、ヨウ素が実施例3よりもCNT最内層のより中心側に位置しており、抵抗値が5.2×10-5Ω・cmであり、実施例3,4の抵抗値に対して劣った。また、比較例7では、カリウムが実施例4よりもCNT最内層のより中心側に位置しており、抵抗値が6.4×10-5Ω・cmであり、実施例3,4の抵抗値に対して劣った。
 よって、CNT最内層とドーパントとの最近接距離が2.0Å以上4.0Å以下であると、従来のCNT複合材料と比較して、低抵抗化及び高導電化を実現できることが分かった。
1 カーボンナノチューブ集合体
11 カーボンナノチューブの束
11a カーボンナノチューブ
T1 筒状体
T2 筒状体
12a カーボンナノチューブ複合材料
13 カーボンナノチューブ
14 異種元素
13a 炭素原子
15a カーボンナノチューブ複合材料
16 カーボンナノチューブ
16a 最内層
17 異種元素
L1 距離
L1’ 距離
L2 距離
L2’ 距離
P 中心位置
P’ 中心位置
Pc 中心位置
Pd 中心位置
Pc’ 中心位置
Pd’ 中心位置 
21 電気炉
22 アルミナ管
23 回収機

Claims (15)

  1.  1層以上の層構造を有する複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体であって、
    前記カーボンナノチューブ集合体を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
    ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のカーボンナノチューブに由来するG+/Gtotal比が0.70以上であることを特徴とする、カーボンナノチューブ集合体。
  2.  前記ラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が、45以上であることを特徴とする、請求項1記載のカーボンナノチューブ集合体。
  3.  前記複数のカーボンナノチューブに、硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子がドープされていることを特徴とする、請求項1記載のカーボンナノチューブ集合体。
  4.  前記複数のカーボンナノチューブに、リチウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの異種元素がドープされていることを特徴とする、請求項1記載のカーボンナノチューブ集合体。
  5.  前記カーボンナノチューブの最外層の外径が、5.0nm以下であることを特徴とする、請求項1~4のいずれか1項に記載のカーボンナノチューブ集合体。
  6.  請求項1乃至5のいずれか1項に記載のカーボンナノチューブの複数が束ねられてなるカーボンナノチューブ線材。
  7.  1層以上の層構造を有するカーボンナノチューブと、前記カーボンナノチューブの内部に含まれる異種元素とを備えるカーボンナノチューブ複合材料であって、
     前記カーボンナノチューブを構成する炭素原子と前記異種元素の原子との最近接距離が、前記カーボンナノチューブを構成する炭素原子と当該カーボンナノチューブの径方向断面における中心との距離よりも小さいことを特徴とする、カーボンナノチューブ複合材料。
  8.  前記最近接距離が、2.0オングストローム以上4.0オングストローム以下であることを特徴とする、請求項7記載のカーボンナノチューブ複合材料。
  9.  前記異種元素が、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウム、バリウム、フッ素、塩素、臭素及びヨウ素からなる群から選択されたいずれかの元素であることを特徴とする、請求項7記載のカーボンナノチューブ複合材料。
  10.  前記カーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、請求項7記載のカーボンナノチューブ複合材料。
  11.  前記カーボンナノチューブを構成する前記炭素原子と前記最近接距離に位置する前記異種元素の原子との間における電荷移動量が、前記異種元素1個当たり0.5個以上であることを特徴とする、請求項9又は10記載のカーボンナノチューブ複合材料。
  12.  前記カーボンナノチューブの質量に対する前記カーボンナノチューブ複合材料の質量の比が、1.005~1.25であることを特徴とする、請求項9~11のいずれか1項に記載のカーボンナノチューブ複合材料。
  13.  請求項7~12のいずれか1項に記載のカーボンナノチューブ複合材料の複数が束ねられてなるカーボンナノチューブ線材。
  14.  1層以上の層構造を有するカーボンナノチューブと、前記カーボンナノチューブの内部に含まれる異種元素とを備えるカーボンナノチューブ複合材料であって、
     前記カーボンナノチューブ複合材料を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
     ラマン分光法におけるラマンスペクトルのGバンドに由来するピークのうち、半導体性のカーボンナノチューブに由来するG+/Gtotal比が0.70以上であり、
     前記カーボンナノチューブを構成する炭素原子と前記異種元素の原子との最近接距離が、前記カーボンナノチューブの最内層を構成する炭素原子と前記最内層の径方向断面における中心との距離よりも小さいことを特徴とする、カーボンナノチューブ複合材料。
  15.  請求項14記載のカーボンナノチューブ複合材料の複数が束ねられてなるカーボンナノチューブ線材。
PCT/JP2016/057538 2015-08-24 2016-03-10 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材 WO2017033482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16838830.4A EP3342752A4 (en) 2015-08-24 2016-03-10 AGGREGATE OF CARBON CANNULA, CARBON ANTI-CANOPY COMPOSITE AND CARBON NANOTRY WIRE
CN201680044706.5A CN107851476B (zh) 2015-08-24 2016-03-10 碳纳米管集合体、碳纳米管复合材料和碳纳米管线材
JP2017536626A JP6667536B2 (ja) 2015-08-24 2016-03-10 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
US15/895,941 US10392253B2 (en) 2015-08-24 2018-02-13 Aggregate of carbon nanotubes, carbon nanotube composite material, and carbon nanotube wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165179 2015-08-24
JP2015165179 2015-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/895,941 Continuation-In-Part US10392253B2 (en) 2015-08-24 2018-02-13 Aggregate of carbon nanotubes, carbon nanotube composite material, and carbon nanotube wire

Publications (1)

Publication Number Publication Date
WO2017033482A1 true WO2017033482A1 (ja) 2017-03-02

Family

ID=58099800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057538 WO2017033482A1 (ja) 2015-08-24 2016-03-10 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材

Country Status (5)

Country Link
US (1) US10392253B2 (ja)
EP (1) EP3342752A4 (ja)
JP (1) JP6667536B2 (ja)
CN (1) CN107851476B (ja)
WO (1) WO2017033482A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164249A1 (ja) * 2016-03-24 2017-09-28 古河電気工業株式会社 カーボンナノチューブ複合体及びカーボンナノチューブ線材
JP2018133296A (ja) * 2017-02-17 2018-08-23 矢崎総業株式会社 カーボンナノチューブ撚糸電線及びその製造方法
JP2018170592A (ja) * 2017-03-29 2018-11-01 古河電気工業株式会社 ボイスコイル及び該ボイスコイルを備える音発生装置
JP2019065431A (ja) * 2017-10-03 2019-04-25 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
WO2019083031A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083026A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083025A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083027A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083028A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019189831A1 (ja) * 2018-03-30 2019-10-03 古河電気工業株式会社 カーボンナノチューブ線材
JP2019175855A (ja) * 2019-05-16 2019-10-10 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2019179726A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 ヒーター
JP2020077643A (ja) * 2020-01-22 2020-05-21 矢崎総業株式会社 カーボンナノチューブ撚糸電線
JP2020164381A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 カーボンナノチューブ線材
JP2020181686A (ja) * 2019-04-24 2020-11-05 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050142A1 (ja) * 2018-09-03 2020-03-12 住友電気工業株式会社 カーボンナノチューブ複合体集合線、カーボンナノチューブ複合体集合線の熱処理物、カーボンナノチューブ複合体集合線の製造方法、及び、カーボンナノチューブ複合体集合線の熱処理物の製造方法
JP7372092B2 (ja) * 2019-09-18 2023-10-31 日立造船株式会社 カーボンナノチューブ撚糸の製造方法
CN114620713B (zh) * 2022-04-13 2023-01-13 楚能新能源股份有限公司 一种Na离子与非金属共掺杂碳纳米管的制备方法及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160320A (ja) * 2001-09-11 2003-06-03 Sony Corp 物質吸蔵材料及びそれを用いた電気化学デバイス、並びに物質吸蔵材料の製造方法
WO2005091345A1 (ja) * 2004-03-24 2005-09-29 Japan Science And Technology Agency カーボンナノチューブ含有金属薄膜
JP2008201626A (ja) * 2007-02-20 2008-09-04 Toray Ind Inc カーボンナノチューブ集合体、その製造方法
JP2008544939A (ja) * 2005-06-28 2008-12-11 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ カーボンナノチューブを成長および収集するための方法
JP2012127043A (ja) * 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体および電線
WO2013018901A1 (ja) * 2011-08-04 2013-02-07 国立大学法人信州大学 放射線吸収材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9418937D0 (en) * 1994-09-20 1994-11-09 Isis Innovation Opening and filling carbon nanotubes
CN1701040A (zh) * 2001-09-11 2005-11-23 索尼株式会社 物质包藏材料,使用它的电化学装置以及制备物质包藏材料的方法
WO2007015710A2 (en) * 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
TWI465391B (zh) * 2004-11-10 2014-12-21 尼康股份有限公司 Carbon nanotube aggregate and manufacturing method thereof
JP5424481B2 (ja) * 2007-03-13 2014-02-26 東洋炭素株式会社 カーボンナノチューブを含んだ炭素材料の精製方法
US8992878B2 (en) * 2009-03-04 2015-03-31 Toray Industries, Inc. Composition containing carbon nanotubes, catalyst for producing carbon nanotubes, and aqueous dispersion of carbon nanotubes
WO2012070537A1 (ja) 2010-11-22 2012-05-31 古河電気工業株式会社 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線
US20140084219A1 (en) * 2011-02-28 2014-03-27 William Marsh Rice University Doped multiwalled carbon nanotube fibers and methods of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160320A (ja) * 2001-09-11 2003-06-03 Sony Corp 物質吸蔵材料及びそれを用いた電気化学デバイス、並びに物質吸蔵材料の製造方法
WO2005091345A1 (ja) * 2004-03-24 2005-09-29 Japan Science And Technology Agency カーボンナノチューブ含有金属薄膜
JP2008544939A (ja) * 2005-06-28 2008-12-11 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ カーボンナノチューブを成長および収集するための方法
JP2008201626A (ja) * 2007-02-20 2008-09-04 Toray Ind Inc カーボンナノチューブ集合体、その製造方法
JP2012127043A (ja) * 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体および電線
WO2013018901A1 (ja) * 2011-08-04 2013-02-07 国立大学法人信州大学 放射線吸収材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342752A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164249A1 (ja) * 2016-03-24 2017-09-28 古河電気工業株式会社 カーボンナノチューブ複合体及びカーボンナノチューブ線材
US10934170B2 (en) 2016-03-24 2021-03-02 Furukawa Electric Co., Ltd. Carbon nanotube composite and carbon nanotube wire
JP2018133296A (ja) * 2017-02-17 2018-08-23 矢崎総業株式会社 カーボンナノチューブ撚糸電線及びその製造方法
JP2018170592A (ja) * 2017-03-29 2018-11-01 古河電気工業株式会社 ボイスコイル及び該ボイスコイルを備える音発生装置
JP2019065431A (ja) * 2017-10-03 2019-04-25 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
JP7097165B2 (ja) 2017-10-03 2022-07-07 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
CN111279437A (zh) * 2017-10-26 2020-06-12 古河电气工业株式会社 碳纳米管包覆电线
CN111279435B (zh) * 2017-10-26 2021-09-14 古河电气工业株式会社 碳纳米管包覆电线
WO2019083028A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2019079752A (ja) * 2017-10-26 2019-05-23 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083031A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083027A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
CN111279436B (zh) * 2017-10-26 2022-04-05 古河电气工业株式会社 碳纳米管包覆电线
WO2019083026A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083025A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
CN111279436A (zh) * 2017-10-26 2020-06-12 古河电气工业株式会社 碳纳米管包覆电线
CN111279435A (zh) * 2017-10-26 2020-06-12 古河电气工业株式会社 碳纳米管包覆电线
CN111279438A (zh) * 2017-10-26 2020-06-12 古河电气工业株式会社 碳纳米管包覆电线
US11780731B2 (en) 2018-03-30 2023-10-10 Furukawa Electric Co., Ltd. Carbon nanotube wire
JPWO2019189831A1 (ja) * 2018-03-30 2021-04-30 古河電気工業株式会社 カーボンナノチューブ線材
EP3778474A4 (en) * 2018-03-30 2021-12-29 Furukawa Electric Co., Ltd. Carbon nanotube wire
JP2019179726A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 ヒーター
WO2019189831A1 (ja) * 2018-03-30 2019-10-03 古河電気工業株式会社 カーボンナノチューブ線材
JP7189938B2 (ja) 2018-03-30 2022-12-14 古河電気工業株式会社 カーボンナノチューブ線材
JP2020164381A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 カーボンナノチューブ線材
JP7295687B2 (ja) 2019-03-29 2023-06-21 古河電気工業株式会社 カーボンナノチューブ線材
JP2020181686A (ja) * 2019-04-24 2020-11-05 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
JP7508200B2 (ja) 2019-04-24 2024-07-01 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
JP7050719B2 (ja) 2019-05-16 2022-04-08 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2019175855A (ja) * 2019-05-16 2019-10-10 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2020077643A (ja) * 2020-01-22 2020-05-21 矢崎総業株式会社 カーボンナノチューブ撚糸電線

Also Published As

Publication number Publication date
US20180170757A1 (en) 2018-06-21
JPWO2017033482A1 (ja) 2018-06-07
JP6667536B2 (ja) 2020-03-18
US10392253B2 (en) 2019-08-27
CN107851476A (zh) 2018-03-27
EP3342752A1 (en) 2018-07-04
EP3342752A4 (en) 2019-07-10
CN107851476B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2017033482A1 (ja) カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
JP7247315B2 (ja) カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法
US10934170B2 (en) Carbon nanotube composite and carbon nanotube wire
JP6719243B2 (ja) カーボンナノチューブ線材の製造方法
CA2731922A1 (en) Metal/cnt and/or fullerene composite coating on strip materials
JP2009221623A (ja) 繊維状集合体及びその製造方法
JP6868402B2 (ja) カーボンナノチューブ集合体、カーボンナノチューブ線材及びカーボンナノチューブ集合体の製造方法
WO2019083038A1 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
CN111279429B (zh) 碳纳米管复合线、碳纳米管包覆电线、线束、机器人的配线以及电车的架线
RU2346090C2 (ru) Ультратонкие углеродные волокна с различными структурами
JP6967854B2 (ja) カーボンナノチューブ集合体及びカーボンナノチューブ線材
JP7028688B2 (ja) カーボンナノチューブ集合体
JP7254708B2 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
JP2023148771A (ja) カーボンナノチューブ線材複合体
JP2023152922A (ja) カーボンナノチューブ線材複合体
JP2020184421A (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
JP2020184422A (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016838830

Country of ref document: EP