WO2019083028A1 - カーボンナノチューブ被覆電線 - Google Patents

カーボンナノチューブ被覆電線

Info

Publication number
WO2019083028A1
WO2019083028A1 PCT/JP2018/039970 JP2018039970W WO2019083028A1 WO 2019083028 A1 WO2019083028 A1 WO 2019083028A1 JP 2018039970 W JP2018039970 W JP 2018039970W WO 2019083028 A1 WO2019083028 A1 WO 2019083028A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
cnt
carbon nanotube
covering layer
less
Prior art date
Application number
PCT/JP2018/039970
Other languages
English (en)
French (fr)
Inventor
英樹 會澤
山崎 悟志
山下 智
憲志 畑本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2019550339A priority Critical patent/JP7195712B2/ja
Priority to CN201880069953.XA priority patent/CN111279435B/zh
Publication of WO2019083028A1 publication Critical patent/WO2019083028A1/ja
Priority to US16/857,349 priority patent/US20200251245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope

Definitions

  • the present invention relates to a carbon nanotube coated electric wire in which a carbon nanotube wire composed of a plurality of carbon nanotubes is coated with an insulating material.
  • Carbon nanotubes (hereinafter sometimes referred to as "CNT") are materials having various properties, and their application in many fields is expected.
  • CNT is a single layer of a tubular body having a network structure of a hexagonal lattice, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, which is lightweight, conductive, and thermally conductive. Excellent in various properties such as elasticity, elasticity and mechanical strength. However, it is not easy to wire CNTs, and no technology has been proposed for utilizing CNTs as wires.
  • CNT as a substitute for metal which is a filling material of a via hole formed in a multilayer wiring structure.
  • CNT as a substitute for metal which is a filling material of a via hole formed in a multilayer wiring structure.
  • multilayer CNTs in which a plurality of incisions of the multilayer CNT concentrically extended to the end far from the growth origin of the multilayer CNT are brought into contact with the conductive layer The wiring structure used as an interlayer wiring of two or more conducting wire layers is proposed (patent document 1).
  • a carbon nanotube material in which a conductive deposit made of metal or the like is formed at the electrical junction of adjacent CNT wires, such carbon It is disclosed that nanotube materials can be applied to a wide range of applications (Patent Document 2). Moreover, the heater which has a heat conductive member made from the matrix of a carbon nanotube is proposed from the outstanding thermal conductivity which a CNT wire has (patent document 3).
  • the covered electric wire which consists of a core wire which consists of one or a plurality of wires, and an insulation coating which covers the core is used as electric power lines and signal lines in various fields, such as a car and industrial equipment.
  • a material of the wire which comprises a core wire although a copper or copper alloy is usually used from a viewpoint of an electrical property, aluminum or an aluminum alloy is proposed from a viewpoint of weight reduction in recent years.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the conductivity of aluminum is about 2/3 of that of copper (based on 100% IACS for pure copper, about 66% IACS for pure aluminum)
  • the coated wire has a property that allows the insulation coating to be covered by the wire without being broken. Even if small bending is repeated, the CNT wire is deteriorated or broken differently from the wire of the metal wire because the twist of a part of the CNT wire is unwound by continuing to be changed with time. Therefore, it was necessary to newly study the durability of the CNT-coated wire which is resistant to electrical leakage and electric shock.
  • An object of the present invention is to provide a carbon nanotube coated electric wire in which the insulating coating has excellent durability against breakage.
  • An aspect of the present invention comprises a carbon nanotube wire comprising one or more carbon nanotube aggregates composed of a plurality of carbon nanotubes, and an insulating covering layer covering the carbon nanotube wire, wherein the Young of the carbon nanotube wire is It is a carbon nanotube covering electric wire whose ratio of the Young's modulus of the material which constitutes the above-mentioned insulating covering layer to a rate is 0.001 or more and 0.01 or less.
  • the aspect of this invention is a carbon nanotube coated electric wire whose ratio of the Young's modulus of the material which comprises the said insulation coating layer to the Young's modulus of the said carbon nanotube wire is 0.0015 or more and 0.005 or less.
  • An aspect of the present invention is the carbon nanotube coated electric wire in which the ratio of the cross sectional area in the radial direction of the insulating covering layer to the cross sectional area in the radial direction of the carbon nanotube wire is 0.02 or more and 10 or less.
  • the cross-sectional area of the radial direction of the carbon nanotube wire is a carbon nanotube covered wire is 0.0003 mm 2 or more 100 mm 2 or less.
  • the carbon nanotube wire comprises a plurality of the aggregate of carbon nanotubes, and the half width ⁇ of an azimuth angle in an azimuth plot by small angle X-ray scattering showing the orientation of the plurality of aggregate of carbon nanotubes is 60 It is a carbon nanotube coated electric wire which is less than °°.
  • aspects of the present invention is q value of the peak top in (10) the peak of scattering intensity by X-ray scattering shows a density of the plurality of carbon nanotubes 2.0 nm -1 or 5.0 nm -1 or less, and a half width ⁇ q is a carbon nanotube covered electric wire is 0.1 nm -1 or 2.0 nm -1 or less.
  • An aspect of the present invention is the carbon nanotube coated electric wire in which the thickness deviation of the insulation coating layer is 50% or more.
  • An aspect of the present invention is the carbon nanotube coated electric wire, wherein a cross sectional area in a radial direction of the insulating covering layer is 0.07 mm 2 or more, and a thickness deviation of the insulating covering layer is 55% or more.
  • the ratio of the cross-sectional area in the radial direction of the insulating covering layer to the cross-sectional area in the radial direction of the carbon nanotube wire is 0.09 or more.
  • a carbon nanotube wire using a carbon nanotube as a core wire is anisotropic in thermal conduction, and heat is preferentially conducted in the longitudinal direction as compared with the radial direction. That is, since the carbon nanotube wire has anisotropic heat dissipation characteristics, it has excellent heat dissipation characteristics as compared to metal core wires. Therefore, the design of the insulating covering layer for covering the core wire using carbon nanotubes needs to be designed differently from the insulating covering layer of the metal core wire.
  • the insulation coating is excellent against breakage.
  • a carbon nanotube coated electric wire having excellent durability can be obtained.
  • the weight when the ratio of the cross-sectional area in the radial direction of the insulating covering layer to the cross-sectional area in the radial direction of the carbon nanotube wire is 0.02 or more and 10 or less, the weight can be further reduced.
  • a carbon nanotube coated electric wire excellent in heat dissipation characteristics can be obtained without impairing the insulation reliability.
  • the carbon nanotube or carbon nanotube in the carbon nanotube wire has the half width ⁇ of the azimuth angle in the azimuth plot by small angle X-ray scattering of the carbon nanotube aggregate in the carbon nanotube wire being 60 ° or less. Since the aggregates can be present at high density, the carbon nanotube wire exhibits excellent heat dissipation characteristics.
  • q values of the peak top in (10) the peak of scattering intensity by X-ray scattering of aligned carbon nanotubes is at 2.0 nm -1 or 5.0 nm -1 or less, and the half-value width ⁇ q There 0.1nm by -1 to 2.0 nm -1 or less, because it has a carbon nanotube has high orientation, exhibits excellent heat dissipation properties of carbon nanotube wires.
  • the thickness deviation of the insulating coating layer is 50% or more, the thickness of the insulating coating layer is made uniform, and the mechanical properties of the carbon nanotube-coated electric wire such as wear resistance and flexibility The carbon nanotube coated electric wire which is excellent in mechanical strength is obtained.
  • the cross-sectional area in the radial direction of the insulating covering layer is 0.07 mm 2 or more, and the uneven thickness ratio of the insulating covering layer is 55% or more, thereby further improving the durability.
  • FIG. 1 is a figure showing an example of the two-dimensional scattering image of the scattering vector q of a plurality of carbon nanotube aggregates by SAXS
  • the figure (b) is the position of transmission X-ray in the azimuth plot two-dimensional scattering image.
  • Is a graph showing an example of azimuth angle-scattering intensity of an arbitrary scattering vector q having an origin of.
  • 15 is a graph showing the relationship between q value and strength by WAXS of a plurality of carbon nanotubes constituting a carbon nanotube aggregate.
  • a carbon nanotube coated electric wire (hereinafter sometimes referred to as “CNT coated electric wire") 1 according to an embodiment of the present invention may be referred to as a carbon nanotube wire (hereinafter referred to as "CNT wire") 2.
  • the outer circumferential surface of the insulating coating layer 21 is coated on the outer circumferential surface 10. That is, the insulating coating layer 21 is coated along the longitudinal direction of the CNT wire 10. In the CNT-coated electric wire 1, the entire outer peripheral surface of the CNT wire 10 is covered with the insulating covering layer 21. Further, in the CNT-coated electric wire 1, the insulating covering layer 21 is in an aspect in direct contact with the outer peripheral surface of the CNT wire 10. In FIG.
  • the CNT wire 10 is a strand (single wire) formed of one CNT wire 10.
  • the CNT wire 10 may be in the form of a stranded wire obtained by twisting a plurality of CNT wires 10.
  • the CNT wire 10 can be formed into a stranded wire by bundling a plurality of single wires and fixing one end, and twisting the other end a predetermined number of times.
  • the twist number of the CNT wire 10 is the number of turns per unit length when the plurality of CNT wires 10, 10,. That is, the twist number can be represented by a value (unit: T / m) obtained by dividing the number of twists (T) by the length of the line (m).
  • the twist number (T / m) of the CNT wire 10 is preferably 1000 or less, and more preferably 200 or more and 1000 or less.
  • the CNT-coated electric wire 1 having excellent peel resistance to the CNT wire 10 can be obtained by the CNT-coated electric wire 1 being a stranded wire having a number of twists of 1000 or less of the CNT wire 10 or a single wire. .
  • the CNT wire 10 is sometimes referred to as a carbon nanotube assembly (hereinafter referred to as "CNT assembly") composed of a plurality of CNTs 11a, 11a, ... having a layer structure of one or more layers. 11) It is formed by bundling one or more of eleven.
  • the CNT wire means a CNT wire having a ratio of CNT of 90% by mass or more.
  • plating and a dopant are excluded in calculation of the CNT ratio in a CNT wire.
  • the CNT wire 10 has a configuration in which a plurality of CNT assemblies 11 are bundled.
  • the longitudinal direction of the CNT assembly 11 forms the longitudinal direction of the CNT wire 10. Therefore, the CNT assembly 11 is linear.
  • the plurality of CNT aggregates 11, 11,... In the CNT wire 10 are arranged substantially in the same longitudinal direction. Therefore, the plurality of CNT aggregates 11, 11, ... in the CNT wire 10 are oriented.
  • the equivalent circle diameter of the CNT wire 10 which is a strand is not specifically limited, For example, they are 0.01 mm or more and 4.0 mm or less. Further, the equivalent circle diameter of the twisted CNT wire 10 is not particularly limited, and is, for example, 0.1 mm or more and 15 mm or less.
  • the CNT assembly 11 is a bundle of CNTs 11 a having a layer structure of one or more layers.
  • the longitudinal direction of the CNTs 11 a forms the longitudinal direction of the CNT assembly 11.
  • the plurality of CNTs 11a, 11a,... In the CNT assembly 11 are arranged substantially in the same longitudinal direction. Therefore, the plurality of CNTs 11a, 11a,... In the CNT assembly 11 are oriented.
  • the equivalent circle diameter of the CNT assembly 11 is, for example, 20 nm or more and 1000 nm or less, and more typically 20 nm or more and 80 nm or less.
  • the width dimension of the outermost layer of the CNTs 11 a is, for example, 1.0 nm or more and 5.0 nm or less.
  • the CNTs 11 a constituting the CNT assembly 11 are cylindrical bodies having a single-layer structure or a multi-layer structure, and are respectively referred to as SWNT (single-walled nanotubes) and MWNT (multi-walled nanotubes).
  • SWNT single-walled nanotubes
  • MWNT multi-walled nanotubes
  • FIG. 2 for convenience, only the CNTs 11 a having a two-layer structure are described, but the CNT aggregate 11 includes CNTs having a three-layer structure or more and a CNT having a single-layer structure. It may be formed of CNT having a layer structure of three or more layer structure or CNT having a layer structure of single layer structure.
  • the CNT 11a having a two-layer structure is a three-dimensional network structure in which two cylindrical bodies T1 and T2 having a network structure of a hexagonal lattice are arranged substantially coaxially, and is called DWNT (Double-walled nanotube) .
  • the hexagonal lattice which is a structural unit, is a six-membered ring having a carbon atom at its apex, and adjacent to another six-membered ring, these are continuously bonded.
  • the properties of the CNTs 11a depend on the chirality of the above-mentioned cylindrical body.
  • the chirality is roughly classified into an armchair type, a zigzag type, and a chiral type.
  • the armchair type is metallic
  • the zigzag type is semiconductive and semimetallic
  • the chiral type is semiconductive and semimetallic. Therefore, the conductivity of the CNTs 11a largely differs depending on which chirality the tubular body has.
  • chiral CNTs 11a exhibit metallic behavior by doping chiral CNTs 11a exhibiting semiconducting behavior with substances having different electron donating properties or electron accepting properties (different elements). .
  • the doping of different elements causes scattering of conduction electrons inside the metal to lower the conductivity, but similar to this, the CNT 11a showing metallic behavior is doped with different elements. If it does, it causes a decrease in conductivity.
  • the doping effects on the CNTs 11a showing the behavior of the metal and the CNTs 11a showing the behavior of the semiconductivity are in a trade-off relationship from the viewpoint of the conductivity, and thus the behavior of the metal theoretically appears. It is desirable that the CNTs 11a and the CNTs 11a exhibiting the behavior of the semiconductor property are separately manufactured, and the doping process is performed only on the CNTs 11a exhibiting the behavior of the semiconductor property, and then these are combined. In the case where the CNTs 11a exhibiting metallic behavior and the CNTs 11a exhibiting semiconductive behavior are produced in a mixed state, it is preferable to select the layer structure of the CNTs 11a in which the doping process with different elements or molecules is effective. Thereby, the conductivity of the CNT wire 10 formed of a mixture of the CNTs 11a exhibiting metallic behavior and the CNTs 11a exhibiting semiconductive behavior can be further improved.
  • a CNT having a smaller number of layers such as a two-layer structure or a three-layer structure
  • a CNT having a larger number of layers is relatively more conductive than a CNT having a larger number of layers, and when doped, the two-layer structure or three layers
  • the doping effect in the structured CNT is the highest. Therefore, in order to further improve the conductivity of the CNT wire 10, it is preferable to increase the proportion of CNTs having a two-layer structure or a three-layer structure.
  • the ratio of CNTs having a two-layer structure or a three-layer structure to the entire CNTs is preferably 50 number% or more, and more preferably 75 number% or more.
  • the proportion of CNTs having a two-layer structure or a three-layer structure is calculated by observing and analyzing the cross section of the CNT assembly 11 with a transmission electron microscope (TEM) and measuring the number of layers of 100 CNTs. be able to.
  • TEM transmission electron microscope
  • Fig.3 (a) is a figure which shows an example of the two-dimensional scattering image of the scattering vector q of several CNT assembly 11,11, ... by small angle X ray scattering (SAXS), and FIG.3 (b) is shown.
  • 6 is a graph showing an example of an azimuth plot showing the relationship between azimuth angle and scattering intensity of an arbitrary scattering vector q whose origin is the position of transmitted X-ray in a two-dimensional scattering image.
  • SAXS is suitable for evaluating structures of several nm to several tens of nm in size.
  • the orientation of the CNT 11a having an outer diameter of several nm and the orientation of the CNT aggregate 11 having an outer diameter of several tens nm by analyzing the information of the X-ray scattering image by the following method using SAXS Can be evaluated.
  • the x component of the scattering vector q (q 2 ⁇ / d: d is lattice spacing) of the CNT assembly 11
  • the y component q y is relatively narrowly distributed rather than q x .
  • half value width (DELTA) (theta) of the azimuth angle in the azimuth plot shown in FIG.3 (b) is 48 degrees. From these analysis results, in the CNT wire 10, it can be said that the plurality of CNTs 11a, 11a,... And the plurality of CNT aggregates 11, 11,. As described above, since the plurality of CNTs 11a, 11a,... And the plurality of CNT aggregates 11, 11,. It is easy to be dissipated while transmitting smoothly along the longitudinal direction of the.
  • the CNT wire 10 can adjust the heat radiation route in the longitudinal direction and the cross-sectional direction of the diameter by adjusting the orientation of the CNTs 11 a and the CNT aggregate 11, and therefore, the heat radiation characteristics superior to the metal core wire. Demonstrate.
  • orientation refers to the angle difference of the vector of the CNT and the CNT assembly inside with respect to the vector V in the longitudinal direction of the stranded wire produced by twist-collecting CNTs.
  • the CNT wire 10 is obtained by obtaining an orientation of a certain value or more indicated by the half width ⁇ of the azimuth angle in an azimuth plot of small angle X-ray scattering (SAXS) indicating the orientation of a plurality of CNT aggregates 11, 11,.
  • SAXS small angle X-ray scattering
  • the half value width ⁇ of the azimuth angle is preferably 60 ° or less, and particularly preferably 50 ° or less.
  • FIG. 4 is a graph showing the q value-intensity relationship by WAXS (wide-angle X-ray scattering) of the plurality of CNTs 11a, 11a,.
  • the CNTs 11a, 11a,... Form a hexagonal close-packed structure in plan view. can do. Therefore, the diameter distribution of the plurality of CNT aggregates is narrow in the CNT wire 10, and the plurality of CNTs 11a, 11a,... Form a hexagonal close-packed structure by having a regular arrangement, ie, a high density. It can be said that it exists in high density.
  • the plurality of CNT aggregates 11, 11... Have good orientation, and further, the plurality of CNTs 11a, 11a,. Because they are arranged at high density, the heat of the CNT wire 10 is easily dissipated while being smoothly transmitted along the longitudinal direction of the CNT aggregate 11. Therefore, the CNT wire rod 10 can adjust the heat dissipation route in the longitudinal direction and the cross-sectional direction of the diameter by adjusting the arrangement structure and density of the CNT aggregate 11 and the CNTs 11a, so it is superior to a metal core wire. Demonstrates heat dissipation characteristics.
  • multiple CNT11a, 11a, of intensity by X-ray scattering shows a density of ⁇ (10) q value of the peak top in the peak 2.0 nm - 1 or 5.0 nm -1 or less, and is preferably a half-value width [Delta] q (FWHM) is 0.1 nm -1 or 2.0 nm -1 or less.
  • the orientation of the CNT aggregate 11 and the CNTs 11 and the alignment structure and density of the CNTs 11a are adjusted by appropriately selecting the spinning method such as dry spinning, wet spinning, liquid crystal spinning, and spinning conditions of the spinning method described later. be able to.
  • a highly elastic material can be used, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • a thermoplastic resin for example, polytetrafluoroethylene (PTFE) (Young's modulus: 0.4 to 0.6 GPa), polyethylene (Young's modulus: 0.1 to 1.0 GPa), polypropylene (Young's modulus: 1.1) ⁇ 1.4 GPa), polyacetal (Young's modulus: 2.8 GPa), polystyrene (Young's modulus: 2.4-3.5 GPa), polycarbonate (Young's modulus: 2.5 GPa), polyamide (Young's modulus: 1.1-2) .9 GPa), polyvinyl chloride (Young's modulus: 2.5 to 4.2 GPa), polymethyl methacrylate (Young's modulus: 3.2 GPa), polyurethane (Young's modulus: 0.07 to 0.7 GPa), etc.
  • PTFE polyte
  • thermosetting resin examples include polyimide (2.1 to 2.8 GPa), phenol resin (5.2 to 7.0 GPa) and the like. These may be used alone or in combination of two or more.
  • Young's modulus of the material which comprises the insulation coating layer 21 is not specifically limited, For example, 0.07 GPa or more and 7 GPa or less are preferable, and 0.07 GPa or more and 4 GPa or less are especially preferable.
  • the insulating covering layer 21 may be a single layer as shown in FIG. 1, or alternatively, may be two or more layers.
  • a layer of a thermosetting resin may be further provided between the outer surface of the CNT wire 10 and the insulating coating layer 21 as necessary.
  • the insulating covering layer 21 has excellent durability against disconnection. Moreover, since the core wire is the CNT wire material 10 which is lightweight compared with copper, aluminum, etc. and the thickness of the insulation coating layer 21 can be thinned, the weight of the wire covered with the insulation coating layer can be reduced, Moreover, the outstanding thermal radiation characteristic with respect to the heat of the CNT wire 10 can be acquired, without impairing insulation reliability.
  • the ratio of the cross-sectional area in the radial direction of the insulating covering layer 21 to the cross-sectional area in the radial direction of the CNT wire 10 is preferably in the range of 0.02 or more and 10 or less.
  • the ratio of the cross-sectional area is not particularly limited as long as it is in the range of 0.02 or more and 10 or less, but in view of the balance between insulation reliability and durability, the lower limit is preferably 0.2 and 0.3
  • the upper limit value of the ratio of the cross-sectional area is preferably 1.0 from the viewpoint of further improving the weight saving of the CNT-coated electric wire 1 and the heat dissipation characteristics against the heat of the CNT wire 10. preferable.
  • the CNT-covered electric wire 1 can be obtained by covering the outer surface of the CNT wire 10 with the insulating covering layer 21 at the ratio of the cross sectional area.
  • the shape in the longitudinal direction can be maintained, and deformation such as bending is easy. Therefore, the CNT-coated wire 1 can be formed in a shape along a desired wiring path.
  • adhesion between the CNT wire 10 and the insulating coating layer 21 is improved as compared to a coated wire using a core wire of aluminum or copper. It can improve and it can control exfoliation between CNT wire 10 and insulating covering layer 21.
  • the cross-sectional area in the radial direction of the CNT wire 10 is not particularly limited, for example, preferably 0.0003 mm 2 or more 100 mm 2 or less, 0.001 mm 2 or 10 mm 2 or less is particularly preferred. Further, the cross-sectional area in the radial direction of the insulating cover layer 21 is not particularly limited, from the viewpoint of the balance between the insulation reliability and durability, for example, preferably 0.00005Mm 2 or 50 mm 2 or less, 0.0005 mm 2 or more 5 mm 2 or less is particularly preferable.
  • the average thickness of the insulating covering layer 21 is, for example, preferably 0.001 mm or more and 1 mm or less, and particularly preferably 0.01 mm or more and 0.1 mm or less.
  • the cross-sectional area can be measured, for example, from an image of a scanning electron microscope (SEM) observation. Specifically, after obtaining an SEM image (100 times to 10,000 times) of a radial cross section of the CNT-coated wire 1, the CNT wire 10 was penetrated from the area of the portion surrounded by the outer periphery of the CNT wire 10.
  • the sum of the area obtained by subtracting the area of the material of the insulating covering layer 21, the area of the portion of the insulating covering layer 21 covering the outer periphery of the CNT wire 10 and the area of the material of the insulating covering layer 21 intruding inside the CNT wire 10 is
  • the cross-sectional area in the radial direction of the CNT wire 10 and the cross-sectional area in the radial direction of the insulating coating layer 21 are respectively used.
  • the radial cross-sectional area of the insulating covering layer 21 also includes the resin that has entered between the CNT wires 10.
  • Young's modulus of CNT is higher than that of aluminum and copper used as conventional core wires. While the Young's modulus of aluminum is 70.3 GPa and the Young's modulus of copper is 129.8 GPa, the Young's modulus of CNT has a value of about 2 to 300 GPa, which is about twice or more. Therefore, in the CNT-coated electric wire 1, a material having a high Young's modulus (thermoplastic resin having a high Young's modulus) can be used as the material of the insulating covering layer 21 as compared with the coated electric wire using aluminum or copper as the core wire. Therefore, excellent abrasion resistance can be imparted to the insulating coating layer 21 of the CNT-coated electric wire 1, and the CNT-coated electric wire 1 exerts excellent durability.
  • a material having a high Young's modulus thermoplastic resin having a high Young's modulus
  • the Young's modulus of CNT is higher than that of aluminum and copper used as conventional core wires. Therefore, in the CNT-coated electric wire 1, the ratio of the Young's modulus of the material constituting the insulating coating layer to the Young's modulus of the core is smaller than the ratio of the Young's modulus of the coated electric wire using aluminum and copper as the core. Therefore, in the CNT-coated electric wire 1, compared with the coated electric wire using aluminum or copper as the core wire, the peeling of the CNT wire 10 and the insulating covering layer 21 and the cracking of the insulating covering layer 21 are further suppressed even when bent repeatedly. Can.
  • the ratio of the Young's modulus of the material forming the insulating covering layer 21 to the Young's modulus of the CNT wire 10 is 0.001 or more and 0.01 or less.
  • the Young's modulus of the CNT wire 10 and the Young's modulus of the material constituting the insulating coating layer 21 are obtained by, for example, peeling the coating of the CNT-coated wire and performing a tensile test using this as a sample according to JIS K7161-1. It can be measured.
  • the ratio of the Young's modulus is not particularly limited as long as it is in the range of 0.001 or more and 0.01 or less, but 0.0015 or more and 0.005 or less as a range in which the durability of the CNT-coated wire 1 tends to improve. Is preferable, and 0.002 or more and 0.0035 or less are particularly preferable.
  • the thickness in the direction orthogonal to the longitudinal direction of the insulating covering layer 21 is preferably uniform from the viewpoint of improving the mechanical strength such as the abrasion resistance of the CNT-coated electric wire 1.
  • the uneven thickness ratio of the insulating coating layer 21 is preferably 50% or more, for example, from the viewpoint of imparting excellent abrasion resistance and flexibility, and is preferably 55% or more from the viewpoint of further improving the abrasion resistance. preferable.
  • the durability can be easily improved by further appropriately controlling the parameter regarding the cross-sectional area.
  • the cross-sectional area of the insulating covering layer 21 in the radial direction is preferably 0.07 mm 2 or more, and the uneven thickness ratio of the insulating covering layer 21 is preferably 55% or more. Can be further improved.
  • the ratio of the cross-sectional area of the insulating covering layer 21 in the radial direction to the cross-sectional area of the CNT wire 10 in the radial direction is 0.09 or more .
  • the minimum value / the maximum value of the thickness of the insulation coating layer 21) ⁇ 100 is calculated, and the value obtained by averaging the ⁇ values calculated in each cross section is meant.
  • the thickness of the insulating covering layer 21 can be measured, for example, from an image of SEM observation by circular approximation of the CNT wire 10.
  • the longitudinal center side refers to a region located at the center as viewed from the longitudinal direction of the line.
  • the uneven thickness ratio of the insulating covering layer 21 is, for example, when the insulating covering layer 21 is formed on the outer peripheral surface of the CNT wire 10 by extrusion coating, the tension in the longitudinal direction of the CNT wire 10 passing through the die during the extrusion process is increased. Can improve it.
  • the CNT-coated electric wire 1 can be manufactured by first manufacturing the CNTs 11 a, forming the CNT wire 10 from the obtained plurality of CNTs 11 a, and coating the outer circumferential surface of the CNT wire 10 with the insulating covering layer 21.
  • the CNTs 11a can be manufactured by a method such as a floating catalyst method (Japanese Patent No. 5819888), a substrate method (Japanese Patent No. 5590603), or the like.
  • the strands of the CNT wire 10 can be manufactured by dry spinning (Japanese Patent No. 5819888, Patent No. 5990202, Japanese Patent No. 5350635), wet spinning (Japanese Patent No. 5135620, Japanese Patent No. 5131571, Japanese Patent No. 5288359) Table 2014-530964) etc. can be produced.
  • a method of covering an insulating covering layer on a core wire of aluminum or copper can be used.
  • raw materials of the insulating covering layer 21 And a method of melting and extruding around the CNT wire 10 and coating it.
  • the CNT-coated electric wire 1 according to the embodiment of the present invention can be used as a general electric wire such as a wire harness, and a cable may be produced from the general electric wire using the CNT-coated electric wire 1.
  • Polypropylene Sumitomo Nobrene (registered trademark) manufactured by Sumitomo Chemical Co., Ltd.
  • Polystyrene PS Japan HIPS Polyimide: Mitsui Chemicals AURUM PL450C Polyvinyl chloride: Sekisui Chemical Co., Ltd.
  • Sekisui PVC-HA Polyurethane Higashi Tokusha TPU 3000
  • EA PTFE Fluon made by Asahi Kasei Corporation Filler-containing polyphenylene sulfide (PPS): Toray Plastic Seiko Co., Ltd. TPS (registered trademark) PPS
  • Heat dissipation characteristics Four terminals were connected to both ends of a 100 cm CNT-coated wire, and resistance measurement was performed by the four-terminal method. At this time, the applied current was set to 2000 A / cm 2 and the time change of the resistance value was recorded. The rate of increase was calculated by comparing the resistance value at the start of measurement and after 10 minutes. Since the resistance of the CNT wire increases in proportion to the temperature, it can be judged that the smaller the rate of increase in resistance, the better the heat dissipation characteristics. When the increase rate of resistance was less than 7%, it was evaluated as "o", and it was evaluated that it was excellent in the heat dissipation characteristic.
  • the resin type is poly Whether polypropylene, polystyrene, polyimide, or polyvinyl chloride was used, CNT-coated electric wires having excellent durability were obtained. In addition, a CNT-coated electric wire having excellent heat dissipation characteristics was obtained without losing insulation reliability.
  • the cross-sectional area in the radial direction of the insulating covering layer is 0.07 mm 2 or more, and the uneven thickness ratio is 55% or more, and the ratio of the cross-sectional area in the radial direction of the insulating covering layer to the cross-sectional area in the radial direction of the CNT wire
  • Examples 3, 6 and 9 having a value of 0.09 or more a CNT-coated electric wire more excellent in durability was obtained.
  • the half value width ⁇ of the azimuth angle was 60 ° or less. Therefore, in the CNT wire of each of Examples 1 to 12, the CNT aggregate had excellent orientation. Further, in Examples 1 ⁇ 12, q values of the peak top in (10) peak intensity are both at 2.0 nm -1 or 5.0 nm -1 or less, the half width ⁇ q are all 0.1nm -1 or more and 2.0 nm -1 or less. Therefore, in the CNT wires of Examples 1 to 12, the CNTs also had excellent orientation.
  • Comparative Examples 1 to 4 in which the ratio of the Young's modulus of the material constituting the insulating coating layer to the Young's modulus of the CNT wire is less than 0.001, the durability against breakage of the insulating coating was not obtained.
  • Comparative Example 5 in which the Young's modulus of the material constituting the insulating coating layer with respect to the Young's modulus of the CNT wire exceeds 0.01, the insulating coating layer is hard, so cracking easily occurs, and similarly, the durability against breakage of the insulating coating was not obtained.
  • the radial cross-sectional area of the insulating covering layer was changed as shown in Table 2 below, to prepare a CNT-coated electric wire.
  • Comparative Examples 6 and 7 Instead of using a CNT wire as a core wire, in Comparative Example 6, a metal wire made of aluminum (Al) and in Comparative Example 7, a metal wire made of copper (Cu) were used.
  • the cross sectional area of the CNT wire, the cross sectional area of the insulating covering layer, the ratio of the Young's modulus of the material constituting the insulating covering layer to the Young's modulus of the CNT wire, and the thickness deviation are all in the same manner as in Examples 1-12. Measured.
  • the resin type is polypropylene, polystyrene, polyimide, poly Even in any of vinyl chlorides, as in Table 1, CNT-coated electric wires excellent in durability were obtained.
  • the cross-sectional area of the insulating covering layer in the radial direction is 0.07 mm 2 or more, and the uneven thickness ratio is 55% or more.
  • the cross-sectional area of the insulating covering layer in the radial direction with respect to the cross-sectional area of the CNT wire in the radial direction In Examples 15, 18 and 21 in which the ratio is 0.09 or more, the durability was more excellent. Further, in any of Examples 13 to 24, a CNT-coated electric wire excellent in heat dissipation characteristics was obtained without losing insulation reliability. Furthermore, when the uneven thickness rate of the insulating covering layer is 50% or more, the thickness of the insulating covering layer is made uniform, and a CNT-coated electric wire excellent in abrasion resistance is obtained, and in particular, the uneven thickness rate is 57%. In the above case, the wear resistance was more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本発明は、絶縁被覆が断線に対して優れた耐久性を有するカーボンナノチューブ被覆電線(1)に関する。 当該カーボンナノチューブ被覆電線(1)は、複数のカーボンナノチューブ(11a)で構成されるカーボンナノチューブ集合体(11)の単数または複数からなるカーボンナノチューブ線材(10)と、該カーボンナノチューブ線材(10)を被覆する絶縁被覆層(21)と、を備え、前記カーボンナノチューブ線材(10)のヤング率に対する前記絶縁被覆層(21)を構成する材料のヤング率の比率が、0.001以上0.01以下である。

Description

カーボンナノチューブ被覆電線
 本発明は、複数のカーボンナノチューブで構成されるカーボンナノチューブ線材を絶縁材料で被覆したカーボンナノチューブ被覆電線に関するものである。
 カーボンナノチューブ(以下、「CNT」ということがある。)は、様々な特性を有する素材であり、多くの分野への応用が期待されている。
 例えば、CNTは、六角形格子の網目構造を有する筒状体の単層、または略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、熱伝導性、弾性、機械的強度等の諸特性に優れる。しかし、CNTを線材化することは容易ではなく、CNTを線材として利用する技術は提案されていない。
 一方、多層配線構造に形成されるビアホールの埋め込み材料である金属の代替として、CNTを使用することが検討されている。具体的には、多層配線構造の低抵抗化のために、多層CNTの成長基点から遠い側の端部へ同心状に伸延した多層CNTの複数の切り口を導電層にそれぞれ接触させた多層CNTを、2以上の導線層の層間配線として使用した配線構造が提案されている(特許文献1)。
 その他の例として、CNT材料の導電性をさらに向上させるために、隣接したCNT線材の電気的接合点に、金属等からなる導電性堆積物を形成したカーボンナノチューブ材料が提案され、このようなカーボンナノチューブ材料は広汎な用途に適用できることが開示されている(特許文献2)。また、CNT線材の有する優れた熱伝導性から、カーボンナノチューブのマトリクスから作られた熱伝導部材を有する加熱器が提案されている(特許文献3)。
 ところで、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる被覆電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。
 また、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数と芯線からの発熱も増加する傾向にある。そこで、絶縁被覆による絶縁性を損なうことなく、電線の放熱特性を向上させることが要求されている。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化も要求されている。
 さらに、何らかの負荷により電線が断線しても電線の露出による漏電・感電を防止するために、被覆電線は、絶縁被覆は断線されずに電線に被覆された状態にできる特性を有することが望ましい。小さな屈曲の繰り返しであっても、経時的に変化が加わり続けることでCNT線材の一部の撚りがほどけたりするので、CNT線材は金属線の線材とは異なる劣化・断線をする。そのため、漏電・感電しにくいCNT被覆電線の耐久性を新たに検討する必要があった。
特開2006-120730号公報 特表2015-523944号公報 特開2015-181102号公報
 本発明は、絶縁被覆が断線に対して優れた耐久性を有するカーボンナノチューブ被覆電線を提供することを目的とする。
 本発明の態様は、複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数または複数からなるカーボンナノチューブ線材と、該カーボンナノチューブ線材を被覆する絶縁被覆層と、を備え、前記カーボンナノチューブ線材のヤング率に対する前記絶縁被覆層を構成する材料のヤング率の比率が、0.001以上0.01以下である、カーボンナノチューブ被覆電線である。
 本発明の態様は、前記カーボンナノチューブ線材のヤング率に対する前記絶縁被覆層を構成する材料のヤング率の比率が、0.0015以上0.005以下であるカーボンナノチューブ被覆電線である。
 本発明の態様は、前記カーボンナノチューブ線材の径方向の断面積に対する前記絶縁被覆層の径方向の断面積の比率が、0.02以上10以下であるカーボンナノチューブ被覆電線である。
 本発明の態様は、前記カーボンナノチューブ線材の径方向の断面積が、0.0003mm以上100mm以下であるカーボンナノチューブ被覆電線である。
 本発明の態様は、前記カーボンナノチューブ線材が、複数の前記カーボンナノチューブ集合体からなり、複数の該カーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが60°以下であるカーボンナノチューブ被覆電線である。
 本発明の態様は、複数の前記カーボンナノチューブの密度を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上5.0nm-1以下であり、且つ半値幅Δqが0.1nm-1以上2.0nm-1以下であるカーボンナノチューブ被覆電線である。
 本発明の態様は、前記絶縁被覆層の偏肉率が、50%以上であるカーボンナノチューブ被覆電線である。
 本発明の態様は、前記絶縁被覆層の径方向の断面積が、0.07mm以上であり、かつ前記絶縁被覆層の偏肉率が、55%以上であるカーボンナノチューブ被覆電線である。当該態様において、カーボンナノチューブ被覆電線は、さらに、前記カーボンナノチューブ線材の径方向の断面積に対する前記絶縁被覆層の径方向の断面積の比率が、0.09以上である。
 芯線としてカーボンナノチューブを使用したカーボンナノチューブ線材は、金属製の芯線とは異なり、熱伝導に異方性があり、径方向と比較して長手方向に優先的に熱が伝導する。すなわち、カーボンナノチューブ線材には、放熱特性に異方性があるため、金属製の芯線と比較して優れた放熱特性を備えている。そのため、カーボンナノチューブを使用した芯線に被覆する絶縁被覆層の設計は、金属製の芯線の絶縁被覆層とは異なる設計とすることが必要になる。本発明の態様によれば、カーボンナノチューブ線材のヤング率に対する絶縁被覆層を構成する材料のヤング率の比率が、0.001以上0.01以下であることにより、絶縁被覆が断線に対して優れた耐久性を有するカーボンナノチューブ被覆電線を得ることができる。
 本発明の態様によれば、カーボンナノチューブ線材の径方向の断面積に対する絶縁被覆層の径方向の断面積の比率が、0.02以上10以下であることにより、さらに軽量化することができると共に、また、絶縁信頼性を損なうことなく、放熱特性に優れるカーボンナノチューブ被覆電線が得られる。
 本発明の態様によれば、カーボンナノチューブ線材におけるカーボンナノチューブ集合体の、小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが60°以下であることにより、カーボンナノチューブ線材においてカーボンナノチューブやカーボンナノチューブ集合体が高密度で存在しうるので、カーボンナノチューブ線材が優れた放熱特性を発揮する。
 本発明の態様によれば、配列したカーボンナノチューブのX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上5.0nm-1以下であり、且つ半値幅Δqが0.1nm-1以上2.0nm-1以下であることにより、カーボンナノチューブが高い配向性を有するので、カーボンナノチューブ線材が優れた放熱特性を発揮する。
 本発明の態様によれば、絶縁被覆層の偏肉率が50%以上であることにより、絶縁被覆層の肉厚が均一化されて、カーボンナノチューブ被覆電線の耐摩耗性、屈曲性等の機械的強度に優れたカーボンナノチューブ被覆電線が得られる。
 本発明の態様によれば、絶縁被覆層の径方向の断面積が0.07mm以上であり、かつ、絶縁被覆層の偏肉率が55%以上であることにより、耐久性がさらに向上する。
本発明の実施形態例に係るカーボンナノチューブ被覆電線の説明図である。 本発明の実施形態例に係るカーボンナノチューブ被覆電線に用いるカーボンナノチューブ線材の説明図である。 図(a)は、SAXSによる複数のカーボンナノチューブ集合体の散乱ベクトルqの二次元散乱像の一例を示す図であり、図(b)は、アジマスプロット二次元散乱像において、透過X線の位置を原点とする任意の散乱ベクトルqの方位角-散乱強度の一例を示すグラフである。 カーボンナノチューブ集合体を構成する複数のカーボンナノチューブのWAXSによるq値-強度の関係を示すグラフである。
 以下に、本発明の実施形態例に係るカーボンナノチューブ被覆電線について、図面を用いながら説明する。
 図1に示すように、本発明の実施形態例に係るカーボンナノチューブ被覆電線(以下、「CNT被覆電線」ということがある。)1は、カーボンナノチューブ線材(以下、「CNT線材」ということがある。)10の外周面に絶縁被覆層21が被覆された構成となっている。すなわち、CNT線材10の長手方向に沿って絶縁被覆層21が被覆されている。CNT被覆電線1では、CNT線材10の外周面全体が、絶縁被覆層21によって被覆されている。また、CNT被覆電線1では、絶縁被覆層21はCNT線材10の外周面と直接接した態様となっている。図1では、CNT線材10は、1本のCNT線材10からなる素線(単線)となっているが、CNT線材10は、複数本のCNT線材10を撚り合わせた撚り線の状態でもよい。CNT線材10を撚り線の形態とすることで、CNT線材10の円相当直径や断面積を適宜調節することができる。
 CNT線材10は、複数の単線を束ね、一端を固定した状態で、もう一端を所定の回数ひねることで、撚り線とすることができる。CNT線材10の撚り数とは、複数のCNT線材10,10,・・・を撚り合わせた際の単位長さ当たりの巻き数である。すなわち、撚り数は、ひねった回数(T)を線の長さ(m)で割った値(単位:T/m)で表すことができる。CNT線材10が撚り線である場合、CNT線材10の撚り数(T/m)は、1000以下であることが好ましく、200以上1000以下であることがよりに好ましい。CNT線材10の撚り数を多くし過ぎると、撚り戻しの力の増大に伴い、CNT線材10が剥離しやすくなる。そのため、CNT被覆電線1がCNT線材10の撚り数が1000以下である撚り線であるか、または単線であることにより、CNT線材10に対する耐剥離性に優れたCNT被覆電線1を得ることができる。
 図2に示すように、CNT線材10は、1層以上の層構造を有する複数のCNT11a,11a,・・・で構成されるカーボンナノチューブ集合体(以下、「CNT集合体」ということがある。)11の単数から、または複数が束ねられて形成されている。ここで、CNT線材とはCNTの割合が90質量%以上のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキとドーパントは除かれる。図2では、CNT線材10は、CNT集合体11が、複数、束ねられた構成となっている。CNT集合体11の長手方向が、CNT線材10の長手方向を形成している。従って、CNT集合体11は、線状となっている。CNT線材10における複数のCNT集合体11,11,・・・は、その長軸方向がほぼ揃って配されている。従って、CNT線材10における複数のCNT集合体11,11,・・・は、配向している。素線であるCNT線材10の円相当直径は、特に限定されないが、例えば、0.01mm以上4.0mm以下である。また、撚り線としたCNT線材10の円相当直径は、特に限定されないが、例えば、0.1mm以上15mm以下である。
 CNT集合体11は、1層以上の層構造を有するCNT11aの束である。CNT11aの長手方向が、CNT集合体11の長手方向を形成している。CNT集合体11における複数のCNT11a,11a、・・・は、その長軸方向がほぼ揃って配されている。従って、CNT集合体11における複数のCNT11a,11a、・・・は、配向している。CNT集合体11の円相当直径は、例えば、20nm以上1000nm以下であり、より典型的には、20nm以上80nm以下である。CNT11aの最外層の幅寸法は、例えば、1.0nm以上5.0nm以下である。
 CNT集合体11を構成するCNT11aは、単層構造又は複層構造を有する筒状体であり、それぞれ、SWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。図2では、便宜上、2層構造を有するCNT11aのみを記載しているが、CNT集合体11には、3層構造以上の層構造を有するCNTや単層構造の層構造を有するCNTも含まれていてもよく、3層構造以上の層構造を有するCNTまたは単層構造の層構造を有するCNTから形成されていてもよい。
 2層構造を有するCNT11aでは、六角形格子の網目構造を有する2つの筒状体T1、T2が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。
 CNT11aの性質は、上記筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びカイラル型に大別され、アームチェア型は金属性、ジグザグ型は半導体性および半金属性、カイラル型は半導体性および半金属性の挙動を示す。従って、CNT11aの導電性は、筒状体がいずれのカイラリティを有するかによって大きく異なる。CNT被覆電線1のCNT線材10を構成するCNT集合体11では、導電性をさらに向上させる点から、金属性の挙動を示すアームチェア型のCNT11aの割合を増大させることが好ましい。
 一方で、半導体性の挙動を示すカイラル型のCNT11aに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、カイラル型のCNT11aが金属性の挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性の挙動を示すCNT11aに異種元素をドープした場合には、導電性の低下を引き起こす。
 このように、金属性の挙動を示すCNT11a及び半導体性の挙動を示すCNT11aへのドーピング効果は、導電性の観点からはトレードオフの関係にあることから、理論的には金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aとを別個に作製し、半導体性の挙動を示すCNT11aにのみドーピング処理を施した後、これらを組み合わせることが望ましい。金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aが混在した状態で作製される場合には、異種元素又は分子によるドーピング処理が効果的となるCNT11aの層構造を選択することが好ましい。これにより、金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aの混合物からなるCNT線材10の導電性をさらに向上させることができる。
 例えば、2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高く、ドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。従って、CNT線材10の導電性をさらに向上させる点から、2層構造又は3層構造を有するCNTの割合を増大させることが好ましい。具体的には、CNT全体に対する2層構造又は3層構造をもつCNTの割合が50個数%以上であることが好ましく、75個数%以上であることがより好ましい。2層構造又は3層構造をもつCNTの割合は、CNT集合体11の断面を透過型電子顕微鏡(TEM)で観察及び解析し、100個のCNTのそれぞれの層数を測定することで算出することができる。
 次に、CNT線材10におけるCNT11a及びCNT集合体11の配向性について説明する。
 図3(a)は、小角X線散乱(SAXS)による複数のCNT集合体11,11,・・・の散乱ベクトルqの二次元散乱像の一例を示す図であり、図3(b)は、二次元散乱像において、透過X線の位置を原点とする任意の散乱ベクトルqの方位角-散乱強度の関係を示すアジマスプロットの一例を示すグラフである。
 SAXSは、数nm~数十nmの大きさの構造等を評価するのに適している。例えば、SAXSを用いて、以下の方法でX線散乱画像の情報を分析することで、外径が数nmであるCNT11aの配向性及び外径が数十nmであるCNT集合体11の配向性を評価することができる。例えば、CNT線材10についてX線散乱像を分析すると、図3(a)に示すように、CNT集合体11の散乱ベクトルq(q=2π/d:dは格子面間隔)のx成分であるqよりも、y成分であるqの方が相対的に狭く分布している。また、図3(a)と同じCNT線材10について、SAXSのアジマスプロットを分析した結果、図3(b)に示すアジマスプロットにおけるアジマス角の半値幅Δθは、48°である。これらの分析結果から、CNT線材10において、複数のCNT11a,11a・・・及び複数のCNT集合体11,11,・・・が良好な配向性を有しているといえる。このように、複数のCNT11a,11a・・・及び複数のCNT集合体11,11,・・・が良好な配向性を有しているので、CNT線材10の熱は、CNT11aやCNT集合体11の長手方向に沿って円滑に伝達して行きながら放熱されやすくなる。従って、CNT線材10は、上記CNT11a及びCNT集合体11の配向性を調節することで、放熱ルートを長手方向、径の断面方向にわたり調節できるので、金属製の芯線と比較して優れた放熱特性を発揮する。なお、配向性とは、CNTを撚り集めて作製した撚り線の長手方向へのベクトルVに対する内部のCNT及びCNT集合体のベクトルの角度差のことを指す。
 複数のCNT集合体11,11,・・・の配向性を示す小角X線散乱(SAXS)のアジマスプロットにおけるアジマス角の半値幅Δθにより示される一定以上の配向性を得ることでCNT線材10に優れた放熱特性を付与させる点から、アジマス角の半値幅Δθは60°以下が好ましく、50°以下が特に好ましい。
 次に、CNT集合体11を構成する複数のCNT11aの配列構造及び密度について説明する。
 図4は、CNT集合体11を構成する複数のCNT11a,11a,・・・のWAXS(広角X線散乱)によるq値-強度の関係を示すグラフである。
 WAXSは、数nm以下の大きさの物質の構造等を評価するのに適している。例えば、WAXSを用いて、以下の方法でX線散乱画像の情報を分析することで、外径が数nm以下であるCNT11aの密度を評価することができる。任意の1つのCNT集合体11について散乱ベクトルqと強度の関係を分析した結果、図4に示すように、q=3.0nm-1~4.0nm-1付近に見られる(10)ピークのピークトップのq値から見積られる格子定数の値が測定される。この格子定数の測定値とラマン分光法やTEMなどで観測されるCNT集合体の直径とに基づいてCNT11a、11a,・・・が平面視で六方最密充填構造を形成していることを確認することができる。従って、CNT線材10内で複数のCNT集合体の直径分布が狭く、複数のCNT11a,11a,・・・が、規則正しく配列、すなわち、高密度を有することで、六方最密充填構造を形成して高密度で存在しているといえる。
 このように、複数のCNT集合体11,11・・・が良好な配向性を有していると共に、更に、CNT集合体11を構成する複数のCNT11a,11a,・・・が規則正しく配列して高密度で配置されているので、CNT線材10の熱は、CNT集合体11の長手方向に沿って円滑に伝達して行きながら放熱されやすくなる。従って、CNT線材10は、上記CNT集合体11とCNT11aの配列構造や密度を調節することで、放熱ルートを長手方向、径の断面方向にわたり調節できるので、金属製の芯線と比較して優れた放熱特性を発揮する。
 高密度を得ることで優れた放熱特性を付与させる点から、複数のCNT11a,11a,・・・の密度を示すX線散乱による強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上5.0nm-1以下であり、且つ半値幅Δq(FWHM)が0.1nm-1以上2.0nm-1以下であることが好ましい。
 CNT集合体11及びCNT11の配向性、並びにCNT11aの配列構造及び密度は、後述する、乾式紡糸、湿式紡糸、液晶紡糸等の紡糸方法と該紡糸方法の紡糸条件とを適宜選択することで調節することができる。
 次に、CNT線材10の外面を被覆する絶縁被覆層21について説明する。
 絶縁被覆層21の材料としては、高弾性の材料を使用することができ、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)(ヤング率:0.4~0.6GPa)、ポリエチレン(ヤング率:0.1~1.0GPa)、ポリプロピレン(ヤング率:1.1~1.4GPa)、ポリアセタール(ヤング率:2.8GPa)、ポリスチレン(ヤング率:2.4~3.5GPa)、ポリカーボネート(ヤング率:2.5GPa)、ポリアミド(ヤング率:1.1~2.9GPa)、ポリ塩化ビニル(ヤング率:2.5~4.2GPa)、ポリメチルメタクリレート(ヤング率:3.2GPa)、ポリウレタン(ヤング率:0.07~0.7GPa)等を挙げることができる。熱硬化性樹脂としては、例えば、ポリイミド(2.1~2.8GPa)、フェノール樹脂(5.2~7.0GPa)等を挙げることができる。これらは、単独で使用してもよく、2種以上を適宜混合して使用してもよい。絶縁被覆層21を構成する材料のヤング率は、特に限定されないが、例えば、0.07GPa以上7GPa以下が好ましく、0.07GPa以上4GPa以下が特に好ましい。
 絶縁被覆層21は、図1に示すように、一層としてもよく、これに代えて、二層以上としてもよい。また、必要に応じて、CNT線材10の外面と絶縁被覆層21との間に、さらに、熱硬化性樹脂の層が設けられていてもよい。
 CNT被覆電線1では、前記ヤング率の比率が0.001以上0.01以下であることにより、絶縁被覆層21が断線に対して優れた耐久性を有する。また、芯線が銅、アルミニウム等と比較して軽量であるCNT線材10であり、絶縁被覆層21の厚さを薄肉化できることから、絶縁被覆層で被覆された電線を軽量化することができ、また、絶縁信頼性を損なうことなく、CNT線材10の熱に対して優れた放熱特性を得ることができる。
 また、CNT被覆電線1では、CNT線材10の径方向の断面積に対する絶縁被覆層21の径方向の断面積の比率は、0.02以上10以下の範囲であることが好ましい。前記断面積の比率は0.02以上10以下の範囲であれば、特に限定されないが、絶縁信頼性と耐久性とのバランスの観点から、その下限値は0.2が好ましく、0.3が特に好ましく、一方で、前記断面積の比率の上限値は、CNT被覆電線1のさらなる軽量化とCNT線材10の熱に対する放熱特性をさらに向上させる点から1.0が好ましく、0.7が特に好ましい。
 また、CNT線材10単独では、長手方向における形状維持が難しい場合があるところ、前記断面積の比率にて絶縁被覆層21がCNT線材10の外面に被覆されていることにより、CNT被覆電線1は、長手方向における形状を維持することができ、また、曲げ加工等の変形加工も容易である。従って、CNT被覆電線1は、所望の配線経路に沿った形状に形成することができる。
 さらに、CNT線材10は、外面に微細な凹凸が形成されていることから、アルミニウムや銅の芯線を用いた被覆電線と比較して、CNT線材10と絶縁被覆層21との間の接着性が向上し、CNT線材10と絶縁被覆層21との間の剥離を抑制することができる。
 前記断面積の比率が0.02以上10以下の範囲である場合、CNT線材10の径方向の断面積は、特に限定されないが、例えば、0.0003mm以上100mm以下が好ましく、0.001mm以上10mm以下が特に好ましい。また、絶縁被覆層21の径方向の断面積は、特に限定されないが、絶縁信頼性と耐久性とのバランスの観点から、例えば、0.00005mm以上50mm以下が好ましく、0.0005mm以上5mm以下が特に好ましい。また、絶縁被覆層21の平均肉厚は、例えば、0.001mm以上1mm以下が好ましく、0.01mm以上0.1mm以下が特に好ましい。断面積は、例えば、走査型電子顕微鏡(SEM)観察の画像から測定することができる。具体的には、CNT被覆電線1の径方向断面のSEM像(100倍~10,000倍)を得た後に、CNT線材10の外周で囲われた部分の面積からCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積を差し引いた面積、CNT線材10の外周を被覆する絶縁被覆層21の部分の面積とCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積との合計を、それぞれ、CNT線材10の径方向の断面積、絶縁被覆層21の径方向の断面積とする。絶縁被覆層21の径方向の断面積には、CNT線材10間に入り込んだ樹脂も含む。
 CNTのヤング率は、従来の芯線として使用されるアルミニウム、銅のヤング率よりも高い。アルミニウムのヤング率が70.3GPa、銅のヤング率が129.8GPaであるのに対し、CNTのヤング率は300~1500GPaと、約2倍以上の値を有する。従って、CNT被覆電線1では、芯線としてアルミニウムや銅を用いた被覆電線と比較して、絶縁被覆層21の材料としてヤング率の高い材料(ヤング率の高い熱可塑性樹脂)を使用することができるので、CNT被覆電線1の絶縁被覆層21に優れた耐摩耗性を付与することができ、CNT被覆電線1は優れた耐久性を発揮する。
 上記の通り、CNTのヤング率は、従来の芯線として使用されるアルミニウム、銅のヤング率よりも高い。そのため、CNT被覆電線1では、芯線のヤング率に対する絶縁被覆層を構成する材料のヤング率の比率が、芯線としてアルミニウム、銅を使用した被覆電線の前記ヤング率の比率よりも小さくなる。従って、CNT被覆電線1では、芯線としてアルミニウムや銅を使用した被覆電線と比較して、繰り返し屈曲させてもCNT線材10と絶縁被覆層21の剥離や絶縁被覆層21の割れをより抑制することができる。
 CNT線材10のヤング率に対する絶縁被覆層21を構成する材料のヤング率の比率は、0.001以上0.01以下である。CNT線材10のヤング率及び絶縁被覆層21を構成する材料のヤング率は、例えばCNT被覆電線の被覆を剥離して、これをサンプルとしてJIS K7161-1に準拠した方法で引張試験を行うことで測定することができる。前記ヤング率の比率は0.001以上0.01以下の範囲であれば、特に限定されないが、CNT被覆電線1の耐久性が向上しやすい傾向にある範囲として、0.0015以上0.005以下が好ましく、0.002以上0.0035以下が特に好ましい。
 絶縁被覆層21の長手方向に対し直交方向(すなわち、径方向)の肉厚は、CNT被覆電線1の耐摩耗性等の機械的強度を向上させる点から均一化されていることが好ましい。具体的には、絶縁被覆層21の偏肉率は、例えば、優れた耐摩耗性、屈曲性を付与させる点から50%以上が好ましく、耐摩耗性をより向上させる点から55%以上が特に好ましい。また、絶縁被覆層21の偏肉率に加えて、断面積に関するパラメータをさらに適切に制御することにより、耐久性が向上しやすくなる。特に、絶縁被覆層21の径方向の断面積が0.07mm以上であり、かつ絶縁被覆層21の偏肉率が55%以上であることが好ましく、これにより、CNT被覆電線1の耐久性をより向上させることができる。また、CNT線材10の径方向の断面積も考慮する場合、さらに、CNT線材10の径方向の断面積に対する絶縁被覆層21の径方向の断面積の比率が0.09以上であることが好ましい。なお、「偏肉率」とは、CNT被覆電線1の長手方向中心側の任意の1.0mにおいて10cmごとに、径方向の同一断面について、それぞれ、α=(絶縁被覆層21の肉厚の最小値/絶縁被覆層21の肉厚の最大値)×100の値を算出し、各断面にて算出したα値を平均した値を意味する。また、絶縁被覆層21の肉厚は、例えば、CNT線材10を円近似してSEM観察の画像から測定することができる。ここで、長手方向中心側とは、線の長手方向からみて中心に位置する領域をさす。
 絶縁被覆層21の偏肉率は、例えば、押出被覆にてCNT線材10の外周面に絶縁被覆層21を形成する場合、押出工程時にダイスへ通すCNT線材10の長手方向の張り具合を高めることで向上させることができる。
 次に、本発明の実施形態例に係るCNT被覆電線1の製造方法例について説明する。CNT被覆電線1は、まず、CNT11aを製造し、得られた複数のCNT11aからCNT線材10を形成し、CNT線材10の外周面に絶縁被覆層21を被覆することで、製造することができる。
 CNT11aは、浮遊触媒法(特許第5819888号)、基板法(特許第5590603号)などの手法で作製することができる。CNT線材10の素線は、乾式紡糸(特許第5819888号、特許第5990202号、特許第5350635号)、湿式紡糸(特許第5135620号、特許第5131571号、特許第5288359号)、液晶紡糸(特表2014-530964号公報)等で作製することができる。
 上記のようにして得られたCNT線材10の外周面に絶縁被覆層21を被覆する方法は、アルミニウムや銅の芯線に絶縁被覆層を被覆する方法を使用でき、例えば、絶縁被覆層21の原料である熱可塑性樹脂を溶融させ、CNT線材10の周りに押し出して被覆する方法を挙げることができる。
 本発明の実施形態例に係るCNT被覆電線1は、ワイヤハーネス等の一般電線として使用することができ、また、CNT被覆電線1を使用した一般電線からケーブルを作製してもよい。
 次に、本発明の実施例を説明するが、本発明の趣旨を超えない限り、下記実施例に限定されるものではない。
 実施例1~12、比較例1~5について
 CNT線材の製造方法について
 先ず、浮遊触媒法で作製したCNTを直接紡糸する乾式紡糸方法(特許第5819888号)または湿式紡糸する方法(特許第5135620号、特許第5131571号、特許第5288359号)で円相当直径0.2mmのCNT線材の素線(単線)を得た。また、円相当直径0.2mm超のCNT線材については、円相当直径0.2mmのCNT線材の本数を調節して適宜撚り合わせ、撚り線とすることで得た。
 CNT線材の外面に絶縁被覆層を被覆する方法について
 下記表1に示される絶縁被覆層の樹脂種を用いて、通常の電線製造用押出成形機を用いて導体周囲に押出被覆することにより絶縁被覆層を形成し、下記表1の実施例1~12と比較例1~5で使用するCNT被覆電線を作製した。
 ポリプロピレン:住友化学社製 住友ノーブレン(登録商標)
 ポリスチレン:PSジャパン社製 HIPS
 ポリイミド:三井化学社製 AURUM PL450C
 ポリ塩化ビニル:積水化学社製 セキスイPVC-HA
 ポリウレタン:東特塗料社製 TPU3000EA
 PTFE:旭化成社製 Fluon
 フィラー含有ポリフェニレンサルファイド(PPS):東レプラスチック精工社製 TPS(登録商標)PPS
 (a)CNT線材の断面積の測定
 CNT線材の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100倍~10,000倍)で得られたSEM像から、CNT線材の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値をCNT線材の径方向の断面積とした。なお、CNT線材の断面積として、CNT線材内部に入り込んだ樹脂は測定に含めなかった。
 (b)絶縁被覆層の断面積の測定
 CNT線材の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100倍~10,000倍)で得られたSEM像から、絶縁被覆層の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値を絶縁被覆層の径方向の断面積とした。従って、絶縁被覆層の断面積として、CNT線材内部に入り込んだ樹脂も測定に含めた。
 (c)絶縁被覆層を構成する材料のヤング率/CNT線材のヤング率の比の測定
 1.0mのCNT被覆電線の被覆層を剥離させ、分離した被覆およびCNT線材のそれぞれについて長手方向20cmごとに5cmを試験片として採取した。JIS K7161-1に準拠した方法で引張試験を実施し、分離した被覆を構成する材料のヤング率およびCNT線材のヤング率を求めた。被覆を構成する材料のヤング率およびCNT線材のヤング率を平均した値から、上記ヤング率の比を算出した。
 (d)SAXSによるアジマス角の半値幅Δθの測定
 小角X線散乱装置(Aichi Synchrotoron)を用いてX線散乱測定を行い、得られたアジマスプロットからアジマス角の半値幅Δθを求めた。
 (e)WAXSによるピークトップのq値及び半値幅Δqの測定
 広角X線散乱装置(Aichi Synchrotoron)を用いて広角X線散乱測定を行い、得られたq値-強度グラフから、強度の(10)ピークにおけるピークトップのq値及び半値幅Δqを求めた。
 (f)偏肉率の測定
 CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに径方向の同一断面について、それぞれ、α=(絶縁被覆層の肉厚の最小値/絶縁被覆層の肉厚の最大値)×100の値を算出し、各断面にて算出したα値を平均した値として測定した。また、絶縁被覆層の肉厚は、例えば、円近似したCNT線材10の界面と絶縁被覆層21の最短距離として、SEM観察の画像から測定することができる。
 CNT被覆電線の上記各測定の結果について、下記表1に示す。
 上記のようにして作製したCNT被覆電線について、以下の評価を行った。
 (1)放熱特性
 100cmのCNT被覆電線の両端に4本の端子を接続し、四端子法で抵抗測定を行った。この際、印加電流は2000A/cmとなるように設定し、抵抗値の時間変化を記録した。測定開始時と10分間経過後の抵抗値を比較し、その増加率を算出した。CNT電線は温度に比例して抵抗が増加するため、抵抗の増加率が小さいものほど放熱特性に優れると判断することができる。抵抗の増加率が7%未満であれば「〇」とし、放熱特性に優れていると評価した。
 (2)絶縁信頼性
 JIS C3215-0-1の箇条13.3に準拠した方法で行った。試験結果が箇条13.3の表9に記載されたグレード2以上を満たすものを「〇」、グレード1を満たすものを「△」、いずれのグレードにも満たないものを「×」とし、「△」以上であれば絶縁信頼性が良好であると評価した。
 (3)耐久性
 20cmの被覆線の抵抗値を測定した。続いて、荷重500gf、曲げ速度約1回/秒、屈曲角度左右90°の条件で、500回の屈曲を行った。なお曲げ半径rは、導体径Dの6倍(r=6D)とした。続いて、再び抵抗値を測定した。屈曲後の抵抗値を屈曲前の抵抗値で除した値が、1.2未満のものを「◎」、1.2以上1.5未満のものを「○」、1.5以上1.8未満のものを「△」、1.8以上のものを「×」とし、「△」以上であれば耐久性に優れていると評価した。
 上記評価の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、CNT線材のヤング率に対する絶縁被覆層を構成する材料のヤング率の比率が、0.001以上0.01以下である実施例1~12では、樹脂種が、ポリポリプロピレン、ポリスチレン、ポリイミド、ポリ塩化ビニルのいずれであっても、耐久性に優れたCNT被覆電線が得られた。また、絶縁信頼性を損なうことなく、放熱特性に優れたCNT被覆電線が得られた。特に、絶縁被覆層の径方向の断面積が0.07mm2以上、かつ偏肉率が55%以上であり、さらにはCNT線材の径方向の断面積に対する絶縁被覆層の径方向の断面積の比率が0.09以上である実施例3、6、9では、耐久性により優れたCNT被覆電線が得られた。
 さらに、実施例1~12では、アジマス角の半値幅Δθは、いずれも60°以下であった。従って、実施例1~12のCNT線材では、CNT集合体は優れた配向性を有していた。さらに、実施例1~12では、強度の(10)ピークにおけるピークトップのq値は、いずれも2.0nm-1以上5.0nm-1以下であり、半値幅Δqは、いずれも0.1nm-1以上2.0nm-1以下であった。従って、実施例1~12のCNT線材では、CNTも優れた配向性を有していた。
 一方で、CNT線材のヤング率に対する絶縁被覆層を構成する材料のヤング率の比率が、0.001未満である比較例1~4では、絶縁被覆の断線に対する耐久性が得られなかった。また、CNT線材のヤング率に対する絶縁被覆層を構成する材料のヤング率が0.01を超える比較例5では、絶縁被覆層が硬いため割れが生じやすく、同様に、絶縁被覆の断線に対する耐久性が得られなかった。
 実施例13~24について
 次に、絶縁被覆層の径方向の断面積を下記表2のように変更して、CNT被覆電線を作製した。
 比較例6、7について
 芯線としてCNT線材をする代わりに、比較例6ではアルミニウム(Al)からなる金属線を、比較例7では銅(Cu)からなる金属線をそれぞれ使用した。
 CNT線材の断面積、絶縁被覆層の断面積、絶縁被覆層を構成する材料のヤング率/CNT線材のヤング率の比、偏肉率は、いずれも、実施例1~12と同様の方法にて測定した。
 上記(1)~(3)の評価は、実施例13~24のCNT被覆電線、Al被覆電線およびCu被覆電線についても同様に行った。
 上記のようにして作製したCNT被覆電線、Al被覆電線およびCu被覆電線について、以下の評価を行った。
 (4)耐摩耗性
 JIS C3216-3の箇条6に準拠した方法で行った。試験結果がJIS C3215-4の表1に記載されたグレード2を満たすものを「〇」、グレード1を満たすものを「△」、いずれのグレードにも満たないものを「×」とし、「△」以上であれば耐摩耗性に優れていると評価した。
 なお、放熱特性、絶縁信頼性、耐久性は、いずれも、実施例1~12と同様の評価方法にて評価した。
 上記評価の結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、カーボンナノチューブ線材の径方向の断面積に対する絶縁被覆層の径方向の断面積の比率を変更した実施例13~24では、樹脂種が、ポリプロピレン、ポリスチレン、ポリイミド、ポリ塩化ビニルのいずれであっても、表1と同様、耐久性にも優れたCNT被覆電線が得られた。特に、絶縁被覆層の径方向の断面積が0.07mm2以上、かつ偏肉率が55%以上であり、さらには、CNT線材の径方向の断面積に対する絶縁被覆層の径方向の断面積の比率が0.09以上である実施例15、18、21では、より耐久性に優れていた。また、実施例13~24のいずれにおいても、絶縁信頼性を損なうことなく、放熱特性にも優れたCNT被覆電線が得られた。さらに、絶縁被覆層の偏肉率が50%以上であることにより、絶縁被覆層の肉厚が均一化されて、耐摩耗性に優れたCNT被覆電線が得られ、特に偏肉率が57%以上の場合に耐摩耗性がより優れていた。
 一方で、芯線としてCNT線材ではなく金属線が使用されている比較例6、7では、絶縁信頼性を得ることできなかった。また、CNT線材のヤング率に対する絶縁被覆層を構成する材料のヤング率の比率が、0.001以上0.01以下であるにもかかわらず、耐久性に劣っていた。さらに、偏肉率が80%以上であるにもかかわらず、耐摩耗性にも劣っていた。
 1          カーボンナノチューブ被覆電線
 10         カーボンナノチューブ線材
 11         カーボンナノチューブ集合体
 11a        カーボンナノチューブ
 21         絶縁被覆層

Claims (9)

  1.  複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数または複数からなるカーボンナノチューブ線材と、該カーボンナノチューブ線材を被覆する絶縁被覆層と、を備え、
    前記カーボンナノチューブ線材のヤング率に対する前記絶縁被覆層を構成する材料のヤング率の比率が、0.001以上0.01以下である、カーボンナノチューブ被覆電線。
  2.  前記カーボンナノチューブ線材のヤング率に対する前記絶縁被覆層を構成する材料のヤング率の比率が、0.0015以上0.005以下である請求項1に記載のカーボンナノチューブ被覆電線。
  3.  前記カーボンナノチューブ線材の径方向の断面積に対する前記絶縁被覆層の径方向の断面積の比率が、0.02以上10以下である請求項1または2に記載のカーボンナノチューブ被覆電線。
  4.  前記カーボンナノチューブ線材の径方向の断面積が、0.0003mm以上100mm以下である請求項3に記載のカーボンナノチューブ被覆電線。
  5.  前記カーボンナノチューブ線材が、複数の前記カーボンナノチューブ集合体からなり、複数の該カーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが60°以下である請求項1乃至4のいずれか1項に記載のカーボンナノチューブ被覆電線。
  6.  複数の前記カーボンナノチューブの密度を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上5.0nm-1以下であり、且つ半値幅Δqが0.1nm-1以上2.0nm-1以下である請求項1乃至5のいずれか1項に記載のカーボンナノチューブ被覆電線。
  7.  前記絶縁被覆層の偏肉率が、50%以上である請求項1乃至6のいずれか1項に記載のカーボンナノチューブ被覆電線。
  8.  前記絶縁被覆層の径方向の断面積が、0.07mm以上であり、かつ前記絶縁被覆層の偏肉率が、55%以上である請求項1乃至7のいずれか1項に記載のカーボンナノチューブ被覆電線。
  9.  さらに、前記カーボンナノチューブ線材の径方向の断面積に対する前記絶縁被覆層の径方向の断面積の比率が、0.09以上である請求項8に記載のカーボンナノチューブ被覆電線。
PCT/JP2018/039970 2017-10-26 2018-10-26 カーボンナノチューブ被覆電線 WO2019083028A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019550339A JP7195712B2 (ja) 2017-10-26 2018-10-26 カーボンナノチューブ被覆電線
CN201880069953.XA CN111279435B (zh) 2017-10-26 2018-10-26 碳纳米管包覆电线
US16/857,349 US20200251245A1 (en) 2017-10-26 2020-04-24 Coated carbon nanotube electric wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-207658 2017-10-26
JP2017207658 2017-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,349 Continuation US20200251245A1 (en) 2017-10-26 2020-04-24 Coated carbon nanotube electric wire

Publications (1)

Publication Number Publication Date
WO2019083028A1 true WO2019083028A1 (ja) 2019-05-02

Family

ID=66246931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039970 WO2019083028A1 (ja) 2017-10-26 2018-10-26 カーボンナノチューブ被覆電線

Country Status (4)

Country Link
US (1) US20200251245A1 (ja)
JP (1) JP7195712B2 (ja)
CN (1) CN111279435B (ja)
WO (1) WO2019083028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019083027A1 (ja) * 2017-10-26 2020-12-03 古河電気工業株式会社 カーボンナノチューブ被覆電線

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112405A1 (ja) * 2013-01-17 2014-07-24 ダイキン工業株式会社 絶縁電線
JP2015128022A (ja) * 2013-12-27 2015-07-09 日本ゼオン株式会社 フレキシブルケーブル、ヒンジ、電子機器、及び太陽電池モジュール
WO2016186263A1 (en) * 2015-05-18 2016-11-24 3C Tae Yang Co., Ltd Nanocable and manufacturing method thereof
WO2017033482A1 (ja) * 2015-08-24 2017-03-02 古河電気工業株式会社 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
JP2017106129A (ja) * 2015-12-08 2017-06-15 ヤマハ株式会社 導電体、歪みセンサー、及び導電体の製造方法
JP2017171545A (ja) * 2016-03-24 2017-09-28 古河電気工業株式会社 カーボンナノチューブ線材の製造方法
JP2017191700A (ja) * 2016-04-13 2017-10-19 株式会社オートネットワーク技術研究所 絶縁電線および絶縁電線の製造方法
WO2018143466A1 (ja) * 2017-02-03 2018-08-09 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978653B2 (ja) * 2002-04-09 2007-09-19 東洋紡績株式会社 細径電線コード
EP1673489B1 (en) * 2003-07-11 2013-10-09 Cambridge Enterprise Limited Production of agglomerates from gas phase
GB201116670D0 (en) * 2011-09-27 2011-11-09 Cambridge Entpr Ltd Materials and methods for insulation of conducting fibres, and insulated products
JP2015086452A (ja) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法
CN104538090A (zh) * 2014-12-05 2015-04-22 苏州聚宜工坊信息科技有限公司 一种导线、制备方法及应用
JP6470049B2 (ja) * 2015-01-19 2019-02-13 ヤマハ株式会社 糸状歪みセンサ素子及び布帛状歪みセンサ素子
EP3396682A4 (en) * 2015-12-25 2019-09-11 Furukawa Electric Co., Ltd. ALUMINUM CABLE AND METHOD FOR MANUFACTURING THE SAME
JP7195711B2 (ja) * 2017-10-26 2022-12-26 古河電気工業株式会社 カーボンナノチューブ被覆電線

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112405A1 (ja) * 2013-01-17 2014-07-24 ダイキン工業株式会社 絶縁電線
JP2015128022A (ja) * 2013-12-27 2015-07-09 日本ゼオン株式会社 フレキシブルケーブル、ヒンジ、電子機器、及び太陽電池モジュール
WO2016186263A1 (en) * 2015-05-18 2016-11-24 3C Tae Yang Co., Ltd Nanocable and manufacturing method thereof
WO2017033482A1 (ja) * 2015-08-24 2017-03-02 古河電気工業株式会社 カーボンナノチューブ集合体、カーボンナノチューブ複合材料及びカーボンナノチューブ線材
JP2017106129A (ja) * 2015-12-08 2017-06-15 ヤマハ株式会社 導電体、歪みセンサー、及び導電体の製造方法
JP2017171545A (ja) * 2016-03-24 2017-09-28 古河電気工業株式会社 カーボンナノチューブ線材の製造方法
JP2017191700A (ja) * 2016-04-13 2017-10-19 株式会社オートネットワーク技術研究所 絶縁電線および絶縁電線の製造方法
WO2018143466A1 (ja) * 2017-02-03 2018-08-09 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019083027A1 (ja) * 2017-10-26 2020-12-03 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP7195711B2 (ja) 2017-10-26 2022-12-26 古河電気工業株式会社 カーボンナノチューブ被覆電線

Also Published As

Publication number Publication date
CN111279435B (zh) 2021-09-14
CN111279435A (zh) 2020-06-12
JPWO2019083028A1 (ja) 2020-12-03
JP7195712B2 (ja) 2022-12-26
US20200251245A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US20200265968A1 (en) Coated carbon nanotube electric wire and coil
WO2019083038A1 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
JP7393858B2 (ja) カーボンナノチューブ被覆電線、コイル及び被覆電線
JP7195712B2 (ja) カーボンナノチューブ被覆電線
US20200258650A1 (en) Coated carbon nanotube electric wire
US20200251247A1 (en) Coated carbon nanotube electric wire
JP7203748B2 (ja) カーボンナノチューブ被覆電線
US20200251248A1 (en) Coated carbon nanotube electric wire
US20200258652A1 (en) Carbon nanotube strand wire, coated carbon nanotube electric wire, wire harness, wiring for robot, and overhead wiring for train
JP7254708B2 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
WO2019083029A1 (ja) カーボンナノチューブ被覆電線
WO2019083031A1 (ja) カーボンナノチューブ被覆電線
US20200258656A1 (en) Coated carbon nanotube electric wire
JP7050719B2 (ja) カーボンナノチューブ被覆電線
US20200258653A1 (en) Coated carbon nanotube electric wire
US20200251246A1 (en) Coated carbon nanotube electric wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871716

Country of ref document: EP

Kind code of ref document: A1