WO2018143466A1 - カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法 - Google Patents

カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法 Download PDF

Info

Publication number
WO2018143466A1
WO2018143466A1 PCT/JP2018/003877 JP2018003877W WO2018143466A1 WO 2018143466 A1 WO2018143466 A1 WO 2018143466A1 JP 2018003877 W JP2018003877 W JP 2018003877W WO 2018143466 A1 WO2018143466 A1 WO 2018143466A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
carbon nanotubes
ratio
wire
Prior art date
Application number
PCT/JP2018/003877
Other languages
English (en)
French (fr)
Inventor
山崎 悟志
吉則 風間
山下 智
藤村 幸司
雄大 谷村
祐賀子 中井
三好 一富
英樹 會澤
憲志 畑本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP18747743.5A priority Critical patent/EP3579249B1/en
Priority to CN201880010089.6A priority patent/CN110249394B/zh
Priority to KR1020227044499A priority patent/KR102515194B1/ko
Priority to KR1020197022019A priority patent/KR102623655B1/ko
Priority to JP2018566163A priority patent/JP7028804B2/ja
Publication of WO2018143466A1 publication Critical patent/WO2018143466A1/ja
Priority to US16/528,403 priority patent/US20190355490A1/en
Priority to JP2021211229A priority patent/JP7247315B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Definitions

  • the present invention relates to a carbon nanotube wire obtained by bundling a carbon nanotube aggregate composed of a plurality of carbon nanotubes, a method for producing a carbon nanotube, and a method for producing a carbon nanotube wire.
  • electric wires composed of a core wire made of one or a plurality of wires and an insulating coating covering the core wire have been used.
  • the material of the wire constituting the core wire copper or a copper alloy is usually used from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS).
  • the cross-sectional area of the aluminum wire must be about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half of the mass of the pure copper wire, so the use of the aluminum wire is advantageous from the viewpoint of weight reduction.
  • the carbon nanotube is a single layer of a cylindrical body having a hexagonal lattice network structure, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, and is lightweight and has conductivity, current capacity, Because of its excellent properties such as elasticity and mechanical strength, it has attracted attention as a material that can replace metals used in power lines and signal lines.
  • the specific gravity of the carbon nanotube is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and the carbon nanotube alone is higher than copper (resistivity: 1.68 ⁇ 10 ⁇ 6 ⁇ ⁇ cm). Shows conductivity. Therefore, theoretically, if a carbon nanotube wire is formed from a plurality of carbon nanotubes, further weight reduction and high conductivity can be realized. However, when a carbon nanotube wire in the unit of ⁇ m to mm is produced from carbon nanotubes in the nm unit, there is a problem that the resistance value of the whole wire increases due to contact resistance between the carbon nanotubes and internal defect formation. For this reason, it was difficult to use the carbon nanotube as a wire as it is.
  • a method for improving the orientation of the carbon nanotubes constituting the carbon nanotube wire can be considered.
  • a wire material with improved orientation of carbon nanotubes for example, a carbon nanotube aggregate including a carbon nanotube center yarn formed by bundling carbon nanotube untwisted yarn and a carbon nanotube untwisted yarn wound around the carbon nanotube center yarn is proposed.
  • Patent Document 1 carbon nanotubes are grown vertically on a substrate by chemical vapor deposition (CVD), and a plurality of carbon nanotubes oriented perpendicular to the substrate are drawn out to form a carbon nanotube untwisted yarn. Therefore, each of the plurality of carbon nanotubes constituting the carbon nanotube untwisted yarn can be oriented along the extending direction of the carbon nanotube untwisted yarn.
  • the density of multi-walled carbon nanotubes having a linear shape and vertical alignment with respect to the substrate surface is 50 mg / cm 3 or more by the CVD method using the substrate, and the inner diameter of the innermost layer of the multi-walled carbon nanotubes is 3 nm or more and 8 nm or less.
  • An aggregate structure of a certain multi-walled carbon nanotube is disclosed (Patent Document 2).
  • the above prior art only discloses that the orientation of the carbon nanotubes is ensured and the density of the carbon nanotubes is improved, and the orientation of the plurality of carbon nanotubes constituting the carbon nanotube wire and the carbon nanotube wire There is no disclosure of any relationship with the electrical conductivity.
  • it is not sufficient to simply secure the orientation of the plurality of carbon nanotubes.
  • the structure and dimensions of the carbon nanotube alone and the degree of orientation of the plurality of carbon nanotubes are not sufficient. It needs to be found quantitatively.
  • An object of the present invention is to provide a carbon nanotube wire, a carbon nanotube production method, and a carbon nanotube wire production method capable of realizing low resistivity and improving conductivity.
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the carbon nanotube wire is 75% or more,
  • the ratio of the sum of the number of carbon nanotubes having an average diameter of the innermost layer of 1.7 nm or less to the number of carbon nanotubes constituting the carbon nanotube wire is 75% or more
  • a carbon nanotube wire, wherein a full width at half maximum ⁇ of an azimuth angle in an azimuth plot by small-angle X-ray scattering indicating the orientation of the plurality of carbon nanotube aggregates is 60 ° or less.
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the total number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, The ratio of the sum of the number of carbon nanotubes having a two-layer structure to the total number of carbon nanotubes constituting the carbon nanotube wire is 85% or more, The ratio of the sum of the number of carbon nanotubes having an average diameter of the innermost layer of 1.7 nm or less to the number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, The full width at half maximum ⁇ of the azimuth angle due to the small-angle X-ray scattering is 15 ° or less, The G / D ratio, which is the ratio of the G band of the Raman spectrum in the Raman spectroscopy to the D band derived from crystallinity, is 150 or more, The carbon nanotube aggregate has a length of 10 ⁇ m or more; The peak top q value in the (10) peak of the scattering intensity by
  • the carbon nanotube wire according to (1) above characterized in that (11) The ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, The ratio of the sum of the number of carbon nanotubes having a two-layer structure to the number of carbon nanotubes constituting the carbon nanotube wire is 85% or more, The ratio of the sum of the number of carbon nanotubes having an average diameter of the innermost layer of 1.7 nm or less to the number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, The full width at half maximum ⁇ of the azimuth angle due to the small-angle X-ray scattering is 15 ° or less, The G / D ratio, which is the ratio of the G band of the Raman spectrum in the Raman spectroscopy to the D band derived from crystallinity, is 150 or more, The carbon nanotube aggregate has a length of 10 ⁇ m or more; The carbon nanotube according to
  • a carbon nanotube production method for producing carbon nanotubes through a synthesis process, a purification process, and a heat treatment process In the heat treatment step, the carbon nanotubes obtained by the purification step are heat-treated in an inert atmosphere at 1000 to 2200 ° C. for 30 minutes to 5 hours.
  • the synthesis temperature of the carbon nanotube is 1300 to 1500 ° C.
  • the catalyst is mixed with at least one selected from the group consisting of Co, Mn, Ni, N, S, Se, and Te.
  • a method for producing a carbon nanotube wire comprising dispersing a plurality of carbon nanotubes in a strong acid at a concentration of 0.1 to 20 wt%, and then aggregating the plurality of carbon nanotubes.
  • the strong acid contains at least one of fuming sulfuric acid and fuming nitric acid.
  • (A) is a figure which shows an example of the two-dimensional scattered image of the scattering vector q of the some carbon nanotube aggregate
  • (b) makes the position of the transmission X-ray the origin in a two-dimensional scattered image.
  • 5 is a graph showing a q value-intensity relationship by WAXS of a plurality of carbon nanotubes constituting a carbon nanotube aggregate.
  • FIG. 1 is a diagram for explaining a configuration of a carbon nanotube wire according to an embodiment of the present invention.
  • the carbon nanotube wire in FIG. 1 shows an example, and the configuration of the carbon nanotube wire according to the present invention is not limited to that in FIG.
  • a carbon nanotube wire 1 (hereinafter referred to as a CNT wire) according to the present embodiment has a plurality of carbon nanotubes 11a, 11a,.
  • the carbon nanotube aggregates 11 (hereinafter referred to as CNT aggregates) constituted by a single or a plurality of carbon nanotube aggregates 11 are formed.
  • the CNT wire means a CNT wire having a CNT ratio of 90% by mass or more. In the calculation of the CNT ratio in the CNT wire, the mass of plating or dopant is excluded.
  • the CNT wire 1 has a configuration in which a plurality of CNT aggregates 11 are bundled.
  • the longitudinal direction of the CNT aggregate 11 forms the longitudinal direction of the CNT wire 1.
  • the CNT aggregate 11 is linear.
  • the plurality of CNT aggregates 11, 11,... In the CNT wire 1 are arranged so that the major axis directions thereof are substantially aligned. Therefore, the plurality of CNT aggregates 11, 11,... In the CNT wire 1 are oriented.
  • the outer diameter of the CNT wire 1 is 0.01 mm or greater and 4.0 mm or less.
  • the CNT aggregate 11 is a bundle of CNTs having a layer structure of one or more layers.
  • the longitudinal direction of the CNT 11 a forms the longitudinal direction of the CNT aggregate 11.
  • the plurality of CNTs 11a, 11a,... In the CNT aggregate 11 are arranged so that their major axis directions are substantially aligned. Therefore, the plurality of CNTs 11a, 11a,... In the CNT aggregate 11 are oriented.
  • the equivalent circle diameter of the CNT aggregate 11 is 20 nm or more and 80 nm or less.
  • the width of the outermost layer of the CNT 11a is, for example, not less than 1.0 nm and not more than 5.0 nm.
  • the ratio of the sum of the number of CNTs having an average diameter of the innermost layer of 1.7 nm or less to the number of CNTs constituting the CNT wire 1 is 75% or more.
  • the innermost layer indicates the innermost layer in the case of a multi-layered CNT, and in the case of a single layer, indicates the single layer itself.
  • the average diameter of the innermost layer is the innermost layer. The average value of the sum of the diameter of the layer to be formed and the diameter of the single layer itself is shown.
  • the number of CNTs whose average diameter of the innermost layer is 1.7 nm or less with respect to the number of CNTs constituting the CNT wire 1.
  • the ratio of the sum is a value within the above range.
  • the CNTs 11a constituting the CNT aggregate 11 are cylindrical bodies having a single-layer structure or a multi-layer structure, and are called SWNT (single-walled nanotube) and MWNT (multi-walled nanotube), respectively.
  • SWNT single-walled nanotube
  • MWNT multi-walled nanotube
  • FIG. 1 only CNTs having a two-layer structure are shown for convenience, but the CNT aggregate 11 includes CNTs having a layer structure of three or more layers and CNTs having a single-layer structure.
  • the CNT aggregate 11 may be formed from a CNT having a layer structure of three or more layers or a CNT having a single layer structure.
  • the CNT 11a having a two-layer structure is a three-dimensional network structure in which two cylindrical bodies T1 and T2 (hereinafter also simply referred to as “layers”) having a hexagonal lattice network structure are arranged substantially coaxially. , Called DWNT (Double-walled nanotube).
  • the hexagonal lattice which is a structural unit, is a six-membered ring in which a carbon atom is arranged at the apex, and these are continuously bonded adjacent to another six-membered ring.
  • the property of the CNT 11a depends on the chirality of the cylindrical body as described above. Chirality is roughly divided into armchair type, zigzag type, and other chiral types. Armchair type is metallic, chiral type is semiconducting and semimetallic, and zigzag type is semiconducting and semimetallic. Show. Therefore, the conductivity of CNTs varies greatly depending on which chirality is present. In the CNT aggregate, it is preferable to increase the ratio of armchair CNTs that exhibit metallic behavior from the viewpoint of improving conductivity.
  • the metallic behavior is theoretically. It is desirable to separately produce CNTs exhibiting semiconductivity and CNTs exhibiting semiconducting behavior, and after performing doping treatment only on semiconducting CNTs, it is desirable to combine them.
  • different elements it is preferable to select a layer structure of CNT in which the doping treatment with molecules is effective. Thereby, the conductivity of the CNT wire 1 made of a mixture of CNT exhibiting metallic behavior and CNT exhibiting semiconducting behavior can be further improved.
  • a CNT with a small number of layers such as a two-layer structure or a three-layer structure has a relatively higher conductivity than a CNT with a larger number of layers.
  • the dopant is introduced into the innermost layer of the CNT or in a gap between the CNTs formed by a plurality of CNTs. The doping effect is manifested by introducing a dopant into the interior of the CNT, but in the case of multilayer CNT, the doping effect of the tube located inside the outermost layer and not in contact with the innermost layer becomes difficult to manifest.
  • the doping effect is highest in CNTs having a two-layer or three-layer structure.
  • the dopant is often a highly reactive reagent that exhibits strong electrophilicity or nucleophilicity.
  • CNTs having a single-layer structure are less rigid than multilayers and are inferior in chemical resistance. Therefore, when a doping process is performed, the structure of the CNT itself may be destroyed.
  • the proportion of CNTs having a two-layer structure or a three-layer structure is increased.
  • the ratio of the number of CNTs having a two-layer structure or a three-layer structure to the total number of CNTs constituting the CNT wire is 75% or more, preferably 90% or more.
  • the proportion of CNTs having a two-layer structure or a three-layer structure is calculated by observing and analyzing the cross section of the CNT aggregate 11 with a transmission electron microscope (TEM) and measuring the number of layers of each of 100 CNTs. be able to.
  • TEM transmission electron microscope
  • the ratio of the sum of the number of CNTs having a two-layer structure to the total number of CNTs constituting the CNT wire 1 is preferably 80% or more, 85 % Or more is more preferable.
  • G / D ratio which is ratio of G band of Raman spectrum in Raman spectroscopy and D band derived from crystallinity is 80 or more, and 100 or more. More preferably, it is more preferably 155 or more.
  • the D band appears in the vicinity of a Raman shift of 1350 cm ⁇ 1 and can be said to be a peak of a spectrum derived from a defect. Therefore, the ratio of the D band to the G band (G / D ratio) is used as an index of the amount of defects in the CNT, and it is determined that the larger the G / D ratio, the fewer the defects in the CNT.
  • the G / D ratio in the Raman spectrum is set to a value within the above range.
  • FIG. 2A is a diagram showing an example of a two-dimensional scattering image of the scattering vector q of the plurality of CNT aggregates 11, 11,... By small angle X-ray scattering (SAXS), and FIG. 5 is a graph showing an example of an azimuth plot showing a relationship between an azimuth angle and a scattering intensity of an arbitrary scattering vector q with the origin of the position of transmitted X-rays in a two-dimensional scattered image.
  • SAXS small angle X-ray scattering
  • the full width at half maximum ⁇ of the azimuth angle in the azimuth plot shown in FIG. 2B is 48 °.
  • the orientation refers to the angle difference between the internal CNT and the CNT aggregate vector with respect to the vector V in the longitudinal direction of the stranded wire produced by twisting together the CNTs.
  • SAXS small angle X-ray scattering
  • the full width at half maximum ⁇ of the azimuth angle is 60 ° or less, the orientation of the plurality of CNT aggregates 11 is good, the contact points between the CNT aggregates 11, 11, that is, the CNT bundles increase, and the CNT aggregates As a result of the contact resistance between the bodies 11 and 11 being lowered, the resistivity of the CNT wire 1 is reduced. Further, if the full width at half maximum ⁇ is 30 ° or less, the orientation of the plurality of CNT aggregates 11 is very good, and if the full width at half maximum ⁇ is 15 ° or less, the orientation of the plurality of CNT aggregates 11 is excellent. It is very good and the resistivity of the CNT wire 1 is further reduced.
  • the range of the full width at half maximum ⁇ of the azimuth angle is set to a value within the above range.
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the total number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, and the total number of carbon nanotubes constituting the carbon nanotube wire.
  • the number of carbon nanotubes in which the ratio of the sum of the number of carbon nanotubes having a two-layer structure is 85% or more and the average diameter of the innermost layer is 1.7 nm or less with respect to the number of carbon nanotubes constituting the carbon nanotube wire
  • the G / D ratio which is the ratio between the G band of the Raman spectrum in Raman spectroscopy and the D band derived from crystallinity, is 150 or more, and the length of the aggregate of carbon nanotubes On the premise that the thickness is 10 ⁇ m or more, (i) Whether the number of q value of the peak top in (10)
  • FIG. 3 is a graph showing a q value-intensity relationship by WAXS (wide angle X-ray scattering) of a plurality of CNTs 11a, 11a,... Constituting the CNT aggregate 11.
  • WAXS wide angle X-ray scattering
  • WAXS is suitable for evaluating the structure of a substance having a size of several nm or less.
  • the density of the CNT 11a having an outer diameter of several nm or less can be evaluated by analyzing information of the X-ray scattering image by the following method.
  • the value of the lattice constant estimated from the q value of the peak top of the (10) peak found near 1 is measured. Based on the measured value of the lattice constant and the diameter of the CNT aggregate observed by Raman spectroscopy or TEM, it is confirmed that the CNTs 11a, 11a,... Can do.
  • a plurality of CNTs within 1 to 10 layers are aggregated rather than existing alone. At the time of this aggregation, the contact area is increased by laminating in the width direction rather than the structure of CNT having a high aspect ratio, and an energy stable structure is obtained.
  • the laminated structure tends to have an HCP structure.
  • the diameter distribution of the plurality of CNT aggregates in the CNT wire 1 is narrow, and the plurality of CNTs 11a, 11a,... Are regularly arranged, that is, have a high density, thereby forming an HCP structure. .
  • the peak top q value in the (10) peak of the intensity due to X-ray scattering is 2.0 nm ⁇ 1 or more, and the full width at half maximum ⁇ q (FWHM) is 2.0 nm ⁇ 1 or less. More preferably, the q value of the peak top is 3.0 nm ⁇ 1 or more, and the full width at half maximum ⁇ q (FWHM) is 0.5 nm ⁇ 1 or less. At this time, the full width at half maximum ⁇ q (FWHM) is, for example, 0.1 nm ⁇ 1 or more.
  • the diameter distribution of the plurality of CNTs 11 a in the CNT aggregate 11 is Since the narrow and plural CNTs 11a, 11a,... Are regularly arranged to form the HCP structure, the contact points between the CNTs 11a, 11a, that is, CNTs alone, increase, and the contact resistance between CNTs and CNTs is reduced. Can be small. Therefore, the peak top q value and the full width at half maximum ⁇ q at the intensity (10) peak are set to values within the above range.
  • the plurality of CNTs 11 a, 11 a,... Form an HCP structure, but the CNTs 11 a, 11 a,. Having the HCP structure can also be confirmed by observing and analyzing the cross section of the CNT wire 1 with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the CNT wire 1 has an HCP structure formed by a plurality of CNTs 11a, 11a,...,
  • the overall width direction length of the HCP structure is preferably 3 nm or more, and is preferably 10 nm or more. More preferably, it is more preferably 30 nm or more.
  • the length of the CNT aggregate 11 is preferably 10 ⁇ m or more.
  • the length of the CNT aggregate 11 can be measured from the average value of the lengths observed with a scanning electron microscope or an atomic force microscope and laterally lengthened with image software.
  • CNT Manufacturing method of CNT and CNT wire
  • CNT can be manufactured through each process of a synthetic
  • a floating catalyst method Patent No. 5819888
  • a substrate method Patent No. 5990603
  • the first carbon source for example, one or more selected from the group consisting of decahydronaphthalene (decalin), toluene, benzene, hexane, cyclohexane, O-xylene, ethylbenzene, cyclohexane, and ethylcyclohexane Materials can be used.
  • the second carbon source added to the first carbon source for example, one or a plurality of materials selected from the group consisting of ethylene, methane, and acetylene can be used.
  • ferrocene alone or a substance obtained by mixing ferrocene as a main component with any one of cobaltcene, nickelocene, and magnetrocene so as to be 10% or less with respect to the molecular weight of ferrocene is used. it can. Moreover, it is preferable to synthesize CNTs using decahydronaphthalene as the first carbon source and metal particles having an average diameter of 2 nm or less as the catalyst. Thereby, the size of the crystallite of the HCP structure formed in the CNT wire 1 can be increased, and the contact resistance between CNT and CNT can be further reduced. Examples of the metal particles include iron catalyst particles. In addition, a reaction accelerator such as thiophene may be added to the above starting materials.
  • the synthesis temperature of CNT is 1300 to 1500 ° C.
  • the catalyst is cobalt (Co), manganese (Mn), nickel (Ni), nitrogen (N), It is preferable to mix at least one selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te).
  • the misted raw material is blown into the furnace at 8 to 12 L / min with hydrogenated gas.
  • the synthesized CNTs are put in a pressure vessel and filled with water, heated at 80 to 200 ° C. for 0.5 to 3.0 hours, and then heated to 450 to 600 ° C. and 0 at atmospheric pressure. Calcinate CNT in 5 hours to 1.0 hour, and remove the metal catalyst with a strong acid such as hydrochloric acid. Thereby, the amorphous carbon which could not be converted to CNT can be removed, and the CNT can be sufficiently purified.
  • the CNT obtained by the purification step is 1000 to 2200 ° C., preferably 1500 to 2200 ° C., more preferably 1800 to 2200 ° C. for 30 minutes to 5 hours in an inert atmosphere such as Ar. It is preferable to anneal with. When the temperature exceeds 2200 ° C., adjacent CNTs come into contact with each other, and it becomes difficult to maintain the diameter of the CNT. Thereby, CNTs with fewer defects can be produced.
  • Production of CNT wire from the produced CNTs includes dry spinning (Patent No. 5819888, Patent No. 5990202, Patent No. 5350635), wet spinning (Patent No. 5135620, Patent No. 5115771, Patent No. 5288359), liquid crystal It can be carried out by spinning (Special Table 2014-530964).
  • the orientation of CNT aggregates and CNTs, and the arrangement structure and density of CNTs are adjusted by appropriately selecting a spinning method such as dry spinning, wet spinning, and liquid crystal spinning, which will be described later, and spinning conditions of the spinning method. Can do.
  • a spinning method such as dry spinning, wet spinning, and liquid crystal spinning, which will be described later
  • spinning conditions of the spinning method Can do.
  • the plurality of CNTs are aggregated.
  • the plurality of CNTs are preferably aggregated.
  • the strong acid as a solvent of the CNT contains at least one of fuming sulfuric acid and fuming nitric acid.
  • the orientation of CNT can be improved dramatically.
  • fuming nitric acid is used as a solvent
  • CNT is dispersed in the solvent so as to be 0.1 to 20 wt%.
  • ultrasonic waves it is preferable to apply ultrasonic waves to the solvent.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the total number of CNTs 11a constituting the CNT wire 1 is 75% or more.
  • the ratio of the sum of the number of CNTs whose innermost layer diameter is 1.7 nm or less to the number of CNTs 11a constituting the CNTs 11a is 75% or more, and small angle X-ray scattering indicating the orientation of the plurality of CNT aggregates 11 Since the full width at half maximum ⁇ of the azimuth angle in the azimuth plot is less than 60 °, the conductivity is high because the CNT ratio of the two-layer or three-layer structure is high, and the resistivity is high because the CNT ratio with a small innermost layer diameter is high.
  • the q value of the peak top at the (10) peak due to X-ray scattering indicating the arrangement of a plurality of CNTs 11a is 2.0 nm ⁇ 1 or more and the full width at half maximum ⁇ q is 2.0 nm ⁇ 1 or less. Since a plurality of CNTs 11a are regularly arranged in the body 11 and exist at a high density, the contact resistance between the CNTs 11a and CNTs 11a can be reduced, and the low resistivity of the CNT aggregate 11 can be realized. Thereby, the conductivity of the CNT wire 1 can be further improved.
  • the G / D ratio which is the ratio of the G band of the Raman spectrum in Raman spectroscopy to the D band derived from crystallinity, is 80 or more, there are few defects in the CNT 11a, the crystallinity is high, and the CNT 11a alone A low resistivity can be realized, and the conductivity of the CNT wire 1 can be further improved.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the total number of CNTs 11 a constituting the CNT wire 1 is 90% or more, and 2 to the total number of CNTs 11 a constituting the CNT wire 1.
  • the ratio of the sum of the number of CNTs having a layer structure is 85% or more, and the ratio of the sum of the number of CNTs having an average inner diameter of 1.7 nm or less to the number of CNTs 11a constituting the CNT wire 1 is 90.
  • the full width at half maximum ⁇ of azimuth angle by small-angle X-ray scattering is 15 ° or less
  • the G / D ratio which is the ratio between the G band of the Raman spectrum and the D band derived from crystallinity in Raman spectroscopy, is 150 or more
  • the length of the CNT aggregate 11 is 10 ⁇ m or more
  • the scattering intensity by X-ray scattering indicating the arrangement of a plurality of CNTs 11a, 11a,.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the total number of CNTs 11a constituting the CNT wire 1 is 90% or more, and relative to the total number of CNTs 11a constituting the CNT wire 1
  • the ratio of the sum of the number of CNTs having a two-layer structure is 85% or more, and the ratio of the sum of the number of CNTs having an average inner diameter of 1.7 nm or less with respect to the number of CNTs 11a constituting the CNT wire 1 Is 90% or more, the full width at half maximum ⁇ of azimuth angle by small-angle X-ray scattering is 15 ° or less, and G / D, which is the ratio between the G band of the Raman spectrum and the D band derived from crystallinity in Raman spectroscopy The ratio is 150 or more, the length of the CNT aggregate 11 is 10 ⁇ m or more, and the CNT wire 1 is formed of a plurality of CNTs 11a
  • the CNT wire may further include a different element / molecule doped in at least one of the inside of the CNT and between the CNT-CNT.
  • dopants lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), strontium (Sr), barium (Ba), fluorine (F), chlorine (Cl), bromine
  • One or more materials selected from the group consisting of (Br), iodine (I), and nitric acid can be selected.
  • the CNT wire of the present embodiment is suitable as a wire material for electric wires for transmitting electric power and signals, and is more suitable as a material for wire wires mounted on a moving body such as a four-wheeled vehicle. This is because it is lighter than metal wires and is expected to improve fuel efficiency.
  • a material used for the insulating coating layer of the coated electric wire using metal as the core wire can be used, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • the thermoplastic resin include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyacetal, polystyrene, polycarbonate, polyamide, polyvinyl chloride, polymethyl methacrylate, and polyurethane.
  • PTFE polytetrafluoroethylene
  • polyethylene polyethylene
  • polypropylene polyacetal
  • polystyrene polycarbonate
  • polyamide polyamide
  • polyvinyl chloride polymethyl methacrylate
  • polyurethane polyurethane
  • a thermosetting resin a polyimide, a phenol resin, etc. can be mentioned, for example. These may be used alone, or two or more kinds may be appropriately mixed and used.
  • a wire harness having at least one of the CNT-coated wires may be configured.
  • Example 1 Decahydronaphthalene as a carbon source, ferrocene as a catalyst, and reaction promotion inside an alumina tube having an inner diameter of 60 mm and a length of 1600 mm heated to 1300 ° C. by an electric furnace using a floating catalyst vapor deposition (CCVD) method
  • CCVD floating catalyst vapor deposition
  • the raw material solution L containing the agent thiophene in a volume ratio of 100: 4: 1 was supplied by spraying.
  • hydrogen was supplied at 9.5 L / min.
  • the obtained CNTs were collected in a sheet form by a collecting machine, and these were collected to produce a CNT aggregate, and further the CNT aggregate was bundled to produce a CNT wire.
  • the obtained CNT wire was heated to 500 ° C. in the atmosphere, and further subjected to acid treatment to achieve high purity.
  • a CNT wire is produced by a dry spinning method (Patent No. 5819888) or a wet spinning method (Patent No. 5135620, Patent No. 5115771, Patent No. 5288359) directly spinning CNTs produced by the above-mentioned floating catalyst vapor phase growth method.
  • Example 2 A CNT wire was obtained in the same manner as in Example 1 except that heating in the atmosphere was performed at 400 ° C.
  • Example 3 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the CCVD raw material was changed to 100: 1: 0.01.
  • Example 4 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the CCVD raw material was changed to 100: 1: 0.01 and that heating in the atmosphere was performed at 400 ° C.
  • Example 5 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the CCVD raw material was changed to 100: 2: 1.
  • Example 6 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the CCVD raw material was changed to 100: 2: 1 and heating in the atmosphere was performed at 400 ° C.
  • Example 7 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the CCVD raw material was changed to 100: 2: 1, the firing temperature was 1100 ° C., and heating in the atmosphere was performed at 400 ° C. It was.
  • Example 8 A CNT wire was obtained in the same manner as in Example 1 except that the volume ratio of the above CCVD raw material was changed to 100: 2: 1, the firing temperature was 1200 ° C., and heating in the atmosphere was performed at 400 ° C. It was.
  • Example 9 carbon nanotubes were synthesized by a horizontal tubular electric furnace using a floating catalyst vapor deposition (CCVD) method.
  • the temperature of the electric furnace was 1000 ° C to 1500 ° C.
  • a quartz tube having an inner diameter of 10 mm to 60 mm and a length of 2000 mm was installed in this electric furnace.
  • This raw material solution L was made into a mist form by spraying, and this was put into a vaporizer.
  • the vaporized raw material was blown into a quartz tube heated with hydrogen as a carrier gas to synthesize CNTs.
  • the hydrogen flow rate at this time was 9.5 L / min.
  • the synthesized CNTs were collected as aggregates in a collection box, and the collected CNTs were sealed together with water in a high-pressure vessel and heated at 200 ° C. for 3 hours. Then, it baked at 500 degreeC for 30 minutes in air
  • Ar inert atmosphere
  • the annealed CNTs were dispersed in fuming nitric acid while applying ultrasonic waves to a concentration of 0.1 to 20 wt%.
  • the dispersion was passed through a ⁇ 20 ⁇ m ceramic tube while applying pressure.
  • the outlet portion of the ceramic tube was placed in a state where it was attached to a coagulant (water), and the dispersion was directly blown into water, whereby the injected CNT was converted into a wire in water to obtain a CNT wire.
  • Example 10 After firing CNT, a CNT wire was obtained in the same manner as in Example 9 except that annealing was performed at 1500 ° C. for 1 hour in an inert atmosphere (Ar).
  • Example 11 After firing CNT, a CNT wire was obtained in the same manner as in Example 9 except that annealing was performed at 1800 ° C. for 1 hour in an inert atmosphere (Ar).
  • Example 15 The synthesis was carried out using iron catalyst particles with an average diameter of 2 nm, except that the diameter of the reaction tube (quartz tube) was reduced to ⁇ 20 mm and the carrier gas flow rate (hydrogen flow rate) was 9.5 L / min. A CNT wire was obtained in the same manner as in Example 9.
  • Example 16 A CNT wire was obtained in the same manner as in Example 15 except that synthesis was performed using iron catalyst particles having an average diameter of 1 nm.
  • Example 17 A CNT wire was obtained in the same manner as in Example 9 except that the annealed CNT was dispersed in concentrated sulfuric acid as a solvent so as to be 7 wt% and molded into a linear shape.
  • Example 18 A CNT wire was obtained in the same manner as in Example 9, except that the annealed CNT was dispersed into concentrated nitric acid as a solvent while applying ultrasonic waves so as to be 13 wt% and molded into a linear shape.
  • Example 19 A CNT wire was obtained in the same manner as in Example 9, except that synthesis was performed using iron catalyst particles having an average diameter of 1 nm and the number density of iron catalyst particles in the furnace being twice that of Example 9.
  • the number density of the catalyst particles in the furnace means the density of the catalyst particles distributed in the space in the furnace. Examples of the method for increasing the number density include an improvement in hydrogen flow rate, an improvement in furnace temperature, an increase in the amount of catalyst raw material input, and the use of a catalyst particle growth accelerator.
  • Example 20 A CNT wire was obtained in the same manner as in Example 9 except that iron catalyst particles having an average diameter of 1 nm were used and the number density of iron catalyst particles in the furnace was three times that in Example 9, and synthesis was performed.
  • Example 21 A CNT wire was obtained in the same manner as in Example 9 except that iron catalyst particles having an average diameter of 1 nm were used and the number density of iron catalyst particles in the furnace was 4 times that in Example 9, and synthesis was performed.
  • Example 22 A CNT wire was synthesized by combining the conditions of Examples 10 to 21. Specifically, decahydronaphthalene and ethylene gas are used as the carbon source, the density of iron catalyst particles having an average diameter of 1 nm is four times that of Example 9, and the convection time of the iron catalyst particles in the furnace is 0.1.
  • the synthesis of CNT was carried out from 1 second to 1 second, the CNT was baked, and then annealed in an inert atmosphere (Ar) at 1800 ° C. for 1 hour. The annealed CNT was used as a solvent.
  • the concentrated nitric acid was dispersed while applying ultrasonic waves so as to be 13 wt% and molded into a linear shape to obtain a CNT wire.
  • Example 23 As a CNT growth catalyst, a CNT wire was obtained in the same manner as in Example 9 except that cobaltcene was added in addition to ferrocene in a molar ratio with respect to ferrocene and was synthesized using iron-cobalt catalyst particles. Got. Cobalt cene cobalt was distributed in the iron crystal structure of the iron catalyst particles and was not present alone, and cobalt sen was added in the above molar ratio using the iron catalyst particles.
  • Example 24 A CNT wire was obtained in the same manner as in Example 9 except that the hydrogen supply amount was reduced and the residence time of the catalyst particles in the tubular furnace was 2 seconds.
  • Example 25 A CNT wire was obtained in the same manner as in Example 22 except that synthesis was performed using iron catalyst particles having an average diameter of 1.5 nm.
  • Example 26 A CNT wire was obtained in the same manner as in Example 22 except that the synthesis was performed with the number density of iron catalyst particles in the furnace set to 3 times that of Example 9.
  • Example 27 A CNT wire was obtained in the same manner as in Example 22 except that synthesis was performed using iron catalyst particles having an average diameter of 2.0 nm.
  • Example 2 A CNT wire was obtained in the same manner as in Example 1, except that the CCVD raw material ratio was changed to 100: 1: 0.05, and the number of acid treatment steps and the acid treatment time were shortened.
  • X-rays were obtained using a small-angle X-ray scattering device (SPring-8, X-ray wavelength: 1.24 mm, camera length: 615 mm, beam diameter: about 3.0 ⁇ m, detector: flat panel (C9732DK)). Scattering measurement was performed, and the obtained azimuth plot was fitted with a Gaussian function or a Lorentz function to obtain a full width at half maximum ⁇ .
  • SPring-8 small-angle X-ray scattering device
  • X-ray wavelength 1.24 mm
  • camera length 615 mm
  • beam diameter about 3.0 ⁇ m
  • detector flat panel (C9732DK)
  • the CNT wire was connected to a resistance measuring machine (manufactured by Keithley, apparatus name “DMM2000”), and resistance was measured by a four-terminal method.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of CNTs constituting the CNT wire is within the scope of the present invention.
  • the ratio of the sum of the number of CNTs having an average inner diameter of 0.7 nm to 1.7 nm to the number of CNTs constituting the wire is within the scope of the present invention, and the orientation of a plurality of CNT aggregates It was found that the full width at half maximum ⁇ of the azimuth angle in the azimuth plot by SAXS is within the range of the present invention, and a low resistivity can be obtained.
  • Example 1 when the full width at half maximum ⁇ by SAXS was 30 ° or less, it was found that a lower resistivity was obtained compared to Example 2.
  • Example 3 the average diameter of the innermost layer is larger than in Examples 1 and 2, but the full width at half maximum ⁇ by SAXS is the same value as in Example 1, and a resistivity lower than that in Example 2 is obtained. I understood that.
  • Example 4 although the average diameter of the innermost layer is larger than in Examples 1 and 2, and the full width at half maximum ⁇ by SAXS is larger than that in Example 3, the full width at half maximum ⁇ is within the scope of the present invention. It has been found that a low resistivity can be obtained.
  • Example 5 although the average diameter of the innermost layer is small and the ratio of CNTs having an average diameter of 0.7 nm or more and 1.7 nm or less is small as compared with Examples 1 and 2, the full width at half maximum ⁇ by SAXS is similar to that of Example 1. It was an equivalent value, and it was found that a resistivity equivalent to that in Example 1 was obtained.
  • Example 6 the average diameter of the innermost layer is small as compared with Examples 1 and 2, the ratio of CNTs having an average diameter of 0.7 nm to 1.7 nm is small, and the full width at half maximum ⁇ by SAXS is smaller than that of Example 3. Although large, the full width at half maximum ⁇ is within the range of the present invention, and it has been found that a low resistivity can be obtained.
  • Example 7 the CNT ratio of the two-layer or three-layer structure, the average diameter of the innermost layer, and the full width at half maximum ⁇ by SAXS are substantially the same values as in Example 1, and the G / D ratio in the Raman spectrum is about 80. The value is smaller than that of Example 1, and the resistivity is higher than that of Example 1, but it was found that a low resistivity can be obtained.
  • Example 8 the CNT ratio of the two-layer or three-layer structure, the average diameter of the innermost layer, and the full width at half maximum ⁇ by SAXS are substantially equal to those of Example 1, and the G / D ratio in the Raman spectrum is about 100. This value is larger than that of Example 7 and is found to be lower than that of Example 7.
  • the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure is within the scope of the present invention, and is the maximum with respect to the number of CNTs constituting the CNT wire.
  • the ratio of the sum of the number of CNTs having an average inner layer diameter of 0.7 nm or more and 1.7 nm or less is within the scope of the present invention, and the azimuth angle in the azimuth plot by SAXS indicating the orientation of a plurality of CNT aggregates. It was found that the full width at half maximum ⁇ was within the range of the present invention, and a low resistivity was obtained.
  • Example 10 the G / D ratio in the Raman spectrum was larger than in Example 9, and a lower resistivity was obtained.
  • Example 11 the G / D ratio in the Raman spectrum was larger than that in Example 10, and an even lower resistivity was obtained.
  • Example 12 the CNT ratio of the two-layer or three-layer structure was larger than that in Example 9, and a lower resistivity was obtained.
  • Example 13 the CNT ratio of the two-layer or three-layer structure and the CNT ratio of the two layers were larger than in Example 12, and a lower resistivity was obtained.
  • Example 14 the CNT ratio of the two layers was larger than in Example 14, and a lower resistivity was obtained.
  • Example 15 although the ratio of CNTs having an average diameter of 0.7 nm or more and 1.7 nm or less was slightly smaller than that of Example 9, the average diameter of the innermost layer was smaller than that of Example 9, and the q value of the peak top by WAXS was implemented. Greater and lower resistivity than Example 9 was obtained.
  • Example 16 the average diameter of the innermost layer is smaller than that of Example 15, the ratio of CNTs having an average diameter of 0.7 nm or more and 1.7 nm or less is larger than that of Example 15, and the peak top q value by WAXS is Example 15. Larger and lower resistivity was obtained.
  • Example 17 the full width at half maximum ⁇ by SAXS was smaller than that in Example 9, and a remarkably low resistivity was obtained.
  • Example 18 the full width at half maximum ⁇ by SAXS was smaller than in Example 17, and a lower resistivity was obtained.
  • Example 19 the full width at half maximum ⁇ q by WAXS was smaller than that of Example 9, the overall length in the width direction of the HCP structure was larger than that of Example 9, and a lower resistivity was obtained.
  • Example 20 the full width at half maximum ⁇ q by WAXS was smaller than that of Example 19, the overall length in the width direction of the HCP structure was larger than that of Example 19, and a lower resistivity was obtained.
  • Example 21 the full width at half maximum ⁇ q by WAXS was smaller than in Example 20, the overall length in the width direction of the HCP structure was larger than in Example 20, and a lower resistivity was obtained.
  • Example 22 the CNT ratio of the two-layer or three-layer structure and the CNT ratio of the two layers are larger than those of Example 9, the average diameter of the innermost layer is smaller than that of Example 9, and the average diameter is 0.7 nm or more and 1.7 nm.
  • the following CNT ratio is larger than Example 9, full width at half maximum ⁇ q by WAXS is smaller than Example 9, q value of peak top by WAXS is larger than Example 9, and full width at half maximum ⁇ q by WAXS is greater than Example 9.
  • the G / D ratio in the Raman spectrum was larger than that in Example 9, the overall length in the width direction of the HCP structure was larger than that in Example 9, and a much lower resistivity was obtained.
  • Example 23 the length of the CNT aggregate was larger than that of Example 9, the overall width direction length of the HCP structure was larger than that of Example 9, and a lower resistivity was obtained.
  • Example 24 the full width at half maximum ⁇ by SAXS was smaller than that of Example 9, the length of the CNT aggregate was larger than that of Example 9, and a lower resistivity was obtained.
  • Examples 17, 18, 22, 25 to 27 in which the SAXS half-value width ⁇ was 15 ° or less.
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure or a three-layer structure to the number of carbon nanotubes constituting the carbon nanotube wire is 90% or more, and the carbon nanotube wire
  • the ratio of the sum of the number of carbon nanotubes having a two-layer structure to the number of carbon nanotubes constituting the carbon nanotube is 85% or more, and the average diameter of the innermost layer with respect to the number of carbon nanotubes constituting the carbon nanotube wire is 1.7 nm.
  • the ratio of the sum of the number of carbon nanotubes is 90% or more, and the Raman content
  • the G / D ratio which is the ratio of the G band of the Raman spectrum in the method to the D band derived from crystallinity, is 150 or more, the length of the carbon nanotube aggregate is 10 ⁇ m or more, and the carbon nanotube wire is In Examples 22 and 25 to 27 having the HCP structure formed of the carbon nanotubes and the overall width direction length of the HCP structure is 30 nm or more, the resistivity was significantly reduced.
  • Comparative Example 1 it was found that the full width at half maximum ⁇ by SAXS was outside the scope of the present invention, and the resistivity was higher than in Examples 1-8.

Abstract

低抵抗率を実現し、導電性を向上することができるCNT線材を提供する。CNT線材(1)は、1層以上の層構造を有する複数のCNT(11a),(11a),・・・で構成されるCNT集合体(11)の単数から、又は複数が束ねられてなる。CNT線材(1)を構成する複数のCNT(11a),(11a),・・・の個数に対する、2層又は3層構造を有するCNTの個数の和の比率が75%以上であり、CNT線材(1)を構成するCNTの個数に対する、最内層の平均直径が1.7nm以下であるCNTの個数の和の比率が75%以上であり、且つ、複数のCNT集合体(11),(11),・・・の配向性を示すSAXSのアジマスプロットにおけるアジマス角の半値全幅Δθが60°以下である。

Description

カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法
 本発明は、複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体を束ねてなるカーボンナノチューブ線材、カーボンナノチューブの製造方法、及びカーボンナノチューブ線材の製造方法に関する。
 従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。
 上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。
 こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。
 カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10-6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブからカーボンナノチューブ線材を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブから、μm~mm単位のカーボンナノチューブ線材を作製した場合、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題があることから、カーボンナノチューブをそのまま線材として使用することが困難であった。
 そこで、カーボンナノチューブ線材の導電性を向上させる方法の一つとして、カーボンナノチューブ線材を構成するカーボンナノチューブの配向性を向上させる方法が考えられる。
 カーボンナノチューブの配向性を向上させた線材としては、例えばカーボンナノチューブ無撚糸を束ねてなるカーボンナノチューブ中心糸と、該カーボンナノチューブ中心糸に巻き付けられたカーボンナノチューブ無撚糸とを備えるカーボンナノチューブ集合体が提案されている(特許文献1)。この従来技術では、化学気相成長法(CVD法)により基板上にカーボンナノチューブを垂直に成長させ、該基板に対して垂直に配向される複数のカーボンナノチューブを引き出してカーボンナノチューブ無撚糸を形成するので、カーボンナノチューブ無撚糸を構成する複数のカーボンナノチューブのそれぞれが、カーボンナノチューブ無撚糸の延びる方向に沿うように配向できるとされている。
 また、基板を用いたCVD法により、直線形状且つ基板表面に対する垂直配向性を有する多層カーボンナノチューブの密度が50mg/cm以上であり、該多層カーボンナノチューブの最内層の内径が3nm以上8nm以下である多層カーボンナノチューブの集合構造が開示されている(特許文献2)。
特開2016-160539号公報 特開2008-120658号公報
 しかしながら、上記従来技術では、カーボンナノチューブの配向性を確保し、カーボンナノチューブの密度の向上を図ることを開示するにとどまり、カーボンナノチューブ線材を構成する複数のカーボンナノチューブの配向性と、当該カーボンナノチューブ線材の導電性との関係は一切開示されていない。特に、カーボンナノチューブ線材の低抵抗率を実現する場合、単に複数のカーボンナノチューブの配向性を確保するだけでは不十分であり、カーボンナノチューブ単体の構造や寸法、及び複数のカーボンナノチューブの配向の度合いを定量的に見出す必要がある。
 本発明の目的は、低抵抗率を実現し、導電性を向上することができるカーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法を提供することにある。
 すなわち、上記課題は以下の発明により達成される。
(1)1層以上の層構造を有する複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数から、又は複数が束ねられて形成されているカーボンナノチューブ線材であって、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が75%以上であり、
 前記複数のカーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値全幅Δθが60°以下であることを特徴とする、カーボンナノチューブ線材。
(2)小角X線散乱による前記アジマス角の半値全幅Δθが30°以下であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(3)前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であることを特徴とする、上記(2)記載のカーボンナノチューブ線材。
(4)前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(5)前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が90%以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(6)前記カーボンナノチューブ線材が、前記複数のカーボンナノチューブによって形成されるHCP構造を有し、前記HCP構造の全体の幅方向長さが3nm以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(7)X線散乱による散乱強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上であり、且つ半値全幅Δqが2.0nm-1以下であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(8)ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が80以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(9)前記カーボンナノチューブ集合体の長さが10μm以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(10)前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、
 前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であり、
 前記ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、
 前記カーボンナノチューブ集合体の長さが10μm以上であり、
 前記複数のカーボンナノチューブの配列を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が3.0nm-1以上であり、且つ半値全幅Δqが0.5nm-1以下であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(11)前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、
 前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、
 前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であり、
 前記ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、
 前記カーボンナノチューブ集合体の長さが10μm以上であり、
 前記カーボンナノチューブ線材が、前記複数のカーボンナノチューブによって形成されるHCP構造を有し、前記HCP構造の全体の幅方向長さが30nm以上であることを特徴とする、上記(1)記載のカーボンナノチューブ線材。
(12)合成工程、精製工程及び熱処理工程の各工程を経てカーボンナノチューブを製造するカーボンナノチューブの製造方法であって、
 前記熱処理工程において、前記精製工程によって得られたカーボンナノチューブを、不活性雰囲気下で、1000~2200℃、30分~5時間で熱処理することを特徴とする、カーボンナノチューブの製造方法。
(13)前記合成工程において、前記炭素源としてデカヒドロナフタレンを、前記触媒として直径2nm以下の金属粒子を用いて、前記カーボンナノチューブを合成することを特徴とする、上記(12)記載のカーボンナノチューブの製造方法。
(14)前記合成工程において、前記カーボンナノチューブの合成温度が1300~1500℃であり、前記触媒にCo、Mn、Ni、N、S、Se、Teからなる群から選択された少なくとも1種を混合することを特徴とする、上記(12)又は(13)記載のカーボンナノチューブの製造方法。
(15)複数のカーボンナノチューブを、0.1~20wt%の濃度で強酸に分散させた後、前記複数のカーボンナノチューブを凝集させることを特徴とする、カーボンナノチューブ線材の製造方法。
(16)前記強酸が、発煙硫酸及び発煙硝酸のうちの少なくとも1種を含むことを特徴とする、上記(15)記載のカーボンナノチューブ線材の製造方法。
 本発明によれば、低抵抗率を実現し、導電性を向上することができるカーボンナノチューブ線材を提供することができる。
本発明の実施形態に係るカーボンナノチューブ線材の構成を説明するための図である。 (a)は、SAXSによる複数のカーボンナノチューブ集合体の散乱ベクトルqの二次元散乱像の一例を示す図であり、(b)は、二次元散乱像において、透過X線の位置を原点とする任意の散乱ベクトルqの方位角-散乱強度の関係を示すアジマスプロットの一例を示すグラフである。 カーボンナノチューブ集合体を構成する複数のカーボンナノチューブのWAXSによるq値-強度の関係を示すグラフである。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
<カーボンナノチューブ線材及びカーボンナノチューブ集合体の構成>
 図1は、本発明の実施形態に係るカーボンナノチューブ線材の構成を説明するための図である。図1におけるカーボンナノチューブ線材は、その一例を示すものであり、本発明に係るカーボンナノチューブ線材の構成は、図1のものに限られないものとする。
 本実施形態に係るカーボンナノチューブ線材1(以下、CNT線材という)は、図1に示すように、1層以上の層構造を有する複数のカーボンナノチューブ11a,11a,・・・(以下、CNTという)で構成されるカーボンナノチューブ集合体11(以下、CNT集合体という)の単数から、又は複数が束ねられて形成されている。ここで、CNT線材とはCNTの割合が90質量%以上のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキやドーパントの質量は除く。図1では、CNT線材1は、CNT集合体11が、複数、束ねられた構成となっている。CNT集合体11の長手方向が、CNT線材1の長手方向を形成している。従って、CNT集合体11は、線状となっている。CNT線材1における複数のCNT集合体11,11,・・・は、その長軸方向がほぼ揃って配されている。従って、CNT線材1における複数のCNT集合体11,11,・・・は、配向している。CNT線材1の外径は、0.01mm以上4.0mm以下である。
 CNT集合体11は、1層以上の層構造を有するCNTの束である。CNT11aの長手方向が、CNT集合体11の長手方向を形成している。CNT集合体11における複数のCNT11a,11a、・・・は、その長軸方向がほぼ揃って配されている。従って、CNT集合体11における複数のCNT11a,11a、・・・は、配向している。CNT集合体11の円相当直径は、20nm以上80nm以下である。CNT11aの最外層の幅寸法は、例えば、1.0nm以上5.0nm以下である。
 本実施形態では、CNT線材1を構成するCNTの個数に対する、最内層の平均直径が1.7nm以下であるCNTの個数の和の比率が75%以上である。この最内層とは、複層構造のCNTの場合には最も内側に位置する層を示し、単層の場合には当該単層自体を示し、最内層の平均直径とは、上記最も内側に位置する層の直径と上記単層自体の直径との合計の平均値を示す。CNTの最内層の直径が小さいと抵抗が小さくなると推察されることから、本実施形態ではCNT線材1を構成するCNTの個数に対する、最内層の平均直径が1.7nm以下であるCNTの個数の和の比率を、上記範囲内の値とする。
<CNTの構成>
 CNT集合体11を構成するCNT11aは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。図1では便宜上、2層構造を有するCNTのみを記載しているが、CNT集合体11には、3層構造以上の層構造を有するCNTや単層構造の層構造を有するCNTも含まれていてもよく、CNT集合体11は3層構造以上の層構造を有するCNT又は単層構造の層構造を有するCNTから形成されてもよい。
 2層構造を有するCNT11aは、六角形格子の網目構造を有する2つの筒状体T1,T2(以下、単に「層」ともいう)が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。
 CNT11aの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性および半金属性、ジグザグ型は半導体性および半金属性の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なる。CNT集合体では、導電性を向上させる点から、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが好ましい。
 一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属性の挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性の挙動を示すCNTに異種元素をドープした場合には、導電性の低下を引き起こす。
 このように、金属性の挙動を示すCNT及び半導体性の挙動を示すCNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性の挙動を示すCNTと半導体性の挙動を示すCNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。金属性の挙動を示すCNTと半導体性の挙動を示すCNTが混在した状態で作製される場合、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を更に向上させるには、異種元素又は分子によるドーピング処理が効果的となるCNTの層構造を選択することが好ましい。これにより、金属性の挙動を示すCNTと半導体性の挙動を示すCNTの混合物からなるCNT線材1の導電性をさらに向上させることができる。
 例えば、2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。ドーピング効果はCNTの内部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されることがある。
 従って、CNT線材1の導電性を向上させる点から、2層構造又は3層構造を有するCNTの割合を増大させる。具体的には、CNT線材を構成するCNTの全体個数に対する、2層構造又は3層構造を有するCNTの個数の比率が75%以上であり、好ましくは90%以上である。2層構造又は3層構造を有するCNTの割合は、CNT集合体11の断面を透過型電子顕微鏡(TEM)で観察及び解析し、100個のCNTのそれぞれの層数を測定することで算出することができる。
 また、CNT線材1の導電性を更に向上させる点から、CNT線材1を構成するCNTの全体個数に対する、2層構造を有するCNTの個数の和の比率が80%以上であるのが好ましく、85%以上であるのがより好ましい。
 また、本実施形態のCNT線材1では、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が80以上であるのが好ましく、100以上であることがより好ましく、155以上であることが更に好ましい。Dバンドは、ラマンシフト1350cm-1付近に現れ、欠陥に由来するスペクトルのピークとも言える。よってこのGバンドに対するDバンドの比(G/D比)は、CNT中の欠陥量の指標として用いられ、G/D比が大きい程、CNT中の欠陥が少ないと判断される。上記G/D比が80未満であると、結晶性が低く、良好な導電性を得難くなる。よってラマンスペクトルにおけるG/D比を上記範囲内の値とする。
 図2(a)は、小角X線散乱(SAXS)による複数のCNT集合体11,11,・・・の散乱ベクトルqの二次元散乱像の一例を示す図であり、図2(b)は、二次元散乱像において、透過X線の位置を原点とする任意の散乱ベクトルqの方位角-散乱強度の関係を示すアジマスプロットの一例を示すグラフである。
 SAXSは数nm~数十nmの大きさの構造等を評価するのに適している。例えば、SAXSを用いて、以下の方法でX線散乱画像の情報を分析することで、外径が数nmであるCNT11aの配向性及び外径が数十nmであるCNT集合体11の配向性を評価することができる。例えば、CNT線材1についてX線散乱像を分析すると、図2(a)に示すように、CNT集合体11の散乱ベクトルq(q=2π/d、dは格子面間隔)のx成分であるqよりも、y成分であるqの方が狭く分布している。また、図2(a)と同じCNT線材1について、SAXSのアジマスプロットを分析した結果、図2(b)に示すアジマスプロットにおけるアジマス角の半値全幅Δθは、48°である。これらの分析結果から、CNT線材10において、複数のCNT11a,11a・・・及び複数のCNT集合体11,11,・・・が良好な配向性を有しているといえる。なお、配向性とは、CNTを撚り集めて作製した撚り線の長手方向へのベクトルVに対する内部のCNT及びCNT集合体のベクトルの角度差のことを指す。
 そこで本実施形態では、複数のCNT集合体11,11,・・・の配向性を示す小角X線散乱(SAXS)のアジマスプロットにおけるアジマス角の半値全幅Δθは、60°以下であり、好ましくは50°以下、より好ましくは30°以下であり、更に好ましくは15°以下である。アジマス角の半値全幅Δθが60°を超えると、CNT線材1を構成する複数のCNT集合体11の配向性が劣り、CNT線材1の抵抗率が大きくなる。一方、アジマス角の半値全幅Δθが60°以下であれば複数のCNT集合体11の配向性が良好であり、CNT集合体11,11同士、すなわちCNT束同士の接触点が増大し、CNT集合体11,11同士の接触抵抗が低くなる結果、CNT線材1の抵抗率が小さくなる。また、半値全幅Δθが30°以下であれば複数のCNT集合体11の配向性が非常に良好であり、更に、半値全幅Δθが15°以下であれば複数のCNT集合体11の配向性が極めて良好であり、CNT線材1の抵抗率が更に小さくなる。よって、アジマス角の半値全幅Δθの範囲を上記範囲内の値とする。
 更に、カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、且つカーボンナノチューブ集合体の長さが10μm以上であることを前提として、(i)複数のカーボンナノチューブの配列を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が3.0nm-1以上であり且つ半値全幅Δqが0.5nm-1以下であるか、もしくは(ii)CNT線材が、複数のカーボンナノチューブによって形成されるHCP構造を有し、該HCP構造(hexagonal close-packed)の全体の幅方向長さが30nm以上であり、更に、該HCP構造を構成するCNTの半値全幅Δθが15°以下であれば、CNT線材における導電性の向上がより顕著となる。
 次に、CNT集合体11を構成する複数のCNT11aの配列構造及び密度について説明する。
 図3は、CNT集合体11を構成する複数のCNT11a,11a,・・・のWAXS(広角X線散乱)によるq値-強度の関係を示すグラフである。
 WAXSは数nm以下の大きさの物質の構造等を評価するのに適している。例えば、WAXSを用いて、以下の方法でX線散乱画像の情報を分析することで、外径が数nm以下であるCNT11aの密度を評価することができる。任意の1つのCNT集合体11について散乱ベクトルqと強度の関係を分析すると、図3に示すように、q=1nm-1~5nm-1、特にq=3.0nm-1~4.0nm-1付近に見られる(10)ピークのピークトップのq値から見積られる格子定数の値が測定される。この格子定数の測定値とラマン分光法やTEMなどで観測されるCNT集合体の直径とに基づいて、CNT11a,11a,・・・が断面視でHCP構造を形成していることを確認することができる。
 1~10層以内のCNTは、単体で存在するよりも複数本集まって凝集する。この凝集の際、アスペクト比の高いCNTの構造より、幅方向に積層することで接触面積をより多く取り、エネルギー的に安定な構造をとる。特に1~3層以内のCNTで、その直径が揃っていると、その積層構造はHCP構造をとる傾向がある。HCP構造は、1本のCNTの直径の値とする2次元結晶を構成単位として形成されており、その周期構造に由来した最も低指数(10)である回折ピークがq=1nm-1~5nm-1の間で検出される。
 したがって、CNT線材1内で複数のCNT集合体の直径分布が狭く、複数のCNT11a,11a,・・・が、規則正しく配列、すなわち、高密度を有することで、HCP構造を形成しているといえる。
 そこで本実施形態では、X線散乱による強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上であり、且つ半値全幅Δq(FWHM)が2.0nm-1以下であることが好ましく、上記ピークトップのq値が3.0nm-1以上であり、且つ半値全幅Δq(FWHM)が0.5nm-1以下であることがより好ましい。また、このとき、上記半値全幅Δq(FWHM)は、例えば0.1nm-1以上である。強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上であり、且つ半値全幅Δqが2.0nm-1以下であると、CNT集合体11内で複数のCNT11aの直径分布が狭く、複数のCNT11a,11a,・・・が規則正しく配列してHCP構造を形成していることから、CNT11a,11a同士、すなわちCNT単体同士の接触点が増大し、CNT-CNT間の接触抵抗を小さくすることができる。よって、強度の(10)ピークにおけるピークトップのq値及び半値全幅Δqを上記範囲内の値とする。
 このように、CNT集合体11において、複数のCNT11a,11a,・・・がHCP構造を形成しているのが好ましいが、CNT線材1の少なくとも一部を構成するCNT11a,11a,・・・がHCP構造を有していることは、CNT線材1の断面を透過型電子顕微鏡(TEM)で観察及び解析することでも確認することができる。このとき、CNT線材1が、複数のCNT11a、11a,・・・によって形成されるHCP構造を有し、該HCP構造の全体の幅方向長さが3nm以上であるのが好ましく、10nm以上であるのがより好ましく、30nm以上であるのが更に好ましい。
 また、CNT線材1の長手方向における接触抵抗の低減及び更なる導電性向上の観点から、CNT集合体11の長さは、10μm以上であるのが好ましい。CNT集合体11の長さは、走査型電子顕微鏡もしくは原子間力顕微鏡を用いて観察し、画像ソフトウェアにて側長した長さの平均値から測定することができる。
 (CNT及びCNT線材の製造方法)
 CNTは、例えば、合成工程、精製工程及び熱処理工程の各工程を経て製造することができる。
 上記合成工程では、浮遊触媒法(特許第5819888号)や、基板法(特許第5590603号)などの手法を用いることができる。
 上記合成工程において、第一炭素源として、例えば、デカヒドロナフタレン(デカリン)、トルエン、ベンゼン、ヘキサン、シクロヘキサン、O-キシレン、エチルベンゼン、シクロヘキサン、エチルシクロヘキサンからなる群から選択された1つ又は複数の材料を用いることができる。第一炭素源に加える第二炭素源としては、例えばエチレン、メタン、アセチレンからなる群から選択された1つ又は複数の材料を用いることができる。触媒としては、例えば、フェロセン単体、又は、フェロセンを主成分としてコバルトセン、ニッケロセン及びマグネトロセンのうちのいずれか1つをフェロセンの分子量に対して10%以下となるように混合した物質を用いることができる。
 また、第一炭素源としてデカヒドロナフタレンを用い、触媒として平均直径2nm以下の金属粒子を用いて、CNTを合成するのが好ましい。これにより、CNT線材1に形成されたHCP構造の結晶子のサイズを大きくすることができ、CNT-CNT間の接触抵抗を更に小さくすることができる。上記金属粒子としては、例えば鉄触媒粒子が上げられる。また、上記のような出発原料にチオフェンなどの反応促進剤が添加されてもよい。
 また、上記合成工程において、CNTの合成温度が1300~1500℃であり、CNT成長のための触媒として、上記触媒にコバルト(Co)、マンガン(Mn)、ニッケル(Ni)、窒素(N)、硫黄(S)、セレン(Se)、テルル(Te)からなる群から選択された少なくとも1種を混合するのが好ましい。またこのとき、ミスト化した原料を水素化ガスで8~12L/minで炉に吹き込むが好ましい。これにより、触媒の流動性が向上し、CNT集合体11の長さをより長くすることができ、CNT線材1の長手方向における接触抵抗を更に小さくすることができる。
 上記精製工程において、例えば、合成されたCNTを圧力容器に入れて水で満たし、80~200℃、0.5時間~3.0時間で加熱し、その後、大気下で450~600℃、0.5時間~1.0時間でCNTを焼成し、塩酸などの強酸で金属触媒を除去する。これにより、CNTになれなかったアモルファスカーボンを除去でき、CNTを十分に精製することができる。
 上記熱処理工程において、上記精製工程によって得られたCNTを、Arなどの不活性雰囲気下で、1000~2200℃、好ましくは1500~2200℃、より好ましくは1800~2200℃で、30分~5時間でアニールするのが好ましい。2200℃を超えると隣接するCNT同士が接触し、CNTの直径を維持することが困難となる。これにより、より欠陥の少ないCNTを作製することができる。
 作製したCNTからのCNT線材の作製は、乾式紡糸(特許第5819888号、特許第5990202号、特許第5350635号)、湿式紡糸(特許第5135620号、特許第5131571号、特許第5288359号)、液晶紡糸(特表2014-530964号)等で行うことができる。
 CNT集合体及びCNTの配向性、並びにCNTの配列構造及び密度は、後述する、乾式紡糸、湿式紡糸、液晶紡糸等の紡糸方法と該紡糸方法の紡糸条件とを適宜選択することで調節することができる。このとき、複数のCNT複数のCNTを、0.1~20wt%の濃度で上記強酸に分散させた後、上記複数のCNTを凝集させる。例えば、上記の製法で得られた複数のCNTを、0.1~20wt%の濃度で、発煙硫酸、発煙硝酸、濃硫酸及び濃硝酸のうちの1又は複数を含む強酸に分散させた後、上記複数のCNTを凝集させるのが好ましい。
 特に、上記CNTの分散において、CNTの溶媒としての上記強酸が、発煙硫酸及び発煙硝酸のうちの少なくとも1種を含むのが好ましい。これにより、CNTの配向性を飛躍的に向上させることができる。例えば、発煙硝酸を溶媒とする場合、CNTを0.1~20wt%となるように溶媒中で分散させる。また、その際に溶媒に超音波を加えることが好ましい。これにより、CNTをより均一に分散させることができ、配向性をより向上させることができる。
 上述したように、本実施形態によれば、CNT線材1を構成するCNT11aの全体個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が75%以上であり、CNT線材1を構成するCNT11aの個数に対する、最内層の直径が1.7nm以下であるCNTの個数の和の比率が75%以上であり、更に、複数のCNT集合体11の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値全幅Δθが60°以下であるので、2層又は3層構造のCNT比率が高いので導電性が高くなり、且つ最内層直径の小さいCNT比率が高いので抵抗率が小さくすることができる。また、CNT線材1内での複数のCNT集合体11の配向性が高いので、CNT集合体11-CNT集合体11間の接触抵抗を小さくすることができる。よって、低抵抗率を実現し、導電性を向上することができるCNT線材1を提供することができる。
 また、複数のCNT11aの配列を示すX線散乱による(10)ピークにおけるピークトップのq値が2.0nm-1以上であり、且つ半値全幅Δqが2.0nm-1以下であるので、CNT集合体11内で複数のCNT11aが規則正しく配列し、高密度で存在しているので、CNT11a-CNT11a間の接触抵抗を小さくすることができ、CNT集合体11の低抵抗率を実現することができ、これによりCNT線材1の導電性を更に向上することができる。
 更に、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が80以上であるので、CNT11a中の欠陥が少なく、結晶性が高く、CNT11a単体の低抵抗率を実現することができ、CNT線材1の導電性を更に向上することができる。
 特に、CNT線材1を構成するCNT11aの全体個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が90%以上であり、CNT線材1を構成するCNT11aの全体個数に対する、2層構造を有するCNTの個数の和の比率が85%以上であり、CNT線材1を構成するCNT11aの個数に対する、最内層の平均直径が1.7nm以下であるCNTの個数の和の比率が90%以上であり、小角X線散乱によるアジマス角の半値全幅Δθが15°以下であり、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、CNT集合体11の長さが10μm以上であり、複数のCNT11a、11a,・・・の配列を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が3.0nm-1以上であり、且つ半値全幅Δqが0.5nm-1以下であるので、更なる低抵抗率を実現し、導電性を格段に向上することができる。
 換言すれば、CNT線材1を構成するCNT11aの全体個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が90%以上であり、CNT線材1を構成するCNT11aの全体個数に対する、2層構造を有するCNTの個数の和の比率が85%以上であり、CNT線材1を構成するCNT11aの個数に対する、最内層の平均直径が1.7nm以下であるCNTの個数の和の比率が90%以上であり、小角X線散乱によるアジマス角の半値全幅Δθが15°以下であり、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、CNT集合体11の長さが10μm以上であり、CNT線材1が、複数のCNT11a,11a,・・・によって形成されるHCP構造を有し、該HCP構造全体の幅方向長さが30nm以上であるので、更なる低抵抗率を実現し、導電性を格段に向上することができる。
 以上、本発明の実施形態に係るCNT線材について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、上記CNT線材は、CNTの内側及びCNT-CNT間の少なくとも一方にドーピングされた異種元素・分子を更に有していてもよい。ドーパントとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、ストロンチウム(Sr)、バリウム(Ba)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及び硝酸からなる群から選択された1又は複数の材料を選択することができる。CNT線材1への異種元素又は分子のドーピングにより、CNT線材1の導電性を更に向上することができる。
 また、上記実施形態のCNT線材と、該CNT線材の外周を被覆する被覆層とを備えるCNT被覆電線を構成してもよい。特に、本実施形態のCNT線材は、電力や信号を伝送するための電線用線材の材料として好適であり、四輪自動車などの移動体に搭載される電線用線材の材料としてより好適である。金属電線よりも軽量になり燃費の向上が期待されるためである。
 また、絶縁被覆層の材料としては、芯線として金属を用いた被覆電線の絶縁被覆層に用いる材料を使用することができ、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、ポリカーボネート、ポリアミド、ポリ塩化ビニル、ポリメチルメタクリレート、ポリウレタン等を挙げることができる。熱硬化性樹脂としては、例えば、ポリイミド、フェノール樹脂等を挙げることができる。これらは、単独で使用してもよく、2種以上を適宜混合して使用してもよい。
 また、上記CNT被覆電線を少なくとも1つを有するワイヤハーネスを構成してもよい。
 以下、本発明の実施例を説明する。なお本発明は、以下に示す実施例に限定されるものではない。
 (実施例1)
 浮遊触媒気相成長(CCVD)法を用い、電気炉によって1300℃に加熱された、内径φ60mm、長さ1600mmのアルミナ管内部に、炭素源であるデカヒドロナフタレン、触媒であるフェロセン、及び反応促進剤であるチオフェンを、体積比率にてそれぞれ100:4:1で含む原料溶液Lを、スプレー噴霧により供給した。キャリアガスは、水素を9.5L/minで供給した。得られたCNTを回収機にてシート状に回収し、これらを集めてCNT集合体を製造し、更にCNT集合体を束ねてCNT線材を製造した。得られたCNT線材を、大気下において500℃に加熱し、さらに酸処理を施すことによって高純度化を行った。
 また、上記浮遊触媒気相成長法で作製したCNTを直接紡糸する乾式紡糸方法(特許第5819888号)または湿式紡糸する方法(特許第5135620号、特許第5131571号、特許第5288359号)でCNT線材を得た。
 (実施例2)
 大気下の加熱を400℃で実施したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例3)
 CCVDの上記原料における体積比率を100:1:0.01に変えたこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例4)
 CCVDの上記原料における体積比率を100:1:0.01に変え、大気下の加熱を400℃で実施したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例5)
 CCVDの上記原料における体積比率を100:2:1に変えたこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例6)
 CCVDの上記原料における体積比率を100:2:1に変え、且つ大気下の加熱を400℃で実施したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例7)
 CCVDの上記原料における体積比率を100:2:1に変え、焼成温度を1100℃とし、且つ大気下の加熱を400℃で実施したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例8)
 CCVDの上記原料における体積比率を100:2:1に変え、焼成温度を1200℃とし、且つ大気下の加熱を400℃で実施したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (実施例9)
 次に、浮遊触媒気相成長(CCVD)法を用い、横型の管状電気炉によってカーボンナノチューブを合成した。電気炉の温度は1000℃~1500℃とした。この電気炉に内径φ10mm~60mm、長さ2000mmの石英管を設置した。
 出発物質として、炭素源としてデカヒドロナフタレンのみを用い、触媒原料として、フェロセンのみを用い、反応促進材としては、チオフェンを用いた。これらの物質をモル比率として炭素源:触媒原料:反応促進剤=100:1.5:1.5とする原料溶液Lを準備した。
 この原料溶液Lをスプレーにてミスト状にし、これを気化器に投入した。
 ここで気化された原料を、キャリアガスである水素と共に加熱された石英管内に吹き入れて、CNTを合成した。この時の水素流量は9.5L/minであった。
 合成されたCNTを回収ボックス内で凝集体として回収し、回収されたCNTを高圧容器に水と一緒に封入し、200℃、3時間で加熱した。その後、大気下で500℃、30分間で焼成し、焼成後に塩酸にて金属触媒を除去し、CNTを精製した。上記精製後、不活性雰囲気下(Ar)で、1500℃、0.5時間でアニールを行なった。
 次に、アニールを行なったCNTを、発煙硝酸に0.1~20wt%の濃度になるように超音波を加えながら分散させた。この分散液を圧力を加えながらφ20μmのセラミック管に通した。セラミック管の出口部分を凝固剤(水)に付けた状態で設置し、分散液を水に直接吹き入れることにより、噴き入れられたCNTが水内で線材化し、CNT線材を得た。
 (実施例10)
 CNTの焼成後、不活性雰囲気下(Ar)で、1500℃、1時間でアニールを行なったこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例11)
 CNTの焼成後、不活性雰囲気下(Ar)で、1800℃、1時間でアニールを行なったこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例12)
 炭素源としてヘキサンとエチレンガスを用いて合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。ヘキサン:フェロセン:チオフェン=100:1.5:1.5で反応炉内に投入し、エチレンガスは、100mL/minで水素ガスと共に炉内に送風した。
 (実施例13)
 炭素源としてシクロヘキサンとエチレンガスを用いて合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。シクロヘキサン:フェロセン:チオフェン=100:1.5:1.5で反応炉内に投入し、エチレンガスは、100mL/minで水素ガスと共に炉内に送風した。
 (実施例14)
 炭素源としてデカヒドロナフタレンとエチレンガスを用いて合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。デカヒドロナフタレン:フェロセン:チオフェン=100:1.5:1.5で反応炉内に投入し、エチレンガスは、100mL/minで水素ガスと共に炉内に送風した。
 (実施例15)
 平均直径が2nmの鉄触媒粒子を用いて合成を行ない、反応管(石英管)の直径をφ20mmに小さくしてキャリアガスの流量(水素流量)を9.5L/minとしたこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例16)
 平均直径が1nmの鉄触媒粒子を用いて合成を行なったこと以外は、実施例15と同様にしてCNT線材を得た。
 (実施例17)
 上記アニールを行ったCNTを、溶媒である濃硫酸に7wt%になるように分散させて線状に成型したこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例18)
 上記アニールを行なったCNTを、溶媒である濃硝酸に13wt%になるように超音波を加えながら分散させて線状に成型したこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例19)
 平均直径が1nmの鉄触媒粒子を用い、炉内の鉄触媒粒子の数密度を実施例9の2倍として合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。炉内の触媒粒子の数密度とは、炉内の空間に分布する触媒粒子の密度を意味する。この数密度を上げる方法としては、水素の流速の向上、炉内温度の向上、触媒原料の投入量の増加、触媒粒子の成長促進剤の利用などが挙げられる。
 (実施例20)
 平均直径が1nmの鉄触媒粒子を用い、炉内の鉄触媒粒子の数密度を実施例9の3倍として合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例21)
 平均直径が1nmの鉄触媒粒子を用い、炉内の鉄触媒粒子の数密度を実施例9の4倍として合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例22)
 実施例10~21の各条件を組み合わせてCNT線材を合成した。具体的には、炭素源をデカヒドロナフタレンとエチレンガスとし、平均直径が1nmの鉄触媒粒子の密度を実施例9の4倍とした上で、鉄触媒粒子の炉内対流時間を0.1秒から1秒に延ばしてCNTの合成を行い、上記CNTを焼成した後、不活性雰囲気下(Ar)で、1800℃、1時間でアニールを行ない、上記アニールを行なったCNTを、溶媒である濃硝酸に13wt%になるように超音波を加えながら分散させて線状に成型して、CNT線材を得た。
 (実施例23)
 CNT成長触媒として、フェロセンの他にコバルトセンを、フェロセンに対するモル比で1/10程度入れて、鉄-コバルト触媒粒子を用いて合成を行ったこと以外は、実施例9と同様にしてCNT線材を得た。尚、コバルトセンのコバルトは鉄触媒粒子の鉄の結晶構造内に分布し、単独では存在しないとの仮定の下、鉄触媒粒子を用いてコバルトセンを上記モル比で添加した。
 (実施例24)
 水素供給量を減少させ、触媒粒子の管状炉の滞留時間を2秒にしたこと以外は、実施例9と同様にしてCNT線材を得た。
 (実施例25)
 平均直径が1.5nmの鉄触媒粒子を用いて合成を行ったこと以外は、実施例22と同様にしてCNT線材を得た。
 (実施例26)
 炉内の鉄触媒粒子の数密度を実施例9の3倍として合成を行ったこと以外は、実施例22と同様にしてCNT線材を得た。
 (実施例27)
 平均直径が2.0nmの鉄触媒粒子を用いて合成を行ったこと以外は、実施例22と同様にしてCNT線材を得た。
 (比較例1)
 大気下での加熱を行わなかったこと以外は、実施例1と同様の方法でCNT線材を得た。
 (比較例2)
 CCVDの原料比率を100:1:0.05に変え、酸処理を行う工程数と酸処理時間を短縮したこと以外は、実施例1と同様の方法でCNT線材を得た。
 (比較例3)
 大気下での加熱及び酸処理のいずれも行わなかったこと以外は、実施例1と同様の方法でCNT線材を得た。
 次に、実施例1~27及び比較例1~3について、下記の方法にてCNT線材の構造、特性を測定、評価した。
 (a)CNT線材を構成するCNTの層数及び最内層の平均直径の測定
 上記条件により生成したCNT線材の断面を、透過型電子顕微鏡で観察及び解析し、200個のCNTのそれぞれの層数を測定し、及びCNTの直径を測定し、CNTの最内層の平均直径を算出した。
 (b)SAXSによるアジマス角の半値全幅Δθの測定
 実施例1~8では、小角X線散乱装置(Aichi Synchrotron、X線波長:0.92Å, カメラ長:465mm, ビーム径:約300μm, 検出器:R-AXIS IV++)を用いてX線散乱測定を行い、得られたアジマスプロットをガウス関数もしくはローレンツ関数でフィッティングし、半値全幅Δθを求めた。
 実施例9~27では、小角X線散乱装置(SPring-8、X線波長:1.24Å, カメラ長:615mm, ビーム径:約3.0μm, 検出器:フラットパネル(C9732DK))を用いてX線散乱測定を行い、得られたアジマスプロットからをガウス関数もしくはローレンツ関数でフィッティングし、半値全幅Δθを求めた。
 (c)WAXSによるピークトップのq値及び半値全幅Δqの測定
 広角X線散乱装置(Aichi Synchrotron)を用いて広角X線散乱測定を行い、得られたq値-強度グラフから、強度の(10)ピークにおけるピークトップのq値及び半値全幅Δqを求めた。
 (d)CNT線材におけるG/D比の測定
 ラマン分光装置(Thermo Fisher Scientific社製、装置名「ALMEGA XR」により、励起レーザ:532nm、レーザ強度:10%に減光、対物レンズ:50倍、露光時間:1秒×60回の条件にて測定し、ラマンスペクトルを得た。次に日本分光社製のスペクトル解析ソフトウェア「Spectra Manager」により、ラマンスペクトルの1000~2000cm-1のデータを切り出し、この範囲で検出されるピーク群をCurve Fittingにより分離解析を行った。尚、ベースラインは1000cm-1と2000cm-1での検出強度を結んだ線とした。そして、上記で切り出したラマンスペクトルから、GバンドとDバンドそれぞれのピークトップ高さ(ピークトップからベースラインの値を差し引いた検出強度)からG/D比を算出した。
 (e)CNT線材の抵抗率測定
 抵抗測定機(ケースレー社製、装置名「DMM2000」)にCNT線材を接続し、4端子法により抵抗測定を実施した。抵抗率は、r=RA/L(R:抵抗、A:CNT集合体の断面積、L:測定長さ)の計算式に基づいて抵抗率を算出した。
 (f)CNT集合体の長さの測定
 CNTを分散液であるコール酸ナトリウムに超音波を加えて分散液を作製して、その分散液をスポイトで採取し、シリコン基板の上に滴下し、乾燥させて、CNT線材を合成した。合成したCNT線材を走査型電子顕微鏡(加速電圧3.0keV、倍率20,000倍)にて観察した。一回の観察でCNTを200~1000本観察し、それらを画像ソフトウェアにて側長し、得られた長さ分布を対数正規分布でフィッティングを行い、平均長をCNT集合体の長さとして測定した。
 (g)HCP構造の全体の幅方向長さの測定
 WAXS測定よりHCP構造由来の回折ピークである(10)ピークの半値全幅Δqを算出し、シェラーの式より結晶子のサイズを求めた。ここでいう結晶子とは、複数のCNTを単結晶とみなすことができる最大の集まりを意味する。そして、上記で求めた結晶子のサイズはCNT集合体の直径に相当する値であり、この値をHCP構造の全体の幅方向長さとした。
 上記実施例1~27及び比較例1~3の測定、算出結果を、表1~表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~2では、CNT線材を構成するCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が本発明の範囲内であり、CNT線材を構成するCNTの個数に対する、最内層の平均直径が0.7nm以上1.7nm以下であるCNTの個数の和の比率が本発明の範囲内であり、且つ複数のCNT集合体の配向性を示すSAXSによるアジマスプロットにおけるアジマス角の半値全幅Δθが本発明の範囲内であり、低い抵抗率が得られることが分かった。特に、実施例1において、SAXSによる半値全幅Δθが30°以下であると、実施例2と比較してより低い抵抗率が得られることが分かった。
 実施例3では、実施例1~2と比較して最内層の平均直径が大きいものの、SAXSによる半値全幅Δθが実施例1と同等の値であり、実施例2よりも低い抵抗率が得られることが分かった。
 実施例4では、実施例1~2と比較して最内層の平均直径が大きく、且つ実施例3よりもSAXSによる半値全幅Δθが大きいものの、当該半値全幅Δθは本発明の範囲内であり、低い抵抗率が得られることが分かった。
 実施例5では、実施例1~2と比較して最内層の平均直径が小さく、且つ平均直径0.7nm以上1.7nm以下のCNT比率が小さいものの、SAXSによる半値全幅Δθが実施例1と同等の値であり、実施例1と同等の抵抗率が得られることが分かった。
 実施例6では、実施例1~2と比較して最内層の平均直径が小さく、平均直径0.7nm以上1.7nm以下のCNT比率が小さく、且つ実施例3よりもSAXSによる半値全幅Δθが大きいものの、当該半値全幅Δθは本発明の範囲内であり、低い抵抗率が得られることが分かった。
 実施例7では、2層又は3層構造のCNT比率、最内層の平均直径、およびSAXSによる半値全幅Δθが実施例1とほぼ同等の値であり、ラマンスペクトルにおけるG/D比が80程度の値であり実施例1より小さく、実施例1に比べて抵抗率は高くなるものの、低い抵抗率が得られることが分かった。
 実施例8では、2層又は3層構造のCNT比率、最内層の平均直径、およびSAXSによる半値全幅Δθが実施例1とほぼ同等の値であり、且つラマンスペクトルにおけるG/D比が100程度の値であり実施例7と比較して大きく、実施例7よりも低い抵抗率が得られることが分かった。
 また、表2に示すように、実施例9では、2層構造又は3層構造を有するCNTの個数の和の比率が本発明の範囲内であり、CNT線材を構成するCNTの個数に対する、最内層の平均直径が0.7nm以上1.7nm以下であるCNTの個数の和の比率が本発明の範囲内であり、且つ複数のCNT集合体の配向性を示すSAXSによるアジマスプロットにおけるアジマス角の半値全幅Δθが本発明の範囲内であり、低い抵抗率が得られることが分かった。
 実施例10では、ラマンスペクトルにおけるG/D比が実施例9よりも大きく、より低い抵抗率が得られた。
 実施例11では、ラマンスペクトルにおけるG/D比が実施例10よりも大きく、更に低い抵抗率が得られた。
 実施例12では、2層又は3層構造のCNT比率が実施例9よりも大きく、より低い抵抗率が得られた。
 実施例13では、2層又は3層構造のCNT比率及び2層のCNT比率が実施例12よりも大きく、より低い抵抗率が得られた。
 実施例14では、2層のCNT比率が実施例14よりも大きく、より低い抵抗率が得られた。
 実施例15では、平均直径0.7nm以上1.7nm以下のCNT比率が実施例9よりも若干小さいものの、最内層の平均直径が実施例9よりも小さく、WAXSによるピークトップのq値が実施例9よりも大きく、より低い抵抗率が得られた。
 実施例16では、最内層の平均直径が実施例15よりも小さく、平均直径0.7nm以上1.7nm以下のCNT比率が実施例15よりも大きく、WAXSによるピークトップのq値が実施例15よりも大きく、より低い抵抗率が得られた。
 実施例17では、SAXSによる半値全幅Δθが実施例9よりも小さく、格段に低い抵抗率が得られた。
 実施例18では、SAXSによる半値全幅Δθが実施例17よりも小さく、より低い抵抗率が得られた。
 実施例19では、WAXSによる半値全幅Δqが実施例9よりも小さく、HCP構造の全体の幅方向長さが実施例9よりも大きく、より低い抵抗率が得られた。
 実施例20では、WAXSによる半値全幅Δqが実施例19よりも小さく、HCP構造の全体の幅方向長さが実施例19よりも大きく、より低い抵抗率が得られた。
 実施例21では、WAXSによる半値全幅Δqが実施例20よりも小さく、HCP構造の全体の幅方向長さが実施例20よりも大きく、より低い抵抗率が得られた。
 実施例22では、2層又は3層構造のCNT比率及び2層のCNT比率が実施例9よりも大きく、最内層の平均直径が実施例9よりも小さく、均直径0.7nm以上1.7nm以下のCNT比率が実施例9よりも大きく、WAXSによる半値全幅Δqが実施例9よりも小さく、WAXSによるピークトップのq値が実施例9よりも大きく、WAXSによる半値全幅Δqが実施例9よりも小さく、ラマンスペクトルにおけるG/D比が実施例9よりも大きく、HCP構造の全体の幅方向長さが実施例9よりも大きく、格段に低い抵抗率が得られた。
 実施例23では、CNT集合体の長さが実施例9よりも大きく、HCP構造の全体の幅方向長さが実施例9よりも大きく、より低い抵抗率が得られた。
 実施例24では、SAXSによる半値全幅Δθが実施例9よりも小さく、CNT集合体の長さが実施例9よりも大きく、より低い抵抗率が得られた。
 実施例25~27では、実施例22とほぼ同等の抵抗率であり、格段に低い抵抗率が得られた。
 このように、実施例1~8の条件をすべて満たし、異なる製法で作成された実施例9~27では、SAXS半値幅Δθが15°以下となった実施例17、18、22、25~27において抵抗率が大幅に低くなり、特に、カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、カーボンナノチューブ集合体の長さが10μm以上であり、カーボンナノチューブ線材が、前記複数のカーボンナノチューブによって形成されるHCP構造を有し、HCP構造の全体の幅方向長さが30nm以上である実施例22、25~27においては、抵抗率が大幅に低下した。
 一方、比較例1では、SAXSによる半値全幅Δθが本発明の範囲外であり、実施例1~8と比較して抵抗率が高くなることが分かった。
 比較例2では、平均直径0.7nm~1.7nmのCNT比率、XRDピークトップのq値、およびXRD半値全幅Δqが本発明の範囲外であり、CNTの直径のばらつきが大きいことからHCP構造を形成できず、X線散乱による強度の(10)ピークを確認できず、実施例1~8と比較して抵抗率が高くなることが分かった。
 また、比較例3では、2層又は2層構造のCNT比率、平均直径0.7nm~1.7nmのCNT比率、SAXS半値全幅Δθ、XRDピークトップのq値、およびXRD半値全幅Δqが本発明の範囲外であり、1層のCNTが多く含まれていることから平均直径が小さくなると共にHCP構造を形成できず、X線散乱による強度の(10)ピークを確認できず、実施例1~8と比較して抵抗率が非常に高くなることが分かった。
1 CNT線材
11 CNT集合体
11a CNT
T1 筒状体
T2 筒状体

Claims (16)

  1.  1層以上の層構造を有する複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の単数から、又は複数が束ねられて形成されているカーボンナノチューブ線材であって、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が75%以上であり、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が75%以上であり、
     前記複数のカーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値全幅Δθが60°以下であることを特徴とする、カーボンナノチューブ線材。
  2.  小角X線散乱による前記アジマス角の半値全幅Δθが30°以下であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  3.  前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であることを特徴とする、請求項2記載のカーボンナノチューブ線材。
  4.  前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  5.  前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が90%以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  6.  前記カーボンナノチューブ線材が、前記複数のカーボンナノチューブによって形成されるHCP構造を有し、前記HCP構造の全体の幅方向長さが3nm以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  7.  X線散乱による散乱強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上であり、且つ半値全幅Δqが2.0nm-1以下であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  8.  ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が80以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  9.  前記カーボンナノチューブ集合体の長さが10μm以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  10.  前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの全体個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、
     前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であり、
     前記ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、
     前記カーボンナノチューブ集合体の長さが10μm以上であり、
     前記複数のカーボンナノチューブの配列を示すX線散乱による散乱強度の(10)ピークにおけるピークトップのq値が3.0nm-1以上であり、且つ半値全幅Δqが0.5nm-1以下であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  11.  前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造又は3層構造を有するカーボンナノチューブの個数の和の比率が90%以上であり、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、2層構造を有するカーボンナノチューブの個数の和の比率が85%以上であり、
     前記カーボンナノチューブ線材を構成するカーボンナノチューブの個数に対する、最内層の平均直径が1.7nm以下であるカーボンナノチューブの個数の和の比率が90%以上であり、
     前記小角X線散乱による前記アジマス角の半値全幅Δθが15°以下であり、
     前記ラマン分光法におけるラマンスペクトルのGバンドと結晶性に由来するDバンドとの比であるG/D比が150以上であり、
     前記カーボンナノチューブ集合体の長さが10μm以上であり、
     前記カーボンナノチューブ線材が、前記複数のカーボンナノチューブによって形成されるHCP構造を有し、前記HCP構造の全体の幅方向長さが30nm以上であることを特徴とする、請求項1記載のカーボンナノチューブ線材。
  12.  合成工程、精製工程及び熱処理工程の各工程を経てカーボンナノチューブを製造するカーボンナノチューブの製造方法であって、
     前記熱処理工程において、前記精製工程によって得られたカーボンナノチューブを、不活性雰囲気下で、1000~2200℃、30分~5時間で熱処理することを特徴とする、カーボンナノチューブの製造方法。
  13.  前記合成工程において、前記炭素源としてデカヒドロナフタレンを、前記触媒として直径2nm以下の金属粒子を用いて、前記カーボンナノチューブを合成することを特徴とする、請求項12記載のカーボンナノチューブの製造方法。
  14.  前記合成工程において、前記カーボンナノチューブの合成温度が1300~1500℃であり、前記触媒にCo、Mn、Ni、N、S、Se、Teからなる群から選択された少なくとも1種を混合することを特徴とする、請求項12又は13記載のカーボンナノチューブの製造方法。
  15.  複数のカーボンナノチューブを、0.1~20wt%の濃度で強酸に分散させた後、前記複数のカーボンナノチューブを凝集させることを特徴とする、カーボンナノチューブ線材の製造方法。
  16.  前記強酸が、発煙硫酸及び発煙硝酸のうちの少なくとも1種を含むことを特徴とする、請求項15記載のカーボンナノチューブ線材の製造方法。
PCT/JP2018/003877 2017-02-03 2018-02-05 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法 WO2018143466A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18747743.5A EP3579249B1 (en) 2017-02-03 2018-02-05 Carbon nanotube wire, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire
CN201880010089.6A CN110249394B (zh) 2017-02-03 2018-02-05 碳纳米管线材、碳纳米管的制造方法和碳纳米管线材的制造方法
KR1020227044499A KR102515194B1 (ko) 2017-02-03 2018-02-05 카본 나노 튜브 선재, 카본 나노 튜브의 제조 방법 및 카본 나노 튜브 선재의 제조 방법
KR1020197022019A KR102623655B1 (ko) 2017-02-03 2018-02-05 카본 나노 튜브 선재, 카본 나노 튜브의 제조 방법 및 카본 나노 튜브 선재의 제조 방법
JP2018566163A JP7028804B2 (ja) 2017-02-03 2018-02-05 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法
US16/528,403 US20190355490A1 (en) 2017-02-03 2019-07-31 Carbon nanotube wire, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire
JP2021211229A JP7247315B2 (ja) 2017-02-03 2021-12-24 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018634 2017-02-03
JP2017-018634 2017-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/528,403 Continuation US20190355490A1 (en) 2017-02-03 2019-07-31 Carbon nanotube wire, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire

Publications (1)

Publication Number Publication Date
WO2018143466A1 true WO2018143466A1 (ja) 2018-08-09

Family

ID=63040877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003877 WO2018143466A1 (ja) 2017-02-03 2018-02-05 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Country Status (6)

Country Link
US (1) US20190355490A1 (ja)
EP (1) EP3579249B1 (ja)
JP (2) JP7028804B2 (ja)
KR (2) KR102623655B1 (ja)
CN (1) CN110249394B (ja)
WO (1) WO2018143466A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083031A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083027A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083028A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2019079752A (ja) * 2017-10-26 2019-05-23 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2020138378A1 (ja) * 2018-12-27 2020-07-02 住友電気工業株式会社 カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置
WO2020138379A1 (ja) * 2018-12-27 2020-07-02 住友電気工業株式会社 カーボンナノチューブ集合線、カーボンナノチューブ集合線バンドル及びカーボンナノチューブ構造体
JP2020164382A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 カーボンナノチューブ線材
WO2021044964A1 (ja) * 2019-09-03 2021-03-11 住友電気工業株式会社 カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル
US20210309522A1 (en) * 2018-09-03 2021-10-07 Sumitomo Electric Industries, Ltd. Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
US11866330B2 (en) 2019-02-22 2024-01-09 Sumitomo Electric Industries, Ltd. Method for manufacturing carbon nanotube, method for manufacturing carbon nanotube assembled wire, method for manufacturing carbon nanotube assembled wire bundle, carbon nanotube manufacturing apparatus, carbon nanotube assembled wire manufacturing apparatus, and carbon nanotube assembled wire bundle manufacturing apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131571B2 (ja) 1971-11-01 1976-09-07
JPS5135620B2 (ja) 1973-04-04 1976-10-04
JPS5819888B2 (ja) 1977-08-12 1983-04-20 本田技研工業株式会社 デイスクブレ−キ装置
JP2005502792A (ja) * 2001-07-06 2005-01-27 ウィリアム・マーシュ・ライス・ユニバーシティ 整列した単層カーボンナノチューブの繊維及びその製造方法
JP2005097024A (ja) * 2003-09-24 2005-04-14 Hisanori Shinohara カーボンナノチューブを含有する組成物の精製方法
JP2008120658A (ja) 2006-11-15 2008-05-29 Sonac Kk 多層カーボンナノチューブの集合構造
JP2009149503A (ja) * 2007-11-30 2009-07-09 Toray Ind Inc カーボンナノチューブ組成物の製造方法
JP5288359B2 (ja) 2010-11-22 2013-09-11 古河電気工業株式会社 凝集紡糸構造体および電線
JP5350635B2 (ja) 2004-11-09 2013-11-27 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用
JP2014517797A (ja) * 2011-02-28 2014-07-24 ウィリアム・マーシュ・ライス・ユニバーシティ ドープした多層カーボンナノチューブファイバーおよびその製造方法
JP5590603B2 (ja) 2010-04-09 2014-09-17 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置
JP2014530964A (ja) 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. 低抵抗率、高弾性率、および/または高熱伝導率を有するカーボンナノチューブ繊維、ならびに、繊維紡糸ドープを用いた紡糸による当該繊維の製造方法
JP2016017005A (ja) * 2014-07-07 2016-02-01 国立大学法人信州大学 カーボンナノチューブ繊維の製造方法
JP2016160539A (ja) 2015-02-27 2016-09-05 日立造船株式会社 カーボンナノチューブ繊維の製造方法、カーボンナノチューブ繊維の製造装置およびカーボンナノチューブ繊維

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701040A (zh) * 2001-09-11 2005-11-23 索尼株式会社 物质包藏材料,使用它的电化学装置以及制备物质包藏材料的方法
JP2007210808A (ja) * 2006-02-07 2007-08-23 Shinshu Univ Dwcnt複合体およびその製造方法
JP5475457B2 (ja) * 2006-11-24 2014-04-16 本田技研工業株式会社 カーボンナノチューブ合成用大量エアロゾル粉末噴射装置
US8038908B2 (en) * 2007-11-30 2011-10-18 Toray Industries, Inc. Carbon nanotube assembly and process for producing the same
TW201012749A (en) * 2008-08-19 2010-04-01 Univ Rice William M Methods for preparation of graphene nanoribbons from carbon nanotubes and compositions, thin films and devices derived therefrom
CN102205957B (zh) * 2011-04-07 2012-10-31 上海大学 一种在多壁碳纳米管中生成碳链的方法
JP5893374B2 (ja) * 2011-12-08 2016-03-23 日東電工株式会社 カーボンナノチューブ集合体およびそれを用いた粘弾性体
JP6354583B2 (ja) * 2013-02-28 2018-07-11 東レ株式会社 カーボンナノチューブ集合体の製造方法
US10011489B2 (en) * 2013-09-30 2018-07-03 Zeon Corporation Method of producing carbon nanostructures, and carbon nanotubes

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131571B2 (ja) 1971-11-01 1976-09-07
JPS5135620B2 (ja) 1973-04-04 1976-10-04
JPS5819888B2 (ja) 1977-08-12 1983-04-20 本田技研工業株式会社 デイスクブレ−キ装置
JP2005502792A (ja) * 2001-07-06 2005-01-27 ウィリアム・マーシュ・ライス・ユニバーシティ 整列した単層カーボンナノチューブの繊維及びその製造方法
JP2005097024A (ja) * 2003-09-24 2005-04-14 Hisanori Shinohara カーボンナノチューブを含有する組成物の精製方法
JP5350635B2 (ja) 2004-11-09 2013-11-27 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用
JP2008120658A (ja) 2006-11-15 2008-05-29 Sonac Kk 多層カーボンナノチューブの集合構造
JP2009149503A (ja) * 2007-11-30 2009-07-09 Toray Ind Inc カーボンナノチューブ組成物の製造方法
JP5590603B2 (ja) 2010-04-09 2014-09-17 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造装置
JP5288359B2 (ja) 2010-11-22 2013-09-11 古河電気工業株式会社 凝集紡糸構造体および電線
JP2014517797A (ja) * 2011-02-28 2014-07-24 ウィリアム・マーシュ・ライス・ユニバーシティ ドープした多層カーボンナノチューブファイバーおよびその製造方法
JP5990202B2 (ja) 2011-02-28 2016-09-07 ウィリアム・マーシュ・ライス・ユニバーシティ ドープした多層カーボンナノチューブファイバーおよびその製造方法
JP2014530964A (ja) 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. 低抵抗率、高弾性率、および/または高熱伝導率を有するカーボンナノチューブ繊維、ならびに、繊維紡糸ドープを用いた紡糸による当該繊維の製造方法
JP2016017005A (ja) * 2014-07-07 2016-02-01 国立大学法人信州大学 カーボンナノチューブ繊維の製造方法
JP2016160539A (ja) 2015-02-27 2016-09-05 日立造船株式会社 カーボンナノチューブ繊維の製造方法、カーボンナノチューブ繊維の製造装置およびカーボンナノチューブ繊維

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083031A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083027A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
WO2019083028A1 (ja) * 2017-10-26 2019-05-02 古河電気工業株式会社 カーボンナノチューブ被覆電線
JP2019079752A (ja) * 2017-10-26 2019-05-23 古河電気工業株式会社 カーボンナノチューブ被覆電線
US11673806B2 (en) * 2018-09-03 2023-06-13 Sumitomo Electric Industries, Ltd. Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
US20210309522A1 (en) * 2018-09-03 2021-10-07 Sumitomo Electric Industries, Ltd. Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
WO2020138379A1 (ja) * 2018-12-27 2020-07-02 住友電気工業株式会社 カーボンナノチューブ集合線、カーボンナノチューブ集合線バンドル及びカーボンナノチューブ構造体
WO2020138378A1 (ja) * 2018-12-27 2020-07-02 住友電気工業株式会社 カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置
US11939219B2 (en) 2018-12-27 2024-03-26 Sumitomo Electric Industries, Ltd. Carbon nanotube assembled wire, carbon nanotube assembled wire bundle, and carbon nanotube structure
US11866330B2 (en) 2019-02-22 2024-01-09 Sumitomo Electric Industries, Ltd. Method for manufacturing carbon nanotube, method for manufacturing carbon nanotube assembled wire, method for manufacturing carbon nanotube assembled wire bundle, carbon nanotube manufacturing apparatus, carbon nanotube assembled wire manufacturing apparatus, and carbon nanotube assembled wire bundle manufacturing apparatus
JP7455805B2 (ja) 2019-02-22 2024-03-26 住友電気工業株式会社 カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置
JP2020164382A (ja) * 2019-03-29 2020-10-08 古河電気工業株式会社 カーボンナノチューブ線材
JP7316822B2 (ja) 2019-03-29 2023-07-28 古河電気工業株式会社 カーボンナノチューブ線材
WO2021044964A1 (ja) * 2019-09-03 2021-03-11 住友電気工業株式会社 カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル

Also Published As

Publication number Publication date
CN110249394A (zh) 2019-09-17
JPWO2018143466A1 (ja) 2019-12-26
JP7028804B2 (ja) 2022-03-02
JP7247315B2 (ja) 2023-03-28
KR102623655B1 (ko) 2024-01-10
KR20230003656A (ko) 2023-01-06
CN110249394B (zh) 2021-07-06
US20190355490A1 (en) 2019-11-21
KR102515194B1 (ko) 2023-03-29
EP3579249B1 (en) 2024-04-10
KR20190113788A (ko) 2019-10-08
EP3579249A1 (en) 2019-12-11
EP3579249A4 (en) 2020-11-18
JP2022046653A (ja) 2022-03-23

Similar Documents

Publication Publication Date Title
JP7247315B2 (ja) カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法
CN107851476B (zh) 碳纳米管集合体、碳纳米管复合材料和碳纳米管线材
Kondo Recent progress in boron nanomaterials
Zhang et al. Carbon‐nanotube‐based electrical conductors: fabrication, optimization, and applications
KR100598751B1 (ko) 철-탄소 복합체, 이 철-탄소 복합체를 포함하는 탄소질재료 및 그의 제조 방법
US10934170B2 (en) Carbon nanotube composite and carbon nanotube wire
Selvarajan et al. Potential of Raman spectroscopy towards understanding structures of carbon-based materials and perovskites
Leggiero et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition
RU2346090C2 (ru) Ультратонкие углеродные волокна с различными структурами
Natsui et al. Vapor-Phase Indium Intercalation in van der Waals Nanofibers of Atomically Thin W6Te6 Wires
JP6967854B2 (ja) カーボンナノチューブ集合体及びカーボンナノチューブ線材
CN111279429A (zh) 碳纳米管复合线、碳纳米管包覆电线、线束、机器人的配线以及电车的架线
WO2019083031A1 (ja) カーボンナノチューブ被覆電線
JP7028688B2 (ja) カーボンナノチューブ集合体
WO2019083039A1 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
JP7295687B2 (ja) カーボンナノチューブ線材
JP2023148771A (ja) カーボンナノチューブ線材複合体
JP2023152922A (ja) カーボンナノチューブ線材複合体
Andrade Study of electrical properties of 2-and 3-dimensional carbon nanotubes networks
Shimizu Electronic transport properties of van der Waals nanofibers of W6Te6 atomic wires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566163

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022019

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747743

Country of ref document: EP

Effective date: 20190903