KR20080054407A - 자동변속기의 유압제어장치 - Google Patents

자동변속기의 유압제어장치 Download PDF

Info

Publication number
KR20080054407A
KR20080054407A KR1020087009872A KR20087009872A KR20080054407A KR 20080054407 A KR20080054407 A KR 20080054407A KR 1020087009872 A KR1020087009872 A KR 1020087009872A KR 20087009872 A KR20087009872 A KR 20087009872A KR 20080054407 A KR20080054407 A KR 20080054407A
Authority
KR
South Korea
Prior art keywords
pressure
range
valve
solenoid valve
input
Prior art date
Application number
KR1020087009872A
Other languages
English (en)
Other versions
KR100932311B1 (ko
Inventor
노부히로 사토
데츠야 야마구치
가즈유키 노다
아키라 후카츠
미키오 이와세
가즈토시 노자키
아츠시 혼다
Original Assignee
아이신에이더블류 가부시키가이샤
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이신에이더블류 가부시키가이샤, 도요타지도샤가부시키가이샤 filed Critical 아이신에이더블류 가부시키가이샤
Publication of KR20080054407A publication Critical patent/KR20080054407A/ko
Application granted granted Critical
Publication of KR100932311B1 publication Critical patent/KR100932311B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1224Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Structure Of Transmissions (AREA)

Abstract

본 발명에 따르면, 전진 레인지압(PD) 또는 후진 레인지압(PR)을 출력하는 매뉴얼 시프트 밸브(23) 및 전류가 통할 때 후진시에 결합하는 제4 클러치(C-4)의 유압 서보(54)로 결합압을 출력하는 리니어 솔레노이드 밸브(SL4)를 포함하는 유압제어장치(20)에, 리니어 솔레노이드 밸브(SL4)와 유압 서보(54) 사이에 개재되는 C-4 릴레이 밸브(45)를 포함한다. 상기 C-4 릴레이 밸브(45)는 솔레노이드 밸브(SL)의 신호압이 입력될 때 정상 위치에 로크되어 리니어 솔레노이드 밸브(SL4)로부터의 결합압을 유압 서보(54)로 연통시키고, 전류가 통하지 않는 고장 시에는 후진 레인지압(PR)에 의해 페일 위치로 전환되어 후진 레인지압(PR)을 유압 서보(54)로 연통시킨다. 이에 따라, 정상 시의 후진시에 전류가 통하는 솔레노이드 밸브(SL)는 전류가 통하지 않는 고장이 발생하더라도, 후진 단을 형성할 수 있게 된다.
Figure P1020087009872
자동변속기, 유압제어장치, 레인지압, 결합압, 유압서보, 솔레노이드 밸브

Description

자동변속기의 유압제어장치{HYDRAULIC CONTROL SYSTEM FOR AUTOMATIC TRANSMISSION}
본 발명은 예를 들면 차량에 탑재되는 자동변속기의 유압제어장치에 관한 것으로, 상세하게는 정상 시의 후진 시에 전류가 통하는 솔레노이드 밸브에 의해 마찰결합요소의 유압 서보로 결합압을 출력해서 후진 단을 형성하는 자동변속기의 유압제어장치에 관한 것이다.
종래, 예를 들면 차량에 탑재되는 유단식(有段式) 자동변속기는 복수의 마찰결합요소(클러치, 브레이크)의 결합 상태를 유압제어장치에 의해 제어하고, 변속 기구에 있어서의 전달 경로를 각 변속 단(段)에서 형성함으로써 전진 시에 있어서의 각 변속 단이나 후진 단의 달성을 가능하게 한다. 이러한 유압제어장치에 있어서는, 상기 복수의 마찰결합요소를 결합시키거나 결합해제시키는 각각의 유압 서보로 결합압을 조절 출력하는 복수의 솔레노이드가 구비되어, 이들 솔레노이드 밸브의 전자 제어에 의해 그 변속 단의 형성에 필요한 마찰결합요소를 결합시킴으로써 상기 다단 변속의 제어가 행해진다(예를 들면 일본 특개평8-42681호 공보, 참조).
그런데 상기의 유압제어장치에 있어서는, 예를 들면 페일(고장)이 발생했을 때 의도하지 않는 마찰결합요소가 결합해버리는 것을 방지하기 위하여, 또한 주행중에 있어서의 소비 전력을 억제하기 위하여, 상기한 복수의 솔레노이드 밸브에 전류가 통하지 않을 시에 유압을 출력하지 않는 노멀 클로즈(normal close) 타입의 솔레노이드 밸브를 이용하는 것이 바람직하다. 이를 위하여 이러한 유압제어장치에 있어서의 정상 시에 있어서는, 시프트 레버의 조작에 근거하여 시프트 레인지(range)가 전진 레인지 또는 후진 레인지로 변경될 때, 필요한 솔레노이드 밸브에 전류가 통하도록 하고, 전진의 변속 단 또는 후진의 변속 단에 있어서 결합하는 마찰결합요소의 유압 서보(servo)로 결합압을 공급하고 있다.
그러나 상기 유압제어장치에 있어서는, 예를 들면 어떤 페일에 의하여 후진 단을 형성하기 위해 필요한 솔레노이드 밸브에 전류가 통하지 않는 채로 되면, 후진 단이 형성되지 않아 차량의 후진 주행을 할 수 없게 되는 문제가 있다.
이러한 후진 단에서 필요한 솔레노이드 밸브에 전류가 통하지 않게 되는 페일 상태로서는, 예를 들면 시프트 레인지를 검출하는 센서 등이 고장 나고, 시프트 레인지를 검출할 수 없고, 어떤 솔레노이드 밸브에 전류를 통하게 할지 판정할 수 없게 되었을 경우나, 또한 예를 들면 단선이나 쇼트(short)가 발생했다거나 또는 어떤 페일을 감지했을 때에 의도하지 않는 마찰결합요소가 결합해버리는 것을 방지하기 위해서 모든 솔레노이드 밸브에 전류가 통하지 않는 솔레노이드·올 오프 페일 모드(solenoid all off failure mode)로 할 경우 등이 고려될 수 있다.
따라서 본 발명은 후진 시에 전류가 통하는 솔레노이드 밸브에 전류가 통하지 않게 될 경우에 있어서도, 레인지 전환 밸브를 후진 레인지 위치로 전환함으로써 후진 단을 형성하는 것이 가능한 자동변속기의 유압제어장치를 제공하는 것을 목적으로 하는 것이다.
본 발명은 (예를 들면, 도 1 내지 도 7 참조) 각각의 유압 서보(예를 들면, 51, 52, 53, 54, 61, 62)에 의해 결합되거나 결합해제되는 복수의 마찰결합요소(예를 들면, C-1, C-2, C-3, C-4, B-1, B-2)의 결합 상태에 의해 복수의 변속 단(예를 들면, 전진 8속단 내지 후진 1속단)을 형성하는 자동변속기(1)에서,
전진 레인지 위치(D), 후진 레인지 위치(R) 및 비주행 레인지 위치(P,N)의 어느 하나로 전환되고, 전진 레인지 위치(D)로 될 때 전진 레인지압(PD)을 출력하고, 후진 레인지 위치(R)로 될 때 후진 레인지압(PR)을 출력하는 레인지 전환 밸브(23); 및
전류가 통할 때, 상기 복수의 마찰결합요소 중 적어도 후진 시에 결합하는 제1 마찰결합요소(C-4)의 제1 유압 서보(54)로 제1 결합압(PC4)을 출력하는 제1 결합압 제어용 솔레노이드 밸브(SL4)를 포함하고,
정상 시에 있어서 상기 레인지 전환 밸브(23)가 상기 후진 레인지 위치(R)로 전환될 때, 상기 제1 결합압 제어용 솔레노이드 밸브(SL4)에 전류가 통하도록 하여 후진 변속 단을 형성하는 자동변속기의 유압제어장치(20)에 있어서,
상기 정상 시에 있어서 상기 레인지 전환 밸브(23)가 상기 후진 레인지 위치(R)로 전환될 때, 전류가 통하여 신호압(PSL)을 출력하는 신호압 출력 솔레노이드 밸브(SL),
상기 제1 결합압 제어용 솔레노이드 밸브(SL4)와 상기 제1 유압 서보(54) 사이에 개재되고, 상기 제1 결합압(PC4)을 상기 제1 유압 서보(54)로 연통시키는 정상위치(도 7에서 좌측 절반 위치) 및 상기 후진 레인지압(PR)을 상기 제1 유압 서보(54)로 연통시키는 페일 위치(도 7에서 우측 절반 위치)로 전환되는 제1 전환 밸브(45)를 포함하고,
상기 제1 전환 밸브(45)는 상기 신호압 출력 솔레노이드 밸브(SL)의 신호압(PSL)이 입력될 때 상기 정상 위치(도 7에서 좌측 절반 위치)에 로크되고, 상기 제1 결합압 제어용 솔레노이드 밸브(SL4)와 상기 신호압 출력 솔레노이드 밸브(SL)에 전류가 통하지 않는 고장 시에 상기 레인지 전환 밸브(23)가 상기 후진 레인지 위치(R)로 전환될 때 상기 후진 레인지압(PR)에 의해 상기 페일 위치(도 7에서 우측 절반 위치)로 전환되는 것을 특징으로 하는 자동변속기의 유압제어장치(20)를 제공한다.
이에 따라 제1 전환 밸브는 신호압 출력 솔레노이드 밸브의 신호압이 입력될 때 정상 위치에 로크되어 제1 결합압을 제1 유압 서보에 연통시키고, 제1 결합압 제어용 솔레노이드 밸브와 신호압 출력 솔레노이드 밸브에 전류가 통하지 않게 되는 고장 시에 있어서는, 레인지 전환 밸브가 후진 레인지 위치로 전환될 때, 후진 레인지압에 의해 페일 위치로 전환되어 후진 레인지압을 제1 유압 서보에 연통시키기 때문에, 정상 시에는 제1 결합압 제어용 솔레노이드 밸브에 의해 출력되는 제1 결합압을 제1 유압 서보로 공급함으로써 후진 단을 완만하게 형성할 수 있고, 또한 상기 고장 시에 있어서도, 후진 레인지압을 제1 유압 서보로 공급함으로써 후진 단을 형성할 수 있어 고장이 발생하더라도 차량의 후진 주행을 가능하게 할 수 있다.
또한, 구체적으로는(예를 들면 도 4 및 도 7 참조), 상기 제1 전환 밸브(45)는 상기 정상 위치(도 7에서 좌측 절반 위치) 또는 상기 페일 위치(도 7에서 우측 절반 위치)로 전환되는 스풀(45p), 상기 스풀(45p)을 상기 정상 위치(도 7에서 좌측 절반 위치)를 향해 가압하는 가압수단(45s), 상기 신호압 출력 솔레노이드 밸브(SL)의 신호압(PSL)이 상기 스풀(45p)에 상기 정상 위치(도 7에서 좌측 절반 위치)의 방향에 대하여 작용하는 제1 유실(45a) 및 상기 후진 레인지압(PR)이 상기 스풀(45p)에 상기 페일 위치(도 7에서 우측 절반 위치)의 방향에 대하여 작용하는 제2 유실(45e)을 구비하는 것을 특징으로 한다.
이에 따라 제1 전환 밸브는 신호압 출력 솔레노이드 밸브의 신호압이 입력될 때에 정상 위치에 로크되고, 또한 고장 시에 있어서는 후진 레인지압에 의해 페일 위치로 전환되는 것을 가능하게 할 수 있다.
또한, 본 발명은 (예를 들면, 도 4 및 도 7 참조), 상기 신호압 출력 솔레노이드 밸브(SL)의 신호압(PSL)이 입력될 때에 제1 위치(도 7에서 우측 절반 위치)로부터 제2 위치(도 7에서 좌측 절반 위치)로 전환되고, 또한 상기 후진 레인지압(PR)이 입력될 때에 상기 제1 위치(도 7에서 우측 절반 위치)에 로크되는 제2 전환 밸브(31)를 구비하는 것을 특징으로 한다.
이에 따라 전진 레인지에 있어서 신호압 출력 솔레노이드 밸브를 이용한 유압제어를 가능하게 하는 것이면서, 후진 레인지에 있어서 신호압 출력 솔레노이드 밸브의 신호압을 상기 후진 단의 형성을 위해 출력하는 것을 가능하게 할 수 있다.
또한, 구체적으로는(예를 들면, 도 4 및 도 7 참조), 상기 자동변속기(1)는 로크업(lockup) 클러치(10)를 구비하는 토크 컨버터(7)를 포함하고, 상기 제2 전환 밸브(31)는 상기 제2 위치(도 7에서 좌측 절반 위치)에 있어서 상기 로크업 클러치(10)를 결합하기 위한 로크업 클러치 결합압(PSEC)을 출력하는 것을 특징으로 한다.
이에 따라 전진 레인지에 있어서 신호압 출력 솔레노이드 밸브를 이용하여 로크업 클러치의 유압제어를 행할 수 있다.
또한, 본 발명은(예를 들면, 도 4 및 도 7 참조), 상기 레인지 전환 밸브(23)의 레인지 위치를 검출하는 레인지위치 검출수단; 및
전류가 통할 때, 상기 복수의 마찰결합요소 중 적어도 전진 발진 시에 결합하는 제2 마찰결합요소(C-1)의 제2 유압 서보(51)로 제2 결합압(PC1)을 출력하는 제2 결합압 제어용 솔레노이드 밸브(SL1)를 포함하고,
상기 제2 결합압 제어용 솔레노이드 밸브(SL1)는 상기 전진 레인지압(PD)에 근거하여 상기 제2 결합압(PC1)을 출력하고,
상기 정상 시에서, 상기 레인지위치 검출수단에 의해 상기 레인지 전환 밸브(23)에 있어서의 상기 비주행 레인지위치(P,N)로부터 상기 전진 레인지 위치(D)로의 전환이 검출될 때는, 상기 제2 결합압 제어용 솔레노이드 밸브(SLl)에 전류가 통하도록 하는 전진 발진제어를 행하고, 또한 상기 비주행 레인지위치(P,N)로부터 상기 후진 레인지 위치(R)로의 전환이 검출될 때는, 상기 제1 결합압 제어용 솔레노이드 밸브(SL4) 및 상기 신호압 출력 솔레노이드 밸브(SL)에 전류가 통하도록 하는 후진 발진제어를 행하고,
상기 레인지위치 검출수단에 의해 상기 레인지 전환 밸브(23)의 레인지 위치가 검출되지 않은 고장 시에, 상기 전진 발진제어를 행하는 것을 특징으로 한다.
이에 따라 레인지위치 검출수단에 의해 레인지 전환 밸브의 레인지 위치가 검출되지 않은 고장 시에, 제2 결합압 제어용 솔레노이드 밸브에 전류가 통하는 전진 발진제어를 행하기 때문에, 레인지 전환 밸브가 전진 레인지 위치일 때는, 전진 단이 달성되어 차량의 전진 주행을 가능하게 할 수 있다. 또한, 레인지 전환 밸브가 후진 레인지 위치일 때는, 전진 레인지압이 출력되지 않고 제2 결합압 제어용 솔레노이드 밸브로부터 제2 결합압이 출력되지 않아 전진 단이 달성되는 것을 방지할 수 있는 것이면서, 상기 제1 전환 밸브가 후진 레인지압에 의해 페일 위치로 전환되어 후진 레인지압을 제1 유압 서보로 공급함으로써 후진 단을 형성할 수 있어 차량의 후진 주행을 가능하게 할 수 있다.
상기 괄호 내의 부호는 도면과 대조(對照)하기 위한 것이지만, 이는 발명의 이해를 쉽게 하기 위한 편의적인 것이며, 특허청구범위의 구성에 하등 영향을 미치는 것은 아니다.
도 1은 본 발명을 적용할 수 있는 자동변속기를 나타내는 스켈리톤(skeleton)도.
도 2는 본 자동변속기의 작동표.
도 3은 본 자동변속기의 속도선도.
도 4는 본 발명에 관한 유압제어장치 전체를 나타내는 개략도.
도 5는 유압제어장치에 있어서의 전진변속 기능부분을 나타내는 일부 생략도.
도 6은 유압제어장치에 있어서의 동시결합방지 기능부분을 나타내는 일부 생략도.
도 7은 유압제어장치에 있어서의 후진변속 기능부분을 나타내는 일부 생략도.
이하, 도 1 내지 도 7을 참조하여 본 발명에 관한 실시예를 설명한다.
[자동변속기의 구성]
먼저 본 발명을 적용할 수 있는 유단식 자동변속기(1)(이하, 간단히 「자동변속기」로 칭함)의 개략적인 구성에 대해서 도 1을 참조하여 설명한다. 도 1에 나타낸 바와 같이, 예를 들면 FR타입(front engine, rear drive)의 차량에 이용되는데 적합한 자동변속기(1)는 엔진(미도시)에 접속될 수 있는 자동변속기(1)의 입력축(11)을 포함하고, 상기 입력축(11)의 축방향을 중심으로 해서 토크 컨버터(7)와 변속 기구(2)를 포함한다.
상기 토크 컨버터(7)는 자동변속기(1)의 입력축(11)에 접속된 펌프 임펠러(7a) 및 작동 유체를 통해 상기 펌프 임펠러(7a)의 회전이 전달되는 터빈 러너(runner)(7b)를 구비한다. 상기 터빈 러너(7b)는 상기 입력축(11)과 동축 상에 설치된 상기 변속 기구(2)의 입력축(12)에 접속된다. 또한, 상기 토크 컨버터(7)에는 로크업 클러치(10)가 구비되고, 상기 로크업 클러치(10)가 후술의 유압제어장치의 유압제어에 의해 결합하면, 상기 자동변속기(1)의 입력축(11)의 회전이 변속 기구(2)의 입력축(12)으로 직접 전달된다.
상기 변속 기구(2)에는 입력축(12)(및 중간축(13)) 상에 유성기어(DP) 및 유성기어유닛(PU)이 구비된다. 상기 유성기어(DP)는 선기어(S1), 캐리어(CR1) 및 링기어(Rl)를 구비한다. 선기어(Sl)에 맞물리는 피니언(Pl) 및 링기어(R1)에 맞물리는 피니언(P2)은 상기 캐리어(CR1)에서 서로 맞물리는 형태를 갖는, 소위 더블 피니언 유성기어이다.
또한, 상기 유성기어유닛(PU)은 4개의 회전 요소로서 선기어(S2), 선기어(S3), 캐리어(CR2(CR3)) 및 링기어(R3(R2))를 구비한다. 선기어(S2) 및 링기 어(R3)에 맞물림되는 롱(long) 피니언(P4)과 상기 롱 피니언(P4) 및 선기어(S3)에 맞물림되는 쇼트(short) 피니언(P3)은 상기 캐리어(CR2)에서 서로 맞물림되는 형태를 갖는, 소위 라비뇨형(Ravigneaux-type) 유성기어이다.
상기 유성기어(DP)의 선기어(Sl)는 예를 들면 트랜스미션 케이스(3)에 일체로 고정되는 보스부(boss portion)(3b)에 접속되어 회전이 고정되어 있다. 상기 캐리어(CR1)는 상기 입력축(12)에 접속되어 상기 입력축(12)의 회전과 함께 회전(이하, 「입력회전」이라고 칭함)하게 됨과 동시에, 제4 클러치(C-4)(제1 마찰결합요소)에 접속된다. 또한, 링기어(R1)는 상기 고정된 선기어(S1)와 상기 입력회전하는 캐리어(CR1)에 의하여 입력회전이 감속된 감속 회전을 하게 됨과 동시에, 제1 클러치(C-1)(제2 마찰결합요소) 및 제3 클러치(C-3)(마찰결합요소)에 접속된다.
상기 유성기어유닛(PU)의 선기어(S2)는 결합수단으로서의 제1 브레이크(B-1)(마찰결합요소)에 접속되어 트랜스미션 케이스(3)에 대하여 고정 자유자재로 되어 있음과 동시에, 상기 제4 클러치(C-4) 및 상기 제3 클러치(C-3)에 접속되어 제4 클러치(C-4)를 통해 상기 캐리어(CR1)의 입력회전이 입력 자유자재로 되고, 제3 클러치(C-3)를 통해 상기 링기어(R1)의 감속회전이 입력 자유자재로 된다. 또한, 상기 선기어(S3)는 제1 클러치(C-1)에 접속되어 상기 링기어(Rl)의 감속회전이 입력 자유자재로 된다.
또한, 상기 캐리어(CR2)는 중간축(13)을 통해 입력축(12)의 회전이 입력되는 제2 클러치(C-2)(마찰결합요소)에 접속되어 상기 제2 클러치(C-2)를 통해 입력회전이 입력 자유자재로 되고, 또한 결합수단으로서의 일방향 클러치(F-1) 및 제2 브레 이크(B-2)(마찰결합요소)에 접속되어 상기 일방향 클러치(F-1)를 통해 트랜스미션 케이스(3)에 대하여 일방향의 회전이 제한됨과 함께, 상기 제2 브레이크(B-2)를 통해 회전이 고정 자유자재로 된다. 그리고 상기 링기어(R3)는 도면에 나타내지 않은 구동 바퀴에 회전을 출력하는 출력축(15)에 접속된다.
[각 변속단(變速段)의 전달 경로]
계속해서, 상기 구성에 근거하여 변속 기구(2)의 작용에 대해서 도 1, 도 2 및 도 3을 참조하여 설명한다. 또한, 도 3에 나타내는 속도선도에 있어서 세로축은 각각의 회전요소(각 기어)의 회전수를 나타내고, 가로축은 이들 회전요소의 기어비에 대응해서 나타낸다. 또한, 상기 속도선도의 유성기어(DP) 부분에 있어서, 가로방향 최단부(도 3의 좌방향 측)의 세로축은 선기어(S1)에 대응하고, 이하 도면의 우측방향 측으로 순차적으로 세로축은 링기어(R1), 캐리어(CR1)에 대응한다. 또한, 상기 속도 선도의 유성기어유닛(PU) 부분에 있어서, 가로방향 최단부(도 3의 우방향 측)의 세로축은 선기어(S3)에 대응하고, 이하 도면의 좌측방향 측으로 순차적으로 세로축은 링기어(R3(R2)), 캐리어(CR2(CR3)), 선기어(S2)에 대응한다.
예를 들면, D(드라이브) 레인지(range)이고, 전진 1속단(1st)에 있어서의 엔진(구동원)으로부터의 구동 시에서는, 도 2에 나타낸 바와 같이 제1 클러치(C-1) 및 일방향 클러치(F-1)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(S1)와 입력회전인 캐리어(CR1)에 의해 감속회전하는 링기어(Rl)의 회전은 제1 클러치(C-1)를 통해 선기어(S3)로 입력된다. 또한, 캐리어(CR2)의 회전은 일방향(정회전 방향)으로 제한, 즉 캐리어(CR2)의 역회전이 방지되어 고정된 상 태로 된다. 이에 따라, 선기어(S3)로 입력된 감속회전은 고정된 캐리어(CR2)를 통해 링기어(R3)로 출력되어 전진 1속단으로서의 정회전이 출력축(15)으로부터 출력된다.
또한, 전진 1속단(1st)의 비구동 시, 즉 엔진 브레이크 시(코스팅(coasting) 시)에는, 제2 브레이크(B-2)를 로크해서 캐리어(CR2)를 고정하고, 상기 캐리어(CR2)의 정회전을 방지하는 형태에서 상기 전진 1속단의 상태를 유지한다. 또한, 상기 전진 1속단에서는 일방향 클러치(F-1)에 의해 캐리어(CR2)의 역회전을 방지하고, 또한 정회전을 가능하게 하기 때문에, 예를 들면 비주행 레인지로부터 주행 레인지로 전환할 때의 전진 1속단의 달성을 일방향 클러치(F-1)의 자동결합에 의해 스무스한 형태로 행할 수 있다.
전진 2속단(2nd)에서는, 도 2에 나타낸 바와 같이 제1 클러치(C-1)가 결합하고, 제1 브레이크(B-1)는 로크된다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(Sl)와 입력회전인 캐리어(CR1)에 의해 감속회전하는 링기어(R1)의 회전이 제1 클러치(C-1)를 통해 선기어(S3)로 입력된다. 또한, 제1 브레이크(B-1)의 결합에 의해 선기어(S2)의 회전은 고정된다. 이에 따라 캐리어(CR2)는 선기어(S3)보다 저회전의 감속회전으로 되고, 상기 선기어(S3)로 입력된 감속회전은 상기 캐리어(CR2)를 통해 링기어(R3)로 출력되어 전진 2속단으로서의 정회전이 출력축(15)으로부터 출력된다.
전진 3속단(3rd)에서는, 도 2에 나타낸 바와 같이 제1 클러치(C-1) 및 제3 클러치(C-3)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기 어(S1)와 입력회전인 캐리어(CRl)에 의해 감속회전하는 링기어(Rl)의 회전은 제1 클러치(C-1)를 통해 선기어(S3)로 입력된다. 또한, 제3 클러치(C-3)의 결합에 의해링기어(Rl)의 감속회전이 선기어(S2)로 입력된다. 다시 말해서, 선기어(S2) 및 선기어(S3)에 링기어(Rl)의 감속회전이 입력되기 때문에, 유성기어유닛(PU)은 감속회전의 직접 연결 상태가 되고, 그대로의 감속회전이 링기어(R3)로 출력되어 전진 3속단으로서의 정회전이 출력축(15)으로부터 출력된다.
전진 4속단(4th)에서는, 도 2에 나타낸 바와 같이 제1 클러치(C-1) 및 제4 클러치(C-4)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(S1)와 입력회전인 캐리어(CRl)에 의해 감속회전하는 링기어(Rl)의 회전은 제1 클러치(C-1)를 통해 선기어(S3)로 입력된다. 또한, 제4 클러치(C-4)의 결합에 의해 캐리어(CR1)의 입력회전이 선기어(S2)로 입력된다. 이에 따라 캐리어(CR2)는 선기어(S3)보다는 고속회전의 감속회전으로 되고, 상기 선기어(S3)로 입력된 감속회전은 상기 캐리어(CR2)를 통해 링기어(R3)로 출력되어 전진 4속단으로서의 정회전이 출력축(15)으로부터 출력된다.
전진 5속단(5th)에서는, 도 2에 나타낸 바와 같이 제1 클러치(C-1) 및 제2 클러치(C-2)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(Sl)와 입력회전인 캐리어(CR1)에 의해 감속회전하는 링기어(R1)의 회전은 제1 클러치(C-1)를 통해 선기어(S3)로 입력된다. 또한, 제2 클러치(C-2)의 결합에 의해 캐리어(CR2)에 입력회전이 입력된다. 이에 따라 상기 선기어(S3)로 입력된 감속회전과 캐리어(CR2)로 입력된 입력회전에 의하여, 상기 전진 4속단보다 높은 감속회 전으로 되어 링기어(R3)로 출력되어 전진 5속단으로서의 정회전이 출력축(15)으로부터 출력된다.
전진 6속단(6th)에서는, 도 2에 나타낸 바와 같이 제2 클러치(C-2) 및 제4 클러치(C-4)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 제4 클러치(C-4)의 결합에 의해 선기어(S2)에 캐리어(CR1)의 입력회전이 입력된다. 또한, 제2 클러치(C-2)의 결합에 의해 캐리어(CR2)에 입력회전이 입력된다. 즉, 선기어(S2) 및 캐리어(CR2)에 입력회전이 입력되기 때문에, 유성기어유닛(PU)은 입력회전의 직접 연결 상태로 되고, 그대로의 입력회전이 링기어(R3)로 출력되어 전진 6속단(직접연결 단)로서의 정회전이 출력축(15)로부터 출력된다.
전진 7속단(7th, OD1)에서는, 도 2에 나타낸 바와 같이 제2 클러치(C-2) 및 제3 클러치(C-3)가 결합한다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(S1)와 입력회전인 캐리어(CR1)에 의해 감속회전하는 링기어(R1)의 회전은 제3 클러치(C-3)를 통해 선기어(S2)로 입력된다. 또한, 제2 클러치(C-2)의 결합에 의해 캐리어(CR2)에 입력회전이 입력된다. 이에 따라 상기 선기어(S2)로 입력된 감속회전과 캐리어(CR2)로 입력된 입력회전에 의하여, 입력회전보다 약간 높은 증속회전으로 되어 링기어(R3)로 출력되어 전진 7속단(상기 직결 단보다도 증속의 오버드라이브 1속단)으로서의 정회전이 출력축(15)으로부터 출력된다.
전진 8속단(8th, OD2)에서는, 도 2에 나타낸 바와 같이 제2 클러치(C-2)가 결합하고, 제1 브레이크(B-1)는 로크된다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 제2 클러치(C-2)의 결합에 의해 캐리어(CR2)로 입력회전이 입력된다. 또한, 제1 브레이크(B-1)의 로크에 의해 선기어(S2)의 회전은 고정된다. 이에 따라 고정된 선기어(S2)에 의해 캐리어(CR2)의 입력회전이 상기 전진 7속단보다 높은 증속 회전으로 되어 링기어(R3)로 출력되어 전진 8속단(상기 직접 연결 단보다도 증속의 오버드라이브 2속단)로서의 정회전이 출력축(15)으로부터 출력된다.
후진 1속단(Revl)에서는, 도 2에 나타낸 바와 같이 제3 클러치(C-3)가 결합하고, 제2 브레이크(B-2)는 로크된다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 고정된 선기어(S1)와 입력회전인 캐리어(CR1)에 의해 감속회전하는 링기어(R1)의 회전은 제3 클러치(C-3)를 통해 선기어(S2)로 입력된다. 또한, 제2 브레이크(B-2)의 로크에 의해 캐리어(CR2)의 회전은 고정된다. 이에 따라 선기어(S2)로 입력된 감속회전은 고정된 캐리어(CR2)를 통해 링기어(R3)로 출력되어 후진 1속단으로서의 역회전이 출력축(15)으로부터 출력된다.
후진 2속단(Rev2)에서는, 도 2에 나타낸 바와 같이 제4 클러치(C-4)가 결합하고, 제2 브레이크(B-2)는 로크된다. 이에 따라 도 1 및 도 3에 나타낸 바와 같이 제4 클러치(C-4)의 결합에 의해 캐리어(CRl)의 입력회전이 선기어(S2)로 입력된다.또한, 제2 브레이크(B-2)의 로크에 의해 캐리어(CR2)의 회전은 고정된다. 이에 따라 선기어(S2)로 입력된 입력회전은 고정된 캐리어(CR2)를 통해 링기어(R3)로 출력되어 후진 2속단으로서의 역회전이 출력축(15)으로부터 출력된다.
또한, 자동변속기에 있어서는 상세히 후술하는 유압제어장치(20)에 의한 유압제어에 의한 리버스 레인지(reverse range) 시에 제4 클러치(C-4) 및 제2 브레이크(B-2)가 결합, 즉 후진 2속단만을 형성하도록 하고 있다. 그러나 이는 다양한 변 경이 가능하고, 후진 1속단만 또는 후진 1속단과 후진 2속단 모두를 형성할 수 있다.
또한, 예를 들면 P(파킹) 레인지 및 N(뉴트럴) 레인지에서는, 제1 클러치(C-1), 제2 클러치(C-2), 제3 클러치(C-3) 및 제4 클러치(C-4)가 해방된다. 이에 따라 캐리어(CR1)와 선기어(S2) 사이, 링기어(R1)와 선기어(S2) 및 선기어(S3) 사이, 즉 유성기어(DP)와 유성기어유닛(PU) 사이는 단절 상태가 된다. 또한, 입력축(12)(중간축(13))과 캐리어(CR2) 사이가 단절 상태가 된다. 이에 따라 입력축(12)과 유성기어유닛(PU) 사이의 동력전달은 단절 상태로 되고, 즉 입력축(12)과 출력축(15)의 동력전달은 단절 상태로 된다.
[유압제어장치의 전체 구성]
계속해서, 본 발명에 관한 자동변속기의 유압제어장치(20)에 관하여 설명한다. 먼저 유압제어장치(20) 전체를 도 4를 참조하여 설명한다. 또한, 본 실시예에 있어서, 각 밸브에서의 실제 스풀(spool)은 1개이지만, 스풀 위치의 전환 위치나 컨트롤 위치를 설명하기 위해서 도 4 내지 도 7에서 나타내는 우측 절반 정도의 상태를 「우측 절반 위치」, 좌측 절반 정도의 상태를 「좌측 절반 위치」로 칭한다.
유압제어장치(20)는 도 4에 나타낸 바와 같이 주로 각종의 원압(元壓: primary pressure)이 되는 유압을 조절·생성하기 위한 스트레이너(strainer)(22), 오일 펌프(21), 매뉴얼 시프트밸브(manual shift valve)(레인지 전환 밸브)(23), 프라이머리 레귤레이터 밸브(primary regulator valve)(25), 세컨더리 레귤레이터 밸브(26), 솔레노이드 모듈레이터 밸브(solenoid modulator valve)(27) 및 도면에 나타내지 않은 리니어 솔레노이드 밸브(SLT)를 포함한다.
또한, 상기 유압제어장치(20)는 각종의 원압에 근거하는 유압을 각각의 유로(油路)로 선택적으로 전환하거나 조절하고, 스풀 위치가 전환되거나 컨트롤되는 로크업 릴레이(lock-up relay) 밸브(제2 전환 밸브)(31), 제2 클러치 어플라이 릴레이(clutch apply relay) 밸브(32), 로크압 지연용 밸브(33), 제1 클러치 어플라이 릴레이 밸브(34), B-2 어플라이 컨트롤 밸브(35), B-2 컨트롤 밸브(36), B-2 체크 밸브(37), 제1 클러치 어플라이 컨트롤 밸브(41), 시그널 체크 밸브(42), 제2 클러치 어플라이 컨트롤 밸브(43), B-1 어플라이 컨트롤 밸브(44), C-4 릴레이 밸브(제1 전환 밸브)(45) 등을 구비한다.
또한, 상기 유압제어장치(20)는 상기 각종 릴레이 밸브 또는 각종 컨트롤 밸브에 전기적으로 유압을 제어해서 공급하기 위한 리니어 솔레노이드 밸브(SL1), 리니어 솔레노이드 밸브(SL2), 리니어 솔레노이드 밸브(SL3), 리니어 솔레노이드 밸브(SL4), 리니어 솔레노이드 밸브(SL5), 리니어 솔레노이드 밸브(SLU), 솔레노이드 밸브(SR), 솔레노이드 밸브(페일(fail)용 솔레노이드 밸브)(SL)를 구비한다.
또한, 본 유압제어장치(20)에서의 솔레노이드 밸브(SR) 이외의 솔레노이드 밸브, 즉 리니어 솔레노이드 밸브(SL1∼5, SLU) 및 솔레노이드 밸브(SL)는 전류가 통하지 않을 시(이하, 「오프(off)」라고 칭함)에 입력 포트와 출력 포트를 차단하고, 전류가 통할 시(이하, 「온(on)」이라고 칭함)에 연통되는, 소위 노멀 클로즈( normal close)(N/C) 타입의 것을 이용되고, 이에 반하여 솔레노이드 밸브(SR)만이 노멀 오픈(N/O) 타입의 것이 이용된다.
그리고 상기 유압제어장치(20)에는 상기 각종의 밸브에 의해 조절되어 공급된 결합압에 근거하여 상기 제1 클러치(C-1)를 결합시키거나 결합해제시킬 수 있는 유압 서보(51), 상기 제2 클러치(C-2)를 결합시키거나 결합해제시킬 수 있는 유압 서보(52), 상기 제3 클러치(C-3)를 결합시키거나 결합해제시킬 수 있는 유압 서보(53), 상기 제4 클러치(C-4)를 결합시키거나 결합해제시킬 수 있는 유압 서보(54), 상기 제1 브레이크(B-1)를 결합시키거나 결합해제시킬 수 있는 유압 서보(61), 상기 제2 브레이크(B-1)를 결합시키거나 결합해제시킬 수 있는 유압 서보 (62)를 구비하여 구성된다.
계속해서, 상기 유압제어장치(20)에서의 각종의 원압, 즉 라인압, 세컨더리압(secondary pressure), 모듈레이터압(modulator pressure)의 생성 부분에 관하여 설명한다. 또한, 이들 라인압, 세컨더리압, 모듈레이터압의 생성 부분은 일반적인 자동변속기의 유압제어장치와 동일한 것이고, 주지의 것이기 때문에, 간략히 설명한다.
오일 펌프(21)는 예를 들면 상기 토크 컨버터(7)의 펌프 임펠러(7a)에 회전구동 연결되고, 엔진의 회전에 연동해서 구동되어, 도면에 나타내지 않은 오일 팬( oil pan)으로부터 스트레이너(22)를 통해 오일을 빨아올리는 형태로 유압을 발생시킨다. 또한, 상기 유압제어장치(20)에는 도면에 나타내지 않은 리니어 솔레노이드 밸브(SLT)가 포함되고, 상기 리니어 솔레노이드 밸브(SLT)는 후술의 솔레노이드 모듈레이터 밸브(27)에 의해 조절된 모듈레이터압(PMOD)을 원압으로 해서 스로틀 개방 도에 대응한 신호압(PSLT)을 조절 출력한다.
프라이머리 레귤레이터 밸브(25)는 상기 오일 펌프(21)에 의해 발생한 유압을, 스프링의 가압력이 부하된 스풀에 입력하는 상기 리니어 솔레노이드 밸브(SLT)의 신호압(PSLT)에 근거하여 일부 배출하는 형태에 의해 라인압(PL)으로 조절한다. 이 라인압(PL)은 후술의 매뉴얼 시프트 밸브(23), 솔레노이드 모듈레이터 밸브(27), 제2 클러치 어플라이 릴레이 밸브(32), 리니어 솔레노이드 밸브(SL5), 제1 클러치 어플라이 컨트롤 밸브(41), 제2 클러치 어플라이 컨트롤 밸브(43) 및 B-1 어플라이 컨트롤 밸브(44)로 공급된다.
또한, 상기 프라이머리 레귤레이터 밸브(25)에 의해 배출된 유압은, 세컨더리 레귤레이터 밸브(26)에 의해 스프링의 가압력이 부하된 스풀로 입력되는 상기 리니어 솔레노이드 밸브(SLT)의 신호압(PSLT)에 근거하여 일부 배출하는 형태로, 세컨더리압(PSEC)으로 조절된다. 이 세컨더리압(PSEC)은 도면에 나타내지 않은 윤활유로 등으로 공급됨과 동시에, 로크업 클러치 릴레이 밸브(31)로 공급되어 로크업 클러치(10)의 제어용 원압으로서 이용된다.
솔레노이드 모듈레이터 밸브(27)는 상기 프라이머리 레귤레이터 밸브(25)에 의해 조절된 라인압(PL)을 그의 스프링의 가압력에 근거해서 라인압(PL)이 소정압 이상으로 되면, 각각 일정하게 되는 모듈레이터압(PMOD)으로 조절한다. 이 모듈레이터압(PMOD)은 상기 리니어 솔레노이드 밸브(SLT)(미도시), 솔레노이드 밸브(SL)(노 멀 클로즈), 솔레노이드 밸브(SR)(노멀 오픈), 리니어 솔레노이드 밸브(SLU)(노멀 클로즈)로 원압으로서 공급된다.
[유압제어장치에 있어서의 전진변속기능 부분의 구성]
다음으로, 본 유압제어장치(20)에 있어서 주로 전진변속제어를 행하는 기능 부분에 대해서 도 5를 참조하여 설명한다. 먼저 매뉴얼 시프트 밸브(23)는 운전석(미도시)에 설치된 시프트 레버에 의해 기계적(또는 전기적)으로 구동되는 스풀(23p)을 포함함과 함께, 입력 포트(23a)로 상기 라인압(PL)이 입력된다. 시프트 레버의 조작에 근거하여 시프트 포지션이 D(드라이브) 레인지로 되면, 상기 스풀(23p)의 위치에 근거하여 상기 입력 포트(23a)와 출력 포트(23b)는 연통되고, 상기 출력 포트(23b)로부터 라인압(PL)을 원압으로 하는 전진(D) 레인지압(PD)이 출력된다.
상기 출력 포트(23b, 23c)는 상세히 후술하는 리니어 솔레노이드 밸브(SL1)의 입력 포트(SLla), 리니어 솔레노이드 밸브(SL3)의 입력 포트(SL3a), 제1 클러치 어플라이 릴레이 밸브(34)의 입력 포트(34k), B-2 어플라이 컨트롤 밸브(35)의 입력 포트(35d)에 접속되며, 전진 레인지일 때, 이들 포트에 전진 레인지압(PD)을 출력한다.
또한, 시프트 레버의 조작에 근거하여 시프트 포지션이 R(리버스) 레인지로 되면, 상기 스풀(23p)의 위치에 근거하여 상기 입력 포트(23a)와 출력 포트(23d)는 연통되고, 상기 출력 포트(23d)로부터 라인압(PL)을 원압으로 하는 후진(R) 레인지 압(PR)이 출력된다.
상기 출력 포트(23d)는 상세히 후술하는 제1 클러치 어플라이 릴레이 밸브(34)의 입력 포트(34i), B-2 컨트롤 밸브(36)의 입력 포트(36d)에 접속되고, 후진 레인지일 때, 이들 포트에 후진 레인지압(PR)을 출력한다.
또한, 시프트 레버의 조작에 근거하여 P(파킹) 레인지 및 N(뉴트럴) 레인지(비주행 레인지)로 될 경우, 상기 입력 포트(23a)와 출력 포트(23b, 23c, 23d)는 스풀(23p)에 의해 차단되어 레인지압은 출력되지 않는다.
솔레노이드 밸브(SR)는 (솔레노이드 밸브(SL)와 공용되는) 입력 포트(Sa)로 상기 모듈레이터압(PMOD)을 입력하고, 후술의 전진 1속단의 엔진 브레이크 시 이외의 정상 시에서는, 전류가 통하여 출력 포트(SRb)로부터 신호압(PSR)을 출력하지 않고, 예를 들면 전진 1속단의 엔진 브레이크 시나 후술의 솔레노이드·올 오프 모드 시 등 전류가 통하지 않을 시에는 출력 포트(SRb)로부터 신호압(PSR)을 출력한다(도 2 참조). 상기 출력 포트(SRb)는 제2 클러치 어플라이 밸브(32)의 유실(油室)(32a), 제1 클러치 어플라이 밸브(34)의 유실(34a) 및 입력 포트(34b)에 접속되고, 오프(off) 될 때, 이들 유실 및 포트에 신호압(PSR)을 출력하고, 상세히 후술하는 제1 클러치 어플라이 밸브(34)가 우측 절반 위치에서 로크될 때는, B-2 어플라이 컨트롤 밸브(35)의 유실(35a)에도 신호압(PSR)을 출력한다.
리니어 솔레노이드 밸브(SLU)는 입력 포트(SLUa)로 상기 모듈레이터압(PMOD) 을 입력하고, 전류가 통할 때, 출력 포트(SLUb)로부터 신호압(PSLU)을 출력한다(도 2 참조). 상기 출력 포트(SLUb)는 상기 로크업 릴레이 밸브(31)를 통해 B-2 컨트롤 밸브(36)의 유실(36a)에 접속되고, 상기 로크업 릴레이 밸브(31)가 우측 절반 위치로 될 때(도 4 및 도 7 참조), 상기 유실(36a)로 신호압(PSLU)을 출력한다.
리니어 솔레노이드 밸브(제2 결합압 제어용 솔레노이드 밸브)(SL1)는 상기 전진 레인지압(PD)이 입력되는 입력 포트(SLla), 전류가 통할 때 상기 전진 레인지압(PD)을 조절해서 유압 서보(제2 유압 서보)(51)로 결합압(제2 결합압)(PC1)으로서 출력하는 출력 포트(SLlb), 피드백 포트(SLlc) 및 주로 유압 서보(51)의 결합압(PC1)을 드레인 하기 위한 배출 포트(SLld)를 구비한다. 상기 배출 포트(SLld)는 후술의 제2 클러치 어플라이 릴레이 밸브(32)의 포트(32f)에 접속되어, 정상 시에서는 상기 제2 클러치 어플라이 릴레이 밸브(32)의 드레인 포트(EX)로부터 결합압(PC1)이 드레인 된다. 또한, 출력 포트(SLlb)는 후술의 제1 클러치 어플라이 컨트롤 밸브(41)를 통해 유압 서보(51)에 접속된다(도 4 및 도 6 참조).
리니어 솔레노이드 밸브(SL2)는 후술의 B-2 어플라이 컨트롤 밸브(35)를 통해 상기 전진 레인지압(PD)이 입력되는 입력 포트(SL2a), 전류가 통할 때에 상기 전진 레인지압(PD)을 조절해서 유압 서보(52)로 결합압(PC2)으로서 출력하는 출력 포트(SL2b), 피드백 포트(SL2c) 및 주로 유압 서보(52)의 결합압(PC2)을 드레인 하기 위한 배출 포트(SL2d)를 구비한다. 상기 배출 포트(SL2d)는 정상 시 후술의 제2 클러치 어플라이 릴레이 밸브(32)의 포트(32d), 포트(32e), 그리고 제1 클러치 어플라이 릴레이 밸브(34)의 포트(34d), 드레인 포트(EX)에 연통되어 상기 드레인 포트(EX)로부터 결합압(PC2)이 드레인 된다.
리니어 솔레노이드 밸브(SL3)는 상기 전진 레인지압(PD)이 입력되는 입력 포트(SL3a), 전류가 통할 때 상기 전진 레인지압(PD)을 조절해서 유압 서보(53)로 결합압(PC3)으로서 출력하는 출력 포트(SL3b), 피드백 포트(SL3c) 및 주로 유압 서보(53)의 결합압(PC3)을 드레인 하기 위한 배출 포트(SL3d)를 구비한다. 상기 배출 포트(SL3d)는 후술의 제1 클러치 어플라이 릴레이 밸브(34)의 포트(34e)에 접속되어 정상 시에서는 상기 제1 클러치 어플라이 릴레이 밸브(34)의 드레인 포트(EX)로부터 결합압(PC3)이 드레인 된다.
리니어 솔레노이드 밸브(제1 결합압 제어용 솔레노이드 밸브)(SL4)는 후술의 제2 클러치 어플라이 릴레이 밸브(32)를 통과하는 라인압(PL)이 입력되는 입력 포트(SL4a), 전류가 통할 때 상기 라인압(PL)을 조절해서 유압 서보(제1 유압 서보)(54)로 결합압(제1 결합압)(PC4)으로서 출력하는 출력 포트(SL4b), 피드백 포트(SL4c) 및 유압 서보(54)의 결합압(PC4)을 드레인 하는 드레인 포트(EX)를 구비한다. 또한, 출력 포트(SL4b)는 후술의 C-4 릴레이 밸브(45) 및 제2 클러치 어플라이 컨트롤 밸브(43)를 통해 유압 서보(54)에 접속된다(도 4, 도 6 및 도 7 참조).
리니어 솔레노이드 밸브(SL5)는 라인압(PL)이 입력되는 입력 포트(SL5a), 전류가 통할 때에 상기 라인압(PL)을 조절해서 유압 서보(61)로 결합압(PB1)으로서 출력하는 출력 포트(SL5b), 피드백 포트(SL5c) 및 유압 서보(61)의 결합압(PB1)을 드레인 하는 드레인 포트(EX)를 구비한다. 또한, 출력 포트(SL5b)는 후술의 B-1 어플라이 컨트롤 밸브(44)를 통해 유압 서보(61)에 접속된다(도 4 및 도 6 참조).
B-2 어플라이 컨트롤 밸브(35)는 스풀(35p)과 상기 스풀(35p)을 도면에서 상방향으로 가압하는 스프링(35s)을 구비함과 함께, 상기 스풀(35p)의 상측(도면에서 상측)에 유실(35a), 입력 포트(35b), 출력 포트(35c), 입력 포트(35d), 출력 포트(35e), 유실(35f)을 구비한다. 상기 B-2 어플라이 컨트롤 밸브(35)의 스풀(35p)은 유실(35a)로 상기 신호압(PSR)이 입력될 때 우측 절반 위치로 되고, 그 이외는 스프링(35s)의 가압력에 의해 좌측 절반 위치로 된다. 또한, 상기 스풀(35p)은 유실(35f)에 후술의 결합압(PC3, PC4, PB1) 중 어떠한 결합압이 입력될 때, 상기 신호압(PSR)의 입력에도 불구하고, 좌측 절반 위치로 고정된다.
상기 입력 포트(35d)에는 상기 전진 레인지압(PD)이 입력됨과 함께, 출력 포트(35e)는 상기 리니어 솔레노이드 밸브(SL2)의 입력 포트(SL2a)에 접속되며, 상기 스풀(35p)이 좌측 절반 위치에 있을 때, 전진 레인지압(PD)은 리니어 솔레노이드 밸브(SL2)로 출력된다. 또한, 출력 포트(35c)는 후술의 B-2 컨트롤 밸브(36)의 입력 포트(36c)에 접속되고, 유실(35a)로 상기 신호압(PSR)이 입력된 상기 스풀(35p)이 우측 절반 위치에 있을 때 전진 레인지압(PD)은 상기 B-2 컨트롤 밸브(36)를 통해 유압 서보(62)로 출력된다.
B-2 컨트롤 밸브(36)는 스풀(36p)과 상기 스풀(36p)을 도면에서 상방향으로 가압하는 스프링(36s)을 구비함과 함께, 상기 스풀(36p)의 상측(도면에서 상측)에 유실(36a), 출력 포트(36b), 입력 포트(36c), 입력 포트(36d), 출력 포트(36e) 및 피드백 유실(36f)을 구비한다. 상기 B-2 어플라이 컨트롤 밸브(36)의 스풀(36p)은 유실(36a)로 상기 신호압(PSLU)이 입력될 때 우측 절반 위치로부터 좌측 절반 위치로 컨트롤 된다.
전진 레인지 시(전진 1속 시의 엔진 브레이크 시)에서는, 상기 B-2 어플라이 컨트롤 밸브(35)를 통해 입력 포트(36c)로 전진 레인지압(PD)이 입력되고, 상기 유실(36a)의 신호압(PSLU)과 유실(36f)의 피드백압에 근거하여 출력 포트(36b)로부터 결합압(PB2)이 조절 출력된다. 또한, 후진 레인지 시에서는 매뉴얼 시프트 밸브(23)로부터 후진 레인지압(PR)이 포트(36d)로 입력되고, 출력 포트(36e)로부터 결합압(PB2)이 출력된다.
B-2 체크 밸브(37)는 입력 포트(37a), 입력 포트(37b) 및 출력 포트(37c)를 구비하고, 상기 입력 포트(37a)와 상기 입력 포트(37b)로 입력된 유압 중 어느 하나를 출력 포트(37c)로부터 출력한다. 즉 상기 B-2 컨트롤 밸브(36)의 출력 포 트(36b)로부터 입력 포트(37a)로 결합압(PB2)이 입력될 때 출력 포트(37c)로부터 유압 서보(62)로 출력되며, 상기 B-2 컨트롤 밸브(36)의 출력 포트(36e)로부터 입력 포트(37b)로 결합압(PB2)이 입력될 때는 출력 포트(37c)로부터 유압 서보(62)로 출력된다.
제1 클러치 어플라이 릴레이 밸브(34)는 스풀(34p)과 상기 스풀(34p)을 도면에서 상방향으로 가압하는 스프링(34s)을 구비함과 함께, 상기 스풀(34p)의 상측(도면에서 상측)에 유실(34a), 입력 포트(34b), 출력 포트(34c), 출력 포트(34d), 출력 포트(34e), 입력 포트(34k), 입력 포트(34f), 출력 포트(34g) 및 유실(34j)을 구비한다.
상기 유실(34a)에서는, 전진 1속 시의 엔진 브레이크 시 이외의 정상 시에 있어서, 솔레노이드 밸브(SR)가 온 되는 것에 따라 신호압(PSR)이 입력되지 않고, 스프링(34s)의 가압력에 근거하여 스풀(34p)은 우측 절반 위치로 된다. 또한, 스풀(34p)이 우측 절반 위치일 때, 입력 포트(34f)로는 리니어 솔레노이드 밸브(SLl)로부터 결합압(PC1)이 입력되고, 출력 포트(34g)로부터 결합압(PC1)이 유실(34j)로 출력되어 상기 스풀(34p)은 우측 절반 위치로 로크된다.
상기 스풀(34p)이 우측 절반 위치에 있을 때, 입력 포트(34k)로 입력되는 전진 레인지압(PD), 입력 포트(34i)로 입력되는 후진 레인지압(PR)은 차단된다. 또한, 결합압(PC1)에 의해 상기 스풀(34p)이 우측 절반 위치에서 로크된 상태에 있어서는, 유실(34a)로 신호압(PSR)이 입력되더라도 우측 절반 위치로 유지되고, 입력 포트(34b)로 입력된 신호압(PSR)은 출력 포트(34c)로부터 B-2 어플라이 컨트롤 밸브(35)의 유실(35a)로 출력된다. 또한, 출력 포트(34d) 및 출력 포트(34e)는 리니어 솔레노이드 밸브(SL3)의 배출 포트(SL3d), 후술의 제2 클러치 어플라이 릴레이 밸브(32)를 통해 리니어 솔레노이드 밸브(SL2)의 배출 포트(SL2d)에 접속되고, 상기 리니어 솔레노이드 밸브(SL3)에 의해 결합압(PC3)이 배출될 때 및 상기 리니어 솔레노이드 밸브(SL2)에 의해 결합압(PC2)이 배출될 때, 이들 결합압(PC3) 및 결합압(PC2)이 입력되고, 드레인 포트(EX)로부터 배출된다.
한편, 상세히 후술하는 솔레노이드·올 오프 모드 시에서는, 유실(34a)로 신호압(PSR)이 입력됨과 함께, 리니어 솔레노이드 밸브(SLl)로부터의 결합압(PC1)은 차단되며, 상기 스풀(34p)은 좌측 절반 위치로 된다. 이 스풀(34p)이 좌측 절반 위치에 있을 때, 전진 레인지에서는 입력 포트(34k)로 입력되는 전진 레인지압(PD)이 출력 포트(34d)와 출력 포트(34e)로부터 출력되고, 리니어 솔레노이드 밸브(SL3)의 배출 포트(SL3d) 및 후술의 제2 클러치 어플라이 릴레이 밸브(32)의 입력 포트(32e)로 페일용 결합압으로서 출력된다. 또한, 후진 레인지에서는 입력 포트(34i)로 입력되는 후진 레인지압(PR)이 출력 포트(34h)로부터 B-2 어플라이 컨트롤 밸브(35)의 입력 포트(35b)로 출력되고, 유실(35a)로 신호압(PSR)이 입력되지 않 고 좌측 절반 위치로 되는 B-2 어플라이 컨트롤 밸브(35)를 통해 B-2 컨트롤 밸브(36)의 입력 포트(36c)로 상기 후진 레인지압(PR)이 출력된다. 이에 따라 상기한 바와 같이 B-2 컨트롤 밸브(36)가 밸브 스틱(valve stick) 등을 발생한 상태에서 좌측 절반 위치에 로크되어 입력 포트(36d)와 출력 포트(36e)의 연통이 차단된 경우에도, 입력 포트(36c)와 입력 포트(36b)가 연통됨으로써 유압 서보(62)로 상기 후진 레인지압(PR)이 확실하게 공급된다.
제2 클러치 어플라이 릴레이 밸브(32)는 스풀(32p)과 상기 스풀(32p)을 도면에서 상방향으로 가압하는 스프링(32s)을 구비함과 함께, 상기 스풀(32p)의 상측(도면에서 상측)에 유실(32a), 입력 포트(32b), 출력 포트(32c), 출력 포트(32d), 입력 포트(32e), 입력 포트(32f) 및 유실(32g)을 구비한다. 또한, 상기 제2 클러치 어플라이 릴레이 밸브(32)의 하부 측에는, 상기 스풀(32p)에 접촉해서 가압할 수 있는 스풀(33p)을 구비하는 로크압 지연용 밸브(33)가 일체로 구비된다. 상기 로크압 지연용 밸브(33)는 스풀(33p)과 상기 스풀(33p)을 도면에서 상방향으로 가압하는 스프링(33s)을 구비함과 함께, 상기 스풀(33p)을 도면에서 하방향으로 가압하는 유압이 작용하는 유실(33a)과 상기 제2 클러치 어플라이 릴레이 밸브(32)의 유실(32g)에 연통되는 입력 포트(33b)를 구비한다. 또한, 상기 제2 클러치 어플라이 릴레이 밸브(32)의 출력 포트(32d)와 상기 로크압 지연용 밸브(33)의 입력 포트(33b)를 접속하는 유로에는 오리피스(71, 72)가 설치된다.
상기 제2 클러치 어플라이 릴레이 밸브(32)의 스풀(32p)은 정상 시(및 후술 의 엔진 시동 중의 솔레노이드·올 오프 모드 시)에서는, 스프링(32s) 및 스프링(33s)의 가압력에 근거하여 우측 절반 위치로 된다. 이 스풀(32p)이 우측 절반 위치에 있을 때, 입력 포트(32b)로 입력되는 라인압(PL)은 출력 포트(32c)로부터 리니어 솔레노이드 밸브(SL4)의 입력 포트(SL4a)와 로크압 지연용 밸브(33)의 유실(33a) 및 입력 포트(33b)로 입력되고, 유실(33a)의 유압에 의해 상기 로크압 지연용 밸브(33)는 좌측 절반 위치에서 로크되고, 그 결과 상기 유실(33b)과 상기 유실(32g)이 연통됨으로써 상기 유실(33b)로부터의 유압이 유실(32g)로 공급되어 상기 스풀(32p)은 우측 절반 위치에서 로크된다.
또한, 상기 스풀(32p)이 우측 절반 위치에 있을 때, 출력 포트(32f)는 리니어 솔레노이드 밸브(SLl)의 배출 포트(SLld)에 접속되고, 상기 리니어 솔레노이드 밸브(SL1)에 의해 결합압(PC1)이 배출될 때, 결합압(PC1)이 입력되고, 드레인 포트(EX)로부터 배출된다. 또한, 출력 포트(32d)는 리니어 솔레노이드 밸브(SL2)의 배출 포트(SL2d)에 접속됨과 동시에, 입력 포트(32e)는 상기 제1 클러치 어플라이 릴레이 밸브(34)의 출력 포트(34d, 34e)에 접속되고, 상기 리니어 솔레노이드 밸브(SL2)에 의해 결합압(PC2)이 배출될 때, 결합압(PC2)은 출력 포트(32d)로부터 입력되고, 입력 포트(32e)를 통해 제1 클러치 어플라이 밸브(34)의 드레인 포트(EX)로부터 배출된다.
한편, 상세히 후술하는 솔레노이드·올 오프 모드 시의 엔진 재시동 후에 있어서는, 스풀(32p)이 좌측 절반 위치로 되어 입력 포트(32b)로 입력되는 라인압(PL) 은 차단되고, 또한 입력 포트(32e)와 출력 포트(32f)는 연통된다.
[각 전진변속 단의 작용]
이상과 같은 전진변속 제어를 행하는 기능부분을 구비하는 유압제어장치(20)에 있어서는, 전진 레인지 시의 전진 1속단에서, 리니어 솔레노이드 밸브(SLl)는 온 되고, 입력 포트(SLla)로 입력되고 있는 전진 레인지압(PD)이 유압 서보(51)로 결합압(PC1)으로서 조절 출력되어 제1 클러치(C-1)는 결합한다. 이에 따라 상기 일방향 클러치(F-1)의 로크와 서로 작용해서 전진 1속단이 달성된다.
또한, 전진 1속단의 엔진 브레이크 시에 있어서는, 솔레노이드 밸브(SR)가 오프 되고, 출력 포트(SRb)로부터 신호압(PSR)이 출력된다. 이때 제2 클러치 어플라이 릴레이 밸브(32)는 라인압(PL)에 의해 우측 절반 위치에서 로크되고, 또한 제1 클러치 어플라이 밸브(34)는 결합압(PC1)에 의해 우측 절반 위치에서 로크된다. 이 때문에, 솔레노이드 밸브(SR)의 신호압(PSR)이 B-2 어플라이 컨트롤 밸브(35)의 유실(35a)로 입력되고, 입력 포트(35b)의 전진 레인지압(PD)이 출력 포트(35c)로부터 B-2 컨트롤 밸브(36)의 입력 포트(36c)로 입력되며, 리니어 솔레노이드 밸브(SLU)의 신호압(PSLU)에 의해 스풀(36p)이 컨트롤 됨으로써 상기 전진 레인지압(PD)이 B-2 체크 밸브(37)를 통해 유압 서보(62)로 결합압(PB2)으로서 조절 출력되어, 제2 브레이크(B-2)는 결합한다. 이에 따라 상기 제1 클러치(C-1)의 결합과 서로 작용해서 전진 1속단의 엔진 브레이크가 달성된다.
전진 2속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL1)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL5)가 온 되고, 입력 포트(SL5a)로 입력되는 라인압(PL)이 유압 서보(61)로 결합압(PB1)으로서 조절 출력되어 제1 브레이크(B-1)가 결합한다. 이에 따라 상기 제1 클러치(C-1)의 결합과 서로 작용해서 전진 2속단이 달성된다.
또한, 전진 레인지에 있어서, 제1 클러치(C1)가 해방됨으로써 연료 소비율 향상을 도모하는 뉴트럴 제어(Ncont)에 있어서는, 상기 전진 2속단과 동일하게 제어됨과 함께, 리니어 솔레노이드 밸브(SL1)에 의해 결합압(PC1)은 제1 클러치(C-1)가 결합 직전(움직임(rotational play)이 감소한 상태))으로 되도록 조절되고, 이에 의해 뉴트럴 제어(Ncont)가 해제되었을 때, 즉시 전진 2속단의 형성이 가능한 뉴트럴 상태로 된다.
전진 3속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL1)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL3)가 온 되고, 입력 포트(SL3a)로 입력되는 전진 레인지압(PD)이 유압 서보(53)로 결합압(PC3)으로서 조절 출력되어 제3 클러치(C-3)는 결합한다. 이에 따라 상기 제1 클러치(C-1)의 결합과 서로 작용하여 전진 3속단이 달성된다.
전진 4속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL1)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL4)가 온 되고, 제2 클러치 어플라이 릴레이 밸브(32)를 통해 입력 포트(SL4a)로 입력되는 라인압(PL)이 유압 서보(54)로 결합 압(PC4)으로서 조절 출력되어 제4 클러치(C-4)는 결합한다. 이에 따라 상기 제1 클러치(C-1)의 결합과 서로 작용하여 전진 4속단이 달성된다.
또한, 만일 이 전진 4속단이 달성되지 않는 경우, 제2 클러치 어플라이 릴레이 밸브(32)는 밸브 스틱하고, 좌측 절반 위치에 있기 때문에, 입력 포트(SL4a)로 라인압(PL)이 입력되지 않고, 즉 제4 클러치(C-4)는 결합하지 않는 상태인 것으로 간주되기 때문에, 후술의 솔레노이드·올 오프 모드로 이행하는 것이 금지된다.
즉, 제2 클러치 어플라이 릴레이 밸브(32)의 스풀(32p)이 좌측 절반 위치에 있는 상태에서는, 후술의 솔레노이드·올 오프 모드에서, 제2 클러치 어플라이 릴레이 밸브(32)의 입력 포트(32e)로 역 입력압으로서 입력된 전진 레인지압(PD)이 출력 포트(32f)로부터 리니어 솔레노이드 밸브(SLl)의 배출 포트(SLld)로 역 입력압으로서 입력되고, 출력 포트(SLlb)로부터 출력되며, 유압 서보(51)로 공급되어 제1 클러치(C-1)는 결합한다. 즉, 전진 3속단이 달성되어 버리기 때문에, 그 상태에서 예를 들면 전진 5속단 이상의 고속 단에서 솔레노이드·올 오프 모드로 이행시키면 2단 이상의 다운시프트(downshift)가 발생해 버리기 때문이다.
전진 5속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL1)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL2)가 온 되고, B-2 어플라이 컨트롤 밸브(35)를 통해 입력 포트(SL2a)로 입력되고 있는 전진 레인지압(PD)이 유압 서보(52)로 결 합압(PC2)으로서 조절 출력되어 제2 클러치(C-2)는 결합한다. 이에 따라 상기 제1 클러치(C-1)의 결합과 서로 작용하여 전진 5속단이 달성된다.
전진 6속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL2)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL4)가 온 되고, 제2 클러치 어플라이 릴레이 밸브(32)를 통해 입력 포트(SL4a)로 입력되고 있는 라인압(PL)이 유압 서보(54)로 결합압(PC4)으로서 조절 출력되어 제4 클러치(C-4)는 결합한다. 이에 따라 상기 제2 클러치(C-2)의 결합과 서로 작용하여 전진 6속단이 달성된다.
또한, 이때도 동일하게, 전진 6속단이 달성되지 않는 경우는 제2 클러치 어플라이 릴레이 밸브(32)가 밸브 스틱하여 좌측 절반 위치에 있기 때문에, 입력 포트(SL4a)로 라인압(PL)이 입력되지 않는 상태인 것으로 간주되기 때문에, 후술의 솔레노이드·올 오프 모드로 이행하는 것이 금지된다.
동일하게, 제2 클러치 어플라이 릴레이 밸브(32)의 스풀(32p)이 좌측 절반 위치에 있는 상태에서는, 후술의 솔레노이드·올 오프 모드에서 제2 클러치 어플라이 릴레이 밸브(32)의 입력 포트(32e)로 역 입력압으로서 입력된 전진 레인지압(PD)이 출력 포트(32f)로부터 리니어 솔레노이드 밸브(SLl)의 배출 포트(SLld)로 역 입력압으로서 입력되고, 출력 포트(SLlb)로부터 출력되며, 유압 서보(51)로 공급되어 제1 클러치(C-1)는 결합한다. 즉, 전진 3속단이 달성되어버리기 때문에, 그 상태에서 예를 들면 전진 5속단 이상의 고속단에서 솔레노이드·올 오프 모드로 이행시키 면 2단 이상의 다운시프트가 발생해 버리기 때문이다.
전진 7속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL2)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL3)가 온 되고, 입력 포트(SL3a)로 입력되고 있는 전진 레인지압(PD)이 유압 서보(53)로 결합압(PC3)으로서 조절 출력되어 제3 클러치(C-3)는 결합한다. 이에 따라 상기 제2 클러치(C-2)의 결합과 서로 작용하여 전진 7속단이 달성된다.
전진 8속단에 있어서는, 상기 리니어 솔레노이드 밸브(SL2)가 온 된 상태에 부가하여, 리니어 솔레노이드 밸브(SL5)가 온 되고, 입력 포트(SL5a)로 입력되고 있는 라인압(PL)이 유압 서보(61)로 결합압(PB1)으로서 조절 출력되어 제1 브레이크(B-1)는 결합한다. 이에 따라 상기 제2 클러치(C-2)의 결합과 서로 작용하여 전진 8속단이 달성된다.
또한, 만일 상기 전진 5속단 내지 전진 8속단이 달성되지 않는 경우는 B-2 어플라이 컨트롤 밸브(35)가 밸브 스틱하고, 우측 절반 위치에 있기 때문에, 입력 포트(SL2a)로 전진 레인지압(PD)이 입력되지 않아 제2 클러치(C-2)는 결합하지 않는 상태인 것으로 간주되기 때문에, 그러한 상태를 판단할 때는 어떤 페일 세이프(fail safe)를 행하도록 한다.
[유압제어장치에 있어서의 동시결합 방지기능 부분의 구성]
계속해서, 본 유압제어장치(20)에 있어서 주로 동시결합방지를 행하는 기능 부분에 대해서 도 6을 참조하여 설명한다. 상기 리니어 솔레노이드 밸브(SL1)의 출 력 포트(SLlb)와 유압 서보(51) 사이에는 제1 클러치 어플라이 컨트롤 밸브(41)가 개재된다. 리니어 솔레노이드 밸브(SL3)의 출력 포트(SL3b)는 직접적으로 유압 서보(53)에 접속된다. 상기 리니어 솔레노이드 밸브(SL4)의 출력 포트(SL4b)와 유압 서보(54) 사이에는 제2 클러치 어플라이 컨트롤 밸브(43)가 개재된다. 상기 리니어 솔레노이드 밸브(SL5)의 출력 포트(SL5b)와 유압 서보(61) 사이에는 B-1 어플라이 컨트롤 밸브(44)가 개재된다.
또한, 상기한 바와 같이 매뉴얼 시프트 밸브(23)(도 4 및 도 5 참조)와 유압 서보(52) 사이에는 B-2 어플라이 컨트롤 밸브(35) 및 리니어 솔레노이드 밸브(SL2)가 개재됨과 동시에, 상기 매뉴얼 시프트 밸브(23)와 유압 서보(62) 사이에는 B-2 어플라이 컨트롤 밸브(35), B-2 컨트롤 밸브(36) 및 B-2 체크 밸브(37)가 개재된다.
제1 클러치 어플라이 컨트롤 밸브(41)는 도면에서 상방향으로부터 하방향을 향해 점차 대직경(大徑)으로 되는 랜드(Land)부가 형성된 스풀(41p), 상기 스풀(41p)을 도면에서 상방향으로 가압하는 스프링(41sa), 상기 스풀(41p)에 접촉할 수 있는 플런저(41r) 및 상기 스풀(41p) 및 플런저(41r) 사이에 압축 설치된 스프링(41sb)을 구비함과 함께, 상기 스풀(41p)의 상측(도면에서 상측)으로부터 순차적으로 유실(41a), 유실(41b), 유실(41c), 입력 포트(41d), 출력 포트(41e) 및 유실(41f)을 구비한다.
상기 유실(41a)에는 유압 서보(52)로 공급되는 결합압(PC2)이 입력되고, 상 기 유실(41b)에는 시그널 체크밸브(42)에 의해 유압 서보(53, 54, 61)로 공급되는 결합압 중 가장 큰 결합압(PC3, PC4, PB1)이 입력되고, 또한 유실(41c)에는 유압 서보(51)로 공급하기 위한 결합압(PC1)이 입력된다. 한편, 유실(41f)에는 라인압(PL)이 입력되고, 스프링(41sa)의 가압력과 서로 작용하여 스풀(41p)을 상방향(좌측 절반 위치)으로 가압한다.
이에 따라 예를 들면 유실(41c)로 결합압(PC1)이, 유실(41a)로 결합압(PC2)이, 유실(41c)로 결합압들(PC3, PC4, PB1) 중 어떤 결합압이 동시에 입력될 때는, 상기 유실(41f)의 라인압(PL)과 스프링(41sa)의 가압력을 극복하여 입력 포트(41d)는 차단되고, 유압 서보(51)로의 결합압(PC1)의 공급은 정지된다. 즉, 제1 클러치(C-1)와 제2 클러치(C-2)와 제3 클러치(C-3)의 동시결합, 제1 클러치(C-1)와 제2 클러치(C-2)와 제4 클러치(C-4)의 동시결합, 제1 클러치(C-1)와 제2 클러치(C-2)와 제1 브레이크(B-1)의 동시결합을 방지하고, 제2 클러치(C-2)와 제3 클러치(C-3), 제2 클러치(C-2)와 제4 클러치(C-4), 제2 클러치(C-2)와 제1 브레이크(B-1)의 결합을 허용한다.
또한, 스프링(41sb)은 엔진이 정지되어 유압이 전혀 발생하지 않을 때, 플런저(41r)만을 우측 절반 위치에서 로크해 놓음으로써, 정상 시 제1 클러치 어플라이 컨트롤 밸브(41)의 플런저(41r)가 좌측 절반 위치에 항상 유지되는 것을 방지하는 것이며, 고장 시 이외의 경우에도 엔진이 정지되어 유압이 발생하지 않게 될 때, 플런저(41r)만이 우측 절반 위치로 작동되도록 함으로써 고장 시 실제 우측 절반 위치로 작동될 때 방해가 되는 것을 방지하는 것이다.
제2 클러치 어플라이 컨트롤 밸브(43)는 도면에서 상방향으로부터 하방향을 향해 점차 대직경으로 되는 랜드부가 형성된 스풀(43p), 상기 스풀(43p)을 도면에서 상방향으로 가압하는 스프링(43sa), 상기 스풀(43p)에 접촉할 수 있는 플런저(43r) 및 상기 스풀(43p) 및 플런저(43r) 사이에 압축 설치된 스프링(43sb)을 구비함과 함께, 상기 스풀(43p)의 상측(도면에서 상측)으로부터 순차적으로 유실(43a), 유실(43b), 입력 포트(43c), 출력 포트(43d) 및 유실(43e)을 구비한다.
상기 유실(43a)에는 유압 서보(53)로 공급되는 결합압(PC3)이 입력되고, 상기 유실(43b)에는 유압 서보(54)로 공급되는 결합압(PC4)이 입력된다. 한편, 유실(43e)에는 라인압(PL)이 입력되고, 스프링(43sa)의 가압력과 서로 작용하여 스풀(43p)을 상방향(좌측 절반 위치)으로 가압한다.
이에 따라 예를 들면 유실(43b)로 결합압(PC4)이, 유실(41a)로 결합압(PC3)이 동시에 입력될 때, 상기 유실(41e)의 라인압(PL)과 스프링(43sa)의 가압력을 극복하여 입력 포트(43c)는 차단되고, 유압 서보(54)로의 결합압(PC4)의 공급은 정지되어 제3 클러치(C-3)와 제4 클러치(C-4)의 동시결합이 방지되며, 제3 클러치(C-3)의 결합은 허용된다.
또한, 스프링(43sb)은 엔진이 정지되어 유압이 전혀 발생하지 않게 될 때, 플런저(43r)만을 우측 절반 위치에서 로크해 놓음으로써, 정상 시 제2 클러치 어플라이 컨트롤 밸브(43)의 플런저(43r)가 좌측 절반 위치로 항상 유지되는 것을 방지하는 것이며, 고장 시 이외의 경우에도 엔진이 정지되어 유압이 발생하지 않게 될 때는 플런저(43r)만을 우측 절반 위치로 작동시킴으로써 고장 시 실제 우측 절반 위치로 작동될 때 방해가 되는 것을 방지하는 것이다.
B-1 어플라이 컨트롤 밸브(44)는 도면의 상방향으로부터 하방향을 향해 점차 대직경으로 되는 랜드부가 형성된 스풀(44p), 상기 스풀(44p)을 도면의 상방향으로 가압하는 스프링(44sa), 상기 스풀(44p)에 접촉할 수 있는 플런저(44r) 및 상기 스풀(44p)과 플런저(44r) 사이에 압축 설치된 스프링(44sb)을 구비함과 함께, 상기 스풀(44p)의 상측(도면에서 상측)으로부터 순차적으로 유실(44a), 유실(44b), 유실(44c), 입력 포트(44d), 출력 포트(44e) 및 유실(44f)을 구비한다.
상기 유실(44a)에는 유압 서보(54)로 공급되는 결합압(PC4)이 입력되고, 상기 유실(44b)에는 유압 서보(53)로 공급되는 결합압(PC3)이 입력되며, 상기 유실(43c)에는 유압 서보(61)로 공급되는 결합압(PB1)이 입력된다. 한편, 유실(44f)에는 라인압(PL)이 입력되어 스프링(44sa)의 가압력과 서로 작용하여 스풀(44p)을 상방향(좌측 절반 위치)으로 가압한다.
B-1 어플라이 컨트롤 밸브(44)는, 유실(44c)로 제1 브레이크(B-1)의 유압 서보(61)로 공급되는 결합압(PB1)이 입력되고 있는 상태에서, 상기 제2 클러치 어플라 이 컨트롤 밸브(43)에 의해 동시 결합하지 않는 제3 클러치(C-3)의 결합압(PC3)과 제4 클러치(C-4)의 결합압(PC4) 중 한쪽이 유실(44a) 또는 유실(44b)로 입력되면, 스풀(44p) 및 플런저(44r)는 우측 절반 위치로 된다.
이에 따라 예를 들면 유실(44c)로 결합압(PB1)이, 유실(44a)로 결합압(PC4) 또는 유실(44b)로 결합압(PC3)이 동시에 입력될 때, 상기 유실(44f)의 라인압(PL)과 스프링(44sa)의 가압력을 극복하여 입력 포트(44d)는 차단되고, 유압 서보(61)로의 결합압(PB1)의 공급은 정지되어 제1 브레이크(B-1)와 제3 클러치(C-3) 또는 제4 클러치(C-4)의 동시결합을 방지하며, 제3 클러치(C-3) 또는 제4 클러치(C-4)의 결합은 허용된다.
또한, 스프링(44sb)은 엔진이 정지되어 유압이 전혀 발생하지 않게 될 때, 플런저(44r)만을 우측 절반 위치에서 로크해 놓음으로써, 정상 시 B-1 어플라이 컨트롤 밸브(44)의 플런저(44r)가 좌측 절반 위치로 항상 유지되는 것을 방지하는 것이며, 고장 시 이외의 경우에도 엔진이 정지되어 유압이 발생하지 않게 될 때는 플런저(44r)만을 우측 절반 위치로 작동시킴으로써 고장 시 실제 우측 절반 위치로 작동될 때 방해가 되는 것을 방지한다.
B-2 어플라이 컨트롤 밸브(35)는 전술한 바와 같이 유실(35f)로 결합압(PC3, PC4, PB1) 중 어떤 결합압이 입력될 때, 상기 신호압(PSR)의 입력에 관계없이, 좌측 절반 위치로 고정된다. 또한, 유실(35f)로 결합압(PC3, PC4, PB1) 중 어떠한 결합압도 입력되지 않고, 또한 솔레노이드 밸브(SR)의 신호압(PSR)이 입력될 때, 스프링(35s)의 가압력을 극복하고 우측 절반 위치로 된다.
이에 따라 유실(35f)로 결합압(PC3, PC4, PB1) 중 어떤 결합압이 입력될 때, 전진 레인지압(PD)이 리니어 솔레노이드 밸브(SL2)만으로 공급되어 유압 서보(62)로 공급되지 않기 때문에, 제3 클러치(C-3), 제4 클러치(C-4), 제1 브레이크(B-1) 중 어느 것과 제2 브레이크(B-2)의 동시결합은 방지된다. 또한, 입력 포트(35d)와 SL2로의 출력 포트(35e)가 연통될 때에는, 입력 포트(35d)와 B-2 컨트롤 밸브(36)로의 출력 포트(35c)의 연통은 차단되기 때문에, 제2 클러치(C-2)와 제2 브레이크(B-2)의 동시결합은 방지된다.
이상과 같이 제2 클러치 어플라이 컨트롤 밸브(43) 및 B-1 어플라이 컨트롤 밸브(44)에 의해 제3 클러치(C-3), 제4 클러치(C-4), 제1 브레이크(B-1) 중 2개가 동시에 결합하는 것이 방지된다. 또한, B-2 어플라이 컨트롤 밸브(35)에 의해 제3 클러치(C-3), 제4 클러치(C-4), 제1 브레이크(B-1) 중 어느 것과 제2 브레이크(B-2)의 동시결합 및 제2 클러치(C-2)와 제2 브레이크(B-2)의 동시결합이 방지된다. 또한, 제1 클러치 어플라이 컨트롤 밸브(41)에 의해 제3 클러치(C-3), 제4 클러치(C-4), 제1 브레이크(B-1) 중 어느 것과 제2 클러치(C-2) 및 제1 클러치(C-1)의 동시결합이 방지된다. 이에 따라 전진 레인지에 있어서, 필연적으로 제2 브레이크(B-2)와 동시에 결합가능한 것은 제1 클러치(C-1)만이며, 3개의 마찰결합요소(클러치나 브레이크)의 동시결합은 확실하게 방지된다.
[솔레노이드 밸브·올 오프 페일 시의 작용]
계속해서, 솔레노이드·올 오프 페일 시에 대해서 도 5를 참조하여 설명한다. 본 자동변속기의 유압제어장치(20)에 있어서는, 예를 들면 상기한 리니어 솔레노이드 밸브(SL4)의 밸브 스틱을 검출한 경우를 제외하고, 다른 솔레노이드 밸브, 각종 전환 밸브, 각종 컨트롤 밸브 등에 있어서의 고장을 검출했을 때에, 모든 솔레노이드 밸브를 오프로 하는 솔레노이드·올 오프 페일 모드로 이행된다. 또한, 예를 들면 단선·쇼트 등이 발생할 경우에 있어서도, 동일하게 솔레노이드가 올 오프로 되기 때문에, 본 명세서 중에 있어서는 이들의 상태도 포함하여 솔레노이드·올 오프 페일 모드라고 한다.
먼저, 정상 시에 있어서는, 이그니션(ignition)이 온 됨과 함께, 솔레노이드 밸브(SR)가 온 되기 때문에, 엔진이 시동되고, 오일 펌프(21)가 구동되어 프라이머리 레귤레이터 밸브(25)에 의해 라인압(PL)이 생성되더라도, 신호압(PSR)은 출력되지 않는다. 이 때문에, 제2 클러치 어플라이 릴레이 밸브(32)에 있어서, 스풀(32p)에는 스프링(32s)의 가압력 및 스풀(33p)을 통한 스프링(33s)의 가압력이 도면에서 상방향으로 작용하고, 상기 스풀(32p)은 우측 절반 위치로 된다.
이 스풀(32p)의 우측 절반 위치에 있어서, 입력 포트(32b)로 입력된 라인압(PL)은 로크압으로서 출력 포트(32c)로부터 리니어 솔레노이드 밸브(SL4)의 입력 포트(SL4a), 로크압 지연용 밸브(33)의 유실(33a), 입력 포트(33b)로 출력된다. 이에 따라, 로크압 지연용 밸브(33)의 스풀(33p)이 도면에서 하방향의 좌측 절반 위 치로 가압 구동되어 입력 포트(33b)와 유실(32g)은 연통되고, 상기 유실(32g)로 라인압(PL)이 로크압으로서 입력되어 스풀(32p)을 상부 위치에서 로크한다. 이 로크 상태는 엔진이 정지되고, 오일 펌프(21)가 정지되어 라인압(PL)이 발생하지 않게 될 때까지 유지된다.
여기에서, 예를 들면 차량이 전진 레인지에서 주행 중에 어떤 원인에 의해 솔레노이드·올 오프 페일 모드로 되면, 제2 클러치 어플라이 릴레이 밸브(32)는 라인압(PL)에 근거하는 로크압에 의해 스풀(32p)이 로크된 상태에서, 모든 솔레노이드 밸브가 오프 된다(고장 시로 된다). 이 경우, 모든 솔레노이드 밸브가 오프 됨으로써, 노멀 오픈인 솔레노이드 밸브(SR)만 신호압(PSR)을 출력하는 상태로 되고, 다른 솔레노이드 밸브는 신호압 또는 결합압의 출력을 정지하기 때문에, 특히 리니어 솔레노이드 밸브(SLl, SL2, SL3)에 있어서는, 출력 포트(SLlb, SL2b, SL3b)와 배출 포트(SLld, SL2d, SL3d)가 연통되는 상태로 된다.
한편, 제2 클러치 어플라이 릴레이 밸브(32)에 있어서는, 유실(32a)로 신호압(PSR)이 입력되지만, 상기 유실(32g)에 라인압(PL)이 로크압으로서 입력되기 때문에, 스풀(32p)은 상부 위치에서 로크된 채 유지된다.
또한, 만일 로크압 지연용 밸브(33)가 도면에서 상방향의 좌측 절반 위치에서 스틱되고, 상기 제2 클러치 어플라이 릴레이 밸브(32)의 유실(32g)로 라인압(PL)이 로크압으로서 입력되지 않는 상태이더라도, 로크압 지연용 밸브(33)의 스 풀(33p)은 제2 클러치 어플라이 릴레이 밸브(32)의 스풀(32p)에 접촉하도록 구성되기 때문에, 스풀(32p)은 상부 위치에서 로크된 상태와 동일하게 유지된다.
또한, 제1 클러치 어플라이 밸브(34)에 있어서는 솔레노이드 밸브(SR)의 신호압(PSR)이 유실(34a)로 입력되고 스프링(34s)의 가압력을 극복하여 스풀(34p)은 좌측 절반 위치로 된다. 이에 따라 입력 포트(34k)로 입력되는 전진 레인지압(PD)이 페일용 결합압으로서 출력 포트(34d, 34e)로부터 출력되어 리니어 솔레노이드 밸브(SL3)의 배출 포트(SL3d)와 제2 클러치 어플라이 릴레이 밸브(32)의 입력 포트(32e)로 입력된다.
리니어 솔레노이드 밸브(SL3)의 배출 포트(SL3d)로 페일용 결합압으로서 입력된 전진 레인지압(PD)은 상기 리니어 솔레노이드 밸브(SL3)의 출력 포트(SL3b)로부터 출력되고, 유압 서보(53)로 공급되어 제3 클러치(C-3)는 결합한다. 또한, 제2 클러치 어플라이 릴레이 밸브(32)의 입력 포트(32e)로 페일용 결합압으로서 입력된 전진 레인지압(PD)은 스풀(32p)이 우측 절반 위치에서 로크되기 때문에, 출력 포트(32d)로부터 리니어 솔레노이드 밸브(SL2)의 배출 포트(SL2d)로 페일용 결합압으로서 입력되고, 출력 포트(SL2b)로부터 출력되며 유압 서보(52)로 공급되어 제2 클러치(C-2)는 결합한다.
상기와 같이, 차량이 전진 레인지에서 주행 중에 있어서의 솔레노이드·올 오프 페일 모드에서는, 제2 클러치(C-2)와 제3 클러치(C-3)가 결합한 전진 7속단으로 된다.
한편, 이후 예를 들면 차량을 일단 정지하고, 엔진을 정지하면, 라인압(PL)이 발생하지 않게 되고, 제2 클러치 어플라이 릴레이 밸브(32) 및 로크압 지연용 밸브(33)에 있어서, 스프링(32s) 및 스프링(33s)의 가압력에 근거하여 스풀(32p) 및 스풀(33p)은 모두 우측 절반 위치로 된다. 그리고, 이후 엔진이 재시동 되면, 오일 펌프(21)가 구동되어 라인압(PL)이 발생하지만, 솔레노이드 밸브(SR)가 오프 되어 신호압(PSR)이 유실(32a)로 입력되기 때문에, 신호압(PSR)은 스프링(32s)의 가압력 및 스프링(33s)의 가압력에 대항해서 도면에서 하방향으로 작용하고, 스풀(32p)은 좌측 절반 위치로 전환된다. 이에 따라 입력 포트(32b)는 차단되어, 라인압(PL)이 출력 포트(32c)로부터 출력되지 않기 때문에, 로크압으로서 유실(32g)로 입력되지 않는다.
또한, 이때 예를 들면 스풀(32p)이 좌측 절반 위치로 전환되기 전에, 입력 포트(32b)로부터 라인압(PL)이 유입되고, 출력 포트(33c)로부터 약간의 로크압이 출력되더라도, 상기 오리피스(71, 72)에 의해 로크압의 유입이 천천히 이루어지고, 또한 로크압 지연용 밸브(33)의 스풀(33p)이 좌측 절반 위치로 전환될 때까지 시간을 필요로 하여, 즉 유실(32g)로 로크압이 입력되는 것을 지연시키기 때문에, 상기 스풀(32p)이 상부 위치에서 로크되는 것보다도 신호압(PSR)이 유실(32a)로 먼저 입력되어 스풀(32p)은 하부 위치로 확실하게 전환된다.
또한, 본 실시예에 있어서는 로크압 지연용 밸브(33)의 유실(33a)에 로크압 으로서의 라인압(PL)이 작용하는 것에 관하여 설명했지만, 로크압이 아니라(라인압(PL)의 대신에) 전진 레인지압(PD)이 작용하도록 변경할 수도 있다. 이 경우, 엔진이 재시동되고, 시프트 포지션을 전진 레인지로 할 때까지 유실(33a)에 유압이 작용하지 않기 때문에, 유실(32g)로 로크압이 입력되는 것을 더욱 확실하게 지연시킬 수 있다.
그리고 제2 클러치 어플라이 릴레이 밸브(32)에 있어서, 스풀(32p)이 좌측 절반 위치로 전환되면, 상기 제1 클러치 어플라이 릴레이 밸브(34)의 출력 포트(34d, 34e)로부터 출력되고, 입력 포트(32e)로 입력된 전진 레인지압(PD)은 출력 포트(32f)로부터 리니어 솔레노이드 밸브(SL1)의 배출 포트(SLld)로 페일용 결합압으로서 입력되고, 출력 포트(SLlb)로부터 출력되며 유압 서보(51)로 공급되어 제1 클러치(C-1)는 결합한다.
상기와 같이 솔레노이드·올 오프 페일 모드에 있어서의 엔진 재시동 후에서는, 제1 클러치(C-1)와 제3 클러치(C-3)가 결합한 전진 3속단으로 된다.
[유압제어장치에 있어서의 후진변속기능 및 로크업 기능 부분의 구성]
계속해서, 본 발명의 주요부인 유압제어장치(20)에 있어서의 주로 후진변속 제어와 로크업 제어를 행하는 기능 부분에 대해서 도 7을 참조하여 설명한다. 또한, 매뉴얼 시프트 밸브(23), 리니어 솔레노이드 밸브(SL4), B-2 컨트롤 밸브(36), B-2 체크 밸브(37) 등에 대해서는 상기 전진변속 제어에서 설명했으므로, 그 설명을 생략한다.
솔레노이드 밸브(SL)는 노멀 클로즈이며, (상기 솔레노이드 밸브(SR)와 공용되는) 입력 포트(Sa)로 상기 모듈레이터압(PMOD)을 입력하고, 후진시 및 로크업 클러치(10)의 작동 시에 온 되어 출력 포트(SLb)로부터 신호압(PSL)을 출력한다. 상기 출력 포트(SLb)는 후술의 로크업 릴레이 밸브(31)의 유실(31a)과 C-4 릴레이 밸브(45)의 유실(45a)에 접속되고, 온 되었을 때 이들 유실(31a, 45a)로 신호압(PSL)을 출력한다.
로크업 릴레이 밸브(31)는 스풀(31p)과 상기 스풀(31p)을 도면에서 상방향으로 가압하는 스프링(31s)을 구비함과 함께, 상기 스풀(31p)의 상측(도면에서 상측)에 유실(31a), 입력 포트(31b), 출력 포트(31c), 입출력 포트(31d), 입력 포트(31e), 입출력 포트(31f) 및 유실(31g)을 구비한다.
전진 시에 있어서의 로크업 클러치(10)의 비결합 시에 있어서는, 솔레노이드 밸브(SL)가 오프됨에 따라 상기 유실(31a)로 신호압(PSL)이 입력되지 않고, 스프링(31s)의 가압력에 근거하여 스풀(31p)은 우측 절반 위치(제1 위치)로 된다. 또한, 스풀(31p)이 우측 절반 위치에 있을 때, 입력 포트(31b)로는 리니어 솔레노이드 밸브(SLU)로부터 신호압(PSLU)이 입력되고, 출력 포트(31c)로부터 상기 신호압(PSLU)이 상기 B-2 컨트롤 밸브(36)의 유실(36a)로 출력된다.
또한, 입력 포트(31e)로는 상기 세컨더리 레귤레이터 밸브(26)에 의해 조절된 세컨더리압(PSEC)이 입력되고, 스풀(31p)이 우측 절반 위치에 있을 때 입출력 포 트(31d)로부터 토크 컨버터(7)의 로크업 오프(off)용 포트(10a)로 상기 세컨더리압(PSEC)이 출력된다. 상기 로크업 오프용 포트(10a)로부터 토크 컨버터(7) 내로 입력된 세컨더리압(PSEC)은 로크업 온(on)용(用)이기도 한 포트(10b)로부터 순환·배출되고, 입출력 포트(31f)를 통해 드레인 포트(미도시)로부터 드레인 된다(또는 도면에 나타내지 않은 윤활 유로 등으로 공급된다).
전진 시에 있어서의 로크업 클러치(10)의 결합시에 있어서는, 상기 솔레노이드 밸브(SL)가 온 되면, 신호압(PSL)이 유실(31a)로 입력되고, 스프링(31s)의 가압력을 극복하여 스풀(31p)은 좌측 절반 위치(제2 위치)로 된다. 이에 따라, 입력 포트(31b)로 입력되는 신호압(PSLU)은 차단됨과 동시에, 입력 포트(31e)로 입력되는 세컨더리압(PSEC)은 입출력 포트(31f)로부터 로크업 온용 포트(10b)로 출력되고, 로크업 클러치(10)는 가압 구동되어 결합한다.
후진 시에 있어서는, 매뉴얼 시프트 밸브(23)로부터 상기 유실(31g)로 후진 레인지압(PR)이 입력되고, 상기 로크업 릴레이 밸브(31)의 스풀(31p)은 우측 절반 위치로 고정된다. 이에 따라 상기 유실(31a)로 신호압(PSL)이 입력되더라도, 스프링(31s)의 가압력과 유실(31g)의 후진 레인지압(PR)이 서로 작용하여 상기 스풀(31p)은 우측 절반 위치로 유지된다.
C-4 릴레이 밸브(45)는 스풀(45p) 및 상기 스풀(45p)을 도면에서 하방향으로 가압하는 스프링(가압 수단)(45s)을 구비함과 함께, 상기 스풀(45p)의 상측(도면에 서 상측)에 유실(45a), 입력 포트(45b), 출력 포트(45c), 입력 포트(45d) 및 유실(45e)을 구비한다.
전진 레인지(즉, 후진 레인지압(PR)이 출력되지 않는 경우)이고, 상기 솔레노이드 밸브(SL)가 오프(즉, 로크업 클러치(10)의 비결합시)이면, 상기 유실(45a)로 신호압(PSL)은 입력되지 않지만, 스프링(45s)의 가압력에 의해 스풀(45p)은 좌측 절반 위치(정상(正常) 위치)로 된다. 또한, 전진 레인지이고, 상기 솔레노이드 밸브(SL)가 온(즉, 로크업 클러치(10)의 결합시)되며, 상기 유실(45a)로 신호압(PSL)이 입력될 때이더라도, 스프링(45s)의 가압력과 서로 작용하여 스풀(45p)은 좌측 절반 위치로 된다.
이 스풀(45p)이 좌측 절반 위치에 있을 때는, 리니어 솔레노이드 밸브(SL4)로부터의 결합압(PC4)이 입력 포트(45d)로 입력됨과 함께, 출력 포트(45c)로부터 유압 서보(54)로 출력된다. 즉, 상기 전진 4속단 및 전진 6속단에 있어서는, 유압 서보(54)는 리니어 솔레노이드 밸브(SL4)에 의해 선형으로(linearly) 조절 제어된다.
계속해서, 후진 시의 제어에 관하여 설명한다. 정상 시의 후진 레인지에 있어서는, 매뉴얼 시프트 밸브(23)의 출력 포트(23d)로부터 후진 레인지압(PR)이 출력된다. 이에 따라, C-4 릴레이 밸브(45)에서, 상기 후진 레인지압(PR)은 유실(45e)로 입력되지만, 상기 솔레노이드 밸브(SL)는 온 되고, 상기 유실(45a)로 신호압(PSL)이 입력되며 스프링(45s)의 가압력과 서로 작용하여 스풀(45p)은 좌측 절반 위치로 된 다. 이에 따라, 후진 시에 있어서도 리니어 솔레노이드 밸브(SL4)로부터의 결합압(PC4)은 유압 서보(54)로 출력된다.
또한, B-2 컨트롤 밸브(36)에 있어서는, 상기 리니어 솔레노이드 밸브(SLU)의 신호압(PSLU)은 출력되지 않기 때문에, 우측 절반 위치에서 로크되고, 입력 포트(36d)로 입력되는 후진 레인지압(PR)이 출력 포트(36e)로부터 결합압(PB2)으로서 출력된다. 출력 포트(36e)로부터 출력된 결합압(PB2)은 B-2 체크 밸브(37)의 입력 포트(37b)로 입력됨과 함께, 출력 포트(37c)로부터 출력되어 유압 서보(62)로 공급된다. 이에 따라 제4 클러치(C-4)와 제2 브레이크(B-2)는 결합하고, 상기 후진 2 속단이 달성된다.
또한, 후진 레인지에 있어서는, B-2 컨트롤 밸브(36)가 좌측 절반 위치에 스틱됨으로써 출력 포트(36e)로부터의 결합압(PB2)이 출력되지 않는 경우이기 때문에, 예를 들면 후진단이 달성되고 있지 않음에 의해 B-2 컨트롤 밸브(36)의 밸브 스틱이 검출될 때에는, 솔레노이드 밸브(SR)가 오프됨으로써 신호압(PSR)이 상기 제1 클러치 어플라이 릴레이 밸브(34)로 인가됨으로써 좌측 절반 위치로 전환되어 후진 레인지압(PR)이 포트(34i)와 포트(34h)를 통해 입력 포트(35b)로 입력되고, 상기 출력 포트(35c)로부터 후진 레인지압(PR)이 상기 B-2 컨트롤 밸브(36)로 출력된다.
그러나 매뉴얼 시프트 밸브(23)는 도면 도시를 생략한 디텐트(detent) 기구나 링크기구(또는 시프트 바이 와이어(shift-by-wire) 장치)를 통해 운전석에 설치 된 시프트 레버에 접속되고, 시프트 레버의 조작에 의해 회전구동되는 팬 형상(fan-shape)의 디텐트 판에 스풀(23p)이 스풀 이동 방향(직선이동 방향)에 대하여 구동 연결됨과 동시에, 각 시프트 레인지 위치에 상기 디텐트 판을 가압하는 디텐트 레버에 의해 이들 레인지 위치의 중간 위치에서 정지되지 않게 구성된다. 이 회전구동되는 디텐트 판은 회전 중심에 일체로 고정 장착된 지지축을 구비하고, 상기 지지축의 일단에는 그 지지축의 회전 각도를 검출하는 각도 센서가 구비된다. 즉, 상기 각도 센서는 디텐트 판의 각도를 검출하여 상기 디텐트 판에 구동 연결된 매뉴얼 시프트 밸브(23)의 스풀 위치를 검출가능하게 되어 있다.
이 각도 센서(이하, 이해를 쉽게 하기 위해서 「스풀위치센서」로 칭함)의 검출에 근거하여, 비주행 레인지(즉 파킹 레인지 또는 뉴트럴 레인지)로부터 전진 레인지로 전환되는 것을 검출할 때는, 전자제어부(예를 들면, ECU)에 의해 예를 들면 리니어 솔레노이드 밸브(SL1)를 온하는 전진발진 제어를 행하여 상기한 바와 같은 전진 1속단을 달성하고(전진 2속단 또는 전진 3속단을 형성할 수도 있음), 또한 비주행 레인지로부터 후진 레인지로 전환되는 것을 검출할 때에는, 솔레노이드 밸브(SL), 리니어 솔레노이드 밸브(SL4)를 온하는 후진발진 제어를 행하여 상기한 바와 같은 후진 2속단을 달성한다.
그러나 상기한 바와 같이, 예를 들면 이 스풀위치센서가 고장 난 경우에는, 시프트 포지션(시프트 레인지 위치)을 검출할 수 없고, 어떤 솔레노이드 밸브를 온 해야 좋을지 판정할 수 없게 될 우려가 있다. 또한, 예를 들면 시프트 포지션을 검출할 수 없는 경우에, 어떤 솔레노이드 밸브도 온 되지 않으면, 다시 말해 어떠한 유압 서보로도 결합압이 공급되지 않는 것으로 되어 엔진으로부터의 구동력이 변속 기구(2)를 통해 차량의 바퀴로 전달되지 않는 뉴트럴 상태가 되어버린다.
그러므로 본 자동변속기의 유압제어장치에 있어서는, 시프트 포지션을 검출할 수 없는 경우, 전진 1속단과 같이 솔레노이드 밸브를 온 하는 전진발진 제어를 행하는, 다시 말해 리니어 솔레노이드 밸브(SL1)만을 온 한다. 이때, 실제 시프트 포지션이 전진 레인지이면, 상기의 전진 1속단이 그대로 형성되므로, 이 전진 1속단의 설명은 생략한다.
시프트 포지션을 검출할 수 없고, 실제 시프트 포지션이 후진 레인지인 경우에는, 먼저 리니어 솔레노이드 밸브(SLl)는 온 되지만, 전진 레인지압(PD)은 상기 리니어 솔레노이드 밸브(SL1)의 입력 포트(SLla)로 공급되지 않기 때문에(도 4 및 도 5 참조), 결합압(PC1)은 유압 서보(51)로 공급되지 않아 제1 클러치(C-1)는 결합하지 않는다.
한편, 도 7에 나타낸 바와 같이 솔레노이드 밸브(SL), 리니어 솔레노이드 밸브(SL4)가 오프되는 경우, 매뉴얼 시프트 밸브(23)의 출력 포트(23d)로부터 출력된 후진 레인지압(PR)은 C-4 릴레이 밸브(45)의 유실(45e)로 입력되어 스프링(45s)의 가압력에 대항하고, 스풀(45p)은 우측 절반 위치(페일 위치)로 된다. 이에 따라 입력 포트(45b)로 입력되는 후진 레인지압(PR)은 출력 포트(45c)로부터 출력되고, 유압 서보(54)로 공급되어 제4 클러치(C-4)는 결합한다.
또한, B-2 컨트롤 밸브(36)는 스프링(36s)의 가압력에 근거하여 스풀(36p)이 우측 절반 위치로 되고, 입력 포트(36d)로 입력되는 후진 레인지압(PR)이 출력 포트(36e)로부터 출력되며, 상기 B-2 체크 밸브(37)를 통해 유압 서보(62)로 공급되어 제2 브레이크(B-2)는 결합한다. 이에 따라 제4 클러치(C-4)와 제2 브레이크(B-2)가 결합하여 상기 후진 2속단이 달성된다.
이와 같이 예를 들면 시프트 포지션을 검출할 수 없을 경우이더라도, 본 자동변속기의 유압제어장치(20)에 있어서는, 실제 매뉴얼 시프트 밸브(23)의 스풀 위치에 의해 전진 1속단 또는 후진 2속단을 달성할 수 있다.
또한, 본 실시예에 있어서는 스풀위치 센서가 고장 나고, 시프트 포지션에 관계없이 전진발진 제어를 행하기 위해서 리니어 솔레노이드 밸브(SL4) 및 솔레노이드 밸브(SL)가 오프 되는 경우(전류가 통하지 않는 경우)에 관하여 설명했지만, 상기의 솔레노이드·올 오프 모드 시에 있어서도 동일하고, 즉 솔레노이드·올 오프에 의해 리니어 솔레노이드 밸브(SL4) 및 솔레노이드 밸브(SL)가 오프 되어도, 후진 레인지압(PR)에 의해 제4 클러치(C-4)의 결합이 가능하다.
[본 발명의 정리]
이상에서 설명한 바와 같이 본 발명에 따르면, C-4 릴레이 밸브(45)는 솔레노이드 밸브(SL)의 신호압(PSL)이 입력될 때 정상 위치인 좌측 절반 위치에 로크되어 리니어 솔레노이드 밸브(SL4)로부터의 결합압(PC4)을 유압 서보(54)에 연통시키고, 예를 들면 솔레노이드·올 오프 모드 시나 시프트 레인지 위치를 검출할 수 없는 경우 등의, 리니어 솔레노이드 밸브(SL4)와 솔레노이드 밸브(SL)에 전류가 통하 지 않게 되는 고장 시에는, 매뉴얼 시프트 밸브(23)가 후진 레인지 위치로 전환될 때, 후진 레인지압(PR)에 의해 페일 위치인 우측 절반 위치로 전환되어 후진 레인지압(PR)을 유압 서보(54)로 연통시키기 때문에, 정상 시에는 리니어 솔레노이드 밸브(SL4)에 의해 출력되는 결합압(PC4)을 유압 서보(54)로 공급함으로써, 예를 들면 변속 쇼크(shock)가 발생하지 않도록 결합압(PC4)을 선형으로 조절할 수 있고, 후진 단을 완만한 형태로 형성할 수 있으며, 또한 상기 고장 시에 있어서도, 후진 레인지압(PR)을 유압 서보(54)로 공급함으로써 후진 단을 형성할 수 있어, 고장이 발생하더라도 차량의 후진 주행을 가능하게 할 수 있다.
또한, C-4 릴레이 밸브(45)는 상기 정상 위치인 좌측 절반 위치 또는 페일 위치인 우측 절반 위치로 전환되는 스풀(45p), 스풀(45p)을 정상 위치인 좌측 절반 위치를 향해 가압하는 스프링(45s), 솔레노이드 밸브(SL)의 신호압(PSL)이 스풀(45p)에 정상 위치인 좌측 절반 위치의 방향에 대하여 작용하는 유실(45a) 및 후진 레인지압(PR)이 스풀(45p)에 페일 위치인 우측 절반 위치의 방향에 대하여 작용하는 유실(45e)을 구비하고 있기 때문에, 솔레노이드 밸브(SL)의 신호압(PSL)이 입력될 때 정상 위치에 로크되고, 또한 고장 시에는 후진 레인지압(PR)에 의해 페일 위치인 우측 절반 위치로 전환되는 것을 가능하게 하고 있다.
또한, 솔레노이드 밸브(SL)의 신호압(PSL)이 입력될 때, 우측 절반 위치로부 터 좌측 절반 위치로 전환되고, 또한 후진 레인지압(PR)이 입력될 때 상기 우측 절반 위치에 로크되는 로크업 릴레이 밸브(31)를 구비하고 있기 때문에, 전진 레인지에 있어서 솔레노이드 밸브(SL)를 이용한 로크업 클러치의 유압 제어를 가능하게 하면서, 후진 레인지(PR)에 있어서 솔레노이드 밸브(SL)의 신호압(PSL)을 상기 후진 단의 형성을 위하여 출력하는 것을 가능하게 할 수 있다.
또한, 스풀위치 센서에 의해 매뉴얼 시프트 밸브(23)의 레인지 위치가 검출되지 않은 고장 시, 리니어 솔레노이드 밸브(SLl)에 전류가 통하는 전진발진 제어를 행하기 때문에, 매뉴얼 시프트 밸브(23)가 전진 레인지 위치에 있을 때, 전진 단이 달성되어 차량의 전진 주행을 가능하게 할 수 있다. 또한, 매뉴얼 시프트 밸브(23)가 후진 레인지 위치에 있을 때는, 전진 레인지압(PD)이 출력되지 않고 리니어 솔레노이드 밸브(SLl)로부터 결합압(PC1)이 출력되지 않아 전진 1속단이 달성되는 것을 방지할 수 있으면서, 상기 C-4 릴레이 밸브(45)가 후진 레인지압(PR)에 의해 페일 위치인 우측 절반 위치로 전환되고 후진 레인지압(PR)이 유압 서보(54)로 공급됨으로써 후진 단이 형성될 수 있어 차량의 후진 주행을 가능하게 할 수 있다.
또한, 이상에서 설명한 본 실시예에 있어서는, 본 유압제어장치(20)를 전진 8속단 및 후진 1속단을 가능하게 하는 자동변속기(1)에 적용하는 경우를 일례로서 설명했지만, 물론 이에 제한되는 것은 아니며, 유단식의 자동변속기이면 어떠한 것에도 적용될 수 있다.
또한, 본 실시예에 있어서는, 제2 전환 밸브로서 로크업 릴레이 밸브(31)를 적용하고, 전진 시에 로크업 클러치의 결합 제어를 솔레노이드 밸브(SL)에 의해 행하는 것에 관하여 설명했지만, 이에 한정되는 것은 아니며, 전진 시에 유압을 입출력하는 포트를 전환함으로써 어떤 유압제어를 행하는 밸브라면, 어떠한 밸브에 적용해도 무방하다.
본 발명에 관한 다단식 자동변속기의 유압제어장치는 승용차, 트럭, 버스, 농기계 등에 탑재되는 자동변속기, 하이브리드 구동장치 등에 이용할 수 있고, 특히 고장이 발생하더라도 후진 주행을 가능하게 하는 것이 요구되는 것의 이용에 바람직하다.

Claims (5)

  1. 각각의 유압 서보에 의해 결합되거나 결합해제되는 복수의 마찰결합요소의 결합 상태에 의해 복수의 변속 단을 형성하는 자동변속기에서,
    전진 레인지 위치, 후진 레인지 위치 및 비주행 레인지 위치의 어느 하나로 전환되고, 전진 레인지 위치로 될 때 전진 레인지압을 출력하고, 후진 레인지 위치로 될 때는 후진 레인지압을 출력하는 레인지 전환 밸브; 및
    전류가 통할 때, 상기 복수의 마찰결합요소 중 적어도 후진시에 결합하는 제1 마찰결합요소의 제1 유압 서보로 제1 결합압을 출력하는 제1 결합압 제어용 솔레노이드 밸브를 포함하고,
    정상 시에서 상기 레인지 전환 밸브가 상기 후진 레인지 위치로 전환될 때, 상기 제1 결합압 제어용 솔레노이드 밸브에 전류가 통하여 후진 변속단을 형성하는 자동변속기의 유압제어장치에 있어서,
    상기 정상 시에서 상기 레인지 전환 밸브가 상기 후진 레인지 위치로 전환될 때, 전류가 통하여 신호압을 출력하는 신호압 출력 솔레노이드 밸브,
    상기 제1 결합압 제어용 솔레노이드 밸브와 상기 제1 유압 서보 사이에 개재되고, 상기 제1 결합압을 상기 제1 유압 서보로 연통시키는 정상 위치와 상기 후진 레인지압을 상기 제1 유압 서보로 연통시키는 페일 위치로 전환되는 제1 전환 밸브를 포함하고,
    상기 제1 전환 밸브는 상기 신호압 출력 솔레노이드 밸브의 신호압이 입력될 때 상기 정상 위치에 로크되고, 상기 제1 결합압 제어용 솔레노이드 밸브와 상기 신호압 출력 솔레노이드 밸브에 전류가 통하지 않는 고장 시에, 상기 레인지 전환밸브가 상기 후진 레인지 위치로 전환될 때, 상기 후진 레인지압에 의해 상기 페일 위치로 전환되는 것을 특징으로 하는
    자동변속기의 유압제어장치.
  2. 제1항에 있어서,
    상기 제1 전환 밸브는 상기 정상 위치 또는 상기 페일 위치로 전환되는 스풀, 상기 스풀을 상기 정상 위치를 향해서 가압하는 가압수단, 상기 신호압 출력 솔레노이드 밸브의 신호압이 상기 스풀에 상기 정상 위치의 방향에 대하여 작용하는 제1 유실, 및 상기 후진 레인지압이 상기 스풀에 상기 페일 위치의 방향에 대하여 작용하는 제2 유실을 구비하는 것을 특징으로 하는
    자동변속기의 유압제어장치.
  3. 제1항 또는 제2항에 있어서,
    상기 신호압 출력 솔레노이드 밸브의 신호압이 입력될 때, 제1 위치로부터 제2 위치로 전환되고, 상기 후진 레인지압이 입력될 때 상기 제1 위치에 로크되는 제2 전환 밸브를 구비하는 것을 특징으로 하는
    자동변속기의 유압제어장치.
  4. 제3항에 있어서,
    상기 자동변속기는 로크업 클러치를 구비하는 토크 컨버터를 포함하여 이루어지고,
    상기 제2 전환 밸브는 상기 제2 위치에서 상기 로크업 클러치를 결합하기 위한 로크업 클러치 결합압을 출력하는 것을 특징으로 하는
    자동변속기의 유압제어장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 레인지 전환 밸브의 레인지 위치를 검출하는 레인지위치 검출수단 및 전류가 통할 때, 상기 복수의 마찰결합요소 중 적어도 전진 발진시에 결합하는 제2 마찰결합요소의 제2 유압 서보로 제2 결합압을 출력하는 제2 결합압 제어용 솔레노이드 밸브를 포함하고,
    상기 제2 결합압 제어용 솔레노이드 밸브는 상기 전진 레인지압에 근거하여 상기 제2 결합압을 출력하고,
    상기 정상 시에, 상기 레인지위치 검출수단에 의해 상기 레인지 전환 밸브에 있어서의 상기 비주행 레인지위치로부터 상기 전진 레인지위치로의 전환이 검출될 때는, 상기 제2 결합압 제어용 솔레노이드 밸브에 전류가 통하는 전진발진 제어를 행하고, 상기 비주행 레인지위치로부터 상기 후진 레인지위치로의 전환이 검출될 때는, 상기 제1 결합압 제어용 솔레노이드 밸브 및 상기 신호압 출력 솔레노이드 밸브에 전류가 통하는 후진 발진제어를 행하며,
    상기 레인지위치 검출수단에 의해 상기 레인지 전환 밸브의 레인지위치가 검출되지 않은 고장 시에 상기 전진발진 제어를 행하는 것을 특징으로 하는
    자동변속기의 유압제어장치.
KR1020087009872A 2005-12-28 2006-10-25 자동변속기의 유압제어장치 KR100932311B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005378391A JP4484816B2 (ja) 2005-12-28 2005-12-28 自動変速機の油圧制御装置
JPJP-P-2005-00378391 2005-12-28
PCT/JP2006/321210 WO2007077665A1 (ja) 2005-12-28 2006-10-25 自動変速機の油圧制御装置

Publications (2)

Publication Number Publication Date
KR20080054407A true KR20080054407A (ko) 2008-06-17
KR100932311B1 KR100932311B1 (ko) 2009-12-16

Family

ID=38228025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087009872A KR100932311B1 (ko) 2005-12-28 2006-10-25 자동변속기의 유압제어장치

Country Status (5)

Country Link
JP (1) JP4484816B2 (ko)
KR (1) KR100932311B1 (ko)
CN (1) CN101297132B (ko)
DE (1) DE112006002936B4 (ko)
WO (1) WO2007077665A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097696A (ja) * 2007-10-19 2009-05-07 Aisin Aw Co Ltd 自動変速機の油圧制御装置
JP5109626B2 (ja) 2007-11-30 2012-12-26 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5081118B2 (ja) * 2008-09-30 2012-11-21 アイシン・エィ・ダブリュ株式会社 多段式自動変速機の油圧制御装置
JP4913170B2 (ja) * 2009-02-12 2012-04-11 ジヤトコ株式会社 自動変速機の油圧制御装置
JP5212408B2 (ja) * 2010-03-12 2013-06-19 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5556712B2 (ja) * 2011-03-22 2014-07-23 アイシン・エィ・ダブリュ株式会社 油圧制御装置
KR20130116998A (ko) * 2012-04-17 2013-10-25 (주)테너지 자동화 수동 변속기
JP6020430B2 (ja) * 2013-12-09 2016-11-02 トヨタ自動車株式会社 車両の制御装置
KR101822768B1 (ko) * 2013-12-26 2018-01-26 아이신에이더블류 가부시키가이샤 자동 변속기의 유압 제어 장치
CN105940247B (zh) * 2014-02-12 2017-10-20 爱信艾达株式会社 自动变速器的油压控制装置
JP6227798B2 (ja) * 2014-10-03 2017-11-08 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の油圧制御装置
JP6102894B2 (ja) 2014-11-20 2017-03-29 トヨタ自動車株式会社 自動変速機の制御装置
KR101684066B1 (ko) 2015-02-24 2016-12-20 현대 파워텍 주식회사 림프-홈 모드 구현을 위한 유압시스템 및 그 제어방법
KR101776728B1 (ko) 2015-12-08 2017-09-08 현대자동차 주식회사 차량용 자동변속기의 유압 제어장치
CN113464639B (zh) * 2021-06-09 2023-01-24 贵州大学 一种重型液力自动变速器的断电保护系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952553B2 (ja) * 1994-07-29 1999-09-27 本田技研工業株式会社 油圧作動式変速機の制御装置
JP3516525B2 (ja) * 1995-06-29 2004-04-05 ジヤトコ株式会社 自動変速機の油圧制御装置
JP3478438B2 (ja) * 1995-06-29 2003-12-15 ジヤトコ株式会社 自動変速機の油圧制御装置
JPH09303547A (ja) * 1996-05-08 1997-11-25 Nippon Soken Inc 自動変速機の油圧制御装置
DE19858543A1 (de) * 1998-12-18 2000-06-21 Zahnradfabrik Friedrichshafen Steuereinrichtung für ein automatisches Kraftfahrzeug-Getriebe
JP4253899B2 (ja) 1999-02-24 2009-04-15 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP3519339B2 (ja) * 2000-03-29 2004-04-12 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
CN1285836C (zh) * 2002-08-09 2006-11-22 丰田自动车株式会社 车辆自动变速器的液压控制装置和方法
JP4211646B2 (ja) * 2004-03-19 2009-01-21 トヨタ自動車株式会社 自動変速機の油圧制御装置
JP4490172B2 (ja) 2004-05-31 2010-06-23 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置

Also Published As

Publication number Publication date
DE112006002936B4 (de) 2018-07-19
JP4484816B2 (ja) 2010-06-16
WO2007077665A1 (ja) 2007-07-12
KR100932311B1 (ko) 2009-12-16
DE112006002936T5 (de) 2008-11-06
CN101297132B (zh) 2012-07-04
CN101297132A (zh) 2008-10-29
JP2007177934A (ja) 2007-07-12

Similar Documents

Publication Publication Date Title
KR100932311B1 (ko) 자동변속기의 유압제어장치
KR100932310B1 (ko) 다단식 자동변속기의 유압제어장치
US7628729B2 (en) Hydraulic control apparatus for an automatic transmission
KR101148474B1 (ko) 자동 변속기의 유압 제어 장치
US8224541B2 (en) Hydraulic control device for automatic transmission
JP5081118B2 (ja) 多段式自動変速機の油圧制御装置
JP4592586B2 (ja) 自動変速機の油圧制御装置
JP2000240776A (ja) 自動変速機の油圧制御装置
US20020025886A1 (en) Hydraulic control unit for automatic transmission
KR100551310B1 (ko) 차량용 7속 자동 변속기의 유압 제어 시스템
US8632433B2 (en) Hydraulic control system for automatic transmission and control system for automatic transmission
US20070225101A1 (en) Hydraulic pressure control apparatus for automatic transmission
JPH10159956A (ja) 車両用自動変速機の液圧制御システム
JP2009133435A (ja) 自動変速機の油圧制御装置
JP4954174B2 (ja) 多段式自動変速機の油圧制御装置
JP2010236668A (ja) 自動変速機の油圧制御装置
JP2010236669A (ja) 自動変速機の制御装置
KR0180423B1 (ko) 차량용 자동변속기의 유압 제어시스템
JP6206511B2 (ja) 自動変速機の油圧制御装置
JP2019065963A (ja) 自動変速機の油圧制御装置
JP2000088086A (ja) 車両用自動変速機の液圧制御システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141120

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191120

Year of fee payment: 11