KR102388263B1 - 리튬 전극 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 전극 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
KR102388263B1
KR102388263B1 KR1020190137931A KR20190137931A KR102388263B1 KR 102388263 B1 KR102388263 B1 KR 102388263B1 KR 1020190137931 A KR1020190137931 A KR 1020190137931A KR 20190137931 A KR20190137931 A KR 20190137931A KR 102388263 B1 KR102388263 B1 KR 102388263B1
Authority
KR
South Korea
Prior art keywords
lithium
protective layer
ion conductive
electrolyte
electrode
Prior art date
Application number
KR1020190137931A
Other languages
English (en)
Other versions
KR20200049684A (ko
Inventor
박은경
장민철
정보라
윤석일
손병국
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US16/975,333 priority Critical patent/US11978852B2/en
Priority to PCT/KR2019/014641 priority patent/WO2020091479A1/ko
Publication of KR20200049684A publication Critical patent/KR20200049684A/ko
Application granted granted Critical
Publication of KR102388263B1 publication Critical patent/KR102388263B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 전극 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 상세하게는 리튬 금속의 적어도 일 면에 순차적으로 적층된 제1 및 제2 보호층을 포함하되, 상기 제2 보호층은 전기 전도성 매트릭스의 내부와 표면에 가교된 이온 전도성 전해질이 형성된 형태가 되므로, 제1 보호층이 제2 보호층에 비해 이온 전도도가 높게 되고, 이에 상기 리튬 금속으로부터 형성되는 리튬 덴드라이트로 전자가 쏠리는 현상을 방지함으로써 리튬 덴드라이트의 성장을 억제하며, 동시에, 상기 제2 보호층에 의해 리튬 덴드라이트의 성장을 물리적으로 억제할 수 있다.

Description

리튬 전극 및 이를 포함하는 리튬 이차전지 {Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same}
본 발명은 리튬 덴드라이트의 성장을 방지할 수 있는 보호층이 형성된 리튬 전극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근까지, 음극으로 리튬을 사용하는 고에너지 밀도 전지를 개발하는데 있어 상당한 관심이 있어 왔다. 예를 들어, 비-전기 활성 재료의 존재로 음극의 중량 및 부피를 증가시켜서 전지의 에너지 밀도를 감소시키는 리튬 삽입된 탄소 음극, 및 니켈 또는 카드뮴 전극을 갖는 다른 전기화학 시스템과 비교하여, 리튬 금속은 저중량 및 고용량 특성을 갖기 때문에, 전기화학 전지의 음극 활물질로서 매우 관심을 끌고 있다. 리튬 금속 음극, 또는 리튬 금속을 주로 포함하는 음극은, 리튬-이온, 니켈 금속 수소화물 또는 니켈-카드뮴 전지와 같은 전지보다는 경량화되고 고에너지 밀도를 갖는 전지를 구성할 기회를 제공한다. 이러한 특징들은 프리미엄이 낮은 가중치로 지불되는, 휴대폰 및 랩-탑 컴퓨터와 같은 휴대용 전자 디바이스용 전지에 대해 매우 바람직하다.
종래의 리튬 이온전지는 음극에 그라파이트, 양극에 LCO(Lithium Cobalt Oxide)를 사용하여 700 wh/l 수준의 에너지 밀도를 가지고 있다. 하지만, 최근 높은 에너지 밀도를 필요로 하는 분야가 확대되고 있어, 리튬 이온전지의 에너지 밀도를 증가시켜야 할 필요성이 지속적으로 제기되고 있다. 예를 들어, 전기자동차의 1회 충전 시 주행거리를 500 km 이상으로 늘리기 위해서도 에너지 밀도의 증가가 필요하다.
리튬 이온전지의 에너지 밀도를 높이기 위하여 리튬 전극의 사용이 증가하고 있다. 그러나, 리튬 금속은 반응성이 크고 취급하기 어려운 금속으로서 공정에서 다루기가 어려운 문제가 있다.
리튬 이차전지의 음극으로 리튬금속을 사용할 경우, 리튬금속은 전해질, 물 또는 유기용매등의 불순물, 리튬염 등과 반응하여 부동태층(SEI: Solid Electrolyte Interphase)을 형성한다. 이와 같은 부동태층은 국부상의 전류밀도 차이를 초래하여 충전시 리튬 금속에 의한 수지상의 덴드라이트의 형성을 촉진시키고, 충방전시 점차적으로 성장하여 양극와 음극 사이의 내부 단락을 유발한다. 또한, 덴드라이트는 기계적으로 약한 부분(bottle neck)을 가지고 있어 방전중에 집전체와 전기적 접촉을 상실하는 불활성 리튬(dead lithium)을 형성함으로서 전지의 용량을 감소시키고 싸이클 수명을 단축시키며, 전지의 안정성에 좋지 않은 영향을 미친다.
이와 같은 리튬 금속 음극의 문제점을 개선하기 위하여, 다양한 조성 또는 형태를 가지는 보호층이 형성된 리튬 금속 음극이 개발되어 왔다.
한국공개특허 제2018-0032168호는 다중 보호층을 포함하는 음극에 관한 것으로, 리튬 금속층을 보호하기 하여, 상기 리튬 금속층과의 계면을 유지시키는 보호층, 덴드라이트의 성장을 물리적으로 억제하는 보호층 및 상기 보호층의 구조를 지지하는 보호층을 포함하는 다중 보호층을 형성함으로써, 리튬 덴드라이트로 인한 셀의 부피팽창 문제를 해결할 수 있음을 개시하고 있다.
이와 같이, 지금까지는 리튬 금속 음극을 사용하는 전지에서, 리튬 금속의 덴드라이트 성장 방지를 위하여 보호층 개발에 대한 연구가 이루어져 왔으며, 리튬 금속 음극에 있어서, 리튬 덴드라이트 성장에 의한 전지 성능 저하 문제는 여전히 해결해야 할 과제로 인식되고 있는 바, 더욱 다양한 형태로 리튬 금속을 보호할 수 있는 보호층이 형성된 리튬 금속 음극의 개발이 시급한 실정이다.
한국공개특허 제2018-0032168호 한국공개특허 제2018-0036564호
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 리튬 전극에 보호층을 형성하되, 리튬 금속의 표면으로부터 순차적으로, 이온 전도성이 우수한 제1 보호층 및 전기전도성과 물리적 강도가 우수한 제2 보호층을 포함하는 다중 보호층을 상기 리튬 전극에 형성하였다. 이와 같은 다중 보호층에 의해 상기 리튬 전극에서 리튬 덴드라이트의 성장을 억제할 수 있고, defect가 발생하더라도 리튬 덴드라이트의 성장을 최소화할 수 있다.
따라서, 본 발명은 목적은 다중 보호층이 형성된 리튬 전극을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상술한 바와 같이 다중 보호층이 형성된 리튬 전극을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은, 리튬 금속; 및 상기 리튬 금속의 적어도 일면에 형성된 보호층;을 포함하는 리튬 전극에 있어서, 상기 보호층은 상기 리튬 금속의 적어도 일면에 형성된 제1 보호층; 및 상기 제1 보호층 상에 형성된 제2 보호층을 포함하며, 상기 제1 보호층은 이온 전도성 전해질을 포함하고, 상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는, 리튬 전극.
본 발명은 또한, 상기 리튬 전극을 포함하는 리튬 전극을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 리튬 전극은 리튬 금속의 표면에 순차적으로 형성된 제1 및 제2 보호층을 포함하는 다중 보호층이 형성되어 있으며, 리튬 금속과 접하고 있는 제1 보호층에 의해 충방전시 리튬 금속의 부피 변화를 방지할 수 있다.
또한, 상기 제2 보호층은 전기 전도성 매트릭스의 내부와 표면에 가교된 이온 전도성 전해질이 형성된 형태가 되므로, 제1 보호층이 제2 보호층에 비해 이온 전도도가 높게 되고, 이에 상기 리튬 금속으로부터 형성되는 리튬 덴드라이트로 전자가 쏠리는 현상을 방지함으로써 리튬 덴드라이트의 성장을 억제할 수 있다.
또한, 상기 제2 보호층은 제1 보호층 상에 형성되어, 충방전이 진행됨에 따라 리튬 금속과 전기적으로 연결되어 리튬 덴드라이트가 제1 보호층 내부에서만 포함되어 있도록 하여, 리튬 전극 외부로 리튬 덴드라이트가 성장하는 것을 방지할 수 있다.
또한, 상기 제2 보호층은 우수한 강도로 인하여 리튬 덴드라이트의 성장을 기계적으로 억제함으로써, 리튬 덴드라이트 성장 억제 효과를 더욱 강화할 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 전극의 모식도이다.
도 2 는 본 발명의 일 구현예에 따른 리튬 전극에서 리튬 덴드라이트의 성장이 방지되는 원리를 나타낸 모식도이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리튬 전극
본 발명은 리튬 금속; 및 상기 리튬 금속 상에 형성된 다중 보호층을 포함하는 리튬 전극에 관한 것이며, 상기 다중 보호층은 상기 리튬 금속의 적어도 일면에 순차적으로 적층된 제1 보호층 및 제2 보호층을 포함한다.
이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다.
도 1은 본 발명의 일 구현예에 따른 리튬 전극의 모식도이다.
도 1을 참조하면, 본 발명에 따른 리튬 전극(1)은 리튬 금속(10); 리튬 금속(10)의 일면에 형성된 제1 보호층(21); 및 제1 보호층(21) 상에 형성된 제2 보호층(22);을 포함한다. 이때, 제1 보호층(21) 및 제2 보호층(22)을 포함하여 다중 보호층(20)이라 한다. 제2 보호층은(22)은 두 개의 층이 형성된 것으로 보일 수도 있으나, 후술하는 바와 같이, 전기 전도성 매트릭스의 내부에도 가교된 이온 전도성 전해질이 형성되고, 표면에도 이온 전도성 전해질이 형성되어 두 개의 층으로 보이는 것일 뿐, 도시된 도면의 도면부호 22는 제2 보호층이라는 하나의 층을 가리키는 것이다.
도 2는 본 발명의 일 구현예에 따른 리튬 전극에서 리튬 덴드라이트의 성장이 방지되는 원리를 나타낸 모식도이다.
도 2를 참조하면, 충방전이 진행됨에 따라 리튬 금속(10)의 일면에 리튬 덴드라이트(11)가 생성되어 제2 보호층(22)과 전기적으로 접촉하게 된다. 이때, 전기 전도성이 우수한 제2 보호층(22)의 전자(e-)가 전면적으로 고르게 전달되고 제2 보호층(22)에 비해 제1 보호층(21)의 이온 전도도가 높기 때문에, 리튬 이온(Li+)가 풍부한 제1 보호층(21)에서 환원이 되어 리튬 덴드라이트(11)는 제1 보호층(21) 내부에서만 형성되고 리튬 전극(1)의 외부로 리튬 덴드라이트가 성장하는 것을 방지할 수 있다.
본 발명에 있어서, 상기 제1 보호층은 리튬 금속의 적어도 일 표면에 형성되며, 상기 리튬 금속의 표면에서 리튬 이온이 고갈되는 현상을 방지할 수 있다.
상기 제1 보호층은 이온 전도성 전해질을 포함할 수 있고, 상기 이온 전도성 전해질은 이온 전도성 고분자를 포함할 수 있다.
상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 이온 전도성 전해질의 액상, 겔상 또는 고체상일 수 있으며, 바람직하게는 고체상일 수 있다. 상기 이온 전도성 전해질이 고체상일 경우, 상기 이온 전도성 전해질은 이온 전도성 고분자 및 리튬염을 포함하는 것일 수 있으며, 필요에 따라, 첨가제를 추가로 포함할 수도 있다. 리튬염 및 첨가제의 종류는 하기 제2 보호층과 관련된 설명에서 후술하는 바와 같다.
상기 이온 전도성 고분자를 이루는 단량체와 리튬의 중량비는 10 내지 30:1, 바람직하게는 15 내지 25 : 1 일 수 있으며, 상기 중량비를 만족할 경우, 우수한 이온 전도도 및 리튬 덴드라이트 억제 효과가 가장 좋을 수 있다. 예컨대, 상기 이온 전도성 고분자는 이루는 에틸옥사이드와 리튬의 중량비가 10 내지 30 : 1인 것일 수 있다.
상기 제1 보호층의 이온 전도도는 10-5 내지 10-2 S/cm, 바람직하게는 10-4 내지 10-3 S/cm 일 수 있다. 상기 범위 미만이면 리튬 금속 표면에서 리튬 이온이 고갈되는 현상이 발생할 수도 있어 전지 성능이 저하될 수 있고, 상기 범위 초과일 경우 이온 전도도가 증가하더라도 전지 성능이 더 향상되는 것은 아니다.
본 발명에 있어서, 상기 제2 보호층은 상기 제1 보호층 상에 형성되며, 제2 보호층에 비해 리튬 이온이 상대적을 많이 존재하는 리튬 금속의 표면, 즉, 제1 보호층으로 전자가 전달되도록 하여 제1 보호층에 생성되는 리튬 덴드라이트로 전자가 쏠리는 현상을 방지하여 리튬 덴드라이트의 성장을 억제하는 역할을 한다.
상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함할 수 있다. 상기 전기 전도성 매트릭스는 내부 공간이 형성된 3차원 구조체 형태일 수 있다. 상기 내부 공간을 기공이라 지칭할 수 있다.
상기 전기 전도성 매트릭스의 내부 공간에 이온 전도성 전해질이 채워질 수 있을 수도 있고, 상기 전기 전도성 매트릭스가 상기 가교된 이온 전도성 전해질에 의해 감싸진 형태, 즉, 상기 전기 전도성 매트릭스의 표면에 상기 가교된 이온 전도성 전해질이 형성된 형태일 수도 있다.
상기 제2 보호층의 이와 같은 형태로 인하여 리튬 전극의 표면에 전기 전도도를 균일하게 할 수 있어 리튬 덴드라이트의 성장을 억제할 수 있다.
또한, 상기 제2 보호층 자체의 강도로 인하여 리튬 덴드라이트의 성장을 억제하고, 이에 따라 전기적 접촉이 끓어진 리튬(dead Li)의 발생을 방지할 수 있다
또한, 상기 제2 보호층에서, 상기 전기 전도성 매트릭스와 가교된 이온 전도성 전해질에 포함된 이온 전도성 고분자의 중량비는 3:7 내지 7:3 일 수 있다. 상기와 같이 규정된 중량 범위를 벗어나 전기 전도성 매트릭스가 적정 중량보다 많을 경우, 이온 전도성 고분자의 함량이 상대적으로 감소되므로 보호층의 Li 이온 전도성이 매우 낮아 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵다. 반대로, 상기와 같이 규정된 중량 범위를 벗어나 전기 전도성 매트릭스가 적정 중량보다 작을 경우, 수직/수평적 전기 전도도가 저하되어 전극 표면에 균일한 전자 전달이 어려울 수 있다.
상기 가교된 이온 전도성 전해질은 고체상일 수 있으며, 상기 이온 전도성 전해질은 이온 전도성 고분자와 함께 전해액에서 용매를 제외한 나머지 성분을 25 내지 50 중량% 포함할 수 있다. 다시 말해, 상기 이온 전도성 고분자 100 중량% 대비, 상기 전해액에서 용매를 제외한 나머지 성분의 함량은 25 내지 50 중량% 일 수 있다. 이때, 상기 전해액에서 용매를 제외한 나머지 성분은 리튬염과 첨가제일 수 있다.
상기 이온 전도성 고분자를 이루는 단량체와 리튬의 중량비는 10 내지 30:1, 바람직하게는 15 내지 25 : 1 일 수 있으며, 상기 중량비를 만족할 경우, 우수한 전기 전도도 및 리튬 덴드라이트 억제 효과가 가장 좋을 수 있다. 예컨대, 상기 이온 전도성 고분자는 이루는 에틸옥사이드와 리튬의 중량비가 10 내지 30 : 1인 것일 수 있다.
또한, 상기 가교된 이온 전도성 전해질은 가교제를 포함할 수 있으며, 상기 가교제는 폴리에틸렌글리콜디아크릴레이트(Poly(ethylene glycol) diacrylate: PEGDA), 폴리에틸렌글리콜디메타크릴레이트(Poly(ethylene glycol) dimethacrylate: PEGDMA), 폴리프로필렌글리콜디아크릴레이트(Poly(propylene glycol) diacrylate: PPGDA) 및 폴리프로필렌글리콜디메타크릴레이트(Poly(propylene glycol) dimethacrylate: PPGDMA)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 이온 전도성 고분자와 가교제의 중량비는 70 내지 90 : 10 내지 30 일 수 있으며, 상기 중량비 범위를 만족할 경우, 모듈러스가 우수하여 리튬 덴드라이트 성장 억제에 효율적인 가교된 이온 전도성 전해질층이 형성될 수 있다.
상기 제2 보호층에서 이온 전도성 전해질이 위와 같이 가교된 형태를 나타내어, 가교되지 않은 이온 전도성 전해질을 포함하는 제1 보호층에 비해 이온 전도도가 낮아지게 된다.
본 발명에 있어서, 상기 제2 보호층의 면저항은 5 x 10-2 Ω/sq. 내지 1000 Ω/sq., 바람직하게는 1x10-2 Ω/sq. 내지 500 Ω/sq., 보다 바람직하게는 1 x 10- 2 Ω/sq. 내지 300 Ω/sq 일 수 있다. 상기 범위 미만일 경우는 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵고, 상기 범위 초과이면 큰 저항층으로 작용하여 전지의 수명 특성이 저하될 수 있다.
본 발명에 있어서, 상기 제2 보호층의 이온 전도도는 상온에서 1x10-6 S/cm 내지 1x10-2 S/cm, 바람직하게는 1x10-5 S/cm 내지 1x10-2 S/cm, 보다 바람직하게는 1x10-4 S/cm 내지 1x10-2 S/cm 일 수 있다. 상기 범위 미만이면 이온 전도도가 좋지 않아 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵고, 상기 범위 초과인 보호층은 형성될 수가 없다. 상기 제2 보호층의 이온 전도도는 수직 리튬 이온 전도도를 의미하는 것일 수도 있다.
상기 제1 보호층의 이온 전도도 범위와 상기 제2 보호층의 이온 전도도 범위 내에서, 상기 제1 보호층의 이온 전도도가 제2 보호층의 이온 전도도 보다 더 높게 나타난다.
본 발명에 있어서, 상기 전기 전도성 매트릭스에 포함된 전기 전도성 물질은 상기 전기 전도성 매트릭스 전체에 걸쳐 3차원 구조체를 형성하면서 균일하게 분포되므로, 상기 보호층이 균일한 전기 전도도를 나타낼 수 있도록 할 수 있다.
상기 전기 전도성 물질은 전기 전도성 금속, 반도체 및 전기 전도성 고분자로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 전기 전도성 금속은 구리, 금, 은, 알루미늄, 니켈, 아연, 탄소, 주석 및 인듐으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 반도체는 실리콘 및 게르마늄으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 전기 전도성 고분자는 PEDOT (poly(3,4-ethylenedioxythiophene)), 폴리아닐린 (polyaniline), 폴리피롤 (polypyrrole), 폴리사이오펜 (polythiophene), 폴리아세틸렌 (polyacetylene), 폴리페닐렌 (polyphenylene) 및 폴리시에닐렌 비닐렌 (poly(thienylene vinylene))으로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명에 있어서, 상기 전기 전도성 매트릭스에 포함된 이온 전도성 전해질은 이온 전도성 고분자를 포함할 수 있다.
상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 이온 전도성 전해질은 액상, 겔상 또는 고체상일 수 있다. 이와 같은 이온 전도성 전해질의 형태는, 상기 이온 전도성 고분자의 특성에 따라 결정될 수 있다.
상기 액상 또는 겔상 이온 전도성 전해질에 포함된 액상 또는 겔상 전해액은 리튬염, 비수계 용매 및 추가로 첨가제를 더 포함할 수 있다. 상기 고체상 이온 전도성 전해질에는 리튬염 및 추가로 첨가제를 더 포함할 수 있다.
상기 리튬염은 LiCl, LiBr, LiI, LiNO3, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬 이미드로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 이온 전도성 전해질에 포함되는 비수계 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 슬러리인 카보네이트 화합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리가 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. 특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 비수계 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 비수계 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 이온 전도성 전해질에 포함되는 첨가제는 플루오로에틸렌카보네이트(FEC), 1,3-프로판술톤(1,3-PS) 및 비닐에틸렌카보네이트(VEC)로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 플루오로에틸렌카보네이트(FEC) 일 수 있다.
상기 첨가제의 함량은 상기 전해액 전체 중량을 기준으로 2 내지 13 중량%, 바람직하게는 3 내지 10 중량%, 보다 바람직하게는 4 내지 8 중량% 일 수 있다. 이 상기 범위 내인 경우, 리튬 이차 전지의 수명 특성을 개선할 수 있고, 리튬 이차전지의 두께 팽창률을 저감할 수 있다.
리튬 전극의 제조방법
본 발명은 또한, 리튬 전극의 제조방법에 관한 것으로, (A) 리튬 금속 상에 제1 보호층을 형성하는 단계; (B) 이형필름 상에 제2 보호층을 형성하는 단계; 및 (C) 상기 제1 보호층 상에 상기 제2 보호층을 전사하는 단계;를 포함할 수 있다.
이하, 각 단계별로 본 발명을 보다 상세히 설명한다.
상기 (A) 단계에서는 리튬 금속 상에 제1 보호층을 형성할 수 있다.
상기 제1 보호층은 전술한 바와 같이 이온 전도성 전해질을 포함하고, 상기 이온 전도성 전해질은 이온 전도성 고분자를 포함한다.
상기 이온 전도성 고분자를 전해액에 용해시켜 혼합 용액을 만들어, 상기 이형필름 상에 도포하여 이온 전도성 전해질층을 형성한 후, 리튬 금속에 전사하여 제1 보호층을 형성할 수 있다. 또는, 상기 이온 전도성 고분자를 전해액에 용해시켜 혼합 용액을 만들어, 리튬 전극에 도포하여 제1 보호층을 형성할 수 있다. 이때, 상기 혼합 용액의 농도는 고형분 중량을 기준으로 15 내지 35 중량%일 수 있으며, 이 경우, 제1 보호층 형성 공정이 원활하게 이루어질 수 있고, 제조된 제1 보호층의 불량율도 감소시킬 수 있다.
상기 이형필름의 재료 및 두께는 특별히 제한되지 않으며, 각종 필름이 사용될 수 있다. 이형필름으로, 예를 들면, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌(PE) 필름, 폴리프로필렌(PP) 필름, 실리콘계 이형필름 등을 사용할 수 있으며, 이형필름 두께는, 예를 들면, 12㎛ 내지 80㎛를 가질 수 있다.
상기 도포 방법은 용액 캐스팅, 스프레이 캐스팅, 스프레잉 또는 롤링일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 제1 보호층은 레이어 또는 필름 형태일 수 있으며, 이와 같은 형태가 잘 형성될 수 있도록 개시제를 함께 사용할 수 도 있다. 상기 개시제는 아조비스이소부티로니트릴, 벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸-헥사노에이트, 큐밀퍼옥사이드, t-부틸퍼옥사이드 및 1,1-디(t-부틸퍼옥시)시클로헥산으로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.
상기 (B) 단계에서는 이형필름 상에 제2 보호층을 형성할 수 있다.
상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 형태이다.
상기 제2 보호층의 제조방법은, (b1) 이형필름에 이온 전도성 고분자, 가교제 및 리튬염의 혼합물을 도포하여 가교된 이온 전도성 전해질층을 형성하는 단계; 및 (b2) 상기 가교된 이온 전도성 전해질층에 전기 전도성 물질을 증착하여, 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 제2 보호층을 형성하는 단계;를 포함할 수 있다.
(b1) 단계에서는, 이형필름에 이온 전도성 고분자 및 가교제를 전해액에 용해시켜 혼합 용액을 만들어 이형필름 상에 도포하여 가교된 이온 전도성 전해질층을 형성할 수 있다. 이때, 상기 혼합 용액의 농도는 고형분 중량을 기준으로 15 내지 35 중량%일 수 있으며, 이 경우, 제1 보호층 형성 공정이 원활하게 이루어질 수 있고, 제조된 제2 보호층의 불량율도 감소시킬 수 있다.
상기 이형필름의 재료 및 두께는 특별히 제한되지 않으며, 각종 필름이 사용될 수 있다. 이형필름으로, 예를 들면, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌(PE) 필름, 폴리프로필렌(PP) 필름, 실리콘계 이형필름 등을 사용할 수 있으며, 이형필름 두께는, 예를 들면, 12㎛ 내지 80㎛를 가질 수 있다.
상기 도포 방법은 용액 캐스팅, 스프레이 캐스팅, 스프레잉 또는 롤링일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 가교된 이온 전도성 절해질층을 형성하기 위하여, 개시제를 함께 사용할 수도 있다. 상기 개시제는 아조비스이소부티로니트릴, 벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸-헥사노에이트, 큐밀퍼옥사이드, t-부틸퍼옥사이드 및 1,1-디(t-부틸퍼옥시)시클로헥산으로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.
상기 (b2) 단계에서는, 상기 가교된 이온 전도성 전해질층에 전기 전도성 물질을 증착하여, 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 제2 보호층을 형성할 수 있다.
이때, 상기 전기 전도성 물질은 증착시 상기 전기 전도성 물질의 입자들이 상기 가교된 이온 전도성 전해질층을 뚫고 내부로 들어가서, 상기 가교된 이온 전도성 전해질층 내부에 상기 전기 전도성 물질의 입자들이 삽입된 형태가 된다. 상기 가교된 이온 전도성 전해질층 내부에 삽입되어 있는 전기 전도성 물질의 입자들은 섬(island) 형태로 삽입된 형태일 수도 있고, 입자들끼리 연결되어 3차원 구조체의 골격을 이루어 전기 전도성 매트릭스를 형성할 수도 있으며, 상기 섬 형태와 3차원 구조체가 함께 형성될 형태일 수 있다.
다시 말해, 상기 전기 전도성 매트릭스의 내부 공간에 가교된 이온 전도성 전해질이 포함된 형태일 수도 있고, 또한, 상기 전기 전도성 매트릭스의 표면에 가교된 이온 전도성 전해질 형성되어 전기 전도성 매트릭스를 감싼 형태일 수도 있다.
상기 (C) 단계에서는 상기 제1 보호층 상에 상기 제2 보호층을 전사하여 리튬 전극을 형성할 수 있다.
상기 리튬 금속은 집전체 상에 형성된 것일 수 있다. 상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예컨대, 상기 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄 및 소성 탄소로 이루어진 군에서 선택되는 1종 이상일 수 있다.
리튬 이차전지
본 발명은 또한, 전술한 바와 같은 리튬 전극을 포함하는 리튬 이차전지에 관한 것이다.
상기 리튬 이차전지에 있어서, 상기 리튬 전극은 음극으로서 포함될 수 있으며, 상기 리튬 이차전지는 상기 음극과 양극 사이에 구비된 전해액을 포함할 수 있다.
상기 리튬 이차전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다. 또한, 상기 리튬 이차전지는 양극 전해액 및 음극 전해액을 보관하는 각각의 탱크 및 각각의 전해액을 전극셀로 이동시키는 펌프를 더 포함하여, 플로우 배터리로 제조될 수도 있다.
상기 전해액은 상기 음극과 양극이 함침된 전해질액일 수 있다.
상기 리튬 이차전지는 상기 음극과 양극 사이에 구비된 분리막을 더 포함할 수 있다. 상기 음극과 양극 사이에 위치하는 분리막은 음극과 양극을 서로 분리 또는 절연시키고, 음극과 양극 사이에 이온 수송을 가능하게 하는 것이면, 어느 것이나 사용 가능하다. 예를 들어, 비전도성 다공성막 또는 절연성 다공성막일 수 있다. 더욱 구체적으로 폴리프로필렌 소재의 부직포나 폴리페닐렌 설파이드 소재의 부직포와 같은 고분자 부직포; 또는 폴리에틸렌이나 폴리프로필렌과 같은 올레핀계 수지의 다공성 필름을 예시할 수 있으며, 이들을 2종 이상 병용하는 것도 가능하다.
상기 리튬 이차전지는 분리막에 의해 구분된 양극 측의 양극 전해액 및 음극 측의 음극 전해액을 더 포함할 수 있다. 상기 양극 전해액 및 음극 전해액은 각각 용매 및 전해염을 포함할 수 있다. 상기 양극 전해액 및 음극 전해액은 서로 동일하거나 서로 상이할 수 있다.
상기 전해액은 수계 전해액 또는 비수계 전해액일 수 있다. 상기 수계 전해액은 용매로서 물을 포함할 수 있으며, 상기 비수계 전해액은 용매로서 비수계 용매를 포함할 수 있다.
상기 비수계 용매는 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있으며, 특별히 한정하지 않으나, 예를 들면, 카보네이트계, 에스테르계, 에테르계, 케톤계, 유기황(organosulfur)계, 유기인(organophosphorous)계, 비양성자성 용매 및 이들의 조합으로 이루어지는 군으로부터 선택될 수 있다.
상기 전해염은 물 또는 비수계 유기용매에서 양이온 및 음이온으로 해리되는 것을 말하며, 리튬 이차전지에서 리튬 이온을 전달할 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있다.
상기 전해액에서 전해염의 농도는 0.1 M 이상 3 M 이하일 수 있다. 이 경우 리튬 이차전지의 충방전 특성이 효과적으로 발현될 수 있다.
상기 전해질은 고체 전해질막 또는 고분자 전해질막일 수 있다.
상기 고체 전해질막 및 고분자 전해질막의 재질은 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 채용할 수 있다. 예를 들면, 상기 고체 전해질막은 복합금속산화물을 포함할 수 있으며, 상기 고분자 전해질막은 다공성 기재의 내부에 전도성 고분자가 구비된 막일 수 있다.
상기 양극은 리튬 이차전지에서 전지가 방전될 때 전자를 받아들이며 리튬 함유 이온이 환원되는 전극을 의미한다. 반대로, 전지의 충전 시에는 음극(산화전극)의 역할을 수행하여 양극 활물질이 산화되어 전자를 내보내고 리튬 함유 이온을 잃게 된다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다.
본 명세서에서, 상기 음극과 함께 리튬 이차전지에 적용되어 방전시 리튬 함유 이온이 환원하고 충전시에 산화될 수 있다면 상기 양극 활물질층의 양극 활물질의 재질은 특별히 한정되지 않는다. 예를 들면, 전이금속 산화물 또는 황(S)을 기반으로 하는 복합재일 수 있으며, 구체적으로 LiCoO2, LiNiO2, LiFePO4, LiMn2O4, LiNixCoyMnzO2(여기서, x+y+z=1), Li2FeSiO4, Li2FePO4F 및 Li2MnO3 중 적어도 하나를 포함할 수 있다.
또한, 상기 양극이 황(S)을 기반으로 하는 복합재인 경우에는 상기 리튬 이차전지는 리튬-황 전지일 수 있으며, 상기 황(S)을 기반으로 하는 복합재는 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 양극 재료를 선택하여 적용할 수 있다.
본 명세서는 상기 리튬 이차전지를 단위 전지로 포함하는 전지 모듈을 제공한다.
상기 전지 모듈은 본 명세서의 하나의 실시 상태에 따른 2 이상의 리튬 이차전지 사이에 구비된 바이폴라(bipolar) 플레이트로 스택킹(stacking)하여 형성될 수 있다.
상기 리튬 이차전지가 리튬 공기 전지인 경우, 상기 바이폴라 플레이트는 외부에서 공급되는 공기를 리튬 공기 전지 각각에 포함된 양극에 공급할 수 있도록 다공성일 수 있다. 예를 들어, 다공성 스테인레스 스틸 또는 다공성 세라믹을 포함할 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장장치의 전원으로 사용될 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1
(1)제1 보호층 형성
두께가 20 ㎛인 리튬 금속의 일 표면에 이온 전도성 전해질층을 포함하는 제1 보호층을 형성하였다.
아세토니트릴 용매에 리튬염인 LiFSI를 용해시킨 전해액에, 이온 전도성 고분자인 PEO(Poly(ethylene oxide), 분자량: 1,000,000)를 혼합한 후, 용액 캐스팅 방법으로 실리콘계 이형필름(SKC Hass社)의 일면에 코팅시켜 이온 전도성 전해질층을 형성하였다. 이후, 상온에서 24시간 동안 진공 건조하여 균일한 막을 형성하였고, 이를 20㎛ 두께의 리튬 음극 위에 전사하여 제1 보호층을 형성하였다. 이때, 상기 아세토니트릴 용매 대비 상기 이온 전도성 고분자(PEO)와 리튬염(LiFSI)의 고형분 함량은 20 중량%가 되도록 하였고, 상기 PEO에 포함된 EO(ethylene oxide)와 LiFSI에 포함된 Li의 중량비가 20:1이 되도록 하였다 (EO : Li = 20 : 1).
(2)제2 보호층 형성
실리콘계 이형필름(SKC Hass社)의 일면에 가교된 이온 전도성 전해질층을 형성하였다.
아세토니트릴 용매에 리튬염인 LiFSI를 용해시킨 전해액에, 이온 전도성 고분자인 PEO(Poly(ethylene oxide), 분자량: 1000,000), 가교제인 PEGDA(Poly(ethylene glycol) diacrylate) 및 개시제인 벤조일퍼옥사이드(2 중량%)를 혼합한 후, 용액 캐스팅 방법으로, 상기 이형필름의 일 표면에 코팅시킨 후, 80℃에서 1시간 진공건조 및 가열하여, 가교된 이온 전도성 전해질층을 형성하였다 (중량비, PEG: PEGDA = 80 : 20, EO : Li = 16 : 1).
상기 가교된 이온 전도성 전해질층의 일 표면에 Cu를 증착하였다. 상기 Cu를 이온 전도성 전해질층의 일 표면에 진공 증착시킴에 따라, Cu 입자들이 이온 전도성 전해질층을 뚫고 내부로 들어가서 이온 전도성 전해질층 내부에서 상기 Cu 입자들이 서로 전기적으로 연결되어, 내부에 공간이 형성된 3차원 구조체 형태의 Cu 매트릭스를 형성하여, 제2 보호층을 제조하였다.
(3)리튬 전극 제조
상기 제2 보호층을 제1 보호층 상에 전사시켜 리튬 전극을 제조하였다.
(4)리튬 이차전지 제조
상기 제조된 리튬 전극을 이용하여, Li/Li Symmetric Cell을 제조하였다. 상기 제1 보호층 및 제2 보호층이 분리막 기능을 하므로, 별도 분리막은 사용하지 않았다.
비교예 1
리튬 전극 상에 이온 전도성 질해질층(제1 보호층) 만을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.
비교예 2
리튬 전극 상에 가교된 이온 전도성 전해질층(제2 보호층 중 Cu 매트릭스 미형성) 만을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.
비교예 3
보호층을 형성하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.
실험예 1
실시예 및 비교예에서 리튬 이차전지에 대하여, 60℃에서 0.5 mA/㎠ 전류 및 1 mAh/㎠ 용량으로 충방전을 실시하여, 수명특성을 측정하였다.
또한, 실시예 및 비교예의 리튬 전극의 보호층에 대하여 동적 점탄성 측정장치(DMA, PerkinElmer DMA 8000)이용하여, 60℃에서 모듈러스를 측정하였다 (E': 보존 탄성률(Storage modulus), E'': 손실 탄성률(Loss modulus), tanδ(E''/E').
하기 표 1에 상기 수명특성 및 탄성률 측정결과를 기재하였다.
제1 보호층
이온 전도도
(S/cm)
제2 보호층
이온 전도도
(S/cm)
E'
(Mpa, 60℃)
E"
(Mpa, 60℃)
δ
(°, 60℃)
Short
발생시점
(cycle)
실시예 1 3x10-4 3x10-5 55.5 7.0 7.4 28
비교예 1 3x10-4 - 측정불가 측정불가 측정불가 13
비교예 2 - 3x10-5 55.0 7.0 7.4 17
비교예 3 - - - - - 0(조립시 short)
상기 표 1에 기재된 바와 같이, 실시예 1의 리튬 전극의 경우 수명특성이 가장 우수한 것을 알 수 있다.
또한, 비교예 1과 같이 이온 전도성 전해질층의 경우 모듈러스의 측정이 불가하였으며, 비교예 2와 같이 가교된 이온 전도성 전해질층은 모듈러스가 비교적 우수하게 나타났다. 실시예 1의 이온 전도성 전해질층이 형성된 제1 보호층 및 전기 전도성 매트릭스와 가교된 이온 전도성 전해질층이 형성된 제2 보호층이 형성됨으로 인하여, 모듈러스가 가장 우수한 것으로 나타났다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
1: 리튬 전극
10: 리튬 금속
11: 리튬 덴드라이트
20: 다중 보호층
21: 제1 보호층
22: 제2 보호층

Claims (10)

  1. 리튬 금속; 및 상기 리튬 금속의 적어도 일면에 형성된 보호층;을 포함하는 리튬 전극에 있어서,
    상기 보호층은 상기 리튬 금속의 적어도 일면에 형성된 제1 보호층; 및 상기 제1 보호층 상에 형성된 제2 보호층을 포함하되,
    상기 제1 보호층의 이온 전도도는 제2 보호층의 이온 전도도에 비해 크고,
    상기 제1 보호층은, 이온 전도성 고분자를 포함하는 이온 전도성 전해질을 포함하고,
    상기 제2 보호층은 전기 전도성 매트릭스, 및 이온 전도성 고분자와 가교제를 포함하는 가교된 이온 전도성 전해질을 포함하고,
    상기 전기 전도성 매트릭스는 내부 공간이 형성된 3차원 구조체 형태이고, 상기 전기 전도성 매트릭스의 내부 공간과 표면에 상기 가교된 이온 전도성 전해질이 형성되고,
    상기 전기 전도성 매트릭스는 전기 전도성 금속 및 반도체로 이루어진 군에서 선택된 1종 이상을 포함하고,
    상기 전기 전도성 금속은 구리, 금, 은, 알루미늄, 니켈, 아연, 주석 및 인듐으로 이루어진 군에서 선택되는 1종 이상이고,
    상기 반도체는 실리콘 및 게르마늄으로 이루어진 군에서 선택되는 1종 이상인 것인, 리튬 전극.
  2. 삭제
  3. 제1항에 있어서,
    상기 제1 보호층의 이온 전도성 전해질은 리튬염을 더 포함하고,
    상기 제2 보호층의 가교된 이온 전도성 전해질은 리튬염을 더 포함하는 것인, 리튬 전극.
  4. 제1항에 있어서,
    상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.
  5. 제1항에 있어서,
    상기 가교제는 폴리에틸렌글리콜디아크릴레이트(Poly(ethylene glycol) diacrylate: PEGDA), 폴리에틸렌글리콜디메타크릴레이트(Poly(ethylene glycol) dimethacrylate: PEGDMA), 폴리프로필렌글리콜디아크릴레이트(Poly(propylene glycol) diacrylate: PPGDA) 및 폴리프로필렌글리콜디메타크릴레이트(Poly(propylene glycol) dimethacrylate: PPGDMA)로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.
  6. 제3항에 있어서,
    상기 리튬염은 LiCl, LiBr, LiI, LiNO3, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬 이미드로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 제1항 및 제3항 내지 제6항 중 어느 한 항의 리튬 전극을 포함하는 리튬 이차전지.
KR1020190137931A 2018-10-31 2019-10-31 리튬 전극 및 이를 포함하는 리튬 이차전지 KR102388263B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/975,333 US11978852B2 (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same
PCT/KR2019/014641 WO2020091479A1 (ko) 2018-10-31 2019-10-31 리튬 전극 및 이를 포함하는 리튬 이차전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180131652 2018-10-31
KR20180131652 2018-10-31

Publications (2)

Publication Number Publication Date
KR20200049684A KR20200049684A (ko) 2020-05-08
KR102388263B1 true KR102388263B1 (ko) 2022-04-19

Family

ID=70677990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190137931A KR102388263B1 (ko) 2018-10-31 2019-10-31 리튬 전극 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US11978852B2 (ko)
EP (1) EP3745506B1 (ko)
KR (1) KR102388263B1 (ko)
CN (1) CN111712949B (ko)
ES (1) ES2925381T3 (ko)
PL (1) PL3745506T3 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151761A (zh) * 2020-10-22 2020-12-29 珠海冠宇电池股份有限公司 一种锂负极及其制备方法和应用
CN114583092B (zh) * 2021-03-26 2023-12-05 深圳市研一新材料有限责任公司 一种多层锂金属电池负极及其制备方法和制备设备
CN113793920B (zh) * 2021-08-09 2023-07-25 华中科技大学 一种金属锂表面原位锂铝合金层的筑构方法与应用
CN116130755A (zh) * 2022-11-14 2023-05-16 吉林省东驰新能源科技有限公司 一种自支撑聚碳酸亚乙烯脂基电解质及其制备方法和应用、室温全固态锂离子电池
CN116375943B (zh) * 2023-06-05 2023-10-27 宁德时代新能源科技股份有限公司 用于正极极片的钝化液、正极极片及其制备方法、电池单体、电池和用电装置
CN117096273B (zh) * 2023-10-20 2024-01-26 深圳市贝特瑞新能源技术研究院有限公司 一种保护层修饰的锂金属复合负极及其制备方法和电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301707A1 (en) * 2017-04-12 2018-10-18 Nanotek Instruments, Inc. Lithium Anode-Protecting Polymer Layer for a Lithium Metal Secondary Battery and Manufacturing Method

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298915A (ja) 1992-04-16 1993-11-12 Japan Energy Corp 電解質複合体
KR0125151B1 (ko) 1994-12-30 1997-12-15 이정성 복합 고분자 전해질을 갖는 전지(電池)
JP2000285929A (ja) 1999-03-31 2000-10-13 Sony Corp 固体電解質電池
WO2001039303A1 (en) * 1999-11-23 2001-05-31 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US7771870B2 (en) * 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
KR100368438B1 (ko) 1999-12-31 2003-01-24 사단법인 고등기술연구원 연구조합 다층 구조의 고분자 전해질, 이의 제조방법 및 이를이용한 리튬 이차전지
JP3640863B2 (ja) 2000-05-25 2005-04-20 トヨタ自動車株式会社 イオン伝導性固体電解質
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it
KR20020085942A (ko) 2001-05-10 2002-11-18 주식회사 애니셀 고율 충·방전용 다층 고체 전해질, 이를 이용한 박막전지및 그의 제조방법
FR2841255B1 (fr) 2002-06-21 2005-10-28 Inst Nat Polytech Grenoble Materiau a conduction ionique renforce, son utilisation dans les electrodes et les electrolytes
KR100485336B1 (ko) 2002-12-09 2005-04-27 한국과학기술연구원 다층구조의 리튬 전극, 그 제조 방법 및 그를 이용한리튬전지
JP2004206942A (ja) 2002-12-24 2004-07-22 Ion Engineering Research Institute Corp 全固体リチウム電池
KR100508945B1 (ko) 2003-04-17 2005-08-17 삼성에스디아이 주식회사 리튬 전지용 음극, 그의 제조 방법 및 그를 포함하는 리튬전지
KR100542213B1 (ko) 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
EP1999818B1 (en) 2006-03-22 2019-05-08 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
KR101644196B1 (ko) 2007-12-21 2016-07-29 바티움 캐나다 인크. 리튬 폴리머 배터리용 전해질
US9178255B2 (en) 2008-06-20 2015-11-03 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity
ITRM20090161A1 (it) 2009-04-08 2010-10-09 Jusef Hassoun Accumulatori litio-zolfo
KR20120000708A (ko) 2010-06-28 2012-01-04 주식회사 엘지화학 전기화학소자용 음극, 그 제조방법 및 이를 구비한 전기화학소자
KR20120092918A (ko) 2011-02-14 2012-08-22 한양대학교 산학협력단 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지
WO2013055573A1 (en) 2011-10-13 2013-04-18 Sion Power Corporation Electrode structure and method for making the same
WO2013137224A1 (ja) 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
KR101422908B1 (ko) 2012-04-02 2014-07-23 삼성정밀화학 주식회사 리튬이온 이차전지용 전해질 및 이것을 포함하는 리튬이온 이차전지
KR102034718B1 (ko) 2012-07-06 2019-10-22 삼성전자주식회사 리튬공지전지용 음극 및 이를 포함하는 리튬공기전지
KR101499586B1 (ko) 2013-03-07 2015-03-09 경상대학교산학협력단 상온형 Na/S 전지
KR101375214B1 (ko) 2013-03-08 2014-03-17 주식회사 아모그린텍 다성분계 나노 복합산화물 분말을 이용한 박막 전지 및 그 제조방법
KR101486130B1 (ko) 2013-03-11 2015-01-27 한양대학교 산학협력단 전도성 고분자로 개질된 리튬 금속 전극, 그 제조방법 및 이를 이용한 리튬금속전지
KR101592353B1 (ko) 2013-03-28 2016-02-12 주식회사 아모그린텍 이차전지용 전극 조립체 및 이를 이용한 이차전지
KR20140125970A (ko) * 2013-04-19 2014-10-30 국립대학법인 울산과학기술대학교 산학협력단 리튬 금속 전지 및 이의 제조 방법
KR101613511B1 (ko) 2014-02-26 2016-04-19 서강대학교산학협력단 고체 고분자 전해질 조성물 및 이를 포함하는 리튬 이차전지
KR101595543B1 (ko) 2014-05-12 2016-02-18 주식회사 포스코 나트륨 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 나트륨 이차전지
JP2016015250A (ja) 2014-07-02 2016-01-28 凸版印刷株式会社 蓄電デバイス用外装材
KR101771320B1 (ko) 2014-10-29 2017-08-24 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 전지
KR101748914B1 (ko) 2014-10-31 2017-06-20 주식회사 엘지화학 리튬 전극, 이의 제조방법 및 이를 포함하는 리튬 전지
KR101914172B1 (ko) 2015-05-19 2018-11-01 주식회사 엘지화학 보호층을 포함하는 나트륨 이차 전지용 음극 및 이를 포함하는 나트륨 이차 전지
KR101914171B1 (ko) 2015-05-19 2018-11-01 주식회사 엘지화학 다공성 나트륨 이차 전지용 음극 및 이를 포함하는 나트륨 이차 전지
EP3331445B1 (en) 2015-08-05 2019-10-23 ART Healthcare Ltd. Point of care urine analyzer
WO2017104867A1 (ko) 2015-12-17 2017-06-22 주식회사 엘지화학 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102003291B1 (ko) 2016-02-23 2019-07-24 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지
KR20170123727A (ko) 2016-04-08 2017-11-09 현대자동차주식회사 다층구조의 전해질막을 가지는 리튬공기전지 및 그 제조방법
KR101865834B1 (ko) 2016-06-15 2018-06-08 한국생산기술연구원 전고체 리튬이차전지 및 그의 제조방법
KR101850901B1 (ko) 2016-08-04 2018-04-20 한국생산기술연구원 젤 고분자 전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR101926917B1 (ko) 2016-08-17 2018-12-07 현대자동차주식회사 리튬 공기 전지용 음극 및 이의 제조방법
KR102140122B1 (ko) 2016-08-19 2020-07-31 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
KR102003307B1 (ko) 2016-09-21 2019-07-24 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
KR102328253B1 (ko) 2016-09-30 2021-11-18 주식회사 엘지에너지솔루션 전도성 직물로 형성된 보호층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR20180068115A (ko) 2016-12-13 2018-06-21 삼성전자주식회사 복합 전해질 구조체 및 이를 포함하는 리튬금속전지
KR102134458B1 (ko) 2016-12-28 2020-07-15 주식회사 엘지화학 전고체 전지 및 이를 위한 고분자 전해질
KR102007229B1 (ko) 2017-02-08 2019-08-06 국방과학연구소 열 전지용 전해질
KR102315390B1 (ko) 2017-11-13 2021-10-20 주식회사 엘지화학 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US20190393482A1 (en) * 2018-06-21 2019-12-26 Nanotek Instruments, Inc. Method of protecting the lithium anode layer in a lithium metal secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301707A1 (en) * 2017-04-12 2018-10-18 Nanotek Instruments, Inc. Lithium Anode-Protecting Polymer Layer for a Lithium Metal Secondary Battery and Manufacturing Method

Also Published As

Publication number Publication date
US20200411907A1 (en) 2020-12-31
US11978852B2 (en) 2024-05-07
EP3745506B1 (en) 2022-07-20
PL3745506T3 (pl) 2022-11-14
EP3745506A1 (en) 2020-12-02
EP3745506A4 (en) 2021-06-16
ES2925381T3 (es) 2022-10-17
KR20200049684A (ko) 2020-05-08
CN111712949A (zh) 2020-09-25
CN111712949B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
KR102388263B1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
KR101755121B1 (ko) 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지
KR101764266B1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR102258758B1 (ko) 리튬 금속 전극의 표면에 부동태막을 형성하는 리튬 이차전지의 연속 제조 방법 및 이의 제조 방법으로 제조된 리튬 이차전지
US11522198B2 (en) Negative electrode for lithium-metal secondary battery and lithium-metal secondary battery including the same
KR102328261B1 (ko) 리튬 이차전지
KR20190001556A (ko) 리튬 이차전지
US12002944B2 (en) Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby
KR102244904B1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
EP3444871B1 (en) Negative electrode for lithium-metal secondary battery and lithium metal secondary battery including the same
KR102388262B1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
KR20180036410A (ko) 전고체 전지
KR102003305B1 (ko) 리튬 전극 보호막 형성용 다층 필름 및 리튬 전극의 제조방법
KR102207527B1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
KR20130117719A (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
KR20170038540A (ko) 비수성 전해액을 포함하는 리튬 이차 전지
KR20180028930A (ko) 3차원 망상 구조의 전극 집전체를 포함하는 전극
KR20200049671A (ko) 차등적 이온전도도를 갖는 전해질 및 그를 포함하는 리튬 이차전지
KR102003306B1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
EP3444873B1 (en) Anode for lithium metal secondary battery and lithium metal secondary battery comprising same
WO2020091479A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
KR102295369B1 (ko) 리튬전지 전해액용 첨가제 조성물, 이를 포함하는 유기전해액 및 리튬 전지
KR101433662B1 (ko) 이차전지용 전해액과 이를 함유하는 이차전지
KR101950706B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant