KR101431778B1 - 자성 비즈를 이용하는 액적 작동기 장치 및 방법 - Google Patents

자성 비즈를 이용하는 액적 작동기 장치 및 방법 Download PDF

Info

Publication number
KR101431778B1
KR101431778B1 KR1020097018598A KR20097018598A KR101431778B1 KR 101431778 B1 KR101431778 B1 KR 101431778B1 KR 1020097018598 A KR1020097018598 A KR 1020097018598A KR 20097018598 A KR20097018598 A KR 20097018598A KR 101431778 B1 KR101431778 B1 KR 101431778B1
Authority
KR
South Korea
Prior art keywords
delete delete
droplet
beads
magnet
self
Prior art date
Application number
KR1020097018598A
Other languages
English (en)
Other versions
KR20100014917A (ko
Inventor
라마크리슈나 시스타
뱀씨 케이. 파뮬라
마이클 쥐. 폴락
비제이 스리니바산
앨런 이. 에크하르트
Original Assignee
어드밴스드 리퀴드 로직, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어드밴스드 리퀴드 로직, 아이엔씨. filed Critical 어드밴스드 리퀴드 로직, 아이엔씨.
Publication of KR20100014917A publication Critical patent/KR20100014917A/ko
Application granted granted Critical
Publication of KR101431778B1 publication Critical patent/KR101431778B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/01Drops
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44786Apparatus specially adapted therefor of the magneto-electrophoresis type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1046Levitated, suspended drops
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Soft Magnetic Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micromachines (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

저감된 양의 물질을 지니고 자기 반응성 비드와 접촉하는 액적을 제공하는 방법이 제공된다. 이 방법은 일반적으로 (a) (i) 표면 상에서 액적 작업을 수행하기 위하여 배열된 전극(214)을 포함하는 기판(210); (ii) (1) 1개 이상의 자기 반응성 비즈(220); (2) 출발량의 물질; 및 (3) 출발 용적을 포함하는 출발 액적(218/222)을 포함하는 액적 작동기(200)를 제공하는 단계; (b) 표적 액적 분할 영역(224)으로부터 소정 거리에 있는 위치에 1개 이상의 자기 반응성 비즈를 자기적으로 고정화하는 단계; 및 (c) (i) 출발 농도에 대해서 상대적으로 감소된 양의 물질을 지니며 1개 이상의 자기 반응성 비즈를 실질적으로 모두 포함하는 액적(218); 및 (ii) 자기 반응성 비즈가 실질적으로 결여되어 있는 액적(222)을 포함하는 액적 세트를 얻기 위하여, 조합된 액적을 분할하도록 선택된 액적 분할 작업을 포함하는 하나 이상의 액적 작업을 수행하는 단계를 포함한다.
액적 작동기, 기판, 전극 어레이, 자기 반응성 비즈

Description

자성 비즈를 이용하는 액적 작동기 장치 및 방법{DROPLET ACTUATOR DEVICES AND METHODS EMPLOYING MAGNETIC BEADS}
1. 수여 정보
본 발명은 미합중국의 국립 보건원(National Institutes of Health)에 의해 수여된 CA 114993-01 A2 및 DK066956-02 하의 정보 지원에 의해 행해진 것이다. 미합중국 정부는 본 발명에 있어서 소정의 권리를 가진다.
2. 관련 출원
본 출원은 관련된 미국 가특허 출원 제60/900,653호(출원일: 2007년 2월 9일, 발명의 명칭: "Immobilization of magnetically-responsive beads during droplet operations"); 미국 가특허 출원 제60/980,772호(출원일: 2007년 10월 17일, 발명의 명칭: "Immobilization of magnetically-responsive beads in droplets"); 미국 가특허 출원 제60/969,736호(출원일: 2007년 9월 4일, 발명의 명칭: "Droplet actuator assay improvements"); 및 미국 가특허 출원 제60/980,762호(출원일: 2007년 10월 17일, 발명의 명칭: "Droplet actuator assay improvements")를 우선권으로 주장하며, 이들 기초 출원을 참조로 원용한다.
3. 발명의 기술분야
본 발명은 일반적으로, 액적 작동기(droplet actuator), 특히, 비즈(beads), 특별히 자기적으로 반응하는(이하, 간단히 "자기 반응성"이라 칭함) 비즈를 포함하는 액적(droplet; 즉, 작은 방울)을 이용해서 수행하여야 할 액적 작업(droplet operations)을 필요로 하는 액적 기반 프로토콜을 수행하기 위해 구성된 액적 작동기에 관한 것이다. 본 발명은 또한 이러한 액적 작동기의 제조 방법 및 이용 방법에 관한 것이다.
4. 발명의 배경 기술
액적 작동기는 광범위한 액적 작업을 행하는 데 이용된다. 액적 작동기는 전형적으로 그 액적 작업 표면 상에서 액적 작업을 행하기 위한 전극들과 관련된 기판을 포함하고, 또한, 액적 작업이 그 안에서 수행되는 간극을 형성하도록 상기 액적 작업 표면에 관하여 일반적으로 병렬 방식으로 배열된 제2기판도 포함할 수 있다. 상기 간극은 전형적으로 상기 액적 작동기 상에서 액적 작업될 유체와 혼화되지 않는 충전물 유체로 채워져 있다.
액적 작동기의 몇몇 응용에 있어서, 각종 분석시험(assay)을 위해 "비즈"를 이용할 필요가 있다. 비즈를 이용하는 프로토콜에 대해서, 당해 비즈는 전형적으로 물질의 혼합물에 있어서 1개 이상의 표적 물질에 결합하는 데 이용된다. 상기 표적 물질은 예를 들어 피분석물(analyte) 혹은 오염물일 수 있다. 비드(bead) 혹은 비즈의 표면에 노출되거나 접촉할 수도 있는 비드-함유 액적 내에서 1종 이상의 물질의 양을 저감시키기 위하여 액적 작동기 상에서 비드 세정에 대한 효과적인 접근법을 필요로 한다.
5. 발명의 간단한 설명
본 발명의 일 측면은 액적-기반 응용에 있어서 자기 반응성 비즈를 이용하는 액적 작업용의 자기 반응성 비즈의 효과적인 고정화를 제공한다. 그 예로는 파이로시퀀싱(pyrosequencing) 응용 및 면역분석시험 응용 등의 비드 세정 프로토콜의 수행을 필요로 하는 분석시험(혹은 에세이)을 포함한다. 일례에 있어서, 본 발명은 액적 분할 작업 동안 자기 반응성 비즈를 고정화시키기 위하여 자기력을 이용하는 기술을 제공한다. 본 발명의 이 기술은 액적 작동기 내에서 자기 반응성 비즈를 세정하기 위한 프로토콜에 특히 유용하다. 기타 이점 중에서, 본 발명의 상기 기술은 자기 반응성 비즈의 과도한 응괴화(clumping) 혹은 응집(aggregation)을 피한다. 액적 분할 작업 동안, 상기 기술은 액적 내에 실질적으로 모든 자기 반응성 비즈를 유용하게 고정화할 수 있다. 본 발명의 기술은 액적 세정 작업 동안 실질적으로 모든 자기 반응성 비즈의 고정화 및 보유를 확실하게 할 수 있다. 세정 과정의 완료 시, 본 발명의 기술은 액체 내에서 실질적으로 모든 자기 반응성 비즈의 재현탁을 실질적으로 그의 응괴화 혹은 응집 없이 확실하게 한다.
본 발명의 다른 측면은 개선된 액적 작동기 및 개선된 액적-기반 분석시험 작업을 실시하기 위한 관련된 방법을 제공한다. 본 발명의 실시형태는 액적 작동기 내의 자계의 교차(crossover)를 저감시키는 기구(mechanism)를 제공한다. 본 발명의 다른 실시형태는 액적 작동기 내의 비즈 및 기타 물질의 잔효(혹은 잔류오염)(carryover)를 저감시키는 기구를 제공한다. 본 발명의 또 다른 실시형태는 액적 작동기 내의 액적 검출 작업을 개선하기 위한 기구를 제공한다.
6. 정의
본 명세서에서 이용되는 바와 같이, 이하의 용어는 표시된 의미를 지닌다.
1개 이상의 전극과 관련해서 "활성화하다"란 액적 작업에서 초래되는 1개 이상의 전극의 전기적 상태의 변화를 수행하는 것을 의미한다.
액적 작동기 상의 비즈와 관련해서 "비드"란, 액적 작동기 상에 혹은 그 부근에 있는 액적과 상호작용할 수 있는 능력을 지닌 비드 혹은 입자라면 어떠한 것이라도 의미한다. 비즈는 구형, 일반적으로는 구형상, 달걀형상, 원반 형상, 입상체 형상 및 기타 3차원 형상 등의 광범위한 각종 형상의 어느 것일 수도 있다. 비드는, 예를 들어, 액적 작동기 상에서 액적 내에서 이송될 수 있거나, 또는 다르게는, 액적 작동기 상의 액적이 당해 액적 작동기 상에서 및/또는 액적 작동기를 벗어나서 비드와 접촉하게 되는 방식으로 액적 작동기에 대해서 구성될 수 있다. 비즈는 예를 들어, 수지 및 폴리머를 비롯한 각종 광범위한 재료를 이용해서 제조될 수 있다. 비즈는, 예를 들어, 마이크로비즈, 미립자, 나노비즈 및 나노입자를 비롯한 임의의 적절한 크기일 수 있다. 몇몇 경우에 있어서, 비즈는 자기적으로 반응성이고; 다른 경우에는, 비즈는 상당히 자기적으로 반응성이 아니다. 자기 반응성 비즈에 대해서, 자기 반응성 재료는 실질적으로 모두 비드로, 혹은 비드의 단지 1성분을 구성할 수 있다. 비드의 나머지는, 무엇보다도, 중합체 재료, 코팅, 및 분석시험 시약의 부착을 허용하는 부분을 포함할 수 있다. 적절한 자기 반응성 비즈의 예는 미국 특허 공개 제2005-0260686호 공보(공개일: 2005년 11월 24일, 발명의 명칭: "Multiplex flow assays preferably with magnetic particles as solid phase")에 기재되어 있고, 이 공보의 전체적인 개시내용은 자기 반응성 재료 및 비즈에 관한 그의 교시를 위해 참조로 본원에 병합된다. 비즈는 이에 부착되는 생물학적 세포의 1개 이상의 모집단(population)을 포함할 수 있다. 몇몇 경우에 있어서, 생물학적 세포는 실질적으로 순수한 모집단이다. 다른 경우에 있어서, 생물학적 세포는 상이한 세포 모집단, 예컨대, 서로 상호작용하는 세포 모집단을 포함한다.
"액적"이란 충전물 유체에 의해 적어도 부분적으로 둘러싸인 액적 작동기 상의 액체의 용적을 의미한다. 예를 들어, 액적은 충전물 유체에 의해 완전히 둘러싸일 수 있거나, 혹은 충전물 유체와 액적 작동기의 1개 이상의 면에 의해 둘러싸일 수 있다. 액적은 광범위하게 다양한 형상을 취할 수 있고; 비제한적인 예로는 일반적으로 원반 형상, 슬러그(slug) 형상, 절두된 구, 타원체, 구형상, 부분적으로 압착된 구, 반구, 계란형, 원통형 및 액적 작업 동안 형성된 각종 형상, 예컨대, 액적 작동기의 1개 이상의 면과 이러한 형상의 접촉 결과로서 형성되거나 융합되거나 분할된 바와 같은 형상을 들 수 있다.
"액적 작업"이란 액적 작동기 상에서의 액적의 임의의 조작(manipulation)을 의미한다. 액적 작업으로는, 예를 들어, 액적을 액적 작동기 속으로 반입(loading)하는 단계; 소스 액적으로부터 1개 이상의 액적을 분배하는 단계; 액적을 2개 이상의 액적으로 분리 혹은 분할 혹은 쪼개는 단계; 액적을 하나의 위치에서부터 임의의 방향의 다른 위치로 이송하는 단계; 2개 이상의 액적을 단일의 액적으로 융합하거나 조합하는 단계; 액적을 희석하는 단계; 액적을 혼합하는 단계; 액적을 교반하는 단계; 액적을 변형시키는 단계; 액적을 적소에 유지시키는 단계; 액적을 배양하는 단계; 액적을 가열하는 단계; 액적을 기화시키는 단계; 액적을 냉각시키는 단계; 액적을 배치시키는 단계; 액적 작동기로부터 액적을 이송하는 단계; 본 명세서에 기재된 기타 액적 작업; 및/또는 이들의 임의의 조합을 들 수 있다. "융합하다", "융합", "조합하다", "조합" 등의 용어는 2개 이상의 액적으로부터 1개의 액적을 작성하는 것을 기술하는 데 이용된다. 단, 이러한 용어가 2개 이상의 액적과 관련하여 이용될 경우, 2개 이상의 액적을 1개의 액적으로 조합한 결과를 얻는 데 충분한 액적 작업의 조합이면 어떠한 것이라도 사용할 수 있음을 이해할 필요가 있다. 예를 들어, "액적 A를 액적 B와 융합"하는 것은 액적 A를 정지 상태의 액적 B와 접촉시켜 이송시키거나, 액적 B를 정지 상태의 액적 A와 접촉시켜 이송시키거나, 또는 액적 A 및 액적 B를 서로 접촉시켜 이송시킴으로써 실현될 수 있다. "분할", "분리" 및 "쪼갬"이란 용어는 얻어지는 액적의 크기(즉, 얻어지는 액적의 크기는 동일하거나 상이할 수 있음) 또는 얻어지는 액적의 개수(얻어지는 액적의 개수는 2, 3, 4, 5 이상일 수 있음)와 관련해서 임의의 특별한 성과를 의미하도록 의도된 것은 아니다. "혼합"이란 용어는 액적 내의 1개 이상의 성분의 더욱 균질한 분포를 가져오는 액적 작업을 의미한다. "반입" 액적 작업의 예로는, 미세 투석 반입, 압력 원조 반입, 로봇 반입, 수동 반입 및 피펫 반입 등을 들 수 있다.
자기 반응성 비즈에 관한 "고정화"란, 비즈가 액적 작동기 상의 액적 내 혹은 충전물 유체 내의 적소에 실질적으로 규제되는 것을 의미한다. 예를 들어, 일 실시형태에 있어서, 고정화된 비즈는 액적의 분할 작업의 수행을 허용하도록 적소에 충분히 규제되어, 실질적으로 모든 비즈를 지닌 하나의 액적 및 실질적으로 비즈가 결여된 하나의 액적이 얻어진다.
"자기 반응성"이란 자계에 대해서 반응성인 것을 의미한다. "자기 반응성 비즈"는 자기 반응성 재료로 구성된다. 자기 반응성 재료의 예로는 상자성 재료, 강자성 재료, 페리 자성 재료 및 준자성 재료를 들 수 있다. 적절한 상자성 재료의 예로는 철, 니켈, 코발트뿐만 아니라, Fe3O4, BaFe12O19, CoO, NiO, Mn2O3, Cr2O3 및 CoMnP 등의 금속 산화물을 들 수 있다.
자기 반응성 비드를 세정하는 것과 관련한 "세정"이란, 자기 반응성 비드와 접촉하는 1개 이상의 물질의 양 및/또는 농도를 저감시키는 것, 또는 자기 반응성 비드와 접촉하는 액적으로부터 당해 자기 반응성 비드에 대해서 노출되는 것을 의미한다. 물질의 양 및/또는 농도의 저감은 부분적으로, 실질적으로 완전히 혹은 심지어 완전히 이루어질 수 있다. 상기 물질은 광범위하게 다양한 임의의 물질일 수 있고; 그 예로는 추가의 분석용의 표적 물질, 바람직스럽지 않은 물질, 예컨대, 샘플, 오염물 및/또는 과잉의 시약의 성분 등을 들 수 있다. 몇몇 실시형태에 있어서, 세정 작업은 출발 액적을 자기 반응성 비드와 접촉시켜 시작하며, 이때, 액적은 물질의 초기량 및 초기 농도를 포함한다. 세정 작업은 각종 액적 작업을 이용해서 진행될 수 있다. 세정 작업은 자기 반응성 비드를 포함하는 액적을 얻을 수 있고, 이때, 액적은 상기 물질의 초기량 및/또는 농도보다 적은 당해 물질의 전체량 및/또는 농도를 지닌다. 다른 실시형태가 본 명세서의 어디엔가에 기술되어 있으며, 또 다른 것도 본 명세서의 개시 내용에 비추어 직접적으로 명백해질 것이다.
"상부" 및 "하부"란 용어는, 액적 작동기가 공간 내의 그의 위치에 관계없이 실용적이므로, 단지 편의상 액적 작동기의 상부 기판 및 하부 기판과 관련한 설명 부분에서 이용된다.
층, 영역 혹은 기판 등의 주어진 구성 요소(component)가 다른 구성 요소 "위"에 배치 혹은 형성되는 것으로 여기서 언급되고 있을 경우, 그 주어진 구성 요소는 다른 구성 요소 위에 직접 있을 수 있거나, 혹은 대안적으로는, 중개 구성 요소(예를 들어, 1개 이상의 피막, 층, 중간층, 전극 혹은 컨택트)도 존재할 수 있다. 또한, "위에 배치된" 및 "위에 형성된"이라는 용어는, 주어진 구성 요소가 다른 구성 요소와 관련해서 위치결정되거나 놓이는 방법을 기술하는 데 호환적으로 사용되는 것도 이해할 수 있을 것이다. 그러므로, "위에 배치된" 및 "위에 형성된"이라는 용어는 재료 이송, 증착 혹은 제조의 특정 방법과 관련해서 어떠한 제한을 도입하기 위해 의도된 것은 아니다.
임의의 형태의 액체(예를 들어, 이동 중이든지 정지 상태이든지 간에 액적 혹은 연속체 등)가 전극, 어레이, 기질(matrix) 혹은 표면 "위에"(혹은 "상에"), 혹은 "위쪽에" 있는 것으로 기술될 경우, 이러한 액체는 전극/어레이/기질/표면과 직접 접촉하고 있을 수 있거나, 혹은, 당해 액체와 전극/어레이/기질/표면 사이에 개입된 1개 이상의 층 혹은 막과 접촉하고 있을 수도 있다.
액적이 액적 작동기 "위에" 있거나 혹은 "위에 반입"되는 것으로 기술될 경우, 액적은 당해 액적에 대해 하나 이상의 액적 작업을 수행하기 위하여 액적 작동기를 이용해서 용이하게 하는 방식으로 액적 작동기 위에 배열되고/되거나, 액적은 당해 액적으로부터 신호의 성질(즉, 특성)의 감지를 용이하게 하는 방식으로 액적 작동기 위에 배열되고/되거나, 액적은 액적 작동기 상에서 액적 작업을 받게 되는 것임을 이해할 필요가 있다.
7. 도면의 간단한 설명
도 1A 및 도 1B는 각각, 액적 분할 작업의 각각의 제1 및 제2상 동안 이용 중인 액적 작동기의 일부의 제1평면도 및 제2평면도;
도 2A 및 도 2B는 각각 분할 영역으로부터 멀리 떨어진 위치에 놓인 자석을 포함하는 액적 작동기의 단면의 측면도 및 평면도;
도 3은 액적 위쪽 및 아래쪽에 배열된 2개의 자석을 포함하는 액적 작동기의 단면의 측면도;
도 4A 및 도 4B는 각각 액적을 둘러싸는 각 위치에 배열된 4개의 자석을 포함하는 액적 작동기의 단면의 측면도;
도 5A 및 5B는 각각 액적 분할 작업의 제1상과 제2상 동안 액적 작동기의 단면의 제1평면도 및 제2평면도;
도 6은 자계의 교차를 저감시키기 위한 자기 차폐부를 포함하는 액적 작동기의 단면의 측면도;
도 7은 자계의 교차를 저감시키기 위하여 반대로 배열된 극을 지닌 자석을 포함하는 액적 작동기의 단면의 평면도;
도 8은 도 7에 도시된 것과 같은 관계로 배열된 자계의 맵을 나타낸 도면;
도 9는 액적 검출 영역에서 잔효를 저감시키기 위해 배열된 액적 작동기의 단면의 평면도;
도 10A 및 도 10B는 잔효를 저감시키기 위해 구성된 액적 작동기의 단면의 평면도;
도 11A, 도 11B 및 도 11C는 액적 검출의 감도를 향상시키기 위하여 구성된 액적 작동기의 단면의 측면도;
도 12는 액적 검출의 감도를 향상시키기 위하여 구성된 액적 작동기의 단면의 평면도;
도 13은 액적 검출의 감도를 향상시키기 위하여 구성된 액적 작동기의 단면의 측면도;
도 14A 및 도 14B는 각각 액적 작동기에 대해서 자석 조립체를 배향시키기 위한 범용 조립체(universal assembly)를 제공하는 모듈방식(modular) 액적 작동기 조립체의 평면도;
도 15는 액적 작동기에 대해서 자석 조립체를 배향시키기 위한 범용 조립체의 다른 비제한적인 예인 모듈방식 액적 작동기 조립체의 측면도.
8.본 발명의 상세한 설명
본 발명은 무엇보다도 자기 반응성 비즈를 고정화시키기 위하여 구성된 액적 작동기, 그리고, 이러한 액적 작동기의 제조 방법 및 이용 방법에 관한 것이다. 일례로서, 액적 작동기는 당해 액적 작동기 상에 액적 내의 비즈를 고정화시키는 데 유용하고, 이에 따라, 이러한 비즈를 고정화시키는 데 필요한 프로토콜, 예컨대, 비즈 세정 프로토콜의 수행을 용이하게 한다. 본 발명은 또한 액적 작동기 내에서 액적에서 액적으로 물질의 잔효를 저감시키거나 제거하기 위한 기술 및 액적 작동기 상에서의 신호 검출을 최대화하기 위한 기술도 제공한다.
8.1 액적 분할 동안의 비드 손실
도 1A 및 도 1B는 , 각각, 액적 분할 작업의 각각의 제1 및 제2상 동안 이용 중인 액적 작동기(100)의 제1평면도 및 제2평면도를 나타내고 있다. 액적 작동기(100)는 자기 반응성 비즈의 손실 없이 도시된 구체적인 기술을 이용해서 액적을 효과적으로 분할하기 위하여 적절하게 배열되지 않은 구성을 이용한다. 액적 작동기(100)는 유체 통로로서 제공되는 간극을 사이에 두고 배열된 제1기판(110)과 제2기판(도시 생략)을 포함한다. 제1기판(110)은 충전물 유체 내에 현탁되어 자기 반응성 비즈(116)를 포함하는 슬러그 형상 액적(114)에 대해 액적 작업을 수행하도록 구성된 한 세트의 액적 작업 전극(112)을 포함한다. 자석(118)은 자기 반응성 비즈(116)의 어느 정도의 고정화를 허용하도록 액적 작업 전극(112)에 충분히 근접해서 배열될 수 있다.
도 1A 및 도 1B는 자석(118)에 의해 액적 작동기(100) 내에 생성된 자계의 존재 시 일어나는 분할 작업을 나타내고 있다. 자석(118)의 배치는 분할 작업 후 비즈를 유지하도록 선택된 액적(114)의 부분 내에 중앙 집중된 위치에(예를 들어, 액적의 에지로부터 떨어져서) 자기 반응성 비즈(116)를 실질적으로 모두 편재화시키는 데 적합하지 않다. 따라서, 소정량의 자기 반응성 비즈(116)는, 도 1A에 나타낸 바와 같이, 액적 분할 작업 동안 분할 영역(120)의 가교역할을 하여, 도 1B에 나타낸 바와 같이, 비즈의 손실을 초래한다. 도 1B는 원래 양의 자기 반응성 비즈(116) 중 소정량을 함유하는 제1액적(122)과, 원래 양의 자기 반응성 비즈(116) 중 소정의 나머지량을 함유하는 제2액적(124)을 도시하고 있다. 즉, 예시된 분할 작업의 최종 결과는 자기 반응성 비즈(116)의 손실로 된다. 본 발명자들은, 비즈의 손실에 대한 기여 인자가 자기 반응성 비즈(116)의 전체량이 액적(114) 내의 중앙 집중된 위치에 및/또는 분할 영역(120)으로부터 충분한 거리에서 적절하게 유인(즉, 끌어 당겨짐), 고정화 및 보유되지 않는 점이라는 것을 발견하였다.
8.2 비드 손실을 방지/ 저감하기 위한 자석 배치
본 발명은, 특히, 자석이 비드-함유 액적을 효과적으로 분할하고 자기 반응성 비즈를 세정하기 위하여 배열되어 있는 각종 자석 배치를 지니는 개선된 액적 작동기를 제공하며, 이들은 도 2, 도 3, 도 4, 도 5A 및 도 5B를 참조해서 설명한다. 이들 도면은 비드 손실이 거의 혹은 전혀 없는 액적 작동기 분할 액적과 조합된 자석 배치의 비제한적인 예를 나타내고 있고, 특히, 자기 반응성 비즈를 효과적으로 세정하는 데 유용하다. 1개 이상의 자석은, 자기 반응성 비즈가 액적 내에서, 바람직하게는, 분할 작업 동안 형성되는 목 부분(neck)으로부터 떨어진 중앙 집중된 위치에서 적절하게 끌어 당겨져서 고정화되도록 액적 작동기 상에서 액적 부근에 배열될 수 있다. 이러한 접근법에 있어서, 모든 혹은 실질적으로 모든 자기 반응성 비즈는 액적 분할 작업의 완료시 단일의 액적 내에 유지된다. 마찬가지로, 분할 작업은 비드 손실을 저감시키거나 제거시키는 데 충분한 고정화된 비즈로부터의 거리에 있는 액적 슬러그에서 수행될 수 있다. 이하의 예와 관련해서 설명하는 바와 같이, 1개 이상의 자석이 이 목적을 달성하기 위하여 자기 반응성 비드-함유 액적의 위쪽, 아래쪽 및/또는 옆쪽에 있는 액적 작동기 구조 및 이들의 임의의 조합에 관하여 배열될 수 있다.
8.2.1 분할 영역에 대한 자석의 위치
도 2A 및 도 2B는 각각 액적 작동기(200)의 측면도 및 평면도를 나타내고 있다. 본 실시예에 있어서, 자석은, 액적 분할 작업 동안 비드 손실을 저감하거나 제거하기 위하여, 분할 작업 동안 파괴되는 액적의 부분으로부터 충분히 떨어진 위치, 즉, 분할 영역(224)에 놓여 있다(또는 그 반대로, 즉, 분할 영역은 자석 위치로부터 충분한 거리에 놓여 있다고도 말할 수 있다). 또한, 자석은 비드가 액적의 횡방향 직경(L)(평면도)을 따라서 일반적으로 중앙에 배치되도록 위치결정되어 있다. 액적 작동기(200)는, 단지 하나의 기판이 필요할 경우도 있지만, 액적 작업을 행하기 위한 간극을 제공하도록 서로 분리된 제1기판(210) 및 제2기판(212)을 포함한다. 1세트의 액적 작업 전극(214)은 한쪽 혹은 양쪽의 기판과 관련되어 있고, 하나 이상의 액적 작업을 수행하기 위해 배열되어 있다. 액적 작동기(200)는 액적 분할 작업 동안 자기 반응성 비즈(220)를 실질적으로 고정화하기 위하여 액적(218)/(222)에 충분히 근접하여 배열된 자석(216)을 포함할 수도 있다. 예를 들 어, 자석은 간극에 있어서 액적(218)/(222) 내의 자기 반응성 비즈를 고정화하기 위하여 액적 작동기의 구성 요소로서 및/또는 액적 작동기에 충분히 근접하여 배열될 수 있다. 액적(218)/(222)은 충전물 유체(도시 생략)에 의해 둘러싸여 있을 수 있다. 액적(218)/(222)은 자석(216)에 의해 고정화된 소정량의 자기 반응성 비즈(220)를 포함한다.
자석(216)은, 액적(222)에 대한 액적 분할 작업 동안 비즈(218)의 실질적인 손실을 허용하는 일없이 액적(218)을 형성하는 것인 액적(218)/(222)의 일부의 영역에 비즈(220)를 편재화하기 위하여, 하나 이상의 액적 작업 전극(214)에 대해서 위치결정되어 있다.
작업 시, 분할 작업은, (201)에 나타낸 바와 같이, 조합된 액적(218)/(222)을 형성하기 위하여 전극을 활성화시킨 상태에서(ON) 액적 작동기(200)를 제공함으로써 자성 비즈(220)의 실질적인 손실없이 달성되며, 자석(216)은 액적(222)에 대한 자기 반응성 비즈(220)의 실질적인 손실을 방지하는 액적(218)/(222)의 영역에서 실질적으로 모든 자기 반응성 비즈(220)가 자석(216)에 끌어당겨지는 위치에 배열되어 있다. 자석(216)은 여기에 끌어당겨진 자기 반응성 비즈(220)가 조합된 액적(218)/(222) 내에서 액적 분할 영역(224)으로부터 멀리 횡방향 직경(L)을 따라서 전반적으로 중앙 집중된 위치에서 편재되도록 배열될 수 있다. (202)에 나타낸 바와 같은 액적 분할 작업 동안, 중개 전극은 불활성화되어(OFF), 분할 영역(224)에서 분할을 일으킨다. 실질적으로 모든 자기 반응성 비즈(220)가 액적(218) 내에 보유되고, 액적(222)이 형성되어, (203)에 나타낸 바와 같이, 자기 반응성 비 즈(220)가 실질적으로 없다.
자기 반응성 비즈(220)를 세정하기 위한 과정은, 일 실시예에 있어서, 허용가능한 수준의 세정이 달성될 때까지 액적 융합(세정 액적과 함께), 비드 고정화, 분할, 및 비드 재현탁 작업의 반복을 포함할 수 있다.
8.2.2 비드 기둥을 생성하는 2-자석 배열
도 3 은 액적 작동기(300)의 측면도를 나타낸다. 액적 작동기(300)는, 액적(218)의 위쪽과 아래쪽에 배열된 2개의 자석, 즉, 자석(310a), (310b)을 포함하는 것을 제외하고, 전반적으로 도 2에서 설명된 바와 같이 구성되어 있다. 자석은 액적 작동기(300)와 일체일 수 있고/있거나 제1기판(210) 및 제2기판(212)의 외측에 근접하여 배열될 수 있다. 일반적으로, 자석(310a), (310b)은 대향하는(즉, 반대) 극들이 서로 대면하도록 배열될 수 있다. 일례에 있어서, 자석(310a)의 북극 혹은 양극은, 도 3에 나타낸 바와 같이, 자석(310b)의 남극 혹은 음극과 대면하고 있다.
자석(310a), (310b)은 개별적인 자석일 수 있거나, 또는, 대안적으로는, 자석(310a), (310b)은 단일의 U자 형상, C자 형상 또는 말굽 형상 영구 자석 혹은 전자석의 반대 극일 수도 있다. 이러한 자석(310a), (310b)의 배열에 의해, 자기 반응성 비즈(220)가 기둥 형상 군집체(column-shaped cluster)에 고정화되거나 보유될 수 있다. 자석은 바람직하게는 비드가 보유되어 있는 조합된 액적(도시 생략)의 일부에 분할 영역(224)으로부터 먼 위치에 액적(218) 내에 비즈를 편재화시키도록 배열되어 있다. 또한, 자석은 바람직하게는 조합된 액적(도시 생략) 내에 횡방 향 직경(L)을 따라서 비즈를 중앙에 편재시키도록 정렬되어 있다.
8.2.3 비드를 집중화시키는 다수의 자석쌍
도 4A 및 도 4B 는 액적 작동기(400)의 측면도를 나타내고 있다. 액적 작동기(400)는 액적을 둘러싸고 있는 위치에 배열된 4개의 자석을 포함하는 것을 제외하고, 전반적으로 도 2에서 설명된 액적 작동기(200)처럼 구성되어 있다. 일반적으로, 이 구성은, 양극/음극이 서로 대면하고 있는 다수의 자석쌍이 일반적으로 분할 전에 조합된 액적 내에 비즈(220)를 중앙에 편재되도록 배열된 실시예를 나타내고 있다. 도 4B에 나타낸 바와 같이, 비즈는 수직방향 치수(V) 및 횡방향 치수(L)를 따라서 일반적으로 중앙에 편재되어 있다. 예시된 이 예에 있어서, 액적 작동기(400)는 4개의 자석, 예컨대, 자석(410a), (410b), (410c), (410d)을 포함한다.
자석(410a), (410b)은, 반대 극이 서로 대면하고 있는 상태에서, 액적의 어느 한쪽 상에 등간격으로 이격해서 당해 액적에 밀접하게 배열될 수도 있다. 예를 들어, 자석(410a)의 북극은 자석(410b)의 남극과 대면할 수 있다. 자석(410c), (410d)은, 반대 극이 서로 대면하고 있는 상태에서, 액적의 어느 한쪽 상에 등간격으로 이격해서 당해 액적에 밀접하게 배열될 수도 있다. 예를 들어, 자석(410d)의 북극은 자석(410c)의 남극과 대면할 수 있다. 자석쌍(410a/410b)은 일반적으로 자석쌍(410c/410d)에 대해서 액적 둘레에 직각으로 정렬될 수 있다. 예시된 실시예에 있어서, 자석쌍(410a/410b)은 액적 주위에 수직 배향을 지니고, 자석쌍(410c/410d)은 액적 주위에 수평 배향을 지닌다. 횡방향 치수(L) 및 수직방향 치수(V)를 따라서 비즈의 일반적으로 중앙 편재화를 달성하는 액적 주위의 어떠한 배향도 소정의 중앙 고정화를 달성하는 데 충분할 것이다.
자석(410a), (410b)은, 자석(410a), (410b)의 자계가 액적 작동기(400)의 제1기판(210)과 제2기판(212) 사이의 간극을 통과할 수 있도록, 각각, 제1기판(210) 및 제2기판(212)의 외측에 밀접하게 배열될 수 있다. 자석(410a), (410b)은 반대 극이 서로 대면하도록 배열되어 있다. 일례에 있어서, 자석(410a)의 북극은, 도 4에 나타낸 바와 같이, 자석(410b)의 남극과 대면하고 있다. 마찬가지로, 자석(410c), (410d)은, 자석(410c), (410d)의 자계가 자석(410a), (410b)의 자계에 수직이고 액적 작동기(400)의 간극을 통할 수 있도록, 각각 액적 작동기(400)의 제1측면과 제2측면에 밀접하게 배열되어 있다. 자석(410c), (410d)은 반대 극이 서로 대면하도록 배열되어 있다. 일례에 있어서, 자석(410d)의 북극은, 도 4에 나타낸 바와 같이, 자석(410c)의 남극과 대면하고 있다.
자석(410a), (410b)은 개별적인 자석일 수 있거나, 또는, 대안적으로는, 자석(410a), (410b)은 단일의 U자 형상, C자 형상 또는 말굽 형상 영구 자석 혹은 전자석의 반대 극일 수도 있다. 마찬가지로, 자석(410c), (410d)은 개별적인 자석일 수 있거나, 또는, 대안적으로는, 자석(410c), (410d)은 단일의 U자 형상, C자 형상 또는 말굽 형상 영구 자석 혹은 전자석의 반대 극일 수도 있다. 자석(410a), (410b)의 자계 및 자석(410c), (410d)의 자계는 각각 액적 작동기(400) 내의 유체 경로의 중앙에서 교차하기 때문에, 자기 반응성 비즈(220)는 조합된 액적 내에 중앙 집중화되어 분할 작업 후 액적(218) 내에 보유되는 군집체 내에 자기적으로 고정화되어 보유된다.
8.2.4 실질적으로 비드 손실이 없는 분할 예시
도 5A 및 도 5B 는 각각 액적 분할 작업의 제1상과 제2상 동안 액적 작동기(500)의 제1평면도 및 제2평면도를 나타내고 있다. 액적 작동기(500)는 대안적으로는 액적 작동기(200), (300), (400)의 예의 어느 하나와 같이 구성될 수도 있다. 도 5A 및 도 5B의 액적 작동기(500)는, 자기 반응성 비즈를 세정하는 과정 등과 같이, 단일의 액적 내에 비즈의 실질적으로 완전한 보유를 가져오도록 설계된 분할 작업에 이용하기 위해 적절하게 배열된 자기력을 이용한다.
특히, 도 5A 및 도 5B는, 자기 반응성 비즈가 실질적으로 없는 액적 및 액적(218) 내에 자기 반응성 비즈의 실질적으로 완전한 보유로 되는 분할 작업을 허용하도록, 편재화된 비즈(220)로부터 충분한 거리에서 일어나는 분할 작업을 도시하고 있다. 자석면(510)의 위치는, 액적 내에 중앙 집중된 위치에서, 액적(218) 내에 자기 반응성 비즈(220)의 원하는 보유를 얻는 데 충분한 분할 영역으로부터 소정 거리에서 실질적으로 모든 자기 반응성 비즈(220)를 자기적으로 고정화하도록 적절하게 배열되어 있다. 그 결과, 자기 반응성 비즈(220)가 액적 분할 작업 동안 도 5A에 나타낸 바와 같이 분할 영역(512)의 가교역할을 하는 양은 실질적으로 없고, 비즈의 손실도 실질적으로 일어나지 않는다. 도 5B는 실질적으로 모든 자기 반응성 비즈(220)를 포함하는 액적(218)을 나타낸다. 즉, 자기력의 실질적으로 외부에 일어나는 분할 작업의 최종 결과는, 실질적으로 모든 자기 반응성 비즈(220)가 유체 내의 중앙 집중된 위치에 적절하게 끌어 당겨져서, 고정화되어 보유되기 때문에 자기 반응성 비즈(220)의 손실이 실질적으로 없는 것이다.
8.3 자석을 구비한 액적 작동기 구성
8.3.1 자기 차폐부를 갖춘 액적 작동기
도 6 은 자계의 교차를 저감시키기 위한 자기 차폐부를 포함하는 액적 작동기(600)의 측면도를 나타내고 있다. 액적 작동기(600)는 상부 판(610)과 하부 판(614)을 포함하며 이들 판은 간극(618)을 사이에 두고 배치되어 있다. 전극(622), 예컨대, 전기습윤 전극(electrowetting electrode)의 배열은 소정량의 유체(634)를 수용하는 유체 저장소(630)와 관련된 저장소 전극(626)과 같은 전극, 및 액적 작업을 수행하기 위한 하부 판(614)과 관련될 수 있다. 1개 이상의 액적(도시 생략)은 전극(622)을 따른 조작을 위한 저장소(630)의 유체(634)의 양으로부터 분배될 수 있다. 또한, 유체(634) 및 그로부터 분배된 임의의 액적은, 경우에 따라, 자기적으로 반응할 수도 있는 비즈(도시 생략)를 임의선택적으로 포함할 수도 있다.
액적 작동기(600)는 1개 이상의 전극(622) 부근에 배열된 자석(638)을 추가로 포함한다. 자석(638)은, 예컨대, 전극 위에 위치결정된 액적 내에 자기 반응성 비즈(도시 생략)의 고정화를 허용하기 위하여 전극(622)에 충분히 근접하여 배열될 수 있다. 일례에 있어서, 자석(638)의 목적은 자기 반응성 비즈를 액적 분할 작업 동안, 예컨대, 자기 반응성 비즈를 세정하기 위한 과정에서 수행될 수 있는 분할 작업 동안, 자기적으로 고정하여 보유하기 위함이다.
또한, 액적 작동기(600)는 바로 이웃하는 자계, 예컨대, 자석(638)의 자계로부터 그의 내용물을 차폐하기 위하여 유체 저장소(630)에 대해 충분히 근접하여 배 열된 자기 차폐부(642)를 포함한다. 자기 차폐부(642)는, 예를 들어, 충분히 높은 투자율(magnetic permeability)을 지니며 유체 저장소(630) 내에 자석으로부터 바람직하지 않은 자계를 저감, 바람직하게는 실질적으로 제거하는 데 적합한 Mu-금속으로 형성될 수 있다. 일례에 있어서, 자기 차폐부(642)는 McMaster-Carr(일리노이주의 엘름허스트시에 소재함)에 의해 공급된 Mu-금속으로 형성될 수 있다. 자기 차폐부(642) 재료의 다른 예로는 퍼말로이, 철, 강철 및 니켈을 들 수 있다.
액적 작동기(600)는 하나의 자기 차폐부와 하나의 자석만으로 한정되지 않고, 임의의 개수의 자기 차폐부 및 자석이 내부에 설치될 수 있다. 따라서, 1개 이상의 자기 차폐부를 이용함으로써, 자계에 대한 액적 내의 자성 비즈(도시 생략)의 노출은 액적 작동기(600)의 원하는 영역만으로 제한될 수 있다. 자기 차폐부는 액적 작동기의 임의의 표면 상에, 그리고, 적절한 차폐를 용이하게 해주는 임의의 배열 내에 포함될 수 있다.
하나의 적용예에 있어서, 액적 작동기는 다수의 분석시험을 병렬로 수행하는 데 이용될 수 있고, 결과적으로, 전극의 다수의 레인(lane) 내에 조정될 수 있는 각종 자성 비즈의 전반적인 동시 세정을 위한 필요성이 있을 수 있다. 자기 차폐부 없이, 관련된 자석을 이용하여 소정의 장소에서 수행되는 세정 작업 혹은 분석시험은 멀리 떨어진 자석의 자계(즉, 자계의 교차)에 의해 영향받을 수도 있다. 이에 대해서, 임의의 두 자석 간의 자계의 교차는, 액적 작동기 내에 1개 이상의 자기 차폐부, 예컨대 자기 차폐부(642) 등의 전략적인 배치를 통해, 저감될 수 있고, 바람직하게는 실질적으로 제거될 수 있다.
8.3.2 교호 자석 배치를 지닌 액적 작동기
도 7 은 자계의 교차를 저감시키기 위해 극이 반대로 배열되어 있는 자석을 포함하는 액적 작동기(700)의 평면도를 나타내고 있다. 액적 작동기(700)는 1개 이상의 액적(도시 생략)에 대해 액적 작업을 수행하기 위한 전극(710), 예컨대, 전기습윤 전극의 배열을 포함한다. 또한, 자석(714)은 전극(710)의 제1레인에 밀접하게 배열되고, 자석(718)은 전극(710)의 제2레인에 밀접하게 배열되며, 자석(722)은 전극(710)의 제3레인에 밀접하게 배열되고, 자석(726)은 전극(710)의 제4레인에 밀접하게 배열된다. 자석(714), (718), (722) 및 (726)은 1개 이상의 전극에 위치된 1개 이상의 액적(도시 생략) 내에 자기 반응성 비즈(도시 생략)의 고정화를 허용하기 위하여, 전극(710)에 충분히 근접하여 배열될 수 있다.
인접하는 자석 간의 자계의 교차를 저감, 바람직하게는 실질적으로 제거하기 위해서, 인접하는 자석의 극은 반대로 배열되고, 이것에 의해, 인접하는 자계가 상쇄되게 된다. 예를 들어 도 7을 재차 참조하면, 자석(722)의 북극은 위쪽으로 배향되고, 자석(726)의 남극은 위쪽으로 배향된다. 이와 같이 해서, 자계는 상쇄되고, 자석(714), (718), (722) 및 (726 ) 간의 자계의 교차는 저감, 바람직하게는 실질적으로 제거될 수 있다.
도 8 은 도 7에 도시된 것과 같은 관계로 배열된 자계의 맵(800)을 나타내고 있다.
8.4 기타 기술
본 발명은 또한 검출 작업을 향상시키기 위한 기술뿐만 아니라 액적 작동기 내에서 잔효를 저감하기 위한 기술도 제공한다.
8.4.1 액적 작동기 내의 잔효를 저감시키는 기술
도 9 는 액적 검출 영역에서 잔효를 저감하기 위한 작업이 수행될 수 있는 액적 작동기(900)의 평면도를 나타내고 있다. 액적 작동기(900)는 액적에 액적 작업을 수행하기 위한 전극(910), 예컨대, 전기습윤 전극의 배열을 포함한다. 또한, 액적 작동기(900)는 예를 들어, 소정의 전극(910)에서 지정된 검출 영역(914)을 포함한다. 검출 영역(914)은 액적 작업 동안 그 위에 위치되거나 그곳을 통과하는 액적을 검출하는 데 이용된다. 일례에 있어서, 액적 검출은 검출 영역(914)과 관련된 PMT(photomultiplier tube) 또는 광자-계수(photon-counting) PMT를 이용해서 수행된다. PMT(도시 생략)는 검출 영역(914)과 관련된 전극에 있을 때 액적으로부터 (예컨대, 형광 및/또는 화학발광으로 인해) 방출되는 광을 측정(즉, 광자를 검출)하는 데 이용된다.
몇몇 경우에 있어서, 검출 영역, 예컨대, 검출 영역(914)에서 물질의 축적은 잔효로 인해 일어날 수 있고, 이 잔효는 액적 작업 동안 충전물 유체 내에 및/또는 표면 상에 남겨지는 비즈 혹은 기타 물질을 포함한다. 잔효는 후속의 액적으로부터 신호의 정확한 검출을 방해하고/하거나 영향받은 전극에 의한 액적 작업을 방해할 수 있다.
도 9를 재차 참조하면, 본 발명의 액적 시퀀싱 작업(sequencing operation)은 일련의 교대로 배치된 분석시험 액적(918)과 세정 액적(922)을 제공함으로써 검출 영역(914)에서 잔효를 저감, 바람직하게는 실질적으로 제거한다. 일례에 있어 서, 분석시험 액적(918a)은 검출 영역(914)을 통과하고, 이어서 세정 액적(922a)이, 그 후, 분석시험 액적(918b)이, 이어서 세정 액적(922b)이, 그 후에 분석시험 액적(918c)이, 이어서 세정 액적(922c)이, 그 후에 분석시험 액적(918d)이, 이어서, 세정 액적(922d)이 통과한다. 분석시험 액적(918a), (918b), (918c), (918d)이 교차에 의해 검출 영역(914)의 기능을 열화시키는 잠재력을 지님에 따라, 세정 액적(922a), (922b), (922c), (922d)은 검출 영역(914)과 관련된 표면의 청소 작업을 수행한다. 본 발명의 청소 과정은 도 9에 도시된 순서로 제한되지 않는다. 검출 영역을 적절하게 청소하기 위하여, 그 수순이 적절한 수의 세정 액적을 포함하는 한 어떠한 수순도 가능하다. 예를 들어, 특정 분석시험의 요건에 따라, 다수의 세정 액적이 분석시험 액적 사이에 제공될 수 있고/있거나 다수의 분석시험 액적이 세정 액적 사이에 제공될 수 있으며, 그 예로는 AAWAAWAAW, AAAWAAAWAAAW, AWWAWWAWW, AWWWAWWWAWWW, AAWWAAWWAAWW, AAAWWWAAAWWWAAAWWW 등을 들 수 있고, 여기서, A = 분석시험 액적이고, W = 세정 액적이다. 단, 분석시험 액적과 세정 액적을 동일 크기로 할 필요는 없다. 분석시험 액적이 보다 클 수 있거나, 혹은 세정 액적이 보다 클 수 있다. 보다 큰 액적이 슬러그(예컨대, 4개의 전극을 점유하는 슬러그)로서 혹은 단일의 큰 액적(예컨대, 슬러그로 형성되는 일없이 당연히 커버되는 전극의 수의 4배를 점유하는 액적)으로서 액적 작업을 받을 수 있다. 각 배열은 상이한 청소 결과를 가져올 수 있다. 또한, 분석시험 액적과 세정 액적은 동일한 경로를 따를 필요는 없다. 예를 들어, 그들의 경로는 청소할 필요가 있는 장소에서 교차될 수도 있다.
도 10A 및 도 10B 는 잔효를 저감시키는 다른 작업이 수행될 수 있는 액적 작동기(1000)의 평면도를 나타내고 있다. 액적 작동기(1000)는 1개 이상의 액적, 예컨대, 분석시험 액적(1014), (1018)(도 10A) 및 세정 액적(1022)(도 10B)에 대해 액적 작업을 수행하기 위한 전극(1010), 예컨대, 전기습윤 전극의 배열을 포함한다. 또한, 자석(1026)은 소정의 전극(1010)에 밀접하게 배열되어 있다. 자석(1026)은 분석시험 액적(1014) 내에 1개 이상의 액적 내의 자성 반응성 비즈, 예를 들어, 자성 비즈(1030)의 고정화를 허용하기 위하여, 소정의 전극(1010)에 충분히 근접하여 배열될 수 있다.
예를 들어, 액적 분할 작업 동안, 소정량의 "위성"(satellite) 액적이 분할이 일어나는 지점에서 남겨질 수 있다. 예를 들어, 도 10A를 참조하면, 분석시험 액적(1018)으로부터의 분할에 의해 형성되는 액적 분할 작업에 의해, 소정의 전극(1010) 상에 소정량의 위성 액적(1034)이 남겨질 수 있게 된다. 위성 액적(1034) 등과 같은 위성 액적은 하나의 액적으로부터 다른 액적으로의 잔효(교차 오염)의 공급원일 수 있으며, 이것은 바람직스럽지 않다. 도 10B는 세정 액적(1022) 등과 같은 세정 액적이, 다음의 분석시험 작업이 일어나기 전에 위성 액적(1034)을 포획하여 이들을 멀리 이송하기 위하여, 예를 들어, 분석시험 액적(1018), (1014)의 분석시험 작업에 이어서 전극(1010)을 따라서 이송될 수 있는 것을 예시하고 있다. 이와 같이 해서, 전극(1010)은 분석시험 작업 사이에 청소된다. 본 발명의 청소 과정은 도 10A 및 도 10B에 도시된 수순으로 제한되지 않는다. 전극을 적절하게 청소하기 위하여, 그 수순이 적절한 수의 세정 액적을 포함 하는 한 어떠한 수순도 가능하다.
8.4.2 액적 작동기 내에서의 검출 작업의 개선
도 11A, 도 11B 및 도 11C 는 액적 검출의 감도를 향상시키기 위한 각각의 작업이 수행될 수 있는 액적 작동기(1100)의 측면도를 나타내고 있다. 액적 작동기(1100)는 상부 판(1110)과 하부 판(1114)을 포함하며, 이들 판 사이에는 간극(1118)이 배열되어 있다. 전극(1122), 예컨대, 전기습윤 전극의 배열은, 액적(1126)에 대한 액적 작업을 수행하기 위한 하부 판(1114)과 관련되어 있을 수 있다. PMT 창(1130)은 상부 판(1110)과 관련되어 있을 수 있고, 이것에 의해 PMT(도시 생략)는 액적(1126)으로부터 방출되는 광을 측정(즉, 광자(1134)를 검출)하는 데 이용된다.
도 11A는, PMT 창(1130)에 노출되는 표면적을 증가시키고, 이에 따라 검출될 수 있는 광자(1134)의 수를 증가시키기 위하여, 액적, 예컨대, 액적(1126)을 퍼지게 함으로써 액적 검출의 감도를 향상시키는 방법을 도시하고 있다. 액적은 해당 액적의 용적에 따라 1개 이상의 전극(1122)을 직선적으로 가로질러 퍼질 수 있다. 작은 용적의 액적의 경우, 완충 액적(buffer droplet)에 의한 희석으로 인한 손실이 PMT에 노출된 증가된 액적 면적에 의해 상쇄되는 한, 액적을 보다 커지게 하기 위하여 당해 완충 액적이 첨가될 수 있다. 예를 들어, 도 11B는 다수의 전극(1122)에 걸쳐 연속적으로 퍼지는 액적(1126)을 도시하고 있으며, 이것은 PMT 창(1130)에 도달할 수 있고 PMT에 의해 검출될 수 있는 광자(1134)의 수를 증가시킨다.
도 11C는 액적(1126)이 다수의 전극(1122) 상에 있는 다수의 액적(1126), 예컨대, 액적(1126a), (1126b), (1126c), (1126d)으로 분할되는 시나리오를 도시하고 있다. 재차, PMT 창(1130)에 노출되는 표면적은 증가되고, 이것에 의해 PMT 창(1130)에 도달할 수 있고 PMT에 의해 검출될 수 있는 광자(1134)의 수가 증가한다. 대안적으로 도 11A, 도 11B 및 도 11C를 재차 참조하면, 액적, 예컨대, 액적(1126)의 퍼짐은 직선 확산으로 제한되지 않는다. 액적은, PMT 창(1130)에 노출되는 표면적을 증가시키기 위하여, 그리드 혹은 어레이 혹은 전극(1122)을 거치는 등의 2차원적으로 퍼질 수 있다. 대안적으로는, 1개 이상의 대면적 전극이 제공될 수 있고, 이것을 가로질러 1개 이상의 액적이 퍼질 수도 있다.
도 12 는 액적 검출의 감도를 향상시키기 위한 액적 작동기(1200)의 평면도를 나타내고 있다. 액적 작동기(1200)는 다수의 액적(1214)에 대해 액적 작업을 수행하기 위한 전극(1210), 예컨대, 전기습윤 전극의 배열을 포함한다.
또한, 액적 작동기(1200)는 존재할 경우 소정의 액적(1214)으로부터 방출되는 광을 측정하기 위한 관련된 PMT(도시 생략)를 지닌 액적 검출 영역(1218)을 포함할 수 있다. 멀리 떨어진 액적(1214)으로부터 액적 검출 영역(1218)까지 광의 잔효를 저감, 바람직하게는 실질적으로 제거하기 위해서, 최소 거리(d)는, 도 12에 나타낸 바와 같이, 액적 검출 영역(1218)의 외부 주변과 액적 작동기(1200) 내의 임의의 멀리 떨어진 액적(1214) 간의 모든 방향에서 유지된다. 최소 거리(d)는 멀리 떨어진 액적(1214)으로부터 액적 검출 영역(1218)까지 광의 잔효를 저감, 바람직하게는 실질적으로 제거하는 데 충분히 큰 것이다. 그 결과, 다수의 액적(1214) 을 포함하는 액적 작동기에 있어서, 소정의 간극은 측정 중인 표적 액적(1214)과 멀리 떨어진 액적(1214) 간의 검출 동안 유지되므로, 멀리 떨어진 액적(1214)으로부터 액적 검출 영역(1218)까지의 광의 잔효가 저감, 바람직하게는 실질적으로 제거된다. 구체적인 경우로서, 거리(d)가 단위 전극 크기의 정수배 m이면, 액적 검출은 m 위상 버스로서 전기적으로 접속된 1세트의 전극에 대해 수행될 수 있다. 대안적으로는, 도 13(이하에 설명됨)은 액적 작동기를 지닌 부동산이 제한되고 있고, 따라서, 액적 간의 충분한 간극이 도 12에 기술된 바와 같이 달성될 수 없다는 시나리오를 기술하고 있다.
대안적인 실시예에 있어서, 바로 이웃하는 액적으로부터의 교차는, 센서 상에 응답 신호를 보내고 있는 액적으로부터의 광만을 집광하고 다른 액적으로부터의 신호는 제거하는 광학 소자, 예컨대 1개 이상의 렌즈를 이용해서 제거된다.
도 13 은 액적 검출의 감도를 향상시키기 위한 액적 작동기(1300)의 측면도를 나타내고 있다. 액적 작동기(1300)는 상부판(1310)과 하부 판(1314)을 포함하며, 이들 사이에 간극(1318)이 배열되어 있다. 전극(1322), 예컨대, 전기습윤 전극의 배열은 액적, 예컨대, 액적(1326) 및 액적(1330)에 대해 액적 작업을 수행하기 위한 하부 판(1314)과 관련될 수 있다. PMT 창(1334)은 상부판(1310)과 관련될 수 있고, 이것에 의해 PMT(도시 생략)는, 예컨대, 액적(1326)으로부터 방출되는 광을 측정(예를 들어, 광자(1338)를 검출)하는 데 이용된다. 예를 들어, PMT 창(1334)에 있는 액적(1326)과 멀리 떨어진 액적(1330) 사이의 간극은 액적(1330)으로부터 PMT 창(1334)으로 광의 잔효를 피하는 데 적절하게 충분하지 않기 때문에, 마스 크(1342)가 상부판(1310) 상에 설치되어 있다. 마스크(1342)의 목적은 멀리 떨어진 액적으로부터의 광이 PMT 창(1334)으로 들어가는 것을 차단하는 것이며, 상기 PMT 창은 표적 액적의 검출 영역이다.
마스크(1342)는, 사용되는 재료가 전기습윤 과정과 조화를 이루며 액적 작동기 작업을 과도하게 방해하지 않는 한, 임의의 흡광 재료의 층을 통해서 상부판(1310) 위에 형성될 수 있다. 일례에 있어서, 마스크(1342)는 상부판(1310)에 흑색 도료층을 도포함으로써 형성될 수 있으므로, 예컨대, PMT 창(1334) 등과 같이 1개 이상의 창이 액적 작동기(1300)의 선택된 검출 영역에 제공된다. 도 13에 도시된 예에 있어서, 마스크(1342)는 멀리 떨어진 액적(1330)으로부터 표적 액적(1326)으로 PMT 창(1334)에서 광의 잔효를 저감, 바람직하게는 실질적으로 제거한다. 다른 예에 있어서, 마스크(1342)는 액적과 대면하는 상부판(1310) 측 위에 불투명한 도체에 의해 형성된다. 당해 도체는, 예를 들어, 알루미늄, 크롬, 구리 또는 백금일 수 있다. 상기 도체는 추가로 전기적 기준 전극으로서 역할할 수도 있다.
8.5 자석 조립체를 구비한 액적 작동기
도 14A 및 도 14B 는 각각 액적 작동기에 대해서 자석 조립체를 배향시키기 위한 범용 조립체의 비제한적인 일례인 모듈방식 액적 작동기 조립체(1400)의 평면도를 나타내고 있다. 모듈방식 액적 작동기 조립체(1400)는, 예를 들어, 장착대(1410), 자석 조립체(1420) 및 액적 작동기(1430)를 포함할 수 있다. 도 14A는 분해되었을 경우의 모듈방식 액적 작동기 조립체(1400)를 도시하고 있다. 도 14B 는 조립되었을 경우의 모듈방식 액적 작동기 조립체(1400)를 도시하고 있다.
자석 조립체(1420)는, 도 14A에 나타낸 바와 같이, 1개 이상의 자석(1428)이 장착되는 기판(1424)을 포함할 수 있다. 자석(1428)은 기판(1424)에 영구적으로 부착될 수 있거나, 혹은 제거가능할 수도 있다. 제거가능한 자석(1428)은 예컨대 소정의 자석 강도 등과 같이 소정의 특성을 지닌 자석의 사용자에 의한 선택을 용이하게 한다. 일 실시예에 있어서, 액적 작동기 기구에는 자석 없이 자석 조립체(1420)와 장착대(1410)를 포함하는 액적 작동기 조립체(1400)가 설치되어 있다. 다른 실시예에 있어서, 사용자는 자석 조립체(1420)에 당해 사용자에 의해 부착될 수 있는 특수화된 성질을 지닌 자석을 공급한다. 다른 실시예에 있어서, 사용자는 또한, 당해 사용자가 소정의 특성을 지닌 1개 이상의 자석의 세트를 선택하고 당해 선택된 세트를 자석 조립체(1420)에 부착시킬 수 있도록 각종 특수화된 특성을 지닌 자석 세트를 공급한다.
자석은 적절한 성질을 지닌 자석의 선택을 용이하게 하도록 마킹(marking)되거나 코드부착(혹은 코드화)(coded)(예컨대, 컬러 코드부착)될 수 있을 뿐만 아니라, 자석의 자계의 배향이 보이도록 (예컨대, 컬러 코드부착하거나 혹은 자석의 북쪽면과 남쪽면에 마킹함으로써) 마킹되어 있을 수 있다. 마찬가지로, 자석 조립체(1420)는 내부에 삽입된 자석의 바람직한 배향이 보이도록 마킹되어 있을 수 있고, 몇몇 실시형태에 있어서, 자석은 적절한 배향으로만 자석 조립체(1420)에 부착되도록 형상화되어 있을 수도 있다.
또한, 다른 실시예에 있어서, 사용자에게는 이미 자석이 부착되어 있는 자석 조립체(1420)가 제공될 수 있고, 이때 자석 조립체(1420)는 각각 상이한 자석 배치, 예컨대, 상이한 성질을 지닌 자석 세트를 지닌다. 사용자는 기구를 위한 사용자의 바람직한 이용에 적합한 성질을 지닌 자석을 구비한 자석 배치를 선택할 수 있다. 자석 조립체(1420)는 사용자에 의한 선택을 용이하게 하도록 마킹되거나 혹은 다르게는 컬러 코드부착되어 있을 수 있다. 자석 성질은, 예를 들어, 사용자에 의해 선택된 비즈의 특성에 의거해서 선택될 수 있다.
액적 작동기(1430)는 상부에 전극(1438), 예컨대, 도 14A에 나타낸 바와 같이, 전기습윤 전극의 배열이 되어 있는 기판(1434)을 포함할 수 있다. 제2(상부) 기판(도시 생략)도 포함되어 있을 수 있다.
자석 조립체(1420)는 자석(1428)이 액적 작동기(1430)와 관련된 소정의 전극(1438)과 실질적으로 정렬되도록 설계되어 있다. 예를 들어, 몇몇 실시형태에 있어서, 자석의 병렬 배치는 액적 작동기(1430)에 대한 병렬 분석시험 단계를 수행하기 위해 고려될 수 있다. 자석은, 예를 들어, 본 명세서에 기재된 각종 배치 및 배향에 따라 구성 및 배향될 수 있다.
장착대(1410)는 자석 조립체(1420) 등과 같은 자석 조립체 및 액적 작동기(1430) 등과 같은 액적 작동기를 장착하기 위한 범용 플랫폼으로서 역할할 수 있다. 일 실시예에 있어서, 장착대(1410)는 각종 광범위한 자석 조립체(1420) 및 각종 광범위한 액적 작동기(1430)를 수용하도록 구성되어 있다. 자석 조립체(1420)는 각종 자석 성질 중 어느 하나를 이용해서 각종 패턴의 어느 하나로 배열된 1개 이상의 자석을 포함할 수 있다. 도 14는 줄지어 있는 자석을 예시하고 있지만, 자 석은 액적 작동기 상에서의 소정의 작업을 용이하게 하기 위하여 액적 작동기(1430)에 관한 그들의 적절한 위치에 자석을 배치하는 임의의 배열 혹은 그리드로 제공될 수도 있다.
일례에 있어서, 자석 조립체(1420) 및 액적 작동기(1430)는 각각의 끼워맞춤부(fittings)(1418), (1414)를 통해서 장착대(1410) 내에 설치될 수 있다. 끼워맞춤부는, 예를 들어, 장착대(1410)가 끼워맞춤될 수 있는 슬롯, 자석 조립체(1420) 상에 있는 기둥부를 수용하기 위하여 장착대(1410) 상에 있는 개구부 혹은 그 반대, 자석 조립체(1420) 상에 있는 나사를 수용하기 위하여 장착대(1410) 상에 있는 개구부, 볼트를 수용하기 위한 나선형성된 기둥부, 각종 스프링 장입된 기구, 오목한 트레이, 상보성 끼워맞춤부 등을 포함할 수 있다. 장치가 그의 의도된 목적을 위해 기능할 수 있도록 충분히 확고한 부착을 용이하게 하는 기구라면 어떠한 것이라도 충분하다.
또한, 장착대(1410)는 단일의 장착대(1410)에 있어서 자석 조립체(1420) 및/또는 액적 작동기(1430)의 다수의 가능한 위치를 위한, 및/또는 다수의 자석 조립체(1420) 및/또는 다수의 액적 작동기(1430)를 장착하기 위한 다수의 끼워맞춤부를 포함할 수 있다. 또, 장착대(1410)는, 액적 작동기(1430)의 위쪽, 아래쪽 및/또는 옆에, 예컨대, 액적 작동기와 임의의 관계로 자석 조립체(1420)가 장착될 수 있도록 구성되어 있을 수 있다. 모듈방식 장착대(1410)에 액적 작동기(1430)를 설치한 상태에서, 자석 조립체(1420) 등과 같은 관련된 임의의 자석 조립체는, 예를 들어, 슬롯을 통해 모듈방식 액적 작동기 조립체(1400)에 삽입될 수 있다.
도 15 는, 장착대(1410)가 장착대(1510)로 교체된 것을 제외하고, 도 14에 도시된 조립체(1400)와 유사한, 액적 작동기에 대해서 자석 조립체를 배향시키기 위한 범용 조립체의 다른 비제한적인 예인 모듈방식 액적 작동기 조립체(1500)의 측면도를 나타내고 있다. 장착대(1510)는 자석 조립체(1420)와 액적 작동기(1430)가 반입의 "드랍 인"(drop in) 방법을 제공하기 위하여 끼워맞춤될 수 있다.
도 14A, 도 14B 및 도 15를 참조하면, 본 발명의 일 측면은, 슬롯 혹은 기타 부착 수단이, 자석 조립체 상에 있는 자석을 액적 작동기 상에 있는 적절한 전극 혹은 전극 경로와 정렬시키기 위하여, 자석 기판 및 액적 작동기를 배향시키는 역할을 하는 것이다. 이와 같이 해서, 자석은 분석시험에 필요하지 않을 경우 제거될 수 있다. 또한, 상이한 분포의 자석을 지닌 상이한 자석 장착대가 상이한 유형의 분석시험 혹은 상이한 액적 작동기 레이아웃을 위해 제공될 수 있다.
8.6 자석
이미 설명한 다른 측면에 부가해서, 본 발명에 이용하기 위해 선택된 자석은 영구자석 혹은 전자석일 수 있다는 것을 이해할 필요가 있다. 액적 내의 비즈의 자기 반응성 범위와 자기 강도/인력 간에 소정의 관계가 있을 수 있다. 따라서, 자석의 자기 강도/인력은 다음과 같은 자성 비즈의 반응성에 대해서 선택될 수 있다:
· 자기 반응성 비즈를 실질적으로 고정화시키기 위하여 비즈의 자기 반응성에 대해서 충분히 강함;
· 비즈를 유의하게 자화시키고, 따라서 비즈의 군집의 비가역적인 형성을 일으키는 비즈의 자기 반응성에 대해서 그만큼 강하지 않음;
· 자계가 제거된 경우 재현탁이 불충분하게 일어나는 비즈의 자기 반응성에 대해서 그만큼 강하지 않음; 및/또는
· 비즈가 전적으로 액적으로부터 당겨지는 비즈의 자기 반응성에 대해서 그만큼 강하지 않음.
몇몇 실시형태에 있어서, 자석은 인력(파운드 단위)이 적을수록 높은 자기 강도(테슬러 단위)를 지닐 수 있다. 일례에 있어서, 자석은 약 1 테슬러(T)의 표면 자계 강도를 지니는 네오디뮴 영구 자석이다. 다른 예에 있어서, 자석은 약 1 T의 표면 자계강도를 지니는 전자석이며, 이것은 전기적으로 온/오프 전환될 수 있다. 영구 자석이 이용되는 경우, 자석은 자계의 영향을 제거하는 것이 바람직한 용도를 위해 자기 반응성 비드-함유 액적으로부터 제거될 수 있다. 이하의 범위로 제한되는 것은 아니지만, 본 발명의 유용한 강도를 전반적으로 포괄하는 자기 강도의 범위는 0.01 T 내지 100 T(펄스화) 또는 45 T(연속)의 넓은 범위; 0.01 T 내지 10 T의 중간 범위; 및 0.1 T 내지 1 T(바람직하게는 0.5 T)의 좁은 범위를 포함할 수 있다는 것을 이해할 수 있을 것이다.
8.7 액적 조성
자성 비즈를 포함하고 액적 분할 작업이 실시되는 액적은 비즈를 이용해서 분석시험을 수행하는 데 유용한 각종 광범위한 샘플, 시약 및 완충제의 어느 것이라도 포함할 수 있다. 예를 들어, 세정 동안, 액적은 완충제, 예컨대, 자성을 토대로 한 면역분석시험에 이용하는 데 적합한 계면활성제를 지닌 인산염-완충 식염 수(PBS) 완충제를 포함할 수 있다. 바람직한 계면활성제는 자기력에 의한 고정화 후의 비즈의 고정화 및/또는 재현탁을 용이하게 하는 것들이다. 계면활성제 및 계면활성제의 양은 계면활성제가 결여된 대조용액에 비해서 재현탁 시 실제적인 향상을 제공하도록 조정될 수 있다. 일 실시예에 있어서, 액적은 약 0.01% 트윈 20을 지닌 PBS 완충제를 포함한다.
친수성 폴리머 및/또는 계면활성제는 분할 작업 동안 자기 반응성 비즈의 보유 및 재현탁을 용이하게 하기 위하여 액적 중에 포함되어 있을 수 있다. 액적은 충전물 유체와 혼화되지 않는 각종 다양한 액체를 포함할 수 있다. 완충제의 예로는 인산염-완충 식염수(PBS) 완충제 및 트리스(Tris) 완충 식염수를 들 수 있지만, 이들로 제한되는 것은 아니다. 일 실시예에 있어서, 액적 유체는 PBS 완충제 등의 완충제, 및 자성을 토대로 한 면역분석시험에 이용하는 데 적합한 소정의 계면활성제를 포함한다.
바람직한 친수성 폴리머 및 계면활성제는 자기력에 의한 고정화 후의 비즈의 재현탁을 용이하게 하는 것들이다. 계면활성제 및 계면활성제의 양은 계면활성제가 결여된 대조용액에 비해서 재현탁 시 실제적인 향상을 제공하도록 조정될 수 있다. 자성을 토대로 한 면역분석시험에 이용하기에 적합한 계면활성제는, 트윈(Tween)(등록상표) 20으로서 상업적으로 공지된 폴리소르베이트(polysorbate) 20, 및 트리톤(Triton)(등록상표) X-100를 들 수 있지만, 이들로 제한되는 것은 아니다. 트윈(등록상표) 20은, 예를 들어, 피어스 바이오테크놀로지사(Pierce Biotechnology, Inc.)(메사추세츠주의 워번시에 소재)에 의해 공급될 수 있다. 트 리톤(등록상표) X-100은, 예를 들어, 롬 앤 하스사(Rohm & Haas Co.)(펜실베니아주의 필라델피아시에 소재)에 의해 공급될 수 있다. 일례에 있어서, 액적 작동기 내의 액적 유체는 약 0.001% 내지 약 0.1%의 범위의 트윈 20과 PBS의 믹스이다. 다른 예에 있어서, 액적 작동기 내의 액적 유체는 0.01% 트윈(등록상표) 20을 지닌 PBS의 믹스이다.
기타 예로는 플루로닉 계면활성제, 폴리에틸렌 글라이콜(PEG), 메톡시폴리에틸렌 글라이콜(MPEG), 폴리-소르베이트(폴리옥시에틸렌 소르비탄 모노올레에이트 또는 트윈(등록상표)), 폴리옥시에틸렌 옥틸 페닐 에터(트리톤 X-100(등록상표)), 폴리비닐 피롤리돈, 폴리아크릴산(및 카보머 등의 가교 폴리아크릴산), 폴리글라이코사이드류(옥틸 글루코피라노사이드 등의 비이온성 글라이코사이드 계면활성제) 및 가용성 다당류(및 그의 유도체), 예컨대, 헤파린, 덱스트란, 메틸 셀룰로스, 프로필 메틸 셀룰로스(및 기타 셀룰로스 에스터류 및 에터류), 덱스트린류, 말토덱스트린류, 갈락토만난류, 아라비노갈락탄류, 베타 글루칸류, 알긴산염류, 한천, 카라게닌, 및 식물성 검류, 예컨대, 잔탄 검, 금불초, 구아 검, 트래거캔스 검, 카라야 검, 가티 검 및 아카시아 검 등을 들 수 있다. 특별한 첨가제가 특정 미세 유체 샘플과 최대의 상용성을 위해 선택될 수 있다.
8.8 액적 작동기
본 발명에 이용하는 데 적합한 액적 작동기 구성의 예는 미국 특허 제6,911,132호(공고일: 2005년 6월 28일, 발명자: Pamula et al., 발명의 명칭: "Apparatus for Manipulating Droplets by Electrowetting-Based Techniques"; 미 국 특허 출원 제11/343,284호(출원일: 2006년 1월 30일, 발명의 명칭: "Apparatuses and Methods for Manipulating Droplets on a Printed Circuit Board"); 미국 특허 제6,773,566호(공고일: 2004년 8월 10일, 발명자: Shenderov et al., 발명의 명칭: "Electrostatic Actuators for Microfluidics and Methods for Using Same"), 미국 특허 제6,565,727호(공고일: 2000년 1월 24일, 발명자: Shenderov et al., 발명의 명칭: "Actuators for Microfluidics Without Moving Parts"); 및 국제 특허 출원 제PCT/US 06/47486호(출원일: 2006년 12월 11일, 발명자: Pollack et al., 발명의 명칭: "Droplet-Based Biochemistry")를 참조할 수 있고, 이들 개시 내용은 참조로 본원에 병합된다. 자성 비즈 및/또 비자성 비즈를 고정화하기 위한 액적 작동기 기술은, 전술한 국제 특허 출원과, 미국 특허 출원 제60/900,653호(출원일: 2007년 2월 9일, 발명자: Sista, et al., 발명의 명칭: "Immobilization of magnetically-responsive beads during droplet operations"); 미국 특허 출원 제60/969,736호(출원일: 2007년 9월 4일, 발명자: Sista et al., 발명의 명칭: "Droplet actuator Assay Improvements"); 및 미국 특허 출원 제60/957,717호(출원일: 2007년 8월 24일, 발명자: Allen et al., 발명의 명칭: "Bead washing using physical barriers")를 참조할 수 있고, 이들 문헌의 전체 개시 내용은 참조로 본원에 병합된다. 이들 각종 기술의 조합도 본 발명의 범위 내이다.
8.9 유체
본 발명의 액적 작업이 수행될 수 있는 유체의 예는 상기 8.8 부문에 열거된 특허, 특히, 국제 특허 출원 제PCT/US 06/47486호(출원일: 2006년 12월 11일, 발명의 명칭: "Droplet-Based Biochemistry")를 참조하면 된다. 몇몇 실시형태에 있어서, 액적은 샘플 유체, 예컨대, 생물학적 샘플, 예컨대, 전혈(whole blood), 림프 유체, 혈청, 혈장, 땀, 눈물, 타액, 가래, 뇌척수액, 약막액, 정액, 질 분비액, 장액(serous fluid), 윤활액, 심장막액, 복수(peritoneal fluid), 흉수, 누출액, 삼출액, 낭액(cystic fluid), 담즙, 소변, 위액, 장관액(intestinal), 배설물 샘플, 유체화된 조직, 유체화된 유기체, 생물학적 약솜 및 생물학적 세정액이다. 몇몇 실시형태에 있어서, 반입되는 유체로는 물, 탈이온수, 식염 용액, 산성 용액, 염기성 용액, 세제 용액 및/또는 완충제 등의 시약을 포함한다. 몇몇 실시형태에 있어서, 반입되는 유체는 시약, 예컨대, 생화학 프로토콜용의 시약, 예컨대, 핵산 증폭 프로토콜, 친화도(affinity)-기반 분석시험 프로토콜, 시퀀싱(서열결정) 프로토콜, 및/또는 생물학적 유체의 분석을 위한 프로토콜을 포함한다.
8.10 충전물 유체
주지된 바와 같이, 상기 간극은 전형적으로 충전물 유체로 충전된다. 충전물 유체는, 예를 들어, 실리콘 오일 등의 저점도 오일일 수 있다. 충전물 유체의 기타 예는 국제 특허 출원 제PCT/US 06/47486호(출원일: 2006년 12월 11일, 발명의 명칭: "Droplet-Based Biochemistry")에서 제공된다.
8.11 세정 자기 반응성 비즈
비즈를 이용하는 프로토콜에 대해서, 비즈를 지닌 액적은 1개 이상의 세정 액적으로 액적 작업을 이용해서 배합될 수 있다. 다음에, 본 발명의 자석 배치를 이용하는 비즈를 유지하는 동안(예컨대, 물리적으로 혹은 자기적으로), 융합된 액적은 2개 이상의 액적, 즉, 비즈를 지닌 1개 이상의 액적과 실질적인 양의 비즈가 없는 1개 이상의 액적으로 액적 작업을 이용해서 분할될 수 있다. 일 실시예에 있어서, 융합된 액적은 비즈를 지닌 하나의 액적과 실질적인 양의 비즈가 없는 하나의 액적으로 액적 작업을 이용해서 분할된다.
일반적으로, 세정 프로토콜의 각 수행은 분석시험의 결과에 과도하게 유해한 효과없이 의도된 분석시험을 수행하기 위한 충분한 비즈의 보유를 초래한다. 소정의 실시예에 있어서, 융합된 액적의 각 분할은 비즈의 90, 95, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9, 99.99, 99.999, 99.9999, 99.99999 또는 99.999999% 이상의 보유를 가져온다. 다른 실시예에 있어서, 제거된 물질의 농도 및/또는 양의 소정의 저감을 달성하기 위한 세정 프로토콜의 각 수행은 비즈의 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9, 99.99, 99.999, 99.9999, 99.99999 또는 99.999999% 이상의 보유를 가져온다. 또 다른 실시예에 있어서, 보유된 비즈의 양은 계산되고, 따라서, 그 결과는 조정된다.
몇몇 실시형태에 있어서, 비즈는 비드-함유 액적 및 세정 액적이 조합되는 저장소에서 세정될 수 있고, 비즈는 보유되며(예를 들어, 자석에 의해, 물리적 구조에 의해, 정전력에 의해), 및 비즈가 결여된 액적은 액적 작업을 이용해서 저장소로부터 분배된다. 예를 들어, 비즈는 희석-및-분배 전략에 의해 세정될 수 있고, 이에 따라, 세정 완충제가 저장소에 첨가되어 내용물을 희석시키고, 자기 반응성 비즈는 자석을 지닌 저장소 내에 편재되며, 대부분의 용액은 저장소로부터 분배 되고, 이 사이클은 허용가능한 수준의 세정이 달성될 때까지 반복된다.
일례로서, 세정 자기 반응성 비즈는 일반적으로 이하의 단계를 포함할 수 있다:
(1) 자석 부근에 자기 반응성 비즈와 미결합(unbound) 물질을 포함하는 액적을 제공하는 단계;
(2) 상기 자기 반응성 비즈를 포함하는 액적과 세정 액적을 조합시키는 액적 작업을 이용하는 단계;
(3) 자계의 인가에 의해 상기 비즈를 고정화시키는 단계;
(4) 저감된 농도의 미결합 구성 요소를 지닌 비즈를 포함하는 액적과 미결합 구성 요소를 포함하는 액적을 얻기 위하여, 상기 비즈를 둘러싸고 있는 액적의 일부 혹은 전부를 제거하는 액적 작업을 이용하는 단계;
(5) 자계를 제거하여 상기 비즈를 해방시키는 단계; 및
(6) 미리 결정된 정제도가 얻어질 때까지 상기 단계 (2) 내지 (3) 또는 단계 (2) 내지 (4)를 반복하여 실시하는 단계.
이와 같이 해서, 미결합 물질, 예컨대, 오염물, 부산물 혹은 과잉의 시약 등은 비즈로부터 분리될 수 있다. 각 사이클은 비즈를 포함하지만 감소된 수준의 바람직하지 않은 물질을 지닌 액적을 생성한다. 상기 단계 (5)는 각 세정 사이클에서 요구되지 않지만; 고정화된 비즈에 포획될 수 있는 오염물을 제거함으로써 세정을 증강시키는 데 유용할 수 있다. 상기 각 단계들은 상이한 순서로 수행될 수도 있으며, 예컨대, 단계 (2)와 (3)을 역전시킬 수도 있다. 세정 프로토콜에서의 단 계들은 본 명세서에 기재된 바와 같은 액적 작업을 이용해서 액적 작동기 상에서 수행될 수도 있다.
자기 반응성 비즈가 이용되는 실시예에 있어서, 본 발명자들은, 자계의 적용이, 비즈를 일시적으로 고정화시키고/시키거나, 비즈를 이동하고/하거나, 비즈를 위치결정하기 위해 유용하더라도, 때로는 비즈의 바람직하지 않은 응집을 초래할 경우도 있다는 것을 발견하였다. 이미 주지된 바와 같이, 일 실시예에 있어서, 친수성 폴리머 및/또는 계면활성제는 비드 응집을 방지하거나 저감시키기 위해 포함되어 있다. 친수성 폴리머와 계면활성제는, 비드 응집을 저감시키거나 제거하고 비특이적 흡수를 최소화하는 한편 동시에 액적으로부터 표적 피분석물 혹은 시약의 상당한 손실을 초래하지 않는 양으로 선택해서 이용될 필요가 있다. 일 실시예에 있어서, 친수성 폴리머 및/또는 계면활성제는 비가스(non-gaseous) 충전물 유체 내 액적에서 비드 응괴화를 저감시키고, 구체적으로는 액적 작동기의 표면에 대한 액적 구성 요소의 몰흡수를 저감시키도록 기능하지는 않는다.
비즈의 응괴화 응집을 제거하거나 저감시키기 위한 다른 접근법은 보다 큰 비즈를 보다 적은 수로 이용하는 것을 포함한다. 하나 이상의 액적 작업 동안 액적 내에 포함될 수 있는 임의의 개수의 비즈를 이용할 수도 있다. 몇몇 실시형태에 있어서, 자기 반응성 비즈의 개수는 1 내지 수십만개의 범위일 수 있다. 예를 들어, 일 실시예에 있어서, 본 발명은 액적 당 1 내지 100개의 자기 반응성 비즈를 이용한다. 예를 들어, 본 발명은 액적 당 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ..., 100개의 자기 반응성 비즈를 이용할 수 있다. 일 실시예에 있어서, 자기 반응성 비즈의 개수는 1 내지 10개이다. 보다 적은 수의 자기 반응성 비즈를 이용하는 것은 보다 큰 비즈를 이용하는 것을 허용한다. 예를 들어, 일 실시예에 있어서, 본 발명은 액적 당 1 내지 100개의 자기 반응성 비즈를 이용하며, 이때 비즈의 평균 직경은 약 25 내지 약 100미크론이다. 다른 실시예에 있어서, 본 발명은 액적 당 1 내지 10개의 자기 반응성 비즈를 이용하며, 이때, 비즈의 평균 직경은 약 50 내지 약 100미크론이다.
9. 끝맺는 말
이상의 실시예의 상세한 설명은, 본 발명의 구체적인 실시예를 예시한 첨부도면을 참조하고 있다. 상이한 구조 및 작업을 구비한 기타 실시예는 본 발명의 범주로부터 벗어나는 것은 아니다.
본 명세서는 단지 독자의 편의를 위해 각 부분으로 분할되어 있다. 표제는 본 발명의 범위를 제한하는 것으로 간주해서는 안된다.
단, 본 발명의 각종 상세는 본 발명의 범주로부터 벗어나는 일없이 변경될 수 있다. 또한, 위에서 서술된 내용은 단지 설명을 목적으로 한 것일 뿐, 제한의 목적으로 제시된 것은 아니며, 본 발명은 이하의 청구의 범위에 의해 규정된다.

Claims (114)

  1. 자기 반응성 비드와 접촉하는 감소된 양의 물질을 지니는 액적(droplet)을 제공하는 방법으로서,
    (a) (i) 표면 상에 액적 작업(droplet operations)을 수행하기 위해 배열된 전극들을 포함하는 기판; 및
    (ii) (1) 1개 이상의 자기 반응성 비즈;
    (2) 출발량의 상기 물질; 및
    (3) 출발 용적
    을 포함하는 출발 액적
    을 포함하는 액적 작동기를 제공하는 단계;
    (b) 목표 액적 분할 영역으로부터 떨어져 있는 위치에 1개 이상의 자기 반응성 비즈를 자기적으로 고정화시키는 단계; 및
    (c) (i) 출발 농도에 대해서 감소된 양의 물질을 지니며 1개 이상의 자기 반응성 비즈를 실질적으로 모두 포함하는 액적; 및
    (ii) 자기 반응성 비즈가 실질적으로 결여되어 있는 액적
    을 포함하는 액적 세트를 얻기 위하여, 출발 액적을 분할하도록 선택된 액적 분할 작업을 포함하는 하나 이상의 액적 작업을 수행하는 단계;
    를 포함하고,
    상기 단계 (b)에서, 출발 액적의 위쪽과 아래쪽에 반대 극이 서로 대면하면서 배열되는 2개의 자석에 의하여, 1개 이상의 자기 반응성 비즈를 자기적으로 고정화시키는 액적 제공 방법.
  2. 제1항에 있어서, 상기 출발 액적은 상기 물질의 출발 농도를 포함하고, 상기 하나 이상의 액적 작업은 상기 출발 농도 및 출발량에 대해서 저감된 농도 및 저감된 양의 상기 물질을 포함하는 액적을 수득하는 것인 액적 제공 방법.
  3. 제1항에 있어서, 조합된 액적을 수득하기 위하여, 세정 액적을 상기 단계 (a)에서 제공된 액적과 융합시키는 하나 이상의 액적 작업을 수행하는 단계를 추가로 포함하는 액적 제공 방법.
  4. 제1항에 있어서, 상기 단계 (c) 후에 1개 이상의 비즈를 해방 혹은 재현탁시키는 단계를 추가로 포함하는 액적 제공 방법.
  5. 제4항에 있어서, 상기 액적 내에 계면활성제를 제공하여, 계면활성제가 결여된 대응하는 액적에 비해 재현탁을 향상시키는 단계를 추가로 포함하는 액적 제공 방법.
  6. 제4항에 있어서, 상기 단계 (c) 후에 초음파 발생장치(sonicator)를 이용해서 상기 1개 이상의 비즈를 교반하는 단계를 추가로 포함하는 액적 제공 방법.
  7. 제1항에 있어서,
    a) 상기 단계 (b)는 1개 이상의 전극에 근접하여 자계를 작용시키기 위한 상기 자석 부근에 상기 비즈를 포함하는 액적을 위치시키는 단계를 포함하고;
    b) 상기 자계의 강도 및 위치는 하나의 액적 내에 실질적으로 모든 자성 비즈를 보유시키는 데 충분한 표적 분할 영역으로부터 떨어져서 상기 액적 내에 자기 반응성 비즈를 고정화시키도록 선택된 것인 액적 제공 방법.
  8. 제1항에 있어서,
    a) 상기 단계 (b)는 1개 이상의 전극에 근접하여 자계를 작용시키기 위한 상기 자석 부근에 상기 비즈를 포함하는 액적을 위치시키는 단계를 포함하고;
    b) 상기 자석의 위치는 액적의 횡방향 치수를 따라서 자성 비즈를 중앙에 위치시키도록 선택되는 것인 액적 제공 방법.
  9. 제1항에 있어서,
    a) 상기 단계 (b)는 1개 이상의 전극에 근접하여 자계를 작용시키기 위한 상기 자석 부근에 상기 비즈를 포함하는 액적을 위치시키는 단계를 포함하고;
    b) 상기 자석의 위치는 액적의 수직방향 치수를 따라서 자성 비즈를 중앙에 위치시키도록 선택되는 것인 액적 제공 방법.
  10. 제1항에 있어서, 상기 단계 (b)는
    a) 상기 자석; 및
    b) 1개 이상의 전극 부근 속으로 또한 당해 전극 부근 밖으로 자석을 이동시키는 이동 수단
    을 포함하는 수단을 이용해서 1개 이상의 자기 반응성 비즈를 자기적으로 고정화시키는 단계를 포함하는 것인 액적 제공 방법.
  11. 제1항에 있어서, 상기 단계 (c)는 전극-매개되는 것인 액적 제공 방법.
  12. 제1항에 있어서, 상기 단계 (c)는 전기습윤-매개되는(electrowetting-mediated) 것인 액적 제공 방법.
  13. 제1항에 있어서, 상기 단계 (c)는 유전영동-매개되는(dielectrophoresis-mediated) 것인 액적 제공 방법.
  14. 제1항에 있어서, 상기 단계 (c)는 전계-매개되는(electric field-mediated) 것인 액적 제공 방법.
  15. 제1항에 있어서, 추가적으로 자석이 제공되어, 반대 극이 서로 대면하는 복수개의 자석쌍이 상기 출발 액적을 둘러싸는 위치에 배열되는 액적 제공 방법.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
  76. 삭제
  77. 삭제
  78. 삭제
  79. 삭제
  80. 삭제
  81. 삭제
  82. 삭제
  83. 삭제
  84. 삭제
  85. 삭제
  86. 삭제
  87. 삭제
  88. 삭제
  89. 삭제
  90. 삭제
  91. 삭제
  92. 삭제
  93. 삭제
  94. 삭제
  95. 삭제
  96. 삭제
  97. 삭제
  98. 삭제
  99. 삭제
  100. 삭제
  101. 삭제
  102. 삭제
  103. 삭제
  104. 삭제
  105. 삭제
  106. 삭제
  107. 삭제
  108. 삭제
  109. 삭제
  110. 삭제
  111. 삭제
  112. 삭제
  113. 삭제
  114. 삭제
KR1020097018598A 2007-02-09 2008-02-11 자성 비즈를 이용하는 액적 작동기 장치 및 방법 KR101431778B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US90065307P 2007-02-09 2007-02-09
US60/900,653 2007-02-09
US96973607P 2007-09-04 2007-09-04
US60/969,736 2007-09-04
US98077207P 2007-10-17 2007-10-17
US98076207P 2007-10-17 2007-10-17
US60/980,772 2007-10-17
US60/980,762 2007-10-17
PCT/US2008/053545 WO2008098236A2 (en) 2007-02-09 2008-02-11 Droplet actuator devices and methods employing magnetic beads

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020147013441A Division KR101503510B1 (ko) 2007-02-09 2008-02-11 자성 비즈를 이용하는 액적 작동기 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20100014917A KR20100014917A (ko) 2010-02-11
KR101431778B1 true KR101431778B1 (ko) 2014-08-20

Family

ID=39495992

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020097018598A KR101431778B1 (ko) 2007-02-09 2008-02-11 자성 비즈를 이용하는 액적 작동기 장치 및 방법
KR1020147013441A KR101503510B1 (ko) 2007-02-09 2008-02-11 자성 비즈를 이용하는 액적 작동기 장치 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020147013441A KR101503510B1 (ko) 2007-02-09 2008-02-11 자성 비즈를 이용하는 액적 작동기 장치 및 방법

Country Status (11)

Country Link
US (3) US9046514B2 (ko)
EP (4) EP2570811B1 (ko)
JP (2) JP5156762B2 (ko)
KR (2) KR101431778B1 (ko)
CN (1) CN101627308B (ko)
AU (1) AU2008212808B2 (ko)
BR (1) BRPI0806831B8 (ko)
CA (2) CA2856143C (ko)
DK (1) DK2111554T3 (ko)
ES (1) ES2423930T3 (ko)
WO (1) WO2008098236A2 (ko)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0607213B1 (pt) 2005-01-28 2017-04-04 Univ Duke aparelho para manipulação de gotículas em uma placa de circuito impresso
US8613889B2 (en) 2006-04-13 2013-12-24 Advanced Liquid Logic, Inc. Droplet-based washing
US8637317B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Method of washing beads
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
WO2010027894A2 (en) * 2008-08-27 2010-03-11 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
WO2010042637A2 (en) * 2008-10-07 2010-04-15 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8470606B2 (en) 2006-04-18 2013-06-25 Duke University Manipulation of beads in droplets and methods for splitting droplets
WO2009140671A2 (en) * 2008-05-16 2009-11-19 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for manipulating beads
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US7439014B2 (en) * 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US8658111B2 (en) 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US9675972B2 (en) 2006-05-09 2017-06-13 Advanced Liquid Logic, Inc. Method of concentrating beads in a droplet
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
EP2570811B1 (en) 2007-02-09 2014-11-26 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
US8872527B2 (en) 2007-02-15 2014-10-28 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
US8202686B2 (en) 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
EP2126038B1 (en) 2007-03-22 2015-01-07 Advanced Liquid Logic, Inc. Enzymatic assays for a droplet actuator
WO2011084703A2 (en) 2009-12-21 2011-07-14 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
AU2008237017B2 (en) * 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
US8951732B2 (en) 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
AU2008293652B2 (en) 2007-08-24 2013-02-21 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
WO2009032863A2 (en) 2007-09-04 2009-03-12 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
WO2009052354A2 (en) 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Droplet actuator structures
US20100236928A1 (en) * 2007-10-17 2010-09-23 Advanced Liquid Logic, Inc. Multiplexed Detection Schemes for a Droplet Actuator
WO2009052095A1 (en) 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Reagent storage and reconstitution for a droplet actuator
EP2212683A4 (en) * 2007-10-17 2011-08-31 Advanced Liquid Logic Inc MANIPULATION OF BEADS INTO DROPLETS
US20100236929A1 (en) * 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
US8562807B2 (en) 2007-12-10 2013-10-22 Advanced Liquid Logic Inc. Droplet actuator configurations and methods
MX2010007034A (es) * 2007-12-23 2010-09-14 Advanced Liquid Logic Inc Configuraciones para eyector de gotas y metodos para realizar operaciones de gota.
US8617899B2 (en) * 2008-02-14 2013-12-31 Palo Alto Research Center Incorporated Enhanced drop mixing using magnetic actuation
WO2009137415A2 (en) 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
US20110097763A1 (en) * 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
EP2672259A1 (en) * 2008-05-13 2013-12-11 Advanced Liquid Logic, Inc. Droplet actuator devices, systems and methods
US20110311980A1 (en) * 2008-12-15 2011-12-22 Advanced Liquid Logic, Inc. Nucleic Acid Amplification and Sequencing on a Droplet Actuator
US8877512B2 (en) * 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
KR101332118B1 (ko) * 2009-04-14 2013-11-21 서울대학교산학협력단 컬러 코드화된 자성 구조물
EP2599548B1 (de) * 2009-05-13 2018-07-04 ibidi GmbH Probenträger zum Positionieren einer organischen, biologischen und/oder medizinischen Probe
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US9091649B2 (en) 2009-11-06 2015-07-28 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel; electrophoresis and molecular analysis
JP5882234B2 (ja) * 2010-02-25 2016-03-09 アドバンスト リキッド ロジック インコーポレイテッドAdvanced Liquid Logic, Inc. 核酸ライブラリーの作製方法
EP2553473A4 (en) 2010-03-30 2016-08-10 Advanced Liquid Logic Inc DROPLET OPERATION PLATFORM
EP2567213B1 (en) 2010-05-05 2018-01-24 The Governing Council of the Universtiy of Toronto Method of processing dried samples using digital microfluidic device
EP2588322B1 (en) 2010-06-30 2015-06-17 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
WO2012009320A2 (en) * 2010-07-15 2012-01-19 Advanced Liquid Logic, Inc. Systems for and methods of promoting cell lysis in droplet actuators
EP3193180A1 (en) 2010-11-17 2017-07-19 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
ES2626611T3 (es) 2011-04-05 2017-07-25 Purdue Research Foundation Sistema microfluídico usando micro-aberturas para la detección de alto rendimiento de entidades
EP2707131B1 (en) 2011-05-09 2019-04-24 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
US9140635B2 (en) 2011-05-10 2015-09-22 Advanced Liquid Logic, Inc. Assay for measuring enzymatic modification of a substrate by a glycoprotein having enzymatic activity
KR20140064771A (ko) * 2011-07-06 2014-05-28 어드밴스드 리퀴드 로직, 아이엔씨. 비말 작동기 상의 시약 저장
US8901043B2 (en) 2011-07-06 2014-12-02 Advanced Liquid Logic, Inc. Systems for and methods of hybrid pyrosequencing
WO2013009927A2 (en) 2011-07-11 2013-01-17 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based assays
KR20130009504A (ko) 2011-07-15 2013-01-23 삼성전자주식회사 개구 조절 방법 및 개구 조절 소자
WO2013016413A2 (en) * 2011-07-25 2013-01-31 Advanced Liquid Logic Inc Droplet actuator apparatus and system
EP2776165A2 (en) 2011-11-07 2014-09-17 Illumina, Inc. Integrated sequencing apparatuses and methods of use
US9709469B2 (en) * 2011-11-11 2017-07-18 The Regents Of The University Of California Valveless microfluidic device
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
US9068695B2 (en) * 2012-06-12 2015-06-30 Smrt Delivery Llc Active guidance of fluid agents using magnetorheological antibubbles
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
US9278353B2 (en) * 2012-06-25 2016-03-08 The General Hospital Corporation Sorting particles using high gradient magnetic fields
EP2867645B1 (en) 2012-06-27 2019-06-05 Advanced Liquid Logic, Inc. Techniques and droplet actuator designs for reducing bubble formation
WO2014035979A1 (en) * 2012-08-27 2014-03-06 The Board Of Trustees Of The Leland Stanford Junior University Two-dimensional magnetic trap arrays for droplet control
US9765324B2 (en) * 2012-10-05 2017-09-19 Cornell University Hierarchical magnetic nanoparticle enzyme mesoporous assemblies embedded in macroporous scaffolds
US9863913B2 (en) 2012-10-15 2018-01-09 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
EP2912432B1 (en) 2012-10-24 2018-07-04 Genmark Diagnostics Inc. Integrated multiplex target analysis
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
US9366647B2 (en) * 2013-03-14 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Optical detection for bio-entities
US9636689B2 (en) 2012-12-21 2017-05-02 Luminex Corporation Rotating magnetic actuator
WO2014100189A1 (en) * 2012-12-21 2014-06-26 Luminex Corporation Rotating shielded magnetic actuator
US9492824B2 (en) * 2013-01-16 2016-11-15 Sharp Kabushiki Kaisha Efficient dilution method, including washing method for immunoassay
CN107015013B (zh) 2013-01-31 2018-12-21 卢米耐克斯公司 准备测定的系统和方法
CN105228748B (zh) 2013-03-15 2017-10-10 金马克诊断股份有限公司 用于操纵可变形流体容器的系统、方法和设备
US9341639B2 (en) 2013-07-26 2016-05-17 Industrial Technology Research Institute Apparatus for microfluid detection
EP3033599A4 (en) 2013-08-13 2017-03-22 Advanced Liquid Logic, Inc. Methods of improving accuracy and precision of droplet metering using an on-actuator reservoir as the fluid input
CN105916689A (zh) 2013-08-30 2016-08-31 Illumina公司 在亲水性或斑驳亲水性表面上的微滴操纵
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
WO2015093041A1 (ja) * 2013-12-18 2015-06-25 東洋製罐グループホールディングス株式会社 培養容器、リンパ球の培養方法、培養容器の製造方法、及び固相化装置
TWI510780B (zh) * 2014-03-20 2015-12-01 Univ Nat Chiao Tung 生物檢測設備及生物晶片
EP3137601B1 (en) 2014-04-29 2020-04-08 Illumina, Inc. Multiplexed single cell gene expression analysis using template switch and tagmentation
JP2016067277A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 生体関連物質抽出デバイス及び生体関連物質抽出装置
KR20170066540A (ko) 2014-10-09 2017-06-14 일루미나, 인코포레이티드 액체 중 적어도 하나를 효과적으로 격리시키기 위해 비혼화성 액체를 분리하기 위한 방법 및 디바이스
AU2015346527A1 (en) 2014-11-11 2017-06-29 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
MX2017002359A (es) * 2014-12-02 2017-05-17 Koninklijke Philips Nv Dispersion y acumulacion de particulas magneticas en un sistema de microfluido.
EP3059588B1 (en) * 2015-02-18 2018-01-10 Fundacion Tekniker Method and device for detection and quantification of analytes
EP3061529A1 (en) * 2015-02-24 2016-08-31 AdnaGen GmbH Apparatus and method for the analysis, isolation and/or enrichment of target structures in a fluid sample
CN107847930B (zh) 2015-03-20 2020-06-30 亿明达股份有限公司 在竖直或大致竖直的位置中使用的流体盒
US10695762B2 (en) 2015-06-05 2020-06-30 Miroculus Inc. Evaporation management in digital microfluidic devices
EP3303547A4 (en) 2015-06-05 2018-12-19 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
JP6612421B2 (ja) 2015-08-14 2019-11-27 イラミーナ インコーポレーテッド 遺伝情報を決定するため磁気応答センサを用いるシステム及び方法
EP4368715A2 (en) 2015-08-28 2024-05-15 Illumina, Inc. Nucleic acid sequence analysis from single cells
EP3344389B1 (en) 2015-09-02 2020-06-10 Illumina Cambridge Limited Method of fixing defects in a hydrophobic surface of a droplet actuator
US10450598B2 (en) 2015-09-11 2019-10-22 Illumina, Inc. Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest
US20190217300A1 (en) 2015-10-22 2019-07-18 Illumina, Inc. Filler fluid for fluidic devices
WO2017095845A1 (en) 2015-12-01 2017-06-08 Illumina, Inc. Liquid storage and delivery mechanisms and methods
EP3907295A1 (en) 2015-12-01 2021-11-10 Illumina, Inc. Method for compartmentalizing individual reactions in a line or an array of microwells
EP3440220B1 (en) 2016-04-07 2020-03-25 Illumina, Inc. Methods and systems for construction of normalized nucleic acid libraries
WO2018017755A1 (en) 2016-07-21 2018-01-25 Siemens Healthcare Diagnostics Inc. Magnetic shielding for ivd automation system
WO2018039281A1 (en) 2016-08-22 2018-03-01 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
US11300578B2 (en) 2016-09-19 2022-04-12 Roche Molecular Systems, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
JP2020515815A (ja) 2016-12-28 2020-05-28 ミロキュラス インコーポレイテッド デジタルマイクロ流体デバイスおよび方法
US11883823B2 (en) * 2017-03-31 2024-01-30 The Governing Council Of The University Of Toronto Methods for the filtration of small-volume heterogeneous suspensions in a digital microfluidic device
WO2018187476A1 (en) 2017-04-04 2018-10-11 Miroculus Inc. Digital microfluidic apparatuses and methods for manipulating and processing encapsulated droplets
US11413617B2 (en) 2017-07-24 2022-08-16 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
CA3073058A1 (en) 2017-09-01 2019-03-07 Miroculus Inc. Digital microfluidics devices and methods of using them
DE102018125403A1 (de) * 2017-10-13 2019-04-18 Maxim Integrated Products, Inc. Analytensensor-package mit abgabechemie und mikrofluidkappe
ES2937927T3 (es) 2018-01-29 2023-04-03 St Jude Childrens Res Hospital Inc Método para la amplificación de ácidos nucleicos
US11666914B2 (en) * 2018-05-09 2023-06-06 Tecan Trading Ag Cartridge, electrowetting sample processing system and bead manipulation method
CA3096855A1 (en) 2018-05-23 2019-11-28 Miroculus Inc. Control of evaporation in digital microfluidics
US20210403856A1 (en) * 2018-09-28 2021-12-30 Octane Biotech Inc. Magnetic separation
CN109603942B (zh) * 2019-02-15 2021-12-24 京东方科技集团股份有限公司 微流控装置和微流控方法
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11618021B2 (en) * 2019-06-28 2023-04-04 Wisconsin Alumni Research Foundation Volume-free reagent addition and exclusion-based sample preparation for streamlined multi-step assays
WO2021016614A1 (en) 2019-07-25 2021-01-28 Miroculus Inc. Digital microfluidics devices and methods of use thereof
JP2022547239A (ja) * 2019-09-10 2022-11-10 ビージーアイ シェンチェン カンパニー リミテッド 磁性ビーズのマイクロ流体への作用
KR102308065B1 (ko) 2019-11-08 2021-09-30 경북대학교 산학협력단 입자검출장치 및 이를 이용한 입자검출방법
JP2023540754A (ja) 2020-09-04 2023-09-26 バービーズ インコーポレイテッド 非結合型ビリルビンのためのマイクロ流体に基づく検定評価
CN112934280B (zh) * 2021-02-01 2023-03-10 上海中航光电子有限公司 一种微流控装置及其检测方法
CN113578406A (zh) * 2021-09-07 2021-11-02 北京航空航天大学 液滴转移用微柱表面、微柱表面制备方法及液滴转移方法
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression
DE102022200663A1 (de) 2022-01-21 2023-07-27 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120240A2 (en) * 2006-04-18 2007-10-25 Advanced Liquid Logic, Inc. Droplet-based pyrosequencing
WO2008051310A2 (en) * 2006-05-09 2008-05-02 Advanced Liquid Logic, Inc. Droplet manipulation systems

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US647486A (en) 1899-10-05 1900-04-17 Wellis R Fox Acetylene-gas generator.
US4127460A (en) 1976-10-27 1978-11-28 Desoto, Inc. Radiation-curing aqueous coatings providing a nonadherent surface
US4244693A (en) 1977-02-28 1981-01-13 The United States Of America As Represented By The United States Department Of Energy Method and composition for testing for the presence of an alkali metal
FR2543320B1 (fr) 1983-03-23 1986-01-31 Thomson Csf Dispositif indicateur a commande electrique de deplacement d'un fluide
US5038852A (en) 1986-02-25 1991-08-13 Cetus Corporation Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
KR970007077B1 (ko) * 1987-03-13 1997-05-02 코울터 일렉트로닉스 인커퍼레이티드 광산란 기술을 이용한 다중-부분식별 분석 방법
US6013531A (en) 1987-10-26 2000-01-11 Dade International Inc. Method to use fluorescent magnetic polymer particles as markers in an immunoassay
US5225332A (en) 1988-04-22 1993-07-06 Massachusetts Institute Of Technology Process for manipulation of non-aqueous surrounded microdroplets
GB8917963D0 (en) 1989-08-05 1989-09-20 Scras Apparatus for repeated automatic execution of a thermal cycle for treatment of biological samples
US5266498A (en) 1989-10-27 1993-11-30 Abbott Laboratories Ligand binding assay for an analyte using surface-enhanced scattering (SERS) signal
SE467309B (sv) 1990-10-22 1992-06-29 Berol Nobel Ab Hydrofiliserad fast yta, foerfarande foer dess framstaellning samt medel daerfoer
US5181016A (en) 1991-01-15 1993-01-19 The United States Of America As Represented By The United States Department Of Energy Micro-valve pump light valve display
IL100866A (en) * 1991-02-06 1995-10-31 Igen Inc Luminescence test method and device based on magnetic tiny particles, containing many magnets
US5370842A (en) 1991-11-29 1994-12-06 Canon Kabushiki Kaisha Sample measuring device and sample measuring system
US5498392A (en) 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
WO1994008759A1 (en) 1992-10-16 1994-04-28 Thomas Jefferson University Method and apparatus for robotically performing sanger dideoxynucleotide dna sequencing reactions
US5472881A (en) 1992-11-12 1995-12-05 University Of Utah Research Foundation Thiol labeling of DNA for attachment to gold surfaces
US6152181A (en) 1992-11-16 2000-11-28 The United States Of America As Represented By The Secretary Of The Air Force Microdevices based on surface tension and wettability that function as sensors, actuators, and other devices
DE69429038T2 (de) 1993-07-28 2002-03-21 Pe Corp Ny Norwalk Vorrichtung und Verfahren zur Nukleinsäurevervielfältigung
US5486337A (en) 1994-02-18 1996-01-23 General Atomics Device for electrostatic manipulation of droplets
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
US6673533B1 (en) 1995-03-10 2004-01-06 Meso Scale Technologies, Llc. Multi-array multi-specific electrochemiluminescence testing
US6319668B1 (en) 1995-04-25 2001-11-20 Discovery Partners International Method for tagging and screening molecules
CA2176053C (en) 1995-05-09 1999-10-05 Yoshihiro Kinoshita Method and apparatus for agglutination immunoassay
US6130098A (en) 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US5945281A (en) 1996-02-02 1999-08-31 Becton, Dickinson And Company Method and apparatus for determining an analyte from a sample fluid
IT1291608B1 (it) 1997-04-18 1999-01-11 Sisme Immobiliare S P A Disposizione a motore sincrono monofase a magneti permanenti
DE19717085C2 (de) 1997-04-23 1999-06-17 Bruker Daltonik Gmbh Verfahren und Geräte für extrem schnelle DNA-Vervielfachung durch Polymerase-Kettenreaktionen (PCR)
US5998224A (en) 1997-05-16 1999-12-07 Abbott Laboratories Magnetically assisted binding assays utilizing a magnetically responsive reagent
US20020001544A1 (en) 1997-08-28 2002-01-03 Robert Hess System and method for high throughput processing of droplets
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
EP0965044B1 (en) 1997-11-18 2003-03-19 Bio-Rad Laboratories, Inc. Multiplex flow immunoassays with magnetic particles as solid phase
DE19822123C2 (de) 1997-11-21 2003-02-06 Meinhard Knoll Verfahren und Vorrichtung zum Nachweis von Analyten
US6063339A (en) 1998-01-09 2000-05-16 Cartesian Technologies, Inc. Method and apparatus for high-speed dot array dispensing
GB9820755D0 (en) 1998-09-23 1998-11-18 Xaar Technology Ltd Drop on demand ink jet printing apparatus
US6591852B1 (en) 1998-10-13 2003-07-15 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6565727B1 (en) 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6294063B1 (en) 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing
US6613513B1 (en) 1999-02-23 2003-09-02 Caliper Technologies Corp. Sequencing by incorporation
US6225061B1 (en) * 1999-03-10 2001-05-01 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
EP1041386B1 (en) 1999-03-25 2007-10-17 Tosoh Corporation Analyzer
IT1309430B1 (it) 1999-05-18 2002-01-23 Guerrieri Roberto Metodo ed apparato per la manipolazione di particelle per mezzo delladielettroforesi
US20020051971A1 (en) 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
FR2794039B1 (fr) 1999-05-27 2002-05-03 Osmooze Sa Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
DE19938002A1 (de) 1999-08-11 2001-02-15 Studiengesellschaft Kohle Mbh Beschichtung mit quervernetzten hydrophilen Polymeren
US20030027204A1 (en) 1999-09-03 2003-02-06 Yokogawa Electric Corporation, A Japan Corporation Method and apparatus for producing biochips
US20040209376A1 (en) 1999-10-01 2004-10-21 Surromed, Inc. Assemblies of differentiable segmented particles
ATE328670T1 (de) 1999-11-11 2006-06-15 Trinity College Dublin Vorrichtung und verfahren zur verabreichung von tropfen
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
JP4240729B2 (ja) * 2000-02-14 2009-03-18 日油株式会社 臨床検査用微粒子分散剤、検査用試薬、試薬の製造方法、検査方法および用途
US6924792B1 (en) 2000-03-10 2005-08-02 Richard V. Jessop Electrowetting and electrostatic screen display systems, colour displays and transmission means
JP3442338B2 (ja) 2000-03-17 2003-09-02 株式会社日立製作所 Dna分析装置、dna塩基配列決定装置、dna塩基配列決定方法、および反応モジュール
WO2002007503A1 (en) 2000-07-25 2002-01-31 The Regents Of The University Of California Electrowetting-driven micropumping
CA2314398A1 (en) 2000-08-10 2002-02-10 Edward Shipwash Microarrays and microsystems for amino acid analysis and protein sequencing
US6773566B2 (en) 2000-08-31 2004-08-10 Nanolytics, Inc. Electrostatic actuators for microfluidics and methods for using same
EP1334347A1 (en) 2000-09-15 2003-08-13 California Institute Of Technology Microfabricated crossflow devices and methods
US6453928B1 (en) 2001-01-08 2002-09-24 Nanolab Ltd. Apparatus, and method for propelling fluids
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7211442B2 (en) 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
JP4004018B2 (ja) * 2001-06-29 2007-11-07 株式会社東芝 周波数変換器及びこれを用いた無線通信装置
US6734436B2 (en) 2001-08-07 2004-05-11 Sri International Optical microfluidic devices and methods
US6995024B2 (en) 2001-08-27 2006-02-07 Sri International Method and apparatus for electrostatic dispensing of microdroplets
CA2472029C (en) 2001-11-26 2014-04-15 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
US20040231987A1 (en) 2001-11-26 2004-11-25 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
GB0129068D0 (en) * 2001-12-05 2002-01-23 Koninl Philips Electronics Nv Display device
US6733172B2 (en) 2002-03-11 2004-05-11 The Regents Of The University Of California Magnetohydrodynamic (MHD) driven droplet mixer
US7147763B2 (en) 2002-04-01 2006-12-12 Palo Alto Research Center Incorporated Apparatus and method for using electrostatic force to cause fluid movement
US6958132B2 (en) 2002-05-31 2005-10-25 The Regents Of The University Of California Systems and methods for optical actuation of microfluidics based on opto-electrowetting
FR2841063B1 (fr) 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
JP2006507921A (ja) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
FR2842747B1 (fr) 2002-07-23 2004-10-15 Commissariat Energie Atomique Procede et dispositif pour le criblage de molecules dans des cellules
FR2843048B1 (fr) 2002-08-01 2004-09-24 Commissariat Energie Atomique Dispositif d'injection et de melange de micro-gouttes liquides.
JP4115207B2 (ja) * 2002-08-30 2008-07-09 キヤノン株式会社 インクジェット記録装置
US6989234B2 (en) 2002-09-24 2006-01-24 Duke University Method and apparatus for non-contact electrostatic actuation of droplets
US6911132B2 (en) 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US20040055871A1 (en) 2002-09-25 2004-03-25 The Regents Of The University Of California Use of ion beams for protecting substrates from particulate defect contamination in ultra-low-defect coating processes
US7217542B2 (en) 2002-10-31 2007-05-15 Hewlett-Packard Development Company, L.P. Microfluidic system for analyzing nucleic acids
US7547380B2 (en) 2003-01-13 2009-06-16 North Carolina State University Droplet transportation devices and methods having a fluid surface
GB0304033D0 (en) 2003-02-21 2003-03-26 Imp College Innovations Ltd Apparatus
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
EP1623264B1 (en) 2003-05-06 2015-11-04 Koninklijke Philips N.V. Switchable optical element using surfactants
JP4404672B2 (ja) 2003-05-28 2010-01-27 セイコーエプソン株式会社 液滴吐出ヘッド、液滴吐出ヘッドの製造方法、マイクロアレイ製造装置、及びマイクロアレイの製造方法
JP4432374B2 (ja) 2003-06-17 2010-03-17 セイコーエプソン株式会社 ヘッドキャッピング機構及びこれを備えた液滴吐出装置
JP2005037346A (ja) 2003-06-25 2005-02-10 Aisin Seiki Co Ltd マイクロ流体制御システム
TWI230760B (en) 2003-07-29 2005-04-11 Univ Tsinghua Electrowetting electrode design with electromagnetic field for actuation of the magnetic-beads biochemical detection system
TW594007B (en) 2003-08-15 2004-06-21 Prec Instr Dev Ct Nat Biochemical detection device and method of magnetic fluid bead control combining digital fluid and electromagnetic field
US7767435B2 (en) 2003-08-25 2010-08-03 University Of Washington Method and device for biochemical detection and analysis of subcellular compartments from a single cell
CA2479452C (en) * 2003-08-30 2008-11-04 F.Hoffmann-La Roche Ag Method and device for determining analytes in a liquid
WO2005039499A2 (en) 2003-10-24 2005-05-06 Adhesives Research, Inc. Rapidly disintegrating film
JP2005139011A (ja) 2003-11-04 2005-06-02 Nof Corp 火薬原料及びその製造方法
WO2005047696A1 (en) 2003-11-17 2005-05-26 Koninklijke Philips Electronics N.V. System for manipulation of a body of fluid
US7362432B2 (en) 2004-01-14 2008-04-22 Luminex Corp. Method and systems for dynamic range expansion
EP1707965A1 (en) * 2004-01-15 2006-10-04 Japan Science and Technology Agency Chemical analysis apparatus and method of chemical analysis
FR2866493B1 (fr) 2004-02-16 2010-08-20 Commissariat Energie Atomique Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
US7495031B2 (en) 2004-02-24 2009-02-24 Kao Corporation Process for producing an emulsion
KR100552706B1 (ko) 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
EP1729136B1 (en) 2004-03-23 2012-02-22 Toray Industries, Inc. Method of agitating solution
US7048889B2 (en) 2004-03-23 2006-05-23 Lucent Technologies Inc. Dynamically controllable biological/chemical detectors having nanostructured surfaces
US20050226991A1 (en) 2004-04-07 2005-10-13 Hossainy Syed F Methods for modifying balloon of a catheter assembly
KR100583231B1 (ko) 2004-04-13 2006-05-26 한국과학기술연구원 물방울형 세포 부유액을 이용한 세포 분리 장치
JP2007536634A (ja) 2004-05-04 2007-12-13 フィッシャー−ローズマウント・システムズ・インコーポレーテッド プロセス制御システムのためのサービス指向型アーキテクチャ
US8974652B2 (en) 2004-05-28 2015-03-10 Board Of Regents, The University Of Texas System Programmable fluidic processors
FR2871076A1 (fr) 2004-06-04 2005-12-09 Univ Lille Sciences Tech Dispositif pour desorption par rayonnement laser incorporant une manipulation de l'echantillon liquide sous forme de gouttes individuelles permettant leur traitement chimique et biochimique
US7121998B1 (en) 2004-06-08 2006-10-17 Eurica Califorrniaa Vented microcradle for prenidial incubator
FR2872438B1 (fr) 2004-07-01 2006-09-15 Commissariat Energie Atomique Dispositif de deplacement et de traitement de volumes de liquide
US7693666B2 (en) 2004-07-07 2010-04-06 Rensselaer Polytechnic Institute Method, system, and program product for controlling chemical reactions in a digital microfluidic system
FR2872715B1 (fr) 2004-07-08 2006-11-17 Commissariat Energie Atomique Microreacteur goutte
FR2872809B1 (fr) 2004-07-09 2006-09-15 Commissariat Energie Atomique Methode d'adressage d'electrodes
US7267752B2 (en) 2004-07-28 2007-09-11 University Of Rochester Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis
JP2006058031A (ja) 2004-08-17 2006-03-02 Hitachi High-Technologies Corp 化学分析装置
EP1789195B1 (en) 2004-08-26 2010-10-27 Life Technologies Corporation Electrowetting dispensing devices and related methods
JP4047314B2 (ja) 2004-09-07 2008-02-13 株式会社東芝 微細流路構造体
US9566558B2 (en) 2004-09-09 2017-02-14 Institut Curie Device for manipulation of packets in micro-containers, in particular in microchannels
JP4185904B2 (ja) 2004-10-27 2008-11-26 株式会社日立ハイテクノロジーズ 液体搬送基板、分析システム、分析方法
WO2007044029A2 (en) * 2004-12-03 2007-04-19 Nano Science Diagnostic, Inc. Method and apparatus for low quantity detection of bioparticles in small sample volumes
FR2879946B1 (fr) 2004-12-23 2007-02-09 Commissariat Energie Atomique Dispositif de dispense de gouttes
US7458661B2 (en) 2005-01-25 2008-12-02 The Regents Of The University Of California Method and apparatus for promoting the complete transfer of liquid drops from a nozzle
BRPI0607213B1 (pt) 2005-01-28 2017-04-04 Univ Duke aparelho para manipulação de gotículas em uma placa de circuito impresso
US7454988B2 (en) 2005-02-10 2008-11-25 Applera Corporation Method for fluid sampling using electrically controlled droplets
US20060210443A1 (en) 2005-03-14 2006-09-21 Stearns Richard G Avoidance of bouncing and splashing in droplet-based fluid transport
JP4559274B2 (ja) 2005-03-30 2010-10-06 シャープ株式会社 画像表示装置
FR2884437B1 (fr) 2005-04-19 2007-07-20 Commissariat Energie Atomique Dispositif et procede microfluidique de transfert de matiere entre deux phases immiscibles.
CA2606750C (en) 2005-05-11 2015-11-24 Nanolytics, Inc. Method and device for conducting biochemical or chemical reactions at multiple temperatures
JP4547301B2 (ja) 2005-05-13 2010-09-22 株式会社日立ハイテクノロジーズ 液体搬送デバイス及び分析システム
JP2006317364A (ja) 2005-05-16 2006-11-24 Hitachi High-Technologies Corp 分注装置
WO2006127451A2 (en) 2005-05-21 2006-11-30 Core-Microsolutions, Inc. Mitigation of biomolecular adsorption with hydrophilic polymer additives
JP4500733B2 (ja) 2005-05-30 2010-07-14 株式会社日立ハイテクノロジーズ 化学分析装置
JP2006329904A (ja) 2005-05-30 2006-12-07 Hitachi High-Technologies Corp 液体搬送デバイス及び分析システム
JP4969060B2 (ja) 2005-06-08 2012-07-04 株式会社日立ハイテクノロジーズ 自動分析装置
EP1890815A1 (en) 2005-06-16 2008-02-27 Core-Microsolutions, Inc. Biosensor detection by means of droplet driving, agitation, and evaporation
FR2887305B1 (fr) 2005-06-17 2011-05-27 Commissariat Energie Atomique Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
EP1899048B1 (fr) 2005-07-01 2008-12-17 Commissariat A L'energie Atomique Revetement de surface hydrophobe et a faible hysteresis de mouillage, procede de depot d'un tel revetement, micro-composant et utilisation
FR2888912B1 (fr) 2005-07-25 2007-08-24 Commissariat Energie Atomique Procede de commande d'une communication entre deux zones par electromouillage, dispositif comportant des zones isolables les unes des autres et procede de realisation d'un tel dispositif
US20070023292A1 (en) 2005-07-26 2007-02-01 The Regents Of The University Of California Small object moving on printed circuit board
US7556776B2 (en) 2005-09-08 2009-07-07 President And Fellows Of Harvard College Microfluidic manipulation of fluids and reactions
CA2984772C (en) 2005-09-21 2018-04-03 Luminex Corporation Methods and systems for image data processing
FR2890875B1 (fr) 2005-09-22 2008-02-22 Commissariat Energie Atomique Fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique
US20070075922A1 (en) 2005-09-28 2007-04-05 Jessop Richard V Electronic display systems
US7344679B2 (en) 2005-10-14 2008-03-18 International Business Machines Corporation Method and apparatus for point of care osmolarity testing
WO2007048111A2 (en) 2005-10-22 2007-04-26 Core-Microsolutions, Inc. Droplet extraction from a liquid column for on-chip microfluidics
AU2006330913B2 (en) 2005-12-21 2011-10-27 Meso Scale Technologies, Llc Assay modules having assay reagents and methods of making and using same
EP1984738A2 (en) 2006-01-11 2008-10-29 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US20070207513A1 (en) 2006-03-03 2007-09-06 Luminex Corporation Methods, Products, and Kits for Identifying an Analyte in a Sample
US8613889B2 (en) 2006-04-13 2013-12-24 Advanced Liquid Logic, Inc. Droplet-based washing
US8637317B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Method of washing beads
US8492168B2 (en) 2006-04-18 2013-07-23 Advanced Liquid Logic Inc. Droplet-based affinity assays
US7901947B2 (en) 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US8980198B2 (en) 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8658111B2 (en) 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US7815871B2 (en) 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet microactuator system
US8685754B2 (en) 2006-04-18 2014-04-01 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for immunoassays and washing
US7763471B2 (en) 2006-04-18 2010-07-27 Advanced Liquid Logic, Inc. Method of electrowetting droplet operations for protein crystallization
US8470606B2 (en) 2006-04-18 2013-06-25 Duke University Manipulation of beads in droplets and methods for splitting droplets
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US7816121B2 (en) 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet actuation system and method
US8389297B2 (en) 2006-04-18 2013-03-05 Duke University Droplet-based affinity assay device and system
WO2009140671A2 (en) 2008-05-16 2009-11-19 Advanced Liquid Logic, Inc. Droplet actuator devices and methods for manipulating beads
US7939021B2 (en) 2007-05-09 2011-05-10 Advanced Liquid Logic, Inc. Droplet actuator analyzer with cartridge
WO2009026339A2 (en) 2007-08-20 2009-02-26 Advanced Liquid Logic, Inc. Modular droplet actuator drive
US7822510B2 (en) 2006-05-09 2010-10-26 Advanced Liquid Logic, Inc. Systems, methods, and products for graphically illustrating and controlling a droplet actuator
US8041463B2 (en) 2006-05-09 2011-10-18 Advanced Liquid Logic, Inc. Modular droplet actuator drive
EP2530167A1 (en) 2006-05-11 2012-12-05 Raindance Technologies, Inc. Microfluidic Devices
WO2007146025A2 (en) 2006-06-06 2007-12-21 University Of Virginia Patent Foundation Capillary force actuator device and related method of applications
US7629124B2 (en) 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
JP4844263B2 (ja) * 2006-07-07 2011-12-28 株式会社島津製作所 微量化学反応方法及び装置
JP4881950B2 (ja) 2006-07-10 2012-02-22 株式会社日立ハイテクノロジーズ 液体搬送デバイス
EP1905513A1 (en) 2006-09-13 2008-04-02 Institut Curie Methods and devices for sampling fluids
JP4901410B2 (ja) 2006-10-10 2012-03-21 シャープ株式会社 バックライト装置及び映像表示装置
US9266076B2 (en) 2006-11-02 2016-02-23 The Regents Of The University Of California Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip
FR2909293B1 (fr) 2006-12-05 2011-04-22 Commissariat Energie Atomique Micro-dispositif de traitement d'echantillons liquides
EP2099930B1 (en) 2006-12-13 2015-02-18 Luminex Corporation Systems and methods for multiplex analysis of pcr in real time
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
EP2570811B1 (en) 2007-02-09 2014-11-26 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
US8872527B2 (en) 2007-02-15 2014-10-28 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
WO2008106678A1 (en) 2007-03-01 2008-09-04 Advanced Liquid Logic, Inc. Droplet actuator structures
JP5491203B2 (ja) 2007-03-05 2014-05-14 アドヴァンスト リキッド ロジック インコーポレイテッド 過酸化水素小滴ベースのアッセイ
CA2717154A1 (en) 2007-03-13 2008-09-18 Advanced Liquid Logic, Inc. Droplet actuator devices, configurations, and methods for improving absorbance detection
US8093062B2 (en) 2007-03-22 2012-01-10 Theodore Winger Enzymatic assays using umbelliferone substrates with cyclodextrins in droplets in oil
EP2126038B1 (en) 2007-03-22 2015-01-07 Advanced Liquid Logic, Inc. Enzymatic assays for a droplet actuator
US8202686B2 (en) 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
WO2008116221A1 (en) 2007-03-22 2008-09-25 Advanced Liquid Logic, Inc. Bead sorting on a droplet actuator
US8317990B2 (en) 2007-03-23 2012-11-27 Advanced Liquid Logic Inc. Droplet actuator loading and target concentration
AU2008237017B2 (en) 2007-04-10 2013-10-24 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
US20100206094A1 (en) 2007-04-23 2010-08-19 Advanced Liquid Logic, Inc. Device and Method for Sample Collection and Concentration
US20100130369A1 (en) 2007-04-23 2010-05-27 Advanced Liquid Logic, Inc. Bead-Based Multiplexed Analytical Methods and Instrumentation
US20100087012A1 (en) 2007-04-23 2010-04-08 Advanced Liquid Logic, Inc. Sample Collector and Processor
US20080283414A1 (en) 2007-05-17 2008-11-20 Monroe Charles W Electrowetting devices
US8951732B2 (en) 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
CN101679932A (zh) 2007-06-27 2010-03-24 数字化生物系统 用于热交换化学过程的基于数字微流体的装置
US20100120130A1 (en) 2007-08-08 2010-05-13 Advanced Liquid Logic, Inc. Droplet Actuator with Droplet Retention Structures
WO2009021173A1 (en) 2007-08-08 2009-02-12 Advanced Liquid Logic, Inc. Use of additives for enhancing droplet operations
US8268246B2 (en) 2007-08-09 2012-09-18 Advanced Liquid Logic Inc PCB droplet actuator fabrication
AU2008293652B2 (en) 2007-08-24 2013-02-21 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
WO2009032863A2 (en) 2007-09-04 2009-03-12 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
EP2212683A4 (en) 2007-10-17 2011-08-31 Advanced Liquid Logic Inc MANIPULATION OF BEADS INTO DROPLETS
WO2009052354A2 (en) 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Droplet actuator structures
WO2009052095A1 (en) 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Reagent storage and reconstitution for a droplet actuator
US20100236928A1 (en) 2007-10-17 2010-09-23 Advanced Liquid Logic, Inc. Multiplexed Detection Schemes for a Droplet Actuator
US7621059B2 (en) 2007-10-18 2009-11-24 Oceaneering International, Inc. Underwater sediment evacuation system
US20100236929A1 (en) 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
US8562807B2 (en) 2007-12-10 2013-10-22 Advanced Liquid Logic Inc. Droplet actuator configurations and methods
MX2010007034A (es) 2007-12-23 2010-09-14 Advanced Liquid Logic Inc Configuraciones para eyector de gotas y metodos para realizar operaciones de gota.
US20110104725A1 (en) 2008-05-02 2011-05-05 Advanced Liquid Logic, Inc. Method of Effecting Coagulation in a Droplet
US20110097763A1 (en) 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
EP2672259A1 (en) 2008-05-13 2013-12-11 Advanced Liquid Logic, Inc. Droplet actuator devices, systems and methods
US8846414B2 (en) 2009-09-29 2014-09-30 Advanced Liquid Logic, Inc. Detection of cardiac markers on a droplet actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120240A2 (en) * 2006-04-18 2007-10-25 Advanced Liquid Logic, Inc. Droplet-based pyrosequencing
WO2008051310A2 (en) * 2006-05-09 2008-05-02 Advanced Liquid Logic, Inc. Droplet manipulation systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Application of Magnetic Microspheres for Pyrosequencing on a Digital Microfluidic Platform", Nicole Weaver(http://beta.ee.duke.edu/files/ece/Weaver_Rpt2005.pdf, 2005) *

Also Published As

Publication number Publication date
KR20100014917A (ko) 2010-02-11
EP2570812A3 (en) 2013-12-11
WO2008098236A3 (en) 2009-01-15
ES2423930T3 (es) 2013-09-25
JP2010518403A (ja) 2010-05-27
US20190324026A1 (en) 2019-10-24
DK2111554T3 (da) 2013-07-22
EP2570812A2 (en) 2013-03-20
EP2570811B1 (en) 2014-11-26
AU2008212808B2 (en) 2013-09-12
KR20140078763A (ko) 2014-06-25
CN101627308B (zh) 2013-08-14
CA2856143A1 (en) 2008-08-14
JP5156762B2 (ja) 2013-03-06
JP5833521B2 (ja) 2015-12-16
EP2111554A2 (en) 2009-10-28
AU2008212808A1 (en) 2008-08-14
BRPI0806831A2 (pt) 2014-05-13
EP2570812B1 (en) 2018-07-18
CA2712863A1 (en) 2008-08-14
CN101627308A (zh) 2010-01-13
CA2856143C (en) 2016-11-01
US9046514B2 (en) 2015-06-02
BRPI0806831B8 (pt) 2021-07-27
EP2573562A2 (en) 2013-03-27
JP2013029524A (ja) 2013-02-07
WO2008098236A2 (en) 2008-08-14
US20150314293A1 (en) 2015-11-05
EP2570811A2 (en) 2013-03-20
EP2111554B1 (en) 2013-05-08
EP2573562A3 (en) 2013-10-30
CA2712863C (en) 2015-01-06
KR101503510B1 (ko) 2015-03-18
EP2570811A3 (en) 2013-12-11
BRPI0806831B1 (pt) 2019-06-25
US10379112B2 (en) 2019-08-13
US20100068764A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
KR101431778B1 (ko) 자성 비즈를 이용하는 액적 작동기 장치 및 방법
US8685754B2 (en) Droplet actuator devices and methods for immunoassays and washing
US20170241949A1 (en) Molecular diagnostics platform that uses digital microfluidics and multiplexed bead detection
US8927296B2 (en) Method of reducing liquid volume surrounding beads
JP5894272B2 (ja) 液滴アクチュエーターにおける試薬保存
US20150107995A1 (en) Droplet Actuator Devices and Methods for Manipulating Beads
JP7097895B2 (ja) 試料分析のための方法およびデバイス
WO2013090889A1 (en) Sample preparation on a droplet actuator
Sista Development of a digital microfluidic lab-on-a-chip for automated immunoassay with magnetically responsive beads
RU2543192C2 (ru) Устройство и способ для транспортировки магнитных или намагничивающихся шариков
CA3172579A1 (en) Methods and systems related to highly sensitive assays and by deliveringcapture objects
AU2013267077B2 (en) Droplet Actuator Devices And Methods Employing Magnetic Beads
AU2015268718A1 (en) Molecular Diagnostics Platform
Gottheil Magnetic bead actuated microfluidic immunoassay platform for sensitive detection of biomarkers and pathogens

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 6