RU2543192C2 - Устройство и способ для транспортировки магнитных или намагничивающихся шариков - Google Patents

Устройство и способ для транспортировки магнитных или намагничивающихся шариков Download PDF

Info

Publication number
RU2543192C2
RU2543192C2 RU2012114142/05A RU2012114142A RU2543192C2 RU 2543192 C2 RU2543192 C2 RU 2543192C2 RU 2012114142/05 A RU2012114142/05 A RU 2012114142/05A RU 2012114142 A RU2012114142 A RU 2012114142A RU 2543192 C2 RU2543192 C2 RU 2543192C2
Authority
RU
Russia
Prior art keywords
sets
balls
conductive wires
current
transportation
Prior art date
Application number
RU2012114142/05A
Other languages
English (en)
Other versions
RU2012114142A (ru
Inventor
ТОНДЕР Якоб Маринус Ян ДЕН
ДЕР ЗАГ Питер Ян ВАН
Хао Чиэх ЧАО
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2012114142A publication Critical patent/RU2012114142A/ru
Application granted granted Critical
Publication of RU2543192C2 publication Critical patent/RU2543192C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/034Component parts; Auxiliary operations characterised by the magnetic circuit characterised by the matrix elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

Настоящее изобретение относится к устройству (24) для транспортировки магнитных или намагничивающихся шариков (10) по поверхности (12) транспортировки. Оно содержит камеру (26), содержащую магнитные или намагничивающиеся шарики (10) в текучей среде (28), транспортный элемент (14), включающий в себя упомянутую поверхность (12) транспортировки внутри упомянутой камеры (26), по которой должны транспортироваться упомянутые шарики (10), структуру (20) токопроводящих проводов, содержащую, по меньшей мере, два комплекта (20a, 20b, 20c) изгибающихся токопроводящих проводов, установленных на стороне упомянутого транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки, причем упомянутые, по меньшей мере, два комплекта (20a, 20b, 20c) смещены относительно друг друга, по меньшей мере, в двух направлениях, и переключающее устройство (32) для индивидуального переключения токов (Ia, Ib, Ic), подаваемых по отдельности на упомянутые комплекты токопроводящих проводов согласно схеме управления током, что приводит к транспортировке упомянутого шарика (10) по упомянутой поверхности (12) транспортировки. В предпочтительных вариантах воплощения дополнительно обеспечено стационарное, по существу однородное магнитное поле (30) в направлении, по существу параллельном поверхности (12) транспортировки. 3 н. и 10 з.п. ф-лы, 10 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к устройству и соответствующему способу для транспортировки магнитных или намагничивающихся шариков по рабочей поверхности транспортирующего устройства.
Кроме того, настоящее изобретение относится к микроструйному устройству, в частности к устройству для секвенирования ДНК, для управления образцом, содержащим магнитные или намагничивающиеся шарики, в частности, для секвенирования или тестирования нуклеиновой кислоты.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Известно, что магнитные частицы («шарики»), внедренные в жидкость, можно использовать для транспортировки тест-молекул по поверхности, которая специфическим образом взаимодействует с комплементарной молекулой-мишенью (например, одиночной скрученной зондовой молекулой ДНК, взаимодействующей с комплементарной ДНК-мишенью). При взаимодействии с исследуемой молекулой и, например, с использованием оптических или электрохимических измерений, можно определять количество молекул-мишеней по шарикам, или содержащим шарики в определенном объеме. Интерес к использованию магнитных шариков состоит в том, что ими можно управлять с использованием магнитных полей, независимо от движения текучей среды. Таким образом, породить важное перемещение шариков относительно текучей среды и, следовательно, большую вероятность связывания молекулы-мишени с тест-молекулой, закрепленной на поверхности шарика. Затем можно магнитным способом извлекать шарики в место обнаружения/накопления. Исторически, шарики локально фиксировались с использованием внешних магнитов или перемещались с использованием механически перемещающих внешних магнитов. Последнюю технологию можно использовать, например, для изготовления перемешивающих устройств и в методах иммуноанализа.
Здесь и далее рассматриваются частицы меньше 100 микрон, которые также часто называют шариками. Шарики обычно имеют размер в диапазоне 0,1-50 микрон, например порядка 1 микрона.
«Разделение» магнитных шариков означает, что жидкий поток, содержащий шарики, проходит зону с большим магнитным полем (градиентом), и что магнитные шарики отфильтровываются (отделяются) полем. Магнитная транспортировка шариков является основной для приведения шариков в четко определенное местоположение внутри микроструйного контура, например вблизи устройства для обнаружения магнитных шариков. «Транспортировка» означает, что шарики эффективно перемещаются под действием магнитной силы, т.е. с использованием магнитного поля, и даже не удерживаются магнитным полем, исходящим от проходящего мимо жидкого раствора (=сепарация). Тем не менее управление этими шариками в целом, и их транспортировка, в частности, является трудной задачей, поскольку эффективная относительная магнитная восприимчивость (сверх)парамагнитных частиц достаточно мала (обычно <<1, из-за эффектов размагничивания в основном сферических частиц), и магнитный объем частиц также мал. Это объясняет, почему для разделения, транспортировки и размещения магнитных шариков было использовано в основном большое поле (механически перемещающихся) постоянных магнитов или крупных электромагнитов. В другой работе были продемонстрированы микроструктурные проводники, приводимые в действие крупными токами, для описания раствора, применяемого для захвата и переноса магнитных шариков. Эти устройства позволяют точно размещать и транспортировать магнитные шарики на расстояния более чем 10-100 мкм за одно событие приведения в действие.
В US 2005/284817 A1 раскрыто устройство для переноса магнитных или намагничивающихся шариков в капиллярной камере, содержащей постоянный магнит или электромагнит, подвергающий капиллярную камеру почти однородному магнитному полю, для приложения постоянного магнитного момента к шарикам. Рядом с капиллярной камерой для приложения комплементарного магнитного поля к шарикам, параллельного или антипараллельного упомянутому почти однородному магнитному полю, для управления шариками применяют, по меньшей мере, одну планарную катушку и, предпочтительно, сеть перекрывающихся катушек. Обеспечена схема для переключения тока, прилагаемого к катушке (катушкам) для преобразования поля, получаемого данным способом, для селективного приложения к шарикам движущей силы притяжения или отталкивания. Устройство применяют для транспортировки шариков, для осуществления химических или биохимических реакций или испытаний, принятых, например, в испытаниях в клинической биохимии в целях медицинской диагностики.
Поскольку проект NIH (National Health Institute, Национального института здравоохранения) секвенирование всего генома человека с конца 1990-х, технологические разработки в технологии секвенирования шли очень быстро, в частности, поскольку в 2005 г. В 454 номере «Науки о жизни» (454 Life Sciences) (ныне Роше (Roche)) было интенсифицировано внедрение разработок 2-го поколения секвенирующих машин (см. M. Margulies, M. Egholm et al., Nature, 437 (2005) 376-380). В настоящее время многие другие компании также вывели на рынок секвенирующие машины 2-го поколения, и является желательным снижение стоимости секвенирования ДНК даже настолько, чтобы секвенирование ДНК стало клиническим инструментом в диагностике, например, рака.
Одной из основных стратегий для снижения затрат состоит также и в миниатюризации секвенирующих устройств, в частности, путем укрупнения этапов, которые необходимы для секвенирования в микроструйном устройстве. При таком подходе, ДНК, подлежащую секвенированию, а также реагенты, участвующие в реакциях секвенирования, обрабатывают в микроканалах и камерах субмиллиметровых размеров. Обработку можно осуществлять различными способами, например, с использованием микронасосов и клапанов, встроенных в микроприводы, электрокинетических движущих сил, магнитных движущих сил, или путем использования поверхностного натяжения.
В некоторых секвенирующих технологиях следующего поколения в магнитных микрошариках использованы субстраты для нитей ДНК, подлежащих секвенированию. В частности, в идеале каждый одиночный шарик должен иметь одну уникальную нить ДНК, прикрепленную к нему, то есть скопированную миллионы раз на одном и том же шарике (с использованием полимеразной цепной реакции (Polymerase chain reaction PCR)). Как правило, для умножения одних и тех же нитей во много раз на одном шарике для повышения отношения амплитуды измеряемого сигнала к амплитуде помех используют метод ПЦР-мультипликаций с использованием эмульсионных шариков (emPCR). При миниатюризации такой технологии, было бы очень предпочтительным получить возможность управлять шариками контролируемым образом, с использованием магнитных полей, генерируемых локально в устройстве. Это может дать возможность транспортировать шарики с определенными нитями ДНК, прикрепленными к ним, для конкретных перемещений в устройстве, при контроле их точного местоположения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является обеспечение устройства и способа для транспортировки магнитных или намагничивающихся шариков по поверхности транспортировки, посредством которого множество электрических сигналов и соединений, необходимые для генерирования сил, минимизируются, но которое придает управлению шариками большую гибкость.
Согласно первой особенности настоящего изобретения представлено устройство для транспортировки магнитных или намагничивающихся шариков по поверхности переноса, содержащее:
- камеру, содержащую магнитные или намагничивающиеся шарики в текучей среде,
- транспортный элемент, включающий в себя упомянутую поверхность транспортировки внутри упомянутой камеры, по поверхности которой транспортируются упомянутые шарики,
- структуру токопроводящих проводов, содержащую, по меньшей мере, два комплекта изгибающихся токопроводящих проводов, установленные со стороны упомянутого транспортного элемента, противоположной упомянутой поверхности транспортировки, причем упомянутые, по меньшей мере, два комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях,
- переключающий блок для раздельного переключения токов, прикладываемых по отдельности к упомянутым комплектам токопроводящих проводов согласно схеме управления током, вызывающей транспортировку упомянутых шариков по упомянутой поверхности транспортировки.
Согласно еще одной особенности настоящего изобретения представлен соответствующий способ.
Согласно еще одной особенности настоящего изобретения представлено микроструйное устройство, в частности устройство для секвенирования ДНК, для управления образцом, содержащим магнитные или намагничивающиеся шарики, в частности, для секвенирования или тестирования нуклеиновой кислотой, содержащее устройство для переноса магнитных или намагничивающихся шариков по поверхности транспортировки согласно настоящему изобретению.
Предпочтительные варианты воплощения изобретения заданы в зависимых пунктах формулы изобретения. Следует понимать, что заявленный способ и заявленное микроструйное устройство имеет аналогичные и/или идентичные предпочтительные варианты воплощения, что и заявленное устройство, и как задано в зависимых пунктах формулы изобретения.
Настоящее изобретение основано на идее использования структуры токопроводящих проводов, состоящей из изгибающихся токопроводящих проводов, которые пространственно смещены относительно друг друга, и которую приводят в действие с использованием специальных схем управления, для генерирования магнитных сил, приводящих в движение шарики контролируемым образом, с использованием устройства. За счет использования пространственного смещения изгибающихся токопроводящих проводов и подходящего обеспечения управляющих токов, т.е. подходящего переключения токов, подаваемых к отдельным изгибающимся токопроводящим проводам, можно получить желаемое направление и скорость движения шариков. Таким путем можно минимизировать количество электрических сигналов и соединений, необходимых для генерирования сил, но, тем не менее, достигается большая гибкость управления шариками.
Изобретение, в частности, облегчает управление всеми вместе суперпарамагнитными шариками на поверхности транспортировки по любой желаемой траектории. Структура содержит, по меньшей мере, две пары изгибающихся токопроводящих проводов, и требует наличия только четырех электрических соединений для реализации полной свободы перемещения шариков. При применении надлежащих процедур управления, как было предложено согласно предпочтительным вариантам воплощения, шарики можно не только перемещать по любому пути, но также можно заставлять «отскакивать» на поверхности переноса или перепрыгивать (микро-)лунки на поверхности переноса.
Изобретение применяют для любой (микроструйной) системы, в которой всеми вместе шариками не нужно контролируемым образом управлять на поверхности. В частности, изобретение можно применять в устройствах для секвенирования ДНК, для управления этапами секвенирования, задействованными в процессе, а также этапами приготовления образца для тестирования нуклеиновой кислоты. Кроме того, устройство, систему или способ согласно настоящему изобретению можно использовать в магнитном биодатчике, используемом для нескольких типов биохимических анализов, например, в анализе связывания/развязывания, в сэндвичевом анализе, анализе конкуренции, анализе вытеснения, ферментном анализе, иммуноанализе, и т.д. Такая система магнитного биодатчика или устройство может выявлять молекулярно-биологические мишени. Следует отметить, что молекулярные мишени часто определяют концентрацию и/или присутствие крупных частиц, например клеток, вирусов или фракций клеток или вирусов, экстракта тканей, и т.д.
Транспортный элемент может представлять собой отдельный элемент в камере, но он может также представлять собой часть стенки камеры, т.е. поверхность транспортировки также может представлять собой внутреннюю поверхность стенки камеры. Кроме того, структуру токопроводящих проводов можно помещать в камеру или за пределы камеры, в частности, если поверхность транспортировки представляет собой внутреннюю поверхность стенки камеры.
Согласно предпочтительному варианту воплощения упомянутые комплекты изгибающихся токопроводящих проводов по существу устанавливают в плоскости проводов, параллельной упомянутой поверхности транспортировки, в частности, на поверхности упомянутого транспортного элемента, противоположной упомянутой поверхности транспортировки. Следовательно, токопроводящие провода размещают, насколько возможно, близко к поверхности транспортировки и к шарикам, подлежащим транспортировке. Тогда как обычно бывает возможным, чтобы комплекты изгибающихся токопроводящих проводов были смещены по всем трем пространственным направлениям, кроме того, является предпочтительным, чтобы комплекты изгибающихся токопроводящих проводов в упомянутой плоскости проводов были смещены по двум ортогональным направлениям. Конечно, коротких замыканий между проводами из различных комплектов необходимо избегать, и, таким образом, при пересечении проводов из различных комплектов необходимо предпринять надлежащие меры для предотвращения таких коротких замыканий. Например, между проводами у этих пересечений помещают изоляционный материал, или один из проводов локально у точки пересечения смещают в третьем направлении, во избежание короткого замыкания.
Величина смещения зависит от размера шариков, размера проводов и силы тока (соответственно, силы, которая должна быть получена за счет токов, текущих по токопроводящим проводам). Типичные значения для смещения составляют 10-50 микрон для типичного размера шарика в 1 микрон. Как правило, типичные смещения имеют порядок величины больший, чем размер шарика.
Существуют различные варианты воплощения для оптимизации транспортировки шариков. Например, в одном варианте воплощения структура токопроводящих проводов содержит, по меньшей мере, три комплекта изгибающихся токопроводящих проводов, установленных со стороны упомянутого транспортного элемента, противоположной упомянутой поверхности транспортировки, причем упомянутые, по меньшей мере, три комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях. Таким путем можно получить определенное направление силы, действующей на шарики.
Согласно другому варианту воплощения устройство содержит средство для генерирования стационарного магнитного поля, для генерирования стационарного, практически однородного магнитного поля в направлении, практически параллельном поверхности транспортировки, причем упомянутая структура токопроводящих проводов содержит два комплекта изгибающихся токопроводящих проводов. Стационарное и однородное внешнее магнитное поле можно получать, например, с использованием конструкции внешнего постоянного магнита или электромагнита (например, конструкции катушки).
Преимущество трехкомплектной конфигурации состоит в том, что для достижения полной гибкости управления перемещением шариков нет необходимости в генерировании дополнительного внешнего магнитного поля. Преимущество двухкомплектной конфигурации состоит в том, что технологии управления и управление электроникой становится проще. Преимущество дополнительного внешнего поля состоит в том, что оно повышает намагниченность шариков, вследствие чего скорости шариков, которых можно достигнуть, имеют примерный порядок величины больший, чем без использования внешнего поля.
В зависимости от характера движения шариков, или пути, по которому их следует направлять по поверхности транспортировки, соответствующим образом адаптируют подходящую схему переключения для переключения токов, подаваемых для каждого из комплектов токопроводящих проводов. Например, можно закрепить различные схемы переключения, которые могут быть выбраны пользователем, но они также возможны в варианте воплощения, в котором пользователь имеет свободу и возможности для индивидуальной модификации установочных параметров схемы переключения и индивидуального контроля токов, подаваемых на различные комплекты токопроводящих проводов. В варианте воплощения, в котором использовано дополнительное внешнее магнитное поле, также является возможным, чтобы пользователь имел дополнительную свободу для управления напряженностью и/или направлением внешнего магнитного поля, например, если электромагнит используется для генерирования внешнего поля.
Перенос шариков по поверхности переноса в одном направлении достигается с помощью варианта воплощения, согласно которому переключающий блок адаптируют для переключения упомянутых токов, прикладываемых по отдельности к упомянутым комплектам токопроводящих проводов, таким образом, чтобы на комплекты по отдельности подавался сигнал периодического тока, содержащий фазу с ненулевым током и фазу с нулевым током, причем сигналы тока для каждого из комплектов должны быть смещены по времени таким образом, чтобы в одном сигнале тока в данный момент времени присутствовали только неотрицательные токи. Форма сигнала тока представляет собой в основном прямоугольную волну, однако также возможны синусоидальная, треугольная или пилообразная форма волны. Полярность ненулевого тока может быть либо положительной, либо отрицательной, в зависимости от конкретного варианта воплощения, как будет разъяснено ниже.
Является предпочтительным, чтобы сигналы тока, подаваемые на упомянутые отдельные комплекты, были идентичны, но смещены во времени, причем смещение во времени должно быть согласованным со смещением комплектов токопроводящих проводов в направлении переноса таким образом, чтобы смещение во времени было наибольшим для сигналов тока, которые подают на комплекты, смещенные дальше всего.
Было обнаружено, что шарики будут следовать по желаемому направлению в соответствии с определенной частотой переключения. Если частота переключения токов, подаваемых на отдельные токопроводящие провода, слишком высока, то шарики нельзя будет поддерживать где-либо, из-за ограниченной скорости, которую они могут развивать, что вызвано равновесием силы магнитного поля и вязкостного сопротивления. Это соотношение критическая скорость/ частота обычно определяется экспериментально, но также могут быть обеспечены предварительные настройки для использования, например, в качестве настроек, задаваемых по умолчанию для различных шариков. На практике, для наиболее эффективной транспортировки является желательным, чтобы для получения максимально возможной скорости транспортировки частота переключения была равна этой критической частоте переключения (или даже ниже).
Как правило, внешнее поле бывает стационарным. Если использование поля состоит в генерировании его за счет электромагнитных катушек, то, тем не менее, существует возможность его контролирования. Это означает, что в ситуациях, когда в проводе переключается направление тока, направление внешнего поля может меняться на противоположное (вместо направления токопроводящего провода), с достижением того же эффекта. В этом случае переключение внешнего поля должно быть надежно синхронизировано с переключением токов.
В этом случае, т.е. если внешнее магнитное поле будет обеспечено электромагнитом, то станет более возможным включение внешнего магнитного поля только при необходимости транспортировки шариков. Если никакой транспортировки шариков не требуется, то внешнее магнитное поле можно отключить для сохранения энергии. В этом случае, в ходе транспортировки внешнее магнитное поле может быть включено и поддерживаться в стационарном состоянии (и более или менее однородном), но с течением времени (т.е. в течение времени, когда оно включено и выключено), внешнее магнитное поле можно не рассматривать как полностью стационарное во времени.
В других предпочтительных вариантах воплощения можно выбирать направление транспортировки шариков и/или изменение направления транспортировки шариков в их взаимодействии. Для достижения этого переключающий блок адаптируют для выбора полярности сигналов тока и/или для переключения полярности, по меньшей мере, одного сигнала тока, что приводит к желаемому выбору или изменению направления переноса шариков.
Для достижения не только одномерной транспортировки, но и для получения свободы двумерной транспортировки шариков по поверхности транспортировки в любом желаемом направлении упомянутая структура токопроводящих проводов содержит первую группу, по меньшей мере, из двух первых комплектов изгибающихся токопроводящих проводов, установленных на стороне упомянутого транспортного элемента, противоположной упомянутой поверхности транспортировки, причем упомянутые, по меньшей мере, два первых комплекта смещают относительно друг друга, по меньшей мере, в двух направлениях, а вторую группу, по меньшей мере, из двух вторых комплектов изгибающихся токопроводящих проводов устанавливают на той же стороне упомянутого транспортного элемента, причем упомянутые, по меньшей мере, два вторых комплекта смещают относительно друг друга, по меньшей мере, по двум направлениям.
При этом, упомянутую первую группу и упомянутую вторую группу токопроводящих проводов устанавливают таким образом, чтобы они поворачивались, в частности, на 90° относительно друг друга вокруг оси вращения, перпендикулярной упомянутой поверхности транспортировки.
В других применениях может быть желательным заставлять шарики «прыгать» по поверхности транспортировки, или даже впрыгивать и выпрыгивать из небольших углублений. Для достижения этого является предпочтительным, чтобы переключающий блок был адаптирован для переключения упомянутых токов, прикладываемых по отдельности к упомянутым комплектам токопроводящих проводов, таким образом, чтобы на эти комплекты по отдельности подавался сигнал периодического тока, содержащий фазу с положительным током и фазу с отрицательным током, причем сигналы тока для каждого отдельного комплекта должны быть смещены во времени таким образом, чтобы положительная и/или отрицательная фаза различных сигналов тока, в частности сигналов тока, подаваемых на соседние токопроводящие провода, перекрывали друг друга. Форма сигналов тока обычно представляет собой прямоугольную волну, однако также возможна синусоидальная, треугольная или пилообразная форма волны.
Согласно другому варианту воплощения предусмотрен комплект катушек для генерирования почти однородного магнитного поля в направлении, почти параллельном поверхности транспортировки, и средство управления катушками для управления комплектом катушек для изменения магнитного поля в пределах плоскости, параллельной поверхности транспортировки, в частности, для смены на противоположное направления магнитного поля между двумя противоположными направлениями. Следовательно, у внешнего магнитного поля можно переключать полярность, а не ток, текущий по проводам, как обеспечено в других вариантах воплощения.
Согласно другой своей особенности настоящее изобретение относится к блоку управления для подачи управляющих токов на устройство для переноса магнитных или намагничивающихся шариков по поверхности транспортировки согласно настоящему изобретению. Упомянутый блок управления адаптирован для раздельного переключения токов, подаваемых по отдельности на упомянутые комплекты токопроводящих проводов согласно схеме формирования тока, что приводит к транспортировке упомянутых шариков по упомянутой поверхности транспортировки, причем упомянутый блок управления адаптирован для переключения упомянутых токов таким образом, чтобы комплекты были по отдельности обеспечены сигналом периодического тока, содержащим фазу с ненулевым током и фазу с нулевым током. Существуют различные варианты воплощения для блока управления для регулирования управляющих токов, в частности, для переключения тока, подаваемого на токопроводящие провода, как было разъяснено выше, и как будет проиллюстрировано со ссылкой на следующие чертежи.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие особенности изобретения станут ясными и будут освещены со ссылкой на вариант (варианты) воплощения, описанные здесь и далее. В следующих чертежах:
Фиг.1 показывает диаграммы, иллюстрирующие транспортировку шариков по поверхности транспортировки за счет использования токопроводящих проводов,
Фиг.2 показывает три комплекта токопроводящих проводов и подходящую схему управления током,
Фиг.3 показывает графики, иллюстрирующие влияние дополнительного внешнего магнитного поля,
Фиг.4 показывает поперечное сечение через первый вариант воплощения устройства согласно настоящему изобретению, включающее в себя три комплекта изгибающихся токопроводящих проводов и соответствующую схему управления током согласно первому варианту воплощения настоящего изобретения,
Фиг.5 показывает поперечное сечение через второй вариант воплощения устройства согласно настоящему изобретению, включающее в себя два комплекта изгибающихся токопроводящих проводов и соответствующую схему управления током согласно второму варианту воплощения настоящего изобретения,
Фиг.6 показывает схему управления током согласно третьему варианту воплощения настоящего изобретения,
Фиг.7 показывает схему управления током согласно четвертому варианту воплощения настоящего изобретения,
Фиг.8 показывает сочетание двух пар двух комплектов изгибающихся токопроводящих проводов согласно пятому варианту воплощения настоящего изобретения,
Фиг.9 показывает схему управления током согласно пятому варианту воплощения настоящего изобретения, и
Фиг.10 показывает вариант воплощения микроструйной системы для секвенирования ДНК согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Хорошо известно, что один токопроводящий провод порождает магнитное поле, которое притягивает суперпарамагнитные шарики к проводу. Поэтому можно транспортировать магнитные шарики 10 по поверхности 12 транспортировки транспортного элемента 14, с использованием нескольких встроенных токопроводящих проводов 16a, 16b, 16c, 16d, нанесенных на подложку 17, как изображено на Фиг.1A. В результате последовательного использования токопроводящих проводов 16a, 16b, 16c, 16d, порождающих локальные магнитные поля B1, шарики 10 притягиваются к соответствующим токопроводящим проводам 16a, 16b, 16c, 16d. Поэтому они перемещаются слева направо по поверхности 12 транспортировки. Как изображено на Фиг.1A, провода 16a, 16b, 16c, 16d могут быть покрыты изолирующей пленкой, действующей как транспортный элемент 14, верх которого представляет собой поверхность 12 транспортировки.
Магнитная сила, действующая на шарики 10, может быть усилена за счет приложения однородного магнитного поля He, как показано на Фиг.1B, с использованием внешнего источника 18, например, постоянного магнита, в дополнение к локальным магнитным полям B1, генерируемым токопроводящими проводами 16a, 16b, 16c, 16d. Выгода от этого внешнего магнитного поля He состоит в том, что (однородное) внешнее магнитное поле He повышает намагниченность суперпарамагнитных шариков 10 и, следовательно, значительно повышает скорость шариков 10, в частности, на порядок величины. Этот способ транспортировки магнитных шариков 10 по поверхности известен, и он был использован для управления магнитными шариками 10 в микроструйных устройствах.
Знание этого принципа вызывает следующее предложение для реализации общей транспортировки магнитных шариков. Фиг.2A и 2B показывают три комплекта 20a, 20b, 20c изгибающихся токопроводящих проводов, которые наносят на поверхность транспортировки. Фиг.2A показывает эскиз, Фиг.2В показывает оптическую микрофотографию реализованных проводов (в качестве примера, проводов, имеющих толщину 5 мкм и интервал между проводами 1 мкм). У точек поворота, например точек поворота 22, провода пересекаются через «мост», во избежание короткого замыкания.
Последовательный и раздельный выбор проводов из трех комплектов 20a, 20b, 20c с использованием подходящей схемы управления током, как показано на Фиг.2C, приводит к транспортировке шариков слева направо по поверхности переноса. Токи Ia, Ib, Ic, показанные в зависимости от времени t, соответственно подают на три комплекта 20a, 20b, 20c изгибающихся токопроводящих проводов и контролируют таким образом, чтобы одновременно только один из токов Ia, Ib, Ic был ненулевым, тогда как другие два тока должны быть нулевыми. Преимущество этого подхода состоит в том, что к внешним устройствам тогда необходимо подключать только три электрических провода (т.е. три комплекта 20a, 20b, 20c изгибающихся токопроводящих проводов).
Этот подход работает, если никакого внешнего магнитного поля не приложено, что было доказано экспериментально. Однако если внешнее магнитное поле приложено, то ситуация будет другой. В этом случае именно природа силы магнитного поля зависит от ориентации тока, текущего по проводу, относительно направления внешнего магнитного поля. Это можно объяснить со ссылкой на Фиг.3. Фиг.3A показывает поперечный разрез токопроводящего провода 22, где ток I ориентирован вглубь страницы; то есть локальное магнитное поле B1, генерируемое проводом 22, направлено по часовой стрелке. Дополнительно, внешнее магнитное поле He направлено слева направо. Под действием общего магнитного поля (внешнее магнитное поле плюс локальное магнитное поле) суперпарамагнитный шарик, расположенный на поверхности (в этом случае, например, на 1 мкм выше провода 22), может претерпевать силу действия магнитного поля F, как изображено на графике на Фиг.3A, являющуюся функцией горизонтального местоположения x, где местоположение 0 находится в центре провода 22. Положительная сила F здесь означает силу в направлении (положительном) x. Таким образом, шарик притягивается к проводу 22.
Ситуация отличается, когда ток I направлен наружу из страницы, как изображено на Фиг.3B. Локальное магнитное поле B1 теперь будет ориентировано против часовой стрелки, и сила теперь отталкивает шарик от провода 22.
Этот эффект имеет последствия для работы устройства, изображенного на Фиг.2. Благодаря изгибающейся структуре проводов 20a, 20b, 20c, ток (а следовательно, и ориентация локального магнитного поля) изменяется при каждом повороте, и поэтому изменяет направление по отношению к стационарному однородному внешнему магнитному полю. Поэтому, в дополнение к внешнему магнитному полю, при каждом повороте ситуация изменяется от той, что изображена на Фиг.3A, до той, что изображена на Фиг.3B. То есть она изменяется от притяжения до отталкивания и наоборот. Это означает, что использование схемы управления током, изображенной на Фиг.2C, не приведет к перемещению шариков слева направо. На каждом цикле будет скорее происходить то, что шарики будут перескакивать на два шага направо (от провода из комплекта 20a до соседнего провода из комплекта 20b, и от упомянутого провода из комплекта 20b до соседнего провода из комплекта 20c), а затем возвращаться назад к исходному проводу из комплекта 20a, что представляет собой больший шаг назад. Это также можно было наблюдать экспериментально.
Следовательно, еще одним признаком настоящего изобретения является то, что шарики можно заставлять двигаться по одному направлению, параллельному поверхности транспортировки, например, слева направо на Фиг.2A, если направление тока изменяется в данный момент. Это будет более подробно объяснено со ссылкой на Фиг.4, где показано поперечное сечение (Фиг.4A) через первый вариант воплощения устройства 24 согласно настоящему изобретению, структура токопроводящего провода 20 (Фиг.4B) и схема управления током (Фиг.4C) для использования в этом варианте воплощения.
Устройство 24, показанное на Фиг.4A, содержит камеру 26, содержащую магнитные или намагничивающиеся шарики 10 в текучей среде 28. Транспортный элемент 14, включающий в себя упомянутую поверхность 12 транспортировки, по которой должны транспортироваться упомянутые шарики 10, устанавливают внутри упомянутой камеры 26. На стороне упомянутого транспортного элемента 14, противоположной упомянутой поверхности 12 транспортировки, устанавливают структуру токопроводящего провода 20, содержащую три комплекта 20a, 20b, 20c изгибающихся токопроводящих проводов. Как видно на Фиг.4B, упомянутые три комплекта 20a, 20b, 20c смещены относительно друг друга, по меньшей мере, по двум направлениям, в частности, по x- и y-направлению, с образованием площади проводов 30, параллельной поверхности 12 транспортировки.
Следует отметить, что подложка 17 также может быть заменена на внутреннюю боковую стенку камеры 26, таким образом, чтобы токопроводящие провода можно было наносить непосредственно на внутреннюю боковую стенку. Кроме того, токопроводящие провода можно также наносить на внешнюю боковую стенку камеры 26, вследствие чего противолежащая внутренняя боковая стенка камеры 26 служит в качестве поверхности транспортировки.
Для генерирования и переключения по отдельности токов Ia, Ib, Ic, которые по отдельности подают на упомянутые комплекты 20a, 20b, 20c токопроводящих проводов согласно схеме управления током, обеспечен переключающий блок 32. Упомянутый переключающий блок 32 также можно рассматривать как блок управления для подачи управляющих токов на токопроводящие провода.
Соответствующая схема управления показана на Фиг.4C для трех токов Ia, Ib, Ic, которые подают на три комплекта 20a, 20b, 20c токопроводящих проводов. Переключая токи Ia, Ib, Ic с положительных на отрицательные, природу силы магнитного поля на конкретном участке провода можно переключать с отталкивающей на притягивающую, что приводит к транспортировке упомянутых шариков 10 по упомянутой поверхности 12 транспортировки в x-направлении.
Таким образом, зависимость природы силы магнитного поля от относительной ориентации тока и, в некоторых дополнительных обеспеченных вариантах воплощения, стационарное однородное внешнее магнитное поле можно успешно использовать путем надлежащего управления током.
Для примера, следует привести некоторые размеры элементов, используемых согласно настоящему изобретению.
Магнитные шарики могут представлять собой намагничивающиеся или магнитные, в частности суперпарамагнитные, шарики. В предпочтительном варианте воплощения используют полимерные шарики с магнетитовыми наночастицами в них. Типичный диапазон размеров частиц составляет 0,5-50 мкм, в частности 1-20 мкм.
Провода изготавливают из проводящего материала, предпочтительно из металла (например, Cu или Al), из-за использования относительно большого тока (плотности). Типичная ширина проводов составляет 1-10 мкм. Типичный интервал составляет 1-10 мкм. Типичная толщина составляет 0,5-5 мкм. Провода могут быть получены на подложке (стеклянной или кремниевой) в виде различных слоев, с использованием существующих технологий тонкопленочного осаждения и структурирования.
Типичные используемые токи составляют 5-100 мА (например, 10-30 мА), что приводит к образованию кругового неоднородного магнитного поля, создаваемому локально вокруг провода. Типичная частота переключения между проводами составляет 0,1-10 Гц.
Внешнее магнитное поле обычно имеет напряженность в диапазоне 500-5000 Э (1 Э=(1000/(4π)) А/м), или магнитную индукцию B в диапазоне 50-500 мТл.
Согласно другому варианту воплощения, как проиллюстрировано на Фиг.5, в любом направлении вдоль линии по поверхности 12 транспортировки для перемещения шариков 10 используют лишь два комплекта 36a, 36b изгибающихся токопроводящих проводов. Но, в дополнение, прикладывают стационарное внешнее магнитное поле He, с использованием внешнего источника магнитного поля 18, например постоянного магнита, электромагнита или системы катушек. Фиг.5A показывает поперечное сечение через этот вариант воплощения устройства 34, Фиг.5B показывает структуру токопроводящего провода 36, включающего в себя два изгибающихся провода 36a, 36b, и исходное местоположение шарика 10, используемого в этом устройстве 34. Фиг.5C показывает схему управления током для использования в этом варианте воплощения, т.е. зависимость управляющих токов Ia, Ib, прикладываемых к проводам, от времени t.
В нулевой момент времени провод 36a включают, и шарик 10 притягивается к этому проводу, на котором он расположен, из-за сочетания локального магнитного поля, вызванного положительным током +Ia и стационарным внешним магнитным полем He согласно принципу, разъясненному выше со ссылкой на Фиг.3. Впоследствии провод 36a отключают, а провод 36b включают (с положительным током +Ib). Путь, по которому ток Ib и внешнее магнитное поле He ориентированы, теперь заставляет шарик 10 отталкиваться на участке 36b1 провода 36b налево, тогда как на участке 36b2 провода 36b он притягивается направо. Поэтому шарик 10 перемещается направо. Затем провод 36b включается, а провод 36a включается снова, но с током -Ia, текущим в противоположном направлении, по сравнению с первым этапом. Это заставляет шарик 10 снова перемещаться направо. На последующих этапах, определяемых схемой управления, изображенных на Фиг.5C, шарики 10 всегда движутся направо, что было подтверждено экспериментально.
Аналогичным образом, шарик 10 можно заставить перемещаться налево, за счет изменения схемы управления, как изображено на диаграмме, показанной на Фиг.6. Эту схему управления можно применять к структуре 36 токопроводящих проводов, показанной на Фиг.5B. Разница со схемой управления, показанной на Фиг.5C, состоит лишь в полярности сигналов тока Ia, Ib.
Сочетание схем управления, показанных на предыдущих чертежах, обеспечивает горизонтальное движение шарика по любому направлению вдоль линии, перпендикулярной направлению токопроводящего провода, которая показана на Фиг.7. Начиная с нулевого момента времени, схема управления такова, что шарик 10 перемещается исходно слева направо. Однако в момент времени t1 полярности обоих управляющих сигналов Ia, Ib переключаются, и шарик 10 начинает перемещаться налево. На самом деле, в любой момент времени направление движения шарика 10 можно изменять путем надлежащей регулировки схемы управления.
Среднюю скорость шариков можно модифицировать, изменяя период переключения проводов и изменяя величину тока, текущего по проводам. Если используется средство регулировки для генерирования внешних полей, например электромагнитные катушки, то движение шарика также можно модифицировать путем изменения приложенного внешнего поля.
Другой вариант воплощения структуры 38 токопроводящих проводов показан на Фиг.8. Он включает в себя сочетание двух пар 40, 42 из двух комплектов 40a, 40b и 42a, 42b токопроводящих проводов и стационарное однородное внешнее магнитное поле He. Две пары 40, 42 ориентированы перпендикулярно друг другу (но также возможны и угловые смещения, отличные от 90°, вокруг оси вращения, перпендикулярной плоскости двух пар), что обеспечивает полную свободу перемещения шариков 10 по поверхности транспортировки. При надлежащем переключении схем управления для проводов, шарики 10 можно перемещать по поверхности транспортировки по другой траектории.
Фиг.9 иллюстрирует вариант воплощения схемы управления, которую можно использовать в варианте воплощения структуры токопроводящих проводов 36, показанном на Фиг.5B, которая позволяет заставлять шарики 10 «отскакивать» от поверхности или даже впрыгивать или выпрыгивать из углублений, что уместно для применения в секвенировании, обсуждаемом ниже. Причина состоит в том, что в ситуации, показанной на Фиг.3B, сила отталкивания действует не только в горизонтальном направлении, но также и в вертикальном направлении, то есть шарики претерпевают воздействие «подъемной силы» вверх от поверхности транспортировки, ниже которой встроен токопроводящий провод. Схема управления, показанная на Фиг.9, будет заставлять шарики 10 отскакивать от поверхности транспортировки.
В нулевой момент времени (t0) включают провод 36a, и описанный магнитный шарик 10 притягивается участком провода, на котором он расположен. В момент t1 направление тока по проводу 36a изменяется, что заставляет шарик 10 отталкиваться, т.е. подниматься вверх от поверхности, от провода 36a, где он расположен. В то же время, провод 36b1 включают (с положительным током +Ib), что заставляет шарик притягиваться направо. Это означает, что шарик будет «отскакивать» направо, до тех пор, когда он попадет на ближайший участок провода 36b. Затем, в момент времени t2, направление тока в проводе 36b поменяется таким образом, что шарик 10 будет отталкиваться от него. Ток Ia в проводе 36a, когда он еще включен, в этом случае вызывает силу, направленную в этот момент направо. Следовательно, шарик 10 отскакивает снова направо.
Следовательно, за счет использования схемы управления, показанной на Фиг.9, шарик 10 будет продолжать отскакивать направо. Направление отскакивания можно изменить в любой момент времени, изменяя полярность тока, текущего по проводу, на котором шарик не находится в момент переключения. Если токопроводящие провода 36a, 36b расположены в или внизу микроуглублений, можно заставить шарики перепрыгивать из одного углубления в соседнее.
Во всех вариантах воплощения, описанных выше, внешнее поле принимается постоянным. Однако, если его генерируют с использованием электромагнитных катушек, то существует возможность его контроля во времени. Это означает, что в ситуациях, когда у тока в проводе переключают направление, например в вариантах воплощения 4, 5, 6, 7, 9, направление внешнего поля можно поменять (вместо направления токопроводящего провода) для достижения того же эффекта. В этом случае, переключение внешнего поля необходимо надлежащим образом синхронизировать с переключением между токами, текущими по проводам.
Идеи, разъясненные выше, пригодны для любого применения, в котором необходимо контролируемым образом управлять всеми вместе магнитными шариками на поверхности. В частности, если шарики представляют собой подложки для нитей ДНК, поверхность может быть структурирована таким образом, чтобы требуемые реагенты для различных этапов секвенирования группировались на поверхности в регулярной структуре, как изображено на Фиг.10, иллюстрирующей микроструйное устройство 44, в частности устройство для секвенирования ДНК, для управления образцом, содержащим магнитные или намагничивающиеся шарики, в частности, для секвенирования или тестирования нуклеиновой кислоты, содержащее устройство для переноса магнитных или намагничивающихся шариков по поверхности переноса.
Вариант воплощения устройства 44, показанного на Фиг.10, включает в себя структуру 38 проводов, как проиллюстрирована на Фиг.8, допускающую движение шариков 10 в любом двумерном направлении. Кроме того, показан переключающий блок 32 для генерирования и переключения токов для всех комплектов изгибающихся токопроводящих проводов 40a, 40b, 42a, 42b, а также средство для генерирования магнитного поля 18, для генерирования (а предпочтительно, и модификации) внешнего магнитного поля He.
Тогда как средства генерирования магнитного поля 18, как правило, могут представлять собой постоянные магниты, в этом варианте воплощения является предпочтительным, чтобы они были воплощены в виде электромагнитных катушек, таким образом, чтобы магнитное поле He можно было модифицировать. Для этой цели дополнительно обеспечен блок управления катушкой 46, посредством которого можно управлять управляющими токами для катушек. Таким образом, является предпочтительным, чтобы направление (и/или напряженность) магнитного поля He пользователь мог изменять. В качестве альтернативы или в дополнение, также является предпочтительным, чтобы пользователь мог задавать или изменять токи, подаваемые к изгибающимся токопроводящим проводам, с помощью интерфейса (не показан).
Следует отметить, что такие катушки и средство контроля катушек также можно обеспечить и в других вариантах воплощения, где есть необходимость в видоизменении направления (и/или напряженности) внешнего магнитного поля He.
В таком устройстве реагенты могут содержаться в каплях, которые располагаются на поверхности за счет структурирования поверхностной энергии поверхности (т.е. в гидрофобно-гидрофильных областях), или они могут присутствовать в микроуглублениях, присутствующих на поверхности. Шарики, а следовательно, и нити ДНК, подвергаемые секвенированию, можно транспортировать из одного места секвенирования в другое, и реакции секвенирования могут иметь место. Технология секвенирования может представлять собой «пиросеквенирование», при котором успешное присоединение нуклеотида генерирует флуоресцентный сигнал. Путем (оптического) обнаружения процесс может быть записан, а последовательность ДНК выведена. В качестве альтернативы, процесс секвенирования может включать в себя внедрение флуоресцентно помеченных нуклеотидов. Кроме того, процесс секвенирования может быть осуществлен путем нанопорового секвенирования. При процессе секвенирования в этом случае, ДНК необходимо отделять от шарика, поскольку шарик является слишком большим для прохождения через нанопору. Все же, перенос посредством шариков может быть некоторым образом использован в устройстве, для доставки отдельных нитей в блок нанопорового секвенирования.
Настоящее изобретение, таким образом, в основном можно применять в любой (микрожидкостной) системе, в которой всеми вместе шариками необходимо управлять на поверхности контролируемым образом. В частности, изобретение можно применять в устройстве для секвенирования ДНК для управления задействованными этапами секвенирования, а также этапами приготовления образцов, например этапами экстракции ДНК при тестировании нуклеиновой кислоты. Кроме того, изобретение можно применять для магнитного биодатчика, используемого для нескольких типов биохимических анализов.
Тогда как изобретение было проиллюстрировано и подробно описано на чертежах и в вышеописанном описании, такую иллюстрацию и описание следует рассматривать как иллюстративную или примерную, а не ограничивающую; изобретение не ограничено раскрытыми вариантами воплощения. Другие варианты раскрытых вариантов воплощения могут быть поняты и реализованы специалистами в данной области техники при применении заявленного изучения из изучения чертежей, раскрытия и прилагаемой формулы изобретения.
В формуле изобретения слово «содержащий» не исключает других элементов или этапов, и indefinite article «a» или «an» does not exclude plurality. Одиночный элемент или другой блок может выполнять функции нескольких объектов, перечисленных в формуле изобретения. Тот факт, что определенные меры были перечислены в отличных друг от друга зависимых пунктах формулы изобретения, не означает, что нельзя успешно использовать сочетание этих мер.
Никакие ссылочные обозначения в формуле изобретения не следует рассматривать как ограничивающие объем.

Claims (13)

1. Устройство (24) для транспортировки магнитных или намагничивающихся шариков (10) по поверхности (12) транспортировки, содержащее:
- камеру (26), содержащую магнитные или намагничивающиеся шарики (10) в текучей среде (28),
- транспортный элемент (14), включающий в себя упомянутую поверхность (12) транспортировки внутри упомянутой камеры (26), по которой следует перемещать упомянутые шарики (10),
- структуру (20) токопроводящих проводов, содержащую, по меньшей мере, два комплекта (20a, 20b, 20c) изгибающихся токопроводящих проводов, расположенных на стороне упомянутого транспортного элемента (14), противоположной упомянутой поверхности транспортировки (12), причем упомянутые, по меньшей мере, два комплекта (20a, 20b, 20c) смещены относительно друг друга, по меньшей мере, в двух направлениях,
- переключающий блок (32) для индивидуального переключения токов (Ia, Ib, Ic), прикладываемых по отдельности к упомянутым комплектам токопроводящих проводов согласно схеме управления, вызывающей перемещение упомянутых шариков (10) по упомянутой поверхности (12) транспортировки,
- в котором упомянутая структура (38) токопроводящих проводов содержит первую группу (40) из, по меньшей мере, двух первых комплектов (40a, 40b) изгибающихся токопроводящих проводов, установленных на стороне упомянутого транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки, причем упомянутые, по меньшей мере, два первых комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях, и вторую группу (42) из, по меньшей мере, двух вторых комплектов (42a, 42b) изгибающихся токопроводящих проводов, установленных на той же стороне упомянутого транспортного элемента (14), причем упомянутые, по меньшей мере, два вторых комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях,
при этом упомянутая первая группа (40) и упомянутая вторая группа (42) токопроводящих проводов установлены таким образом, чтобы они поворачивались, в частности, на 90° относительно друг друга вокруг оси вращения, перпендикулярной упомянутой поверхности транспортировки.
2. Устройство по п.1, в котором упомянутые комплекты (20a) изгибающихся токопроводящих проводов расположены по существу в плоскости (30) проводов, параллельной упомянутой поверхности (12) транспортировки, в частности, на поверхности упомянутого транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки.
3. Устройство по п.2, в котором упомянутые комплекты (20a, 20b, 20c) изгибающихся токопроводящих проводов смещены в двух ортогональных направлениях в упомянутой плоскости (30) проводов.
4. Устройство по п.1, в котором упомянутая структура (20) токопроводящих проводов содержит, по меньшей мере, три комплекта (20a, 20b, 20c) изгибающихся токопроводящих проводов, установленных на стороне упомянутого транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки, причем упомянутые, по меньшей мере, три комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях.
5. Устройство по п.1, дополнительно содержащее средство (18) генерирования стационарного магнитного поля для генерирования стационарного, фактически однородного магнитного поля (30), в направлении, по существу параллельном поверхности (12) транспортировки, причем упомянутая структура (36) токопроводящего провода содержит два комплекта (36a, 36b) изгибающихся токопроводящих проводов.
6. Устройство по п.1, в котором упомянутый переключающий блок (32) выполнен с возможностью переключения упомянутых токов (Ia, Ib, Ic), прикладываемых по отдельности к упомянутым комплектам (20a, 20b, 20c) токопроводящих проводов, таким образом, чтобы комплекты были по отдельности обеспечены сигналом периодического тока, содержащим фазу с ненулевым током и фазу с нулевым током, причем сигналы тока для отдельных комплектов смещены во времени таким образом, что в одном сигнале тока единовременно присутствуют только неотрицательные токи.
7. Устройство по п.6, в котором сигналы тока (Ia, Ib, Ic), подаваемые на упомянутые отдельные комплекты, идентичны, но смещены во времени, причем смещение во времени соотносится со смещением комплектов (20a, 20b, 20c) токопроводящих проводов в направлении транспортировки таким образом, чтобы смещение во времени было наибольшим для сигналов тока, подаваемых на комплекты, смещенные дальше всего.
8. Устройство по пп.5 и 6, в котором упомянутый переключающий блок (32) выполнен с возможностью выбора полярности сигналов тока (Ia, Ib, Ic), для выбора направления транспортировки шариков (10).
9. Устройство по пп.5 и 6, в котором упомянутый переключающий блок (32) выполнен с возможностью переключения полярности, по меньшей мере, одного сигнала тока (Ia, Ib, Ic) для изменения направления транспортировки шариков (10).
10. Устройство по п.1, в котором упомянутый переключающий блок (32) выполнен с возможностью переключения упомянутых токов (Ia, Ib), подаваемых по отдельности на упомянутые комплекты (36a, 36b) токопроводящих проводов, таким образом, чтобы на комплекты по отдельности подавался сигнал периодического тока, содержащий фазу с положительным током и фазу с отрицательным током, причем сигналы тока для отдельных комплектов смещены во времени таким образом, что положительная и/или отрицательная фаза различных сигналов тока, в частности сигналов тока, подаваемых на соседние токопроводящие провода, перекрывают друг друга.
11. Устройство по п.1, дополнительно содержащее:
комплект катушек (18) для генерирования по существу однородного магнитного поля (30) в направлении, по существу параллельном поверхности (12) транспортировки, и
средство (46) управления катушками для управления комплектом катушек, для изменения направления магнитного поля (30) в плоскости, параллельной поверхности (12) транспортировки, в частности, для перебрасывания направления магнитного поля (30) между двумя противоположными направлениями.
12. Способ для транспортировки магнитных или намагничивающихся шариков (10) по поверхности (12) транспортировки, согласно которому:
- подают магнитные или намагничивающиеся шарики (10) в текучую среду (28),
- прикладывают токи к структуре (20) токопроводящих проводов, содержащей, по меньшей мере, два комплекта (20a, 20b, 20c) изгибающихся токопроводящих проводов, установленных на стороне транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки, причем упомянутые, по меньшей мере, два комплекта (20a, 20b, 20c) смещены относительно друг друга, по меньшей мере, в двух направлениях, и внутри упомянутой камеры (26) упомянутый транспортный элемент (14) включает в себя упомянутую поверхность (12) транспортировки, по которой переносят упомянутые шарики (10),
- при этом упомянутая структура (38) токопроводящих проводов содержит первую группу (40) из, по меньшей мере, двух первых комплектов (40а, 40b) изгибающихся токопроводящих проводов, установленных на стороне упомянутого транспортного элемента (14), противоположной упомянутой поверхности (12) транспортировки, причем упомянутые, по меньшей мере, два первых комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях, и вторую группу (42) из, по меньшей мере, двух вторых комплектов (42a, 42b) изгибающихся токопроводящих проводов, установленных на той же стороне упомянутого транспортного элемента (14), причем упомянутые, по меньшей мере, два вторых комплекта смещены относительно друг друга, по меньшей мере, в двух направлениях,
- причем упомянутая первая группа и упомянутая вторая группа (40, 42) токопроводящих проводов установлены таким образом, чтобы они поворачивались, в частности, на 90° относительно друг друга вокруг оси вращения, перпендикулярной упомянутой поверхности переноса,
- раздельно переключают токи, по отдельности подаваемые на упомянутые комплекты токопроводящих проводов, согласно схеме управления током, вызывая перемещение упомянутых шариков (10) по упомянутой поверхности (12) транспортировки.
13. Микроструйное устройство, в частности устройство для секвенирования ДНК или устройство для иммуноанализа, для управления образцом, содержащим магнитные или намагничивающиеся шарики (10), в частности, для секвенирования или тестирования нуклеиновой кислоты, содержащее устройство (24, 34) для транспортировки магнитных или намагничивающихся шариков (10) по поверхности (12) транспортировки по п.1.
RU2012114142/05A 2009-09-11 2010-09-06 Устройство и способ для транспортировки магнитных или намагничивающихся шариков RU2543192C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09170085 2009-09-11
EP09170085.6 2009-09-11
PCT/IB2010/053991 WO2011030272A1 (en) 2009-09-11 2010-09-06 Device and method for transporting magnetic or magnetisable beads

Publications (2)

Publication Number Publication Date
RU2012114142A RU2012114142A (ru) 2013-10-20
RU2543192C2 true RU2543192C2 (ru) 2015-02-27

Family

ID=43244703

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012114142/05A RU2543192C2 (ru) 2009-09-11 2010-09-06 Устройство и способ для транспортировки магнитных или намагничивающихся шариков

Country Status (8)

Country Link
US (1) US8932540B2 (ru)
EP (1) EP2475459A1 (ru)
JP (1) JP5711239B2 (ru)
KR (1) KR20120050523A (ru)
CN (1) CN102481575B (ru)
BR (1) BR112012005142A2 (ru)
RU (1) RU2543192C2 (ru)
WO (1) WO2011030272A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI529402B (zh) 2013-07-26 2016-04-11 財團法人工業技術研究院 磁性液滴控制裝置及磁性液滴的控制方法
CN103820304B (zh) * 2014-02-25 2015-09-16 苏州天隆生物科技有限公司 用于核酸纯化的微流体三维电磁激发混匀装置
WO2016087397A1 (en) * 2014-12-02 2016-06-09 Koninklijke Philips N.V. Dispersion and accumulation of magnetic particles in a microfluidic system
CN113166693B (zh) * 2019-01-11 2024-08-23 日商乐华生命科學有限公司 无菌作业装置的驱动机构
NL2025139B1 (en) * 2020-03-16 2021-10-19 Univ Twente Magnet apparatus and apparatus for magnetic density separation
CN112226362B (zh) * 2020-12-11 2021-03-12 博奥生物集团有限公司 核酸分析卡盒和核酸分析设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655665A (en) 1994-12-09 1997-08-12 Georgia Tech Research Corporation Fully integrated micromachined magnetic particle manipulator and separator
TW496775B (en) 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
JP2003526523A (ja) * 2000-03-16 2003-09-09 エスアールアイ インターナショナル 微小実験デバイスおよび方法
US20020048821A1 (en) 2000-08-24 2002-04-25 David Storek Sample preparing arrangement and a method relating to such an arrangement
US20020166800A1 (en) 2001-05-11 2002-11-14 Prentiss Mara G. Micromagnetic systems and methods for microfluidics
WO2003039753A1 (en) * 2001-11-05 2003-05-15 President And Fellows Of Harvard College System and method for capturing and positioning particles
GB2392977A (en) 2002-09-13 2004-03-17 Suisse Electronique Microtech A fluidic dielectrophoretic system and method for analysing biomolecules
ATE444794T1 (de) 2003-03-08 2009-10-15 Ecole Polytech Manipulations- und transportvorrichtung für magnetkügelchen
EP1462174B1 (en) * 2003-03-28 2006-08-30 Interuniversitair Microelektronica Centrum Vzw Method for the controlled transport of magnetic beads and device for executing said method
EP1462173A1 (en) 2003-03-28 2004-09-29 Interuniversitair Micro-Elektronica Centrum (IMEC) Method for the controlled transport of magnetic beads and devices for the method
WO2008007270A2 (en) * 2006-06-21 2008-01-17 Spinomix S.A. A method for manipulating magnetic particles in a liquid medium
GB2446204A (en) * 2007-01-12 2008-08-06 Univ Brunel A Microfluidic device

Also Published As

Publication number Publication date
US8932540B2 (en) 2015-01-13
RU2012114142A (ru) 2013-10-20
CN102481575A (zh) 2012-05-30
CN102481575B (zh) 2015-07-01
EP2475459A1 (en) 2012-07-18
US20120171085A1 (en) 2012-07-05
JP2013504753A (ja) 2013-02-07
WO2011030272A1 (en) 2011-03-17
JP5711239B2 (ja) 2015-04-30
BR112012005142A2 (pt) 2019-09-24
KR20120050523A (ko) 2012-05-18

Similar Documents

Publication Publication Date Title
KR101431778B1 (ko) 자성 비즈를 이용하는 액적 작동기 장치 및 방법
RU2543192C2 (ru) Устройство и способ для транспортировки магнитных или намагничивающихся шариков
JP4607875B2 (ja) 生理活性分子間の結合を決定するための磁性粒子の使用
CN108290166B (zh) 用于处理流体的电磁组合件
RU2415433C2 (ru) Быстрое и чувствительное измерение биоинформации
Suwa et al. Magnetoanalysis of micro/nanoparticles: A review
Pamme Magnetism and microfluidics
Ramadan et al. An integrated microfluidic platform for magnetic microbeads separation and confinement
EP1916032B1 (en) Manipulation of magnetic or magnetizable objects using combined magnetophoresis and dielectrophoresis
Afshar et al. Magnetic particle dosing and size separation in a microfluidic channel
Lim et al. Nano/micro-scale magnetophoretic devices for biomedical applications
WO2005072855A1 (en) Magnetic fluid manipulators and methods for their use
WO2008116543A1 (en) Method and apparatus for transporting magnetic or magnetisable microbeads
US9511368B2 (en) Transporting, trapping and escaping manipulation device for magnetic bead biomaterial comprising micro-magnetophoretic circuit
KR20100026270A (ko) 유전영동 및 자기영동을 이용한 다중 탐지 방법 및 장치
JP5996868B2 (ja) 高感度アッセイのためのパルス磁気作動
US20040229381A1 (en) Method for the controlled transport of magnetic beads and device for executing said method
KR101067695B1 (ko) 연자성 미세 구조물을 이용한 분자 이송 시스템
EP1462174B1 (en) Method for the controlled transport of magnetic beads and device for executing said method
Peng Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150907