KR100918986B1 - 발광장치 및 이를 사용한 전자기기 - Google Patents

발광장치 및 이를 사용한 전자기기 Download PDF

Info

Publication number
KR100918986B1
KR100918986B1 KR1020020058700A KR20020058700A KR100918986B1 KR 100918986 B1 KR100918986 B1 KR 100918986B1 KR 1020020058700 A KR1020020058700 A KR 1020020058700A KR 20020058700 A KR20020058700 A KR 20020058700A KR 100918986 B1 KR100918986 B1 KR 100918986B1
Authority
KR
South Korea
Prior art keywords
light emitting
emitting elements
delete delete
luminance
video signal
Prior art date
Application number
KR1020020058700A
Other languages
English (en)
Other versions
KR20030027788A (ko
Inventor
야마자키순페이
코야마준
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20030027788A publication Critical patent/KR20030027788A/ko
Application granted granted Critical
Publication of KR100918986B1 publication Critical patent/KR100918986B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

본 발명은, 유기 발광층의 열화에 따른 OLED의 휘도의 변화를 억제할 수 있고, 균일한 휘도를 얻는 발광장치를 제공한다. 입력 영상신호를 상시 또는 정기적으로 샘플링하여 각 화소의 발광소자의 발광하는 기간 또는 표시하는 계조를 검출하고, 그 검출값의 누적으로부터, 가장 열화가 현저하고 휘도가 저하되어 있는 화소를 예측한다. 그리고, 해당 화소에 공급되는 전압을 보정하여, 원하는 휘도를 얻을 수 있도록 한다. 그 해당 화소 이외의 다른 화소에서는 과잉 전압이 공급되게 되므로, 각 화소마다 검출값의 누적의 데이터와 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화의 데이터를 비교하여, 발광소자의 열화된 화소를 구동하기 위한 영상신호를 그 때마다 보정하여, 계조수를 떨어뜨린다.
발광장치, 유기 발광층, 휘도, 계조수, 보정, 경시변화, 전자기기

Description

발광장치 및 이를 사용한 전자기기{A LIGHT EMITTING DEVICE AND ELECTRONIC APPARATUS USING THE SAME}
도 1은 본 발명의 발광장치의 블록도,
도 2는 본 발명의 발광장치의 화소 회로도,
도 3은 본 발명의 발광장치에 있어서의 발광소자를 통한 전류와 휘도의 경시변화 관계를 나타낸 그래프,
도 4는 본 발명의 발광장치에 있어서의 발광소자의 전류의 경시변화를 나타낸 그래프,
도 5는 가산처리에 의한 보정방법을 나타낸 도면,
도 6은 본 발명의 발광장치의 신호선 구동회로의 블록도,
도 7은 본 발명의 발광장치의 주사선 구동회로의 블록도,
도 8은 본 발명의 발광장치의 블록도,
도 9는 본 발명의 발광장치의 화소회로도,
도 10은 본 발명의 발광장치의 제작방법을 나타낸 도면,
도 11은 본 발명의 발광장치의 제작방법을 나타낸 도면,
도 12는 본 발명의 발광장치의 제작방법을 나타낸 도면,
도 13은 본 발명의 발광장치의 단면도,
도 14는 본 발명의 발광장치의 단면도,
도 15는 본 발명의 발광장치의 단면도,
도 16은 본 발명의 발광장치를 사용한 전자기기의 도면,
도 17은 계조수와 발광기간의 관계를 나타낸 그래프,
도 18은 열화에 의한 발광소자의 휘도의 변화를 나타낸 그래프,
도 19는 열화보정회로의 블록도,
도 20은 연산회로의 블록도이다.
*도면의 주요 부분에 대한 부호의 설명*
100 : 열화보정장치 101 : 신호선 구동회로
102 : 주사선 구동회로 103 : 화소부
104 : 전압원 105 : 카운터부
106 : 기억회로부 107 : 보정부
108 : 휘발성 메모리 109 : 불휘발성 메모리
110 : 영상신호 보정회로 111 : 전압보정회로
112 : 보정 데이터 저장부 113 : 카운터
본 발명은, 기판 상에 형성된 발광소자를, 해당 기판과 커버부재의 사이에 봉입한 발광패널에 관한 것이다. 또한, 본 발명은, 그 발광패널에 IC 등을 포함하는 IC 등을 실장한 발광모듈에 관한 것이다. 이때, 본 명세서에서, 발광패널 및 발광모듈을 일반적으로 발광장치라고 총칭한다. 또한, 본 발명은, 그 발광장치를 사용한 전자기기에 관한 것이다.
발광소자는 스스로 발광하기 때문에 시감도가 높고, 액정표시장치(LCD)에서 필요한 백라이트가 필요하지 않아 박형화에 최적인 동시에, 시야각에도 제한이 없다. 그 때문에, 최근, 발광소자를 사용한 발광장치는, CRT나 LCD를 대체하는 표시장치로서 주목받고 있다.
이때, 본 명세서에서 발광소자는, 전류 또는 전압에 의해서 휘도가 제어되는 소자를 의미한다. OLED(Organic Light Emitting Diode)나, FED(Field Emission Display)에 사용하고 있는 MIM형의 전자 소스소자(전자방출소자) 등을 포함하고 있다.
OLED는, 전계를 가하여서 발생하는 루미네센스(Electroluminescence)가 얻어지는 유기 화합물(유기발광재료)을 포함하는 층(이하, 유기 발광층이라 함)과, 양극층과, 음극층을 가지고 있다. 유기 화합물에 있어서의 루미네센스에는, 단일항 여기상태로부터 기저상태로 되돌아갈 때의 발광(형광)과 3중항 여기상태로부터 기저상태로 되돌아갈 때의 발광(인광)이 있다. 본 발명의 발광장치는, 전술한 발광 중의 어느 한쪽의 발광을 사용하여도 되고, 또는 양쪽의 발광을 사용하여도 된다.
이때, 본 명세서에서는, OLED의 양극과 음극 사이에 설치된 모든 층을 유기 발광층으로 정의한다. 유기 발광층에는, 구체적으로, 발광층, 정공주입층, 전자주입층, 정공수송층, 전자수송층 등이 포함된다. 기본적으로 OLED는, 양극, 발광층,음극이 순서로 적층된 구조를 갖고, 이 구조에 덧붙여, 양극, 정공주입층, 발광층, 음극이나, 양극, 정공주입층, 발광층, 전자수송층, 음극 등의 순서로 적층된 구조를 갖는 경우도 있다.
그런데, 유기발광재료의 열화에 따른 OLED의 휘도의 저하는, 발광장치를 실용화하는 데에 있어서 중대한 문제로 되고 있다.
도 18a에, 발광소자의 2개의 전극 사이에 일정한 전류를 공급하였을 때의 발광소자의 휘도의 시간변화를 나타낸다. 도 18a에 나타낸 바와 같이, 일정한 전류를 흘리더라도, 시간의 경과와 함께 유기발광재료가 열화하여, 발광소자의 휘도는 낮아진다.
또한, 도 18b에, 발광소자의 2개의 전극 사이에 일정한 전압을 인가하였을 때의 발광소자의 휘도의 시간변화를 나타낸다. 도 18b에 나타낸 바와 같이, 일정한 전압을 인가하더라도, 시간의 경과와 함께 발광소자의 휘도가 저하하고 있다. 이것은, 도 18a에 나타낸 바와 같이, 유기발광재료의 열화에 의해 일정한 전류에 대한 휘도가 낮아지는 이유와, 도 18c에 나타낸 바와 같이, 일정한 전압을 인가하였을 때에 발광소자에 흐르는 전류가, 시간과 함께 작아지기 때문이라고 생각된다.
시간의 경과에 수반하는 발광소자의 휘도의 저하는, 발광소자에 공급하는 전 류를 크게 하거나, 또는 인가하는 전압을 높게 하거나 함으로써, 보충할 수 있다. 그러나, 대개의 경우, 표시하려고 하는 화상에 의해서 화소마다 표시되는 계조가 다르고, 그 때문에 각 화소의 발광소자의 열화에 차이가 생겨 버려, 휘도에 격차가 생긴다. 그리고, 전압 또는 전류를 공급하기 위한 전원을 각 화소에 대응하여 설치하는 것은 현실적이지 않기 때문에, 모든 화소 또는 몇 개의 화소마다 전압 또는 전류를 공급하기 위한 공통의 전원을 설치하고 있다. 그 때문에, 열화로 인한 발광소자의 휘도의 저하를 보충하기 위해, 공통의 전원으로부터 공급되는 전압 또는 전류를 단순히 크게 하면, 해당 전압 또는 전류가 공급된 화소 모두에 있어서 균일하게 발광소자의 휘도가 높아진다. 이에 따라서, 각 화소마다의 발광소자의 휘도의 격차는 해소되지 않는다.
본 발명은 상술한 점을 감안하여, 유기 발광재료의 열화에 따른 OLED의 휘도의 변화를 억제할 수 있고, 더구나 균일한 휘도를 얻을 수 있는 발광장치를 제공하는데 그 목적이 있다.
본 발명의 발광장치에서는, 공급되는 영상신호를 상시 또는 정기적으로 샘플링하여 각 화소의 발광소자가 발광하는 기간 또는 표시된 계조를 검출하고, 그 검출값의 누적, 바꿔 말하면 그것의 총합으로부터, 가장 열화가 현저하고 휘도가 저하된 화소를 예측한다. 그리고, 해당 화소의 검출값의 누적과, 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화의 데이터를 비교하여, 해당 화소에 공급되는 전 압을 보정하여, 원하는 휘도가 얻어지게 된다. 이때, 가장 열화가 현저한 화소와 공통의 전원으로부터 전압이 공급되고 있는 다른 화소에서는, 과잉의 전압이 공급된다. 그러므로, 가장 열화가 현저한 화소에 비해 휘도가 높아져, 계조수가 높아져 버린다고 생각된다. 이들 화소에서는, 각 화소마다 검출값의 누적과, 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화의 데이터를 비교하여, 발광소자의 열화된 화소를 구동하기 위한 영상신호를 그 때마다 보정하여, 계조수를 떨어뜨린다.
이때, 본 명세서에서, 영상신호란 화상정보를 갖는 디지털신호를 의미한다.
상기 구성에 의해서, 각 화소에서의 발광소자의 열화의 정도가 달라져 버림에도 불구하고, 화면의 휘도의 균일성을 유지하는 것이 가능하고, 더구나 열화에 의한 휘도의 저하를 억제할 수 있다.
이때, 전압원으로부터 공급되는 전압의 값을, 가장 열화가 현저한 화소를 기준으로 하여 보정할 필요는 없고, 가장 열화가 작은 화소를 기준으로 하여 보정을 하여도 된다. 이 경우, 각 화소의 검출값의 누적으로부터, 가장 열화가 작고 휘도가 높은 화소를 예측한다. 그리고, 해당 화소의 검출값의 누적과, 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화의 데이터를 비교하여, 해당 화소에 공급되는 전압을 보정하여, 원하는 휘도를 얻을 수 있다. 이때, 가장 열화가 작은 화소와 공통의 전원으로부터 전압이 공급되고 있는 다른 화소에서는, 공급되는 전압이 아직 부족하게 된다. 그래서, 상기 다른 화소는, 가장 열화가 작은 화소에 비해 휘도가 낮아져, 계조수가 너무 낮게 표시된다고 생각된다. 이들 다른 화소에서는, 각 화소마다 검출값의 누적과, 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화 의 데이터를 비교하여, 발광소자의 열화된 화소를 구동하기 위한 영상신호를 보정하여, 계조수를 각각 높게 한다.
이때, 기준 화소는, 설계자가 적절히 설정할 수 있다. 기준 화소보다도 열화가 진행되어 있는 화소에서는, 계조수를 높이도록 영상신호를 보정한다. 열화가 진행되고 있지 않은 화소에서는, 계조수를 떨어뜨리도록 영상신호를 보정하면 된다.
[발명의 실시예]
이하, 본 발명의 발광장치의 구성에 관해서 설명한다. 도 1은 본 발명의 발광장치의 블록도로, 열화보정장치(100)와, 신호선 구동회로(101)와, 주사선 구동회로(102)와, 화소부(103)와, 전압원(104)을 가지고 있다. 이때, 본 실시예에서는 열화보정장치(100)와 전압원(104)이, 신호선 구동회로(101)와, 주사선 구동회로(102)와, 화소부(103)와는 다른 기판에 형성되어 있다. 그렇지만, 이들 모든 소자들은 가능하면 동일기판에 형성하여도 된다. 또한, 본 실시예에서는 전압원(104)은 열화보정장치(100)에 포함되어 있지만, 본 발명은 이 구성으로 한정되지 않는다. 전압원(104)의 위치는, 화소의 구성에 따라 변하지만, 반드시 발광소자에 인가되는 전압의 크기를 제어할 수 있도록 접속하는 것이 중요하다.
화소부(103)에는, 발광소자를 갖는 화소가 복수 구비되어 있다. 열화보정장치(100)는, 발광장치에 공급된 영상신호를 처리하여, 각 화소의 발광소자의 휘도가 일정하게 되도록, 전압원(104)으로부터 각 화소의 발광소자에 공급되는 전압 및 신호선 구동회로에 공급되는 영상신호를 보정한다. 주사선 구동회로(102)는, 화소부(103)에 구비된 화소를 순차적으로 선택하는 반면, 신호선 구동회로(101)는, 입력된 보정후의 영상신호에 응답하여, 주사선 구동회로(102)에서 선택된 화소에 전압을 공급한다.
본 발명의 열화보정장치(100)는, 카운터부(105), 기억회로부(106), 보정부(107)로 이루어진다. 카운터부(105)는 카운터(102)를 갖는다. 기억회로부(106)는 휘발성 메모리(108) 또는 불휘발성 메모리(109)를 가지며, 보정부(107)는 영상신호보정회로(110), 전압보정회로(111) 및 보정 데이터 저장부(112)를 가지고 있다.
다음에, 열화보정장치(100)의 동작에 관해서 설명한다. 우선, 발광장치에 사용하는 발광소자에 관해서, 그것의 휘도 특성의 경시변화의 데이터를, 보정 데이터 저장부(112)에 미리 기억시켜 놓는다. 이 데이터는, 나중에 설명하지만, 주로 각 화소의 발광소자의 열화의 정도에 따라서, 전압원(104)으로부터 화소에 공급되는 전압 및 영상신호의 보정을 행할 때에 사용한다.
이어서, 상시 또는 정기적(예를 들면, 1초마다)으로, 발광소자에 공급된 영상신호를 샘플링하고, 해당 영상신호가 갖는 정보를 기준으로, 각 화소에서의 발광소자의 발광기간 또는 계조수를 카운터(102)에서 카운트한다. 여기서 카운트된 각 화소에서의 발광기간 또는 계조수는, 순차로, 기억회로부(106)에 데이터로서 기억되어 사용된다. 여기서, 이 발광기간 또는 계조수는 누적하여 기억할 필요가 있기 때문에, 기억회로부(106)는 불휘발성 메모리를 사용하여 구성하는 것이 바람직하다. 하지만, 불휘발성 메모리는, 일반적으로 그 기록의 회수가 한정되어 있기 때문 에, 발광장치의 동작중에는 휘발성 메모리(108)를 사용하여 데이터를 기억하고, 일정시간마다(예를 들면 1시간마다, 또는 전원의 셧 다운시 등) 불휘발성 메모리(109)에 데이터를 기록하도록 하여도 된다.
또한, 휘발성 메모리로서는, 스태틱형 메모리(SRAM), 다이내믹형 메모리(DRAM), 강유전체 메모리(FRAM) 등을 들 수 있다. 즉, 휘발성 메모리는 어떤 형태의 메모리를 사용하여 구성하여도 된다. 마찬가지로, 불휘발성 메모리에 관해서도, 플래시 메모리를 비롯한, 일반적으로 사용하고 있는 것을 사용하여 구성하면 된다. 그러나, 휘발성 메모리에 DRAM을 사용하는 경우에는, 정기적인 리플래쉬 기능을 부가할 필요가 있다.
휘발성 메모리(108) 또는 불휘발성 메모리(109)에 기억된 발광기간 또는 계조수의 누적된 데이터는, 영상신호 보정회로(110) 및 전압보정회로(111)에 입력된다.
전압보정회로(111)에서는, 미리 보정 데이터 저장부(112)에 기억된 휘도 특성의 경시변화의 데이터와, 기억회로부(106)에 기억된 각 화소의 발광기간 또는 계조수의 누적된 데이터를 비교하여, 각 화소의 열화의 정도를 파악한다. 그리고, 열화가 가장 현저한 특정한 화소를 검출하여, 이 특정한 화소의 열화의 정도에 맞추어, 전압원(104)으로부터 화소부(103)에 공급되는 전압의 값을 보정한다. 구체적으로는, 해당 특정한 화소에서 원하는 계조를 표시할 수 있도록, 전압 값을 높게 한다.
해당 특정한 화소에 의거하여, 화소부(103)에 공급되는 전압 값이 보정되기 때문에, 해당 특정한 화소보다 열화가 진행하고 있지 않은 그 밖의 화소에서는, 발광소자에 과잉의 전압이 공급되게 되어, 원하는 계조를 얻을 수 없다. 따라서, 영상신호 보정회로(110)에 의해서, 그 밖의 화소의 계조를 결정하는 영상신호를 보정한다. 영상신호 보정회로(110)에는, 발광기간 또는 계조수의 누적된 데이터의 이외에, 영상신호가 입력되고 있다. 영상신호 보정회로(110)에서는, 미리 보정 데이터 저장부(112)에 기억된 휘도 특성의 경시변화의 데이터와, 각 화소의 발광기간 또는 계조수의 누적된 데이터를 비교하여, 각 화소의 열화의 정도를 파악한다. 그리고, 열화가 가장 현저한 특정한 화소를 검출하여, 해당 특정한 화소의 열화의 정도에 의거하여, 상기 입력된 영상신호를 보정한다. 구체적으로는, 원하는 계조수가 얻어지도록 영상신호를 보정한다. 이 보정된 영상신호는, 신호선 구동회로(101)에 입력된다.
이때, 특정한 화소는, 열화가 가장 현저한 화소가 아니어도 되고, 열화가 가장 진행되지 않은 화소, 또는 설계자가 정한 임의의 화소이어도 된다. 어느 쪽의 화소를 선택하여도, 영상신호는 다음 방법으로 보정된다. 즉, 상기 선택된 화소를 기준으로 하여 전압원(104)으로부터 화소부(103)에 공급되는 전압 값을 정한다. 상기 선택된 화소보다도 더 열화가 된 화소에서는 계조수를 높이도록 영상신호를 보정한다. 상기 선택된 화소보다 덜 열화가 된 화소에서는 계조수를 떨어뜨리도록 영상신호를 보정한다.
도 2에 본 발명의 발광장치가 갖는 화소의 일례를 나타낸다. 도 2의 화소는, 신호선(121), 주사선(122), 전원선(124), 트랜지스터 Tr1, Tr2, 저장용량(129), 발 광소자(130)를 가지고 있다.
트랜지스터 Tr1의 게이트는, 주사선(122)에 접속된다. Tr1은 소스는 신호선(121)에 접속되고, 드레인은 트랜지스터 Tr2의 게이트에 접속되어 있다. Tr2는, 소스는 전원선(124)에, 드레인은 발광소자(130)의 화소전극에 접속되어 있다. 저장용량(129)은, 트랜지스터 Tr2의 게이트와 소스 사이에 접속되어, 트랜지스터 Tr2의 게이트와 소스 사이의 전압을 유지한다. 전원선(124) 및 발광소자(130)의 음극에는, 각각 소정의 전위가 입력되어, 서로 전위차를 가진다.
전원선(124)에는, 전압원(104)으로부터 소정의 전압이 공급된다.
주사선(122)은, 주사선 구동회로(102)로부터 공급되는 전압에 의해 선택되고, 따라서 Tr1이 온이 된다. 이때, 화소부(103)에는 복수의 화소가 구비되어 있고, 주사선(122)도 복수 구비되어 있다. 복수의 주사선(122)은 순차적으로 선택되고, 서로 선택되는 기간이 겹치지 않는다.
Tr1이 온이 되면, 신호선 구동회로(101)를 통해 공급된 영상신호의 전압이, Tr2의 게이트에 공급된다. 게이트전압 VGS는, 저장용량(129)에서 유지된다.
주사선(122)이 선택될 때, 전원선(124)에 인가하는 전압 값을 정하는 방법은, 2종류 존재한다. 그 하나는, 해당 전압이 발광소자(130)의 화소전극에 공급될 때에 발광소자(130)가 발광하지 않는 정도의 레벨을 유지하는 크기이다. 또 하나는 해당 전압이 화소전극에 주어졌을 때에 발광소자(130)가 발광하는 정도의 레벨을 유지하는 크기이다. 전자의 경우, 주사선(122)이 선택될 때에 발광소자는 발광하지 않는다. 후자의 경우, 주사선(122)이 선택될 때에 발광소자는 발광한다. 전압을 인 가하는 방법은 어느 쪽의 방법을 사용하여도 되지만, 본 실시예에서는 전자의 경우를 예로 들어 설명한다.
주사선의 선택이 종료하면, 전원선(124)의 전압은, 발광소자(130)의 화소전극에 주어졌을 때에 발광소자(130)가 발광하는 정도의 레벨로 유지된다. 이때, 입력된 영상신호의 전압과, 전원선(124)의 전압에 따라서 Tr2의 드레인전류가 정해져, 발광소자(130)는 해당 드레인전류가 공급되어 발광한다.
이때, 후자의 경우, 전원선(124)에 주어지는 전압은, 화소전극에 주어졌을 때에 항상 발광소자(130)가 발광하는 정도의 레벨로 유지된다.
본 발명의 발광장치에서는, 전압원(104)으로부터 전원선(124)에 공급되는 전압의 크기를, 전압보정회로(111)에서 보정한다. 이때, 영상신호가 디지털인 경우, 화소에 입력되는 영상신호의 전압은 2값뿐이기 때문에, 화소의 계조를 제어하기 위해서는, 발광소자(130)가 발광하는 기간의 길이를 바꾸도록 영상신호 보정회로(110)에서 영상신호를 보정한다. 영상신호가 아날로그인 경우는, Tr2의 드레인전류의 크기가 변하도록 영상신호 보정회로(110)에서 영상신호를 보정하여, 화소의 계조를 제어한다.
도 3a에 본 발명의 발광장치가 갖는 발광소자에서의 휘도의 시간변화를 나타낸다. 상기 보정에 의해서, 발광소자의 휘도는 일정한 레벨로 유지된다. 도 3b에 본 발명의 발광장치가 갖는 발광소자에서의 발광소자에 인가되는 전압의 시간변화를 나타낸다. 열화에 따른 휘도의 저하를 보충하기 위해서, 발광소자에 인가되는 전압은 증가하고 있다.
이때, 도 3a 및 도 3b에서는 발광소자의 휘도가 항상 일정한 레벨이 되도록 보정을 한다. 그러나, 예를 들면 일정기간마다 보정을 행한 경우는, 발광소자의 휘도가 어느 정도 저하한 후에 보정이 행해지기 때문에, 항상 휘도가 일정한 레벨이 된다고는 할 수 없다.
발광소자의 열화가 더욱 진행하면, 발광소자에 인가되는 전압은 무한으로 커진다. 발광소자에 인가되는 전압이 지나치게 커지면, 발광소자의 열화가 빠르게진행되어, 비발광 스폿(어두운 스폿)의 발생을 촉진한다. 그래서, 본 발명에서는 도 4에 나타낸 바와 같이, 발광소자에 인가되는 전압이, 초기치에 대해 소정값(α%) 만큼 증가하면, 보정에 의한 전압의 증가를 정지하여, 전압원으로부터 발광소자에 공급되는 전압을 일정한 레벨로 유지되도록 하여도 된다.
이때, 본 발명의 발광장치의 화소는, 도 2에 나타낸 구성으로 한정되지 않는다. 본 발명의 화소는, 발광소자에 인가되는 전압을 전압원으로 제어하는 것이 가능하면 된다.
이때, 본 발명의 발광장치에서는, 전원 차단시에, 휘발성 메모리(108)에 기억되어 있는 각 화소의 발광소자의 발광기간 또는 계조수의 누적된 데이터를, 불휘발성 메모리(109)에 기억되어 있는 발광기간 또는 계조수에 관한 누적 데이터에 가산하여 기억해 두어도 된다. 이에 따라, 다음번의 전원 투입후, 계속하여 발광소자의 발광기간 또는 계조수의 누적된 데이터의 수집이 행해진다.
이상과 같이 하여, 상시 또는 정기적으로 발광소자의 발광기간 또는 계조수를 검출하고, 발광기간 또는 계조수의 누적된 데이터를 기억해 두는 것으로, 미리 기억되어 있는 발광소자의 휘도 특성의 경시변화의 데이터를 비교하여, 영상신호를 그때 그때 보정한다. 이것에 의해 열화된 발광소자에는, 열화하지 않고 있는 발광소자와 동등한 휘도를 달성할 수 있도록 영상신호에 보정을 가하는 것이 가능하다. 그 결과, 휘도 변화가 생기지 않고 균일한 화면 표시를 유지할 수 있다.
이때, 본 실시예에서는 발광소자의 발광기간 또는 계조수를 검출하고 있지만, 일부 시점에서 발광소자의 발광의 유무만을 검출하도록 하여도 된다. 그리고, 발광소자로부터의 발광의 존재의 검출을 순환하며 반복하여, 전체 검출회수에 차지하는 발광소자가 발광하고 있는 회수의 비율로부터, 각 발광소자의 열화의 정도를 추측하는 것이 가능하다.
이때, 도 1에서는 보정후의 영상신호를 그대로 신호선 구동회로에 입력하고 있다. 이 신호선 구동회로가 아날로그 영상신호로 입력되는 경우, D/A 변환회로를 설치하여 디지털 영상신호를 아날로그로 변환하고 나서 입력하도록 하여도 된다.
이상은, 발광소자로서 OLED를 사용한 것을 예로 들어 설명하였지만, 본 발명의 발광장치는 OLED에 한정되지 않고, PDP, FED 등 다른 발광소자를 사용하여도 된다.
[실시예]
이하에서 본 발명의 실시예에 관해서 기술한다.
(실시예 1)
본 실시예에서는, 본 발명의 발광장치의 보정부에서의 영상신호의 보정방법 에 대해 설명한다.
열화된 발광소자의 휘도를 신호에 의거하여 보완하는 방법의 하나로서, 입력되는 영상신호에 소정 보정값을 가산하여, 그 입력신호를 실질적으로 수단계에 의해 저하된 계조를 나타내는 신호로 변환함으로써, 열화전과 동등한 휘도를 얻는 방법을 들 수 있다. 이 방법을 회로 설계에서 가장 간단히 실현하기 위해서는, 여분의 계조에 관한 데이터를 처리할 수 있는 만큼의 회로를 미리 준비해 두면 된다.
구체적으로는, 예를 들면 본 발명의 열화보정기능을 갖는 6비트 디지털 계조(64계조) 사양의 발광장치의 경우, 보정을 행하기 위한 여분의 1비트의 데이터의 처리능력을 추가하여, 실질적으로 7비트 디지털 계조(128계조)로서 설계 및 제작한다. 통상의 동작에 있어서는, 본 장치는 하위 6비트 데이터에 관해 동작한다. 그리고, 발광소자에 열화가 생긴 경우에는, 통상의 영상신호에 보정값을 가산하고, 그 가산분의 신호처리는, 상술한 여분의 1비트를 사용하여 행한다. 이 경우, MSB(Most Significant Bit: 최상위비트)는 신호보정용으로서만 사용되고, 실제의 표시 계조는 6비트이다.
(실시예 2)
본 실시예에서는, 실시예 1과는 다른 영상신호의 보정방법에 관해서 설명한다.
도 5a는, 도 1의 화소부(103)의 확대도를 나타내고 있다. 여기서, 화소(201∼203)의 3화소에 관해서 생각한다. 화소 201은, 3개의 화소 중 가장 열화가 진행되지 않은 화소이고, 화소 202는 화소 201보다도 열화가 더 진행되어 있고, 화소 203은 가장 열화가 진행되어 있다고 가정한다.
이때, 열화가 진행되고 있는 화소일수록, 휘도의 저하도 크다. 따라서, 휘도를 보정하지 않으면, 특정 중간 계조를 표시하였을 때에, 도 5b에 나타낸 바와 같이 휘도 변화가 생긴다. 즉, 화소 201의 휘도에 대하여, 화소 202의 휘도는 낮아지고, 또 화소 203의 휘도는 상기 화소 201보다 훨씬 낮아진다.
다음에, 실제의 보정동작에 관해서 설명한다. 발광소자의 발광기간 또는 계조수의 누적된 데이터와, 열화에 따른 휘도저하와의 관계를 미리 측정해 둔다. 이때, 발광기간 또는 계조수의 누적된 데이터와, 열화에 따른 발광소자의 휘도 저하는, 반드시 간단한 관계라고는 할 수 없다. 발광기간 또는 계조수의 누적된 데이터에 대한 발광소자의 열화의 정도를, 미리 보정 데이터 저장부(112)에 기억해 둔다.
전압보정회로(111)는, 보정 데이터 저장부(112)에 기억된 데이터에 근거하여, 전압원(104)으로부터 공급되는 전압의 보정값을 결정한다. 전압의 보정값은, 기준 화소에서의 발광기간 또는 계조수의 누적된 데이터를 기준으로 정한다. 예를 들면, 가장 열화가 진행된 화소 203을 기준으로 하면, 화소 203은 원하는 계조를 얻을 수 있지만, 화소 201, 202에서는 과잉 전압이 공급되게 되므로, 그에 대한 영상신호의 보정이 필요하게 된다. 따라서, 영상신호 보정회로(110)에서는, 열화가 가장 현저한 특정한 화소의 열화의 정도에 맞추어, 원하는 계조수가 얻어지게 입력된 영상신호의 보정을 행한다. 구체적으로는, 기준 화소와 그 밖의 화소간에, 발광기간 또는 계조수의 누적된 데이터를 비교하여, 그 계조수의 차이를 산출하고, 계조수의 차이를 보충하도록 영상신호를 보정한다.
도 1에서, 영상신호 보정회로(110)에는, 영상신호의 입력과, 기억회로부(106)에 기억되어 있는 각 화소의 발광기간 또는 계조수의 누적된 데이터의 판독이 행해진다. 판독된 각 화소의 발광기간 또는 계조수의 누적된 데이터와, 보정 데이터 저장부(112)에 기억된 발광기간 또는 계조수의 누적된 데이터에 대한 발광소자의 열화의 정도를 대조하여, 각각의 영상신호의 보정값을 결정한다.
예를 들면, 화소 203을 기준으로 하여 보정을 행하는 경우, 화소 201, 202는 화소 203과 열화의 정도가 다르기 때문에, 영상신호에 의한 계조수의 보정이 필요하게 된다. 화소 201은, 이들 화소의 발광기간 또는 계조수의 누적된 데이터로부터, 화소 202에 비해 화소 203의 열화의 진행 정도의 차가 크다고 예측된다. 따라서, 화소 203의 계조수는, 화소 202에 대한 보정과 비교된 것처럼 다수의 단계에 의해 보정이 행해진다.
도 5c에, 기준 화소와의, 발광기간 또는 계조수의 누적된 데이터의 차이와, 영상신호에 의해서 보정되는 계조수의 관계를 나타낸다. 이때, 발광기간 또는 계조수의 누적된 데이터와, 열화에 따른 발광소자의 휘도 저하는 반드시 간단한 관계라고는 할 수 없기 때문에, 영상신호의 보정에 의해 가산되는 계조수도, 발광기간 또는 계조수의 누적된 데이터에 대해 반드시 간단한 관계라고는 할 수 없다. 이상과 같이, 가산처리에 의한 보정에 의해서, 균일한 휘도의 화면을 얻을 수 있다.
본 발명의 발광장치에 있어서, 영상신호의 각 비트에 대응하는 발광소자의 발광기간(Ts)의 길이와 계조의 관계를, 도 17을 참조하여 설명한다. 도 17에서는 영상신호가 3비트인 경우를 예로 들어, 0∼7까지의 8계조를 표시하는 경우의, 1프 레임기간에 출현하는 발광기간의 길이를 나타낸다.
3비트 영상신호의 각 비트는, 3개의 발광기간 Ts1∼Ts3에 각각 대응하고 있다. 발광기간의 구성은 Ts1:Ts2:Ts3=22:2:1로 표시된다. 이때, 본 실시예에서는 영상신호가 3비트인 경우에 관해서 설명하고 있지만, 비트수는 이것으로 한정되지 않는다. 예를 들면, n 비트의 영상신호를 사용하는 경우, 발광기간의 길이의 비는, Ts1:Ts2:…:Tsn-1:Tsn=2n-1:2n-2:…:2:1로 표현된다.
1프레임기간에 출현하는 발광기간의 길이의 총합에 의해서, 계조수가 결정된다. 예를 들면, 모든 발광기간에서 발광소자가 발광하고 있는 경우는, 계조수가 7이 된다. 모든 발광기간에서 발광소자가 발광하지 않고 있는 경우는, 계조수가 0이 된다.
그리고, 예를 들면 화소 201, 202, 203에 계조수 3을 표시시키려고 하여 전압을 보정한 결과, 화소 203에서는 계조수 3이 얻어지지만, 화소 201에서는 계조수 5, 화소 202에서는 계조수 4가 표시된다고 가정한다. 이 경우, 화소 201에서는 계조수가 2단계 높아지고, 화소 202에서는 계조수가 1단계 높아지게 된다.
따라서, 영상신호 보정회로에 의해서 영상신호를 보정하여, 화소 201에서는 원하는 계조수 3보다도 2단계 낮은 계조수 1의 보정 후 영상신호를 입력하여, Ts3기간 동안만 발광소자가 발광하도록 한다. 또한, 영상신호 보정회로에 의해서 영상신호를 보정하여, 화소 202에서는 원하는 계조수 3보다도 1단계 낮은 계조수 2의 보정 후 영상신호를 입력하여, Ts2기간 동안만 발광소자가 발광하도록 한다.
이때, 본 실시예에서는, 가장 열화가 현저한 화소를 기준으로 하여 보정을 행한 예에 관해서 나타내었지만, 본 발명은 이 구성으로 한정되지 않는다. 기준 화소는 설계자가 적절히 설정할 수 있고, 해당 기준 화소와 계조수가 일치하도록, 영상신호를 적절히 보정하도록 하면 된다.
가장 열화가 작은 화소를 기준으로 하는 경우, 영상신호는 가산처리에 의해서 보정되고, 화이트 표시에서의 보정이 비효과적인(구체적으로는, 예를 들면 6비트 영상신호로서, "111111"이 입력된 경우, 더 이상의 가산이 불가능하다) 결점이 있다. 또한, 가장 열화가 현저한 화소를 기준으로 하는 경우, 영상신호는 감산처리에 의해서 보정된다. 이 가산처리에 의한 보정과는 반대로, 보정이 통하지 않는 범위가 블랙표시의 범위이기 때문에, 거의 영향이 없다(구체적으로는, 예를 들면 6비트 영상신호로서, "000000"이 입력된 경우, 더 이상의 감산을 행할 필요가 없어, 통상의 발광소자와 열화된 발광소자 사이에서 정확한 블랙표시(단순히 발광소자를 비점등 상태로서 놓으면 된다)가 가능하다. 또한, 이 방법은, 블랙 스폿 부근의 0보다 높은 수단계의 계조수의 스폿을, 표시장치가 약간 많은 비트를 갖는 데이터를 표시하도록 구성되면 실질적으로 적절하게 표시할 수 있다는 특징이 있다. 양 방법은 다계조화에 유리한 방법이다.
또한, 예를 들면, 소정 계조를 경계로 하여서, 가산처리와 감산처리의 양쪽의 보정방법을 병용함으로써, 쌍방의 결점을 보충하는 것도 유효한 수단이라 할 수 있다.
(실시예 3)
본 실시예 3에서는, 본 발명의 발광장치가 갖는 신호선 구동회로 및 주사선 구동회로의 구성에 관해서 설명한다.
도 6a 및 도 6b에 본 실시예의 발광장치의 구동회로의 블록도를 나타낸다. 도 6a는 신호선 구동회로(601)로서, 시프트 레지스터(602), 래치 A(603), 래치 B(604)를 가지고 있다.
도 6b에 도 6a에 나타낸 신호선 구동회로의 더욱 자세한 구성을 나타낸다.
신호선 구동회로(601)에서, 시프트 레지스터(602)에 클록신호(CLK) 및 스타트 펄스(SP)가 입력된다. 시프트 레지스터(602)는, 이들의 클록신호(CLK) 및 스타트 펄스(SP)에 근거하여 타이밍신호를 순차적으로 발생시켜, 버퍼 등(도시하지 않음)을 통해 후단의 회로로 타이밍신호를 순차 입력한다.
이때, 시프트 레지스터(602)로부터 출력된 타이밍신호는, 버퍼 등에 의해 완충 증폭된다. 타이밍신호가 입력되는 배선에는, 많은 회로 또는 소자가 접속되어 있기 때문에 부하용량(기생용량)이 크다. 이 부하용량이 크기 때문에 생기는 타이밍신호의 상승 또는 하강의 "무딤(bluntness)"을 방지하기 위해서, 이 버퍼가 설치된다. 이때, 버퍼는 반드시 설치할 필요는 없다.
버퍼에 의해서 완충 증폭된 타이밍신호는, 래치 A(603)에 입력된다. 래치 A(603)는, 열화보정장치(610)에서 보정된 보정 후 영상신호를 처리하는 복수의 스테이지의 래치를 갖고 있다. 래치 A(603)는, 상기 타이밍신호가 입력되면, 열화보정장치(610)로부터 입력된 보정 후 영상신호를 순차로 기록 및 유지한다.
이때, 래치 A(603)에 영상신호를 받아들일 때에, 래치 A(603)가 갖는 복수의 스테이지의 래치 A(603)에, 순차적으로 영상신호를 입력하여도 된다. 그러나, 본 발명은 이 구성으로 한정되지 않는다. 래치 A(603)가 갖는 복수의 스테이지의 래치를 몇 개의 그룹으로 나누어, 각 그룹마다 병렬로 동시에 영상신호를 입력하는 소위 분할구동을 행하여도 된다. 이때의 그룹의 수를 분할수라고 부른다. 예를 들면, 4개의 스테이지마다 래치를 그룹으로 나눈 경우, 4분할로 분할 구동한다고 한다.
래치 A(603)의 모든 스테이지의 래치에 영상신호의 기록이 종료할 때까지의 시간을, 라인기간으로 부른다. 실제로는, 상기 라인기간에 수평 귀선기간이 더해진 기간을 라인기간에 포함하는 경우가 있다.
1라인기간이 종료하면, 래치 B(604)에 래치신호(Latch Signal)가 입력된다. 이 순간, 래치 A(603)에 기록되어 유지되어 있는 영상신호는, 래치 B(604)에 일제히 송출되어, 래치 B(604)의 전체 스테이지의 래치에 기록 및 유지된다.
디지털 영상신호를 래치 B(604)에 송출을 끝낸 래치 A(603)에는, 시프트 레지스터(602)로부터의 타이밍신호에 근거하여, 영상신호의 기록이 순차로 행해진다. 이 2번째의 1라인기간 동안에는, 래치 B(604)에 기록되어 유지되어 있는 영상신호가 소스 신호선에 입력된다.
이때, 시프트 레지스터 대신에 디코더회로 등의 다른 회로를 사용하여, 래치회로에 순차적으로 영상신호를 기록하여도 된다.
도 7은 주사선 구동회로의 구성을 나타낸 블록도이다. 주사선 구동회로(605)는, 각각 시프트 레지스터(606), 버퍼(607)를 가지고 있다. 또한, 경우에 따라서는 레벨 시프터를 가져도 된다.
주사선 구동회로(605)에서, 시프트 레지스터(606)로부터의 타이밍신호가 버퍼(607)에 입력되어, 대응하는 주사선에 입력된다. 주사선에는, 1라인분의 화소의 스위칭소자로서 기능하는 TFT의 게이트가 접속되어 있다. 그리고, 1라인분의 화소의 TFT를 동시에 0N으로 하지 않으면 안되기 때문에, 버퍼는 큰 전류를 흘리는 것이 가능한 것이 사용된다.
이때, 시프트 레지스터 대신에 디코더회로 등의 별도의 회로를 사용하여, 게이트신호를 선택하여, 타이밍신호를 공급하도록 하여도 된다.
본 발명에서 사용되는 구동회로는, 본 실시예 3에서 나타낸 구성으로 한정되지 않는다. 본 실시예의 구성은, 실시예 1 또는 2와 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 4)
본 실시예에 따른 본 발명의 발광장치는, 열화보정장치가 화소부에 형성되어 있는 기판과는 다른 기판에 형성되어 있다. 그리고, 발광장치에 공급된 영상신호가, 영상신호 보정회로에서 보정된 후에, FPC(플렉시블 인쇄회로)를 통해 화소부와 같은 기판에 형성된 신호선 구동회로에 입력된다. 이러한 방법의 장점으로서는, 열화보정장치의 단위 설계에 의한 호환성이 있어, 일반적인 발광패널을, 그대로 사용할 수 있다고 하는 것을 들 수 있다. 본 실시예에서는, 열화보정장치를 화소부, 신호선 구동회로 및 주사선 구동회로와 같은 기판에 형성하여, 부품수의 대폭 삭감에 의한 저비용화, 공간절약화, 고속구동을 실현하는 예에 관해서 설명한다.
도 8에, 열화보정장치를 화소부, 신호선 구동회로 및 주사선 구동회로와 동 일한 기판에 일체로 형성한 본 발명의 발광장치의 구성을 나타낸다. 기판(401) 상에, 신호선 구동회로(402), 주사선 구동회로(403), 화소부(404), 전원선(405), FPC(406) 및 열화보정장치(407)가 일체로 형성되어 있다. 물론, 기판 상의 레이아웃은 도면의 예로 한정되지 않는다. 그렇지만, 신호선 등의 배치, 배선길이 등을 고려하면서, 블록마다 근접하도록 배치하는 것이 바람직하다.
영상신호는, 외부의 영상소스로부터 FPC(406)를 통해 열화보정장치(407) 내부의 영상신호 보정회로에 입력된다. 그 후, 보정이 행하여진 보정 후 영상신호가 신호선 구동회로(402)에 입력된다.
한편, 열화보정장치 내부의 전압보정회로에서, 전압원으로부터 출력된 전압량이 보정된다. 이때, 본 실시예에서는, 열화보정장치가 갖는 전압원으로부터 출력된 전압의 양을 전압보정회로에서 보정하지만, 본 실시예는 이 구성으로 한정되지 않는다. 발광소자에 인가되는 전압의 양을 제어하는 전압원은, 반드시 열화보정장치 내부에 설치되어 있을 필요는 없다.
도 8에 나타낸 예에서는, FPC(406)과 신호선 구동회로(402) 사이에 열화보정장치(407)를 배치하고 있어, 제어신호의 라우팅(routing)이 용이하게 된다.
본 실시예는, 실시예 1∼실시예 3과 조합하여 실시하는 것이 가능하다.
(실시예 5)
본 실시예 5에서는, 본 발명의 발광장치가 갖는 화소의 구성에 관해서, 도 9에 나타낸 회로도를 참조하여 설명한다.
도 9에 도시된 본 실시예의 화소(800)는, 신호선 Si(S1∼Sx 중의 1개), 전압 원에 접속된 전원선 Vi(V1∼Vx 중의 1개), 제 1 주사선 Gaj(Ga1∼Gay 중의 1개), 제 2 주사선 Gej(Ge1∼Gey 중의 1개)를 가지고 있다.
또한, 화소(800)는, 트랜지스터 Tr1, Tr2 및 Tr3과, 저장용량(801)과, 발광소자(802)를 가지고 있다. Tr1의 게이트는, 제 1 주사선 Gaj에 접속되어 있다. Tr1의 소스와 드레인은, 한쪽이 신호선 Si에, 또 한쪽이 Tr2의 게이트에 접속되어 있다.
트랜지스터 Tr3의 게이트는 제 2 주사선 Gej에 접속되어 있다. Tr3의 소스와 드레인은, 한쪽은 전원선 Vi에, 또 한쪽은 Tr2의 게이트에 접속되어 있다.
저장용량(801)이 갖는 2개의 전극은, 한쪽은 전원선 Vi에, 또 한쪽이 Tr2의 게이트에 접속되어 있다. 저장용량(801)은 Tr1이 비선택상태(즉, 오프상태)에 있을 때, Tr2의 게이트전압을 유지하기 위해 설치되어 있다. 이때, 본 실시예에서는 저장용량(801)을 설치하는 구성을 나타내었지만, 본 발명은 이 구성으로 한정되지 않고, 저장용량(801)을 설치하지 않아도 된다.
Tr2의 소스와 드레인은, 한쪽은 전원선 Vi에, 또 한쪽은 발광소자(802)가 갖는 화소전극에 접속되어 있다.
발광소자(801)는 양극, 음극 및 양극과 음극의 사이에 설치된 유기 발광층으로 이루어진다. 양극이 Tr2의 소스 또는 드레인과 접속하고 있는 경우, 양극이 화소전극, 음극이 대향전극이 된다. 반대로, 음극이 Tr2의 소스 또는 드레인과 접속하고 있는 경우, 음극이 화소전극, 양극이 대향전극이 된다.
전원선 Vi에 인가된 전압은, 열화보정장치가 갖는 전압보정회로에서 보정된 다. 또한, 신호선 Si에 입력된 영상신호는, 열화보정장치가 갖는 영상신호 보정회로에서 보정된다.
Tr1, Tr2, Tr3은, n 채널형 TFT 또는 p 채널형 TFT이라도 사용할 수 있다. 또한, Tr1, Tr2, Tr3은, 싱글게이트 구조가 아니라, 더블게이트 구조나 트리플게이트 구조 등의 멀티게이트 구조이어도 된다.
본 실시예 5는, 실시예 1∼4와 조합하여 실시하는 것이 가능하다.
(실시예 6)
본 실시예에서는, 본 발명의 발광장치의 제작방법에 관해서 설명한다. 이때, 본 실시예 6에서는, 도 2에 나타낸 화소의 제작방법을 예로 들어 설명한다. 또한, 본 실시예의 제작방법은, 본 발명의 다른 구성을 갖는 화소에도 적용시키는 것이 가능하다. 또한, 본 실시예 6에서는, 화소가 갖는 트랜지스터 Tr1, Tr2의 단면도를 나타낸다. 또한, 본 실시예 6에서는, 화소부의 주변에 설치되는 구동회로(신호선 구동회로, 주사선 구동회로)가 갖는 TFT를, 화소부의 TFT와 동일기판 상에 동시에 형성하는 예를 나타낸다.
우선, 도 10a에 나타낸 바와 같이, 코닝사의 #7059 유리나 #1737 유리 등으로 대표되는 바륨보로실리케이트산 유리, 또는 알루미늄보로실리케이트산 유리 등의 유리로 이루어진 기판(301) 상에 산화실리콘막, 질화실리콘막 또는 산화질화실리콘막등의 절연막으로 이루어진 하지막(302)을 형성한다. 예를 들면, 플라즈마 CVD법으로 SiH4, NH3, N2O로 제작된 산화질화실리콘막(302a)을 10∼200[nm](바람직하 게는 50∼100[nm]) 형성하고, 마찬가지로 SiH4, N2O로 제작된 산화질화수소화실리콘막(302b)을 50∼200[nm](바람직하게는 100∼150[nm])의 두께로 적층형성한다. 본 실시예에서는 하지막(302)을 2층 구조로 나타내었지만, 상기 절연막의 단층막 또는 2층 이상 적층시킨 구조로서 형성하여도 된다.
섬 형상의 반도체층(303∼306)은, 비정질구조를 갖는 반도체막을 레이저결정화법이나 공지의 열결정화법을 사용하여 제작한 결정질 반도체막으로 형성한다. 이 섬 형상의 반도체층(303∼306)의 두께는, 25∼80[nm](바람직하게는 30∼60[nm])의 두께로 형성한다. 결정질 반도체막의 재료에 한정은 없지만, 바람직하게는 실리콘 또는 실리콘게르마늄(SiGe) 합금 등으로 형성하면 된다.
레이저결정화법으로 결정질 반도체막을 제작하는 경우는, 펄스발진형 또는 연속발광형의 엑시머 레이저나 YAG 레이저, YVO4 레이저를 사용한다. 이들 레이저를 사용하는 경우에는, 레이저발진기로부터 방사된 레이저광을 광학계로 선형으로 집광하여, 반도체막에 조사하는 방법을 사용하면 된다. 결정화의 조건은 실시자가 적절히 선택한다. 엑시머 레이저를 사용하는 경우는 펄스 발진주파수 300[Hz]로 하고, 레이저 에너지밀도를 100∼400[mJ/cm2](대표적으로는 200∼300[mJ/cm2])로 한다. 또한, YAG 레이저를 사용하는 경우에는 그것의 제 2 고조파를 사용하여 펄스 발진주파수 30∼300[kHz]로 하고, 레이저 에너지밀도를 300∼600[mJ/cm2](대표적으로는 350∼500[mJ/cm2])로 하면 된다. 그리고, 폭 100∼1000[㎛], 예를 들면 400[ ㎛]로 선형으로 집광한 레이저광을 기판 전체면에 걸쳐 조사한다. 이때의 선형레이저광의 중첩율(오버랩율)을 50∼90[%]로 하여 행한다.
이때, 레이저는, 연속발진 또는 펄스발진의 기체 레이저 또는 고체 레이저를 사용할 수 있다. 기체 레이저로서, 엑시머 레이저, Ar 레이저, Kr 레이저 등이 있고, 고체 레이저로서, YAG 레이저, YVO4 레이저, YLF 레이저, YAlO3 레이저, 유리 레이저, 루비 레이저, 알렉산드라이트 레이저, Ti:사파이어 레이저 등을 들 수 있다. 고체 레이저로서는, Cr, Nd, Er, Ho, Ce, Co, Ti 또는 Tm이 도핑된 YAG, YVO4, YLF, YAlO3 등의 결정을 사용한 레이저 등도 사용 가능하다. 해당 레이저의 기본파는 도핑하는 재료에 따라서 다르고, 1㎛ 전후의 기본파를 갖는 레이저광을 얻을 수 있다. 기본파에 대한 고조파는, 비선형 광학소자를 사용함으로써 얻을 수 있다.
또한, 고체 레이저로부터 발생된 적외 레이저광을 비선형 광학소자에서 그린 레이저광으로 변환후, 다시 별도의 비선형 광학소자에 의해서 얻어지는 자외 레이저광을 사용하는 것도 가능하다.
비정질 반도체막의 결정화에 있어서, 대입경으로 결정을 얻기 위해서는, 연속발진이 가능한 고체레이저를 사용하여, 기본파의 제 2 고조파∼제 4 고조파를 적용하는 것이 바람직하다. 대표적으로는, Nd:YVO4 레이저(기본파 1064nm)의 제 2 고조파(파장 532nm)나 제 3 고조파(파장 355nm)를 적용하는 것이 바람직하다. 구체적으로는, 출력 10W의 연속발진의 YVO4 레이저로부터 사출된 레이저광을 비선형 광학 소자에 의해 고조파로 변환한다. 또한, 공진기 내부에 YVO4 결정과 비선형 광학소자를 넣어, 고조파를 사출하는 방법도 있다. 그리고, 바람직하게는 광학계에 의해 조사면에서 사각형 형상 또는 타원 형상의 레이저광으로 성형하여, 피처리체에 조사한다. 이때의 에너지밀도는 0.01∼100MW/cm2 정도(바람직하게는 0.1∼10 MW/cm2)가 필요하다. 그리고, 10∼2000cm/s 정도의 속도로 레이저광에 대하여 상대적으로 반도체막을 이동시켜 조사한다.
이어서, 섬 형상의 반도체층(303∼306)을 덮는 게이트절연막(307)을 형성한다. 게이트절연막(307)은 플라즈마 CVD법 또는 스퍼터링법을 사용하여, 두께를 40∼150[nm]로 하여 실리콘을 포함하는 절연막으로 형성한다. 본 실시예에서는, 120[nm]의 두께로 산화질화실리콘막으로 형성한다. 물론, 게이트절연막은 이러한 산화질화실리콘막으로 한정되는 것이 아니고, 다른 실리콘을 포함하는 절연막을 단층 또는 적층 구조로서 사용하여도 된다. 예를 들면, 산화실리콘막을 사용하는 경우에는, 플라즈마 CVD법으로 TEOS(Tetraethyl Orthosilicate)과 O2를 혼합하여, 반응압력 40[Pa], 기판온도 300∼400[℃]로 하고, 고주파(13.56[MHz]), 전력밀도 0.5∼0.8[W/cm2]로 방전시켜 형성할 수 있다. 이와 같이 하여 제작되는 산화실리콘막은, 그 후 400∼500[℃]의 열어닐링에 의해 게이트절연막으로서 양호한 특성을 얻는 것이 가능하다.
그리고, 게이트절연막(307) 상에 게이트전극을 형성하기 위한 제 1 도전막(308)과 제 2 도전막(309)을 형성한다. 본 실시예에서는, 제 1 도전막(308) 을 Ta로 50∼100[nm]의 두께로 형성하고, 제 2 도전막(309)을 W로 100∼300[nm]의 두께로 형성한다.
Ta막은 스퍼터링법으로, Ta의 타겟을 Ar으로 스퍼터링함으로써 형성한다. 이 경우, Ar에 적량의 Xe나 Kr를 가하면, Ta막의 내부응력을 완화하여 막의 박리를 방지할 수 있다. 또한, α 상의 Ta 막의 저항율은 20[μΩcm] 정도로서 게이트전극에 사용할 수 있다. 그러나, β 상의 Ta 막의 저항율은 180[μΩcm] 정도로서 게이트전극으로 하기 위해서는 적합하지 않다. α 상의 Ta 막을 형성하기 위해, Ta의 α 상에 가까운 결정구조를 갖는 질화탄탈륨을 10∼50[nm] 정도의 두께로 Ta의 하지에 형성해 두면 α 상의 Ta 막을 용이하게 얻을 수 있다.
W 막을 형성하는 경우에는, W를 타겟으로 한 스퍼터링법으로 형성한다. 그 이외에 6불화텅스텐(WF6)을 사용하는 열 CVD법으로 형성하는 것도 가능하다. 어쨌든간에 이 막을 게이트전극으로서 사용하기 위해서는 저저항화를 꾀할 필요가 있다. W 막의 저항율은 20[μΩcm] 이하로 하는 것이 바람직하다. W 막은 결정립을 크게 하는 것으로 저저항율화를 꾀할 수 있다. 하지만, W 중에 산소 등의 불순물원소가 많은 경우에는 결정화가 저해되어 고저항화된다. 따라서, 스퍼터링법에 의한 경우, 순도 99.9999[%] 또는 순도 99.99[%]의 W 타겟을 사용하여, 다시 막형성시에 증기상 중에서의 불순물의 혼입이 없도록 충분히 고려하여 W 막을 형성한다. 그래서, 저항률 9∼20[μΩcm]를 실현할 수 있다.
이때, 본 실시예에서는, 제 1 도전막(308)을 Ta, 제 2 도전막(309)을 W로 하였다. 하지만, 본 발명은 특별히 한정되지 않고, 어느 것이나 Ta, W, Ti, Mo, Al, Cu 등으로부터 선택된 원소, 또는 상기 원소를 주성분으로 하는 합금재료 또는 화합물재료로 형성하여도 된다. 또한, 인 등의 불순물원소를 도핑한 다결정실리콘막으로 대표되는 반도체막을 사용하여도 된다. 본 실시예 이외의 다른 조합의 일례로 바람직한 것으로서는, 제 1 도전막(308)을 질화탄탈륨(TaN)으로 형성하고, 제 2 도전막(309)을 W로 하는 조합, 제 1 도전막(308)을 질화탄탈륨(TaN)으로 형성하고, 제 2 도전막(309)을 Al으로 하는 조합, 제 1 도전막(308)을 질화탄탈륨(TaN)으로 형성하고, 제 2 도전막(309)을 Cu로 하는 조합을 들 수 있다(도 10a).
다음에, 레지스트에 의한 마스크(310)를 형성하고, 전극 및 배선을 형성하기 위한 제 1 식각처리를 행한다. 본 실시예에서는 ICP(Inductively Coupled Plasma: 유도결합형 플라즈마) 식각법을 사용하여, 식각용 가스로서 CF4와 Cl2를 혼합하고, 1[Pa]의 압력에서 코일형 전극에 500[W]의 RF(13.56 [MHz]) 전력을 투입하여 플라즈마를 생성하여 행한다. 기판측(시료 스테이지)에도 100[W]의 RF(13.56[MHz]) 전력을 투입하여, 실질적으로 음의 자기 바이어스 전압을 인가한다. CF4와 Cl2를 혼합한 경우에는 W 막 및 Ta 막도 같은 정도로 식각된다.
상기한 식각조건에서는, 레지스트에 의한 마스크의 형상을 적합한 형상으로 만듦으로써, 기판측에 인가된 바이어스 전압의 효과에 의해 제 1 도전층 및 제 2 도전층의 단부가 테이퍼 형상으로 된다. 테이퍼부의 각도는 15∼45°로 된다. 게이트절연막 상에 잔여물을 남기지 않고 식각하기 위해서는, 10∼20[%] 정도의 비율로 식각시간을 증가시키면 된다. W 막에 대한 산화질화실리콘막의 선택비는 2∼4(대표 적으로는 3)이기 때문에, 과식각처리에 의해, 산화질화실리콘막이 노출된 면은 20∼50 [nm] 정도 식각되게 된다. 이렇게 해서, 제 1 식각처리에 의해 제 1 도전층과 제 2 도전층으로 이루어진 제 1 형상의 도전층(311∼314)(제 1 도전층(311a∼314a)과 제 2 도전층(311b∼314b))을 형성한다. 이때, 게이트절연막(307)에서는, 제 1 형상의 도전층(311∼314)으로 덮이지 않은 영역은 20∼50[nm] 정도식각되어 얇아진 영역이 형성된다. 또한, 마스크(310)도 상기 식각에 의해 표면이 식각된다.
그리고, 제 1 도핑처리를 행하여 n 형 도전성을 부여하는 불순물원소를 첨가한다. 도핑의 방법은 이온도핑법 또는 이온주입법으로 행하면 된다. 이온도핑법의 조건은, 도우즈량을 1×1013∼5×1014[atoms/cm2]로 하고, 가속전압을 60∼100[keV]로 하여 행한다. n 형 도전성을 부여하는 불순물원소로서 15족에 속하는 원소, 전형적으로는 인(P) 또는 비소(As)를 사용한다. 하지만, 여기서는 인(P)을 사용한다. 이 경우, 도전층(311∼314)이 n 형 도전성을 부여하는 불순물원소에 대한 마스크가 되어, 자기 정합적으로 제 1 불순물영역(317∼320)이 형성된다. 제 1 불순물영역(317∼320)에는 1×1020∼1×1021[atoms/cm3]의 농도범위에서 n 형 도전성을 부여하는 불순물원소를 첨가한다(도 10b).
다음에, 도 10c에 나타낸 바와 같이, 레지스트 마스크(310)는 제거하지 않은 채로, 제 2 식각처리를 행한다. 식각가스에 CF4와 Cl2와 O2를 사용하여, W 막을 선택적으로 식각한다. 이때, 제 2 식각처리에 의해 제 2 형상의 도전층(325∼328)(제 1 도전층(325a∼328a)과 제 2 도전층(325b∼328b))을 형성한다. 이때, 게이트절연막(307)에서는, 제 2 형상의 도전층(325∼328)으로 덮이지 않은 영역은 20∼50[nm] 정도 더 식각되어 얇아진 영역이 형성된다.
W 막이나 Ta 막의 CF4와 Cl2의 혼합가스에 의한 식각반응은, 생성되는 래디컬 또는 이온종과 반응생성물의 증기압으로부터 추측할 수 있다. W와 Ta의 불화물과 염화물의 증기압을 비교하면, W의 불화물인 WF6가 극단적으로 높고, 그 밖의 WCl5, TaF5, TaCl5는 같은 정도이다. 따라서, CF4와 Cl2의 혼합가스에서는 W 막 및 Ta 막이 함께 식각된다. 그러나, 이 혼합가스에 적량의 O2를 첨가하면 CF4과 O2가 반응하여 Co과 F가 되어, F 래디컬 또는 F 이온이 다량으로 발생한다. 그 결과, 불화물의 증기압이 높은 W 막의 식각속도가 증대한다. 한편, Ta는 F가 증대하더라도 상대적으로 식각속도의 증가는 적다. 또한, Ta는 W에 비해 산화되기 쉽기 때문에, O2를 첨가함으로써 Ta의 표면이 산화된다. Ta의 산화물은 불소나 염소와 반응하지 않기 때문에 더욱 Ta 막의 식각속도는 저하한다. 따라서, W 막과 Ta 막의 식각속도에 차이를 만드는 것이 가능해져 W 막의 식각속도를 Ta 막보다도 크게 하는 것이 가능해진다.
그리고, 도 11a에 나타낸 바와 같이 제 2 도핑처리를 행한다. 이 경우, 제 1 도핑처리보다도 도우즈량을 낮추어 높은 가속전압의 조건으로서 n형 도전성을 부여하는 불순물원소를 도핑한다. 예를 들면, 가속전압을 70∼120[keV]로 하고, 1×1013[at0ms/cm2]의 도우즈량으로 행한다. 그래서, 도 10b에서 섬 형상의 반도체층으로 형성된 제 1 불순물영역의 내측에 새로운 불순물영역을 형성한다. 도핑은, 제 2 형상의 도전층(325∼328)을 불순물원소에 대한 마스크로서 사용하여, 제 1 도전층(325a∼328a)의 하측의 영역에도 불순물원소가 첨가되도록 도핑한다. 이렇게 해서, 제 3 불순물영역(332∼335)이 형성된다. 이 제 3 불순물영역(332∼335)에 첨가된 인(P)의 농도는, 제 1 도전층(325a∼328a)의 테이퍼부의 막두께에 따라서 완만한 농도 경사를 갖는다. 이때, 제 1 도전층(325a∼328a)의 테이퍼부와 겹치는 반도체층에서, 제 1 도전층(325a∼328a)의 테이퍼부의 단부로부터 내측을 향해 약간, 불순물 농도가 낮게 된다. 그렇지만, 그 차이는 매우 작고, 반도체층 전체에 걸쳐 거의 같은 정도의 농도이다.
도 11b에 나타낸 바와 같이 제 3 식각처리를 행한다. 식각가스로 CHF6를 사용하여, 반응성 이온 식각법(RIE법)을 사용하여 행한다. 제 3 식각처리에 의해, 제 1 도전층(325a∼328a)의 테이퍼부를 부분적으로 식각하여, 제 1 도전층이 반도체층과 겹치는 영역이 축소된다. 제 3 식각처리에 의해서, 제 3 형상의 도전층(336∼339)(제 1 도전층(336a∼339a)과 제 2 도전층(336b∼339b))을 형성한다. 이때, 게이트절연막(307)에서는, 제 3 형상의 도전층(336∼339)으로 덮이지 않은 영역은 다시 20∼50[nm] 정도 식각되어 얇아진 영역이 형성된다.
제 3 식각처리에 의해서, 제 3 불순물영역(332∼335)에서는, 제 1 도전층(336a∼339a)과 겹치는 제 3 불순물영역(332a∼335a)과, 제 1 불순물영역과 제 3 불순물영역 사이의 제 2 불순물영역(332b∼335b)이 형성된다.
그리고, 도 11c에 나타낸 바와 같이, p 채널형 TFT을 형성하는 섬 형상의 반도체층(303, 306)에 제 1 도전형과는 반대의 도전형의 제 4 불순물영역(343∼348) 을 형성한다. 제 3 형상의 도전층(336b, 339b)을 불순물원소에 대한 마스크로서 사용하여, 자기 정합적으로 불순물영역을 형성한다. 이때, n 채널형 TFT을 형성하는 섬 형상의 반도체층(304, 305)은, 레지스트마스크(350)로 전체면을 피복해 둔다. 불순물영역(343∼348)에는 각각 다른 농도로 인이 첨가되어 있다. 이 불순물영역(343∼348)은, 디보란(B2H6)을 사용한 이온도핑법으로 형성하고, 그 어느 쪽의 영역에서도 불순물 농도가 2×1020∼2×1021[atoms/cm3]가 되도록 한다.
이상까지의 공정으로 각각의 섬 형상의 반도체층에 불순물영역이 형성된다. 섬 형상의 반도체층과 겹치는 제 3 형상의 도전층(336∼339)이 게이트전극으로서 기능한다.
레지스트마스크(350)를 제거한 후, 도전형의 제어를 목적으로 하여, 각각의 섬 형상의 반도체층에 첨가된 불순물원소를 활성화하는 공정을 행한다. 이 공정은 퍼니스 어닐로를 사용하는 열 어닐링법으로 행한다. 그 외에, 레이저어닐링법, 또는 급속 열 어닐링법(RTA법)을 적용할 수 있다. 열 어닐링법에서는 산소 농도가 1[ppm] 이하, 바람직하게는 0.1[ppm] 이하의 질소분위기 중에서 400∼700[℃], 대표적으로는 500∼600[℃]에서 행한다. 본 실시예에서는 500[℃]에서 4시간의 열처리를 행한다. 단, 제 3 형상의 도전층(336∼339)에 사용된 배선재료가 열에 약한 경우에는, 배선 등을 보호하기 위해서 층간절연막(실리콘을 주성분으로 한다)을 형성한 후에 활성화를 행하는 것이 바람직하다.
레이저 어닐링법을 사용하는 경우, 결정화시에 사용한 레이저를 사용하는 것 이 가능하다. 활성화의 경우는, 이동속도는 결정화와 동일하게 하고, 0.01∼100 MW/cm2 정도(바람직하게는 0.01∼10 MW/cm2)의 에너지밀도가 필요하게 된다.
또한, 3∼100[%]의 수소를 포함하는 분위기중에서, 300∼450[℃]에서 1∼12시간의 열처리를 행하여, 섬 형상의 반도체층을 수소화하는 공정을 행한다. 이 공정은 열적으로 여기된 수소에 의해 반도체층의 댕글링 접합을 종단하는 공정이다. 수소화의 다른 수단으로서, 플라즈마 수소화(플라즈마에 의해 여기된 수소를 사용한다)를 행하여도 된다.
이어서, 도 12a에 나타낸 바와 같이, 제 1 층간절연막(355)을 산화질화실리콘막으로부터 100∼200[nm]의 두께로 형성한다. 상기 제 1 층간절연막 위에 유기절연물 재료로 이루어진 제 2 층간절연막(356)을 형성한다. 그 후, 제 1 층간절연막(355), 제 2 층간절연막(356), 및 게이트절연막(307)에 대해 콘택홀을 형성하고, 접속배선(357∼362)을 패터닝 형성한다. 이때, 도면부호 362는 전원선이고, 360은 신호선이다.
제 2 층간절연막(356)으로서는, 유기수지를 재료로 하는 막을 사용한다. 그 유기수지로서는 폴리이미드, 폴리아미드, 아크릴, BCB(벤조시클로부텐) 등을 사용할 수 있다. 특히, 제 2 층간절연막(356)은 평탄화의 의미가 강하기 때문에, 평탄성이 우수한 아크릴이 바람직하다. 본 실시예에서는 TFT에 의해서 형성되는 단차를 충분히 평탄화할 수 있는 막두께로 아크릴막을 형성한다. 바람직하게는 막 두께는, 1∼5[㎛](더욱 바람직하게는 2∼4[㎛])로 하면 된다.
콘택홀의 형성은, 건식식각 또는 습식식각을 사용하여, n형 불순물영역(318, 319) 또는 p 형 불순물영역(345, 348)에 이르는 콘택홀, 용량배선(도시하지 않음)에 이르는 콘택홀(도시하지 않음)을 각각 형성한다.
또한, 접속배선(357∼362)으로서, Ti 막을 100[nm], Ti를 포함하는 알루미늄막을 300[nm], Ti 막 150[nm]를 스퍼터링법으로 연속형성한 3층 구조의 적층막을 원하는 형상으로 패터닝한 것을 사용한다. 물론, 다른 도전막을 사용하여도 된다.
다음에, 접속배선(connecting wiring)(362)에 접속된 화소전극(365)을 패터닝 형성한다.
또한, 본 실시예에서는, 화소전극(365)으로서 ITO 막을 110[nm]의 두께로 형성하여, 패터닝을 행하였다. 화소전극(365)을 접속배선(362)과 접하고 이 접속배선(362)과 중첩되도록 배치함으로써 콘택을 한다. 또한, 산화인듐에 2∼20[%]의 산화아연(ZnO)을 혼합한 투명도전막을 사용하여도 된다. 이 화소전극(365)이 OLED의 양극이 된다(도 12a).
다음에, 도 12b에 나타낸 바와 같이, 실리콘을 포함하는 절연막(본 실시예에서는 산화실리콘막)을 500[nm]의 두께로 형성한다. 화소전극(365)에 대응하는 위치에 개구부를 형성하여, 뱅크로서 기능하는 제 3 층간절연막(366)을 형성한다. 개구부를 형성할 때, 습식식각법을 사용하는 것으로 용이하게 테이퍼 형상의 측벽으로 할 수 있다. 개구부의 측벽이 충분히 완만한 모양이 아니면 단차로 인한 유기 발광층의 열화가 현저한 문제가 되어 버리기 때문에, 주의가 필요하다.
다음에, 유기 발광층(367) 및 음극(MgAg 전극)(368)을, 진공증착법을 사용하여 대기에 노출시키지 않고 연속 형성한다. 이때, 유기 발광층(367)의 막두께는 80 ∼200[nm](전형적으로는 100∼120[nm]), 음극(368)의 두께는 180∼300[nm](전형적으로는 200∼250[nm])로 하면 된다.
이 공정에서는, 적색에 대응한 화소, 녹색에 대응한 화소 및 청색에 대응한 화소에 대해 순차로, 유기 발광층 및 음극을 형성한다. 이 경우에, 유기 발광층은 용액에 대한 내성이 부족하기 때문에 포토리소그래피 기술을 사용하지 않고 각 색상 개별로 형성하지 않으면 안 된다. 그래서, 금속 마스크를 사용하여 원하는 화소 이외의 부분을 덮고, 필요 부분만 선택적으로 유기 발광층을 형성하는 것이 바람직하다.
즉, 우선 적색에 대응한 화소 이외를 모두 덮는 마스크를 세트하고, 그 마스크를 사용하여 적색발광의 유기 발광층을 선택적으로 형성한다. 이어서, 녹색에 대응한 화소 이외를 모두 덮는 마스크를 세트하고, 그 마스크를 사용하여 녹색발광의 유기 발광층을 선택적으로 형성한다. 이어서, 마찬가지로 청색에 대응한 화소 이외를 모두 덮는 마스크를 세트하고, 그 마스크를 사용하여 청색발광의 유기 발광층을 선택적으로 형성한다. 이때, 여기서는 모두 다른 마스크를 사용하도록 기재되어 있지만, 동일한 마스크를 반복적으로 사용하여도 상관없다.
여기서는, RGB에 대응한 3종류의 OLED를 형성하는 방식을 사용하였다. 그렇지만, 백색발광의 OLED와 칼라필터를 조합한 방식, 청색 또는 청녹발광의 OLED와 형광체(형광성의 색변환층: CCM)를 조합한 방식, 음극(대향전극)에 투명전극을 이용하여 RGB에 대응한 OLED를 포개는 방식 등을 사용하여도 된다.
이때, 유기 발광층(367)으로서는 공지의 재료를 사용하는 것이 가능하다. 공 지의 재료로서는, 구동전압을 고려하면 유기재료를 사용하는 것이 바람직하다. 예를 들면, 정공주입층, 정공수송층, 발광층 및 전자주입층으로 이루어진 4층 구조를 유기 발광층으로 사용하면 된다.
다음에, 음극(368)을 형성한다. 이때, 본 실시예에서는 음극(368)으로서 MgAg를 사용하였지만, 본 발명은 이것으로 한정되지 않는다. 음극(368)으로서 다른 공지의 재료를 사용하여도 된다.
또한, 도시하지 않았지만, 음극을 박막화함으로써, 빛을 위쪽으로 추출하는 것도 가능하다.
화소전극(365)과, 유기 발광층(367)과, 음극(368)이 겹친 부분이, OLED(375)에 해당한다.
또한, 다음에 보호전극(369)을 증착법에 의해 형성한다. 보호전극(369)은, 장치를 대기에 노출시키지 않고 음극(368)을 연속적으로 형성할 때 사용하여도 된다. 보호전극(369)은 유기 발광층(367)을 수분이나 산소로부터 보호하는데 효율적이다.
또한, 보호전극(369)은 음극(368)의 열화를 방지하기 위해 설치되며, 알루미늄을 주성분으로 하는 금속막이 대표적이다. 물론, 다른 재료를 사용하여도 된다. 또한, 유기 발광층(367) 및 음극(368)은, 대단히 수분에 약하기 때문에, 보호전극(369)까지를 대기에 노출시키지 않고 연속적으로 형성한다. 외기로부터 유기 발광층을 보호하는 것이 바람직하다.
마지막으로, 질화실리콘막으로 이루어진 패시베이션막(370)을 300[nm]의 두 께로 형성한다. 이 패시베이션막(370)은, 유기 발광층(367)을 수분 등으로부터 보호할 수 있어, OLED의 신뢰성을 더욱 높일 수 있다. 이때, 패시베이션막(370)은 반드시 설치할 필요는 없다.
이렇게 해서 도 12b에 나타낸 것과 같은 구조의 발광장치가 완성된다. 도면부호 371은 구동회로부의 p 채널형 TFT, 372는 구동회로부의 n 채널형 TFT, 373은 트랜지스터 Tr3, 374는 트랜지스터 Tr2에 해당한다.
그런데, 본 실시예의 발광장치는, 화소부 뿐만 아니라 구동회로에도 최적의 구조의 TFT를 배치함으로써, 대단히 높은 신뢰성을 나타내고, 동작특성도 향상될 수 있다. 또한, 결정화공정에서 Ni 등의 금속촉매로 그 막을 도핑하여, 결정성을 향상시킬 수 있다. 이 결정성을 향상시킴으로써, 신호선 구동회로의 구동주파수를 10[MHz] 이상으로 하는 것이 가능하다.
이때, 실제로는 도 12b의 상태까지 완성된 장치는, 다시 외기에 노출되지 않도록, 기밀성이 높고, 탈가스가 적은 보호필름(라미네이트 필름, 자외선 경화수지 필름 등)이나 투광성 밀봉재로 패키징(봉입)하는 것이 바람직하다. 그때, 밀봉재의 내부를 불활성 분위기로 하거나, 내부에 흡습성 재료(예를 들면 산화바륨)를 배치하거나 하면 OLED의 신뢰성이 향상된다.
또한, 패키징 또는 다른 처리를 통해 기밀성을 유지한 후, 기판 상에 형성된 소자 또는 회로로부터 인출된 단자와 외부신호단자를 접속하기 위한 커넥터를 부착한다.
또한, 본 실시예에서 나타낸 공정에 따르면, 발광장치의 제작에 필요한 포토 마스크의 수를 억제할 수 있다. 그 결과, 공정을 단축하여, 제조비용의 감소 및 수율의 향상에 기여할 수 있다.
본 실시예는, 실시예 1∼5와 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 7)
본 실시예에서는, 3중항 여기자로부터의 인광을 발광에 이용할 수 있는 유기발광재를 사용함으로써, 외부발광 양자효율을 비약적으로 향상시킬 수 있다. 이에 따라, 발광소자의 저소비전력화, 장기 수명화, 및 경량화가 가능하게 된다.
여기서, 3중항 여기자를 이용하여, 외부발광 양자효율을 향상시킨 보고를 나타낸다.(T.Tsutsui, C.Adachi, S.Saito, Photochemical Processes in Organized Molecular Systems, ed. K.Honda, (Elsevier Sci.Pub., Tokyo, 1991) p.437.)
상기한 논문에 의해 보고된 유기발광재료(쿠말린 색소)의 분자식을 이하에 나타낸다.
[화학식 1]
Figure 112002031648749-pat00001
(M.A.Baldo, D.F.O'Brien, Y.You, A.Shoustikov, S.Sibley, M.E.Thompson, S.R.Forrest, Nature 395(1998) p. 151.)
상기한 논문에 의해 보고된 유기발광재료(Pt 착체)의 분자식을 이하에 나타낸다.
[화학식 2]
Figure 112002031648749-pat00002
(M.A.Baldo, S.Lamansky, P.E.Burrrows, M.E.Thompson, S.R.Forrest, Appl.Phys.Lett.,75(1999) p.4.)(T.Tsutsui, M.-J.Yang, M.Yahiro, K.Nakamura, T.Watanabe, T.tsuji, Y.Fukuda, T.Wakimoto, S.Mayaguchi, Jpn.Appl.Phys., 38(12B)(1999) L1502.)
상기한 논문에 의해 보고된 유기발광재료(Ir 착체)의 분자식을 이하에 나타낸다.
[화학식 3]
Figure 112002031648749-pat00003
이상과 같이 3중항 여기자로부터의 인광 발광을 이용할 수 있으면 원리적으로는 단일항 여기자로부터의 형광발광을 사용하는 경우보다 3∼4배가 높은 외부발광 양자효율의 실현이 가능해진다.
이때, 본 실시예의 구성은, 실시예 1∼실시예 6의 어느 구성과도 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 8)
본 실시예에서는, 본 발명의 발광장치의 화소의 구성에 관해서 설명한다. 도 13에 본 실시예의 발광장치의 화소의 단면도를 나타낸다. 또한, 본 실시예에서는 설명을 간편하게 하기 위해서, 화소가 갖는 n 채널형 TFT과, 화소전극에 공급하는 전류를 제어하고 있는 p 채널형 TFT만 도시하였지만, 다른 TFT도 도 13에 나타낸 구성을 참조하여 제작하는 것이 가능하다.
도 13을 참조하여, 도면부호 751은 n 채널형 TFT이며, 또한 752는 p 채널형 TFT이다. n 채널형 TFT(751)은, 반도체막(753)과, 제 1 절연막(770)과, 한 쌍의 제 1 전극(754, 755)과, 제 2 절연막(771)과, 제 2 전극(756, 757)을 가지고 있다. 그리고, 반도체막(753)은, 제 1 농도의 일 도전형 불순물영역(758)과, 제 2 농도의 일 도전형 불순물영역(759)과, 한 쌍의 채널형성영역(760, 761)을 가지고 있다.
이때, 본 실시예에서는, 제 1 절연막(770)은 한 쌍의 절연막(770a, 770b)을 적층한 구조를 가지고 있다. 또한, 제 1 절연막(770)은 단층의 절연막이라도 되며, 3층 이상의 절연막을 적층한 구조를 가지고 있어도 된다.
상기 한 쌍의 제 1 전극(754, 755)과 한 쌍의 채널형성영역(760, 761)은, 각각 제 1 절연막(770)을 사이에 끼워 겹쳐 있다. 또한, 제 2 전극(756, 757)과, 채널형성영역(760, 761)과는, 각각 제 2 절연막(771)을 사이에 끼워 겹쳐 있다.
p 채널형 TFT(752)는, 반도체막(780)과, 제 1 절연막(770)과, 제 1 전극(782)과, 제 2 절연막(771)과, 제 2 전극(781)을 가지고 있다. 그리고, 반도체 막(780)은, 제 3 농도의 일 도전형 불순물영역(783)과, 채널형성영역(784)을 가지고 있다.
제 1 전극(782)과 채널형성영역(784)은, 각각 제 1 절연막(770)을 사이에 끼워 겹쳐 있다. 제 2 전극(781)과 채널형성영역(784)은, 각각 제 2 절연막(771)을 사이에 끼워 겹쳐 있다.
그리고, 본 실시예에서는, 도 13에 도시하지는 않았지만, 제 1 전극(754, 755)과 제 2 전극(756, 757)은 전기적으로 각각 서로 접속되어 있다. 이때, 본 발명의 범위는 상기 접속관계로만 한정되지 않고, 제 1 전극(754, 755)은 상기 제 2 전극(756, 757)과 전기적으로 분리되고, 소정 전압이 인가되는 구성으로 실현하는 것도 바람직하다. 또한, 제 1 전극(782)을 제 2 전극(781)으로부터 전기적으로 분리하고 소정 전압을 인가하는 구성으로 실현하는 것도 가능하다.
제 1 전극에 소정 전압을 인가함으로써, 전극이 1개인 경우에 비해 임계치의 격차를 억제할 수 있고, 더구나 오프전류를 억제할 수 있다. 또한, 제 1 전극과 제 2 전극에 같은 전압을 인가함으로써, 실질적으로 반도체막의 막두께를 얇게 한 것과 동일하게 공핍층이 빨리 넓어지기 때문에, 서브 임계계수를 작게 할 수 있고, 더구나 전계효과 이동도를 향상시킬 수 있다. 따라서, 전극이 1개인 경우에 비해 온전류를 크게 할 수 있다. 따라서, 이 구조의 TFT를 구동회로에 사용하는 것에 의해, 구동전압을 저하시킬 수 있다. 또한, 온전류를 크게 할 수 있기 때문에, TFT의 사이즈(특히 채널폭)를 작게 할 수 있다. 그 때문에 집적밀도를 향상시킬 수 있다.
이때, 본 실시예 8은 실시예 1∼실시예 7 중 어느 하나와 조합하여 실시하는 것이 가능하다.
(실시예 9)
본 실시예에서는, 본 발명의 반도체장치의 하나인 발광장치의 화소의 구성에 관해서 설명한다. 도 14에 본 실시예의 발광장치의 화소의 단면도를 나타낸다. 또한, 본 실시예에서는 설명을 간편하게 하기 위해, 화소를 갖는 n 채널형 TFT와, 화소전극에 공급하는 전류를 제어하는 p 채널형 TFT만 도시하였지만, 다른 TFT도 도 14에 나타낸 구성을 참조하여 제작할 수 있다.
도 14에서, 도면부호 911은 기판, 912는 기초가 되는 절연막(이하, 하지막이라 한다)이다. 기판(911)으로서는 투광성 기판, 대표적으로는 유리 기판, 석영 기판 또는 유리세라믹 기판을 사용할 수 있다. 단, 이 기판들은 제작프로세스 중의 최고처리온도에 견뎌야 한다.
도면부호 8201은 n 채널형 TFT, 8202는 p 채널형 TFT이다. n 채널형 TFT(8201)는, 소스영역(913), 드레인영역(914), LDD 영역(915a∼915d), 분리영역(916) 및 채널형성영역(917a, 917b)을 포함하는 활성층과, 게이트절연막(918)과, 게이트전극(919a, 919b)과, 제 1 층간절연막(920)과, 신호선(921)과, 접속배선(922)을 가지고 있다. 이때, 게이트절연막(918) 또는 제 1 층간절연막(920)은, 기판 상의 전체 TFT에 공통이어도 되고, 회로 또는 소자에 따라서 다르게 하여도 된다.
또한, 도 14에 나타낸 n 채널형 TFT(8201)는, 게이트전극(917a, 917b)이 전기적으로 접속되어 있어, 소위 더블게이트 구조로 되어 있다. 물론, 더블게이트 구 조 뿐만 아니라, 트리플게이트 구조 등 소위 멀티게이트 구조(직렬로 접속된 2개 이상의 채널형성영역을 갖는 활성층을 포함하는 구조)이어도 된다.
멀티게이트 구조는, 오프전류를 감소하는 데에 있어서 매우 유효하여, Tr5의 오프전류를 충분히 낮게 하면, 그만큼 p 채널형 TFT(8202)의 게이트전극에 접속된 저장용량이 필요로 하는 최저한의 용량을 억제할 수 있다. 즉, 저장용량의 면적을 작게 할 수 있기 때문에, 멀티게이트 구조로 하는 것은 발광소자의 유효발광면적을 확대하는 데에도 유효하다.
더구나, n 채널형 TFT(8201)에서는, LDD 영역(915a∼915d)은, 게이트절연막(918)을 통해 게이트전극(919a, 919b)과 겹치지 않도록 설치한다. 이러한 구조는 오프전류를 감소하는 데에 있어서 대단히 효과적이다. 또한, LDD 영역(915a∼915d)의 길이(폭)는 0.5∼3.5㎛, 대표적으로는 2.0∼2.5㎛로 하면 된다. 이때, 2개 이상의 게이트전극을 갖는 멀티게이트 구조의 경우, 분리영역(9l6)(소스영역 또는 드레인영역과 동일한 농도로 동일한 불순물원소가 첨가된 영역)이 오프전류의 감소에 효과적이다.
다음에, p 채널형 TFT(8202)은, 소스영역(926), 드레인영역(927) 및 채널영역(929)을 포함하는 활성층과, 게이트절연막(918)과, 게이트전극(930)과, 제 1 층간절연막(920)과, 접속배선 931 및 접속배선 932로 형성되어 있다. 본 실시예 9에서, p 채널형 TFT(8202)는 p 채널형 TFT이다.
이때, 게이트 전극(930)은 싱글게이트 구조로 되어 있지만, 멀티게이트 구조이어도 된다.
이상은 화소 내부에 설치된 TFT의 구조에 관해서 설명하였다. 이때 동시에 구동회로도 형성된다. 도 14에는 구동회로를 형성하는 기본단위가 되는 CMOS 회로가 도시되어 있다.
도 14에서는 동작속도를 과도하게 떨어뜨리지 않도록 하면서 핫 캐리어 주입을 감소시키는 구조를 갖는 TFT를 CMOS 회로의 n 채널형 TFT(8204)으로서 사용한다. 이때, 여기서 말하는 구동회로란, 소스신호측 구동회로, 게이트신호측 구동회로를 가리킨다. 물론, 다른 논리회로(레벨 시프터, A/D 컨버터, 신호분할회로 등)를 형성하는 것도 가능하다.
CMOS 회로의 n 채널형 TFT(8204)의 활성층은, 소스영역(935), 드레인영역(936), LDD 영역(937) 및 채널영역(938)을 포함한다. LDD 영역(937)은 게이트절연막(918)을 통해 게이트전극(939)과 겹쳐 있다.
드레인영역(936)측에만 LDD 영역(937)을 형성하는 것은, 동작속도를 떨어뜨리지 않기 위한 것이다. 또한, 이 n 채널형 TFT(8204)는 오프전류값에 대해 너무 신경 쓸 필요는 없고, 그것보다도 동작속도를 중요시하는 하는 쪽이 좋다. 따라서, LDD 영역(937)은 완전히 게이트전극에 겹쳐 버려, 저항성분을 매우 적게 하는 것이 바람직하다. 따라서, 소위 오프셋은 제거하는 것이 좋다.
또한, CMOS 회로의 p 채널형 TFT(8205)은, 핫 캐리어 주입에 의한 열화가 거의 걱정되지 않기 때문에, 특히 LDD 영역을 설치하지 않아도 된다. 따라서, 활성층은 소스영역(940), 드레인영역(941) 및 채널형성영역(942)을 포함하고, 그 위에는 게이트절연막(918)과 게이트전극(943)이 설치된다. 물론, n 채널형 TFT(8204)와 마 찬가지의 LDD 영역을 형성하여, 핫 캐리어 주입에 대해 대책을 취하는 것도 가능하다.
도면부호 961∼965는, 채널영역(942, 938, 9l7a, 917b, 929)을 형성하기 위한 마스크이다.
또한, n 채널형 TFT(8204) 및 p 채널형 TFT(8205)는 각각 소스영역 상에 제 1 층간절연막(920)을 통해, 접속배선(944, 945)을 가지고 있다. 또한, 접속배선(946)에 의해서 n 채널형 TFT(8204)와 p 채널형 TFT(8205)의 드레인영역은 서로 전기적으로 접속된다.
이때, 본 실시예의 구성은, 실시예 1∼7과 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 10)
본 실시예에서는, 음극을 화소전극으로서 사용한 화소의 구성에 관해서 설명한다.
본 실시예의 화소의 단면도를 도 15에 나타낸다. 도 15에서, 기판(3501) 상에 설치된 n 채널형 TFT(3502)는 공지의 방법을 사용하여 제작된다. 본 실시예에서는, n 채널형 TFT(3502)를 더블게이트 구조로 사용하고 있다. 그러나, 본 실시예에서는, 싱글게이트 구조, 트리플 게이트 구조 또는 그 이상의 게이트전극을 갖는 멀티게이트 구조를 사용하여도 된다. 또한, 본 실시예에서는 설명을 간편하게 하기 위해, 화소가 갖는 n 채널형 TFT과, 화소전극에 공급하는 전류를 제어하는 p 채널형 TFT만 도시하였지만, 다른 TFT도 도 15에 나타낸 구성을 참조하여 제작하는 것 이 가능하다.
또한, p 채널형 TFT(3503)는, 공지의 방법을 사용하여 제작된다. 또한, 도면부호 38로 표시되는 배선은, n 채널형 TFT(3502)의 게이트전극 39a와 39b를 전기적으로 접속하는 주사선이다.
도 15에 도시된 본 실시예에서는 p 채널형 TFT(3503)을 싱글게이트 구조로 도시하고 있다. 하지만, p 채널형 TFT(3503)는, 복수의 TFT를 서로 직렬로 연결한 멀티게이트 구조로 하여도 된다. 더구나, 복수의 TFT를 병렬로 연결하여 실질적으로 채널형성영역을 복수로 분할하여, 열의 방사를 높은 효율로 할 수 있도록 한 구조로 하여도 된다. 이러한 구조는 열에 의한 열화 대책으로서 아주 유효하다.
n 채널형 TFT(3502) 및 p 채널형 TFT(3503) 위에는 제 1 층간절연막(41)이 설치된다. 이 제 1 층간절연막(41) 위에 수지절연막으로 이루어진 제 2 층간절연막(42)이 형성된다. 제 2 층간절연막(42)을 사용하여 TFT에 의한 단차를 평탄화하는 것은 대단히 중요하다. 이는, 나중에 형성되는 유기 발광층이 대단히 얇기 때문에, 단차가 존재함으로써 발광불량을 일으키는 경우가 있다. 따라서, 유기 발광층을 될 수 있는 한 평탄면으로 형성할 수 있도록 화소전극을 형성하기 전에 평탄화해 두는 것이 바람직하다.
또한, 도 15에 도시된 도면부호 43은, 반사성이 높은 전기적 도전막으로 이루어진 화소전극, 즉 발광소자의 음극이다. 이 화소전극(43)은, p 채널형 TFT(3503)의 드레인영역에 전기적으로 접속된다. 화소전극(43)으로서는, 알루미늄 합금막, 구리 합금막 또는 은 합금막 등 저저항인 도전막 또는 그들의 적층막을 사 용하는 것이 바람직하다. 물론, 전기 도전성을 갖는 다른 종류의 금속막과 조합된 상기 합금막을 포함하는 적층구조로 하여도 된다.
도 15는 수지성 절연막으로 형성된 한 쌍의 뱅크(44a, 44b) 사이에 생성된 홈(화소에 해당함)의 내부에 형성된 발광층(45)을 나타낸다. 이때, 여기서는 도 15에 도시되지 않았지만, 빨간색, 녹색, 청색의 각 색깔에 대응한 복수의 발광층을 나누어 형성하여도 된다. 발광층으로 하는 유기발광재료로서는 π 공역 폴리머계 재료를 사용한다. 대표적인 폴리머계 재료로서는, 폴리파라페닐렌비닐렌(PPV)계, 폴리비닐카바졸(PVK)계, 폴리플루오렌계 등을 들 수 있다.
PPV계 유기발광재료로서는 여러 가지 형태의 것이 있지만, 예를 들면 「H. Shenk, H.Becker, O.Gelsen, E.Kluge, W.Kreuder, and H.Spreitzer, "Polymers for Light Emitting Diodes", Euro Display, Proceedings, 1999, p.33-37」이나 JP-10-92576 A 공보에 기재된 것과 같은 재료를 사용하면 된다.
구체적인 발광층으로서는, 적색으로 발광하는 발광층에는 시아노폴리페닐렌비닐렌, 녹색으로 발광하는 발광층에는 폴리페닐렌비닐렌, 청색으로 발광하는 발광층에는 폴리페닐렌비닐렌 또는 폴리알킬페닐렌을 사용하면 된다. 각 발광층의 막두께는 30∼150nm, 바람직하게는 40∼100nm로 하면 된다.
그러나, 상기 예는 발광층으로서 사용할 수 있는 유기발광재료의 일례로서, 이것으로 한정될 필요는 전혀 없다. 발광층, 전하수송층 또는 전하주입층을 자유롭게 조합하여 유기 발광층(발광 및 그를 위한 캐리어의 이동을 행하게 하기 위한 층)을 형성하면 된다.
예를 들면, 본 실시예에서는 폴리머계 재료를 발광층으로서 사용하는 예를 나타내었다. 그렇지만, 저분자계 화합물을 포함하는 유기발광재료를 사용하여도 된다. 또한, 전하수송층과 전하주입층으로서 탄화실리콘 등의 무기재료를 사용하는 것도 가능하다. 이들 유기발광재료와 무기재료는 공지의 재료를 사용할 수 있다.
본 실시예에서는 발광층(45)의 위에 폴리티오펜(PEDOT) 또는 폴리아닐린(PAni)으로 이루어진 정공주입층(46)을 설치한 적층구조의 유기 발광층으로 하고 있다. 그리고, 정공주입층(46) 위에는 투명도전막으로 이루어진 양극(47)이 설치된다. 도 15에 도시된 화소에서는, 발광층(45)으로부터 생성된 빛은 TFT로부터 위쪽을 향해 방사된다. 이 때문에, 양극(47)은 투광성이 아니면 안된다. 투명도전막으로서는, 산화인듐과 산화주석과의 화합물이나 산화인듐과 산화아연과의 화합물을 사용할 수 있다. 그러나, 투명도전막은, 내열성이 낮은 발광층이나 정공주입층을 형성한 후에 형성하기 때문에, 가능한 한 저온에서 형성할 수 있는 것이 바람직하다.
양극(47)까지 형성된 시점에서 발광소자(3505)가 완성된다. 이때, 여기서 말하는 발광소자(3505)는, 화소전극(음극)(43), 발광층(45), 정공주입층(46) 및 양극(47)으로 형성되어 있다. 화소전극(43)은 화소의 전체면적과 거의 일치하기 때문에, 화소 전체가 발광소자로서 기능한다. 따라서, 발광의 이용효율이 대단히 높아, 밝은 화상표시가 가능해진다.
또한, 본 실시예에서는, 양극(47) 위에 제 2 패시베이션막(48)을 설치한다. 제 2 패시베이션막(48)으로서는, 질화실리콘막 또는 질화산화실리콘막이 바람직하 다. 이 제 2 패시베이션막(48)은, 외부로부터 발광소자를 차단하는 것으로, 유기발광재료의 산화에 의한 열화를 방지하는 의미와, 유기발광재료로부터의 탈가스를 억제하는 의미의 양쪽을 함께 갖는다. 이러한 구성에 의해, 발광장치의 신뢰성을 높일 수 있다.
이상과 같이 본 발명의 발광장치는 도 15와 같은 구조의 화소로 이루어지는 화소부를 갖는다. 특히 본 발광장치는, 오프전류치가 충분히 낮은 TFT(3502)와, 핫 캐리어 주입에 강한 TFT(3503)를 가진다. 따라서, 높은 신뢰성을 갖고, 또한, 깨끗한 화상표시가 가능한 발광장치를 얻을 수 있다.
이때, 본 실시예 10의 구성은, 실시예 1∼7의 구성과 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 11)
OLED에 사용되는 유기발광재료는, 저분자계와 고분자계로 대별된다. 본 발명의 발광장치는, 저분자계의 유기발광재료와 고분자계의 유기발광재료 모두를 사용할 수 있다.
저분자계의 유기발광재료는, 증착법에 의해 막형성된다. 따라서, 적층구조를 형성하기 쉽고, 정공수송층, 전자수송층 등의 기능이 다른 막을 적층함으로써 고효율화하기 쉽다.
저분자계의 유기발광재료로서는, 퀴노리놀(quinolino)을 배위자로 한 알루미늄 착체 Alq3, 트리페닐아민 유도체(TPD) 등을 들 수 있다.
한편, 고분자계의 유기발광재료는, 저분자계에 비해 물리적 강도가 높고, 소 자의 내구성이 높다. 또한, 고분자계 재료는, 도포에 의해 막형성하는 것이 가능하기 때문에, 소자의 제작이 비교적 용이하다.
고분자계의 유기발광재료를 사용한 발광소자의 구조는, 저분자계의 유기발광재료를 사용하였을 때와 기본적으로는 동일하고, 음극, 유기 발광층 및 양극을 순차로 갖는다. 고분자계의 유기발광재료를 사용한 유기 발광층을 형성할 때는, 알려져 있는 중에서는 2층의 적층 구조가 유명하다. 이는, 저분자계의 유기발광재료를 사용하였을 때와 같은 적층구조를 형성시키는 것은 어렵기 때문이다. 구체적으로, 고분자계 유기발광재료를 사용하는 소자는, 음극(Al 합금), 발광층, 정공수송층 및 양극(ITO)이라는 구조이다. 이때, 고분자계의 유기발광재료를 사용한 발광소자의 경우에는, 음극재료로서 Ca를 사용하는 것도 가능하다.
이때, 소자의 발광색은, 발광층을 형성하는 재료로 결정된다. 따라서, 적절한 재료를 선택함으로써 원하는 발광을 나타내는 발광소자를 형성할 수 있다. 발광층의 형성에 사용할 수 있는 고분자계의 유기발광재료는, 폴리파라페닐렌비닐렌계, 폴리파라페닐렌계, 폴리티오펜계, 폴리플루오렌계를 들 수 있다.
폴리파라페닐렌비닐렌계에는, 폴리(파라페닐렌비닐렌)[PPV]의 유도체, 폴리(2,5-디알콕시-1,4-페닐렌비닐렌)[RO-PPV], 폴리(2-(2'-에틸-헥스옥시)-5-메톡시-1,4-페닐렌비닐렌)[MEH-PPV], 폴리(2-(디알콕시페닐)-1,4-페닐렌비닐렌) [ROPh-PPV] 등을 들 수 있다.
폴리파라페닐렌계에는, 폴리파라페닐렌[PPP]의 유도체, 폴리(2,5-디알콕시-1,4-페닐렌)[RO-PPP], 폴리(2,5-디헥스옥시-1,4-페닐렌) 등을 들 수 있다.
폴리티오펜계에는, 폴리티오펜[PT]의 유도체, 폴리(3-알킬티오펜)[PAT], 폴리(3-헥실티오펜)[PHT], 폴리(3-시클로헥실티오펜)[PCHT], 폴리(3-시클로헥실-4-메틸티오펜)[PCHMT], 폴리(3,4-디시클로헥실티오펜)[PDCHT], 폴리[3-(4-옥틸페닐)-티오펜][POPT], 폴리[3-(4-옥틸페닐)-2,2비티오펜][PTOPT] 등을 들 수 있다.
폴리플루오렌계에는, 폴리플루오렌[PF]의 유도체, 폴리(9,9-디알킬플루오렌)[PDAF], 폴리(9,9-디옥틸플루오렌)[PDOF] 등을 들 수 있다.
이때, 정공수송성의 고분자계의 유기발광재료를, 양극과 발광성의 고분자계 유기발광재료의 사이에 끼워 형성하면, 양극에서의 정공주입성을 향상시킬 수 있다. 일반적으로, 억셉터 재료와 함께 물에 용해시킨 것을 스핀코트법 등으로 도포한다. 또한, 유기용매에는 불용이기 때문에, 상술한 발광성 유기발광재료와의 적층이 가능하다.
정공수송성의 고분자계의 유기발광재료로서는, PEDOT과 억셉터재료로서의 캄파 술폰산(CSA)을 혼합하여 얻어진다. 폴리아닐린[PANI]과 억셉터재료로서의 폴리스티렌 술폰산[PSS]의 혼합물 등을 사용할 수 있다.
또한, 상술한 저분자계 및 고분자계의 유기발광재료 이외에, 분자수가 20 이하, 또는 연쇄하는 분자의 길이가 10 ㎛ 이하로, 더구나 승화성을 갖지 않는, 소위 중분자계의 유기발광재료도 사용하는 것이 가능하다.
이때, 본 실시예 11의 구성은, 실시예 1∼실시예 10의 어떤 구성과도 자유롭게 조합하여 실시하는 것이 가능하다.
(실시예 12)
발광소자를 사용한 발광장치는, 자발광형이기 때문에, 액정 디스플레이에 비해, 밝은 장소에서의 시감도가 우수하고, 시야각이 넓다. 따라서, 여러 가지 전자기기의 표시부에 사용할 수 있다.
본 발명의 발광장치를 사용한 전자기기로서, 비디오카메라, 디지털 카메라, 고글형 디스플레이(헤드 마운트 디스플레이), 네비게이션시스템, 음향재생장치(카오디오, 오디오 컴포넌트 스테레오 등), 노트형 퍼스널컴퓨터, 게임기기, 휴대정보단말(모바일 컴퓨터, 휴대전화, 휴대형 게임기 또는 전자서적 등), 기록매체(구체적으로는, 디지털 다기능 디스크(DVD) 등의 기록매체를 재생할 수 있고, 그 재생된 화상을 표시하는 디스플레이를 구비한 장치)를 구비한 화상재생장치 등을 들 수 있다. 특히, 경사 방향으로부터 화면을 보는 기회가 많은 휴대정보단말은, 시야각의 넓이가 중요시되기 때문에, 발광장치를 사용하는 것이 바람직하다. 그들 전자기기의 구체예를 도 16에 나타낸다.
도 16a는 발광소자 표시장치로서, 케이싱(2001), 지지대(2002), 표시부(2003), 스피커부(2004), 비디오 입력단자(2005) 등을 포함한다. 본 발명의 발광장치는 표시부(2003)에 사용할 수 있다. 발광장치는 자발광형이기 때문에 백라이트가 필요하지 않는다. 그래서, 본 발광장치는, 액정 디스플레이보다도 얇은 표시부로 할 수 있다. 이때, 유기 발광 표시장치는, 퍼스널 컴퓨터용, TV 방송수신용, 광고표시용 등의 모든 정보표시용 표시장치가 포함된다.
도 16b는 디지털 스틸 카메라로서, 본체(2101), 표시부(2102), 화상 수신부(2103), 조작키(2104), 외부접속포트(2105), 셔터(2106) 등을 포함한다. 본 발명의 발광장치를 표시부(2102)에 사용함으로써, 본 발명의 디지털 스틸 카메라가 완성된다.
도 16c는 노트형 퍼스널컴퓨터로, 본체(2201), 케이싱(2202), 표시부(2203), 키보드(2204), 외부접속포트(2205), 포인팅 마우스(2206) 등을 포함한다. 본 발명의 발광장치를 표시부(2203)에 사용함으로써, 본 발명의 노트형 퍼스널컴퓨터가 완성된다.
도 16d는 모바일 컴퓨터로서, 본체(2301), 표시부(2302), 스위치(2303), 조작키(2304), 적외선포트(2305) 등을 포함한다. 본 발명의 발광장치를 표시부(2302)에 사용함으로써, 본 발명의 모바일 컴퓨터가 완성된다.
도 16e는 기록매체를 구비한 휴대형 화상재생장치(구체적으로는 DVD 재생장치)로서, 본체(2401), 케이싱(2402), 표시부 A(2403), 표시부 B(2404), 기록매체(DVD 등) 판독부(2405), 조작키(2406), 스피커부(2407) 등을 포함한다. 표시부 A(2403)는 주로 화상정보를 표시하여, 표시부 B(2404)는 주로 문자정보를 표시한다. 이때, 기록매체를 구비한 화상재생장치에는 가정용 게임기기 등도 포함된다. 본 발명의 발광장치를 표시부 A, B(2403, 2404)에 사용함으로써, 본 발명의 화상재생장치가 완성된다.
도 16f는 고글형 디스플레이(헤드 마운트 디스플레이)로, 본체(2501), 표시부(2502), 암부(2503)를 포함한다. 본 발명의 발광장치를 표시부(2502)에 사용함으로써, 본 발명의 고글형 디스플레이가 완성된다.
도 16g는 비디오 카메라로, 본체(2601), 표시부(2602), 케이싱(2603), 외부접속포트(2604), 리모콘 수신부(2605), 화상 수신부(2606), 배터리(2607), 음성입력부(2608), 조작키(2609) 등을 포함한다. 본 발명의 발광장치를 표시부(2602)에 사용함으로써, 본 발명의 비디오 카메라가 완성된다.
도 16h는 휴대전화로서, 본체(2701), 케이싱(2702), 표시부(2703), 음성입력부(2704), 음성출력부(2705), 조작키(2706), 외부접속포트(2707), 안테나(2708) 등을 포함한다. 이때, 표시부(2703)는 블랙색의 배경에 백색의 문자를 표시함으로써 휴대전화의 소비전류를 억제할 수 있다. 본 발명의 발광장치를 표시부(2703)에 사용함으로써, 본 발명의 휴대전화가 완성된다.
이때, 앞으로 유기발광재료의 발광휘도가 높아지면, 출력된 화상정보를 포함하는 빛을 렌즈 등으로 확대투영하여 프론트형 또는 리어형의 프로젝터에 사용하는 것도 가능해진다.
또한, 상기 전자기기는 인터넷이나 CATV(케이블 텔레비전) 등의 전자통신회선을 통해 분배된 정보를 표시하는 경우가 많아, 특히 동작 화상정보를 표시할 기회가 늘고 있다. 유기발광재료의 응답속도는 대단히 높기 때문에, 발광장치는 동작 화상표시에 바람직하다.
또한, 발광장치는 발광하고 있는 부분이 전력을 소비하기 때문에, 발광부분이 매우 적어지도록 정보를 표시하는 것이 바람직하다. 따라서, 휴대정보단말, 특히 휴대전화나 음향재생장치와 같은 문자정보를 주로 하는 표시부에 발광장치를 사용하는 경우에는, 비발광 부분을 배경으로 하여 문자정보를 발광부분으로 형성하 도록 구동하는 것이 바람직하다.
이상과 같이, 본 발명의 적용범위는 매우 넓어, 모든 분야의 전자기기에 사용하는 것이 가능하다. 또한, 본 실시예의 전자기기는 실시예 1∼11에 나타낸 어떤 구성의 발광장치를 사용하여도 된다.
(실시예 13)
본 실시예에서는, 6비트의 그레이 스케일로 각 색을 표시하는 영상신호를 보정하는 열화보정장치를 일예로서 한 176 x RGB x 220의 화소를 갖는 발광장치의 특정 구성을 설명하겠다.
도 19는 본 실시예의 열화보정장치를 나타낸 블록도이다. 도면에서, 도 1에 이미 도시된 부분은 도 1과 동일한 도면부호를 사용하여 도시한다. 도 19에 도시된 것처럼, 카운터(102)는, 샘플링회로(501), 레지스터(502), 가산기(503) 및 라인 메모리(504)(176 x 32-비트)를 구비한다. 또한, 영상신호보정회로(110)는, 집적회로(505), 레지스터(506), 산술회로(507) 및 RGB 레지스터(508)(RGB x 7-비트)를 구비한다. 휘발성 메모리(108)는, 2개의 SRAM(509, 510)(256 x 16-비트)와, 그 2개의 SRAM을 함께 사용하여 32비트에 화소수를 곱하여 얻는 용량(약 4Mbit)을 갖는다. 또한, 본 실시예에서는, 불휘발성 메모리(109)로서 플래시 메모리를 사용하고 상기 휘발성 메모리(108)와 불휘발성 메모리(109)에 추가하여 2개의 레지스터(511, 512)에 의해 저장회로(106)를 설치한다.
상기 불휘발성 메모리(109)에는, 발광기간 또는 그레이 스케일 수에 관한 누적 데이터와 각 화소의 열화 정도에 관한 데이터를 저장한다. 발광장치를 사용하는 초기에, 발광기간 또는 그레이 스케일 수의 누적은, 불휘발성 메모리(109)에 저장된 0이다. 전원 온에 의해, 불휘발성 메모리(109)에 저장된 데이터는 휘발성 메모리(108)에 전송된다.
발광하기 시작하면, 집적회로(505)에서는, 상기 레지스터(506)에 저장된 보정계수를 6비트 영상신호에 추가하여 상기 영상신호를 보정한다. 초기 보정계수는 1이다. 또한, 집적회로(505)에서는, 6비트에서 7비트로 영상신호를 변환하여 보정 정밀도를 높인다. 상기 보정계수가 추가된 영상신호는, 그 영상신호를 처리하여 서브 프레임기간에 대응하도록 신호선 구동회로(101) 또는 서브 프레임 기간 생성회로(미도시됨) 등을 연속적인 스테이지에서 회로에 대해 보정 후 영상신호로서 전송된다.
한편, 보정계수가 추가된 보정 후 7비트 영상신호를 카운터(102)의 샘플링회로(501)에서 샘플링을 하여 레지스터(502)에 전송한다. 이때, 모든 영상신호를 레지스터(502)에 전송하면, 샘플링회로(501)를 사용할 필요는 없다. 그러나, 휘발성 메모리(108)의 용량은 샘플링을 통해 감소될 수 있다. 예를 들면, 초당 한번 영상신호를 샘플링한다면, 기판의 휘발성 메모리(108)가 차지하는 면적을 1/60까지 감소시키는 것이 가능하다.
여기서는, 초당 한번 샘플링을 수행하지만, 본 발명은 이것으로 한정되지 않는다.
레지스터(502)로부터 가산기(503)로 상기 샘플링된 영상신호를 전송한다. 또한, 가산기(503)에서는, 휘발성 메모리(108)에 저장된 발광기간 또는 그레이 스케 일의 수에 관한 누적 데이터를 상기 레지스터(511, 512)를 통해 입력한다. 가산기(503)에 휘발성 메모리(108)로부터 데이터를 입력하는 타이밍을 결정하는데 레지스터(511, 512)를 사용한다. 휘발성 메모리(108)로의 액세스를 충분히 고속으로 수행하면, 레지스터(511, 512)를 제거할 수 있다.
가산기(503)에서는, 정보로서 상기 샘플링된 영상신호가 포함되도록 발광기간 또는 그레이 스케일 수를, 휘발성 메모리(108)에 저장된 발광기간 또는 그레이 스케일 수에 관한 누적 데이터에 가산하여, 그 얻어진 데이터를 176-스테이지의 라인 메모리(504)에 저장한다. 이때, 본 실시예에서는, 상기 라인 메모리(504)와 휘발성 메모리(108)에서 처리된 데이터가 각각 32비트의 화소이다. 이 기억 용량에 의해, 약 18000 시간에 대응한 저장을 할 수 있다.
상기 라인 메모리(504)에 저장된 발광기간 또는 그레이 스케일 수에 관한 누적 데이터를 다시 휘발성 메모리(108)에 저장하고, 그 저장 후 1초마다 판독하여, 상기 샘플링된 영상신호에 포함된 것과 함께 가산된다. 이와 같은 방법으로 연속적으로 가산이 실행된다.
전원이 오프일 때에, 휘발성 메모리(108)의 데이터는, 불휘발성 메모리(109)에 저장하고, 휘발성 메모리(108)의 데이터를 삭제하더라도 문제가 생기지 않도록 설정을 한다.
도 20은 산술회로(507)를 나타낸 블록도이다. 휘발성 메모리(108)에 저장된 발광기간 또는 그레이 스케일 수에 관한 누적 데이터를 상기 연산장치(513)에 입력한다. 이 연산장치(513)에서는, 휘발성 메모리(108)에 저장된 발광기간 또는 그레 이 스케일 수에 관한 누적 데이터와, 보정 데이터 저장부(112)의 시간에 따른 휘도 변화특성에 관한 데이터를 사용하여서, 보정계수를 산출한다. 상기 얻어진 보정계수는, 8비트 라인 메모리(514)에 임시로 저장되고 나서, SRAM(516)에 저장된다. 이 SRAM(516)은 8비트의 각 화소에 대해 256 스테이지의 보정계수를 저장하도록 설정된다. 이 보정계수는, 상기 레지스터(506)에 임시로 저장되고 나서, 집적회로(505)에 입력되어, 그 영상신호에 가산되어 보정을 수행한다.
여기서, 상기 실시예에서 설명된 경우와 마찬가지로, 전압보정회로(111)는, 휘발성 메모리(108)에 저장된 각 화소의 발광기간 또는 그레이 스케일 수에 관한 누적 데이터와 상기 보정 데이터 저장부(112)에 저장된 시간에 따른 휘도 특성 변화에 관한 데이터를 미리 비교하여, 각 화소가 어느 정도 열화하였는지를 판단한다. 그 후, 전압보정회로(111)는, 가장 열화가 심한 특정 화소를 검출하여 상기 특정 화소에서의 열화 정도에 따라 전압원(104)으로부터 화소부(103)에 공급된 전압 값을 보정한다. 구체적으로는, 그 특정 화소에서 원하는 그레이 스케일로 표시를 실현하려면, 전압 값을 증가시킨다.
상기 특정 화소에 따라 상기 화소부(103)에 공급된 전압 값을 보정하여, 상기 특정 화소와 비교하여 열화가 적은 다른 화소에서는 발광소자에 과도한 전류량이 공급되어, 상기 원하는 그레이 스케일을 얻을 수 없다. 이를 해결하기 위해서, 영산신호 보정회로(110)는, 다른 화소의 그레이 스케일을 결정하는 영상신호를 보정하는데 사용된다. 이 영상신호 보정회로(110)에는, 발광기간 또는 그레이 스케일 수에 관한 누적 데이터와 영상신호가 입력된다. 영상신호 보정회로(110)는, 각 화 소의 발광기간 또는 그레이 스케일 수에 관한 누적 데이터와 상기 보정 데이터 저장부(112)에 저장된 시간에 따른 휘도 특성 변화에 관한 데이터를 미리 비교하여, 각 화소가 어느 정도 열화되었는지를 판단한다. 그 후, 상기 영상신호 보정회로(110)는, 열화가 가장 심한 특정 화소를 검출하여, 그 특정 화소에서의 열화 정도에 따라 상기 입력된 영상신호를 보정한다. 특히, 이 영상신호를 보정하여 원하는 그레이 스케일 수를 실현한다. 이 보정 후 영상신호를 상기 신호선 구동회로(101)에 입력한다.
본 실시예는 상기 실시예 3∼12와 조합하여 실시하는 것도 가능하다.
이상과 같은 본 발명의 발광장치에 의해서, 발광기간의 차이에 의한 발광소자의 열화를 회로측에서 보정하여, 휘도 변화를 억제하고, 균일한 화면의 표시가 가능한 발광장치를 제공할 수 있다.

Claims (65)

  1. 복수의 발광소자와,
    상기 복수의 발광소자에 전압을 공급하는 전압원과,
    상기 복수의 발광소자의 발광기간을 제어하는 영상신호에 의거하여, 상기 복수의 각 발광소자의 발광기간의 누적을 산출하는 수단과,
    상기 복수의 각 발광소자의 발광기간의 상기 산출된 누적을 저장하는 수단과,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터를 저장하는 수단과,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터와, 상기 복수의 발광소자의 발광기간의 상기 산출된 누적에 의거하여 상기 복수의 각 발광소자의 초기 휘도와 비교해 휘도 변화량을 결정하는 수단과,
    상기 복수의 발광소자 중의 하나의 발광소자의 휘도를 초기 휘도로 복귀시키도록 상기 전압원으로부터 상기 복수의 발광소자에 공급된 전압을 보정하는 수단과,
    상기 복수의 발광소자 중의 하나의 발광소자의 초기 휘도와 비교한 휘도 변화량과, 상기 복수의 발광소자 중의 하나의 발광소자 이외의 발광소자 각각의 초기 휘도와 비교한 휘도 변화량과의 사이의 차이를 보상하도록 상기 영상신호를 보정하는 수단을 포함하며,
    상기 복수의 각 발광소자의 계조수는 상기 영상신호의 보정에 의해 보정되고,
    상기 전압원의 보정된 전압은 상기 복수의 발광소자에 공통인 것을 특징으로 하는 발광장치.
  2. 제 1 항에 있어서,
    상기 영상신호의 각각은 n + m 비트(n 및 m은 정수)를 갖고, 상기 m비트는 상기 영상신호를 보정하기 위해서만 사용된 여분의 비트인 것을 특징으로 하는 발광장치.
  3. 제 1 항에 있어서,
    상기 복수의 발광소자의 발광기간 및 계조수를 제어하는 상기 영상신호를 샘플링하는 샘플링회로를 더 구비한 것을 특징으로 하는 발광장치.
  4. 복수의 발광소자와,
    상기 복수의 발광소자에 전압을 공급하는 전압원과,
    상기 복수의 발광소자의 발광기간을 제어하는 영상신호에 의거하여, 상기 복수의 각 발광소자의 계조수의 누적을 산출하는 수단과,
    상기 복수의 각 발광소자의 계조수의 상기 산출된 누적을 저장하는 수단과,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터를 저장하는 수단과,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터와, 상기 복수의 발광소자의 계조수의 상기 산출된 누적에 의거하여 상기 복수의 각 발광소자의 초기 휘도와 비교해 휘도 변화량을 결정하는 수단과,
    상기 복수의 발광소자 중의 하나의 발광소자의 휘도를 초기 휘도로 복귀시키도록 상기 전압원으로부터 상기 복수의 발광소자에 공급된 전압을 보정하는 수단과,
    상기 복수의 발광소자 중의 하나의 발광소자의 초기 휘도와 비교한 휘도 변화량과, 상기 복수의 발광소자 중의 하나의 발광소자 이외의 발광소자의 각각의 초기 휘도와 비교한 휘도 변화량과의 사이의 차이를 보상하도록 상기 영상신호를 보정하는 수단을 포함하며,
    상기 계조수는 상기 영상신호의 보정에 의해 보정되고,
    상기 전압원의 보정된 전압은 상기 복수의 발광소자에 공통인 것을 특징으로 하는 발광장치.
  5. 삭제
  6. 제 4 항에 있어서,
    상기 영상신호의 각각은 n + m 비트(n 및 m은 정수)를 갖고, 상기 m비트는 상기 영상신호를 보정하기 위해서만 사용된 여분의 비트인 것을 특징으로 하는 발광장치.
  7. 복수의 발광소자와,
    상기 복수의 발광소자에 전압을 공급하는 전압원과,
    상기 복수의 발광소자의 발광기간을 제어하는 영상신호에 의거하여 상기 복수의 발광소자의 각각의 발광기간의 누적을 산출하는 카운터부와,
    상기 복수의 발광소자의 각각의 발광기간의 상기 산출된 누적을 저장하는 제1 기억회로와,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터를 저장하는 제2 기억회로와,
    상기 복수의 발광소자의 상기 휘도 특성의 경시변화의 데이터와, 상기 복수의 발광소자의 발광기간의 상기 산출된 누적에 의거하여 상기 복수의 발광소자의 각각의 초기 휘도와 비교해 휘도 변화량을 결정하는 산술회로와,
    상기 복수의 발광소자 중의 하나의 발광소자의 휘도를 초기 휘도로 복귀시키도록 상기 전압원으로부터 상기 복수의 발광소자에 공급된 전압을 보정하는 전압보정회로와,
    상기 복수의 발광소자 중의 하나의 발광소자의 초기 휘도와 비교한 휘도 변화량과, 상기 복수의 발광소자 중의 하나의 발광소자 이외의 발광소자의 각각의 초기 휘도와 비교한 휘도 변화량과의 사이의 차이를 보상하도록 상기 영상신호를 보정하는 영상신호 보정회로를 포함하며,
    상기 복수의 발광소자의 각각의 계조수는 상기 영상신호의 보정에 의해 보정되고,
    상기 전압원의 보정된 전압은 상기 복수의 발광소자에 공통인 것을 특징으로 하는 표시장치.
  8. 제 7 항에 있어서,
    상기 영상신호의 각각은 n + m 비트(n 및 m은 정수)를 갖고, 상기 m비트는 상기 영상신호를 보정하기 위해서만 사용된 여분의 비트인 것을 특징으로 하는 표시장치.
  9. 복수의 발광소자와,
    상기 복수의 발광소자에 전압을 공급하는 전압원과,
    상기 복수의 발광소자의 발광기간을 제어하는 영상신호에 의거하여 상기 복수의 발광소자의 각각의 계조수의 누적을 산출하는 카운터부와,
    상기 복수의 발광소자의 각각의 계조수의 상기 산출된 누적을 저장하는 제1 기억회로와,
    상기 복수의 발광소자의 휘도 특성의 경시변화의 데이터를 저장하는 제2 기억회로와,
    상기 복수의 발광소자의 상기 휘도 특성의 경시변화의 데이터와, 상기 복수의 발광소자의 계조수의 상기 산출된 누적에 의거하여 상기 복수의 발광소자의 각각의 초기 휘도와 비교해 휘도 변화량을 결정하는 산술회로와,
    상기 복수의 발광소자 중의 하나의 발광소자의 휘도를 초기 휘도로 복귀시키도록 상기 전압원으로부터 상기 복수의 발광소자에 공급된 전압을 보정하는 전압보정회로와,
    상기 복수의 발광소자 중의 하나의 발광소자의 초기 휘도와 비교한 휘도 변화량과, 상기 복수의 발광소자 중의 하나의 발광소자 이외의 발광소자의 각각의 초기 휘도와 비교한 휘도 변화량과의 사이의 차이를 보상하도록 상기 영상신호를 보상하는 영상신호 보정회로를 포함하며,
    상기 계조수는 상기 영상신호의 보정에 의해 보정되고,
    상기 전압원의 보정된 전압은 상기 복수의 발광소자에 공통인 것을 특징으로 하는 표시장치.
  10. 제 9항에 있어서,
    상기 영상신호의 각각은 n + m 비트(n 및 m은 정수)를 갖고, 상기 m비트는 상기 영상신호를 보정하기 위해서만 사용된 여분의 비트인 것을 특징으로 하는 표시장치.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 제 4 항에 있어서,
    상기 복수의 발광소자의 발광기간 및 계조수를 제어하는 상기 영상신호를 샘플링하는 샘플링 회로를 더 구비한 것을 특징으로 하는 발광장치.
  64. 제 7 항에 있어서,
    상기 복수의 발광소자의 발광기간 및 계조수를 제어하는 상기 영상신호를 샘플링하는 샘플링 회로를 더 구비한 것을 특징으로 하는 표시장치.
  65. 제 9 항에 있어서,
    상기 복수의 발광소자의 발광기간 및 계조수를 제어하는 상기 영상신호를 샘플링하는 샘플링 회로를 더 구비한 것을 특징으로 하는 표시장치.
KR1020020058700A 2001-09-28 2002-09-27 발광장치 및 이를 사용한 전자기기 KR100918986B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001300539 2001-09-28
JPJP-P-2001-00300539 2001-09-28

Publications (2)

Publication Number Publication Date
KR20030027788A KR20030027788A (ko) 2003-04-07
KR100918986B1 true KR100918986B1 (ko) 2009-09-25

Family

ID=19121093

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020058700A KR100918986B1 (ko) 2001-09-28 2002-09-27 발광장치 및 이를 사용한 전자기기

Country Status (6)

Country Link
US (2) US7158157B2 (ko)
EP (1) EP1310938B1 (ko)
KR (1) KR100918986B1 (ko)
CN (1) CN100350444C (ko)
SG (1) SG120888A1 (ko)
TW (1) TW546596B (ko)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053874B2 (en) * 2000-09-08 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
SG120889A1 (en) * 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
SG120888A1 (en) 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
US6911781B2 (en) 2002-04-23 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and production system of the same
JP2003330419A (ja) * 2002-05-15 2003-11-19 Semiconductor Energy Lab Co Ltd 表示装置
US7307607B2 (en) * 2002-05-15 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Passive matrix light emitting device
US20040150594A1 (en) * 2002-07-25 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. Display device and drive method therefor
US7079091B2 (en) * 2003-01-14 2006-07-18 Eastman Kodak Company Compensating for aging in OLED devices
US7161566B2 (en) * 2003-01-31 2007-01-09 Eastman Kodak Company OLED display with aging compensation
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
EP1471494A1 (en) 2003-04-24 2004-10-27 Barco N.V. Organic light-emitting diode drive circuit for a display application
JP4484451B2 (ja) * 2003-05-16 2010-06-16 奇美電子股▲ふん▼有限公司 画像表示装置
EP1814100A3 (en) * 2003-05-23 2008-03-05 Barco, naamloze vennootschap. Method for displaying images on a large-screen organic light-emitting diode display, and display used therefore
JP4036142B2 (ja) * 2003-05-28 2008-01-23 セイコーエプソン株式会社 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005031136A (ja) * 2003-07-07 2005-02-03 Pioneer Electronic Corp パネル表示装置
US7961160B2 (en) * 2003-07-31 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device, a driving method of a display device, and a semiconductor integrated circuit incorporated in a display device
JP3960287B2 (ja) * 2003-09-09 2007-08-15 ソニー株式会社 画像処理装置およびその方法
JP4589614B2 (ja) * 2003-10-28 2010-12-01 株式会社 日立ディスプレイズ 画像表示装置
JP4804711B2 (ja) * 2003-11-21 2011-11-02 株式会社 日立ディスプレイズ 画像表示装置
DE10354820A1 (de) * 2003-11-24 2005-06-02 Ingenieurbüro Kienhöfer GmbH Verfahren und Vorrichtung zum Betrieb eines verschleißbehafteten Displays
US6995519B2 (en) * 2003-11-25 2006-02-07 Eastman Kodak Company OLED display with aging compensation
US7224332B2 (en) 2003-11-25 2007-05-29 Eastman Kodak Company Method of aging compensation in an OLED display
US7502000B2 (en) * 2004-02-12 2009-03-10 Canon Kabushiki Kaisha Drive circuit and image forming apparatus using the same
US7256542B2 (en) * 2004-02-20 2007-08-14 Au Optronics Corporation Method and device for detecting moisture in electroluminescence display devices
CN101421777B (zh) * 2004-03-12 2012-07-04 皇家飞利浦电子股份有限公司 显示装置的电路装置
WO2005098808A1 (fr) * 2004-04-06 2005-10-20 Quanta Display Inc. Circuit d'attaque de diode electroluminescente organique a matrice active pouvant regler dynamiquement la balance des blancs et procede de reglage de ce circuit
CN100395806C (zh) * 2004-04-06 2008-06-18 友达光电股份有限公司 主动矩阵有机发光二极管驱动控制电路及调整白平衡方法
DE102004022424A1 (de) * 2004-05-06 2005-12-01 Deutsche Thomson-Brandt Gmbh Schaltung und Ansteuerverfahren für eine Leuchtanzeige
US7482629B2 (en) * 2004-05-21 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8421715B2 (en) * 2004-05-21 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device, driving method thereof and electronic appliance
WO2005114630A1 (en) * 2004-05-21 2005-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7245297B2 (en) * 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US6999015B2 (en) * 2004-06-03 2006-02-14 E. I. Du Pont De Nemours And Company Electronic device, a digital-to-analog converter, and a method of using the electronic device
US6989636B2 (en) * 2004-06-16 2006-01-24 Eastman Kodak Company Method and apparatus for uniformity and brightness correction in an OLED display
JP4705764B2 (ja) * 2004-07-14 2011-06-22 株式会社半導体エネルギー研究所 ビデオデータ補正回路及び表示装置の制御回路並びにそれを内蔵した表示装置・電子機器
US20060017669A1 (en) * 2004-07-20 2006-01-26 Eastman Kodak Company Method and apparatus for uniformity and brightness correction in an OLED display
EP1774500A4 (en) * 2004-07-23 2009-07-15 Semiconductor Energy Lab DISPLAY DEVICE AND METHOD OF CONDUCT
US20060061292A1 (en) * 2004-09-17 2006-03-23 Samsung Electronics Co., Ltd. Display device and driving method thereof
US20060077136A1 (en) * 2004-10-08 2006-04-13 Eastman Kodak Company System for controlling an OLED display
EP1653433B1 (en) * 2004-10-29 2016-02-03 Semiconductor Energy Laboratory Co., Ltd. Video data correction circuit, display device and electronic appliance
JP4747565B2 (ja) * 2004-11-30 2011-08-17 ソニー株式会社 画素回路及びその駆動方法
KR100611660B1 (ko) * 2004-12-01 2006-08-10 삼성에스디아이 주식회사 유기 전계 발광 장치 및 동작 방법
US8319714B2 (en) * 2004-12-22 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Display device, and method of operation thereof
JP4934963B2 (ja) * 2005-01-21 2012-05-23 ソニー株式会社 焼き付き現象補正方法、自発光装置、焼き付き現象補正装置及びプログラム
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
KR101348753B1 (ko) 2005-06-10 2014-01-07 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR100625642B1 (ko) * 2005-06-30 2006-09-20 엘지.필립스 엘시디 주식회사 유기전계발광 표시장치
TW200707330A (en) * 2005-07-11 2007-02-16 Koninkl Philips Electronics Nv System and method for identification of displays
US20070109284A1 (en) * 2005-08-12 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2007086347A (ja) * 2005-09-21 2007-04-05 Eastman Kodak Co 表示装置
JP5041777B2 (ja) * 2005-10-21 2012-10-03 株式会社半導体エネルギー研究所 表示装置及び電子機器
TWI341420B (en) * 2005-10-26 2011-05-01 Epistar Corp Flat light emitting apparatus
KR101166585B1 (ko) * 2005-12-01 2012-07-18 엘지디스플레이 주식회사 정전기 방지를 위한 에이징패드를 구비한 평판표시소자
KR100732824B1 (ko) * 2005-12-02 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치 및 그의 구동방법
JP2007261064A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 画像形成装置
KR100748319B1 (ko) * 2006-03-29 2007-08-09 삼성에스디아이 주식회사 유기발광표시장치 및 그의 구동방법
US20070236553A1 (en) * 2006-04-10 2007-10-11 Matsushita Electric Industrial Co., Ltd. Image forming apparatus and method for controlling the same
KR100820719B1 (ko) * 2006-06-27 2008-04-10 네오뷰코오롱 주식회사 결함 화소의 휘도특성을 보정하는 유기전계발광장치의구동방법 및 이에 사용되는 유기전계발광장치
US8199074B2 (en) * 2006-08-11 2012-06-12 Chimei Innolux Corporation System and method for reducing mura defects
JP4222426B2 (ja) * 2006-09-26 2009-02-12 カシオ計算機株式会社 表示駆動装置及びその駆動方法、並びに、表示装置及びその駆動方法
JP2008129241A (ja) * 2006-11-20 2008-06-05 Samsung Electronics Co Ltd 輝度調整装置、および輝度調整方法
KR101487548B1 (ko) * 2007-05-18 2015-01-29 소니 주식회사 표시 장치, 표시 장치의 제어 방법 및 컴퓨터 프로그램이 기록된 기록 매체
TW200923873A (en) * 2007-11-26 2009-06-01 Tpo Displays Corp Image displaying system and method of elimitating mura defect
KR100902219B1 (ko) * 2007-12-05 2009-06-11 삼성모바일디스플레이주식회사 유기전계발광 표시장치
TW200950178A (en) * 2008-01-30 2009-12-01 Koninkl Philips Electronics Nv OLED lighting device
US8299983B2 (en) * 2008-10-25 2012-10-30 Global Oled Technology Llc Electroluminescent display with initial nonuniformity compensation
EP2356372B1 (de) 2008-12-11 2016-08-10 OSRAM OLED GmbH Organische leuchtdiode und beleuchtungsmittel
US8300853B2 (en) * 2009-03-26 2012-10-30 Yamaha Corporation Audio mixing console capable of adjusting brightness of LED operator, and method of operating the same
US8633873B2 (en) 2009-11-12 2014-01-21 Ignis Innovation Inc. Stable fast programming scheme for displays
JP5465029B2 (ja) * 2010-02-09 2014-04-09 株式会社ジャパンディスプレイ 表示装置および電子機器
EP2548194B1 (en) * 2010-03-15 2021-09-01 SeeReal Technologies S.A. Backplane device for a spatial light modulator and method for operating a backplane device
KR101871195B1 (ko) 2011-02-17 2018-06-28 삼성디스플레이 주식회사 열화 보상부, 이를 포함하는 발광 장치 및 발광 장치의 열화 보상 방법
US9183811B2 (en) 2011-04-01 2015-11-10 Sharp Kabushiki Kaisha Method of correcting unevenness of display panel and correction system
JP5440548B2 (ja) * 2011-04-28 2014-03-12 カシオ計算機株式会社 投影装置、投影方法及びプログラム
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
CN103688302B (zh) * 2011-05-17 2016-06-29 伊格尼斯创新公司 用于显示系统的使用动态功率控制的系统和方法
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
JP6099368B2 (ja) 2011-11-25 2017-03-22 株式会社半導体エネルギー研究所 記憶装置
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
KR20130131668A (ko) * 2012-05-24 2013-12-04 삼성디스플레이 주식회사 유기 발광 표시 장치의 디지털 구동 방법
KR102178068B1 (ko) 2012-11-06 2020-11-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 구동 방법
KR101960795B1 (ko) 2012-12-17 2019-03-21 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그의 구동 방법
KR102112367B1 (ko) 2013-02-12 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
CN105247462A (zh) 2013-03-15 2016-01-13 伊格尼斯创新公司 Amoled显示器的触摸分辨率的动态调整
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102059561B1 (ko) * 2013-04-08 2019-12-30 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
JPWO2015063988A1 (ja) * 2013-10-30 2017-03-09 株式会社Joled 表示装置の電源断方法および表示装置
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
KR102112325B1 (ko) * 2014-01-08 2020-05-19 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
JP6442321B2 (ja) 2014-03-07 2018-12-19 株式会社半導体エネルギー研究所 半導体装置及びその駆動方法、並びに電子機器
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
CN104021755B (zh) * 2014-05-22 2016-09-07 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示装置
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
KR20160092537A (ko) * 2015-01-27 2016-08-05 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 로고 영역 휘도 조절 방법
US20160335965A1 (en) * 2015-05-13 2016-11-17 Microsoft Technology Licensing, Llc Display diode relative age tracking
KR20160137216A (ko) * 2015-05-22 2016-11-30 삼성전자주식회사 전자 장치 및 전자 장치의 이미지 보정 방법
KR102287907B1 (ko) * 2015-06-22 2021-08-10 삼성디스플레이 주식회사 유기 발광 다이오드 표시 장치의 열화 보상기
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
CN105244004B (zh) * 2015-11-23 2018-05-25 深圳市华星光电技术有限公司 控制板及具有该控制板的液晶显示器
US9779686B2 (en) * 2015-12-15 2017-10-03 Oculus Vr, Llc Aging compensation for virtual reality headset display device
US10181278B2 (en) 2016-09-06 2019-01-15 Microsoft Technology Licensing, Llc Display diode relative age
DE102017222059A1 (de) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixelschaltungen zur Minderung von Hysterese
US10235962B2 (en) * 2016-12-23 2019-03-19 Microsoft Technology Licensing, Llc Techniques for robust reliability operation of a thin-film transistor (TFT) display
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10699622B2 (en) 2017-06-04 2020-06-30 Apple Inc. Long-term history of display intensities
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
KR102593264B1 (ko) * 2018-08-14 2023-10-26 삼성전자주식회사 디스플레이 드라이버 및 이를 포함하는 유기발광 표시장치
KR102532775B1 (ko) * 2018-10-10 2023-05-17 삼성디스플레이 주식회사 표시 장치
TWI690746B (zh) * 2018-12-12 2020-04-11 友達光電股份有限公司 顯示裝置及其操作方法
CN110097850A (zh) * 2019-05-05 2019-08-06 Oppo广东移动通信有限公司 控制方法、控制装置、电子设备和计算机可读存储介质
WO2021149237A1 (ja) 2020-01-24 2021-07-29 シャープ株式会社 ディスプレイおよびディスプレイの駆動方法
TWI773429B (zh) * 2021-07-09 2022-08-01 敦泰電子股份有限公司 具烙痕補償的顯示驅動裝置及包含其之顯示裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736410A (ja) * 1993-07-19 1995-02-07 Pioneer Electron Corp 表示装置の駆動回路
JPH09115673A (ja) * 1995-10-13 1997-05-02 Sony Corp 発光素子又は装置、及びその駆動方法
JPH10112391A (ja) * 1996-10-04 1998-04-28 Mitsubishi Electric Corp 有機薄膜el表示装置及びその駆動方法
JPH10254410A (ja) * 1997-03-12 1998-09-25 Pioneer Electron Corp 有機エレクトロルミネッセンス表示装置及びその駆動方法
KR19990088200A (ko) * 1998-05-13 1999-12-27 니시무로 아츠시 전계발광표시장치의구동회로
JP2001092411A (ja) * 1999-09-17 2001-04-06 Denso Corp 有機el表示装置
KR20010070837A (ko) * 2001-06-12 2001-07-27 박원석 룩업테이블을 이용한 계조 확장 장치

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2106299B (en) * 1981-09-23 1985-06-19 Smiths Industries Plc Electroluminescent display devices
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JPH049996A (ja) 1990-04-27 1992-01-14 Seikosha Co Ltd エレクトロルミネセンス表示装置
JP3268001B2 (ja) 1992-03-25 2002-03-25 シャープ株式会社 Ledドットマトリックス型表示装置
US5594463A (en) 1993-07-19 1997-01-14 Pioneer Electronic Corporation Driving circuit for display apparatus, and method of driving display apparatus
US5714968A (en) 1994-08-09 1998-02-03 Nec Corporation Current-dependent light-emitting element drive circuit for use in active matrix display device
JPH08141759A (ja) 1994-11-15 1996-06-04 Matsushita Electric Ind Co Ltd 光ビーム加熱装置
EP0755042B1 (en) * 1995-07-20 2003-07-16 STMicroelectronics S.r.l. Method and device for uniforming luminosity and reducing phosphor degradation of a field emission flat display
US6127991A (en) 1996-11-12 2000-10-03 Sanyo Electric Co., Ltd. Method of driving flat panel display apparatus for multi-gradation display
US6542260B1 (en) 1997-01-13 2003-04-01 Hewlett-Packard Company Multiple image scanner
DE69841762D1 (de) 1997-03-06 2010-08-26 Canon Kk Bilder
DE69825402T2 (de) * 1997-03-12 2005-08-04 Seiko Epson Corp. Pixelschaltung, anzeigevorrichtung und elektronische apparatur mit stromgesteuerter lichtemittierender vorrichtung
JPH1115437A (ja) 1997-06-27 1999-01-22 Toshiba Corp Led表示装置
US6618084B1 (en) 1997-11-05 2003-09-09 Stmicroelectronics, Inc. Pixel correction system and method for CMOS imagers
JPH11187221A (ja) 1997-12-17 1999-07-09 Fuji Photo Film Co Ltd 画像読取装置
JP3926922B2 (ja) 1998-03-23 2007-06-06 オリンパス株式会社 画像表示装置
JPH11305722A (ja) 1998-04-17 1999-11-05 Mitsubishi Electric Corp ディスプレイ装置
JP2000020004A (ja) 1998-06-26 2000-01-21 Mitsubishi Electric Corp 画像表示装置
US6473065B1 (en) * 1998-11-16 2002-10-29 Nongqiang Fan Methods of improving display uniformity of organic light emitting displays by calibrating individual pixel
US6191534B1 (en) * 1999-07-21 2001-02-20 Infineon Technologies North America Corp. Low current drive of light emitting devices
JP2001056670A (ja) 1999-08-17 2001-02-27 Seiko Instruments Inc 自発光表示素子駆動装置
JP2001147659A (ja) 1999-11-18 2001-05-29 Sony Corp 表示装置
JP2001188513A (ja) 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd 表示装置
TWI252592B (en) 2000-01-17 2006-04-01 Semiconductor Energy Lab EL display device
US6809710B2 (en) 2000-01-21 2004-10-26 Emagin Corporation Gray scale pixel driver for electronic display and method of operation therefor
US6414661B1 (en) 2000-02-22 2002-07-02 Sarnoff Corporation Method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
JP2001312246A (ja) 2000-05-01 2001-11-09 Sony Corp 変調回路およびこれを用いた画像表示装置
US7053874B2 (en) 2000-09-08 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
US6774578B2 (en) 2000-09-19 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. Self light emitting device and method of driving thereof
JP3757797B2 (ja) 2001-01-09 2006-03-22 株式会社日立製作所 有機ledディスプレイおよびその駆動方法
SG107573A1 (en) 2001-01-29 2004-12-29 Semiconductor Energy Lab Light emitting device
TWI248319B (en) 2001-02-08 2006-01-21 Semiconductor Energy Lab Light emitting device and electronic equipment using the same
US6812651B2 (en) 2001-03-22 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Spontaneous light emitting display device
US6501230B1 (en) * 2001-08-27 2002-12-31 Eastman Kodak Company Display with aging correction circuit
US6525683B1 (en) * 2001-09-19 2003-02-25 Intel Corporation Nonlinearly converting a signal to compensate for non-uniformities and degradations in a display
SG120889A1 (en) 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
SG120888A1 (en) 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
US7184034B2 (en) 2002-05-17 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736410A (ja) * 1993-07-19 1995-02-07 Pioneer Electron Corp 表示装置の駆動回路
JPH09115673A (ja) * 1995-10-13 1997-05-02 Sony Corp 発光素子又は装置、及びその駆動方法
JPH10112391A (ja) * 1996-10-04 1998-04-28 Mitsubishi Electric Corp 有機薄膜el表示装置及びその駆動方法
JPH10254410A (ja) * 1997-03-12 1998-09-25 Pioneer Electron Corp 有機エレクトロルミネッセンス表示装置及びその駆動方法
KR19990088200A (ko) * 1998-05-13 1999-12-27 니시무로 아츠시 전계발광표시장치의구동회로
JP2001092411A (ja) * 1999-09-17 2001-04-06 Denso Corp 有機el表示装置
KR20010070837A (ko) * 2001-06-12 2001-07-27 박원석 룩업테이블을 이용한 계조 확장 장치

Also Published As

Publication number Publication date
EP1310938A3 (en) 2010-10-06
EP1310938A2 (en) 2003-05-14
SG120888A1 (en) 2006-04-26
TW546596B (en) 2003-08-11
KR20030027788A (ko) 2003-04-07
CN1409404A (zh) 2003-04-09
US7158157B2 (en) 2007-01-02
US20060103684A1 (en) 2006-05-18
EP1310938B1 (en) 2012-12-26
US7586505B2 (en) 2009-09-08
CN100350444C (zh) 2007-11-21
US20030071804A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
KR100918986B1 (ko) 발광장치 및 이를 사용한 전자기기
KR100910376B1 (ko) 발광장치 및 그 발광장치를 사용한 전자 기기
KR100895641B1 (ko) 발광장치, 발광장치의 구동방법 및 전자기기
US8982021B2 (en) Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment
KR100923507B1 (ko) 발광장치 및 발광장치의 구동방법
JP3904996B2 (ja) 発光装置及び電子機器
JP4175518B2 (ja) 発光装置および電子機器
JP3904997B2 (ja) 発光装置及び電子機器
JP3813555B2 (ja) 発光装置及び電子機器
JP3999076B2 (ja) 発光装置の駆動方法
JP4176790B2 (ja) 発光装置及び電子機器
JP4163225B2 (ja) 半導体装置及び発光装置
JP3999075B2 (ja) 発光装置の駆動方法
JP4164048B2 (ja) スイッチ素子、それを用いた表示装置及び半導体装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140826

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee