KR100743262B1 - 살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및제조방법 - Google Patents

살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및제조방법 Download PDF

Info

Publication number
KR100743262B1
KR100743262B1 KR1020027000677A KR20027000677A KR100743262B1 KR 100743262 B1 KR100743262 B1 KR 100743262B1 KR 1020027000677 A KR1020027000677 A KR 1020027000677A KR 20027000677 A KR20027000677 A KR 20027000677A KR 100743262 B1 KR100743262 B1 KR 100743262B1
Authority
KR
South Korea
Prior art keywords
mmol
mixture
added
delete delete
solution
Prior art date
Application number
KR1020027000677A
Other languages
English (en)
Other versions
KR20020040753A (ko
Inventor
릭스마이클죤
덴트윌리암헌터3세
로져스리챠드브루워
야오쳉글린
나더바삼사림
미젤죤루이스
피쯔패트릭지나마리
메이어케빈제럴드
니야즈누르모하메드모하메드
모리슨이렌마에
가져스키로버트피터
Original Assignee
다우 아그로사이언시즈 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다우 아그로사이언시즈 엘엘씨 filed Critical 다우 아그로사이언시즈 엘엘씨
Publication of KR20020040753A publication Critical patent/KR20020040753A/ko
Application granted granted Critical
Publication of KR100743262B1 publication Critical patent/KR100743262B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/08Bridged systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Saccharide Compounds (AREA)

Abstract

화학식 1의 아미드 작용기에 입접한 히드록시기를 갖는 헤테로고리 방향족 아미드는 살균류제로서 특히 식물에 유용하다.
[화학식 1]
Figure 112002001376227-pct00157

상기 식에서
Figure 112002001376227-pct00158
(a)는 5- 혹은 6- 원자 헤테로고리 방향족 고리이며,
(ⅰ) X1-X4는 각각 O, S, NR', N, CR" 혹은 결합하여; (ⅱ)X1-X4 중 하나는 O, S 혹은 NR', N, CR"이며; (ⅲ) X1-X4중 하나는 결합이며; (ⅳ) X1-X4 중 어떠한 하나는 O, S 혹은 NR'이고, 인접한 X1-X4중 어떠한 반드시 결합이어야 하며; (ⅴ) X1-X 4중 최소 하나는 O, S, NR' 혹은 N이다.
살균제, 헤테로 고리 방향족 아미드

Description

살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및 제조방법{FUNGICIDAL HETEROCYCLIC AROMATIC AMIDES AND THEIR COMPOSITIONS, METHODS OF USE AND PREPARATION}
본 발명은 살균조성물 및 방법에 관한 것이다. 보다 상세하게는, 본 발명은 새로운 살균성 헤테로고리 방향족 아미드 및 이와 같은 화합물을 식물 병원체에 살균유효양으로 적용함을 포함하는 적용방법에 관한 것이다. 본 발명은 또한 헤테로고리 방향족 아미드 및 이들의 살균조성물 제조에 유용한 방법에 관한 것이다.
다양한 항균 조성물 및 방법이 이 기술분야에 알려져 있다. 예를들어, 항마이신(antimycin)은 항생특성을 갖는 Streptomyces spp.로 생산된 천연발생물질로 확인되었다. (Barrow, C. J.등, Journal of Antibiotics, 1997, 50(9), 729). 이들 물질은 또한 효과적인 살균제로 알려져 있다.(The Merck Index, 12판, S. Budavari, Ed., Merck and Co., Whitehouse Station, N.J., 1996, p. 120). WO 97/08135은 살충제로 유용한 아실아미노살리실산 아미드에 대하여 개시하고 있다. EP-A-O-661269는 의약으로 유용한 치환된 헤테로고리 카르복시산 아미드에 대하여 개시하고 있다. JP-A-7-233165는 항진작용(antimycotic action)을 하는 3-히드록시피리딘카르복시기를 갖는 항균 디락톤에 대하여 개시하고 있다. 상기 화합물들의 이소-부티릴, 티글로일(tigloyl), 이소-발레릴 및 2-메틸부틸릴 유도체는 다음 문헌에 상세히 기술되어 있다: Tetrahedron 1998, 54, 12745-12774; J. Antibiot. 1997, 50(7), 551; J. Antibiot. 1996, 49(7); J. Antibiot. 1996, 49(12), 1226; 및 Tetrahedron Lett. 1998, 39, 4363-4366.
그러나, 새로운 살균제가 요구된다. 본 발명은 보다 적은 적용율에서 높은 잔류활성, 보다 우수한 활성, 치료활성 및 보다 광범위한 효능을 갖는 살균제를 제공하는 것이다.
본 발명에 의하면 하기 식 1의 헤테로고리 방향족 아미드(HAA)를 포함하는 화합물이 제공된다.
Figure 112002001376227-pct00001

단, 상기 식에서, X1-X4, Z 및 A는 이후 정의한다. 본 발명은 또한 이들의 수화물, 염 및 복합물(complexes)을 포함한다.
본 발명에 의하면 또한 식물학적으로 수용가능한 캐리어 및/또는 희석제와 결합된 HAA를 포함하는 살균조성물이 제공된다. 헤테로 고리 아미드 화합물 및 조성물을 사용하는 방법이 또한 개시된다.
본 발명의 목적은 항균제로 효과적인 HAA 및 그 조성물을 제공하는 것이다.
본 발명의 다른 목적은 HAA 및 이를 함유하는 조성물을 적용하는 것을 포함하는 항균 감염을 제어 및/또는 방지하는 방법을 제공하는 것이다.
본 발명의 다른 목적 및 잇점은 후술하는 바로 부터 명확히 이해된다.
본 발명은 항균제로서 활성을 갖는 여러가시 HAA 화합물에 관한 것이다. 또한, HAA 화합물을 포함하는 배합물 및 HAA 화합물 및 배합물을 사용하는 방법이 포함된다. HAA 화합물을 제조하는 방법이 본 발명의 범주에 포함되며, 살균제로의 제조방법 및 사용방법 또한 포함된다.
HAA 화합물
본 발명의 새로운 항균 HAA 화합물은 다음 화학식 1로 나타내어 진다:
[화학식 1]
Figure 112002001376227-pct00002

상기 식중:
a.
Figure 112002001376227-pct00003
는 5- 혹은 6- 원자 헤테로고리 방향족 고리이며,이 때,
(ⅰ) X1-X4는 각각 독립적으로 O, S, NR', N, CR" 혹은 결합이며;
(ⅱ) X1-X4중 하나는 O, S 또는 NR';
(ⅲ) X1-X4중 하나는 결합이며;
(ⅳ) X1-X4중 어떠한 하나가 O, S 또는 NR'인 경우, 인접한 X1-X4 중 하나는 반드시 결합이며;
(ⅴ) X1-X4중 최소 하나는 반드시 O, S, NR'혹은 N이며;
여기서, R'은 H, C1-C3 알킬, C2-C3 알케닐, C2-C 3 알키닐, 히드록시, 아실옥시, C1-C6 알콕시메틸, CHF2, 시클로프로필 혹은 C1-C4 알콕시이며;
R"는 독립적으로 H, 할로겐, 시아노, 히드록시, C1-C3 알킬, C1-C 3 할로알킬, 시클로프로필, C1-C3 알콕시, C1-C3 할로알콕시, C1-C 3 알킬티오, 아릴, C1-C3 NHC(O)알킬, NHC(O)H, C1-C3 할로알킬티오, C2-C4 알케닐, C 2-C4 할로알케닐, C2-C4 알키닐, C2-C4 할로알키닐 혹은 니트로이며, 인접한 R" 치환체는 고리를 형성하거나 인접한 R' 및 R" 치환체는 고리를 형성하며;
b) Z는 O, S 혹은 NORz이며, Rz는 H 혹은 C1-C3 알킬이며;
C) A는
(ⅰ) 분지된, 분지되지 않은, 치환되지 않은 혹은 할로겐, 히드록시, 니트로, 아로일(aroyl), 아릴옥시, C1-C8 아실옥시, C1-C6 알킬티오, 아릴티오, 아릴, 헤테로아릴, 헤테로아릴티오, 헤테로아릴옥시, C1-C6 아실, C1-C6 할로알킬, C1-C6 알콕시 혹은 C1-C6 할로알콕시로 치환된 C1-C14 알킬, C2 -C14 알케닐 혹은 C2-C14 알키닐,
(ⅱ) 치환되지 않은 혹은 할로겐, 히드록시, C1-C6 알킬, C1-C6 할로알킬, 시아노, 니트로, 아로일, 아릴옥시, 헤테로아릴옥시, C1-C6 알킬티오, 아릴티오, 헤테로아릴티오, C1-C6 알콕시, C1-C6 할로알콕시, C1-C 8 아실옥시, 아릴, 헤테로아릴, C1-C6 아실, 카르보아릴옥시, 카르보헤테로아릴옥시, C1-C6 카르보알콕시 혹은 치환되지 않거나 혹은 하나 또는 두개의 C1-C6 알킬기로 치환된 아미도로 치환되고 0-3 개의 헤테로원자 및 0-2개의 불포화를 갖는 C3-C14 시클로알킬,
(ⅲ) 치환되지 않은 혹은 할로겐, 히드록시, C1-C6 알킬, C1-C6 할로알킬, 시아노, 니트로, 아로일, 아릴옥시, 헤테로아릴옥시, C1-C6 알킬티오, 아릴티오, 헤테로아릴티오, C1-C6 알콕시, C1-C6 할로알콕시, C1-C 8 아실옥시, 아릴, 헤테로아릴, C1-C6 아실, 카르보아릴옥시, 카르보헤테로아릴옥시, C1-C6 카르보알콕시 혹은 치환되지 않거나 하나 또는 두개의 C1-C6 알킬기로 치환된 아미도로 치환되고 0-3개의 헤테로원자 및 0-2개의 불포화를 갖는 C6-C14 비(bi)- 혹은 트리시클로 고리 시스템,
(ⅳ) 치환되지 않은 혹은 니트로, C1-C6 알킬, C1-C6 할로알킬, C3-C8 시클로알킬, C2-C6 알케닐, C2-C6 알키닐, 아릴, 헤테로아릴, 할로겐, 히드록시, C1-C6 알콕시, C1-C6 할로알콕시, 카르보아릴옥시, 카르보헤테로아릴옥시, C1-C6 카르보알콕시 혹은 치환되지 않거나 하나 또는 두개의 C1-C6 알킬기, C1-C6 알킬티오, C1-C6 알킬술포닐, C1-C6 알킬술피닐, C1-C6 OC(O)알킬, OC(O)아릴, C3 -C6 OC(O)시클로알킬, C1-C6 NHC(O)알킬, C3-C6 NHC(O)시클로알킬, NHC(O)아릴, NHC(O)헤테로아릴, C3-C 6 시클로알킬티오, C3-C6 시클로알킬술포닐, C3-C6 시클로알킬술피닐, 아릴옥시, 헤테로아릴옥시, 헤테로아릴티오, 헤테로아릴술피닐, 헤테로아릴술포닐, 아릴티오, 아릴술 피닐, 아릴술포닐, C(O)RY, C(NORx)RY로 치환된 아미도로 치환된 아릴 혹은 헤테로아릴,
여기서, 어떠한 알킬 혹은 시클로알킬 함유 치환체는 하나 또는 그 이상의 할로겐으로 치환될 수 있으며, 어떠한 아릴 혹은 헤테로아릴 함유 치환체는 또한 치환되지 않거나 혹은 할로겐, 시아노, 니트로, 아로일, 아릴옥시, 아릴, 헤테로아릴, C1-C6 아실, C1-C6 할로알킬, C1-C6 알콕시, C1-C6 할로알콕시, C1-C6 카르보알콕시 혹은 치환되지않거나 혹은 하나 또는 두개의 C1-C6 알킬기로 치환된 아미도로 치환될 수 있으며,
여기서 RY 및 RX는 독립적으로 H, C1-C6 알킬, C2-C 6 알케닐, C3-C6 시클로알킬, 아릴 혹은 헤테로아릴이며; 및
(ⅴ)
Figure 112002001376227-pct00004
을 나타낸다.
식중, *는 부착지점이고,
Q1, Q2는 O 혹은 S이며,
W는 O, CH2, CHR6 혹은 결합(bond)이며;
R1은 C1-C8 알킬, C2-C8알케닐, C2-C 8알키닐, C3-C8시클로알킬, 아릴 혹은 헤테로아릴이며;
R2은 H, C1-C3 알킬, C2-C5알케닐 혹은 C2 -C5알키닐이며;
R3는 H, R1, OR1, OC(O)R1, OC(O)OR1 혹은 CO(O)NR 1R6이며;
R4 및 R5는 독립적으로 H, C1-C6 알킬 혹은 C2-C 6알케닐이며,
R4와 R5의 탄소의 합은 6이하이며, 나아가 R4 와 R5는 C3 -C6고리에 결합될 수 있으며;
R6 및 R7은 독립적으로 H, C1-C6 알킬, C3-C6 시클로알킬, C2-C5 알케닐 혹은 C2-C5 알키닐이며,
R6 및 R7중 최소 하나는 H이며;
Figure 112002001376227-pct00005
Figure 112002001376227-pct00006
인 경우,
R"는 H 혹은 OCH3 이며, 이 때 R1은 C1-C8 알킬 혹은 C 2-C8알케닐이 아니다.
본 명세서에서 사용된 용어 알킬, 알케닐, 아키닐등은 직쇄 혹은 분지된 기를 포함하며; 용어 알케닐, 알케닐렌(alkenylene)등은 하나 또는 그 이상의 이중 결합을 갖는기를 포함하며; 용어 알키닐, 알키닐렌(alkynylene)등은 하나 또는 그 이상의 삼중결합을 갖는 기를 포함함을 의미한다. 본 명세서에서 사용된 시클로알킬은 0-3개의 헤테로원자와 0-2개의 불포화를 갖는 C3-C14 시클로알킬기를 말한다. 비(bi)- 혹은 트리시클로고리 시스템은 0-3개의 헤테로원자와 0-2의 불포화를 갖는 C6-C14 지방족 고리시스템을 말한다. 상기 용어는 나아가, 치환된 혹은 치환되지 않은 형태를 포함한다. 특히 달리 정의하지 않는한, 치환된 형태는 할로겐, 히드록시, 시아노, 니트로, 아로일, 아릴옥시, 아릴, 아릴티오, 헤테로아릴, 헤테로아릴옥시, 헤테로아릴티오, C1-C8 아실, C1-C6 할로알킬, C1-C6 알콕시, C1-C6 할로알콕시, C1-C6 알킬티오, C1-C6 할로알킬티오, 카르보아릴옥시, 카르보헤테로아릴옥시, C1-C6 카르보알콕시 혹은 치환되지 않거나 혹은 하나 또는 두개의 C1-C6 알킬기로 치환된 아미도로 부터 선택된 하나 또는 그 이상의 기로 치환된 것을 의미한다. 상기 모든 용어 및 정의는 화학적 결합 규칙 및 스트레인 에너지를 만족하는 것으로 추정한다.
본 명세서에서 사용된 용어 아릴은 치환된 페닐 혹은 나프틸기이다. 용어 헤테로아릴은 하나 또는 그 이상의 헤테로원자를 갖는 5 혹은 6원자 방향족고리이며; 이들 헤테로방향족고리는 다른 방향족 시스템과 또한 융합될 수 있다. 상기 용어는 나아가 치환된 혹은 치환되지 않은 형태를 포함한다. 치환된 형태는 니트로, C1-C6 알킬, C1-C6 할로알킬, C3-C8 시클로알킬, C2-C 6 알케닐, C2-C6 알키닐, 아릴, 헤테로아릴, 할로겐, 히드록시, C1-C6 알콕시, C1-C6 할로알콕시, C1-C6 알킬티오, C1-C6 알킬술포닐, C1-C6 알킬술피닐, C1-C6 OC(O)알킬, OC(O)아릴, C3-C6 OC(O)시클로알킬, C1-C6 NHC(O)알킬, C3-C6 NHC(O)시클로알킬, NHC(O)아릴, NHC(O)헤테로아릴, C3-C6 시클로알킬티오, C3-C6 시클로알킬술포닐, C3-C6 시클로알킬술피닐, 아릴옥시, 헤테로아릴옥시, 헤테로아릴티오, 헤테로아릴술피닐, 헤테로아릴술포닐, 아릴티오, 아릴술피닐, 아릴술포닐, C(O)RY, C(NORx)RY(단, Rx 및 RY 는 독립적으로 H, C1-C6 알킬, C2-C6 알케닐, C3-C6 시클로알킬, 아릴 혹은 헤테로아릴이다.)로 구성되는 그룹으로 부터 선택된 하나 또는 그 이상의 기로 치환됨을 의미하여, 어떠한 알킬 혹은 시클로알킬 함유 치환체는 하나 또는 그 이상의 할로겐으로 치환될 수 있으며, 화학 결합 규칙 및 스트레인 에너지를 만족한다.
본 명세서에서 사용된 용어 할로겐 및 할로는 염소, 브롬, 플루오르 및 요오드를 포함한다. 용어 할로알킬등은 하나 또는 그 이상의 할로겐 원자로 치환된 기를 의미한다.
본 발명세서에 사용된 용어 Me는 메틸기를 의미한다. 용어 Et는 에틸기를 의미한다. 용어 Pr은 프로필기를 의미한다. 용어 Bu는 부틸기를 의미한다. 용어 EtOAc는 에틸 아세테이트를 의미한다.
본 명세서에서 사용된 용어 알콕시는 직쇄 혹은 분지된 사슬 알콕시기를 말한다. 용어 할로알콕시는 하나 또는 그 이상의 할로겐 원자로 치환된 알콕시기를 말한다.
본 명세서에서 사용된 용어 헤테로원자는 O, S 및 N을 의미한다.
Figure 112002001376227-pct00007
의 바람직한 5- 혹은 6-원자 헤테로고리 방향족 고리로는 피리딘, 피리다진, 피리미딘, 피라진, 피롤, 피라졸, 이미다졸, 퓨란, 티오펜, 옥사졸, 이소옥사졸, 티아졸, 이소티아졸 및 티아디아졸의 이성질체를 포함한다. 가장 바람직한 헤테로고리 방향족 고리는 피리딘, 피리미딘, 피라진, 피리다진, 티아졸, 이소티아졸 및 옥사졸이다. 특히 바람직한 화학식 1의 화합물은 2-아미도-3-히드록시피리딘, 2-아미도-3-히드록시-4-메톡시피리딘, 2-아미도-3-히드록시피라진 및 4-아미도-5-히드록시피리미딘을 기초로한 것이다.
본 명세서에서 정의하고 있는 범주내에 속하는 화합물에 대한 특정한 치환기의 배합은 입체(steric) 및/또는 화학적 반응으로 인하여 제조 불가능한 것으로 이해된다. 이와 같은 화합물은 본 발명의 범주에 속하지 않는 것이다.
식 1 화합물의 여러가지 수화물, 염 및 복합물은 통상의 방법으로 제조될 수 있다. 예를들어, 염은 히드록시 수소원자를 양이온, 예를들어, NH4 +, +N(Bu) 4, K+, Na+, Ca2+, Li+, Mg2+, Fe2+, Cu2+등으로 치환하여 제조할 수 있다. 이들 유도체는 또 한 본 발명에 유용한 것이다.
본 명세서에서, 달리 언급하지 않는한 모든 온도는 섭씨(℃)로 나타내었으며, 모든 퍼센트는 중량 퍼센트이다. 용어 ppm은 백만부당 부(part per million)을 나타낸다. 용어 psi는 평방인치당 파운드(pounds per square inch)를 나타낸다. 용어 m.p.는 녹는점을 나타낸다. 용어 b.p.는 끓는점을 나타낸다.
화합물의 제조
본 발명의 화합물은 잘 알려진 화학공정으로 제조된다. 필요로하는 출발물질은 공업적으로 이용가능하거나 혹은 표준방법으로 용이하게 합성할 수 있다.
피리딘-2-카르복사미드의 일반적인 제조
원하는 HAAs(2)는 커플링제(포스겐(phosgene) 혹은 1-[3-디메틸아미노프로필]-3-에틸카르보디이미드 하이드로클로라이드[EDCI])와 1-히드록시벤조트리아졸(HOBt) 혹은 1-히드록시-7-아자벤조트리아졸(HOAt) 및 산포집제, 예를들어, N-메틸모르폴린(NMM), 트리에틸아민, 4-(디메틸아미노)피리딘(DMAP) 혹은 디이소프로필에틸아민(방법 1) 존재하에 적합한 σ-히드록시헤테로방향족 카르복시산(1)과 아민들 반응시켜 제조한다. 어떤 경우에는, (3)과 같이 히드록시기로 보호되는 산염화물을 적합한 아민과 반응시켜 중간체 아미드(4)를 형성한다. 팔라듐(Pd) 촉매존재하에 수소화에 의해 보호기를 제 거함으로써 원하는 산물(2X)가 얻어진다.
Figure 112002001376227-pct00008

σ-히드록시헤테로방향족 카르복시산 1의 제조
카르복시산 1의 제조를 반응 2에 나타내었다. 디메틸포름아미드(DMF)-테트라하이드로퓨란(THF)의 1:1 혼합물에서 염기로 포타슘 tert-부톡사이드를 사용하여 3-히드록시-2-브로모피리딘(5)와 2-(트리메틸실릴)에톡시메틸 클로라이드(SEM-C1)을 반응시킴으로써 원하는 에테르 6이 얻어진다. 리튬 디이소프로필아미드(LDA)로 6을 탈양성자한 후, 적절한 친전자체(요오드메탄, 디메틸디술파이드 혹은 헥사클로로에탄)로 축합하여 4-치화된 피리딘 7을 얻었다. 7과 n-부틸리튬(n-BuLi)의 브롬/리튬 교환 후, 이산화탄소(CO2)로 카르복시화하고 산 가수분해하여 필요한 4-치환된-3-히드록시피콜린산 1X를 얻었다.
Figure 112002001376227-pct00009

또한, 3-히드록시피리딘(8)을 SEM-Cl로 축합하여 9를 얻는다(방법 3). 9를 tert-부틸리튬(t-BuLi)로 탈양성자화한 후, N-플루오로벤젠술폰이미드로 축합하여 4-플루오로 유도체 10을 얻었다. 10을 소디움 에톡사이드로 축합하여 디에테르 11을 얻었다. 11을 t-BuLi로 탈양성자화한 후, 카르복시화 및 산 가수분해하여 원하는 4-에톡시피리딘 1X(X=OEt)를 얻었다.
Figure 112002001376227-pct00010

산 염화물 3 제조를 제조방법 4에 나타내었다. 이와 같이, 3-히드록시피콜린산(12)는 촉매로 보론 트리플로라이드를 사용하여 메탄올 환류하여 메틸 에테르 13으로 전화되었다. 그 후, 13은 디브로마이드 14가 되도록 수성염기하에서 브롬을 사용하여 브롬화하였다. 그 후, 벤질 에테르 15는 소디움 수화물존재하에 14를 벤질 클로라이드로 축합하여 제조하였다. 메탄올/포타슘 카보네이트에서 15를 조심스럽게 메탄올화(methanolysis)하여 4-메톡시피콜린산 유도체 16을 얻었다. 용매로 벤젠을 그리고 DMF를 촉매량 사용하고 옥살릴 클로라이드를 이용하여 16을 산 염화물 3로 전환한다.
Figure 112002001376227-pct00011

4-에톡시-3-히드록시피콜린산의 제조(1, X 1 =N, X 2 =X 3 =H, X 4 =COEt)(방법 1 및 3)
Figure 112002001376227-pct00012

a. 3-(2-(트리메틸실릴)에톡시메톡시)-피리딘(9)의 제조
DMF(100㎖)와 THF(100㎖)의 교반된 혼합물에 고형분 포타슘 tert-부톡사이드(17.96g, 0.16mol)을 첨가하였다. 모든 고형분이 용해된 후, 용액을 ≤5℃로 냉각하고 3-히드록시피리딘(14.25g, 0.15mol)을 동시에 첨가하였다. 10분간 교반한 후, 혼합물을 -10℃로 냉각하고 SEM-Cl(25g, 0.15mol)을 본질적인 온도가 ≤-5℃로 유지되는 비율로 적가하였다. 첨가완료 후, 혼합물을 0℃에서 1시간동안, 그 후, 실온에서 2시간동안 교반하였다. 혼합물을 물(600㎖)에 부운다음, 에 테르(3 x 150㎖)로 추출하였다. 에테르 추출물을 합하고, 2N NaOH(100㎖), 물(50㎖) 그리고 NaCl 포화용액(100㎖)를 사용하여 순차적으로 세척하고, 건조(MgSO4)하고 농축하여 갈색 액체를 얻었다. 증류하여 무색 액체의 에테르 9(20.8g)(0.03㎜Hg에서 b.p. 95-99℃)를 얻었다.
b. 4-플루오로-3-(2-(트리메틸실리)에톡시메톡시)피리딘(10)의 제조
아르곤 분위기하에서 ≤-70℃로 냉각된 에테르(200㎖)중의 교반된 9(12.39g, 0.055 mol)에 t-BuLi(40㎖, 1.5M 펜탄용액)을 서서히 첨가하였다. 첨가도중, 반응온도를 ≤-68℃로 유지하였다. 첨가완료 후, 혼합물을 ≤-70℃에서 부가적으로 60분간 교반한 다음, 캐눌라(cannula)를 통해 또한 아르곤 분위기하에서 ≤-70℃로 냉각된 무수(dry) THF(200㎖)에 용해교반된 N-플루오로벤젠술폰이미드(18.92g) 용액으로 옮겼다. 첨가완료후, 냉각조를 제거하고 반응 혼합물이 실온으로 가온되도록 하였다. 물(100㎖)을 첨가하고 유기상을 분리하고, 건조(MgSO4) 및 농축하여 갈색 오일을 얻었다. 크로마토그래피(실리카 겔, 헥산-아세톤, 9:1)하여 출발물질이 약 15%함유되어 있는 오렌지색 오일(7.5g)로 원하는 산물 10을 얻었다.
c. 4-에톡시-3-(2-(트리메틸실릴)에톡시메톡시)피리딘(11)의 제조
에탄올(10㎖)에 용해교반된 소디움 에톡사이드(0.9g, 13mmol)에 10(1.07g, 4.4mmol)을 모두 첨가하였다. 결과 혼합물을 실온에서 48시간동안 교반한 다음 물(100㎖)에 부었다. 결과혼합물을 에테르(3 x 50㎖)로 추출하였다. 에테르 추출물 을 합하여 건조(MgSO4)하고 농축하였다. 결과물인 호박색 오일의 크로마토그래피하여 황색오일의 11(0.6g)을 얻었다.
d. 4-에톡시-3-히드록시피리딘-2-카르복시산(1, X 1 =N, X 2 =X 3 =CH, X 4 =COEt).
아르곤 분위기하에서 THF(50㎖)에 용해교반된 11(2.9g)용액을 ≤-70℃로 냉각하였다. 이에 반응온도를 ≤-66℃로 유지하면서, t-BuLi(8㎖, 1.5M 펜탄 용액)을 서서히 첨가하였다. 첨가완료 후, 혼합물을 ≤-70℃에서 45분간 교반한 다음, 에테르와 혼합된 분쇄된 드라이 아이스 슬러리에 부었다. 결과 혼합물을 실온에 도달할 때까지 교반한 다음, 용매를 증발시켰다. THF(25㎖)와 4N HCl(15㎖)을 잔류물에 첨가하고 결과혼합물을 실온에서 2시간동안 교반하였다. 종말점에서, 불용성 물질을 여과하고, 소량의 THF로 세척하고 공기건조하여 백색 고형분인 4-에톡시-3-히드록시피리딘-2-카르복시산 (1.05g)을 얻었다.
6-브로모-3-벤질옥시-4-메톡시피리딘-2-카르복시산(16) 및 이의 산 염화물 제조(방법 4 참조)
Figure 112002001376227-pct00013

a. 메틸 4,6-디브로모-3-히드록시피리딘-2-카르복시레이트(14)의 제조
적하 깔대기와 기계적 교반기가 장착된 2 ℓ, 3-구 플라스크에 물(800㎖) 및 메틸 3-히드록시피리딘-2-카르복시레이트(15.3g)을 첨가하였다. 이 교반된 용액에 브롬(32g)을 서서히 첨가하였다. 반응이 진행됨에 따라, 용액에서 고형분이 분리되었으며 반응혼합물이 교반하기 어렵게 되었다. 첨가완료후, 브롬색이 없어질때가지 혼합물을 격렬하게 교반하였다. 조질 생성물을 소취한 샘플의 1H-NMR(CDCl3)결과, 모노브롬화 생생물과 디브롬화 생산물의 약 3:1 혼합물이었다. 소디움 카보네이트(31.8g)을 반응 혼합물에 조심스럽게 첨가한 다음, 부가적으로 브롬(12g)을 적가하였다. 브롬색이 없어진후, 진한 HCl을 사용하여 반응혼합물을 약 pH 5로 조절하고, 결과혼합물을 CH2Cl2(3x150㎖)로 추출하였다. 유기 추출물을 합하고, 건조(MgSO4)하고 농축하여 유기 고형분(14g)을 얻었다. 이 물질을 메틸시클로헥산(목탄처리후)으로 재결정하여 백색고형분의 14(m.p. 181-183℃)를 얻었다.
b. 메틸 4,6-디브로모-3-벤질옥시피리딘-2-카르복시레이트(15)의 제조
소디움 수소화물(0.6g)과 DMF(50 ㎖)의 교반된 혼합물에 14(7.1g)를 서서히 첨가하였다. 첨가완료후, 혼합물을 실온에서 15분간 교반한 다음, 벤질 클로라이드(3.05g)을 모두 첨가하였다. 그 후, 혼합물을 90℃에서 6시간동안 가열학, 냉각하고, 물(500㎖)에 부운다음 에테르(2x200㎖)로 추출하였다. 에테르 추출물을 합하고, 2N NaOH(50㎖)로 세척하고, 건조(MgSO4)하고 용매를 증발시켜 연황색 고형분인 15(8.3g)을 얻었다.
소량의 메탄올로 재결정하여 m.p. 75-76℃의 분석용 샘플을 얻었다.
c. 6-브로모-3-벤질옥시-4-메톡시피리딘-2-카르복시산(16)
15(25.5g), 포타슘 카보네이트(75g)과 메탄올(300㎖)의 격렬하게 교반된 혼합물을 환류시키면서 30시간동안 가열하였다. 혼합물을 냉각하고, 물(800㎖)에 붓고, 진한 HCl을 첨가하여 pH를 조절하였다. 결과혼합물을 CH2Cl2(3x150㎖)로 추출하였다. 유기 추출물을 합하고, 건조(MgSO4)하고 용매를 증발시켜 방치시 조금 고형화되는 거의 무색의 오일(20.5g)을 얻었다. 메탄올(125㎖)/물(40㎖)로 재결정하여 m.p. 134-135℃의 원하는 산 16을 얻었다.
d. 6-브로모-3-벤질옥시-4-메톡시피리딘-2-카르보닐 클로라이드(3)의 제조
16(2.54mmol)과 DMF(3방울)을 함유하는 벤젠(30㎖)의 교반된 혼합물에 옥살릴 클로라이드(1.90g, 15mmol)를 일분획으로 첨가하였다. 가스 증발이 정지된 후(약 45분), 균질한 용액을 15분간 교반하고 그 후, 용매를 증발시켰다. 1,2-디클로로에탄(30㎖)을 첨가하고 다시 용매를 증발시켜 거의 무색 오일로 3을 정량적으로 수득하였다. 이 물질을 CH2Cl2(10㎖) 혹은 THF(10㎖)에 용해시켜 후속되는 커플링반응에 직접 사용하였다.
6-브로모-3-히드록시피콜린산(17)
Figure 112002001376227-pct00014
17
물(800㎖)에 용해된 기계적으로 교반된 메틸 3-히드록시피콜리네이트(30.6g)용액에 30분에 걸쳐 브롬(32g)을 서서히 첨가하였다. 첨가완료 후, 부가적인 시간동안 교반을 계속하였다. 에테르(300㎖)을 첨가하고 모든 고형분이 용해될 때까지 교반을 계속하였다. 유기층을 분리하고 수성상을 에테르(200㎖)로 추출하였다. 유기상을 합하고, 건조(MgSO4)하고, 용매를 증발시켜 회백색 고형분으로 메틸 6-브로모-3-히드록시피콜리네이트 32.8 g을 얻었다. 메탄올/물로 재결정하여 m.p. 115-117℃의 분석용 샘플을 얻었다.
THF(15㎖)에서 교반된 에스테르(2.32g) 용액에 물(7㎖)에 용해된 LiOH.H2O(1g)용액을 동시에 첨가하였다. 결과 혼합물을 실온에서 2시간동안 교반한 후, 물(100㎖)에 부었다. pH를 1N HCl을 사용하여 약 3으로 조절한 다음 혼합물을 CH2Cl2(3x100㎖)로 추출하였다. 유기 추출물을 건조(MgSO4)하고, 여과하고 농축하여 백색 고형분 2.0 g을 얻었으며, 1H-NMR 및 MS는 원하는 타이틀 산 17과 일치하였다.
3-벤질옥시-6-메톡시피콜린산 (18)
Figure 112002001376227-pct00015

CH2Cl2(100㎖)에 용해된 메틸 3-벤질옥시피콜리네이트(4.86g)과 3-클로로퍼옥시벤조산(5.75g, 60% 과산) 용액을 실온에서 40시간동안 교반하였다. 그 후, 반응 혼합물을 5% 소디움 비술파이트 용액(100㎖), 그 후, 0.5N NaOH 용액(150㎖)로 추출하였다. 건조(MgSO4)후, 용매를 증발시켜 백색 고형분의 메틸 3-벤질옥시피콜리레이트-1-옥사이드 4.9g을 얻었다. 메틸시클로헥산/톨루엔으로 재결정하여 m.p. 104-106℃의 결정성 고형분을 얻었다.
아세트산 무수물(80㎖)에 용해된 이 화합물(16.1g)의 용액을 오일배스에서 125℃로 3시간동안 교반 및 가열하였다. 과량의 아세트산 무수물을 회전증발기에서 제거하고 잔류물을 메탄올(200㎖)에 취하였다. 진한 황산(1㎖)을 첨가하고 결과혼합물을 환류시키면서 90분간 가열하였다. 용매를 증발시키고 포화 소디움 비카보네이트를 잔류물에 첨가하였다. 결과혼합물을 CH2Cl2(3x100㎖) 로 추출하였다. 유기분획을 합하고, 건조(MgSO4)하고 용매를 증발시켜 백색 고형분인 메틸 3-벤질옥시-6-히드록시피콜리네이트 15.5g을 얻었다. 톨루엔으로 재결정하여 m.p. 91-92℃의 연황색 고형분을 얻었다.
오일배스에서 60℃로 가온된 톨루엔(125㎖)에 용해된 이 화합물(10.25g)의 교반된 용액에 실버 카보네이트(16.6g), 그 후에 메틸 요오드(8.52g)을 첨가하였다. 결과 혼합물을 교반하고 3시간동안 60℃로 가열하였다. 냉각 후, 혼합물을 Celite?로 여과하고 용매를 증발시켜 황색오일을 얻었다. 실리카 겔 크로마토그래피(4:1 헥산/아세톤)하여 거의 무색인 오일을 얻었으며, 이의 1H-NMR 및 MS 데이타는 메틸 3-벤질옥시-6-메톡시피롤리네이트와 일치하였다. 언급된 산 18로의 이 에스테르의 가수분해는 상기 관련된 에스테르에서 기재한 바와 같이 LiOH.H2O를 이용하여 행하였다.
4-히드록시피리미딘-5-카르복시산(19)
Figure 112002001376227-pct00016

에틸 4-히드록시피리미딘-5-카르복시레이트는 다음의 M. Pesson등의, Eur. J. Med. Chem. Chim. Ther. 1974, 9, 585에 기술되어 있는 방법으로 제조될 수 있다. THF(10㎖)과 MeOH(5㎖)에 용해된 이 에스테르 용액(500mg, 3mmol)은 LiOH.H2O(373 mg, 8.9mmol)로 처리하고 밤새 교반하였다. 이 혼합물을 진한 HCl(1㎖)로 급냉(quenching)하고 EtOAc(2x20㎖)로 추출하였다. 합한 유기 추출물을 건조(MgSO4)하고 농축하여 m.p. 220℃인 오렌지색 고형분으로 타이틀 화합물 19 260mg을 얻었다.
4-히드록시-2-메틸피리미딘-5-카르복시산 (20)
Figure 112002001376227-pct00017

에틸 4-히드록시-2-메틸피리미딘-5-카르복시레이트는 다음 Geissman 등의 J.Org.Chem., 1946, 11, 741의 방법으로 제조할 수 있다. THF(10㎖)과 MeOH(5㎖)에 용해된 이 에스테르 용액(750mg, 4.11mmol)을 LiOH.H2O(431 mg, 10.3mmol)로 처리하고 밤새 교반하였다. 이 혼합물을 진한 HCl(1㎖)로 급냉하고 EtOAc(2x20㎖)로 추출하였다. 합한 유기 추출물을 건조(MgSO4)하고 농축하여 m.p. 180℃인 백색 고형분으로 타이틀 화합물 20 155mg을 얻었다.
5,6-디클로로-3-히드록시피라진-2-카르복시산(21)
Figure 112002001376227-pct00018
메틸 3-아미노-5,6-디클로로피라진-2-카르복시레이트(5.0g, 23mmol)을 진한 황산(140㎖)에서 교반하고 0℃로 냉각하였다. 온도를 0℃에 가깝게 유지하면서 소디움나이트레이트(sodium nitrite)를 서서히 첨가하였다. 0℃에서 부가적으로 30분 경과후, 혼합물이 주위온도로 따뜻해지도록 3시간동안 교반하였다. 혼합물을 얼음 500g에 붓었으며, 결과 거품과 기포가 발생하였다. 30분후에, 혼합물을 EtOAc로 3회 추출하였다. 합한 유기 추출물을 건조(MgSO4), 여과, 농축하였다. 남아있는 황색 고형분을 물로 세척하고, 공기건조하여 m.p. 114-116인 황색 고형분 5.0g이 남았으며, 이의 13C-NMR 스펙트럼은 타이틀 화합물의 메틸 에스테르와 일치하였다.
이 고형분(5.0g)을 1N NaOH(20㎖)으로 처리하고 혼합물을 90℃로 1.5시간동안 가열하였다. 냉각 후, 혼합물을 진한 HCl로 산성화한 후, EtOAc로 3회 추출하고, 여과, 농축하여 어두운 황색 고형분 0.48g을 얻었으며, 이의 1H-NMR 및 MS 스펙트럼은 타이틀 산 21과 일치하였다.
6-클로로-3-히드록시-5-메톡시피라진-2-카르복시산 (22)
Figure 112002001376227-pct00019
무수 MeOH(50㎖)에 용해된 메틸 3-아미노-5,6-디클로로피라진-2-카르복시레이트(5.0g, 23mmol)과 소디움 메톡사이트(3.6g, 67.5mmol)의 교반된 혼합물을 환류 시키면서 2시간동안 가열한 후, 냉각하고 진한 HCl로 산성화하였다. 여과하여 침전물을 수집하고, 물로 세척하고 공기-건조하여 갈색 고형분 3.6g을 얻었다. 헥산-EtOAc(1:1)로 재결정하여 연황색 고형분 2.6g을 얻었으며, 이의 스펙트럼은 메틸 3-아미노-6-클로로-5-메톡시피라진-2-카르복시레이트와 일치하였다.
이 화합물(1g, 4.6mmol)을 진한 황산에 취하고, 0℃로 냉각하고 소디움 나이트레이트(0.5g, 6.9mmol)로 서서히 처리하였다. 0℃에서 30분 경과후, 혼합물을 얼음/물 300g에 붓었으며, 결과 기포가 발생하였다. 30분간 계속 교반한 다음, 고형분을 여과하여 수집하고 물로 세척하였다. 습윤 고형분을 EtOAc에 취하고, 건조(MgSO4)하고, 여과 및 농축하였다. 이에 따라 m.p. 180-182℃의 회백색 고형분 0.95g을 얻었으며 이의 NMR 스텍트라는 메틸 6-클로로-3-히드록시-5-메톡시피라진-2-카르복시레이트와 일치하였다.
이 고형분(0.9g, 4.1mmol)을 1N NaOH(60㎖)로 처리하고, 혼합물을 1시간동안 교반한 다음, 진한 HCl로 산성화하였다. 여과하여 침전물을 수집하고 물로 세척한 후, EtOAc에 용해시키고, 건조(MgSO4), 여과 및 농축하였다. 이와 같이 하여 m.p. 170-173℃의 연황색 고형분 0.62g을 얻었으며, 이의 스펙트럼은 원하는 타이틀 산 22와 일치하였다.
4-히드록시이소티아졸-3-카르복시산 (23)
이산은 반응 5에 나타낸 절차에 따라 얻어진다.
Figure 112002001376227-pct00020

따라서, 플라스크에서 질소로 플러쉬(flush)된 EtOH 75㎖에 용해된 고현분 KOH(88%, 6.98g, 0.11mol)의 교반된 용액을 EtOH 25㎖로 세척하였다. 혼합물을 마개를 닫은 플라스크에서 질소분위기하에서 5분간 교반하였다. 이에 조질의 브롬 화합물(M. Hatanaka와 T. Ishimaru, J. Med. Chem., 1973, 16, 798에 따라 새로 제조됨) 0.1mol을 첨가하였다. 이 플라스크를 질소로 플러쉬하고, 마개를 닫았다. 환합물을 주위 온도의 배스에서 3시간동안 교반한 다음, 300㎖ CH2Cl2와 1000㎖ 물에 부엇다. 수성 층을 CH2Cl2 200㎖으로 4번 추출하였다. 합한 유기 추출물을 냉수 100㎖와 포화된 염용액으로 세척하고 건조하였다. 조질의 혼합물을 여과 및 농축하였다. 결과물인 오일을 용리액(eluent)로 디에틸 에테르를 사용하여 실리카 겔상에서 크로마토그래피하여 연황색 오일 13g을 얻었이며, 이는 방치함에 따라 점착성 고형분으로 고형화된다. 스펙트럼 데이타는 에틸 2-아세틸아미노-4-아세틸티오-3-옥소부타노에이트와 일치하였다.
아이스 배스에서 5℃이하로 냉각된 클로로포름 450㎖에서 급교반된 상기 화합물(12.95g)의 용액에 클로로포름 50㎖에 용해된 브롬(15.8g, 2당량)을 45분에 걸쳐 적가하였다. 아이스 배스에서 추가로 45분간 교반을 계속한 후, 주위 온도에서 30시간동안 교반하였다. 그 후, 혼합물을 물 200㎖로 세척한 다음 물 100㎖로 다시 세척하였다. 합한 수성 세척물을 클로로포름 100㎖로 재추출하였다. 합한 클로로포름 용액을 포화 염 용액으로 세척하고 MgSO4상에서 건조하였다. 이 용액을 여과하고 농축하여 조질의 오일을 얻었다. 이를 석유 에테르-CH2Cl2(3:1)에서 CH2Cl 2로의 일련의 경사가되도록 사용하여 실리카 겔상에서 크로마토그래피하여 먼저 에틸 5-브로모-4-히드록시이소티아졸-3-카르복시레이트 0.79g 그 후에 에틸-4-히드록시이소티아졸-3-카르복시레이트 3.49g을 무색결정으로 얻었으며, 이의 m.p.는 44-7℃이며, MS 및 1H-NMR로 확인하였다.
THF 30㎖에 용해된 후자의 에스테르 710mg에 물 10㎖에 용해된 LiOH·H2O 370mg(2.2당량)을 첨가하였다. 이 혼합물을 주위온도에서 3시간동안 교반한 다음 냉장고에서 냉각하였다. 여과하여 침전된 고형분을 수집하여 카르복시산의 디리튬염 710mg을 얻었다. 이 염을 물 7㎖에 취하고, 아이스 배스에서 냉각하고 2N HCl을 첨가하여 pH 1로 하였다. 결과물인 용액을 EtOAc 50㎖로 3번 추출하였다. 합한 추출물을 염수 5㎖로 세척하고 건조(Na2SO4), 여과하였으며, 여과액을 농축하여 냉장고에 놓았다. 냉각된 용액을 재여과하고 여과액을 농축하여 m.p. 185-89℃의 무색 고형분 230mg을 얻었으며, 이의 1H-NMR 및 13C-NMR 스펙트럼은 타이틀 화합물 23 과 일치하였다.
3-벤질옥시-1-메틸피라졸-4-카르복시산(24) 및 5-벤질옥시-1-메틸피라졸-4-카르복시산(25)
Figure 112002001376227-pct00021

에틸 3-히드록시-1-메틸피라졸-4-카르복시레이트와 에틸 5-히드록시-1-메틸피라졸-4-카르복시레이트의 혼합물(Y. Wang등의 Zhejiang Gongxueyuan Xuebao, 1994, 2, 67의 방법으로 제조)을 S. Yamamoto등의 일본 특허 JP 62148482, 1987의 방법으로 벤질화하였으며 용리액으로 3:1 헥산:EtOAc를 사용하여 컬럼 크로마토그래피하여 혼합물을 분리하여 1H-NMR 결과 순수한 에틸 3-벤질옥시-1-메틸피라졸-4-카르복시레이트와 에틸 5-벤질옥시-1-메틸피라졸-4-카르복시레이트를 얻었다.
THF(10㎖), MeOH(2㎖) 및 물(5㎖)에 용해된 에틸 3-벤질옥시-1-메틸피라졸-4-카르복시레이트(283mg, 1.08mmol)을 LiOH·H2O(91mg, 2.17mmol)로 처리하고 밤새 교반하였다. 상기 혼합물을 진한 HCl(1㎖)로 급냉하고 EtOAc(2x20㎖)으로 추출하였다. 합한 유기 층을 건조(MgSO4)하고 농축하여 m.p. 169-172℃의 백색 고형분(227mg)을 얻었으며, 이의 스펙트럼은 3-벤질옥시-1-메틸피라졸-4-카르복시산(24)과 일치하였다.
에틸 5-벤질옥시-1-메틸피라졸-4-카르복시레이트(755mg, 2.9mmol)를 THF(20㎖), MeOH(4㎖) 및 물(10㎖)에 용해된 LiOH·H2O(243mg, 5.8mmol)을 사용하여 가수분해하여 백색 고형분으로 m.p. 117-122℃인 5-벤질옥시-1-메틸-4-카르복시산(25) 608mg을 얻었다.
다른 헤테로방향족 카르복시산의 제조
4-히드록시니코틴산을 M. Mittelbach등의 Arch. Pharm.(Weinheim, Germany)1985, 318, 481-486의 방법으로 제조하였다. 2-히드록시-6-메틸니코틴산은 A. Cornow, Chem. Ber. 1940, 73, 153의 방법으로 제조할 수 있다. 4,6-디메틸-2-히드록시니코틴산은 R. Mariella와 E.Belcher, J. Am. Chem. Soc., 1951, 73, 2616의 방법으로 제조할 수 있다. 5-클로로-2-히드록시-6-메틸니코틴산은 A. Cale등의 J. Med. Chem., 1989, 32, 2178의 방법으로 제조할 수 있다. 2,5-디히드록시니코틴산은 Namirski와 A Rykowski, Chem, Abstr., 1972, 77, 114205의 방법으로 제조할 수 있다. 3-히드록시이소니코틴산은 J. D. Crum과 C. H. Fuchsman, J. Heterocycl.Chem. 1966, 3,252-256의 방법으로 제조할 수 있다. 3-히드록시피리다진-2-카르복시산은 A.P. Krapcho등의 J. Heterocycl. Chem. 1997, 34, 27의 방법으로 제조할 수 있다. 5,6-디메틸-3-히드록시피라진-2-카르복시산은 상응하는 에틸 에테르를 가수분해하여 제조할 수 있으며, 그 합성은 S.I. Zavyalov와 A. G. Zavozin, Izv. Akda. Nauk SSSR, 1980,(5), 1067-1070에 기술되어 있다. 4-히드록시피리다진-3-카르복시산은 I. Ichimoto, K. Fujii와 C. Tatsumi, Agric. Biol. Chem. 1967, 31, 979의 방법으로 제조할 수 있다. 3.5-디히드록시-1,2,4-트리아진-6-카르복시산은 E. Falco, E. Pappas와 G. Hitchings, J. Am. Chem. Soc., 1956,78, 1938의 방법으로 제조할 수 있다. 5-히드록시-3-메틸티오-1,2,4-트리아진-6-카르복시산은 R. Barlow와 A. Welch, J.Am. Chem. Soc., 1956, 78, 1258의 방법으로 제조하였다. 히드록시이소티아졸-, 히드록시이소옥사졸- 및 히드록시피라졸-카르복시산은 T. M. Willson등의, Bioorg. Med. Chem. Lett., 1996, 6, 1043의 방법으로 제조할 수 있다. 3-히드록시-1,2,5- 티아디아졸-4-카르복시산은 J.M. Ross등의 J. Am. Chem. Soc., 1964, 86, 2861의 방법으로 제조하였다. 3-히드로시이소옥사졸-4-카르복시산은 K. Bowden등의 j. Chem. Soc.(C), 1968, 172에 기술되어있는 방법으로 얻었다. 3-히드록시-1-페닐피라졸-4-카르복시레이트는 A. W. Taylor와 R. T. Cook, Tetrahedron, 1987, 43, 607의 방법으로 제조하였다. 3-벤질옥시퀴놀린-2-카르복시산은 D. L. Boger과 J. H. Chen, J. Org. Chem. 1995, 60, 7369-7371의 방법으로 제조하였다.
중간체 아민 및 아닐린의 일반적인 제조
고리(cyclic), 비고리(acyclic) 및 벤질아민을 R.O. Hutchins와 M. K. Hutchins의 Comprehensive Organic Synthesis; B.M. Trost, Ed.; Pergamon Press: Oxford, 1991; Vol 8, p. 65; 혹은 J.W. Huffman의 Comprehensive Organic Synthesis; B.M. Trost, Ed.; Pergamon Press: Oxford, 1991; Vol 8, p. 124에 기술되어 있는 바에 따라 금속 수소화물을 사용하거나 용해 금속 반응으로 상응하는 옥심을 환원시켜 합성하였다. 또한, 이들 아민은 R. Carlson, T. Lejon, T. Lunstedt와 E. LeClouerec, Acta Chem. Scand. 1993, 47, 1046에 예시되어 있는 로이카르트 반응(Leuckart Reaction)에 따라 필수적인 케톤과 알데히드로 부터 직접 제조할 수 있다. 아닐린은 일반적으로 촉매로 목탄에 담지된 Pd 혹은 목탄에 담지된 황화 팔라듐을 사용하여 상응하는 니트로방향족을 촉매 환원하여 제조하였다. 이와 같은 방법은 예를들어, R.L. Augustine, Catalytic Hydrogenation, Marcel Decker, Inc., New York, 1965에 개시되어 있다.
9-원자 디락톤 고리 시스템인 아민 49는 m. Shimano, N. Kamei, T. Shibata, k. Inoguchi, N. Itoh, Tl. Ikari 및 H. Senda, Tetrahedron, 1998, 54, 12745의 방법 혼은 이러한 방법들의 변형으로 제조하였다. 이와 같은 변형은 방법 6에 나타내었다. 따라서, 26(상기 참조번호)은 리튬 보로하이드라이드로 환원되며 결과물인 일차 알코올은 트리이소프로필실란(TIPS)을 말단봉쇄하여 27을 얻었다. 27의 유리 히드록시기는 1-브로모-2-메틸-2-프로펜과 반응 후 이중결합이 촉매환원되어 28 얻는다. para-메톡시벤질(PMB) 차단기(blocking group)를 선택적으로 제거한 후, N-t-BOC-O-벤질-L-세린으로 축합하여 29를 얻었다. TIPS기를 제거한 후, 결과물인 히드록시기를 산화하여 30을 얻엇다. 이 물질(30)을 상기 참고문헌에 기술되어 있는 방법으로 후속적으로 아민 31로 전환하였다.
Figure 112002001376227-pct00022


Figure 112002001376227-pct00023

마찬가지 방법으로, 외향고리(exocyclic) 에스테르 작용기가 부족한 아미노디락톤 38과 48의 합성을 각각 방법 7과 8에 도시하였다.
Figure 112002001376227-pct00024

Figure 112002001376227-pct00025

27의 제조(방법 6참조)
7.5㎖ 무수 THF에 용해된 리튬 보로하이드라이드 용액(THF중에서 2.0M, 7.5㎖, 15 mmol)에 0.1㎖ 트리메틸 보레이트를 첨가하였다. 이 혼합물을 질소분위기하에서 -30℃로 냉각하였다. 이 용액에 10㎖ THF에 용해된 화합물 26(4.58g, 10mmol)의 용액을 10분걸쳐 적가하였다. 이 용액을 -30℃에서 1시간동안 그 후, 0℃에서 5시간동안 교반하였다. 포화 암모늄 클로라이드 용액(10㎖)을 적가하고, 혼합물을 10분간 교반하고 상을 분리하였다. 수성상을 EtOAc(2x25㎖)로 추출하고 합한 유기상을 포화 염수로 세척하고, 소디움 술페이트상에서 건조하고 건조시키기위해 증발시켰다. 조질의 생성물을 크로마토크래피하여 백색 고형분 2.1g을 얻었다. 헥산-EtOAc로 재결정한 샘플은 미세한 백색 침상이었으며, m.p. 91-93℃, [α]D 25= + 31.9°(C=1.04, CHCl3)였다. 이 디올(2.04g, 6.22mmol)을 4㎖ 무수(dry) DMF에 용해시켰으며 이미다졸(680mg, 10mmol)을 첨가하였다. 용액을 아이스-배스에서 냉각한 후, 트리이소프로필클로로실란(1.39㎖, 6.5mmol)을 2분에 걸쳐 첨가하였다.
혼합물을 실온에서 4시간동안 교반한 다음, 얼음-물에 붓고, 헥산과 혼합된 20% 에테르(3x5㎖)로 추출하였다. 합한 유기상을 염수로 세척하고, 건조 및 같은 용매 20㎖로 세척된 짧은 실리카 겔 플러그를 통해 여과하였다. 용매를 증발시켜 백색에 가까운(pale) 점성 오일로 화합물 27 2.77g을 얻었으며, 이는 1H-NMR에 의하면 매우 순수한 것이었다.
28의 제조(방법 6 참조)
소디움 하이드라이드(60% 오일 분산물, 400mg, 10mmol)을 50㎖ 플라스크에 장입하고 5㎖ 무수 DMF에 용해된 화합물 27(2.53g, 5.19mmol)을 15분에 걸쳐 적가함에 따라 서스펜션을 교반하였다. 반응을 15분간 교반한 다음 10℃이하로 냉각하고 1-브로모-2-메틸-2-프로펜(1㎖, 10mmol)을 5분에 걸쳐 첨가한 다음, 실온에서 2시간동안 교반하였다. 혼합물을 헥산/얼음-냉 암모늄 클로라이드 용액에 분배하고, 27제조와 같이 준비하였으며, 조질의 생상물을 크로마토그래피하여 무색 오일 2.20g을 얻었으며, 이는 1H-NMR 및 원소 분석결과 순수한 것이다. 이 물질(2.38g, 4.4mmol)을 질소분위기하의 100㎖ 모톤(Morton) 플라스크에서 EtOAc 50㎖에 용해시켰다. 카본에 담지된 5% Pt 150mg을 첨가하고 혼합물을 수소 1기압하에서 20분간 교반하였다. 이 촉매를 여과하여 제거하고 용매를 증발시켜 무색오일로 28 2.35g얻었으며, 이는 1H-NMR결과 순수한 것이었다.
29의 제조(방법 6 참조)
기계적 교반기가 장착된 50㎖ 플라스크에 40㎖ CH2Cl2와 2㎖ 물에 용해된 에테르 28 용액(2.0g, 3.68mmol)을 장입하였다. 2,3-디클로로-5,6-디시아노-1,4-벤조퀴논(DDQ)(920mg, 4.05mmol)을 일분획으로 첨가하면서, 이를 질소분위기하에서 교반하고 아이스 배스에서 <10℃로 냉각하였다. 아이스-배스를 제거하고, 혼합물을 실온에서 1시간동안 교반하였다. 금 서스펜션을 흡입여과하고, 케이크(cake)를 2 x 10㎖ CH2Cl2로 세척하고 여과액을 0.2N NaOH(2 x 25㎖)로 추출하였다. 유기 층을 건조하고 농축하여 흰색에 가까운 오일을 얻었으며, 이를 크로마토그래피로 정제하여 무색 오일 1.53g을 얻었으며, 원소 분석결과 이는 순수한(pure) 것이었다. 이를 25㎖ CH2Cl2에 용해시키고 DMAP(854mg, 7mmol), EDCI(1.34g, 7mmol) 및 N-t-BOC- O-벤질-L-세린(2.07g, 7mmol)을 순차적으로 첨가하면서 질소분위기하에서 아이스-배스에서 교반하였다. 냉각배스를 제거하고, 혼합물을 실온에서 2시간동안 교반하였다. 그 후, 아이스-냉각된 0.5N HCl 50㎖과 CH2Cl2 20㎖의 급교반되는 혼합물에 붓고 10분간 교반하였다. 상을 분리하고 수성 상을 CH2Cl2 1 x 10㎖으로 추출한 다음; 합한 유기상을 건조, 농축하여 옅은색의 오일을 얻었다. 이를 크로마토그래피하여 거의 무색인 중유로 29 2.30g을 얻었다. TLC 및 1H-NMR는 매우 순수한 물질임을 나타낸다.
30의 제조(방법 6참조)
실릴 에테르 29를 7㎖ 무수 피리딘에 용해하고 아이스 배스에서 냉각하였다. HF-피리딘 착물(4.5㎖)를 1분에 걸쳐 첨가하고 용액을 실온에서 17시간동안 교반한 다음 전환이 정지되는 50℃에서 4.5시간동안 가열하였다. 혼합물을 얼음-물에 붓고 에테르 3 x 50㎖으로 추출하였다. 합한 유기 상을 물, 1N HCl로 세척한 후, 건조하고 농축하여 오일을 얻었다. 이를 크로마토그래피하여 점성 오일로서 원하는 알코올 1.23g뿐만아니라 29 365mg을 회수하였다. 상기 알코올(1.41g, 2.10 mmol)을 10㎖ DMF에 용해시키고, 피리디늄 디크로메이트(3.76g, 10mmol)을 첨가하였다. 21시 간 후, 혼합물을 얼음-물에 붓고, 1N HCl을 pH가 3미만이 될때까지 첨가하였으며, 그 후 고형물 소디움 비술파이트를 오랙지색이 변할때까지 첨가하였다. 수성 상은 에테르(3x50㎖)으로 추출하였다. 유기상을 합하고, 세척학, 건조(Na2SO4)하고, 농축하였다. 잔류물을 크로마토그래피하여 점성 오일 811mg을 얻었으며 이는 반응을 계속수행하기에 충분할 정도로 순수한 것이었다. 산을 30㎖ EtOAc에 용해시키고 Pearlman 촉매 200mg을 첨가하였다. 슬러리를 50psi 수소압력하에서 4시간동안 흔들고, 새 촉매 300mg을 첨가하고 2시간 동안 계속 흔들었다. 그 후, 여과하고 용매를 증발하여 계속 사용하기에 충분할 정도로 순수한 점성 고무로 30을 얻었다.
트레오닌디티안 33 (방법 7 참조)
펜틸디티안 32(Hirai, Heterocyles 1990, 30(2, Spec. Issue), 1101)(200mg, 0.97mmol)을 CH2Cl2 10㎖에 실온에서 용해시켰다. N-(Z)-O-t-부틸-(L)-트레오닌(900mg, 2.91mmol), 그 후, DMAP(36mg, 0.29mmol)을 첨가하였다. 이 혼합물에 디시클로헥실 카르보이미드(DCC)(CH2Cl2에 용해된 1M, 2.9㎖, 2.9mmol)을 적가한 후, 실온에서 밤새 교반하였다. 반응을 에테르(Et2O) 50㎖로 희석하고, 여과, 농축하였다. 결과 잔류물을 작은 (4") 실리카 겔 중력 컬럼에 적용하고 4:1 헥산/EtOAc를 용출시켰다. 실리카 켈 컬럼에서 수집된 용리액을 용리액으로 4:1 헥산/EtOAc를 사용한 방사(radial) 크로마토그래피로 여과하였다. 생산물 분획을 증발시키고 일정한 중량이 되도록 고진공하에 유지시켜 디티안 33과 동 일한 것으로 확인된 거의 무색인 중류 500mg를 얻었다.(TLC Rf=0.32, 1H-NMR).
트레오닌카르복시산 35 (방법 7 참조)
트레오닌디티안 33(500mg, 1.01 mmol)을 9:1 CH3CN/H2O 혼합물에 10㎖에 실온에서 용해시켰다. [비스(트리플루오로아세톡시)요오드]벤젠(650mg, 1.50 mmol)을 첨가하고 10분간 교반하였다. 포화 NaHCO3를 첨가(20㎖)하고 용액을 Et2O(3x20㎖)로 추출하였다. 에테르층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 알데히드 34는 다음 반응에 직접사용하기에 충분한 정도로 순수하였다.(TLC, GC/MS). 조질의 알데히드를 CrO3 반응물(CrO3 1g, CH3CO2H 30㎖ 그리고 피리딘 1㎖로 부터 제조됨) 15㎖(4.95mmol)에 취하고 실온에서 밤새 교반하였다. 용액을 30㎖ 냉수로 희석하고 Et2O(3x30㎖)으로 추출하였다. 유기층을 염수 30㎖로 세척하고, MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물은 용리액으로 2% CH3CO2H를 함유하는 2:1 헵탄/EtOAc를 사용한 방사 크로마토그래피로 정제하였다.
트레오닌히드록시카르복시산 36 (방법 7 참조)
트레오닌카르복시산 35(137mg, 0.324mmol)을 트리플루오로아세트산 3㎖에서 10분간 교반하고 혼합물을 회전증발기에서 농축하였다. 잔류물을 고진공(0.05mm)하에 밤새 건조시켰다. 히드록시산 36(119mg)을 다음 단계에 직접 사용하였다.
N -Cbz-트레오닌비스락톤 37 (방법 7 참조)
트레오닌히드록시카르복시산 36(119mg, 0.324mmol)을 1㎖ 벤젠에 용해시키고 Aldrithiol™-2(85mg, 0.39mmol) 그 후, 트리페닐포스핀(0.39 mmole, 101mg)를 첨가하고 반응을 밤새 교반하였다. 조질의 티오에스테르를 CH3CN 15㎖로 희석하였다. 환류 콘덴서가 장착된 별도의 플라스크에 톨루엔에 용해된 1.0M AgClO4 1.2㎖(1.16mmol) 그 후, CH3CN 32㎖을 장입하였다. 이 용액을 1초당 1-10방울의 환류속도로 가열하였다.(오일 배스 ∼160℃).
그 후, 티오에스테르 용액을 2시간에 걸쳐 콘덴서 상부에 부가 깔대기를 통해 적가하였다. 혼합물을 부가적으로 30분간 환류하고, 냉각 및 농축하였다. 잔류물을 0.5M KCN 10㎖으로 희석하고 벤젠(3x20㎖)으로 추출하였다. 벤젠층을 합하고 물 20㎖로 세척하고 MgSO4상에서 건조하고, 여과 및 농축하였다. 그 후, 잔류물을 2:1 펜탄/Et2O 10㎖에 취하고 여과하였다. 고형물을 2:1 펜탄/Et2O로 세척하고 합한 유기 용액을 농축하였다. 방사 크로마토그래피(용리액 2:1 펜탄/Et2O)하여 TLC(Rf=0.22) 및 1H-NMR 결과 매우 순수한 비스락톤 37 34mg를 얻었다.
3-아미노-4,7,9-트리메틸비스락톤(38)(방법 7 참조)
N-Cbz-트레오닌비스락톤 37 (34mg, 0.097mmol)을 500㎖ 파르병(Parr bottle) 에서 메탄올 10㎖에 용해시켜고 질소 퍼지하였다. 이 용액에 Pd(검은색) 10mg를 첨가하고 혼합물을 수소압력 45psi에서 1시간 동안 흔들었다. 촉매를 여과하고 용매를 증발시켜 유리 아민 38(20mg, 100%)을 얻었다. 이 아민은 충분히 순수한 것으로(1H-NMR), 후속적으로 정제하지 않고 그대로 사용하였다.
3-벤질-4-히드록시-5-메틸부티로락톡 (40) (방법 8참조)
펜타노산 39(Shimano등, Tetrahedron Lett. 1998, 39, 4363)(1.8g, 5.23mmol)을 500㎖ 파르병에서 메탄올 30㎖에 용해하고 질소 스퍼지하였다. 이 용액에 카본에 담지된 10% Pd 150mg 그 다음에 진한 HCl 6방울을 첨가하였다. 혼합물을 수소압력 50psi에서 3시간 동안 흔들었다. 촉매를 규조토로 여과하고 용액을 농축하였다. 잔류물을 30㎖ CH2Cl2에 취하고 물(1x10㎖)로 세척하였다. 용액을 MgSO4상에서 건조하고, 여과 및 농축하였다. 1H-NMR 및 GC/MS는 부티로락톤 40과 4-메틸아니솔의 4:1 비(v/v)임을 나타내었다. 이 물질(GG결과 순도 60%)을 다음 단계에 직접 사용하였다.
3-벤질-5-메틸부테놀라이드 41 (방법 8참조)
3-벤질-4-히드록시-5-메틸부티로락톡 40 (순도 60%, 1.7g, 8.25mmol)을 CH2Cl2 25㎖에 용해시키고 0℃로 냉각하였다. 트리에틸아민(2.3㎖, 16.5mmol), DMAP(500mg, 4.13mmol) 및 p-톨루엔술포닐 클로라이드(9.0mmol, 1.7g)을 순차적으 로 첨가하면서 상기 용액을 교반하였다. 반응을 실온으로 가온하고 30시간동안 교반하였다. 반응을 Et2O 50 ㎖으로 희석하고 5% NaHCO3(25㎖)로 세척하였다. 용액을 MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물을 용리액으로 2:1 펜탄/Et2O를 사용한 방사 크로마토그래피로 정제하여 부테놀라이드(butenolide) 41(GC 및 1H-NMR에 의한 순도 >95%) 677mg을 수득하였다.
cis-3-벤질-5-메틸부티로락톤 42 (방법 8 참조)
3-벤질-5-메틸부테놀라이드 41 (677mg, 3.60mmol)을 500m 파르병에서 EtOAc 30㎖에 용해하고 질소 스퍼지하였다. 이 용액에 10% Pd/C 300mg을 첨가하고 혼합물을 수소압력 45psi에서 밤새 흔들었다. 결정을 여과하고 용매를 증발시켰다. 잔류물을 용리액으로 2:1 펜탄/Et2O를 사용한 방사 크로마토그래피로 정제하여 무색 오일 (CDCl3에서의 1H-NMR 및 GC 에 의한 순도 >71%) 484mg을 수득하였다.
2-벤질페닐디티안 43 (방법 8 참조)
cis-3-벤질-5-메틸부티로락톤 42(550mg, 2.89mmol)을 Et2O 15㎖에 용해시키고 -78℃로 냉각하였다. 디이소부틸알루미늄 하이드라이드(헥산에 1.0M로 용해, 3.47mmol, 3.5㎖)을 적가하고 용액을 -78℃에서 2시간동안 교반하였다. 메탄올(3.3㎖)을 15분에 걸쳐 첨가하고 반응을 -78℃에서 부가적으로 30분간 교반하였다. 소디움 포타슘 타이트레이트(물 5㎖에 1.65g용해)를 첨가하고 반응을 실온으로 가온 하고 밤새 교반하였다. 층을 분리하고 수성 층을 Et2O(2x10㎖)으로 추출하였다. 합한 에테르층을 포화 NaHCO3 및 염수(1x10㎖)으로 세척하였다. 용액을 MgSO4상에서 건조하고, 여과 및 농축하였다. 조질의 락톨(555mg)을 CH2Cl2 5㎖에 용해하고 0℃로 냉각하였다. 1,3-프로판디티올(3.46mmol, 0.35㎖) 그 후, 보론 트리플루오라이드 에테레이트 0.37㎖ (2.89mmol)을 첨가하였다. 반응을 실온으로 가온하고 밤새 교반하였다. 포화 NaHCO3를 첨가(20㎖)하고 혼합물을 1시간동안 교반하였다. 층을 분리하고 수성층을 CH2Cl2(2x10㎖)으로 추출하였다. 합한 유기층을 염수(1x20㎖)로 세척하고, MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물을 용리액으로 3:1 헥산/EtOAc를 사용한 방사 크로마토그래피로 정제하여 디티안 43인 황색 오일 (1H-NMR 및 GC 에 의한 순수한 물질로 수율 69%) 560mg을 수득하였다.
세린디티안 44 (방법 8 참조)
2-벤질페닐디티안 43 (560mg, 1.99mmol)을 DMF 5㎖에 용해시키고 0℃로 냉각하였다. DMAP(0.29mmol, 36mg)를 첨가한 후, EDCI(0.57g, 2.98mmol)을 첨가하였다. 그 후, N-t-BOC-O-벤질-(L)-세린(760mg, 2.58mmol)을 첨가하고 실온으로 가온하고 실온에서 밤새 교반하였다. 반응을 얼음 냉각된 0.5N HCl 10㎖과 20% 에테르/헥산 20 ㎖으로된 급교반되는 혼합물에 붓고 10분간 교반하였다. 층을 분리하고 수성 층을 20% 에테르/헥산(1x10㎖)으로 추출하였다. 합한 유기층을 0.5N HCl(20㎖) 및 염수 (2 x 20㎖)로 세척하였다. 용액을 MgSO4상에서 건조하고, 여과 및 농축하였다. 결과 잔류물을 일정한 중량이 되도록 고진공하에 유지하여 디티안 44인 거의 무색의 중류 1.06g을 수득하였다.(TLC Rf=0.3, 3:1 헥산/EtOAc).
N -t-BOC- O -벤질세린카르복시산 45 (방법 8 참조)
세린디티안 44(1.06g, 1.90mmol)을 실온에서 9:1 CH3CN/H2O혼합물에 용해하였다. [비스(트리플루오로에톡시)요오드]벤젠(1.2g, 2.82mmol)을 첨가하고 반응을 10분간 교반하였다. 포화 NaHCO3를 첨가(40㎖)하고 용액을 Et2O(3x40㎖)으로 추출하였다. 에테르 층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 알데히드는 다음 반응에 직접 사용하기에 충분하도록 순수하였다.(TLC, GC/MS, 1H-NMR). 조질의 알데히드를 CrO3 시약(CrO3 1g, CH3CO2H 30㎖ 그리고 피리딘 1㎖로 부터 제조됨) 30㎖(9.70mmol)에 취하고 실온에서 밤새 교반하였다. 용액을 36㎖ 냉수로 희석하고 Et2O(3x60㎖)으로 추출하였다. 유기층을 염수 2x60㎖로 세척하고, MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물은 2:1 헵탄/EtOAc 100㎖에 취하고 증발시켰다. 잔류물은 용리액으로 2% CH3CO2H를 함유하는 1.5:1 헵탄/EtOAc를 사용한 방사 크로마토그래피로 정제하였다. TLC 및 1H-NMR 결과 CDCl3에서 두개의 t-BOC 회전이성질체를 갖으나 아세톤-d6에서는 없는 상당히 순수한 카르복시산(536mg)인 것으로 나타났다.
N -t-BOC-세린비스락톤 47 (방법 8 참조)
N-t-BOC-O-벤질세린카르복시산 45(536mg, 1.11mmol)를 500㎖ 파르병에서 EtOAc 15㎖에 용해하고 질소 스퍼지하였다. 이 용액에 10% Pd/C 390mg을 첨가하고 혼합물을 수소압력 50psi에서 17시간동안 흔들었다. 결정을 규조토를 사용하여 여과하고 용매를 증발시켜 히드록시산 46(440mg)를 얻었다. 조질의 히드록시산 46을 벤젠 23㎖에 용해시키고 트리페닐포스핀(0.34g, 1.28mmol)을 실온에서 첨가하였다. 디이소프로필아조디카르복시레이트(DIAD, 0.25㎖, 1.28mmol)을 적가하고 반응을 실온에서 밤새 교반하였다. 용액을 농축하고 결과 잔류물을 작은(4 in.) 중력 컬럼에 취하고 2:1 헥산/EtOAc로 용출하였다. 실리카 켈 컬럼에서 용출된 용리액을 용리액으로 2:1 펜탄/에테르를 사용한 방사 크로마토그래피로 더욱 정제하였다. 생성물 분획을 증발시켜 N-t-BOC-세린비스락톤 47인 황색 오일 132mg(TLC Rf=0.32, 1H-NMR에 결과 상당히 순수함.)을 얻었다.
3-아미노-7-벤질-9-메틸비스락톤 48 (방법 8 참조)
N-t-BOC-세린비스락톤 47 (132mg, 0.35mmol)를 트리플루오로아세트산 3㎖에서 30분간 교반하였으며 반응을 회전 증발기에서 농축하였다. 잔류물을 밤새 고진공(0.05㎜)하에서 건조하였다. 1H-NMR 결과 아민의 트리플루오로아세트산 염 48(0.35mmol)은 매우 순수한 것으로 후속적인 정제 없이 사용하였다.
3-(3-클로로페녹시)아닐린
Figure 112002001376227-pct00026

DMSO(100㎖)에 교반용해된 포타슘 t-부톡사이드(12.3g) 용액에 3-클로로페놀(12.86g)을 동시에 첨가하였다. 결과용액을 실온에서 5분간 교반한 후, 3-플루오로니트로벤젠(12.70g)을 동시에 첨가하였다. 결과물인 진한 혼합물을 120℃에서 12시간동안 가열하고, 실온으로 냉각한 후, 물(700㎖)에 부었다. 결과 혼합물을 에테르(2 x200㎖)으로 추출하였다. 유기분획을 2N NaOH(100㎖)으로 세척한 후, 물(100㎖)로 세척하였다. 건조 후(MgSO4), 용매를 증발하고 결과물인 진한 오일을 증류하여 0.05mm에서 b.p. 135-140℃인 황색 오일로 3-(3-클로로페녹시)니트로벤젠을 얻었다.
EtOAc(150㎖)에 용해된 3-(3-클로로페녹시)니트로벤젠(1.4g)과 황화 탄소에 담지된 5% Pt(1.25g)으로된 혼합물을 파르 교반기에서 수소분위기로 처리하였다.(초기 압력 = 50psi) 4시간 경과후, 혼합물을 탈기(수소를 질소로 대체)하고, 건조(MgSO4) 및 여과(#50Whatman 페이퍼)하였다. 용매를 증발시켜 GC에 의해 순도 >96%인 담황색 오일(12g) 을 얻었다. 1H-NMR (CDCl3) 및 GC/MS(m/e=219, 221)은 3-(3-클로로페녹시)아닐린과 일치하였다.
3-(4-트리플루오로메틸페녹시)아닐린
Figure 112002001376227-pct00027

DMSO(50㎖)에 교반용해된 3-히드록시아닐린(6.55g)과 플루오로벤조트리플루오라이드(9.85g) 용액에 포타슘 tert-부톡사이드(7.86g)을 첨가하였다. 결과물인 진한 용액을 95℃에서 4시간동안 가열하고, 실온으로 냉각한 후, 물(600㎖)에 부었다. 혼합물을 에테르(3 x 125㎖)로 추출하였다. 유기상을 2N 소디움히드록사이드(2 x 75㎖) 그 후, 물(100㎖)로 세척하고, 건조(MgSO4)하고 용매를 증발하여 진한 오일을 얻었다. 이 오일을 증류하여 0.15mm에서 b.p. 110-112℃인 무색 오일로 타이틀 아닐린(8.7g)을 얻었다.
4-(4-트리플루오로메틸페닐티오)아닐린
Figure 112002001376227-pct00028

아이스 배스에서 냉각된 DMSO(60㎖)에 교반용해된 4-플루오로벤조트리플루오라이드(9.85g)와 4-아미노티올페놀(7.51g) 용액에 포타슘 t-부톡사이드(6.73g)을 일분획으로 첨가하였다. 결과 혼합물을 0℃에서 10분간 교반한 다음, 60℃에서 밤 새 교반하였다. 냉각 후, 물(600㎖)에 붓고 결과 혼합물을 에테르(2 x 200㎖)로 추출하였다. 유기상을 2N 소디움히드록사이드(50㎖) 그 후, 물(50㎖)로 세척하였다. 건조(MgSO4) 후, 용매를 증발하여 갈색 오일을 얻었다. 헥산으로 재결정하여 m.p. 97-99℃인 황색 오일로 타이틀 아닐린을 얻었다.
4-(3-트리플루오로메틸벤질)아닐린
Figure 112002001376227-pct00029

무수 THF(75㎖)에 용해된 4-브로모-N,N-비스-(트리메틸실릴)아닐린(9.48g) 용액을 무수 THF(10㎖)에서 교반된 마그네슘 (1.09g)혼합물에 첨가하여 그리니야드 시약을 제조하였다. 두번째 촉매 용액인 Li2CuCl4(0.33g)은 무수 THF(25㎖)에 CuCl2(0.20g) 및 LiCl(0.13g)을 첨가하고 균일한 용액이 될때까지 교반하여 제조하였다. 그 후 이 촉매 용액을 무수 THF(75㎖)에 용해된 3-트리플루오로메틸벤질 브로마이드(7.17g)용액에 첨가하였다. 상기 오렌지-적색 용액을 아이스 배스(N2분위기)에서 냉각하고 상기 그리니야드 용액(미리 아이스 배스에서 냉각)을 이로 캐뉼라(cannula)를 통해 빨리 옮겼다. 0℃에서 15분간 교반한 후, 혼합물을 실온에서 밤새 교반하였다. 반응 혼합물을 포화 NH4Cl용액(25㎖)을 첨가하여 급냉하였다. 유 기상을 분리하고, 건조(MgSO4)하고, 용매를 증발시켜 진한 오일(11g)을 얻었다.
이 오일에 4N HCl(50 ㎖)을 첨가하고, 결과 혼합물을 실온에서 3시간동안 교반하였다. 혼합물에 고형 소디움 카보네이트를 조심스럽게 첨가하여 염기성이 되도록 한후, 에테르(3x100㎖)로 추출하였다. 유기상을 건조(MgSO4)하고, 용매를 증발시켰다. EtOAc(100㎖)를 첨가하고 용액을 불용성 물질로 부터 기울여서 따루었다. 다시 용매를 증발시키고, 잔류물을 크로마토그래피(실리카 겔, 3:1 헥산/EtOAc)하였다. 두번째 용리액을 수집하여 빨리 어두워지는 오렌지색 오일을 얻었다. NMR(CDCl3) 및 GC/MS(m/e=251)은 타이틀 화합물과 일치하였다. 이 물질을 HCl염으로 전환하여 갈색 고형물을 얻었다.
4-(3-트리플루오로메틸벤조일)아닐린
Figure 112002001376227-pct00030

무수 THF(100㎖)에 교반용해된 4-브로모-N,N-비스-(트리메틸실릴)아닐린(9.24g) 용액을 아르곤 분위기하에서 -78℃로 냉각하였다. 이에 헥산(10㎖)에 용해된 n-부틸리튬 2.5M 용액을 서서히 첨가하였다. 첨가완료 후, 반응혼합물을 -78℃에서 10분간 교반한 후, 무수 THF(25㎖) 에 용해된 N-메틸-N-메톡시-3-트리플루오로메틸벤즈아미드(6.8g) 용액을 적가하였다. 첨가완료 후, 혼합물을 -78℃에서 1시간동안 교반한 후, 냉각 배스에서 제거하고 반응온도를 10℃로 가온하였다. 반응을 포화 NH4Cl용액(50 ㎖)을 첨가한 후 물(10㎖)을 첨가하여 급냉하였다. 유기상을 분리하고, 건조(MgSO4)하고, 용매를 증발시켜 황색 액체(12g)을 얻었다. 이를 에테르(100 ㎖)에 취하고 4N HCl(100㎖)을 첨가하였다. 결과혼합물을 30분간 실온에서 교반하였으며, 이 때 고형물이 분리되었다. 이 고형물을 여과하고 몇 부의 에테르로 세척한 다음 교반되고 있는 포화 NaHCO3용액(100㎖)에 조심스럽게 첨가하였다. 결과 혼합물을 에테르(2 x 200㎖)로 추출하고, 유기상을 건조(MgSO4)하고, 용매를 증발하여 황색-백색 고형물을 얻었다. 메탄올/물로 재결정하여 m.p. 130-131℃인 백색 고형물을 얻었다. 스펙트럼 데이타는 타이틀 화합물과 일치하였다.
에틸 2-아미노-5-(4-트리플루오로메틸페녹시)벤조에이트
Figure 112002001376227-pct00031
DMSO(75㎖)에 기계적으로 교반용해된 t-부톡사이드(15.71g) 용액에 5-히드록시안트라닐산(10.2g)을 일분획으로 첨가하였다. 혼합물을 실온에서 아르곤 분위기하에서 10분간 교반한 후, 4-플루오로벤조트리플루오라이드(11.16g)을 첨가하고 결 과 혼합물을 밤새 교반하고 75-80℃로 가열하였다. 냉각 후, 혼합물을 물(600㎖)에 붓고, pH를 약 2.5 로 조절하였다. 결과 고형물을 여과하고 몇부의 물로 세척한 후, 메탄올/물(석탄)으로 재결정하여 m.p. 165-167℃의 황갈색 고형물(13.5g)을 얻었다. 이 고형물을 무정형 에탄올(250 ㎖)에 취하고 진한 황산(15㎖)을 조심스럽게 첨가하였다. 결과 혼합물을 환류시키면서 24시간동안 가열한 후 대부분의 에탄올이 휘발되었다. 잔류물을 조심스럽게 얼음 물(600㎖)에 첨가하고, 50% NaOH 용액을 서서히 첨가하여 결과 혼합물을 염기성으로 한 후, 에테르(2x150㎖)으로 추출하였다. 유기상을 물(100㎖)로 세척한 후, 포화 NaCl 용액(50㎖)로 세척하였다. 건조(MgSO4)한 후, 용매를 휘발시켜 약 98% GC순도의 황색 오일을 얻었다. GC/MS는 타이틀 화합물과 일치하는 이온 모체를 나타내었다.
2-아미노벤조노르보르넨(2-Aminobenzonorbornane)
Figure 112002001376227-pct00032
아르곤 분위기하에서 0℃로 냉각된 무수 THF(8㎖)에 교반용해된 벤조노르보르넨(2.84g) 용액에 THF(6.7㎖)에 용해된 보란 1M 용액을 신속하게 첨가하였다. 용액을 0℃에서 10분간 교반한 후, 실온에서 90분간 교반하였다. 반응 혼합물을 다시 0℃로 냉각하고 히드록시아민-O-술폰산(1.58g)을 일분획으로 첨가하였다. 아이 스 배스를 제거하고 반응혼합물을 실온에서 2시간동안 교반하였다. 1N HCl(25㎖)과 에테르(20㎖)을 첨가하고 10분간 계속 교반하였다. 상을 분리하고 유기상을 버렸다. 수성상에 50% NaOH 용액을 서서히 첨가하여 염기성이 되도록한 후, 에테르(3x30㎖)으로 추출하였다. 유기상을 건조(MgSO4)한 후, 용매를 휘발시켜 GC로 판단시 약 98% 순도인 황색 오일(1.35g)을 얻었다. NMR(CDCl3) 및 GC/MS(m/e=159)는 타이틀 화합물과 일치하였다.
Figure 112002001376227-pct00033

(3-트리플루오로메틸벤질옥시메틸)노르보닐아민 53 혼합물의 제조
상기 혼합물의 제조에 대하여 방법 9에 나타내었다. 이와 같이, DMSO(40㎖)에서 엑소(exo-) 및 엔도(endo-)노르보르넨카르복시산 49(∼1:4 비)(7.0g), 2-요오드프로판(12.8g) 및 포타슘 카보네이트(10.4g)의 혼합물을 밤새 교반하고 55℃로 가열하였다. 냉각 후, 혼합물을 물(125㎖)로 희석하고 그 후 펜탄으로 추출하였다. 유기상을 건조(MgSO4)하고 용매를 휘발시켜 무색 오일(8.2g)을 얻었다. 이 오일을 2-프로판올(100㎖)에 용해된 소디움 2-프로폭사이드(3.6g) 용액을 첨가하고 결과혼합물을 환류하면서 16시간동안 가열하였다. 2-프로판올을 제거하고, 물(200㎖)로 희석하고 펜탄으로 추출하여 엑소(exo)대 엔도(endo)의 52:48 혼합물로 노르보르넨 이소프로필 에테르 50을 얻었다. 크로마토그래피(실리카 겔, 95:5 헥산/EtOAc)하여 이를 순수한 이성질체로 분리하였다. 50의 엑소 이성질체(4.0g)를 에테르(50㎖)에 용해시키고, 0℃로 냉각하고 에테르(14㎖)에 용해된 리튬 알루미늄 하이드라이드 1M 용액을 서서히 첨가하였다. 첨가완료 후, 혼합물을 환류시키면서 1시간동안 가열하였다. 냉각 후, 물(0.53㎖), 15% NaOH 용액(0.53㎖) 그 후 물(1.59㎖)을 순차적으로 첨가하여 반응을 급냉하였다. 결과 혼합물을 건조(MgSO4), 여과 및 용매를 휘발시켜 무색 액체로 엑소-알코올 51(2.7g)을 얻었다. GC/MS(m/e=124)는 할당된 구조와 동일하였다.
무수 THF(25㎖)에서 교반된 포타슘 하이드라이드(1.0g) 혼합물에 THF(10㎖)에서 용해된 51(2.7g) 용액을 조심스럽게 첨가하였다. 첨가 완료후, 혼합물을 실온에서 30분간 교반한 후, 3-트리플루오로메틸벤질브로마이드(5.98g) 을 동시에 첨가하였다.(발열반응). 반응을 환류시키면서 2시간동안 가열하고, 냉각한 후, 물(150㎖) 에 부었다. 에테르로 추출(2x75㎖)하고, 건조(MgSO4)하고, 용매를 휘발하여 황생오일을 얻었으며, 이를 크로마토그래피(실리카 겔, 97:3 헥산/아세톤)로 정제하여 무색오일의 순수한 52(5.2g)을 얻었다. NMR(CDCl3) 및 GC/MS(m/e=282)는 52의 구조와 일치하였다.
아민의 부분입체이성질체 혼합물 53으로의 52의 전환은 상기한 보란/히드록시아민-O-술폰산 방법으로 행하였다. (수율 20%)
3-(3-피리딜)-1-프로판아민
Figure 112002001376227-pct00034

상기 아민은 B. Jursic 등의, Synthesis, 1988, (11), 868의 방법으로 3-(3-피리딜)-1-프로판올을 상응하는 염화물로 전환한 후, 염화물을 D. J. Dumas등의 J. Org. Chem., 1988, 53, 4650의 방법으로 아민으로 바꾸어서 얻었다.
3-[[5-(트리플루오로메틸)-2-피리딜]옥시]-1-프로판아민
Figure 112002001376227-pct00035

질소 분위기하에서 교반하면서 2-플루오로-5-트리플루오로메틸피리딘(1.831g, 11mmol)을 무수 THF(15㎖)에 용해시키고 아이스 배스에서 0℃로 냉각하였다. 이에 30분에 걸쳐 무수 THF(15㎖) 에 용해된 3-아미노-1-프로판올(0.76㎖, 10mmol) 및 THF(10㎖, 10mmol)에 용해된 1M 포 타슘 tert-부톡하이드를 적가하였다. 밤새 아이스 배스에서 황색 용액을 교반하여 실온으로 가온하였다. 반응혼합물을 물(75㎖)에 붓고 에테르(2x50㎖)로 추출하였다. 유기상을 염수(50㎖)로 세척하고, 건조(Na2SO4)하고, 여과 및 휘발시켜 황색 액체를 얻었다. 이는 NMR 및 MS에 의하면 거의 순수한 것으로 후속적인 정제없이 사용하였다.
(+) - TRANS -1-히드록시-2-아미노시클로펜탄 하이드로브로마이드
Figure 112002001376227-pct00036

(+)-TRANS-1-벤질옥시-2-아미노시클로펜탄 하이드로브로마이드(8.2g, 42.8mmol)을 40% HBr(60㎖)으로 처리하였다. 3일간 교반한 후, 용액을 진공에서 농축하여 오렌지색 고형물로 하이드로브로마이드 염 7.09g(91%)을 얻었으며, 이는 1H-NMR(DMSO-d6)결과 순수한 것이었다.
2,3-디하이드로-2,2-디메틸-1H-인덴-1-아민
Figure 112002001376227-pct00037
상기 아민은 국제 특허 WO 9927783에 기술되어 있는 방법으로 제조하였다.
Figure 112002001376227-pct00038

10-아미노-엔도-2,5-메타노비시클로[4.4.0]데크(dec)-3-엔(ene) (56)
상기 화합물은 방법 10에 나타낸 바와 같이 제조하였다. 알루미늄 클로라이드(700mg, 5.2mmol)을 톨루엔(200㎖)에 용해된 2-시클로헥센-1-온(2.0g, 20.8mmol) 용액에 첨가하였다. 40분 후에 새로 증류한 시클로펜타디엔(13.7g, 208mmol)을 첨가하고 100℃로 2시간동안 가열하였다. 냉각 후, 혼합물을 Et2O(300㎖)로 희석하고 포화 NaHCO3(2x150㎖) 및 염수(100㎖)로 세척하였다. 합한 유기층을 건조(MgSO4), 여과 및 농축하였다. 잔류물을 용리액으로 50:1 헥산:Et2O를 이용한 플래쉬(flash) 크로마토그래피로 정제하여 2,5-메타노비시클로[4.4.0]데크(dec)-3-엔(en)-10-온(54)의 엔도(1.74g) 및 엑소(943mg)을 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
소디움 아세테이트(1.79g, 21.8mmol)을 메탄올(33㎖)에 용해된 엔도-2,5-메타노비시클로[4.4.1]데크(dec)-3-엔(en)-10-온(54)(1.61g, 9.9mmol) 및 히드록시아민하이드로클로라이드(758mg, 10.9mmol)의 용액에 적가하고 실온에서 밤새 교반하 였다. 반응을 H2O로 급냉하고 에테르(2x50㎖)로 추출하였다. 합한 유기층을 건조(MgSO4), 여과 및 농축하여 풀같은 잔류물로 엔도-2,5-메타노비시클로[4.4.0]데크(dec)-3-엔(en)-10-온 옥심(55)를 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
엔도-2,5-메타노비시클로[4.4.1]데크(dec)-3-엔(en)-10-온 옥심(55)(500mg, 2.79mmol)을 EtOAc(25㎖)에 용해시키고 10% Pd/C(50mg)를 첨가하였다. H2(40psi)에서 3시간 후에, 서스펜션을 Celite?을 사용하여 여과하고 농축하였다. 결과 잔류물을 EtOH(25㎖)에 용해시키고 Raney?-Ni(1.0g)을 장입하였다. 서스펜션을 NH3로 포화시키고 H2로 가압(45psi)하였다. 6시간 후에, 서스펜션을 Celite?을 사용하여 여과하고 EtOAc(100㎖)로 희석하고 포화 NaHCO3(100㎖)로 세척하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 1H-NMR 및 GC/MS 결과 부분입체이성질체의 2:1 혼합물인 타이틀 아민 56(418mg)이었다.
Figure 112002001376227-pct00039
10-아미노-4-(4'-메틸펜트(Methylpent-3'-에닐(enyl))-비시클로[4.4.0]데크-3-엔 (59)
상기 화합물은 방법 11에 나타낸 방법으로 제조하였다. 알루미늄 클로라이드(700mg, 5.2mmol)을 톨루엔(100㎖)에 용해된 2-시클로헥센-1-온(2.0g, 20.8mmol) 용액에 첨가하였다. 40분 후에 미르센(myrcene)(17g, 125mmol)을 첨가하고 100℃로 2시간동안 가열하였다. 냉각 후, 혼합물을 Et2O(300㎖)로 희석하고 포화 NaHCO3(2x150㎖) 및 염수(100㎖)로 세척하였다. 합한 유기층을 MgSO4상에서 건조, 여과 및 농축하였다. 잔류물을 용리액으로 50:1 헥산:Et2O를 이용한 플래쉬(flash) 크로마토그래피로 정제하여 4-(4'-메틸펜트-3'-에닐)-비시클로[4.4.0]데크(dec)-3-엔(en)-10-온(57)(2.55g) 을 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
소디움 아세테이트(1.73g, 21mmol)을 메탄올(32㎖)에 용해된 4-(4'-메틸펜트-3'-에닐)-비시클로[4.4.0]데크(dec)-3-엔(en)-10-온(57)(2.23g, 9.6mmol) 및 히드록시아민 하이드로클로라이드(733mg, 10.5mmol)의 용액에 적가하고 실온에서 밤새 교반하였다. 반응을 H2O로 급냉하고 에테르(2x50㎖)로 추출하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 이에 따라, 풀같은 잔류물로 4-(4'-메틸펜트-3'-에닐)-비시클로[4.4.0]데크(dec)-3-엔(en)-10-온 옥심(58)을 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
4-(4'-메틸펜트-3'-에닐)-비시클로[4.4.0]데크(dec)-3-엔(en)-10-온 옥심(58)(600mg, 2.42mmol)을 EtOH(25㎖)에 용해시키고 Raney?-Ni(1.0g)을 장입하였다. 서스펜션을 NH3로 포화시키고 H2로 가압(45psi)하였다. 6시간 후에, 서스펜션을 Celite?을 사용하여 여과하고 EtOAc(100㎖)로 희석하고 포화 NaHCO3(100㎖)로 세척하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 1H-NMR 및 GC/MS 결과 순수한 타이틀 아민(550mg)임을 나타내었다.
Figure 112002001376227-pct00040

2-아미노-7-퓨릴-3-메틸-4-크로마논(Chromanone) 하이드로클로라이드 (63)
상기 아민 하이드로클로라이드 염은 방법 12에 나타낸 바와 같이 제조하였다. 7-트리플루오로메탄술포네이트-3-메틸-4-크로마논(chromanone)(3.0g, 9.7mmol)(K. Koch 와 M.S. Biggers, J. Org. Chem. 1994, 59, 1216의 방법으로 제조)을 1,4-디옥산(50㎖)에 용해된 2-(트리부틸스태닐)퓨란(3.79g, 10.6mmol), Pd(PPh3)4(223mg, 0.19mmol), LiCl(1.23g, 29.0mmol) 및 2,6-디-t-부틸-4-메틸페놀 의 두가지 결정으로된 용액에 첨가하고 환류하면서 12시간동안 가열하였다. 냉각 후, 혼합물을 포화 NH4Cl(40㎖)으로 급냉하고 Et2O(2x50㎖)로 추출하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물을 용리액으로 20:1 헥산:EtOAc를 이용한 플래쉬(flash) 크로마토그래피로 정제하여 m.p. 94-95℃의 황색 고형물인 7-퓨릴-3-메틸-4-크로마논(chromanone) (60) (1.78g)을 얻었다.
소디움 아세테이트(395mg, 4.82mmol)을 메탄올(5㎖)에 용해된 7-퓨릴-3-메틸-4-크로마논(chromanone) (60)(500mg, 2.19mmol) 및 히드록시아민 하이드로클로라이드(167mg, 2.41mmol) 용액에 첨가하고 밤새 실온에서 교반하였다. 반응을 H2O로 급냉하고 에테르(2x25㎖)로 추출하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하여 m.p. 175-177℃의 백색 고형물으로 7-퓨릴-3-메틸-4-크로마논(chromanone) 옥심 (61)을 얻었다.
톨루엔 술포닐클로라이드(397mg, 2.08mmol)을 CH2Cl2(10㎖)에 용해된 0℃의 7-퓨릴-3-메틸-4-크로마논 옥심 (61)(461mg, 1.89mmol) 및 피리딘(0.5㎖) 용액에 첨가하였다. 6시간 후에, 혼합물을 CH2Cl2(30㎖)로 희석하고 5% HCl(20㎖)로 세척하였다. 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물을 용리액으로 5:1 헥산:EtOAc를 이용한 플래쉬 크로마토그래피로 정제하여 7-퓨릴-3-메틸-4-크로마논 O-(톨루엔술포닐)-옥심 (62) (429mg)을 m.p. 163-164℃의 분홍색 고형물로 얻었다.
소디움 에톡사이드의 에탄올 용액(0.35㎖, 2.87M, 1.0mmol)을 벤젠(4㎖)에 용해 교반된 7-퓨릴-3-메틸-4-크로마논 O-(톨루엔술포닐)-옥심 (62) (410mg, 1.0mmol)에 첨가하였다. 18시간 후에, 3N HCl(6㎖)을 첨가하고 층을 분리하였다. 유기상을 3N HCl(2 x 10㎖)로 추출하고, 합한 수성 추출물을 농축하여 조질의 타이틀 화합물 63을 오렌지색 고형물(388mg)로 얻었으며, 이를 후속적인 정제없이 사용하였다.
Figure 112002001376227-pct00041

2-아미노-7-(3'-메톡시프로피닐)-3-메틸-4-크로마논 하이드로클로라이드 (65)
상기 아민 하이드로클로라이드는 방법 13에 나타낸 바와 같이 제조하였다. 7-트리플루오로메탄술포네이트-3-메틸-4-크로마논(3.10g, 10mmol)(K. Koch 와 M.S. Biggers, J. Org. Chem. 1994, 59, 1216의 방법으로 제조)을 DMF(30㎖)에 용해된 메틸 프로파르길 에테르(1.05g, 15mmol), (Ph3P)4Pd(210mg, 0.30mmol) 및 Et3 N(6㎖)로된 용액에 첨가하고 70℃로 1시간동안 가열하였다. 냉각 후, 혼합물을 포화 NH4Cl(40㎖)으로 급냉하고 Et2O(2x50㎖)로 추출하였다. 합한 유기층을 MgSO4상에서 건조하고, 여과 및 농축하였다. 잔류물을 용리액으로 20:1 헥산:EtOAc를 이용한 플래쉬 크로마토그래피로 정제하여 7-(3'-메톡시프로피닐)-3-메틸-4-크로마논 (64)(1.40g)을 m.p. 60-63℃의 백색 고형물로 얻었다.
상기 2-아미노-7-퓨릴-3-메틸-4-크로마논 하이드로클로라이드에 대하여 기술한 바와 동일한 방법으로 64를 타이틀 화합물 65로 전환시켰다.
Figure 112002001376227-pct00042

2-아미노-α-테르라론(tetralone) 하이드로클로라이드 (66)
상기 화합물은 상기 2-아미노-7-퓨릴-3-메틸-4-크로마논 하이드로클로라이드에 대하여 기술한 방법과 같은 방법으로 방법 14에 나타낸 바와 같이 -α-테르라론(tetralone)으로부터 얻었다.
Figure 112002001376227-pct00043

2-아미노-엔도-6,9-에타노비시클로[4.4.0]데크-7-엔논 하이드로클로라이드 (70)
상기 아민 클로라이드는 방법 15에 나타낸 방법으로 제조하였다. 알루미늄 클로라이드(700mg, 5.2mmol)을 톨루엔(100㎖)에 용해된 2-시클로헥센-1-온(2.0g, 20.8mmol) 용액에 첨가하였다. 40분 후에, 시클로헥사디엔(8.3g, 104mmol)을 첨가하고 100℃로 2시간동안 가열하였다. 냉각 후, 혼합물을 Et2O(300㎖)로 희석하고 포화 NaHCO3(2x150㎖) 및 염수(100㎖)로 세척하였다. 합한 유기층을 MgSO4상에서 건조, 여과 및 농축하였다. 잔류물을 용리액으로 50:1 헥산-Et2O를 이용한 플래쉬 크로마토그래피로 정제하여 엔도-2,5-에타노비시클로[4.4.0]데크-7-엔-10-온(67)(2.77g) 을 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
THF(20㎖)에 용해된 엔도-2,5-에타노비시클로[4.4.0]데크-7-엔-10-온(67) 용액(2.17g, 12.3mmol)을 -78℃의 THF(30㎖)에 용해된 LDA 용액(6.7㎖, THF에서 2.0M 13.5mmol)에 첨가하였다. 45분 후에, 트리메틸실릴 클로라이드(2.0g, 18.5mmol)을 첨가하고 혼합물을 0℃로 서서히 가온하였다. 혼합물을 포화 NaHCO3 용액(30㎖)으로 희석하고 Et2O(2x30㎖)으로 추출하고, MgSO4상에서 건조하고 농축하였다. 잔류물을 THF(60㎖)에 용해시키고, N-브로모숙신이미드(2.6g, 14.7mmol)을 분할하여 첨가하였다. 30분 경과 후, 혼합물을 포화 NH4Cl 용액(30㎖)으로 희석하고 Et2O(2x40㎖)으로 추출하였다. 합한 유기층을 건조(MgSO4)하고 농축하였다. 잔류물을 용리액으로 33:1 헥산-Et2O를 이용한 플래쉬 크로마토그래피로 정제하여 2-브로모-엔도-6,9-에타노비시클로[4.4.0]데크-7-엔온(68)(1.44g)을 황색오일로 얻었으며, 이는 1H-NMR 및 GC/MS 결과 순수한 것이었다.
소디움 아지드(280mg, 4.3mmol)를 DMF(20㎖)에 용해된 2-브로모-엔도-6,9-에타노비시클로[4.4.0]데크-7-엔온(68)(850mg, 3.9mmol) 용액에 첨가하였다. 2시간 후, 혼합물을 물(30㎖)으로 희석하고 Et2O(2x40㎖)으로 추출하였다. 합한 유기층을 건조(MgSO4)하고 농축하였다. 잔류물을 용리액으로 20:1 헥산:Et2O를 이용한 플래쉬 크로마토그래피로 정제하여 2-아지도-엔도-6,9-에타노비시클로[4.4.0]데크-7-에논(69)(469mg)을 오일로 얻었으 며, 이는 1H-NMR 결과 순수한 것이었다.
트리페닐포스핀(486mg, 1.85mmol)를 DMF(10㎖)에 용해된 2-아지도-엔도-6,9-에타노비시클로[4.4.0]데크-7-에논(69)(310mg, 1.42mmol) 용액에 첨가하였다. 12시간 후, 혼합물을 6N HCl(10㎖)으로 희석하고 층을 분리하였다. 유기상을 6N HCl(2x5㎖)으로 추출하고, 합한 수성층이 건조되도록 농축하여 원하는 타이틀 화합물 70을 진한 오렌지색 오일(500mg)로 수득하였으며, 1H-NMR(DMSO-d6)은 할당된 구조와 일치하였다.
이소프로필 엔도-2-아미노노르보란-5-카르복시레이트(71) 및 이소프로필 엔도-2-아미노노르보란-6-카르복시레이트(72)
Figure 112002001376227-pct00044

상기 아민은 상기한 방법(방법 9)로 이소프로필 노르보란-2-엔-5-카르복시레이트로 부터 제조하였다.
케톤을 아민으로 환원적으로 아민화하는 일반적인 방법
질소 분위기하의 건조 플라스크에서 케톤(1mmol), 암모늄 아세테이트(20mmol) 및 3A 분자체(2.8중량당량)을 무수 메탄올에서 혼합하였다. 소디움 시아노보로하이드라이드(4mmol)을 첨가하고 TLC 분석에 의해 출발물질인 케톤이 소멸하는 것으로 나타내어질때 까지 결과 혼합물을 실온에서 교반하였다. 메탄올을 진공하에서 반응혼합물로 부터 제거하고 잔류물을 6N HCl에 용해시켰다. 15분간 교반후, 비-염기성 물질을 디에틸 에테르로 추출하여 제거하였다. 50% 수성 NaOH를 사용하여 수성 상의 pH를 조심스럽게 ∼8로 높이고 아민을 EtOAc(3회)로 추출하였다. EtOAc 추출물을 합하고, 염소로 세척하고 건조(Na2SO4)하였다. 조질의 아민을 대개 순수한 것으로 추가적인 정제없이 사용하였다.
아민을 BOC-비보호화(deprotection)하는 일반적인 방법
무수 CH2Cl2(1㎖)에 용해된 BOC-보호된 아민(1mmol)의 얼음-냉각된 용액에 트리에틸실란(0.5㎖) 및 트리플루오로아세트산(1㎖)을 첨가하였다. 반응전개는 출발물질이 없어지는 것으로 모니터하였다.(5분-1.5시간). 반응 혼합물을 톨루엔으로 희석하고 농축하였다. 잔류물을 물(10㎖) 및 EtOAc(20㎖)에 용해시키고, pH를 ∼8(수성 NaHCO3)로 조절하고 유기상을 분리하였다. 수성상을 EtOAc(2x15㎖)으로 추출하였다. 유기상을 합하고, 염수로 세척하고 건조(Na2SO4)하고, 여과 및 농축하여 아민을 얻었다.
아민 73 및 74의 제조
Figure 112002001376227-pct00045

상기 아민은 상기한 표준 환원 아민화조건으로 상응하는 알려져 있는 케토디락톤(J. Org. Chem. 1998, 63, 9889-94)로 부터 제조하였다. 1H-NMR, 13C NMR 및 IR 스펙트럼은 할당된 구조와 일치하였다.
Figure 112002001376227-pct00046

아민 77 및 78의 제조
이들 아민의 제조를 방법 16에 나타내었다. 상기 매크로디락톤(macrodilactone) 75를 J. Org. Chem. 1998, 63, 9889-94의 방법으로 제조하였다. 따라서, 상기한 문헌에 기술되어 있는 표준 매크로락톤화 조건하에서 N-t-BOC-아스파르트산(2.33g)을 DMF(1000㎖)중의 2-클로로메틸-3-클로로프로펜(1.25g)과 Cs2CO3(7.0g)과 반응시켜 75 1.12g(수율 40%)를 유리질 고형물로 얻었다. 질량 스펙트럼(EI-)는 (m/e) 284에서 [M-1]을 나타내며 1H-NMR, 13C NMR 및 IR 스펙트럼은 75의 구조와 일치하였다.
무수 EtOAc(6㎖)에 용해된 알켄(288mg, 1.01mmol) 용액에 10% Pd/탄소(60mg)를 첨가하였다. 결과 혼합물에 질소 퍼지하고 파르(Parr) 수소발생기에서 2.5시간동안 45psi 수소압력하에 교반하였다. 잔류물을 플래쉬 크로마토그래피로 정제(실리카 겔, 헥산:EtOAc의 7:3 혼합물)하여 환원된 생성물 76 91mg(수율 32%)을 수득하였다. 1H-NMR, 13C-NMR 및 IR 스펙트럼은 76의 구조와 일치하였다.
상기한 일반적인 BOC-비보호화 방법으로 75 및 76에서 BOC보호기를 제거하여 각각 상응하는 아민 77 및 78을 얻었다. 1H-NMR, 13C-NMR 및 IR 스펙트럼은 할당된 구조와 일치하였다.
Figure 112002001376227-pct00047

페닐 디락톤 81의 합성
얼음-냉각된(0℃)되고, 잘-교반된 무수 CH2Cl2(55㎖)에 용해된 페닐숙신산(0.923g, 5.2mmol)과 DMAP(0.064g, 0.52mmol)에 질소분위기하에서 30분에 걸쳐 BOC-세리놀 용액(Synthesis 1998, 1113-1118)(1.0g, 5.2mmol)을 첨가하였다. 결과 혼합물을 서서히 실온으로 가온하고 부가적으로 12시간동안 교반하고 CH2Cl2(40㎖)로 희석하고, 포화 수성 소디움 비카보네이트(3x10㎖)으로 추출하였다.
염기성 추출물을 합하고 2N HCl로 조심스럽게 산성화시키고 EtOAc(3x20㎖)으로 추출하였다. 합한 EtOAc 추출물을 염수로 세척하고, 건조(Na2SO4)하고 여과 및 농축하여 백색 거품(1.7g)을 얻었다. 1H-NMR는 산 79의 1:1 부분입체이성질체 혼합물임을 나타내었다.
잘-교반되고 얼음-냉각된 무수 THF(122㎖)에 대한 산 79(1.00g, 2.72mmol) 및 트리페닐포스파인(786mg, 3.0mmol) 서스펜션에 THF(55㎖)에 용해된 디에틸 아조카르복시레이트(0.52g, 3.0mmol)용액을 3시간에 걸쳐 적가하였다. 결과혼합물을 실온으로 서서히 가온하고 부가적으로 5시간동안 교반하고 약 5㎖로 농축하였다. 잔류 혼합물을 EtOAc(50㎖) 및 물(20㎖)로 추출하였다. 유기상을 분리하고, 수성 NaHCO3(10㎖), 염수(10㎖)로 세척하고, 건조(MgSO4)하고, 여과 및 농축하여 유성 잔류물을 얻었다. 플래쉬 크로마토그래피(실리카 겔, 헥산)로 정제하여 m.p.=161-162℃인 디락톤 80의 1:1 혼합물 228mg(수율 22%)을 얻었다. 질량 스펙트럼(EI)은 m/e 349에서 M+를 나타냈다.
상기한 표준 BOC 탈보호화 조건에서 BOC 보호기를 제거하여 아민 81을 얻었다.
Figure 112002001376227-pct00048

상기 디락톤아민 84 및 85의 합성
무수 CH2Cl2(140㎖)에 용해된 세리놀(3.0g, 15.7mmol), 피리딘(1.24g, 0.98mmol) 및 DMAP(0.19g, 1.57mmol)에 무수 THF(20㎖)에 용해된 N-CBz 아스파르트산 무수물 용액(3.52g, 14.13mmol)을 적가하였다. 2시간동안 실온에서 교반한 후, 반응 혼합물을 약 10㎖로 농축하고 EtOAc(100㎖) 및 물(30㎖)으로 희석하였다. pH를 8.5로 조절(수성 NaHCO3)하고, 수성 상을 분리하고, 2N HCl로 pH3으로 산성화시키고 EtOAc(3x20㎖)으로 추출하였다. 합한 유기 추출물을 염수로 세척하고, 건조(Na2SO4)하고 여과 및 농축하여 82 5.8g을 기포성 백색 물질로 얻었다. 1H-NMR는 상당히 순수하고 부분입체이성질체의 혼합물임을 나타내었다.
무수 THF(1.15ℓ)에 용해된 트리페닐포스파인(3.60g, 13.75mmol)과 1,3-디이소프로필카르보디이미드(2.80g, 13.75mmol) 용액에 3시간에 걸쳐 무수 THF(100㎖)에 용해된 산 82 용액(5.5g, 12.5mmol)을 적가하였다. 결과 혼합물을 부가적으로 6시간동안 교반한 후, 부피가 약 20㎖이 되도록 진공하에서 농축하고, 에테르(200㎖)과 물(100㎖)으로 희석하였다. 유기상을 분리하고 5% 수성 NaHCO3 및 염수로 세척하고 건조(Na2SO4)하고 여과 및 진공하에서 농축하였다. 유성 잔류물을 플래쉬 크로마토그래피로 원하는 디락톤 83 1.3g(수율 23%)을 얻었다. 질량 스펙트럼(ES-)은 (M-1)+의 m/e를 나타내었다. 1H-NMR, 13C-NMR 및 IR 스펙트럼은 구조 83과 일치하였다.
디락톤 83을 표준 BOC 탈보호화 조건하에서 탈보호하여 아민 84를 얻었다.
EtOAc(10㎖)에 용해된 N-CBz-보호된 디락톤 83(200mg, 0.47mmol) 용액에 10% Pd/C(40mg)를 첨가하고 결과 혼합물을 수소가스의 벌룬 압력(balloon pressure)하에서 12시간동안 교반하였다. 반응혼합물을 N2 퍼지하고, 소결된 유리 깔대기를 통해 여과하고, 농축하여 아민 85(126mg)을 얻었다. 조질의 아민을 추가 정제없이 사용하였다.
아민 86 및 88의 제조
Figure 112002001376227-pct00049

아민 88의 전구체인 2,6,6-트리메틸-2,4-시클로헵타디에닐아민 (86)과 2,3,6,6-테트라메닐-3-시클로헵테논(87)의 합성을 방법 19에 나타내었다. 따라서, Synlett 1999, 1781에 기술되어 있는 티타늄 이소프로폭사이드/NaBH4/Et3N-중재된(mediated) 환원 아민화 방법으로 에우카르본(eucarvone)(Can.J. Chem. 1974, 52, 1352)를 상응하는 아민 86으로 쉽게 전환하였다. Tetrahedron 1995, 51, 743-754에 기술되어 있는 방법으로 에우카르본에 트리메틸알루미늄을 Cu(Ⅰ)-촉매화된 마이클 첨가하여 2,3,5,5-테트라메틸-3-시클로헵테논(87)을 얻었다. 국제 특허 WO 9927783의 일반적인 방법에 따라 87을 2,3,5,5-테트라메틸-2-시클로헵테닐아민 (88)으로 전환하였다.
N-메틸-N-(2-페닐에틸)-(1,5,5-트리메틸-3-아미노시클로헥실)카르브아미드(89)
Figure 112002001376227-pct00050

표준 HOAt, EDCI 및 DMAP-중재된 커플링조건을 사용하여 1,5,5- 트리메틸-3-옥소-1-시클로헥실카르복시산(M.S. Ziegler 및 R. M. Herbst, J. Org. Chem. 1951, 16, 920)을 N-메틸-2-페닐에틸아민에 결합시켜 [N-메틸-N-(2-페닐에틸)]-1,5,5-트리메틸-3-옥소-1-시클로헥실카르복스아미드를 담황색 오일로 얻었다. 질량 스펙트럼은 m/e 301 에서 모 이온을 나타내었다. 1H-NMR 및 13C-NMR 스펙트럼은 이 구조와 일치하였다.
아민 89는 국제특허 WO 9927783의 일반적인 방법으로 상기 케톤으로 부터 제조되었으며, 상응하는 N-히드록시옥심으로 전환된 후, Raney?존재하에 수소화하였다. 상기 아민의 1H-NMR은 부분입체이성질체의 1:1 혼합물임을 나타내었다.
3-(3,3-디메틸부톡시카르보닐)-3,5,5-트리메틸시클로헥실아민 (90)
Figure 112002001376227-pct00051

표준 커플링조건하에서 1,5,5- 트리메틸-3-옥소-1-시클로헥실카르복시산(3.0g) (M.S. Ziegler 및 R. M. Herbst, J. Org. Chem. 1951, 16, 920)을 CH2Cl2(80㎖)에서 3,3-디메틸펜타놀(1.84g), DMAP(2.21g) 및 1,3-디이소프로필카르보디이미드(2.17g)으로 처리하여 3-(3,3-디메틸부톡시카르보닐)-3,5,5-트리메틸시클로헥사논 2.41g(수율 55%)을 얻었다. 질량 스펙트럼(EI)은 m/e 268 에서 모 이온을 나타내었다.
상기 케톤은 국제특허 WO 9927783의 일반적인 방법으로 타이틀 아민 90으로 전환되고, 상응하는 옥심으로 전환된 후, Raney?Ni 존재하에 수소화하였다. 상기 아민 90의 1H-NMR은 부분입체이성질체의 1:1 혼합물임을 나타내었다.
Figure 112002001376227-pct00052

4-(4,6-비스-트리플루오로메틸-2-피리딜)옥시-3,3,5,5-테트라메틸시클로헥실아민 (93)
상기 아민의 합성을 방법 20에 나타내었다. 따라서, 4-히드록시-3,3,5,5-테트라메틸시클로헥실-1,1-에틸렌 글리콜 아세탈(900mg, 4.2mmol)을 무수 DMF(8.4㎖)에 용해시키고, 혼합물을 0℃로 냉각하고 KH의 35%(중량) 오일 서스펜션(591mg, 5.04mmol)을 첨가하였다. 혼합물을 1시간동안 교반한 후, DMF(2㎖)에 용해된 2-클로로-4,6-비스(bis)-트리플루오로메틸-2-피리딘(1.48g, 6.3mmol) 용액을 적가하였다. 혼합물을 0℃에서 1시간동안 교반한 후, 실온에서 12시간동안 교반하고, 암모늄 클로라이드로 조심스럽게 급냉하였다. 디에틸 에테르(100㎖)을 첨가하고 유기상을 분리하고, 염수로 세척하고, 건조(MgSO4)하고 진갈색 고형물로 농축하였다. 뜨꺼운 헥산으로 재결정하여 m.p.=105-106℃인 4-(4,6-비스-트리플루오로메틸-2-피리딜)옥시-3,3,5,5-테트라메틸시클로헥실-1,1-에틸렌글리콜아세탈 (91) 950mg(수율 53%)을 얻었다.
아세탈 91(900mg)를 THF, 디옥산 및 2N HCl의 1:1:1 혼합물(30㎖)에 용해시키고 결과 용액을 실온에서 12시간동안 교반하였으며, GC는 출발물질이 완전히 없어짐을 나타내었다. 혼합물을 물과 디에틸 에테르(각각 50 ㎖)로 희석하고, 유기 상을 분리하고, 염수로 세척하고, 건조(Na2SO4)하고 농축하여 유성 잔류물을 얻었다. 잔류물을 실리카 겔(헥산-EtOAc, 5:1)상에서 크로마토그래피하여 무색 오일로 케톤 92 712mg(수율 96%)을 얻었다. 질량 스펙트럼(EI)는 m/e 383의 모 이온을 나타내었다.
타이틀 아민 93으로의 92의 환류 아민화는 국제특허 WO 9927783의 일반적인 방법으로 행하였다.
Figure 112002001376227-pct00053

3-(2,3-디클로로프로필옥시)메틸-3,5,5-트리메틸시클로헥실아민 (97)
아민 97의 합성을 방법 21에 나타내었다. Tetrahedron Lett. 1991, 32, 1831-4의 방법으로 알켄 94를 디클로로화하여 아세탈 95를 수득하였다. 아세탈 95를 THF와 2N HCl의 1:1 혼합물에 용해시켰다. 결과 용액을 실온에서 1시간동안 교반하였으며, 이때 TLC는 출발물질이 없어짐을 나타내었다. 혼합물을 EtOAc와 물(각각 30 ㎖)로 희석하고, 유기 상을 분리하고, 염수로 세척하고, 건조(Na2SO4)하고 농축하여 케톤 96 383mg을 오일로 얻었다. 1H-NMR은 이성질체로된 부분입체이성질체 혼합물과 일치하였다. 상기한 표준방법으로 환원 아민화하여 타이틀 아민 97을 얻었다.
Figure 112002001376227-pct00054

3-벤조일-3,5,5-트리메틸시클로헥실아민 (100)
상기 아민의 제조를 방법 22에 나타내었다. 3-사아노-3,5,5-테트라메틸시클로헥실-1,1-에틸렌글리콜아세탈(98)(국제특허 WO 9927783)을 페닐리튬과 반응시킨 후, 산 가수분해하여 디케톤 99를 얻었으며, 이를 상기 특허의 방법에 따라 타이틀 아미노케톤 100으로 전환하였다.
Figure 112002001376227-pct00055

5β-(2-페닐에틸)-3β-메톡시-4β-메틸-4-니트로-시클로헥실아민 (105)
아민 105의 제조를 방법 23에 나타내었다. Bull. Chem. Soc. Jap. 1968, 41, 1441의 방법으로 니트로에탄을 디하이드로신남알데히드로 축합하여 상응하는 니트로 알코올 101을 얻었다. Synthesis, 1982, 1017의 방법으로 101을 탈수한 후, 중합체를 트리페닐포스파인-중재된 이성질체화로 처리(Tetrahedron Lett. 1998, 39, 811-812)하여 알켄 103을 얻었다. Tetrahedron Lett. 2000, 41, 1717의 방법에 따라 danishefsky의 디엔에 103을 디엘스-앨더(Diels-Alder) 시클로 첨가하여 케톤 104를 수득하였다. 케톤 104를 국제 특허 WO 9927783의 표준방법에 따라 아민 105 으로 전환하였다.
Figure 112002001376227-pct00056

3-시아노-3,5,5-트리메틸시클로헥실아민 (106)
상기 화합물은 상기한 표준 환원 아민화 방법에 따라 3-시아노-3,5,5-트리메틸시클로헥사논을 환원 아민화하여 제조하였다(방법 24). 질량 스펙트럼(EI)는 167 모이온 m/e를 나타내었다.
Figure 112002001376227-pct00057

3-아미노-5-페닐티오피란 (107)
상기 화합물은 방법 25에 나타낸 바와 같이 제조하였다. 따라서, 무수 메탄올 50㎖에 용해된 5-페닐-3-티오피라논 0.96g(5mmol)(P.T. Lansbury등의 J. Am. Chem. Soc. 1970, 92, 5649)에 암모늄 아세테이트 7.7g(100mmol)과 3A 분자체 6.5g을 첨가하였다. 30분간 실온에서 교반한 후, 소디움 시아노보로하이드라이드 1.25g(20mmol)을 분획하여 첨가하였다. 16시간 교반후, 혼합물을 중력(gravity) 필터하고 메탄올을 진공하에서 증발시켰다. 잔류물을 얼음/HCl과 에테르에 분배하였다. 산성 수성 상을 에테르로 두번 더 추출한 후, 이를 얼음과 50% NaOH 수용액으로 염기성이 되도록 하였다. 혼합물을 CH2Cl2로 추출하고, 건조(MgSO4)하고 휘발시켜 타이틀 화합물 0.19g(20%)을 얻었다. GC/MS는 193 분자이온이며 순도 100%임을 나타내었다.
Figure 112002001376227-pct00058

4-(4-트리플루오로메틸)페녹시시클로헥실아민 (109)
상기 화합물은 방법 26에 따라 제조하였다. 따라서, DMF 50㎖에 교반용해된 소디움 하이드라이드(1.2g, 0.05mol)용액에 DMF 15㎖에 용해된 1,4-디옥사스피로[4.5]데칸-8-올(7.5g, 0.047mol)용액을 10분에 걸쳐 적가하였다. 혼합물을 주위 온도에서 30분간 교반하였다. 4-플루오로벤조트리플루오라이드(7.71g, 0.047mol)을 동시에 첨가하고 반응을 실온에서 2시간동안 교반한 다음 70℃에서 밤새 교반하였다. 반응 혼합물을 찬물(700㎖)에 붓고 용액에 1N HCl을 첨가하여 조금 산성으로 하였다. 혼합물을 여과하고 수성 여과물을 헥산(2x150㎖)로 추출하였다. 여과된 고형분을 헥산 추출물에 용해시키고 물(50㎖)로 세척하였다. 용액을 MgSO4상에서 건조시키고, 여과하고 농축하며 백색 고형물을 얻었다. 이 고형물을 메탄올/물로 재결정하여 순수한 케탈(8.6g, 61%)를 얻었다.
실리카 겔(30g)을 CH2Cl2 150㎖에 부유시켰다(suspend). 서스펜션에 물에 용해된 12% HCl 용액 7㎖을 5분에 걸쳐 적가하였다. 혼합물을 격렬하게 교반하여 응집을 방지하였다. CH2Cl2 75㎖에 용해된 상기 케탈 용액(8.0g, 26.49 mmol)을 첨가하고 반응을 3시간 동안 교반하였다. 그 후, 혼합물을 여과하고 실리카 겔 패드를 CH2Cl2 500㎖로 세척하였다. 용매를 휘발시켜 4-(4-트리플루오로페녹시)시클로헥사논 5.8g(86%) (108)을 얻었다.
상기한 표준 환원 아민방법에 따라 케톤 108을 환원 아민화하여 타이틀 화합물 109를 얻었다.
Figure 112002001376227-pct00059

4-벤조일옥시-3,3,5,5-테트라메틸시클로헥실아민 (111)
이 화합물은 하기 방법 27의 순서에 따라 제조되었다. 냉각된 THF 6ml내에 용해된 7,7,9,9-테트라메틸-1,4-디옥사피로[4,5]데칸-8-올(0.37g, 1.73몰)의 교반된 용액에 n-BuLi(헥산내에 2.5M, 1.73mmol, 0.7mL)를 적가하였다. 그 반응물을 10분동안 교반하였다. 그 다음 벤조일 클로라이드(1.73mmol, 0.2mL)를 첨가한 다음, 상기 반응물을 실온으로 상승시키도록 한 다음 밤새 교반하였다. 반응 혼합물을 0.5N NaOH 50mL에 붓고 에테르(3 ×20mL)로 추출하였다. 에테르층을 MgSO4에 걸쳐 건조시키고, 여과하고 그리고 농축하였다. 그 잔류물을 용출액으로서 4:1 헥산-EtOAc를 이용하여 방사 크로마토그래피로 정제하였다. 그 결과 벤조일옥시케탈 0.55g(~100%)을 획득하였다.
실리카 겔(2.2g)을 CH2Cl2 10mL에 부유시켰다. 이 현탁액에 물에 용해된 12% HCl 용액 0.5ml을 5분에 걸쳐 적가하였다. 그 혼합물을 응집되지않도록 격렬히 교반하였다. CH2Cl2 5mL에 용해된 상기 벤조일옥시 케탈 용액을 첨가하고 그리고 그 반응물을 3시간동안 교반하였다. 그 다음 그 혼합물을 여과하고 그 실리카 겔 패드를 CH2Cl2 100mL로 세정하였다. 그 용매를 증발시켜 투명한 오일로서 벤조일옥시시클로헥사논 110 0.46g(90%)을 생성하였다.
메탄올 4mL내의 교반된 벤조일옥시시클로헥사논 110(0.46g, 1.68mmol) 용액에 즉시 히드록실아민 염산 용액(0.23g, 3.25mmol) 및 물 4ml에 용해된 포타슘 아세테이트(0.32g, 3.25mmol)을 모두 첨가하였다. 그 반응물을 실온에서 밤새 교반하였다. 물(20mL)을 첨가하고 그 결과물인 혼합물을 에테르(3 ×10mL)로 추출하였다. 에테르 추출물을 혼합하고 포화 NaHCO3(1 ×20mL) 및 염수(1 ×15mL)로 세정하였다. 에테르층을 MgSO4에 걸쳐 건조시키고, 여과하고 그리고 농축하여 EZ 이소머의 혼합물로서 원하는 옥심(oxime)(0.39g, 80%)을 생성하였다.
500ml Parr 압력병내의 Raney?Nickel(0.8g 습중량, Aldrich Chemical Co.)을 물(3 ×20mL)로 그다음 에탄올((3 ×20mL)로 세정하였으며, 그 세정 용매는 매회마다 비워졌다. 이러한 세정된 촉매에 무수 에탄올(30ml)에 용해된 상기 옥심(0.39g, 1.35mmol) 용액을 첨가하였다. 이용액을 용해시키기위해 약간의 가열이 필요하였다. 그 결과물인 혼합물을 1분동안 상기 용액에 걸쳐 암모니아 가스를 버블링시킴으로써 암모니아로 표화시켰다. 이 용액을 Parr 쉐이커상의 수소 분위기(초기 수소 압력=50psi)하에 방치시키고 7시간동안 쉐이킹하였다. 그 다음 반응 혼합물을 Celite?패드에 통과시켜 여과하고 그 용매를 증발시켜 거의 무색의 액체(0.37g, 정량적 수득)를 수득하였다. 양자 NMR 및 GC/MS은 타이틀 아민 111의 부분입체 이성질체성(4:1 비) 혼합물인 상기 물질과 일치되었다. 이 물질을 부가적인 정제없이 그대로 사용하였다.
Figure 112002001376227-pct00060

4-아미노-2,2,6,6-테트라메틸시클로헥실-6-클로로-2-피리딘카르복실레이트(113).
이 화합물은 방법 28에 나타낸 바와 같이 합성되었다. 0℃로 냉각된 THF 5mL내에 용해된 7,7,9,9-테트라메틸-1,4-디옥사피로[4,5]데칸-8-올(0.32g, 1.50mmol)의 교반된 용액에 n-BuLi(헥산내에 2.5M, 1.50mmol, 0.6mL)를 적가하였다. 그 혼합물을 10분동안 교반하였다. 그 다음 THF 1mL에 용액으로 6-클로로피콜리노일 클로라이드(1.50mmol, 0.26g)를 첨가한 다음, 상기 반응물을 실온으로 상승시키도록 하였다. 고형화된 용액에 부가적인 THF 5mL을 첨가하고 그 반응물을 밤새 교반하였다. 반응 혼합물을 0.5N NaOH 40mL에 붓고 에테르(3 ×20mL)로 추출하였다. 에테르층을 MgSO4에 걸쳐 건조시키고, 여과하고 그리고 농축하였다. 양자 NMR은 1.6:1 비율로 출발 물질과 함께 예상되는 생성물을 나타내었다. 이들 화합물은 실리카 겔 크로마토그래피에 의해 분리될 수 없으므로, 상기 혼합물들은 다음 단계로 이송되어 정제되었다.
실리카 겔(1.4g)을 CH2Cl2 10mL에 부유시켰다. 이 현탁액에 물에 용해된 12%HCl 0.3mL을 5분에 걸쳐 적가하였다. 이 혼합물을 응집되지않도록 격렬히 교반하였다. CH2Cl2 5mL에 용해된 상기 혼합물을 첨가하고 그리고 그 반응물을 3시간동안 교반하였다. 그 다음 그 혼합물을 여과하고 그 실리카 겔 패드를 CH2Cl2 100mL로 세정하였다. 그 용매를 증발시켜 투명한 오일을 생성하였다. 원하는 피콜리닉 에스테르 112의 침전은 4:1 헥산-EtOAc 용액 10mL을 첨가함으로써 이루어졌다. 그 결과물인 고형물은 여과되고 4:1 헥산-EtOAc 용액 10mL로 세정되었다. 헥산-EtOAc 세정물을 혼합시키고 증발시켜 오일을 수득하였다. 상기 방법을 3회 반복하여 백색 고형물(214mg, 2 단계에 대하여 46%)로서 피콜리닉 에스테르를 생성하였다. 양자 NMR 및 GC/MS은 >95% 순도의 원하는 생성물을 나타내었다.
무수 에탄올(10mL)내에 상기 에스테르(200mg, 0.65mmol), 티타늄(IV) 이소프로폭시드(1.30mmol, 0.38mL), 암모늄 클로라이드(1.30mmol, 70mg) 및 트리에틸아민(1.30mmol, 0.18mL)의 혼합물을 주위 온도의 질소하에서 12시간동안 교반하였다. 그 다음 소디움 보로수소화물(0.97mmol, 40mg)를 첨가하고 그 결과물인 혼합물을 주위 온도에서 추가로 8시간동안 교반하였다. 그 다음 그 반응물을 수성 암모니아(20mL, 2.0M)에 부음으로써 급냉하고, 그 결과물인 용액을 에테르(3×20mL)로 추출하였다. 혼합된 에테르 추출물은 2N HCl(2×20mL)로 추출되어 비-염기성 물질이 분리되었다. 산성 용액은 에테르(20mL)로 한번 세정된 다음 수성 소디움 히드록시드(2N)로 pH 10-12로 처리되고, EtOAc(3×20mL)로 추출되었다. 혼합된 EtOAc 세정물은 MgSO4에 걸쳐 건조되고, 여과되고 그리고 농축되어 오일 을 생성하였다. 이 물질은 타이틀 시클로헥실아민의 6:1 부분입체 이성질체성 혼합물과 일치되었다. 양자 NMR 및 GC/MS는 ~75% 순도로 원하는 생성물을 나타내었다. 이러한 아민 혼합물을 부가적인 정제없이 그대로 사용하였다.
트랜스-2-티오메틸시클로헥실아민
Figure 112002001376227-pct00061
이 아민은 B. M. Trost 및 T. Shibata, J. Am. Chem. Soc. 1982, 104, 3225의 아자술페닐화 기술을 이용하여 시클로헥센으로부터 제조되었다.
Figure 112002001376227-pct00062

4-페닐티오시클로헥실아민(115).
이 화합물은 방법 29에 나타낸 방법에 따라 제조되었다. 메탄올 20mL내에 용해된 4-페닐티오시클로헥사논(V. K. Yadav 및 D. A. Jeyaraj, J. Org. Chem. 1998, 63, 3474)(1.20g, 5.83mmol)의 교반된 용액에 물 20mL내에 용해된 벤질옥시아민 염 산(1.80g, 11.22mmol) 및 포타슘 아세테이트(1.10g, 11.22mmol)의 용액을 즉시 모두 첨가하였다. 그 반응물을 실온에서 밤새 교반하였다. 물(60mL)을 첨가하고 그 결과물인 혼합물을 에테르(3×40ml)로 추출하였다. 에테르 추출물은 혼합되고 포화 NaHCO3(1×50mL) 및 염수(1×40mL)로 세정되었다. 에테르층은 MgSO4에 걸쳐 건조되고, 여과되고 그리고 농축되어 오일을 생성하였다. 이 물질을 방사 크로마토그래피(9:1 헥산-EtOAc)를 통해 정제하여 EZ 이소머의 혼합물로서 O-벤질옥심 114(1.72g, 95%)를 생성하였다.
리튬 알루미늄 수소화물(5.08mmol, 0.19g)를 무수 에테르 10mL에 부유시키고 0℃로 냉각하였다. 에테르 5mL에 용해된 상기 O-벤질옥심 114를 적가하고 그 반응물을 실온으로 상승시키고 4시간동안 교반하였다. 과도한 리튬 알루미늄 수소화물은 조심스럽게 물(0.2mL)과 1N NaOH(0.2mL)을 동시에 첨가함으로써 파괴되었다. 그 혼합물을 여과하고 그 염을 에테르 50mL로 세정하였다. 용매를 증발시켜 오일로서 타이틀 아민 115 0.62g(93%)을 생성하였다. 양자 NMR 및 GC/MS는 상기 생성물이 >95% 순도의 1.3:1비율의 부분입체 이성질체 아민임을 나타내었다.
Figure 112002001376227-pct00063
3-{[3-트리플루오로메틸)-2-피리디닐]술파닐}-시클로헥실아민(117).
이 아민은 방법 30에 나타낸 방법에 따라 제조되었다. CH2Cl2 20mL내에 용해된 2-시클로헥센-1-온(0.44mL, 4.58mmol) 및 2-메르캅토-5-트리플루오로메틸피리딘(0.82g, 4.58mmol)의 교반된 용액에 주위 온도에서 비스무트 트리클로라이드(60mg, 0.18mmol)를 첨가하였다. 그 반응물을 실온에서 밤새 교반하고 농축하였다. 잔류물을 용출액으로서 4:1 헥산-EtOAc를 사용하여 방사 크로마토그래피를 통해 정제하여 복합 첨가 생성물 2-(3-옥소-시클로헥실티오)-5-트리플루오로메틸피리딘(116) 1.12g을 생성하였다.
메탄올 3mL내에서 교반된 116 용액(0.26g, 0.95mmol)에 물 3mL에 용해된 벤질옥시아민 염산(0.29g, 1.83mmol)과 포타슘 아세테이트(0.18g, 1.83mmol)을 즉시 모두 첨가하였다. 그 반응물을 실온에서 밤새 교반하였다. 물(10mL)을 첨가하고 그 결과물인 혼합물을 에테르(3×10mL)로 추출하였다. 에테르 추출물은 혼합되고, 포화 NaHCO3(1×15mL) 및 염수(1로 ×15mL)로 세정하였다. 에테르층은 MgSO4에 걸쳐 건조되고, 여과되고 그리고 농축되어 오일로 생성되었다. 이 물질을 방사 크로마토그래피(9:1 헥산-EtOAc)를 통해 정제하여 분리된 옥심(0.32g, 89%)을 생성하였다. E-이소머(Rf=0.33) 및 Z-이소머(Rf=0.25)는 일정한 양자 NMR 및 GC/MS 스펙트럼 특성을 나타내었다.
리튬 알루미늄 수소화물(1.33mmol, 50mg)을 무수 에테르 3mL에 부유시키고 0℃로 냉각하였다. 에테르 1mL에 용해된, 혼합된 옥심을 적가하고 그 반응물을 실온 으로 상승시키고 4시간동안 교반하였다. 과도한 리튬 알루미늄 수소화물은 조심스럽게 물(50μL)과 1N NaOH(50μL)을 동시에 첨가함으로써 파괴되었다. 그 혼합물을 여과하고 그 염을 에테르로 세정하여 체적 100mL이 되도록하였다. 에테르 용액을 2N HCl(2×50mL)로 추출하여 비-염기성 물질을 분리하였다. 그 산성 수용액은 에테르(50mL)로 한번 세정된 다음, 수성 소디움 히드록시드(2M)를 이용하여 pH 10-12이 되도록 처리하고, 에테르(3×50mL)로 추출하였다. 에테르층은 MgSO4에 걸쳐 건조되고, 여과되고 그리고 농축되어 오일로서 원하는 타이틀 아민 117 121mg(52%)로 생성되었다. 양자 NMR 및 GC/MS는 상기 생성물이 >95% 순도의 1.3:1비율의 부분입체 이성질체 아민임을 나타내었다.
Figure 112002001376227-pct00064

1-(5-아미노-1,3,3-트리메틸시클로헥실)-4-페닐-1-부타논(120).
이 아민의 합성은 방법 31에 나타낸 방법에 의해 수행되었다. THF 10mL내의 나프탈렌(1.23g, 9.57mmol)과 리튬 그래뉼(67mg, 9.57mmol)의 현탁액을 주위 온도에서 질소하에서 밤새 교반하였다. 이 리튬 나프탈리드 용액을 -60℃로 냉각하고 페닐 3-페닐프로필 술피드(1.1g, 4.78mmol)를 첨가하였다. 반응 완료를 확실히하기 위해 그 반응물을 -20℃로 상승시킨 다음 -60℃로 재냉각시켰다. THF 5mL내에 용해된 7-시아노-7,9,9-트리메틸-1,4-디옥사스피로[4.5]데칸(0.5g, 2.39mmol) 용액을 첨가하고 그 용액을 0℃로 상승시키고 2시간동안 그 온도에서 교반하였다. 포화 암모늄 클로라이드 용액 10mL을 첨가함으로써 반응을 급냉한 다음 2N HCl로 pH ~4로 처리하고 실온에서 밤새 교반하였다. 그 혼합물은 에테르(3×30mL)로 추출되고, MgSO4에 걸쳐 건조되고, 여과되고 그리고 증발되었다. 잔류물을 용출액으로서 6:1 헥산-EtOAc를 사용하여 방사 크로마토그래피를 통해 정제하였다. 그 결과 3-(2-옥소-4-페닐부틸)-3,5,5-트리메틸시클로헥사논 118(136mg, Rf=0.18)과 불완전한 가수분해 생성물인 그 케탈(509mg, Rf=0.33)의 1:3 혼합물을 획득하였다. 니트릴에 대한 1-리티오-3-페닐프로판의 첨가에 대한 총 수율은 85%로 계산되었다.
실리카 겔(1.82g)을 CH2Cl2 10mL에 부유시켰다. 이 현탁액에 물에 용해된 12% HCl 0.41mL을 5분에 걸쳐 적가하였다. 그 혼합물을 응집되지않도록 격렬히 교반하였다. CH2Cl2 2mL에 용해된 상기 케탈 용액을 첨가하고 그리고 그 반응물을 3시간동안 교반하였다. 그 다음 그 혼합물을 여과하고 그 실리카 겔 패드를 CH2Cl2 50mL로 세정하였다. 용매를 증발시켜 투명한 오일로서 NMR 및 GC/MS 특성과 일치하는 3-(1-옥소-4-페닐부틸)-3,5,5-트리메틸시클로헥사논(118) 0.48g(100%)을 생성하였다.
메탄올 7mL내에 용해된 이러한 비스-케톤(0.62g, 2.17mmol)의 교반된 용액에 물 7mL내에 용해된 히드록실아민 염산(0.16g, 2.28mmol)과 소디움 아세테이트(0.25g, 3.03mmol)의 용액을 즉시 모두 첨가하였다. 그 반응물을 실온에서 1시간동안 교반하였다. 물(20mL)을 첨가하고 그 결과물인 혼합물을 에테르(3×20mL)로 추출하였다. 에테르 추출물을 혼합하고, 포화 NaHCO3(1×20mL) 및 염수(1×20mL)로 세정하였다. 에테르층을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하여 EZ 이소머의 혼합물로서 원하는 모노-옥심 119(0.57g, 87%)를 생성하였다.
500ml Parr 압력병내의 Raney?Nickel(0.8g 습중량, Aldrich Chemical Co.)을 물(3 ×20mL)로 그다음 에탄올((3 ×20mL)로 세정하였으며, 그 세정 용매는 매회마다 비워졌다. 이러한 세정된 촉매에 무수 에탄올(40mL)에 용해된 상기 옥심 119(0.57g, 1.89mmol) 용액을 첨가하였다. 그 결과물인 혼합물을 1분동안 상기 용액에 걸쳐 암모니아 가스를 버블링시킴으로써 암모니아로 포화시켰다. 이 용액을 Parr 쉐이커상의 수소 분위기(초기 수소 압력=50psi)하에 방치시키고 7시간동안 쉐이킹하였다. 그 다음 반응 혼합물을 Celite?패드에 통과시켜 여과하고 그 용매를 증발시켜 오일(0.43g, 80%)를 수득하였다. GC/MS에 의한 분석은 소량의 미확인 부산물과 함께 타이틀 아민 120의 1:1 부분입체 이성질체성 혼합물을 나타내었다. 이 아민 혼합물을 부가적인 정제없이 직접 사용하였다.
Figure 112002001376227-pct00065

2-벤질-6-메틸-4-피라닐아민(122).
이 아민은 방법 32에 따라 제조되었다. 2-벤질-6-메틸-4-피라논(G. Piancatilli 등., Synthesis, 1982, 248) 0.37g(1.8mmol)에 메탄올 10mL에 용해된 히드록실아민 염산 0.22g(4.1mmol)과 소디움 아세테이트 0.16g(2mmol)을 첨가하였다. 밤새 교반된 후, 그 혼합물은 CH2Cl2와 물로 나뉘어졌다. 유기상은 건조되고 증발되었다. 오일성 잔류물은 실온에 방치되어 고형화되어 219의 분자 이온을 이용한 GC/MS에 의한 Z/E 이소머 혼합물 1:1로서 원하는 옥심 121 0.4g(99%)을 생성하였으며, 이것은 하기 환원 반응에 그대로 사용되었다.
95% 에탄올 50mL내에 용해된 2-벤질-6-메틸-4-피라논 옥심(121)(1.8mmol) 0.4g에 물로 3회 그리고 에탄올로 3회 세정된 Raney?니켈 0.8g을 첨가하였다. 그 혼합물을 Parr 쉐이커에서 수소 41psig하에서 32시간동안 방치하였다. 배기후, 상기 혼합물을 진공하에서 중력 여과하고 증발시켰다. 잔류물은 CH2Cl2와 수성 소디움 카보네이트 용액으로 분리되었다. 유기상은 진공하에서 건조 및 증발되어 GC/MS 분석에 의해 2:1 혼합물의 원하는 타이틀 122 + 옥심 121의 혼합물 0.19g을 생성하였 다. 상기 혼합물을 부가적인 분리없이 그대로 사용하였다.
1-벤조일-4-아미노피페리딘
Figure 112002001376227-pct00066

이 화합물은 Bhattacharyya, 등., SynLett, 1999, 11, 1781의 방법에 의해 제조되었다.
Figure 112002001376227-pct00067

1-(4-메틸벤질)-4-피퍼리디닐아민(125).
이 화합물의 합성은 방법 33에 따라 수행되었다. tert-부탄올 25mL내에 용해된 4-히드록시피러리딘 5.05g(50mmol)과 p-메틸벤질 클로라이드 7.08g(50mmol)에 과량의 고형 포타슘 카보네이트를 첨가하고, 그리고 그 혼합물은 3시간동안 스팀 배치에서 가열하였다. 상기 혼합물을 실온으로 냉각하여 에테르와 물로 분리하였 다. 유기상은 냉 희석 HCl로 추출되고, 산성의 수상은 에테르로 2회 추출되었다. 상기 수상은 얼음과 50% 수성 NaOH로 염기성으로 되도록하고 에테르로 추출되었다. 에테르상은 희석 수성 소디움 바이카보네이트 용액, 염수로 세정되고 그리고 진공하에서 증발되어 오일로서 1-(4-메틸벤질)-4-히드록시피퍼리딘(123) 5.3g을 생성하였다. GC/MS는 205의 분자 이온과 100%순도를 나타내었다.
78℃에서 CH2Cl2 75mL에 용해된 옥살일 클로라이드 2.8mL(32mmol)에 DMSO 4.6mL(64mmol)을 첨가하였다. 이 혼합물에 CH2Cl2 10mL에 용해된 1-(4메틸벤질)-4-피퍼리디놀 123 5.3g(26mmol)을 첨가하고, 그리고 그 혼합물을 냉온에서 5분동안 교반하였다. 상기 혼합물을 트리에틸아민 18mL(129mmol)로 급냉하고 실온으로 되도록 하였으며, 그리고 포화된 수성 암모늄 클로라이드를 첨가하였다. 유기상을 물과 염수로 세정하고, 건조하고 그리고 증발시켜 1-(4-메틸벤질)-4-피퍼리디논(124) 4.27g(81%)을 생성하였으며, 이는 부가적인 정제없이 그대로 사용되었다. GC/MS는 203의 분자 이온과 100% 순도를 나타내었다.
무수 메탄올 200mL에 용해된 1-(4-메틸벤질)-4-피퍼리디논 124 4.25g(21mmol)에 암모늄 아세테이트 32.2g(420mmol) 및 3A 분자 시브 25g을 첨가하였다. 30분간 교반한 후, 소디움 시아노보로하이드리드 5.25g(84mmol)을 분할하여 첨가하였다. 16시간 교반후, 그 혼합물은 중력 여과되고 그리고 진공하에서 메탄올은 증발되었다. 잔류물은 에테르와 얼음/HCl로 분리되었다. 산성의 수성층은 에테르로 2회 추출되고, 50% 수성 NaOH 및 얼음으로 염기성을 이루고 그리고 CH2Cl2로 추출되어 진한 오일로서 타이틀 아민 125 2.1g(48%)이 생성되었다. GC/MS는 204의 분자 이온을 나타내었다. 생성물은 부가적인 정제없이 그대로 사용되었다.
Figure 112002001376227-pct00068

1-(3-트리플루오로메틸벤질)-4-피퍼리디닐아민(127).
방법 34에 따라 제조되었다. 피리딘 7mL내에 용해된 1-(3-트리플루오로메틸벤질)-4-피퍼리돈[1-(4-메틸벤질)-4-피퍼리디논) 123과 동일한 방식으로 제조됨) 0.8g(3.1mmol)에 히드록실아민 염산 0.22g(3.1mmol)을 첨가하고, 그 혼합물을 밤새 교반하였다. 상기 혼합물을 진공하에서 증발시켜 그 잔류물을 에테르와 희석 수성 소디움 바이카보네이트로 분리하였다. 유기상은 진공하에서 건조되고 증발되어 오일로서 상기 옥심 0.52g(62%)를 생성하였으며, 이는 하기 수소화 단계에 그대로 사용되었다. GC/MS는 272의 분자 이온을 나타내었다.
에탄올 75mL내에 용해된 상기 옥심 0.5g(2mmol)에 물과 에탄올로 각각 3회 세정된 Raney?니켈 0.5g(습 중량)을 첨가하였다. 암모니아 가스를 상기 혼합물에 수분동안 버블링시키고 모두 7시간동안 Parr 쉐이커에서 수소 45psig하에 방치하였다. 증기를 배출시키고 그 혼합물을 중력 여과하였다. 잔류물을 에테르에 용해시키 고, 여과하고 그리고 증발시켜 타이틀 아민 127 0.43g(81%)을 생성하였으며, 이것은 부가적인 정제없이 그대로 사용되었다. GC/MS는 258의 분자 이온과 동일한 피크를 나타내었다.
Figure 112002001376227-pct00069

시스/트랜스 -2-메틸-3-테트라히드로퓨릴아민(128).
이 아민은 방법 35의 방법에 따라 획득되었다. 메탄올 50mL내에 용해된 2-메틸테트라히드로퓨란-3-온 옥심(상업적으로 이용가능한 2-메틸테트라히드로퓨란-3-온으로부터 표준 방법을 통해 제조됨) 1.15g(10mmol)에 물과 에탄올로 각각 3회 세정된 Raney?니켈 1g(습 중량)을 첨가하고, 그리고 수소 44psig하에서 Parr 쉐이커내에 방치하였다. 18시간후, 그 혼합물을 배기시키고 중력 여과하였다. 메탄올은 진공하에서 증발되고, 그 잔류물을 에테르내에 취하여 건조하였다. 에테르상은 진공하에서 증발되어 시스/트랜스 혼합물로서 타이틀 아민 128 0.6g(59%)를 생성하였다. GC/MS는 101의 분자 이온과 41% 그리고 101의 분자 이온과 59%를 나타내었다. 상기 아민은 부가적인 정제없이 그대로 사용되었다.
Figure 112002001376227-pct00070

2-벤질-2,6-디메틸-4-피라닐아민(133).
이 아민은 방법 36에 나타낸 방법에 따라 획득되었다. -78℃에서 CH2Cl2 40mL내에 용해된 3-트리메틸실옥시부티릭산 트리메틸실일 에스테르 4.88g(19.7mmol)에 페닐아세톤 2.4g(18mmol) 과 트리메틸실일 트리플래이트 1 방울을 첨가하였다. 그 혼합물은 2일동안 냉온에 방치시킨 다음, 피리딘 0.5mL로 급냉하고 그리고 실온이 되도록 하였다. 유기상은 희석 수성 소디움 바이카보네이트 용액으로 세정하고, 건조하고 그리고 진공하에서 증발되었다. 잔류물은 진공하에서 증류되어 2-벤질-2,6-디메틸-4-메틸렌-1,3-디옥산-4-온(129) 2.89g(67%)(b.p. 125-32@0.6mm)을 생성하였다. GC/MS는 모두 134(페닐아세톤)의 베이스 피크를 갖는 2 이소머를 나타내었다.
질소하에서 2-벤질-2,6-디메틸-4-메틸렌-1,3-디옥산-4-온(129) 1.5g(6.8mmol)에 무수 THF 20mL에 용해된 비스-(시클로펜틸)-비스-메틸 티타노신 2.9g(13.9mmol)을 첨가하였다. 그 혼합물을 16시간동안 환류로 가열하였다. 그 반응 혼합물을 실온으로 냉각하고 과량의 에테르로 급냉하였다. 전체 혼합물을 용출액으로서 에테르를 이용하여 실리카 겔을 통과하여 여과하였다. 그 여액을 증발시 키고 트리에틸아민 0.2%를 함유하는 EtOAc와 헥산(1:4)으로 실리카 겔상에 크로마토그래피하였다. 그 생성물을 함유하는 분획을 증발시키고 석유 에테르내에 슬러리화하고 진공하에서 여과하여 고형물 1.2g을 생성하였다. GC/MS는 약 3:1비율의 218의 분자 이온을 갖는 벤질-2,6-디메틸-4-메틸렌-1,4-디옥산(130)과 출발물질 129의 혼합물을 나타내었다. 상기 혼합물은 하기 재배열에 그대로 사용되었다.
질소하에서 톨루엔 5mL내에 용해된 상기 혼합물 1.2g(5.5mmol)에 -78℃에서 트리-이소부틸 알루미늄 수소화물 10.99mL(11mmol)을 첨가하였다. 그 반응물을 냉온에 16시간동안 방치한 다음 수 방울의 물로 급냉하였다. 그 혼합물을 실온으로 상승시키고 과량의 포화 수성 암모니아 클로라이드를 첨가하였다. 상기 혼합물을 상기 알루미늄염으로부터의 어려운 분리인, 과량의 CH2Cl2로 추출하였다. 유기층은 건조되고 증발되어 75:25 이소머 혼합물로서 2-벤질-2,6-디메틸-4-히드록시피라놀(131) 1.1g(90%)(GC/MS에 의함)을 생성하였다.
CH2Cl2 10mL내에 용해된 131 1.1g(5mmol)에 자기 교반하면서 피리디늄 클로로크로메이트 1.6g(7.5mmol)을 분할적가하였다. 실온에서 1시간후, 에테르를 첨가하고 그 혼합물을 실리카 겔 베드를 거쳐 여과시키고 에테르로 세정하였다. 여액을 증발시켜 벤질-2,6-디메틸-4-피라논(132) 0.88g(80%)을 생성하였다. GC/MS는 127의 베이스 피크(M-벤질)과 99% 순도를 나타내었다. 이 이소머 혼합물은 하기 환원성 아민화에 그대로 사용되었다.
무수 메탄올 40mL에 용해된 132 0.88g(4mmol)에 암모늄 아세테이트 6.16g(80mmol) 과 3A 분자 시브 5g을 첨가하였다. 실온에서 45분동안 교반후, 소디움 시아노보로하이드리드 1.02g(16mmol)을 자기 교반하면서 분할적가하였다. 그 혼합물을 중력 여과하고, 그리고 메탄올을 진공하에서 증발시켰다. 잔류물은 에테르와 희석 냉 HCl로 분리되었다. 수상은 에테르로 2회 추출된 다음, 물과 50% 수성 NaOH로 염기성으로 되었다. 그 생성물을 CH2Cl2로 추출하고, 건조하고 그리고 증발하여 타이틀 아민 133의 2 성분 이소머 혼합물 0.43g(49%)를 생성하였다. GC/MS는 128의 분자 이온과 58% 그리고 128의 분자 이온과 42%를 나타내었다.
Figure 112002001376227-pct00071

1-(3-페닐프로피오닐)-4-아미노피퍼리딘(136)의 제조.
이 아민은 방법 37의 방법에 따라 합성되었다. 톨루엔 20mL에 용해된 4-히드록시피러리딘 4g(40mmol)에 페닐프로피오닐 클로라이드(과량의 티오닐 클로라이드내에 용해된 페닐프로피온산 6g(40mmol)로부터 유도됨)를 첨가하였다. 그 혼합물에 과량의 2N 수성 NaOH를 첨가하였다. 24시간 교반후, 톨루엔층은 제거하고 수상은 CH2Cl2로 추출되고, 건조되고 그리고 진공하에서 증발되어 1-(3-페닐프로피오닐)-4- 히드록시피퍼리딘(134) 3.63g(39%)를 생성하였다. GC/MS는 233의 분자 이온과 100% 순도를 나타내었다.
-78℃에서 CH2Cl2 35mL내에 용해된 옥살일 클로라이드(19.2mmol) 1.68mL에 CH2Cl2 5mL내에 용해된 무수 DMSO 2.73mL(38.5mmol)을 첨가하였다. 첨가후, CH2 Cl2 5mL내에 용해된 1-(3-페닐프로피오닐)-4-히드록시피퍼리딘 134 3.6g(15.4mmol)을 첨가하고, 그 혼합물을 냉온에서 5분동안 교반하였다. CH2Cl2 5mL내에 용해된 트리에틸아민 10.73mL(77mmol)을 첨가하고, 그 혼합물을 실온이 되도록 하였다. 상기 혼합물을 포화된 수성 암모늄 클로라이드 용액으로 급냉하였다. 유기상을 물로 2회 그리고 포화된 염수로 세정하고, 그리고 진공하에서 증발시켜 1-(3-페닐프로피오닐)-4-케토피퍼리딘(135) 3.2g(89%)를 생성하였다. GM/MS는 231의 분자 이온과 100% 순도를 나타내었다.
무수 메탄올 125mL내에 용해된 135 3.2g(13.8mmol)에 암모늄 아세테이트 21.3g 및 3A 분자 시브 20g을 첨가하였다. 30분 교반후, 소디움 시아노보로하이드리드 3.47g(55.2mmol)을 교반하면서 분할적가하였다. 3시간후, 그 혼합물을 중력 여과하고, 메타올을 진공하에서 증발시켰다. 잔류물은 얼음/HCl 과 에테르로 분리되었다. 산성 수상은 에테르로 2회이상 추출되었다. 그 수상은 얼음과 50% 수성 NaOH로 염기성으로 되었다. 그 혼합물을 CH2Cl2로 추출하고, 건조하고 그리고 진공하에서 증발시켜 타이틀 아민 136 1.5g(47%)를 생성하였다. GC/MS는 232의 분자 이 온과 100% 순도를 나타내었다.
Figure 112002001376227-pct00072
아민 139의 제조
이 아민의 합성은 방법 38에 나타나 있다. 스크류 캡 테플론 튜브에 137(M. shimano 등., Tetrahedron, 1998, 54, 12745)(0.80g, 1.21mmol) 및 피리딘 6mL을 장입하였다. 그 용액을 0℃로 냉각하고 HF-피리딘 복합체 1.1mL로 처리하고 그리고 그 용액을 실온으로 상승시키고 17시간동안 교반하였다. 추가로 HF-피리딘 1.1mL을 첨가한 다음, 그 반응물을 추가고 30시간동안 교반하였다. 이 혼합물을 1N HCl 40mL과 1:1 헥산-디에틸 에테르 20mL의 교반된 아이스-콜드 용액에 부었다. 층이 분리되었으며, 수성층은 1:1 헥산-디에틸 에테르(2×20mL)로 추출되었다. 혼합 유기층은 아이스-콜드 1N HCl(1×20mL) 및 염수(1×20mL)로 세정되었다. 그 용액을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하였다. 조질의 생성물을 방사 크로마토그래피(3:1 헥산-EtOAc)를 통해 정제하여 히드록시에스테르(+소량의 불순물) 282mg을 생성하였으며, 이는 다음 단계에 직접 이송되었다.
0℃로 냉각된 피리딘내에 용해된 상기 조질의 히드록시에스테르(282mg, 0.48mmol)의 교반된 용액에 이소부티릴 클로라이드(0.2mL, 1.92mmol)를 적가하였다. 냉각조를 제거하고 그 혼합물을 5시간동안 교반하였다. 물(2mL)을 첨가하고 그 혼합물을 추가로 30분동안 교반하였다. 그 용액을 에테르(3×10mL)로 추출하였다. 에테르층은 아이스 콜드 1N HCl(2×10mL), 포화된 NaHCO3(1×10mL) 및 염수(1×10mL)을 이용하여 성공적으로 세정되었다. 상기 용액을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하였다. 그 조질의 생성물을 방사 크로마토그래피(4:1 헥산-EtOAc)를 통해 정제하여 이소부티릴 에스테르 138(2 단계에 대하여 23%) 171mg을 생성하였다.
이 에스테르의 BOC기는 상기한 표준 BOC-비보호(deprotection) 조건에 따라 제거되어 원하는 아민 139를 생성하였다.
Figure 112002001376227-pct00073

아민 145의 제조
이 아민은 방법 39에 나타낸 바와 같이 제조되었다. 히드록시에스테르 140(M. Shimano 등., Tetrahedron, 1998, 54, 12745)(6.27mmol)을 DMF 15mL에 용해하고 0℃로 냉각하였다. 이 용액에 DMAP(1.53g, 12.53mmol), EDCI(1.8g, 9.40mmol) 및 N-BOC-O-Bn-(L)-트레오닌(2.52g, 8.15mmol)을 성공적으로 첨가하였다. 그 반응물을 실온으로 상승시키고 밤새 교반하였다. 그 용액을 신속히 아이스 콜드 0.5N HCl 30mL과 4:1 헥산-에테르의 교반된 혼합물에 부었다. 층이 분리되었으며, 수성층은 4:1 헥산-에테르(1×30mL)로 추출되었다. 혼합된 유기층은 0.5N HCl(1×20mL)과 염수(2×20mL)로 세정되었다. 그 용액은 MgSO4에 걸쳐 건조되고, 여과되고 그리고 농축되었다. 그 조질의 물질을 아니스알데히드를 용출하기위해 3:1 CH2Cl2-헥산 1.25L를 이용하고 그 다음 결합된 생성물 141(3.95g, 88%)를 용출하기위해 65:10:25 CH2Cl2-에테르-헥산을 이용하여 실리카 겔(150g)에서 크로마토그래피하였다.
EtOAc 25mL내에 용해된 벤질 에테르 141(1.32g, 1.84mol)과 10% Pd/C 200mg의 혼합물을 수소 압력 50psi하의 Parr 기구내에서 5시간동안 쉐이킹하였다. 그 혼합물을 Celite?패드에 걸쳐 여과하고 농축하여 NMR 분석시 상당히 순도가 높은 히드록시산 142(680mg, 70%)를 생성하였다.
DMF 7mL내에 용해된 히드록시산 142(1.54g, 2.86mmol)과 벤질 브로마이드(1.5mL, 12.29mmol)의 교반된 용액에 고형 소디움 바이카보네이트(1.2g, 14.27mmol)을 첨가하였다. 그 혼합물은 실온에 24시간동안 교반된 다음, 물 25mL과 4:1 헥산-에테르 10mL로 분리되었다. 그 층은 분리되었으며, 수성층은 4:1 헥산-에테르(2×10mL)로 추출되었다. 혼합 유기층은 0.1N NaOH(1×10mL)과 물(1×10mL)로 세정되었다. 그 용액을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하였다. 그 조질의 물질을 방사 크로마토그래피(4:1 헥산-EtOAc)를 통해 정제되어 히드록시벤질 에스테르 143 1.04g(60%)을 생성하였다.
피리딘 7mL에 용해된 에스테르 143(840mg, 1.34mmol)과 아세틱 무수물(1.0mL, 10.68mmol)의 교반된 용액에 DMAP(40mg, 0.67mmol)를 첨가하였다. 그 반응물을 실온에서 4시간동안 교반하고 EtOAc 80mL로 희석하였다. 이 용액을 포화된 CuSO4(3×30mL), 1N HCl(1×30mL), 포화된 NaHCO3(1×30mL) 및 염수(1×30mL) 를 이용하여 성공적으로 세정하였다. 그 용액을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하여 스펙트럼 분석시 상당히 순수한 아세테이트 144 0.9g(100%)를 수득하였다. 상기 아세테이트 144를 상기한 바와 같은 유사한 단계를 통해 아민 145로 전환시켰다.
Figure 112002001376227-pct00074

2,3,4-트리- O -알킬- 베타 -D-크실로피라노실아민 146c, d, e의 제조.
이들 아민의 합성은 방법 40에 나타내었다. 실온에서 CH3OH내에 용해된 트리아세톡시-2-아지드옥실로피라노실 아지드 146에 메탄올내에 용해된 소디움 메톡시드 1.0M 용액 1.1mL(1.06mmol)을 첨가하였다. 그 반응물을 밤새 교반하고 5 ×8-100 산성 수지(~0.6g)로 중화하였다. 그 용액을 여과하고 농축하였다. 획득된 아지도트리올 147a를 직접 다음 단계에 사용하였다.
그 조질의 트리올 147a를 DMF 15mL에 용해하고, 그리고 NaH(60% 분산물, 0.53g, 13.28mmol)를 15분에 걸쳐 4부분으로 나누어 첨가하였다. 그 반응물을 실온 에서 30분동안 교반하고, 알릴 브로마이드(2.7mL, 33.20mmol)를 첨가하고, 그리고 그 혼합물을 밤새 교반하였다. 포화된 암모늄 클로라이드(10mL)을 조심스럽게 첨가하고 물 50mL을 첨가하였다. 수성 용액은 EtOAc(3×30mL)로 추출되었다. 유기층은 물(4×30mL)과 염수(2×30mL)로 성공적으로 세정하였다. 그 용액을 MgSO4에 걸쳐 건조하고, 여과하고 그리고 농축하였다. 그 조질의 물질을 방사 크로마토그래피(6:1 헥산-EtOAc)를 통해 정제하여 상기 트리-O-n-알릴-2-아지드옥실로피라노즈 147b 753mg(77%)를 생성하였다.
그 결과물인 아지드 및 알릴 부는 수소 1 기압하에서 4시간동안 EtOAc 40mL내에서 10% Pd/C 150mg으로 교반함으로써 환원되었다. 그 결과물인 용액을 Celite?패드를 통해 여과하고 증발시켜 정량적인 수득의 타이틀 아민 147c를 생성하였다.
아민 147d의 제조는 알킬화 단계에서 벤질 브로마이드를 사용하고, 아지드를 상기한 바와 같이 아민으로 환원한 것을 제외하고 147c의 방법과 동일하였다.
아지드 146을 수소 1기압하에서 EtOAc내의 10% Pd/C를 이용하여 동일한 수소화로 아민 147e를 생성하였다.
2,3,4-트리- O -아세틸- 베타 -L-퓨코피라노실 아민(148)의 제조.
Figure 112002001376227-pct00075
EtOAc 40mL내에 용해된 2,3,4-트리-O-아세틸-베타-L-퓨코피라노실 아지드(Acros) 용액에 10% Pd/C 120mg을 첨가하였다. 이용액을 수소 가스 1기압(1 atm)하에서 3시간동안 교반하였다. 그 혼합물을 Celite?패드를 통해 여과하고 그 패드를 EtOAc(25mL)로 세정하였다. 그 용액을 증발시켜 원하는 아민 148(688mg, 100%)를 생성하였다.
1,3,4,6-테트라- O -아세틸-2-아미노-2-데옥시- 알파 -D-글루코피라노즈(149)의 제조.
Figure 112002001376227-pct00076
EtOAc 25mL에 용해된 1,3,4,6-테트라-O-아세틸-2-아지도-2-데옥시-알파-D-글루코피라노즈(TCI-US)(300mg, 0.80mmol)의 용액에 10% Pd/C 180mg을 첨가하였다. 이 용액을 수소 가스 1기압(1atm)하에서 3시간동안 교반하였다. 그 혼합물을 Celite?패드를 통해 여과하고 그 패드를 EtOAc(20mL)로 세정하였다. 그 용액을 증발시켜 원하는 아민 149(282mg, 100%)를 생성하였다.
벤질 및 메틸 3-아미노-트리데옥시-L-아라비노-헥소피라노시데스 150a 및 150b의 제조.
Figure 112002001376227-pct00077

이들 아민은 L. Daley, 등., Synth. Commun. 1998, 28, 61의 방법을 통해 합성되었다.
Figure 112002001376227-pct00078

아민 153의 제조.
이 아민은 방법 41에 나타낸 바와 같이 제조되었다.
[(3S, 7R, 8R, 9S)-7-벤질-8-히드록시-9-메틸-2,6-디옥소-[(1,5]디옥소난-3-일]-카바믹 산 tert-부틸 에스테르(151)를 M. Shimano 등., Tetrahedron, 1998, 54, 12745에 의해 기술된 바와 같이 제조하였다. 피리딘(5mL)내에 용해된 이 에스테르의 교반된 용액에 메타크릴로일 클로라이드(0.10mL, 1.0mmol)를 서서히 5분에 걸쳐 첨가하였다. 그 결과물인 혼합물을 N2 기압하에서 밤새 실온에서 교반하였다. 그 반응 혼합물은 EtOAc(75mL)과 1N HCl(50mL)로 분리되었다. 유기층은 물로 그리고 포화 NaCl로 세정되고, MgSO4에 걸쳐 건조되고 그리고 농축하여 투명한 오일을 생성하였다. 이 조질의 오일을 용출액으로서 헥산내의 30% EtOAc를 이용하여 실리카 겔상에서 크로마토그래피하여 투명한 글래스로서 아크릴화된 중간체 152(138mg)를 생성하였다. 그 BOC기는 이러한 중간체로부터 상기 참고문헌에 기술된 바와 같이 제거되어 타이틀 아민 153이 생성되었다.
안티마이신 A 3 의 아닐린(154)의 제조.
Figure 112002001376227-pct00079
0℃로 냉각된 CH2Cl2 2.5mL에 용해된 안티마이신 A3(25mg, 0.048mmol)의 교반된 용액에 피리딘(11μL) 및 PCl5(27mg, 0.13mmol)을 첨가하였다. 그 혼합물을 1.5시간동안 환류시킨다음, -30℃로 냉각시키고 그리고 메탄올(2.5mL)을 첨가하고, 그리고 그 혼합물을 실온으로 상승시키고 밤새 교반하였다. 그 용액을 CH2Cl2 13mL과 포화된 소디움 바이카보네이트 13mL의 0℃ 혼합물에 부었다. 그 혼합물을 분리 깔대기에서 쉐이킹하였으며 그 층은 분리되었다. 수성층은 CH2Cl2 (2×5mL)로 추출되었으며 혼합 유기층은 건조(MgSO4)되고, 여과되고 그리고 농축되어 안티마이신 A3의 아닐린을 생성하였다.
헤테로실클릭 방향족 아미드 2를 생성하기위한 아민과 오르토 -히드록시헤테로방향족 카르복실산 결합의 일반적 방법.
결합 방법 A: N-(2-4-클로로페닐)에틸)-3-히드록시피리딘-2-카르복스아미드(233)의 제조.
Figure 112002001376227-pct00080

무수 THF(60mL)내의 3-히드록시피리딘-2-카르복실산(1.39g, 0.01mol)의 교반된 혼합물을 아르곤하에서 -20℃로 냉각하였다. 여기에 톨루엔(5.1g, 0.01mol)내의 포스겐 20% 용액을 즉시 모두 첨가하고 그 결과물인 혼합물을 90분동안 교반하는 한편, 그 온도를 서서히 0℃로 상승시켰다. 그 다음 그 반응 혼합물을 -20℃로 재냉각시키고 그리고 THF(20mL)내의 디이소프로필에틸아민(2.58g, 0.02mol) 용액을 30분에 걸쳐 첨가하였다. 첨가완료후, 그 혼합물을 추가로 2시간동안 그 온도에서 교반하고 서서히 0℃로 상승시켰다. 교반은 0℃에서 밤새 계속되었다. 이 교반된 혼합물에 2-(4-클로로페닐)에틸아민(1.56g, 0.01mol)을 즉시 모두 첨가하고 그 결과물인 혼합물을 실온에서 6시간동안 교반하였다. 그 혼합물을 에테르(100mL)로 희석하고, 1N HCl(100mL)로 세정하고, 건조(MgSO4)하고 그리고 농축하여 회백색 고형물(1.95g)로서 상기 타이틀 화합물을 생성하였다. 질량 스펙트럼은 m/e 276 및 278에서 예상된 3:1 패런트 이온을 나타내었다.
결합 방법 B : 3-히드록시-4-메톡시-N-(4-(4-트리플루오로메틸페녹시)페닐)-피리딘-2-카르복스아미드(425)의 제조.
Figure 112002001376227-pct00081

CH2Cl2(10mL)내의 4-(4-트리플루오로메틸페녹시) 아닐린(0.20g, 0.8mmol)과 DMAP(0.10g, 0.085mmol)의 교반된 용액에 CH2Cl2(5mL)내의 3-벤질옥시-6-브로모-4-메톡시피리딘-2-카르복닐클로라이드(3)를 즉시 모두 첨가하였다. 그 결과물인 혼합물을 실온에서 밤새 교반한 다음 2N HCl(10mL)에 부었다. 유기층은 분리되고 수성층은 CH2Cl2(2×10mL)로 추출되었다. 유기층은 혼합되고, 건조되고(MgSO4) 그리고 농축되어 점착성의 고형물이 생성되었다. 이 고형물을 EtOAc(20mL)내에 취하고 카본상에서 트리에틸아민(0.80g, 0.8mmol) 및 5% Pd를 첨가하였다. 그 결과물인 혼합물을 Parr 쉐이커내에서 수소 기압(초기 압력=50psi)으로 30분동안 방치시켰다. 그 혼합물을 여과하고, 0.1N HCl(20mL)로 세정하고, 건조하고(MgSO4) 그리고 농축하여 회백색 고형물(0.14g)( m.p.=122-129℃)로서 상기 타이틀 화합물을 생성하였다.
결합 방법 C : N-(4-시클로헥실페닐)-3-히드록시피리딘-2-카르복스아미드의 제조.
Figure 112002001376227-pct00082

무수 DMF(5mL)내의 3-히드록시피리딘-2-카르복실산(상기한 바와 같은 Pd/C의 존재하에서 촉매성 수소화에 의해 16으로부터 획득됨)(0.42g, 3mmol) 및 4-시클로헥실아닐린(0.35g, 2mmol)의 교반된 용액에 1-히드록시벤조트리아졸(0.48g), EDCI(0.65g) 및 N-메틸모르폴린(1.41g)을 성공적으로 첨가하였다. 추가량의 DMF(5mL)을 첨가하고 그 반응 혼합물을 실온에서 밤새 교반하였다. 그 혼합물을 물(200mL)에 부은 다음, EtOAc(2×75mL)로 추출하였다. 유기층은 혼합되고, 물(100mL)로 세정된 다음 포화 NaCl 용액(50mL)로 세정되고, 건조되고(MsSO4) 그리고 농축되었다. 방치시 고형화되는 그 조질의 오일을 실리카 겔(4:1 석유 에테르-EtOAc)상에서 크로마토그래피하여 황갈색의 고형물(m.p. 91-93℃)로서 상기 타이틀 화합물(0.42g)을 생성하였다.
헤테로시클릭 방향족 아미드에서 다른 헤테로시클릭 방향족 아미드로의 개질.
4-히드록시티오펜- N -(3,3,5,5-테트라메틸시클로헥실)-3-카르복스아미드(554)의 제조.
Figure 112002001376227-pct00083

4-메톡시티오펜카르복실산과 3,3,5,5-테트라메틸시클로헥실아민을 함께 이미 언급된 일반 결합 방법 C에 따라 결합하여 4-히드록시티오펜-N-(3,3,5,5-테트라메틸시클로헥실)-3-카르복스아미드를 생성하였다.
클로로포름 15mL내의 이 메톡시티오펜아미드 500mg 용액을 건조된 튜브하에서 Dry Ice-아세톤 배쓰에서 5분동안 교반하였다. 이 용액에 클로로포름 10mL내의 보론 트리브로마이드(2 당량) 940mg 용액을 15분에 걸쳐 적가하였다. 교반은 계속되는 한편 그 반응 혼합물은 실온으로 상승되고 밤새 방치되었다. 그 다음 그 반응 혼합물을 냉수 배쓰내에 방치시키고, 물 15mL을 적가하였다. 15분 교반후, 그 혼합물을 CH2CL2 50mL로 희석하고, 그 유기층은 분리되었다. 혼합 유기 추출물은 물 25mL로 그리고 포화 염용액으로 세정되고 건조되었다. 그 추출물을 여과하고 농축하였다. 잔류물을 용출액으로서 CH2CL2-5% EtOAc를 사용하여 실리카 겔상에서 크로마토그래피하여 황갈색 결정물(m.p. 170-174℃)로서 상기 타이틀 화합물 310mg을 생성하였다. 석유 에테르-EtOAc로부터 시료를 재결정화하여 황갈색 침상(m.p. 171-173℃)을 수득하였다.
Figure 112002001376227-pct00084

결합된 중간체 156a-d의 제조.
이들 중간체는 방법 42에 나타낸 바와 같이 제조되었다. CH2Cl2(75mL)내에 용해된 (±)세린 염산의 이소프로필 에스테르(2.75g)와 트리에틸아민(3.55g)의 교반된 용액에 CH2Cl2(15mL)내에 용해된 3-벤질옥시-6-브로모-4-메톡시피리딘-2-카르보닐클로라이드(3)의 용액을 5분에 걸쳐 첨가하였다. 그 혼합물을 실온에서 30분동안 교반한 다음, 1N HCl(75mL)에 부었다. 유기층은 분리되고, 물(25mL)로 세정되고, 건조되고(Na2SO4) 그리고 용매는 증발되어 노란색의 검(gum)(6.7g)이 생성되었다. 이 물질은 에테르/헥산으로부터 재결화될 수 있어 백색의 고형물(m.p. 100-103℃)로서 155a를 생성하였다. (±)-세린 염산의 메틸 에스테르로부터 출발하는 동일한 방법은 상기 메틸 에스테르 중간체 155b를 생성하였다.
CH2Cl2(25mL)내에 용해된 155a(1.17g), 트리에틸아민(0.31g) 및 DMAP(0.06g)의 교반된 용액에 α-메틸히드로신남오일 클로라이드(0.46g)을 부분적가하였다. 그 결과물인 혼합물을 실온에서 4시간동안 교반한 다음, 2N HCl(15mL)에 부었다. 유기상은 분리되고, 1N NaOH(15mL)로 세정되고, 건조되고(MgSO4) 그리고 용매는 증발되어 노란색 오일로서 156a(1.45g)를 생성하였다. NMR(CDCl3)은 이 오일이 부분입체 이성젤체의 1:1혼합물과 일치하였다.
CH2Cl2(10mL)내에 용해된 3-(t-부틸디메틸실일옥시)부티릴 클로라이드(3.55g)(A. Wissner 및 C.V. Grudzinskas, J. Org. Chem., 1978, 43, 3972의 방법에 의해 t-부틸디메틸실일 에스테르로부터 제조됨)을 무수 피리딘(25mL)내에 용해된 155b(6.6g)와 DMAP(0.18g)의 교반된 용액에 신속히 첨가하였다. 그 반응 혼합물을 0℃에서 15분동안 교반한 다음, 실온에서 3시간동안 교반하였다. 에테르(200mL)로 희석한 후, 그 혼합물을 물(2×100mL)로 추출하고, 건조하고(MgSO4) 그리고 그 용매를 증발시켰다. 톨루엔(25mL)을 잔류물에 첨가하고 다시 그 용매를 증발시켰다. 그 노란색 오일성 잔류물을 크로마토그래피(실리카 겔, 7:3 헥산/아세톤)를 통해 정제하여 부분입체 이성질체의 혼합물로서 156b를 생성하였다.
DMF(20mL)내에 용해된 2-벤질-3-(t-부틸디메틸실일옥시)프로피온산(7.36g)(N.P. Peet, N.L. Lentz, M.W. dudley, A.M.L. Ogden, D.E. MaCarty, 및 M.M. Racke, J. Med. Chem., 1993, 36, 4015)에 t-부틸디메틸실일 클로라이드(4.52g)을 즉시 모두 첨가한 다음, 이미다졸(4.1g)을 첨가하고 그 결과물인 혼합물은 24시간동안 실온에서 교반되었 다. 그 혼합물을 물(300mL)로 희석한 다음 펜탄(3×100mL)으로 추출하였다. 그 펜탄상은 물로 세정되고, 건조되고(Na2SO4), 그 용매는 증발되어 무색의 오일(9.5g)을 생성하였다. NMR(CDCl3)에서 이것은 부분입체 이성질체의 혼합물과 일치되었다. 이 에스테르(4.1g)를 N.P. Peete, 등., J. Org. Chem., 1978, 43, 3972의 방법에 의해 이에 상응하는 산성 클로라이드로 전환하였다. 이 산성 클로라이드는 상기한 바와 같이 155b로 응축되어 실리카 겔 크로마토그래피(4:1헥산/아세톤)후, 부분입체 이성질체의 혼합물로서 원하는 156c로 생성되었다.
메탄올내에 용해된 156c(4.5g)의 교반된 용액에 농축 HCl(1.5mL)을 첨가하였다. 그 결과물인 혼합물을 실온에서 30분동안 교반하고, 물(200mL)로 희석한 다음, CH2Cl2(2×100ml)로 추출하였다. 유기상은 건조되고(MgSO4), 용매는 증발되었다. 잔류물은 실리카 겔 크로마토그래피(7:3 헥산/아세톤)를 통해 정제되어 엷은 노란색의 검(2.8g)으로서 156d를 생성하였다. NMR(CDCl3)은 이것이 부분입체 이성질체의 혼합물임을 나타내었다.
156a-d는 상기한 바와 같이Pd/c의 존재하에서 수소화반응에 의해 이에 상응하는 비보호된(deprotected) 헤테로시클릭 방향족 아미드로 전환되었다.
Figure 112002001376227-pct00085

중간체 158의 제조.
이 중간체의 합성은 방법 43에 나타나있다. 아미드 157은 CH2Cl2(150mL)내에 용해된 (+)-트랜스-1-히드록시-2-아미노시클로펜탄 히드로브로마이드(7.09g, 38.9mmol) 및 3-벤질옥시-6-브로모-4-메톡시피리딘-2-카보닐클로라이드(3)(13.8g, 38.9mmol)로부터, 하기 일반 결합 방법 B에 따라 제조되고, 용출액으로서 1:1 헥산-EtOAc를 사용하여 플래쉬 크로마토그래피에 의해 정제되었다. 이에따라 백색 고형물(m.p. 56-57℃)로서 157(13.4g)이 생성되었다.
디메틸술폭시드(7.4mL, 104.1mmol)를 CH2Cl2(100mL)내에 용해된 옥살일 클로라이드(4.54mL, 52.08mmol)의 78℃ 용액에 서서히 첨가한 다음, CH2Cl2(25mL)내에 용해된 아미드 157(10.46g, 24.8mmol) 용액에 서서히 첨가하였다. 30분후, Et3N을 첨가하고 그 용액을 서서히 실온으로 상승시켰다. 그 혼합물을 포화 NH4Cl(100mL)에 붓고 CH2Cl2(2×100mL)로 추출하였다. 혼합 유기층은 염수로 세정되고, 건조되고 용매는 증발되었다. 잔류물은 용출액으로서 1:1 EtOAc-헥산을 사용하여 컬럼 크로마 토그래피를 통해 정제되어 GC/MS 및 3H-NMR에 따른 순수 케톤 158이 생성되었다.
157 및 158 모두 상기한 바와 같이 Pd/C의 존재하에서 수소화반응에 의해 이에 상응하는 비보호된 헤테로시클릭 방향족 아미드로 전환되었다.
Figure 112002001376227-pct00086

중간체 160a-d의 제조.
이들 중간체는 방법 44에 나타낸 바와 같이 제조되었다. 하기 일반 결합 방법 C에 따른 세리놀과 3-벤질옥시-6-브로모-4-메톡시피콜린산(16)의 결합으로 1H, 13C-NMR 및 IR 스펙트라에 의해 순수한 무색의 오일로서 1,3-디올 159를 생성하였다.
1,3-디올 159(1mmol)을 Dean-Stark 셋업에서 촉매작용성 량의 p-톨루엔술폰 산(0.1mmol)의 존재하에서 벤젠(20mL/mmol)내에서 적절한 카보닐 화합물(2mmol) 또는 이에 상응하는 디메틸 아세탈(2mmol)을 이용하여 환류시킴으로써 응축하였다.
따라서, 159와 1,3,3-트리메톡시프로판의 응축은 synanti 부분입체 이성질체의 2:1 혼합물로서 아세탈 160a를 생성하였다. 질량 스펙트럼(ES)은 (m/e) 495 및 497에서 [M+]를 나타내었다. 1H, 13C-NMR 및 IR 스펙트라는 상기 구조 160a와 일치하였다.
159와 2-메틸-3-(4-tert-부틸)페닐프로파논의 응축은 synanti 부분입체 이성질체의 3:1 혼합물로서 아세탈 160b를 생성하였다. 질량 스펙트럼(ES)은 (m/e) 597에서 [M+]를 나타내었다. 1H, 13C-NMR 및 IR 스펙트라는 상기 구조 160b와 일치하였다.
159와 디히드로-β-이오논의 응축은 synanti 부분입체 이성질체의 2:1 혼합물로서 아세탈 160c를 생성하였다. 질량 스펙트럼(EI)은 (m/e) 587에서 [M+]를 나타내었다. 1H, 13C-NMR 및 IR 스펙트라는 상기 구조 160c와 일치하였다.
159와 3,3,5,5-테트라메틸시클로헥사논의 응축은 아세탈 160d를 생성하였으며, 이는 1H, 13C-NMR 및 IR 스펙트라에 일치하였다.
중간체 160a-d를 상기한 바와 같이 Pd/C의 존재하에서 수소화반응에 의해 이에 상응하는 비보호된 헤테로시클릭 방향족 아미드로 전환하였다.
Figure 112002001376227-pct00087

화합물 280 및 281의 제조.
방법 45는 이들 화합물의 제조를 나타낸다. 따라서, 우선 2,3,6,6-테트라메틸-2-시클로헵테닐아민을 표준 결합 방법 C를 이용하여 2-히드록시-3-메톡시-2-피콜린산에 결합하여 중간체 161을 생성하였다. Tetrahedron Lett. 1991, 32, 1831-1834의 방법에 따라 화합물 161을 디클로린화하여 디클로로 유도체 281을 생성하였다. CH2Cl2에서 표준 m-CPBA 산화는 N-옥시드-함유 에폭시 아날로그 162를 생성하였으며, 이는 표준 촉매성 수소화반응 조건하에서 H2(45psi) 및 10% Pd/C 처리시 화합물 280을 형성하였다.
Figure 112002001376227-pct00088

트랜스 -4-히드록시-3,3,5,5-테트라메틸피콜린아미드(264)의 제조.
이 화합물은 방법 46에 나타낸 바와 같이 제조되었다. 메탄올 2mL내에 용해된 케토-피콜린아미드 266(56mg, 0.18mmol)의 교반된 용액에 소디움 보로하이드리드(20mg, 0.53mmol)를 첨가하였다. 그 반응물을 5시간동안 교반하고 메탄올을 증발시켰다. 그 조질의 물질을 물 5mL로 희석하고 EtOAc(3×5mL)로 추출하였다. 유기층은 물(1×5mL) 및 염수(1×5mL)로 세정하였다. 그 용액을 MgSO4에 걸쳐 건조하고, 여과하고 농축하였다. NMR 및 GC 분석은 트랜스 입체화학적으로 타이틀 화합물 264와 95% 순도로 일치하였다.
Figure 112002001376227-pct00089

화합물 341의 제조.
이 화합물의 제조는 방법 47에 나타나 있다. 벤질 에스테르 전구체 139(방법 38)(33mg, 0.046mmol)을 EtOAc 10mL에 용해하고 Pearlman's 촉매 110mg을 첨가하였다. 그 혼합물을 수소 압력 50psi하의 Parr 기구에서 12시간동안 쉐이킹하였다. 그 다음 그 용액을 여과하고 농축하였다. 그 다음 그 잔류물을 최소량의 에테르에 용해하고 석유 에테르를 침전물이 형성될때까지 첨가하였다. 그 고형물을 여과에 의해 수집하고 건조하여 타이틀 화합물 341을 생성하였다.
N-(3-히드록시-4-메톡시-2-피리딜카보닐)-2-아미노-2-데옥시-알파-D-글루코피라노즈(334)의 제조.
Figure 112002001376227-pct00090

1,3,4,6-테트라-O-아세틸-2-아미노-2-데옥시-알파-D-글루코피라노즈(151)와 3-히드록시-4-메톡시피콜린산을 표준 결합 방법 C를 사용하여 함께 결합하였다. 메탄올 6mL내에 용해된 그 결과물인 피콜린아미드(0.19g, 0.38mmol)의 용액에 리튬 히드록시드 모노하이드레이트(0.92mmol, 40mg)를 첨가하였다. 그 반응 혼합물을 실온에서 밤새 교반하였다. 그 용액을 DOWEX?5 ×8-100 산성 수지(0.5g)를 첨가하여 중화하였다. 그 혼합물을 여과하고 농축하여 상기 타이틀 화합물(110mg, 88%)을 생성하였다.
Figure 112002001376227-pct00091

엑소시클릭 에스테르 166a, 카바메이트 166b 및 카보네이트 166c의 일반 제조.
이들 화합물은 방법 48에 나타낸 바와 같이, M. Shimano 등., Tetrahedron, 1998, 54, 12745의 방법에 따라 제조된 아민 164로 출발하여 일반적으로 제조되었다. 이 아민은 표준 결합 방법 C에 따라 3-벤질옥시-6-브로모-4-메톡시피콜린산 16과 결합된 다음, 그 결과물인 중간체 165를 염기의 존재하에서 적절한 카르복실산 클로라이드, 알킬 이소시아네이트 또는 알킬 클로로포르메이트와 반응시켜 각각 원하는 보호된(protected) 에스테르 166a, 카바메이트 166b 또는 카보네이트 166c를 생성하였다. 이들 화합물의 탈보호(deprotection)를 Pd/C의 존재하에서 H2를 이용하여 상기한 방법에 따라 수행하여 원하는 에스테르, 카바메이트 또는 카보네이트를 생성하였다. 상기 단계는 다른 유사한 에스테르, 카바메이트 및 카바네이트를 제조하는데 사용되었다.
166a의 제조.
피리딘(10mL)내에 165(180mg, 0.29mmol)의 교반된 용액에 시클로프로판카보닐 클로라이드(0.45mL, 5mmol)를 5분에 걸쳐 서서히 첨가하였다. 그 혼합물을 N2하의 실온에서 밤새 교반하였다. 그 결과물인 혼합물을 1N HCl(30mL)에 붓고 EtOAc(2×75mL)로 추출하였다. 유기층은 혼합되고 물(25mL)로 그리고 포화 NaCl(25mL)로 세정되고, MgSO4에 걸쳐 건조되고 농축되어 오렌지색의 오일을 생성하였다. 그 조질 의 오일을 용출액으로서 헥산 구배의 30%에서 50% EtOAc를 사용하여 실리카 겔에서 크로마토그래피하여 투명한 오일로서 타이틀 화합물 166a(100mg)를 생성하였다.
166b의 제조.
CH2Cl2(5mL)내에 165(200mg, 0.33mmol)의 교반된 용액에 트리에틸아민(2방울), DMAP(1mg) 및 이소프로필 이소시아네이트(0.2mL, 2mmol)을 첨가하였다. 그 결과물인 혼합물을 질소 분위기하의 실온에서 밤새 교반하였다. 그 반응 혼합물을 1N HCl(25mL)에 붓고 EtOAc(2×50mL)로 추출하였다. 유기층은 혼합되고 물로 그다음 포화 NaCl로 세정되고, MgSO4에 걸쳐 건조되고, 농축되어 분홍색의 포움을 생성하였다. 그 조질의 포움을 용출액으로서 헥산 구배의 30%에서 50% EtOAc를 사용하여 실리카 겔에서 크로마토그래피하여 백색 고형물로서 타이틀 화합물 166b(90mg)을 생성하였다.
166c의 제조.
피리딘(5mL)과 CH2Cl2(5mL)에 165(180mg, 0.29mmol)의 교반된 용액을 질소 분위기 하의 아이스 배스에서 0℃로 냉각하였다. 이소프로필 클로로포르메이트(톨루엔내에 1M, 5mL)를 상기 냉각된 혼합물에 서서히 1분에 걸쳐 첨가하였다. 아이스 배스를 제거하고 상기 혼합물을 실온에서 밤새 교반하였다. 그 반응 혼합물은 1N HCl(25mL)과 EtOAc(75mL)로 분리되었다. 유기층은 물로 그다음 포화 NaCl로 세정되 고, MgSO4에 걸쳐 건조되고, 그리고 농축되어 투명한 오일로 되었다. 그 조질의 오일을 용출액으로서 헥산 구배의 30%에서 50% EtOAc를 사용하여 실리카 겔에서 크로마토그래피하여 투명한 오일로서 타이틀 화합물 166c(80mg)을 생성하였다.
Figure 112002001376227-pct00092

중간체 167과 168의 제조.
상기(방법 9)한 바와 같이 획득된 아민 53의 부분입체 이성질체 혼합물을 상기(방법 49)한 바와 같은 일반 결합 방법 A를 통해 산성 클로라이드 3과 결합하여 부분입체 이성질체 167168의 혼합물을 생성하였다. 이들은 조심스럽게 실리카 겔 크로마토그래피(85:15 헥산/아세톤)로 분리되어 각각 약 35% 수율의 순수한 167168을 생성하였다. 이들은 상기한 바와 같이 Pd/C의 존재하에서 H2로 비보호되었다.
표 1은 상기 방법에 의해 적절한 출발물질로부터 제조된 부가적인 화학식 1의 화합물을 나타낸다.
살균류제 유용성
본 발명의 화합물은 균류, 특히 식물 병원 및 목재를 부패시키는 균류를 조절하는 것으로 발견되었다. 식물 균류 질병의 치료에 사용되는 경우, 상기 화합물은 질병을 억제하고 식물학적으로 수용가능한 양으로 식물에 적용된다. 적용은 식물에 균류의 감염 전 및/또는 후에 이루어질 수 있다. 적용은 식물의 씨, 식물이 성장하는 토양, 묘목을 심기위한 논 또는 살포수의 처리를 통해 이루어질 수 있다. 다른 적용은 목재 처리를 통해 목재 및/또는 목재 제품의 파괴를 조절할 수 있다.
본 명세서에 사용된, 용어 "질병억제 및 식물학적으로 수용가능한 양"은 식물 병원을 사멸하거나 억제하거나, 조절이 필요한 식물 질병을 근절하거나 저지하지만 그 식물에 유효하게 독성을 제공하지않는 본 발명의 화합물의 양을 칭한다. 이 양은 일반적으로 약 1-1000ppm이 될것이며, 바람직하게는 10-500ppm이다. 필요한 화합물의 정확한 농도는 조절되는 균류 질병, 사용되는 배합물의 타입, 적용방법, 특정 식물 종, 기후 조건 및 다른 인자들에 따라 달라진다. 적절한 적용 비율은 헥타르당 약 50-1000그램(g/Ha) 범위이다.
본 발명의 화합물은 또한 저장된 알곡 및 균류가 침입하는 다른 비-식물성 서식처를 보호하는데 사용될 수 있다.
하기 실험은 본 발명의 화합물의 살균류적 효능을 조사하기위해 실험실에서 수행되었다.
시험관내( in vitro ) 균류 성장 억제의 생물학적 평가.
배양 조건: 균류의 분생자 또는 균사체 절편의 현탁액을 멸균 포테이토 덱스트로즈 브로스(Difco)에 마그타프로테 그리세아(Magnaporthe grisea)(피리쿨라리아 오리자에(Pyricularia oryzae) - PYRIOR), 리족토니아 솔라니(Rhizoctonia solani)(RHIZSO), 미코스페렐라 그라미니콜라(Mycosphaerella graminicola)(셉토리아 트리티시(Septoria tritici) - SEPTTR), 스타고노스포라 노도룸(Stagonospora nodorum)(렙토스페리아 노도룸(Leptosphaeria nodorum) - LEPTNO), 우스틸라고 매이디스(Ustilago maydis)(USTIMA) 그리고 호밀 시드 브로스에 피토프토라 인페스탄스(Phytophthora infestans)(PHYTIN)로 제조하였다. 상기 현탁액을 디메틸술폭시드에 용해된 실험 살균류제들의 시료를 함유하고 있는 멸균 96웰 마이크로타이터 플래이트에 파이펫팅하였다. 살균류제의 농도는 최종 용매 농도가 배지의 1%를 초과하지않은채로 0.001-100ppm으로 달리하였다. 상기 균류들은 단지 용매만 함유하는 대조군의 웰에서 웰이 균류의 성장으로 불투명해질때까지 24-30℃에서 여러시간 간격동안 배양되었다. 이 시점에서 성장 억제는 용매 처리된 대조군이 측정되는 것과 비교하여 각 웰의 시각적 검사 및 퍼센트 억제로 측정하였다.
표 2에서, "+"는 상기 병원을 성장 배지에 25ppm의 농도로 편입시킨 경우 시험 물질이 최소 80% 성장 억제를 제공하였음을 나타내며, "-"는 80%미만의 성장 억 제를 제공하였음을 나타낸다. 빈칸은 시험되지않은 것이다.
생체내에서 전체 식물 균류 감염 조절의 생물학적 평가.
화합물 배합은 연속 희석으로 아세톤에 물질들을 기술적으로 용해시키고 원하는 농도로 아세톤에 제조함으로써 수행되었다. 최종 처리 체적은 0.05% 수성 Tween-20 또는 0.01% Triton X-100을 9 볼륨 첨가(병원에 따라 달라짐)함으로써 얻어진다.
포도의 도우니 백분병(Downy Mildew)(플라스모파라 비티콜라( Plasmopara viticola ) - PLASVI)(24시간 예방보호제): 포도나무(품종 카리그네인(Carignane))를 토양이 없는 토탄-기초 포팅 혼합물("메트로믹스(Metromix)")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 플라스모파라 비티콜라((Plasmopara viticola)의 수성 포자낭 현탁액으로 분무 접종되고, 습도포화 챔버(dew chamber)에 밤새 유지되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
토마토의 감자역병(Late Blight)(피토프토라 인페스탄스( Phytophthora infestans ) - PhYTIN)(24시간 예방보호제): 토마토(품종 러트거스(Rutgers))를 토양이 없는 토탄-기토 포팅 혼합물("메트로믹스")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 피토프토라 인페스탄스(Phytophthora infestans)의 수성 포자낭 현탁액으로 분무 접종되고, 습도포화 챔버에 밤새 유지되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
밀의 갈색 녹병(Brown Rust)(푸씨니아 레콘디타( Puccinia recondita ) - PUCCRT)(24시간 예방보호제): 밀(품종 유마(Yuma))을 토양이 없는 토탄-기토 포팅 혼합물("메트로믹스")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 푸씨니아 레콘디타(Puccinia recondita)의 수성 포자낭 현탁액으로 분무 접종되고, 습도포화 챔버에 밤새 유지되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
밀의 분말성 백분병(Powdery Mildew)(에리시페 그라미니스( Erysiphe graminis ) - ERYSGT)(24시간 예방보호제): 밀(품종 모논(Monon))을 토양이 없는 토탄-기토 포팅 혼합물("메트로믹스")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 분말성 백분병 감염된 밀 식물의 분생자로 더스팅함으로써 접종되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
밀의 점무늬병(Leaf Blotch)(셉토리아 트리티시( Septoria tritici ) - SEPTTR)(24시간 예방보호제): 밀(품종 유마(Yuma))을 토양이 없는 토탄-기토 포팅 혼합물("메트로믹스")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장 시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 셉토리아 트리티시(Septoria tritici)의 수성 포자 현탁액으로 분무 접종되고, 습도포화 챔버에 밤새 유지되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
밀 껍질마름병(Glume Blotch)(렙토스페리아 노도룸(Leptosphaeria nodorum) - LEPTNO)(24시간 예방보호제): 밀(품종 유마(Yuma))을 토양이 없는 토탄-기토 포팅 혼합물("메트로믹스")에서 씨앗으로부터 그 씨앗이 10-20cm 크기가 될때가지 성장시켰다. 그 다음 이들 식물에 상기 시험 화합물을 100ppm의 비율로 분무하였다. 24시간후, 시험 식물들은 (렙토스페리아 노도룸(Leptosphaeria nodorum))의 수성 포자 현탁액으로 분무 접종되고, 습도포화 챔버에 밤새 유지되었다. 그 다음 그 식물들은 처리되지않은 대조군 식물에서 질병이 발생될때가지 온실로 옮겨졌다.
표 2에서, "++"는 상기 병원을 성장 배지에 100ppm의 농도로 편입시킨 경우 시험 물질이 처리되지않은 식물에 대하여 질병 발생 비교시 균류 감염의 최소 75-100% 조절성을 제공하였음을 나타내며, "+"는 균류 감염의 25-74% 조절성을 제공하였음을 나타내며, 그리고 "-"는 균류 감염의 <25% 조절성을 제공하였음을 나타낸다. 빈칸은 시험되지않은 것이다.
[표 1]
Figure 112002001376227-pct00093
[표 1]
Figure 112002001376227-pct00094
[표 1]
Figure 112002001376227-pct00095
[표 1]
Figure 112002001376227-pct00096
[표 1]
Figure 112002001376227-pct00097
[표 1]
Figure 112002001376227-pct00098
[표 1]
Figure 112002001376227-pct00099
[표 1]
Figure 112002001376227-pct00100
[표 1]
Figure 112002001376227-pct00101
[표 1]
Figure 112002001376227-pct00102
[표 1]
Figure 112002001376227-pct00103
[표 1]
Figure 112002001376227-pct00104
[표 1]
Figure 112002001376227-pct00105
[표 1]
Figure 112002001376227-pct00106
[표 1]
Figure 112002001376227-pct00107
[표 1]
]
Figure 112002001376227-pct00108
[표 1]
Figure 112002001376227-pct00109
[표 1]
Figure 112002001376227-pct00110
[표 1]
Figure 112002001376227-pct00111
[표 1]
Figure 112002001376227-pct00112
Figure 112002001376227-pct00113
[표 1]
Figure 112002001376227-pct00114
[표 1]
Figure 112002001376227-pct00115
[표 1]
Figure 112002001376227-pct00116
[표 1]
Figure 112002001376227-pct00117
[표 1]
Figure 112002001376227-pct00118
[표 1]
Figure 112002001376227-pct00119
[표 1]
Figure 112002001376227-pct00120
[표 1]
Figure 112002001376227-pct00121
[표 1]
Figure 112002001376227-pct00122
[표 1]
Figure 112002001376227-pct00123
[표 1]
Figure 112002001376227-pct00124
[표 1]
Figure 112002001376227-pct00125
[표 1]
Figure 112002001376227-pct00126
[표 1]
Figure 112002001376227-pct00127
[표 1]
Figure 112002001376227-pct00128
[표 1]
Figure 112002001376227-pct00129
[표 1]
Figure 112002001376227-pct00130
[표 1]
Figure 112002001376227-pct00131

[표 2]
Figure 112002001376227-pct00132
[표 2]
Figure 112002001376227-pct00133
[표 2]
Figure 112002001376227-pct00134
[표 2]
Figure 112002001376227-pct00135
[표 2]
Figure 112002001376227-pct00136
[표 2]
Figure 112002001376227-pct00137
[표 2]
Figure 112002001376227-pct00138
[표 2]
Figure 112002001376227-pct00139
[표 2]
Figure 112002001376227-pct00140
[표 2]
Figure 112002001376227-pct00141
[표 2]
Figure 112002001376227-pct00142
[표 2]
Figure 112002001376227-pct00143

본 발명의 화합물은 하나 또는 그 이상의 화학식 1의 화합물과 식물학적으로- 수용가능한 캐리어를 포함하는 조성물 형태로 적용하는 것이 바람직 하다. 상기 조성물은 적용시 물 또는 다른 액체에 분산된 농축 배합물이거나 혹은 후속 처리없이 적용되는 분말(dust) 혹은 과립상(granular) 배합물일 수 있다. 상기 조성물은 농업분야에 일반적으로 알려져 있는 방법으로 제조되나, 본 발명의 화합물이 존재함으로 새롭고 중요한 것이다. 농화학자가 원하는 조성물을 용이하게 제조할 수 있도록 조성물의 몇몇 배합에 대하여 제시하였다.
화합물이 적용되는 분산은 대개 화합물의 농축된 배합물로 부터 제조되는 수성 서스펜션 혹은 에멀션이다. 이와 같은 수용성, 수-분산성 혹은 에멀션화가능한 배합물은 고형물, 일반적으로 습윤분말로 알려진 고형물 혹은 수성 액체, 일반적으로 에멀션화가능한 농축물 또는 수성 서스펜션으로 알려진 액체이다. 본 발명은 본 발명의 화합물을 살균제로 사용하기 위해 운반하도록 배합될 수 있는 모든 부형제(vehicles)를 포함하는 것으로 의도된다. 본 발명의 화합물이 첨가될 수 있는 어떠한 물질이, 살균제로서 본 발명에 의한 화합물의 활성을 현저하게 저해하지 않는한 사용될 수 있는 것으로 이해된다.
압축하여 수분산가능한 과립으로 형성할 수 있는 습윤 분말은 활성 화합물, 불활성 캐리어(carrier) 및 계면활성을 포함한다. 활성 화합물의 농도는 일반적으로 약 10 w/w% ∼ 90w/w%, 보다 바람직하게는 약 25 w/w% ∼ 75w/w% 이다. 습윤 분말 조성물의 제조시, 독성 생성물은 변질안산암(prophyllite), 탈크(talc), 쵸크(chalk), 석고, Fuller의 토(earth), 벤토나이트, 애터펄자이트, 전분, 카세인, 글루텐, 몬모릴로나이트, 점토, 규조토, 정제된 실리케이트등과 같은 어떠한 미분된 고형분과 혼합될 수 있다. 이 때. 미분된 캐리어는 휘발성 유기 용매에서 분쇄되거나 혹은 독성물질과 혼합될 수 있다. 습윤 분말을 약 0.5-10% 포함하는 유효 계면활성제로는 술폰화된 리그닌, 나프탈렌술포네이트, 알킬벤젠술포네이트, 알킬 술페이트 및 알킬 페놀의 에틸렌 옥사이드 부가물과 같은 비-이온성 계면활성제를 포함한다.
본 발명에 의한 화합물의 에멀션화가능한 농축물을 적합한 액체를 약 10-약 50w/w %와 같은 통상의 양으로 포함한다. 화합물은 물과 혼화가능한 용매 혹은 물과-혼화되지 않는 유기 용매와 에멀션화제의 혼합물인 불활성 캐리어에 용해된다. 상기 농축물은 물과 오일로 희석하여 오일-물 에멀션 형태의 분무 혼합물을 형성할 수 있다. 유용한 유기 용매로는 방향족, 특히, 중(heavy) 방향족 나프타와 같은 석유의 끓는점이 높은 나프탈렌 혹은 올레핀 부분을 포함한다. 예를들어, 로진 유도체를 포함하는 테르펜 용매, 시클로헥사논과 같은 지방족 케톤 및 2-에톡시에탄올과 같은 복합 알코올과 같은 다른 유기 용매가 또한 사용될 수 있다.
본 발명에 이롭게 사용될 수 있는 에멀션화제는 이 기술분야의 기술자에 의해 쉽게 결정될 수 있으며 여러가지 비이온성, 음이온성, 양이온성 및 양쪽성 계면활성제 혹은 둘 또는 그 이상의 계면활성제의 혼합물을 포함한다. 에멀션화 가능한 농축물의 제조에 유용한 비이온성 에멀션화제의 예로는 폴리알킬렌 글리콜 에테르 및 알킬 및 아릴 페놀, 지방족 알코올, 지방족 아민, 혹은 지방산의 에틸렌 옥사이드, 에톡시화된 알킬 페놀과 같은 프로필렌 옥사이드 및 폴리올 혹은 폴리옥시알킬렌으로 가용화된 카르복시산 에스테르로의 축합 산물을 포함한다. 양이온 계면활성제로는 4차 암모늄 화합물 및 지방산 아민염을 포함한다. 음이온성 계면활성제로는 알킬아릴 술폰산의 오일-가용성 염(예를들어, 칼슘), 술페이트화 폴리글리콜 에테르의 오일-가용성염 및 포스페이트화 폴리글리콜 에테르의 적절한 염을 포함한다.
본 발명에 의한 에멀션화가능한 농축물의 제조에 사용될 수 있는 유기 액체의 예는 크실렌과 같은 방향족 액체, 프로필 벤젠 분획 혹은 혼합된 나프탈렌 분획, 광유, 디옥틸 프탈레이트, 케로센 및 여러가지 지방산의 디알킬 아미드와 같은 치환된 방향족 유기 액체; 특히 디에틸렌 글리콜의 n-부틸 에테르, 에틸 에테르 혹은 메틸에테르 및 트리에틸렌 글리콜의 메틸 에테르와 같은 지방산 글리콜 및 글리콜 유도체의 디메틸 아미드이다. 바람직한 유기액체는 크실렌과 프로필 벤젠 분획이며, 크실렌이 가장 바람직한 것이다.
계면 활성 분산제는 분산제와 활성 화합물의 총중량의 0.1-20중량%의 양으로 액체 조성물에 일반적으로 사용된다. 활성 조성물은 또한 다른 혼화가능한 첨가제, 예를들어, 식물 성장 조절제 및 농경에 사용되는 다른 생물학적 활성 화합물을 함유할 수 있다.
수성 서스펜션은 수성 부형제에 약 5-50w/w%의 농도로 분산된 본 발명의 물-불용성 화합물의 분산물을 포함한다. 서스펜션은 미세하게 분쇄된 화합물로 부터 이를 물과 상기한 동일한 타입으로 부터 선택된 계면활성제를 포함하는 부형제에 결렬하게 혼합하여 제조된다. 무기염 및 합성 혹은 천연 고무(gums)과 같은 불활성 성분을 또한 첨가하여 수성 부형제의 밀도 및 점도를 증가시킬 수 있다. 화합물을 수성 혼합물을 분리하고 이를 샌드밀, 볼밀 혹은 피스톤-타입의 균질화기에서 균질화함과 동시에 분쇄 및 혼합하는 것이 대개 가장 효과적이다.
화합물은 토양에 적용하기에 특히 유용한 과립 조성물로서 또한 적용될 수 있다. 과립 조성물은 일반적으로 전부 혹은 대부분이 거칠게 분쇄된 애터펄자이트, 벤토나이트, 규조암, 점토 혹은 유사한 저렴한 물질로 구성되는 불활성 캐리어에 분산된 약 0.5-10w/w %의 화합물을 함유한다.
이와 같은 조성물은 화합물을 적합한 용매에 용해시키고 약 0.5∼3㎜ 범위의 적합한 입자크키로 예비형성된 과립 캐리어에 적용하여 일반적으로 제조한다. 이와 같은 조성물은 또한 캐리어와 화합물의 반죽 혹은 페이스트를 제조하고 원하는 과립 입자를 얻도록 건조하여 배합할 수 있다.
화합물을 함유하는 분말(dust)은 분말 형태의 화합물을 예를들어, 카올린, 점도, 분쇄된 화산암등과 같은 적합한 분말상 농경 캐리어와 단순히 혼합하여 제조된다. 분말은 화합물을 약 1-10w/w%로 적절하게 함유할 수 있다.
활성조성물은 보조 계면활성제를 함유하여 목적하는 곡물 및 유기체상에대한 조성물의 침적(deposition), 젖음(wetting) 침투(penetration)를 증대시킬 수 있다. 이들 보조 계면활성제는 임의로 배합물의 성분 혹은 용기 혼합물로 사용될 수 있다. 보조 계면활성제의 양은 물의 분무-체적으로 기준으로 0.01-1.0 v/v %, 바람직하게는 0.05-0.5 v/v %일 수 있다. 적합한 보조 계면활성제로는 에톡시화된 노릴 페놀, 에톡시화된 합성 혹은 천연 알코올, 술포숙신산 에스테르의 염, 에톡시화된 유기실리콘, 에톡시화된 지방산 아민 및 계면활성제와 광유 혹은 식물성유의 혼합물일 수 있다.
상기 조성물은 본 발명의 하나 또는 그 이상의 화합물 최소 1%와 다른 살충 화합물을 포함하는 살균 배합물을 임으로 포함할 수 있다. 이와 같은 부가적인 살충 화합물은 적용하기 위해 선택한 매질에서 본 발명의 화합물과 혼화가능하고 본 발명의 활성에 길항작용을 하지 않는 살균제, 살충제, 살자포제(nematocides), 살비제(miticides), 절지류 살생제(arthropodicides), 살박테리아제 혹은 이들의 결합일 수 있다.
따라서, 이와 같은 구현에 있어서, 다른 살충 화합물이 동일한 또는 다른 살충제의 사용에 보조적인 독성제로 사용된다. 배합에서 상기 화합물은 일반적으로 1:100∼100:1의 비율로 존재할 수 있다.
본 발명 범주에 균류의 공격을 제어 혹은 방지하는 방법이 포함된다. 이들 방법은 균류가 있는 장소 혹은 감염이 방지되어야 하는 장소에 본 발명에 의한 하나 또는 그 이상의 화합물 혹은 조성물을 살균양 적용(예를들어, 곡류 혹은 포도식물에 적용)하는 것을 포함한다. 상기 화합물은 여러가지 식물을 낮은 식물학적 독성을 나타내는 살균수준으로 처리하는데 적합하다. 화합물은 예방보호제(protectant) 혹은 근절제(eradicant)로 유용하다. 본 발명의 화합물은 화합물로서 혹은 화합물을 포함하는 조성물로서 알려져 있는 여러가지 기술중 어떠한 방법으로 적용될 수 있다. 예를들어, 화합물은 식물을 상업적 가치를 손상하지 않고 여러가지 균류를 제어하고자 하는 식물의 뿌리, 종자 혹은 잎에 적용될 수 있다. 물질은 어떠한 일반적으로 사용되는 배합물 형태, 예를들어, 용액, 분말, 습윤 분말, 유동성 농축물 혹은 에멀션화가능한 농축물로 적용될 수 있다. 이들 물질은 여러가지 알려져 있는 방식으로 일반적으로 적용될 수 있다.
본 발명의 화합물은 현저한 살균 효과, 특히 농경에 대하여 현저한 살균효과를 갖는다. 많은 화합물이 농경학적 곡류 및 원예작물 혹은 목재, 페인트, 가죽 혹은 카페트 배킹(backing)에 특히 효과적이다.
특히, 화합물은 유용한 식물 농작물을 감염시키는 여러가지 바람직하지 않은 균류를 효과적으로 제어한다. 예를들어, 다음에 예시되는 균류 종(species)을 포함하는 여러가지 균류에 대한 활성이 실증되었다: 포도 노균병(Downy Mildew)(플라스모파라 비티콜라(Plasmopara viticola) - PLASVI), 토마토 잎마름병(피토프토라 인레스탄스(Phytophthora infestans)-PHYTIN), 사과 붉은 곰팡이 병(벤투리아 이내퀄리스(Venturia inaequalis)-VENTIN), 밀 Brown Rust(푸치니아 레콘디타(Puccinia recondita)-PUCCRT), 밀 황녹병(Stripe Rust)(푸치니아 스트리포미스(Puccinia striiformis)-PUCCST), 도열병(Rice Blast)(피리쿨라리아 오리자이(Pyricularia oryzae)-PYRIOR), 비트(Beet) 가지갈색원성병(Cerospora Leaf Spot)(세르코스포라 베티콜라(Cercospora Beticola)-CERCBE), 밀 백분병(Powdery Mildew)(에리스페 그라미니스(Erysiphe graminis)-ERYGST), 밀 얼룩점병(Leaf Blotch)(세프토리아 트리티시(Septoria tritici)-SEPTTR), 밀 잎집무늬마름병(Sheath Blight)(리조토니아 솔라니(Rhizoctonia solani)-RHIZSO), 밀 안정병(Eyespot)(프세우도세르코스포렐라(Pseudocercosporella herpotrichoides)-PSDCHE), 복숭아 염수병(Brown Rot)(모닐리아 프루티콜라(Monilinia fructicola)-MONIFC) 및 밀 껍질마름병(Glume Blotch of Wheat)(레프토르라에리아 노도륨(Leptosphaeria nodorum)-LEPTNO). 본 발명에 의한 화합물의 상기한 균류에 대한 효율은 화합물을 살균제로 이용하는 일반적인 용도에 해당하는 것으로 이 기술분양의 기술자에게 이해될 수 있다.
본 발명의 화합물은 광범위한 살균 효율을 갖는다. 적용되는 활성물질의 정확한 양은 적용되는 특정한 활성물질 뿐만 아니라 원하는 특정한 작용, 제어하려는 균류종 및 이들의 성장단계뿐만 아니라 톡성 활성성분과 접촉되는 식물 또는 다른 산물의 부분(part)에 따라 달라진다. 따라서, 본 발명에 의한 화합물의 모든 활성성분 및 이를 함유하는 조성물은 비슷한 농도 혹은 같은 균류종에 대하여 그 효과가 동일하지 않을 수 있다. 본 발명의 화합물 및 조성물은 식물의 질병 제어에 식물학적으로 수용가능한 양으로 효과적으로 사용된다.

Claims (31)

  1. 화학식 1의 헤테로고리 방향족 아미드.
    [화학식 1]
    Figure 712007001978439-pct00144
    식 중,
    a)
    Figure 712007001978439-pct00145
    는 6- 원자 헤테로고리 방향족 고리를 나타내며,이 때,
    (ⅰ) X1 및 X4는 독립적으로 N 혹은 CR"이며; X2 및 X3는 CR"이며;
    (ⅱ) X1 또는 X4중 N이 하나 이하이며;
    이 경우, R"는 H, 할로겐, 시아노, 히드록시, C1-C3 알킬, C1-C3 할로알킬, 시클로프로필, C1-C3 알콕시, C1-C3 할로알콕시, C1-C3 알킬티오, C6 또는 C10 아릴, C1-C3 NHC(O)알킬, NHC(O)H, C1-C3 할로알킬티오, C2-C4 알케닐, C2-C4 할로알케닐, C2-C4 알키닐, C2-C4 할로알키닐 혹은 니트로이며, 인접한 R" 치환체는 고리를 형성할 수 있으며;
    b) Z는 O, S 혹은 NORz 이며, 여기서, Rz는 H 혹은 C1-C3알킬이며;
    c) A는 치환되지 않았거나, 할로겐, 히드록시, 니트로, C6 또는 C10 아로일, C6 또는 C10 아릴옥시, C1-C8아실옥시, C1-C6 알킬티오, C6 또는 C10 아릴티오, C6 또는 C10 아릴, 헤테로아릴, 헤테로아릴티오, 헤테로아릴옥시, C1-C6아실, C1-C6 할로알킬, C1-C6 알콕시, 혹은 C1-C6 할로알콕시로 치환된, 분지된 혹은 분지되지 않은 C2-C14 알케닐 혹은 C2-C14 알키닐을 나타내며, 상기 치환기중 헤테로아릴부는 하나 또는 그 이상의 헤테로원자를 포함하는 5 또는 6원자 방향족 고리이다.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 균류의 서식지 혹은 감염을 제어 혹은 예방하고자하는 장소에 청구항 1항의 헤테로고리 방향족 아미드를 살균 유효양 적용함을 포함하는 균류 감염을 제어 혹은 예방하는 방법.
  27. 제1항에 있어서, 상기 Z는 O임을 특징으로 하는 헤테로고리 방향족 아미드.
  28. 제 1항에 있어서, 상기 X1은 N이고, X2 및 X3는 CH이고, X4는 CH 혹은 COMe, CMe, CCl, COEt 혹은 CSMe임을 특징으로 하는 헤테로고리 방향족 아미드.
  29. 제 28항에 있어서, 상기 Z는 O이고, A는 치환되지 않았거나, 할로겐, 히드록시, 니트로, C6 또는 C10 아로일, C6 또는 C10 아릴옥시, C1-C8 아실옥시, C1-C6 알킬티오, C6 또는 C10 아릴티오, C6 또는 C10 아릴, 헤테로아릴, 헤테로아릴티오, 헤테로아릴옥시, C1-C6 아실, C1-C6 할로알킬, C1-C6 알콕시 혹은 C1-C6 할로알콕시로 치환된, 분지된 혹은 분지되지 않은 C2-C14 알케닐 혹은 C2-C14 알키닐이며, 상기 치환기중 헤테로아릴부는 하나 또는 그 이상의 헤테로 원자를 포함하는 5 또는 6원자 방향족 고리임을 특징으로 하는 헤테로고리 방향족 아미드.
  30. 청구항 1항의 헤테로고리 방향족 아미드 및 식물학적으로 수용가능한 캐리어를 포함하는 살균조성물
  31. 제 30항에 있어서, 살충제, 살균제, 제초제, 선충구제제, 진드기 박멸제, 절지동물 박멸제, 박테리아 살균제 및 이들의 조합으로 구성되는 그룹에서 선택된 최소 하나의 다른 화합물을 추가로 포함함을 특징으로하는 조성물.
KR1020027000677A 1999-07-20 2000-07-20 살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및제조방법 KR100743262B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14467699P 1999-07-20 1999-07-20
US60/144,676 1999-07-20

Publications (2)

Publication Number Publication Date
KR20020040753A KR20020040753A (ko) 2002-05-30
KR100743262B1 true KR100743262B1 (ko) 2007-07-27

Family

ID=22509639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027000677A KR100743262B1 (ko) 1999-07-20 2000-07-20 살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및제조방법

Country Status (18)

Country Link
US (3) US6521622B1 (ko)
EP (1) EP1196388A2 (ko)
JP (1) JP2003528806A (ko)
KR (1) KR100743262B1 (ko)
CN (1) CN1208321C (ko)
AU (1) AU780698B2 (ko)
BR (1) BR0012615A (ko)
CA (1) CA2374995C (ko)
CR (1) CR6557A (ko)
CZ (1) CZ2002219A3 (ko)
DK (1) DK1516874T3 (ko)
ES (1) ES2546386T3 (ko)
HU (1) HUP0301764A3 (ko)
PL (1) PL206415B1 (ko)
TR (1) TR200200587T2 (ko)
UA (1) UA73519C2 (ko)
WO (1) WO2001005769A2 (ko)
ZA (1) ZA200200436B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170026444A (ko) * 2014-07-08 2017-03-08 다우 아그로사이언시즈 엘엘씨 3―히드록시피콜린산 제조 방법

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355660B1 (en) 1999-07-20 2002-03-12 Dow Agrosciences Llc Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
US20020177578A1 (en) 1999-07-20 2002-11-28 Ricks Michael J. Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
WO2001014365A1 (en) * 1999-08-20 2001-03-01 Fred Hutchinson Cancer Research Center COMPOSITIONS AND METHODS FOR MODULATING APOPTOSIS IN CELLS OVER-EXPRESSING bcl-2 FAMILY MEMBER PROTEINS
CZ2002487A3 (cs) * 1999-08-20 2002-06-12 Dow Agrosciences Llc Fungicidní heterocyklické aromatické amidy, prostředky na jejich bázi, způsoby jejich pouľití a přípravy
EP1234827A3 (en) * 1999-08-20 2003-06-18 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
FR2803592A1 (fr) * 2000-01-06 2001-07-13 Aventis Cropscience Sa Nouveaux derives de l'acide 3-hydroxypicolinique, leur procede de preparation et compositions fongicides les contenant.
US7241804B1 (en) 2000-08-18 2007-07-10 Fred Hutchinson Cancer Research Center Compositions and methods for modulating apoptosis in cells over-expressing Bcl-2 family member proteins
EP1322614A2 (en) * 2000-09-18 2003-07-02 E. I. du Pont de Nemours and Company Pyridinyl amides and imides for use as fungicides
WO2002080928A1 (en) * 2001-04-03 2002-10-17 Merck & Co., Inc. N-substituted nonaryl-heterocyclo amidyl nmda/nr2b antagonists
FR2827286A1 (fr) 2001-07-11 2003-01-17 Aventis Cropscience Sa Nouveaux composes fongicides
US6987123B2 (en) * 2001-07-26 2006-01-17 Cadila Healthcare Limited Heterocyclic compounds, their preparation, pharmaceutical compositions containing them and their use in medicine
EP1412351A4 (en) * 2001-07-31 2005-04-06 Dow Agrosciences Llc REDUCTIVE CLEAVAGE OF THE EXOCYCLIC ESTERS OF UK 2A OR BZW. DERIVATIVES AND PRODUCTS MADE THEREFROM
DE10161765A1 (de) 2001-12-15 2003-07-03 Bayer Cropscience Gmbh Substituierte Phenylderivate
AU2002367023A1 (en) * 2001-12-21 2003-07-30 Cytokinetics, Inc. Compositions and methods for treating heart failure
US20050101590A1 (en) * 2002-02-19 2005-05-12 Kiyoshi Yasui Antipruritics
EP1587796A1 (en) * 2003-01-31 2005-10-26 AstraZeneca AB Saturated quinoxaline derivatives and their use as metabotropic glutamate receptor ligands
CA2900181C (en) * 2003-08-06 2019-01-29 Catherine Tachdjian Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
US20050176767A1 (en) * 2003-10-30 2005-08-11 Laval Chan Chun Kong Pyridine carboxamide and methods for inhibiting HIV integrase
EP1548007A1 (en) 2003-12-19 2005-06-29 Bayer CropScience S.A. 2-Pyridinylethylcarboxamide derivatives and their use as fungicides
KR100904360B1 (ko) 2004-01-28 2009-06-23 미쓰이 가가쿠 가부시키가이샤 아미드 유도체 및 그 제조 방법 및 그의 살충제로서의 사용방법
EP1574511A1 (en) * 2004-03-03 2005-09-14 Bayer CropScience S.A. 2-Pyridinylethylcarboxamide derivatives and their use as fungicides
US7459562B2 (en) * 2004-04-23 2008-12-02 Bristol-Myers Squibb Company Monocyclic heterocycles as kinase inhibitors
TW200538453A (en) * 2004-04-26 2005-12-01 Bristol Myers Squibb Co Bicyclic heterocycles as kinase inhibitors
US7432373B2 (en) * 2004-06-28 2008-10-07 Bristol-Meyers Squibb Company Processes and intermediates useful for preparing fused heterocyclic kinase inhibitors
US7173031B2 (en) 2004-06-28 2007-02-06 Bristol-Myers Squibb Company Pyrrolotriazine kinase inhibitors
US7439246B2 (en) * 2004-06-28 2008-10-21 Bristol-Myers Squibb Company Fused heterocyclic kinase inhibitors
KR20070116066A (ko) * 2005-03-31 2007-12-06 쉐링 코포레이션 스피로사이클릭 트롬빈 수용체 길항제
WO2006129432A1 (ja) * 2005-05-31 2006-12-07 Sumitomo Chemical Company, Limited カルボキサミド化合物及びその用途
JP5149003B2 (ja) * 2005-06-21 2013-02-20 三井化学アグロ株式会社 アミド誘導体ならびに該化合物を含有する殺虫剤
JP5003014B2 (ja) * 2005-07-14 2012-08-15 住友化学株式会社 カルボキサミド化合物及びその植物病害防除用途
EP1913815A4 (en) * 2005-07-27 2012-09-19 Mitsui Chemicals Agro Inc PESTICIDES
HUE026011T2 (en) 2006-03-22 2016-05-30 Hoffmann La Roche Pyrazoles as 11-beta-HSD-1
PL2089364T3 (pl) * 2006-11-08 2013-11-29 Bristol Myers Squibb Co Związki pirydynonu
JP2010534722A (ja) 2007-07-27 2010-11-11 ブリストル−マイヤーズ スクイブ カンパニー 新規グルコキナーゼ活性化薬およびその使用方法
EP2188274A4 (en) * 2007-08-03 2011-05-25 Boehringer Ingelheim Int VIRAL POLYMERASE HEMMER
US20100286131A1 (en) * 2007-08-03 2010-11-11 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2009076747A1 (en) 2007-12-19 2009-06-25 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
NZ586630A (en) * 2008-01-23 2011-12-22 Bristol Myers Squibb Co 4-Pyridinone compounds and their use for cancer
AU2009229399A1 (en) * 2008-03-26 2009-10-01 Orthologic Corp. Thrombin derived peptides for smooth muscle relaxation
PL2296467T3 (pl) * 2008-05-30 2016-04-29 Dow Agrosciences Llc Sposoby zwalczania patogenów grzybiczych odpornych na qoi
JP5655080B2 (ja) * 2009-10-07 2015-01-14 ダウ アグロサイエンシィズ エルエルシー 穀類において真菌を制御するための5−フルオロシトシンを含有する相乗的殺真菌組成物
PT3153020T (pt) * 2009-10-07 2019-02-26 Dow Agrosciences Llc Misturas fungicidas sinérgicas para o controlo de fungos em cereais
EP2576519A4 (en) * 2010-06-07 2014-07-09 Dow Agrosciences Llc PYRAZINYL-CARBOXAMIDES AS FUNGICIDES
CN102351783B (zh) * 2011-08-23 2015-11-18 李建东 1-苄基-3-哌啶酮盐酸盐的合成方法
KR102055466B1 (ko) * 2012-04-03 2020-01-22 미쓰이가가쿠 아그로 가부시키가이샤 알킬화 방향족 아미드 유도체의 제조방법
RU2014149186A (ru) * 2012-05-07 2016-06-27 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Макроциклические пиколинамиды в качестве фунгицидов
WO2013169664A2 (en) 2012-05-07 2013-11-14 Dow Agrosciences Llc Macrocycle picolinamides as fungicides
CN104284589B (zh) 2012-05-07 2018-05-01 陶氏益农公司 Uk-2a的前杀真菌剂在防治香蕉黑条叶斑病中的用途
AU2013370491B2 (en) 2012-12-28 2016-10-06 Corteva Agriscience Llc Synergistic fungicidal mixtures for fungal control in cereals
US9482661B2 (en) 2012-12-31 2016-11-01 Dow Agrosciences Llc Synthesis and use of isotopically labeled macrocyclic compounds
JP2016507511A (ja) 2012-12-31 2016-03-10 ダウ アグロサイエンシィズ エルエルシー 殺真菌剤としての大環状ピコリンアミド
EP3052490A4 (en) * 2013-10-01 2017-06-07 Dow AgroSciences LLC Macrocyclic picolinamide compounds with fungicidal activity
WO2015050822A1 (en) * 2013-10-01 2015-04-09 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
CN103651352B (zh) * 2013-11-18 2015-05-13 四川大学 N-(2-苯氧基苯)苯甲酰胺类化合物作为农用杀菌剂的新用途
CN103664844A (zh) * 2013-11-18 2014-03-26 四川大学 N-(2-苯氧基苯)呋喃甲酰胺类化合物及其制备方法和杀菌活性
WO2015100182A1 (en) 2013-12-26 2015-07-02 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
EP3099170A4 (en) 2013-12-26 2017-06-21 Dow AgroSciences LLC Use of macrocyclic picolinamides as fungicides
NZ720907A (en) 2013-12-31 2017-05-26 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
EP3139916A4 (en) 2014-05-06 2017-11-15 Dow AgroSciences LLC Macrocyclic picolinamides as fungicides
CN106470983A (zh) 2014-07-08 2017-03-01 美国陶氏益农公司 作为杀真菌剂的大环吡啶酰胺
ES2836201T3 (es) * 2014-07-08 2021-06-24 Dow Agrosciences Llc Proceso para la preparación de ácidos 4-alcoxi-3-hidroxipicolínicos
US9955691B2 (en) 2014-07-08 2018-05-01 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
CN107074799A (zh) * 2014-10-28 2017-08-18 美国陶氏益农公司 作为杀真菌剂的大环吡啶酰胺
US20180002320A1 (en) * 2014-12-30 2018-01-04 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
US20160183526A1 (en) 2014-12-30 2016-06-30 Dow Agrosciences Llc Fungicidal compositions
BR112017013105A2 (pt) 2014-12-30 2017-12-26 Dow Agrosciences Llc picolinamidas com atividade fungicida
CN113173838A (zh) 2014-12-30 2021-07-27 美国陶氏益农公司 具有杀真菌活性的吡啶酰胺化合物
KR20170100550A (ko) * 2014-12-30 2017-09-04 다우 아그로사이언시즈 엘엘씨 살진균 활성을 갖는 피콜린아미드 화합물
BR112017013645A2 (pt) * 2014-12-30 2018-03-06 Dow Agrosciences Llc uso de compostos de picolinamida com atividade fungicida
JP6777637B2 (ja) 2014-12-30 2020-10-28 ダウ アグロサイエンシィズ エルエルシー 殺真菌剤としてのピコリンアミド
US20180002319A1 (en) * 2014-12-30 2018-01-04 Dow Agrosciences Llc Macrocyclic picolinamide compounds with fungicidal activity
WO2017076982A1 (en) 2015-11-04 2017-05-11 Syngenta Participations Ag Microbiocidal anilide derivatives
ES2883118T3 (es) 2016-01-22 2021-12-07 Corteva Agriscience Llc Procedimiento para la preparación de ácidos 4-alcoxi-3-hidroxipicolínicos
TW201733985A (zh) * 2016-02-29 2017-10-01 陶氏農業科學公司 用於製備4-烷氧基-3-羥基吡啶甲酸之方法
WO2018044991A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
WO2018045006A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Picolinamide n-oxide compounds with fungicidal activity
US10334852B2 (en) 2016-08-30 2019-07-02 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10214490B2 (en) 2016-08-30 2019-02-26 Dow Agrosciences Llc Picolinamides as fungicides
WO2018081167A1 (en) 2016-10-24 2018-05-03 Yumanity Therapeutics Compounds and uses thereof
BR102018000183B1 (pt) 2017-01-05 2023-04-25 Dow Agrosciences Llc Picolinamidas, composição para controle de um patógeno fúngico, e método para controle e prevenção de um ataque por fungos em uma planta
TWI774761B (zh) 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 用於穀物中的真菌防治之協同性混合物
EP3618626A4 (en) 2017-05-02 2020-12-02 Dow Agrosciences LLC USE OF AN ACYCLIC PICOLINAMIDE COMPOUND AS A FUNGICIDE FOR FUNGAL GRASS INFESTATION
TW201842851A (zh) 2017-05-02 2018-12-16 美商陶氏農業科學公司 用於穀類中的真菌防治之協同性混合物
CA3083000A1 (en) 2017-10-24 2019-05-02 Yumanity Therapeutics, Inc. Compounds and uses thereof
WO2019087145A1 (en) 2017-11-03 2019-05-09 Isagro S.P.A. Aromatic amides having a fungicidal activity, their agronomic compositions and relative preparation method
CN111344279B (zh) * 2017-11-15 2023-07-07 先正达参股股份有限公司 杀微生物的吡啶酰胺衍生物
BR102019004480B1 (pt) 2018-03-08 2023-03-28 Dow Agrosciences Llc Picolinamidas como fungicidas
CN110776457B (zh) * 2018-07-26 2023-07-14 华中师范大学 含三氟甲基吡啶酰胺类化合物及其制备方法和应用以及杀菌剂
KR20210076072A (ko) 2018-10-15 2021-06-23 코르테바 애그리사이언스 엘엘씨 옥시피콜린아미드의 합성 방법
IT201900006543A1 (it) 2019-05-06 2020-11-06 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
IT201900011127A1 (it) 2019-07-08 2021-01-08 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
IT201900021960A1 (it) 2019-11-22 2021-05-22 Isagro Spa Composti ad attività fungicida, loro composizioni agronomiche e relativo metodo di preparazione
IT202000007234A1 (it) 2020-04-06 2021-10-06 Isagro Spa Composti ad attività fungicida, relative composizioni agronomiche e uso per il controllo di funghi fitopatogeni
CN116874541B (zh) * 2023-07-17 2024-02-20 潍坊市阳光化工股份有限公司 一种植物生长调节剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037472A2 (en) * 1995-05-24 1996-11-28 Novartis Ag Pyridine-microbicides
EP0891975A1 (en) * 1996-04-05 1999-01-20 Mitsubishi Chemical Corporation Pyrazoles and agricultural chemicals containing them as active ingredients

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH415630A (de) * 1962-09-26 1966-06-30 Geigy Ag J R Verfahren zur Herstellung von Picolinsäurederivaten
NL300271A (ko) * 1962-11-09
BE639691A (ko) * 1963-11-08
DE2150772A1 (de) * 1971-10-12 1973-04-19 Cassella Farbwerke Mainkur Ag Verfahren zur herstellung von 6-hydroxy-2-pyridon-3-carbonsaeureamidverbindungen
US4202900A (en) * 1972-09-27 1980-05-13 Ciba-Geigy Corporation Derivatives of penam-3-carboxylic acid and a pharmaceutical composition containing the same
DE3513259A1 (de) * 1985-04-13 1986-10-23 Bayer Ag, 5090 Leverkusen Heterocyclische amid-derivate
EP0235470B1 (en) * 1986-01-24 1992-11-11 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Ion-sensitive fet sensor
JP3082243B2 (ja) * 1991-11-15 2000-08-28 藤沢薬品工業株式会社 血管拡張活性を有するニトロ化合物
DE4138819A1 (de) 1991-11-26 1993-05-27 Basf Ag Hydroxypyridoncarbonsaeureamide, deren herstellung und verwendung
DE4227747A1 (de) * 1992-08-21 1994-02-24 Basf Ag Heteroaromatisch kondensierte Hydroxypyridoncarbonsäureamide, deren Herstellung und Verwendung
NZ270267A (en) * 1993-12-30 1997-03-24 Hoechst Ag 3-hydroxypyridin-2yl (and -quinolin-2-yl) carboxamide derivatives and pharmaceutical compositions
JP3526602B2 (ja) * 1994-02-24 2004-05-17 サントリー株式会社 新規抗真菌化合物
JPH08152428A (ja) * 1994-02-25 1996-06-11 Fujisawa Pharmaceut Co Ltd Noガス測定用試薬
US5616590A (en) * 1994-06-30 1997-04-01 Ciba-Geigy Corporation Plant microbicides
DE4425616A1 (de) * 1994-07-20 1996-01-25 Basf Ag Hydroxypyridoncarbonsäureamide, deren Herstellung und Verwendung
JPH11511442A (ja) 1995-08-30 1999-10-05 バイエル・アクチエンゲゼルシヤフト アシルアミノサリチル酸アミドおよびそれらの有害生物防除剤としての使用
CA2207997A1 (en) * 1996-06-28 1997-12-28 Rohm And Haas Company Fungicidally active n-acetonylbenzamide compounds
DE19650215A1 (de) * 1996-12-04 1998-06-10 Hoechst Ag 3-Hydroxypyridin-2-carbonsäureamidester, ihre Herstellung und ihre Verwendung als Arzneimittel
CN1268866A (zh) * 1997-08-29 2000-10-04 明治制果株式会社 稻瘟病和小麦叶锈病的防治剂
US6113778A (en) 1997-11-03 2000-09-05 Komline-Sanderson Limited Pressure plate filter with horizontal filter plates
JP4463420B2 (ja) * 1998-02-06 2010-05-19 明治製菓株式会社 新規抗真菌化合物とその製法
JPH11228542A (ja) * 1998-02-10 1999-08-24 Meiji Seika Kaisha Ltd 新規抗真菌剤
JP2929006B1 (ja) 1998-07-08 1999-08-03 工業技術院長 高品質結晶薄板材料の製造方法
WO2000026191A1 (fr) * 1998-11-04 2000-05-11 Meiji Seika Kaisha, Ltd. Derives de picolinamide et pesticides contenant ces derives comme ingredient actif
AU5073100A (en) 1999-06-09 2001-01-02 Bayer Aktiengesellschaft Pyridine carboxamides and their use as plant protection agents
CZ2002487A3 (cs) * 1999-08-20 2002-06-12 Dow Agrosciences Llc Fungicidní heterocyklické aromatické amidy, prostředky na jejich bázi, způsoby jejich pouľití a přípravy
FR2803592A1 (fr) * 2000-01-06 2001-07-13 Aventis Cropscience Sa Nouveaux derives de l'acide 3-hydroxypicolinique, leur procede de preparation et compositions fongicides les contenant.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037472A2 (en) * 1995-05-24 1996-11-28 Novartis Ag Pyridine-microbicides
EP0891975A1 (en) * 1996-04-05 1999-01-20 Mitsubishi Chemical Corporation Pyrazoles and agricultural chemicals containing them as active ingredients

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170026444A (ko) * 2014-07-08 2017-03-08 다우 아그로사이언시즈 엘엘씨 3―히드록시피콜린산 제조 방법
KR102418462B1 (ko) 2014-07-08 2022-07-08 코르테바 애그리사이언스 엘엘씨 3―히드록시피콜린산 제조 방법

Also Published As

Publication number Publication date
BR0012615A (pt) 2004-03-30
UA73519C2 (en) 2005-08-15
CZ2002219A3 (cs) 2002-10-16
AU6357200A (en) 2001-02-05
CA2374995C (en) 2010-12-07
CR6557A (es) 2008-09-22
ZA200200436B (en) 2004-05-26
US6927225B2 (en) 2005-08-09
WO2001005769A2 (en) 2001-01-25
US20040048864A1 (en) 2004-03-11
US7034035B2 (en) 2006-04-25
US20040034025A1 (en) 2004-02-19
HUP0301764A2 (hu) 2003-09-29
CN1208321C (zh) 2005-06-29
WO2001005769A3 (en) 2001-11-22
ES2546386T3 (es) 2015-09-23
PL206415B1 (pl) 2010-08-31
CA2374995A1 (en) 2001-01-25
JP2003528806A (ja) 2003-09-30
DK1516874T3 (en) 2015-11-23
CN1450993A (zh) 2003-10-22
HUP0301764A3 (en) 2004-06-28
US6521622B1 (en) 2003-02-18
KR20020040753A (ko) 2002-05-30
EP1196388A2 (en) 2002-04-17
PL363114A1 (en) 2004-11-15
TR200200587T2 (tr) 2004-12-21
AU780698B2 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
KR100743262B1 (ko) 살균성 헤테로고리 방향족 아미드 및 그 조성물, 사용 및제조방법
US6355660B1 (en) Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
EP1204643B1 (en) Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
USRE39991E1 (en) Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
EP1516874B1 (en) Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
EP2570406A1 (en) Plant growth regulating compounds
KR100720766B1 (ko) 살균성 헤테로사이클릭 방향족 아미드 및 그 조성물, 이용및 제조방법
EP1486489B1 (en) Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
EP2762468A1 (en) 2-aminopyridine derivatives as plant growth regulating compounds

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee