KR100616508B1 - Fbar 소자 및 그 제조방법 - Google Patents

Fbar 소자 및 그 제조방법 Download PDF

Info

Publication number
KR100616508B1
KR100616508B1 KR20020019825A KR20020019825A KR100616508B1 KR 100616508 B1 KR100616508 B1 KR 100616508B1 KR 20020019825 A KR20020019825 A KR 20020019825A KR 20020019825 A KR20020019825 A KR 20020019825A KR 100616508 B1 KR100616508 B1 KR 100616508B1
Authority
KR
South Korea
Prior art keywords
layer
delete delete
membrane
forming
membrane layer
Prior art date
Application number
KR20020019825A
Other languages
English (en)
Other versions
KR20030081551A (ko
Inventor
장제욱
선우국현
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR20020019825A priority Critical patent/KR100616508B1/ko
Priority to US10/320,361 priority patent/US6992420B2/en
Priority to JP2002368701A priority patent/JP2003318696A/ja
Priority to CNB021578389A priority patent/CN1236556C/zh
Publication of KR20030081551A publication Critical patent/KR20030081551A/ko
Application granted granted Critical
Publication of KR100616508B1 publication Critical patent/KR100616508B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0442Modification of the thickness of an element of a non-piezoelectric layer

Abstract

본 발명은 FBAR 소자 및 그 제조방법에 관한 것으로서, 기판과, 상기 기판 상에 형성되며 에어갭을 둘러싼 멤브레인 지지층과, 상기 멤브레인 지지층 상에 형성된 멤브레인층과, 상기 멤브레인층 상에 순차적으로 형성된 제1 전극, 압전층과 제2 전극을 포함하며, 상기 멤브레인층은 상기 제1 및 제2 전극과 상기 압전층이 중첩된 활성화영역에 상응하는 부분이 그 주위의 다른 부분보다 얇은 두께를 갖는 것을 특징으로 하는 FBAR 소자를 제공한다. 또한, 본 발명은 상기 FBAR소자를 제조하는 방법도 제공한다.
본 발명에 따르면, 멤브레인층 중 활성화영역에 해당하는 부분을 건식식각하여 부분적으로 두께를 감소시킴으로써 공진주파수를 조정할 수 있고 전달이득이 향상시킬 수도 있다.
박막필터용 FBAR, 에어갭, 건식식각

Description

FBAR 소자 및 그 제조방법{FILM BULK ACOUSTIC RESONATOR AND METHOD FOR FABRICATION THEREOF}
도1a 및 도1b는 종래 박막필터용 FBAR 소자의 단면도이다.
도2a 및 도2b는 종래의 멤브레인지지층을 채용한 박막필터용 FBAR 소자의 단면도 및 평면도이다.
도3a 및 도3b는 종래방식에 따른 에어갭 형성을 위한 희생영역 형성공정을 나타내는 단면도이다.
도4a 및 도4b는 본 발명의 바람직한 실시형태에 다른 FBAR 소자의 단면도 및 평면도이다.
도5a 내지 도5j는 본 발명의 일실시예에 따른 FBAR소자의 제조공정을 단계별 공정단면도이다.
< 도면의 주요부분에 대한 부호의 설명 >
51: 기판(substrate) 52: 신호차단층
53: 희생층(sacrificial layer) 54: 포토레지스트(PR)
55: 멤브레인 지지층(membrane supporting layer)
56: 멤브레인층(membrane layer) 57: 제 1 전극(1st electrode)
58: 압전층(piezoelectric layer) 59: 제 2 전극(2nd electrode)
본 발명은 박막 필터용 FBAR(film bulk acoustic resonator) 소자 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 열산화막 및 건식식각공정을 이용하여 구조적으로 안정하고 재현성이 뛰어나며 우수한 특성을 갖는 박막 필터용 FBAR소자 및 그 제조방법에 관한 것이다.
최근에는, 고주파(RF : ratio frequency) 부품 등의 이동통신단말기용 부품기술은 이동통신단말기의 소형화 및 고기능화의 추세에 따라 급속하게 발전되고 있다. 상기 RF 이동통신 부품 중 핵심 수동부품인 필터는 무수히 많은 공중파 중에 사용자가 원하는 신호를 선택하거나 특정 신호를 걸러주는 기능을 한다.
특히, 이동통신단말기의 사용주파수대역이 높아짐에 따라, 초고주파용 소자의 필요성이 증대되고 있다. 하지만, 이러한 초고주파 소자는 이동통신단말기에서 요구되는 소형화 및, 저가격화가 어렵다는 문제가 있다. 예를 들어, 1 GHz이상에서 동작하는 유전체 공진기나 필터는 종래의 집중소자형태로서 그 자체의 크기가 지나치게 크므로, 집적화하기엔 불가능하다.
이러한 유전체 공진기를 대처할 수 있는 소자로 보다 소형화된 수정공진기 및 표면탄성파 공진기가 사용되고 있으나, 삽입손실이 크며, 원하는 정도의 집적화 및 소형화에도 한계가 있고, 제조비용이 크다는 문제가 있다.
상술한 문제점을 해결하기 위해서, 압전박막의 두께진동을 이용한 FBAR(film bulk acoustic wave resonator) 또는 TFR(thin film resonator)로 불리는 공진기가 본격적으로 연구되고 있고 실용화 단계에 이루고 있다.
FBAR 필터는, 반도체 기판인 실리콘이나 GaAs 기판 위에 압전 유전체 물질인 ZnO, AlN 박막을 형성시켜 박막 자체의 압전 특성으로 인한 공진을 유발하는 박막 형태의 소자를 말한다. 이는 박막소자로 저가격, 초소형이면서 고품질(high Q) 계수의 특성이 가능하여, 각종 주파수 대역(900 MHz~10 GHz)의 무선통신기기, 군사용 레이더 등에도 사용될 수 있다. 또한, 유전체 필터 및 집중정수(LC) 필터보다 수백분의 1이하 크기로 초소형화가 가능하고 표면 탄성파(surface acoustic wave) 소자보다 삽입손실이 매우 작다는 특성을 가지고 있다.
일반적으로, FBAR소자는 실리콘 기판 상에 하부전극, 압전층, 상부전극을 차례로 형성하여 구성되는데, 이 때에, 고품질계수(high-Q)를 유지하기 위해 상하부전극으로 전계가 인가되어 압전층에 발생되는 체적파(bulk acoustic wave)가 실리콘 기판의 영향을 받는 것을 방지해야 한다.
이와 같이 실리콘 기판에 의한 영향을 방지하기 위해서, 상기 기판과 상기 공진영역을 격리시키는 구조가 요구되며, 이러한 격리구조는 삽입손실 및 전달이득과 같은 FBAR소자의 전기적 성능과 그 제조의 실용화를 좌우하는 중요한 과제가 된다. 통상의 격리구조는 크게 브래그 반사(bragg reflect)를 이용한 반사막구조와 에어갭(airgap)을 갖는 구조로 분류된다.
도1a는 종래의 반사막구조를 갖는 FBAR소자의 구조를 나타내는 단면도이며, 도1b는 종래의 에어갭을 갖는 FBAR소자의 구조를 나타내는 단면도이다.
우선, 도1a을 참조하면, 상기 FBAR소자는 기판(11)과 제1 및 제2 반사층(12a,12b)으로 이루어진 반사막구조와, 제1 전극(17)과 압전층(18) 및 제2 전극(19)으로 이루어진 공진영역을 포함한다. 공진영역과 기판(11)을 분리시키는 반사막구조는 음향 임피던스(acoustic impedance)의 차가 큰 반사층(12a,12b)을 반복적으로 형성되며, 공진영역의 하단 방향으로부터 발생되는 음향 임피던스의 차이를 이용한 격리구조이다. 이러한 방식을 SMR(solidly mounted resonator)라고도 한다.
하지만, 이는 큰 음향 임피던스 차이를 갖는 물질을 선택하여 교대로 적층할 때, 각 층의 두께는 공진주파수의 λ/4로 정확하게 제어되어야 하며, 적층하는 과정에서 응력에 대해서도 고려해야 하므로, 공정이 매우 복잡하고 많은 시간이 소요된다. 또한, SMR방식은 에어갭 방식보다 반사특성이 떨어지고 실효대역폭(effective bandwidth)이 감소하는 문제점이 있어 실용화에 큰 한계가 있다.
이와 달리, 도1b와 같은 구조를 갖는 에어-브릿지(air-bridge) 방식 에어갭을 갖는 FBAR 소자도 제안되었다. 도1b의 FBAR는 기판(21) 상의 에어갭(A1)을 형성할 영역에 희생층을 형성하고, 그 희생층 및 기판(21) 위에 절연막을 이루어진 멤브레인층(25)을 형성한 후에, 제1 전극(27), 압전층(28) 및 제2 전극(29)을 차례로 형성하고, 이어 비아홀을 통해 희생층을 식각하여 제거함으로써 에어갭(A1)을 형성 한 공정으로 제조된다. 이는 도1a의 FBAR에 비해 비교적 제조공정이 용이하고 반사특성이 우수하나, 에어갭의 에지부에서 멤브레인층(25)의 구조가 불안정하므로 포토레지스트 제거공정이나 슬라이싱 등의 가공공정에서 구조물의 붕괴 및 박리가 발생하는 문제점이 있다.
이러한 불안정한 구조적인 문제를 해결하기 위해서, 멤브레인층을 지지하기 위한 추가적인 층을 마련하고, 그 추가되는 층이 에어갭을 둘러싸는 구조를 갖는 FBAR소자가 제안되었다. 이러한 FBAR소자의 단면도가 도2a에 도시되어 있다. 도2b는 상기 FBAR소자의 평면도이다.
도2a와 도2b를 참조하면, 상기 FBAR소자는 기판(31)과, 그 기판(31) 상에 형성되며 에어갭(A2)을 포함한 멤브레인 지지층(35)과, 상기 멤브레인 지지층(35) 상에 형성된 멤브레인층(36)과, 상기 멤브레인층(36) 상에 차례로 형성된 제1 전극(37), 압전층(38) 및 제2 전극(39)으로 이루어진 공진영역으로 이루어진다. 여기서, 멤브레인 지지층(35)은 상기 멤브레인층(36)을 지지하면서 그 내부에 에어갭(A2)을 포함하는 역할을 한다. 이와 같이, 도2a의 FBAR에서는 에어갭(A2)의 에지에 있는 멤브레인층이 구조적으로 강화되어 후속공정(비아홀형성공정, 포토레지스트제거공정 등)에서 발생될 수 있는 구조물의 붕괴 및 박리현상을 방지할 수 있다. 이로써 비교적 견고한 FBAR소자를 제조할 수 있다.
하지만, 이와 같은 종래의 FBAR구조에서는, 불순물이 도핑된 실리콘기판(31)은 높은 전기 전도도를 가지므로, 1㎓이상의 고주파신호가 그 기판(31)으로 전달될 수 있다. 이로 인해 삽입손실은 증가하게 된다. 따라서, 고주파용 집적회로에서의 FBAR소자특성이 저하되는 문제가 있다.
또한, 에어갭을 형성하기 위한 습식식각을 실시한 후에, 에어갭 주위의 구조물, 특히 멤브레인층(36)에 가해지는 접착력에 의해 소자가 구조적으로 불안정해질 수 있는 문제가 있다. 즉, 일반적으로 Al, Cu, NiFe과 같은 금속 및 ZnO 과 같은 금속산화물로 형성된 희생층을 제거할 때에 사용되는 에천트액은 그 접착력으로 인해 멤브레인층의 구조를 악영향을 줄 수 있다.
한편, 희생층에 에천트를 공급할 때에 소자 외부와 희생층을 연결하는 비아홀을 형성하는데, 희생층을 제거하기 위한 에천트는 압전층물질도 식각할 수 있으므로, 도2b에 도시된 바와 같이 비아홀(H)은 활성화영역의 외곽에 형성해야 한다. 또한, 이와 같이 활성화영역의 코너부에 비아홀(H)을 형성하는 경우에는, 보다 효과적인 식각공정을 위해서 가능한 4개의 코너부에 각각 모두 형성해야 하는 필요가 있다. 이와 같이, 종래에는 비아홀의 수 및 위치를 선정하는데 많은 제약이 따른다. 결국, 비아홀 형성의 수가 많아지고 특정위치에 한정되어 소자의 특성에 불리한 영향을 줄 수 있다.
또한, 종래의 희생층 형성 공정은 희생층 습식식각후에 포토레지스트의 건식식각을 통하여 언터컷을 조절하였으나, 이는 공정이 번거로울 뿐만 아니라 언더컷 조절이 용이 하지 못한 단점을 가지고 있다. 한편, 제조공정 중에 포토레지스트의 낮은 측면프로파일각으로 인해 윙팁(wing tip)이 발생하여 소자의 구조를 취약하게 하는 문제가 발생된다. 도3a및 도3b을 참조하여, 보다 상세히 설명하면, 기판(41)상에 희생층(43)을 형성한 후에, 에어갭을 형성할 영역 상에 포토레지스트층(44) 을 낮은 측면프로파일 각(Θ1)을 갖도록 형성하고, 이어 도3b와 같이, 희생층(43)을 식각하여 에어갭에 상응하는 희생영역(43')을 형성한다. 이때, 포토레지스트(44')의 측면프로파일각(Θ'1)도 더 낮아지게 된다. 이는 희생층을 구성하는 물질보다 포토레지스트가 식각율이 높기 때문이다. 따라서, 희생영역의 측면각이 낮아져, 멤브레인지지층 공정 후에 포토레지스트를 리프트오프하게 되면, 그 외곽부에 윙팁이 발생하는 문제가 있다.
이러한 문제 외에도 종래의 FBAR소자는 제조공정 특성상에 공진주파수를 조절하는 것이 용이하지 않은 문제가 있어 왔다.
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로서, 그 목적은 공진주파수 조정이 용이하고 전달이득이 우수한 FBAR소자를 제공하는데 있다.
삭제
또한, 본 발명의 다른 목적은 상기 FBAR소자를 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위해서, 본 발명은, 기판과, 상기 기판 상에 절연물질로 형성되며, 활성영역으로부터 상기 기판으로 전달되는 신호를 차단하는 신호차단층과, 상기 신호차단층 상에 형성되며 상기 에어갭을 포함하는 멤브레인 지지층과,상기 멤브레인 지지층 상에 형성된 멤브레인층과, 상기 멤브레인층 상에 형성된 제1 전극과, 상기 제1 전극 상에 형성된 압전층과, 상기 압전층 상에 형성된 제2 전극을 포함하는 FBAR 소자를 제공한다.
상기 신호차단층은 고주파 신호에서 야기될 수 있는 기판 영향을 전기적으로 차단하여 삽입손실을 향상시키는 역할을 한다. 이러한 신호차단층으로는 실리콘 기판 상에 용이하게 성장시킬 수 있는 산화막, 질화막 또는 다공질실리콘을 이용한 열산화막을 선택적으로 사용할 수 있다.
또한, 본 발명의 다른 실시형태에서는, 기판과, 상기 기판 상에 형성되며 상기 에어갭을 포함하는 멤브레인 지지층과, 상기 멤브레인 지지층 상에 형성된 멤브레인층과, 상기 멤브레인층 상에 형성된 제1 전극과, 상기 제1 전극 상에 형성된 압전층과, 상기 압전층 상에 형성된 제2 전극을 포함하며, 상기 멤브레인층 중 상기 활성화영역에 상응하는 부분이 그 주위보다 얇은 두께를 갖는 FBAR 소자를 제공한다.
본 실시형태는 멤브레인층 중 활성화영역에 상응하는 부분의 두께를 달리함으로써 효과적으로 중심주파수를 제어할 뿐만 아니라, 전달이득도 향상시킬 수 있는 효과가 있다. 이러한 두께를 얇게 형성하는 방법은, 상기 활성화영역에 상응하는 멤브레인층의 상면부분이 침하된 평면이 되도록 건식식각을 이용하는 것이 바람직하다.
또한, 본 발명의 또 다른 실시형태에서는, 기판과, 상기 기판 상에 형성되며 상기 에어갭을 포함하는 멤브레인 지지층과, 상기 멤브레인 지지층 상에 형성된 멤브레인층과, 상기 멤브레인층 상에 형성된 제1 전극과, 상기 제1 전극 상에 형성된 압전층과, 상기 압전층 상에 형성된 제2 전극을 포함하며, 적어도 하나의 비아홀이 상기 활성화영역을 통해 상기 FBAR 소자의 외부와 상기 에어갭이 연결되도록 형성된 FBAR소자를 제공할 수도 있다.
본 실시형태에서는 희생영역과 거의 일치하는 활성화영역 내부에 비아홀을 형성함으로써 보다 적은 수의 비어홀로 식각효율을 향상시키면서, 공진특성을 개선할 수 있는 잇점이 있다.
또한, 본 발명은 FBAR소자를 제조하는 방법을 제공한다. 상기 방법은 기판을 마련하는 단계와, 활성영역으로부터 상기 기판으로 전달되는 신호를 차단하기 위해서, 상기 기판 상에 절연물질로 신호차단층을 형성하는 단계와, 상기 신호차단층에 희생층을 형성하는 단계와, 상기 희생층의 일부를 제거한 후에 잔류한 희생층부분으로 에어갭 형성영역에 상응하는 희생영역을 형성하는 단계와, 상기 희생층이 제거된 상기 신호차단층의 상면에 멤브레인 지지층을 형성하는 단계와, 상기 희생영역 및 상기 멤브레인 지지층의 상부에 멤브레인층을 형성하는 단계와, 상기 멤브레인층 상에 제1 전극을 형성하는 단계와, 상기 제1 전극 상에 압전층을 형성하는 단계와, 상기 압전층 상에 제2 전극을 형성하는 단계와, 상기 희생영역을 제거하여 에어갭을 형성하는 단계를 포함한다.
또한, 본 발명의 바람직한 실시형태에서는, 상기 희생영역을 형성하는 단계는 상기 희생층 상면 중 에어갭 영역에 상응하는 위치에 포토레지스트층을 형성하 는 단계와, 건식식각을 적용하여 노출된 희생층 영역을 제거함으로써 에어갭 영역에 상응하는 희생영역을 형성하는 단계와, 상기 포토레지스트층을 제거하는 단계로 수행될 수 있다.
보다 바람직하게는, 상기 멤브레인 지지층을 형성하는 단계는 상기 포토레지스트층을 제거하기 전에 수행된다. 또한, 상기 포토레지스트층을 형성할 때에 상기 희생영역을 형성하기 위한 건식식각 후에 상기 포토레지스트층의 측면각이 수직을 기준으로 약 70°∼ 약 90°내의 범위가 될 수 있도록, 상기 포토레지스트층의 측면프로파일을 조절함으로써 희생영역을 언더컷(undercut)구조로 형성한다. 이로써 포토레지스트층의 리프트-오프공정시에 발생되는 윙팁(wing-tip)을 방지할 수 있다.
또한, 본 발명에서는, 공진주파수를 조절하고 전달이득을 향상시킬 수 있는 FBAR소자의 제조방법을 제공한다. 상기 제조방법은 희생영역 및 멤브레인 지지층의 상부에 멤브레인층을 형성한 후, 상기 제1 전극을 형성하기 전에, 상기 멤브레인층 중 상기 활성화영역에 상응하는 상면이 침하된 평면이 되도록 건식식각공정을 적용하여 소정의 두께로 식각하는 단계를 더 포함한다.
나아가, 본 발명의 또 다른 제조방법에서는, 에어갭 형성시에 채용되는 습식식각공정에 따른 문제(예를 들어, 에천트액에 의한 접착력에 의한 구조적 악영향 등)을 해소할 수 있다. 이러한 제조방법에 따르면, 희생층을 폴리실리콘으로 형성 하고, 이후 희생층으로 형성된 에어갭에 상응하는 희생영역을 건식식각으로 제거할 수 있다. 이 때에 사용되는 건식식각가스로는 XeF2가 바람직하다. 이와 같이, 희생층을 형성하는 물질을 활성화영역, 즉 압전층과 전혀 다른 물질로 구성하고, 새로운 식각공정을 적용함으로써 에천트공급경로를 제공하는 비어홀의 위치를 다양하게 선택할 수 있다.
상기 본 발명의 다양한 실시형태 중 적어도 둘이상을 결합하여 하나의 FBAR소자로 구현할 수 있다. 이하, 도면을 참조하여 본 발명의 바람직한 실시형태를 보다 상세하게 설명한다.
도4a 및 4b은 본 발명의 바람직한 실시형태에 따른 FBAR 구조의 단면도 및 평면도이다.
우선, 도4a를 참조하면, FBAR소자는 기판(51)과, 상기 기판(51) 상에 형성된 절연물질로 이루어진 신호차단층(52)과, 상기 신호차단층(52) 상에 형성되며 상기 에어갭(A3)을 포함하는 멤브레인 지지층(55)과, 상기 멤브레인 지지층(55) 상에 형성된 멤브레인층(56)과, 상기 멤브레인층(56) 상에 형성된 제1 전극(57)과, 상기 제1 전극(57) 상에 형성된 압전층(58)과, 상기 압전층(58) 상에 형성된 제2 전극(59)으로 이루어진다.
본 실시형태의 제1 특징은 기판(51) 상에 신호차단층(52)을 형성함으로써 삽입손실문제를 최소화한 것이다. 즉, 제1 전극(57) 및 제2 전극(59)에 전압이 인가될 때에 활성화영역에서 발생되는 소정의 주파수의 신호가 일정한 전도성을 갖는 기판으로 전달될 수 있다. 특히, 불순물이 도핑된 기판과 같이 전도성이 높거나 고주파집적회로에 채용되어 1㎓이상의 주파수에서 사용하는 경우에, 그 삽입손실을 커져 소자특성이 저해할 수 있으나, 본 발명에서는 기판(51) 상에 신호차단층(52)을 형성하여 활성화영역에서 발생되는 신호가 기판(51)으로 전달되는 것을 차단시킬 수 있다. 결과적으로, 본 발명에 따른 FBAR소자는 삽입손실특성이 향상될 수 있다.
이러한 신호차단층은 실리콘 기판 상에 용이하게 성장시킬 수 있는 열산화막을 채용하거나, 화학기상증착등의 통상 증착공정을 이용한 산화막 또는 질화막 등을 선택적으로 채용할 수도 있다. 절연성이 우수한 통상의 열산화막의 두께는 약0.5㎛ ~ 5㎛범위가 바람직하며, 다공질 실리콘을 이용하여 형성된 열산화막의 경우에는, 약 5㎛ ~ 70㎛범위가 바람직하다.
또한, 본 실시형태의 제2 특징은 멤브레인층 중 활성화영역에 상응하는 부분의 두께를 조절하여 효과적인 중심주파수를 제어할 수 있으며, 전달이득을 향상시킬 수 있다는 것이다. 도4a에 도시된 바와 같이, FBAR 소자의 멤브레인층은 활성화영역에 상응하는 부분이 침하된 평면을 갖는다. 그 침하된 깊이만큼 압전층 아래의 멤브레인층 두께는 작아지고, 이를 이용하여 중심주파수를 제어할 수 있을 뿐만 아니라 전달이득을 향상시킬 수 있다. 이러한 멤브레인층의 침하면은 멤브레인층을 형성한 후, 제1 전극을 형성하기 전에, 식각공정을 이용하여 용이하게 형성할 수 있다.
이와 같이, 본 실시형태는 제1 특징과 제2 특징을 모두 결합한 형태로 구현하고 있으나, 각각은 독립적으로 FBAR소자에 적용될 수 있으며, 이 또한 본 발명의 범위에 속한다고 할 수 있다.
나아가, 본 발명은 도4a에 도시된 실시형태에 따른 FBAR제조방법을 제공할 뿐만 아니라, 본 발명에 따른 FBAR소자 제조방법은 에어갭영역을 보다 효율적으로 형성하면서도 포토레지스트를 리프트오프할 때 발생되는 윙팁문제를 해결할 수 있는 제조방법도 제공할 수 있다.
도5a 내지 도5f는 본 발명의 바람직한 실시예에 따른 FBAR소자를 제조하기 위한 공정별 단면도이다.
도5a와 같이, 기판(101) 상에 절연물질로 신호차단층(102)을 형성한다. 본 실시예에서는 실리콘 기판(101)을 사용하여 고온의 열산화 공정에 이용하여 양질의 열산화막으로 이루어진 신호차단층(102)을 형성한다. 상기 실리콘 기판(101)으로는 일반적으로 불순물이 도핑된 실리콘 웨이퍼 및 불순물이 도핑되지 않은 고품질의 고저항 실리콘 웨이퍼가 사용될 수 있다. 상기 신호차단층(102)은 실리콘기판을 열산화하여 형성시킨 열산화막 외에도 화학기상증착 등의 통상 증착공정을 이용한 산화막 또는 질화막을 형성할 수도 있으며, 실리콘 기판(101)을 전해에칭하여 형성된 다공질실리콘층을 열산화공정을 통해 열산화막으로 형성하는 방식을 사용할 수도 있다. 통상의 열산화막은 기판으로 향하는 신호를 차단하기에 충분한 절연성을 확보하기 위해 약 0.5㎛이상 형성하는 것이 바람직하며, 이에 비해 절연성이 낮은, 다공질실리콘을 이용한 열산화막의 경우에는, 약 5㎛ 이상으로 형성하는 것이 바람직하나, 이러한 신호차단층의 두께에 의해 본 발명이 한정되는 것은 아니다.
도5b 내지 5d는 신호차단층(102)이 성장된 기판 상면에 에어갭을 제공하기 위한희생영역(103')을 형성하기 위한 일련의 공정을 나타낸다.
우선, 도 5b와 같이, 신호차단층(102)의 상면 전체에 희생층(103)을 형성한다. 본 발명에서는, 희생층(103)으로 폴리실리콘을 채용하였다. 폴리실리콘은 표면의 거칠기(roughness)가 우수하고 희생층 형성 및 제거가 용이할 뿐만 아니라, 특히, 후속공정에서 건식식각을 적용하여 제거할 수 있다는 장점이 있다.
이어, 도5c와 같이, 상기 희생층(103) 상부에 사진식각에 의해 에어갭이 형성될 부분을 정의하도록 패터닝된 포토레지스트(104)를 형성한다. 이러한 포토레지스트로는 도6a 및 6b와 같이 포지티브 포토레지스트를 사용할 수 있으나, 도5c에 도시된 바와 같이 네거티브 또는 이미지 리버스 포토레지스트를 사용하는 것이 바람직하다. 네가티브 또는 이미지 리버스 포토레지스트층은 통상의 포지티브 패턴과 달리, 언더컷구조, 즉 90°이상의 충분한 측면 프로파일각(θ1)을 갖는 구조로 형성된다.
다음으로, 도5d와 같이, 희생영역을 형성하기 위한 식각공정을 수행한다. 이러한 식각공정에 의해 형성된 포토레지스트층(104')의 측면프로파일각은 도5c에서 설명된 바와 같이, 충분한 측면프로파일각을 갖고 있으므로, 거의 수직 또는 수직에 가까운 측면프로파일각(θ'2)을 가질 수 있다. 또한, 희생영역(103')의 측면프로파일각도 도3b에 도시된 종래의 형상에 비해 크게 증가되는 것을 알 수 있다. 결과적으로, 멤브레인지지층을 증착한 후에 포토레지스트층(104')을 리프트오프하는 과정에서 발생되는 윙팁 문제를 해결할 수 있다. 이 때, 포토레지스트층(104')의 측면프로파일각(θ2')은 식각 후에 약 70°∼90°범위를 유지하도록 조절하는 것이 바람직하다. 보다 바람직하게는 거의 수직이 되도록 조절한다.
본 발명에서는, 윙팁문제를 방지하기 위해 포토레지스트의 측면프로파일각을 조절하는 방안으로 네가티브 포토레지스트 또는 이미지 리버스 포토레지스트를 사용하는 방법에 한정되지 않는다. 즉, 포토레지스트층의 측면프로파일각을 충분한 각도로 확보할 수 있는 방법이면 충분히 사용될 수 있다. 즉, 포지티브 포토레지스트층을 사용하더라도 포토레지스트층의 식각율을 낮춤으로써 원하는 식각공정 후에도 원하는 측면프로파일각을 얻을 수 있다. 그 바람직한 예로, 핫플레이트를 이용하여 포토레지스트를 하드 베이킹하거나, 경화제나 전자빔을 이용하여 포토레지스트층을 강화하는 방법을 이용할 수 있다. 이러한 방법은 독립적으로 혹은 결합하여 적용될 수도 있으며, 네가티브 포토레지스트층 등에도 필요에 따라 선택적으로 적용될 수 있다. 포토레지스트층의 측면각이 식각후에 거의 수직이 유지되도록 식각 율을 낮추기 위해서 사용되는 하드베이킹공정은 약 100 ∼ 200℃온도범위에서 1 ∼10분간 수행하는 것이 바람직하다.
또한, 식각 가스의 변화에 따라 식각 후의 포토레지스트의 각을 조절함으로써 측면 프로파일각을 크게 확보할 수도 있으며, 포토레지스트층을 사용하지 않고금속 등의 재질로 이루어진 하드마스크를 사용하여 식각의 영향을 방지하여 수직인 측면각을 유지할 수도 있다.
본 공정에서 사용되는 건식식각은 RIE(reactive ion etching), ICP(inductively coupled plasma), ECR(electron cyclotron resonance)등 모든 장비를 선택적으로 이용할 수 있다. 건식식각 가스로는 CxFy, SF6,Cl2 ,CCl2F2 ,XeF2 ,H2, O2 또는 그 혼합물을 선택적으로 사용할 수 있다. 이와 같은 포토레지스트, 가스 조건의 변화 이외에도 장비의 파워, 압력, 유량을 조절하여 포토레지스트의 프로파일을 조절하는 것도 가능하다.
이와 같이, 상기 공정의 특징은, 건식식각 후에 식각된 희생영역의 측면각을 증가시키기 위해, 포토레지스트의 측면프로파일각을 증가시킨다는 것이며, 상술된 바와 같이, 이를 위해 마스크의 종류를 달리하거나, 포토레지스트층을 강화시키거나혹은, 식각공정조건을 최적화하는 방안중 하나를 또는 임의로 결합된 형태로 사용될 수 있다.
이어, 도5e와 같이, 포토레지스트(104')를 제거하지 않은 상태에서, 상면 전 체에 절연물질(105)을 도포한다. 여기서, 포토레지스트(104')은 멤브레인지지층 형성영역을 정의하는 역할을 한다. 상기 멤브레인지지층을 형성하기 위한 절연물질층(105)은 Si3N4, SiO2 또는 Al2O3와 같은 절연물질을 선택하는 것이 바람직하다.
다음으로, 도5f와 같이, 리프트오프공정을 통해 포토레지스트(104')를 제거하여, 멤브레인지지층(105')을 형성한다. 이와 같이, 희생영역을 형성한 후에도 포토레지스트(104')를 제거하지 않고, 절연물질(38)을 도포한 후에, 희생영역(103') 상부의 포토레지스트(104')를 리프트오프(lift-off)함으로써 간소화된 제조공정으로 도5f와 같은 멤브레인 지지층(105')을 형성할 수 있을 뿐만 아니라, 희생영역(103')을 식각한 후에 포토레지스트층(104')은 수직한 단면을 형성함으로써 리프트 오프 공정시에 발생될 수 있는 윙팁(wing tip)을 효과적으로 방지할 수 있다. 또한, 이 공정에서 멤브레인 지지층(105')은 상기 희생영역(103')을 둘러싸며 열산화막으로 이루어진 신호차단층(102) 상부에 형성되어 전체적으로 절연물질의 두께를 증가시켜 전극 패드에서 기판으로의 신호 전달을 효과적으로 차단하여 삽입손실을 최대한 감소시킬 수 있다.
최종적인 희생영역과 멤브레인지지층(105')의 두께는 0.5 - 5㎛ 범위가 바람직하다. 반드시 희생영역(103')과 멤브레인 지지층(105')의 높이가 동일할 필요는 없다. 즉, 멤브레인 지지층(105')이 다소 높더라도 멤브레인층을 지지하기 위한 역할을 수행할 수만 있으면 된다. 또한, 상기 멤브레인 지지층(105')이 형성된 영역 은 FBAR소자에서 활성영역이 아니므로 평탄도도 큰 문제가 되지 않는다. 따라서, 상기 멤브레인지지층(105')은 평탄화공정없이 간소한 공정으로 형성할 수 있다.
멤브레인 지지층(105')이 형성된 후, 도5g와 같이, 희생영역(103') 및 멤브레인 지지층(105')의 상부에 멤브레인층(106)을 형성한다. 상기 멤브레인층(106)은 당 기술분야의 공지된 방법과 물질을 증착하여 형성될 수 있다. 예를 들면, 상기 멤브레인층(106)은 두께 1㎛의 SiO2층으로 구현될 수 있다. 또한, 두께 1㎛의 SiO2층을 증착하고, 그 상면에 두께 0.5 ㎛의 SiN를 다시 증착하여 멤브레인층을 형성할 수도 있다. 본 발명에 의한 멤브레인층(106)형성방법은 이에 한정되지는 않는다.
다음 공정으로, 도5g와 같이 활성영역에 상응하는 멤브레인층 부분을 소정의 두께(t2)로 감소시킨다. 이는 건식식각을 통해 활성화영역에 상응하는 멤브레인층 상면을 선택적으로 식각함으로써 수행될 수 있다. 추가적으로, 건식식각 후 활성화영역과 주위의 멤브레인층부분의 경사각을 낮춰 스텝저항과 소자구동시 기생공진성분 (parallel resonance)발생을 감소시키기 위해, 그 상면을 고온에서 하드베이킹한 후에 건식식각을 수행할 수도 있다. 식각 후 활성화영역 부분과 그 주위부분의 경사면의 각은 약 20° ~ 80°로 제어하는 것이 바람직하며, 이 때에 하드베이킹은 130 ~ 200℃에서 1~10 분간으로 진행하는 것이 바람직하다. 효과적인 중심주파수의 제어와 전달 이득을 높이기 위해, 식각두께(t1-t2)를 멤브레인층 두께(t1)의 50~100%의 범위에서 식각하는 것이 바람직하다.
이어, 도5i에 도시된 바와 같이, 상기 형성된 멤브레인층(106') 상부에 제1 전극(107)을 형성하고, 상기 제1 전극(107)의 위에 압전층(108)을 형성하며, 이어 상기 압전층(108)의 상부에 제2 전극(109)을 형성한다. 여기서, 제1 및 제2 전극층(107,109) 물질은 금속과 같은 통상의 도전물질을 사용할 수 있다. 예를 들어, Al, W, Au, Pt, Ru, RuO2 및 Mo 중 하나를 선택하여 사용할 수 있다. 또한, 압전층(108)은 통상의 압전물질로는 AlN 또는 ZnO가 바람직하나, 반드시 이에 한정되는 것은 아니다. 압전층(108)은 습식식각과 건식식각 모두를 사용하여 패턴을 구현할 수 있으며, 특히 AlN를 사용할 경우는 Ar, BCl3, Cl2, CF4 의 가스를 단독 또는 혼합하여 사용하여 AlN의 식각속도가 높고, 하부전극, 멤브레인층과의 높은 선택비를 갖는 조건에서 건식식각을 진행하는 것이 바람직하다.
최종적으로, 도5j와 같이, 비아홀(H3)을 형성한 후에 비어홀(H3)을 통해 희생영역(103')을 제거하고 에어갭(A3)을 형성한다. 이 때에 폴리실리콘으로 희생영역을 형성함으로써 습식식각이 아닌 건식식각을 사용할 수 있다. 따라서, 습식식각시 발생하는 멤브레인층의 접착력을 제거하며, 식각공정을 단순화할 수 있다.
본 건식 식각에 사용되는 식각가스로는 제논다이플로라이드(XeF2)을 사용하는 것이 바람직하다. 이러한 제논다이플로라이드는 MEMS(micro electro mechanical system)에서 폴리실리콘 식각에 많이 쓰이는 물질로서 플라즈마를 이용하지 않고 압력조절을 통하여 기화시킬 수 있다. 또한, 수분과 결합하여 HF를 형성시켜서 기판 표면을 오염시키기는 것을 방지하기 위해서, 식각공정 전에 전체 소자를 140℃ 에서 10분간 베이킹한 후에 공정을 진행하는 것이 바람직하다.
일반적으로, 제논다이플로라이드는 분당 수 ㎛의 폴리실리콘을 식각하며, 실리콘산화물과는 수천대 1정도로 높은 선택비를 보인다. 실리콘산화물뿐만 아니라 포토레지스트, PSG, BPSG, 알루미늄, 골드, 실리콘질화물, NiTi 등등의 물질도 거의 식각을 하지 않으므로, FBAR제조 공정에 적용하였을 때 희생층인 폴리실리콘의 식각속도가 빠르며 등방성 식각으로 비아홀 내부로의 식각이 원활할 뿐만 아니라, 멤브레인지지층 또는 멤브레인층과의 높은 선택비로 인하여 간단하면서도 안정적인 에어갭을 형성할 수 있다.
종래에는 습식식각에 사용되는 에천트액이 압전층과 상하부전극을 구성하는 물질에 대해서 높은 식각율을 가지므로 비아홀형성위치가 제약될 수 밖에 없었다.하지만, 본 발명에 따른 에어갭형성공정에서는, 높은 선택비를 갖는 건식식각방법을 사용하므로, 압전층 및 상하부전극을 통해 희생영역의 중앙부분에 이르는 비아홀을 형성할 수 있다. 따라서, 희생영역 중앙에 비어홀을 배치하여 효율적인 식각공정을 보장할 수 있으므로, 적은 수의 비아홀(1개의 비아홀도 가능함)을 형성하여도, 제논 다이플로라이드(XeF2)가스를 투입하여 희생영역을 제거할 수 있다. 이와 같이, 종래의 비아홀 형성위치에 대한 제약사항을 해소함으로써 비아홀 형성위치 및 수를 보다 다양하게 설계할 수 있다. 이는 결국 비아홀의 위치 및 수를 조절하여 소자의 특성에 영향을 미치는 기생성분을 감소시킬 수 있을 것으로 기대된다.
도5a 내지 도5j에 도시된 본 발명에 따른 FBAR소자 제조방법은 예시되는 것일 뿐이며, 본 발명을 한정하는 것은 아니다. 즉, 상기 제조방법을 구성하는 각 단계는 독립적으로, 또는 결합하여 사용될 수 있다. 예를 들면, 희생층을 폴리실리콘으로 형성하여 에어갭형성을 위해 건식식각하는 공정과, 삽입손실을 방지하기 위해 절연막을 형성하는 공정과, 멤브레인층을 건식식각하여 중심주파수를 조절하는 공정 및 포토레지스트의 측면프로파일각을 개선하는 공정은 각각 독립적으로 또는 다른 조합된 형태로 사용될 수 있으며, 이 또한 본 발명의 범위에 속한다고 할 수 있다.
이와 같이, 본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
상술한 바와 같이, 본 발명에 따르면, 활성화영역에 상응하는 멤브레인지지층부분의 두께를 조절하여 효과적인 중심주파수 제어와 전달이득을 높히는 방안을 제공한다.
삭제

Claims (42)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 기판;
    상기 기판 상에 형성되며 에어갭을 둘러싼 멤브레인 지지층;
    상기 멤브레인 지지층 상에 형성된 멤브레인층; 및
    상기 멤브레인층 상에 순차적으로 형성된 제1 전극, 압전층과 제2 전극을 포함하며,
    상기 멤브레인층은 상기 제1 및 제2 전극과 상기 압전층이 중첩된 활성화영역에 상응하는 부분이 그 주위의 다른 부분보다 얇은 두께를 갖는 것을 특징으로 하는 FBAR 소자.
  7. 제6항에 있어서,
    상기 멤브레인층은 상기 활성화영역에 상응하는 상면부분이 침하된 평면을 갖는 것을 특징으로 하는 FBAR 소자.
  8. 제6항에 있어서,
    상기 멤브레인층의 침하된 평면은 건식식각공정에 의해 형성된 것을 특징으로 하는 FBAR 소자.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서,
    상기 멤브레인층 중 상기 활성화영역에 상응하는 부분의 두께는 그 주위의 다른 부분의 두께의 약 50%이내인 것을 특징으로 하는 FBAR소자.
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 소정의 주파수에서 공진하는 활성화영역을 갖는 FBAR소자의 제조방법에 있어서,
    기판 상에 희생층을 형성하는 단계;
    에어갭 형성영역에 상응하는 부분이 잔류하도록 상기 희생층을 부분적으로 제거하는 단계;
    상기 희생층이 제거된 상기 기판 상면영역에 멤브레인 지지층을 형성하는 단계;
    상기 잔류한 희생층 및 상기 멤브레인 지지층 상에 상기 활성화영역에 상응하는 부분이 그 주위의 다른 부분보다 작은 두께를 갖는 멤브레인층을 형성하는 단계;
    상기 멤브레인층 상에 제1 전극, 압전층 및 제2 전극을 순차적으로 형성하는 단계; 및
    상기 잔류한 희생층을 제거하여 에어갭을 형성하는 단계를 포함하는 FBAR 소자 제조방법.
  30. 제29항에 있어서,
    상기 멤브레인층을 형성한 단계는,
    일정한 두께를 갖는 멤브레인층을 형성하는 단계;
    상기 멤브레인층 중 상기 활성화영역에 상응하는 상면영역에 건식식각을 적용하여 침하된 평면을 형성하는 단계를 더 포함하는 것을 특징으로 하는 FBAR소자 제조방법.
  31. 제30항에 있어서,
    상기 건식식각에 의해 제거된 두께는 상기 멤브레인층 두께의 약 50 내지 100%인 것을 특징으로 하는 FBAR소자 제조방법.
  32. 제30항에 있어서,
    상기 건식식각을 적용하기 전에, 핫플레이트를 이용하여 상기 멤브레인층을 하드베이킹하는 단계를 더 포함하는 것을 특징으로 하는 FBAR소자 제조방법.
  33. 제32항에 있어서,
    상기 하드베이킹하는 단계는 약 130- 200℃온도에서 1-10분간 수행되는 것을특징으로 하는 FBAR소자 제조방법.
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
KR20020019825A 2002-04-11 2002-04-11 Fbar 소자 및 그 제조방법 KR100616508B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20020019825A KR100616508B1 (ko) 2002-04-11 2002-04-11 Fbar 소자 및 그 제조방법
US10/320,361 US6992420B2 (en) 2002-04-11 2002-12-17 Film bulk acoustic resonator and method of forming the same
JP2002368701A JP2003318696A (ja) 2002-04-11 2002-12-19 Fbar素子及びその製造方法
CNB021578389A CN1236556C (zh) 2002-04-11 2002-12-20 薄膜体声波谐振器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20020019825A KR100616508B1 (ko) 2002-04-11 2002-04-11 Fbar 소자 및 그 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020050014025A Division KR100558461B1 (ko) 2005-02-21 2005-02-21 Fbar 소자 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20030081551A KR20030081551A (ko) 2003-10-22
KR100616508B1 true KR100616508B1 (ko) 2006-08-29

Family

ID=28786930

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20020019825A KR100616508B1 (ko) 2002-04-11 2002-04-11 Fbar 소자 및 그 제조방법

Country Status (4)

Country Link
US (1) US6992420B2 (ko)
JP (1) JP2003318696A (ko)
KR (1) KR100616508B1 (ko)
CN (1) CN1236556C (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869296B1 (ko) * 2006-02-24 2008-11-18 니뽄 가이시 가부시키가이샤 압전 박막 디바이스의 제조 방법

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930364B2 (en) * 2001-09-13 2005-08-16 Silicon Light Machines Corporation Microelectronic mechanical system and methods
KR100506729B1 (ko) * 2002-05-21 2005-08-08 삼성전기주식회사 박막 벌크 어코스틱 공진기(FBARs)소자 및 그제조방법
US6846423B1 (en) 2002-08-28 2005-01-25 Silicon Light Machines Corporation Wafer-level seal for non-silicon-based devices
US6877209B1 (en) 2002-08-28 2005-04-12 Silicon Light Machines, Inc. Method for sealing an active area of a surface acoustic wave device on a wafer
WO2004030113A1 (en) * 2002-09-27 2004-04-08 Innochips Technology Piezoelectric vibrator and fabricating method thereof
KR100485703B1 (ko) * 2003-04-21 2005-04-28 삼성전자주식회사 기판으로부터 부양된 에어갭을 갖는 박막 벌크 음향공진기 및 그 제조방법
DE10323559A1 (de) * 2003-05-26 2004-12-30 Robert Bosch Gmbh Mikromechanische Vorrichtung, Drucksensor und Verfahren
ATE515108T1 (de) * 2003-09-12 2011-07-15 Panasonic Corp Abstimmbarer dünnschicht-volumenwellen-resonator, herstellungsmethode dafür, filter, mehrschichtiges zusammengesetztes elektronisches bauelement und kommunikationsvorrichtung
EP1533896B1 (en) 2003-11-20 2011-11-02 Panasonic Corporation Piezoelectric element, composite piezoelectric element, and filter, duplexer and communication equipment using the same
JP4554337B2 (ja) * 2003-11-20 2010-09-29 パナソニック株式会社 圧電素子、および複合圧電素子、ならびにそれらを用いたフィルタ、共用器、通信機器
KR100568284B1 (ko) * 2003-12-09 2006-04-05 삼성전기주식회사 Fbar 소자의 주파수 튜닝 방법 및 이를 포함한 제조방법
TWI243496B (en) * 2003-12-15 2005-11-11 Canon Kk Piezoelectric film element, method of manufacturing the same, and liquid discharge head
JP4625260B2 (ja) * 2004-02-04 2011-02-02 株式会社日立メディアエレクトロニクス 薄膜バルク共振子の製造方法
JP3945486B2 (ja) * 2004-02-18 2007-07-18 ソニー株式会社 薄膜バルク音響共振子およびその製造方法
US20050205952A1 (en) * 2004-03-19 2005-09-22 Jae-Hyun Park Magnetic random access memory cells having split sub-digit lines having cladding layers thereon and methods of fabricating the same
WO2005099088A1 (en) * 2004-03-26 2005-10-20 Cypress Semiconductor Corp. Integrated circuit having one or more conductive devices formed over a saw and/or mems device
KR100622955B1 (ko) * 2004-04-06 2006-09-18 삼성전자주식회사 박막 벌크 음향 공진기 및 그 제조방법
JP4149416B2 (ja) 2004-05-31 2008-09-10 富士通メディアデバイス株式会社 圧電薄膜共振子およびフィルタならびにそれらの製造方法
JP4723207B2 (ja) * 2004-05-31 2011-07-13 信越化学工業株式会社 複合圧電基板
US7187255B2 (en) * 2004-10-26 2007-03-06 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Arrangement of lattice filter
JP4379475B2 (ja) * 2004-12-24 2009-12-09 株式会社村田製作所 圧電薄膜共振子およびその製造方法
KR100691152B1 (ko) * 2005-02-28 2007-03-09 삼성전기주식회사 박막 벌크 음향 공진기
JP2008035358A (ja) * 2006-07-31 2008-02-14 Hitachi Media Electoronics Co Ltd 薄膜圧電バルク波共振器及びそれを用いた高周波フィルタ
US7965017B2 (en) 2006-08-25 2011-06-21 Ube Industries, Ltd. Thin film piezoelectric resonator and method for manufacturing the same
CN101583559B (zh) * 2006-11-10 2012-02-15 新加坡科技研究局 微机械结构和制造微机械结构的方法
JP4997961B2 (ja) * 2006-12-26 2012-08-15 宇部興産株式会社 集積化分波器
JP5080858B2 (ja) * 2007-05-17 2012-11-21 太陽誘電株式会社 圧電薄膜共振器およびフィルタ
US8487719B2 (en) * 2008-04-29 2013-07-16 Triquint Semiconductor, Inc. Bulk acoustic wave resonator
JP5220503B2 (ja) * 2008-07-23 2013-06-26 太陽誘電株式会社 弾性波デバイス
JP5161698B2 (ja) * 2008-08-08 2013-03-13 太陽誘電株式会社 圧電薄膜共振子及びこれを用いたフィルタあるいは分波器
JP4567775B2 (ja) * 2008-08-26 2010-10-20 富士通メディアデバイス株式会社 弾性表面波デバイスおよびその製造方法
JP2010123840A (ja) * 2008-11-21 2010-06-03 Fuji Electric Holdings Co Ltd 可動ゲート型電界効果トランジスタの製造方法
US8291559B2 (en) * 2009-02-24 2012-10-23 Epcos Ag Process for adapting resonance frequency of a BAW resonator
JP2010232983A (ja) * 2009-03-27 2010-10-14 Nippon Telegr & Teleph Corp <Ntt> 薄膜振動子およびその製造方法
CN101692602B (zh) * 2009-09-28 2012-09-05 清华大学 单层电极薄膜体声波谐振器结构及其制造方法
JP5550330B2 (ja) * 2009-12-25 2014-07-16 キヤノン株式会社 容量検出型の機械電気変換素子の製造方法
CN101895269B (zh) * 2010-07-30 2012-09-05 中国科学院声学研究所 一种压电薄膜体声波谐振器的制备方法
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
DE102012205033B4 (de) * 2011-03-29 2020-01-30 Avago Technologies International Sales Pte. Limited Gestapelter akustischer Resonator, welcher eine Brücke aufweist
KR101354757B1 (ko) * 2011-11-18 2014-01-22 삼성전기주식회사 관성센서
KR101856060B1 (ko) 2011-12-01 2018-05-10 삼성전자주식회사 체적 음향 공진기
US10658998B2 (en) 2013-07-31 2020-05-19 Oepic Semiconductors, Inc. Piezoelectric film transfer for acoustic resonators and filters
CN103607178B (zh) * 2013-09-17 2016-10-05 诺思(天津)微系统有限公司 薄膜体波谐振器及提高其品质因数的方法
CN104627949A (zh) * 2013-11-14 2015-05-20 盛美半导体设备(上海)有限公司 微电子机械系统结构形成方法
CN104242864B (zh) * 2014-08-28 2017-03-29 中国工程物理研究院电子工程研究所 具有温度补偿和谐振频率修调功能的fbar及滤波器
KR102029503B1 (ko) * 2014-12-08 2019-11-08 삼성전기주식회사 체적 음향 공진기 및 필터
CN104917476B (zh) * 2015-05-28 2022-04-12 苏州汉天下电子有限公司 一种声波谐振器的制造方法
CN105262455B (zh) * 2015-10-09 2018-07-31 锐迪科微电子(上海)有限公司 一种高可靠性的薄膜体声波谐振器及其制造方法
CN105262456B (zh) * 2015-10-09 2018-07-31 锐迪科微电子(上海)有限公司 一种高性能薄膜体声波谐振器及其制造方法
CN105703736B (zh) * 2016-02-25 2018-12-07 锐迪科微电子(上海)有限公司 一种体声波器件及集成结构
CN105680813B (zh) * 2016-02-25 2018-12-07 锐迪科微电子(上海)有限公司 一种薄膜体声波谐振器及其制造方法
KR20170122539A (ko) * 2016-04-27 2017-11-06 삼성전기주식회사 체적 음향 공진기 및 이의 제조 방법
US10756703B2 (en) * 2016-08-18 2020-08-25 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator
KR101867285B1 (ko) * 2016-09-21 2018-07-19 삼성전기주식회사 음향 공진기 및 필터
US10637435B2 (en) * 2016-12-22 2020-04-28 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator and filter including the same
CN106868049A (zh) * 2016-12-29 2017-06-20 天津大学 一种导入装置及导入方法
US11418168B2 (en) * 2017-05-30 2022-08-16 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method for manufacturing the same
US10965271B2 (en) * 2017-05-30 2021-03-30 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method for fabricating the same
US11171628B2 (en) * 2017-07-04 2021-11-09 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method for manufacturing the same
US10700660B2 (en) * 2017-10-25 2020-06-30 Avago Technologies International Sales Pte. Limited Bulk acoustic wave resonator
US20190260354A1 (en) * 2018-02-22 2019-08-22 OEpic SEMICONDUCTORS, INC Self-supporting cavity structure of a bulk acoustic resonator and method therefor
KR102109884B1 (ko) * 2018-05-17 2020-05-12 삼성전기주식회사 체적 음향 공진기 및 이의 제조방법
CN108900173B (zh) * 2018-07-04 2022-03-04 杭州左蓝微电子技术有限公司 一种以硅为牺牲层的薄膜体声波谐振器制备方法
CN109775657B (zh) * 2018-12-28 2021-11-19 西安交通大学 一种压电石英结构的微加工工艺方法及应用
CN111721814A (zh) * 2019-03-22 2020-09-29 中国科学院电子学研究所 基于谐振式脱附的湿度传感器
CN111786644B (zh) * 2019-04-04 2023-01-06 中芯集成电路(宁波)有限公司上海分公司 体声波谐振器及其制造方法和滤波器、射频通信系统
KR102149386B1 (ko) * 2019-04-16 2020-08-28 삼성전기주식회사 음향 공진기 및 음향 공진기 필터
JP7246775B2 (ja) * 2019-07-19 2023-03-28 中芯集成電路(寧波)有限公司上海分公司 Baw共振器のパッケージングモジュールおよびパッケージング方法
US11437975B2 (en) * 2019-09-06 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic resonator and filter device
CN111245396B (zh) * 2019-10-26 2021-01-12 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器和电子设备
CN111262547B (zh) * 2019-12-31 2021-08-10 诺思(天津)微系统有限责任公司 体声波谐振器、mems器件、滤波器和电子设备
CN111917393B (zh) * 2020-06-22 2021-06-01 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
CN112087209B (zh) * 2020-09-27 2024-02-23 苏州汉天下电子有限公司 谐振器制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281807A (ja) * 1985-10-05 1987-04-15 Toshiba Corp 圧電薄膜共振子
JPH01157108A (ja) * 1987-12-14 1989-06-20 Victor Co Of Japan Ltd 圧電薄膜共振子
JPH0983029A (ja) * 1995-09-11 1997-03-28 Mitsubishi Electric Corp 薄膜圧電素子の製造方法
JPH11284480A (ja) * 1998-03-27 1999-10-15 Mitsubishi Electric Corp 圧電薄膜振動子
JP2000196404A (ja) * 1998-12-25 2000-07-14 Kyocera Corp 圧電共振子
US6204737B1 (en) * 1998-06-02 2001-03-20 Nokia Mobile Phones, Ltd Piezoelectric resonator structures with a bending element performing a voltage controlled switching function
KR20010029007A (ko) * 1999-09-28 2001-04-06 장광현 탄성파 소자의 제조방법 및 그에 따라 제조된 탄성파 소자
JP2001111371A (ja) * 1999-08-03 2001-04-20 Ngk Spark Plug Co Ltd ラダー型圧電セラミックフィルタの製造方法
KR20010097701A (ko) * 2000-04-25 2001-11-08 구자홍 고주파용 fbar 공진기 및 그 제조방법
US6335498B1 (en) * 2001-05-18 2002-01-01 Bread Automotive Technology, Inc. Shock sensor employing a spring coil for self-test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051907A (en) * 1996-10-10 2000-04-18 Nokia Mobile Phones Limited Method for performing on-wafer tuning of thin film bulk acoustic wave resonators (FBARS)
US5873154A (en) * 1996-10-17 1999-02-23 Nokia Mobile Phones Limited Method for fabricating a resonator having an acoustic mirror
FI107660B (fi) * 1999-07-19 2001-09-14 Nokia Mobile Phones Ltd Resonaattorirakenne
KR100398363B1 (ko) * 2000-12-05 2003-09-19 삼성전기주식회사 Fbar 소자 및 그 제조방법
US6828713B2 (en) * 2002-07-30 2004-12-07 Agilent Technologies, Inc Resonator with seed layer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281807A (ja) * 1985-10-05 1987-04-15 Toshiba Corp 圧電薄膜共振子
JPH01157108A (ja) * 1987-12-14 1989-06-20 Victor Co Of Japan Ltd 圧電薄膜共振子
JPH0983029A (ja) * 1995-09-11 1997-03-28 Mitsubishi Electric Corp 薄膜圧電素子の製造方法
JPH11284480A (ja) * 1998-03-27 1999-10-15 Mitsubishi Electric Corp 圧電薄膜振動子
US6204737B1 (en) * 1998-06-02 2001-03-20 Nokia Mobile Phones, Ltd Piezoelectric resonator structures with a bending element performing a voltage controlled switching function
JP2000196404A (ja) * 1998-12-25 2000-07-14 Kyocera Corp 圧電共振子
JP2001111371A (ja) * 1999-08-03 2001-04-20 Ngk Spark Plug Co Ltd ラダー型圧電セラミックフィルタの製造方法
KR20010029007A (ko) * 1999-09-28 2001-04-06 장광현 탄성파 소자의 제조방법 및 그에 따라 제조된 탄성파 소자
KR20010097701A (ko) * 2000-04-25 2001-11-08 구자홍 고주파용 fbar 공진기 및 그 제조방법
US6335498B1 (en) * 2001-05-18 2002-01-01 Bread Automotive Technology, Inc. Shock sensor employing a spring coil for self-test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869296B1 (ko) * 2006-02-24 2008-11-18 니뽄 가이시 가부시키가이샤 압전 박막 디바이스의 제조 방법
US7854049B2 (en) 2006-02-24 2010-12-21 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric thin film device

Also Published As

Publication number Publication date
US6992420B2 (en) 2006-01-31
CN1450719A (zh) 2003-10-22
CN1236556C (zh) 2006-01-11
JP2003318696A (ja) 2003-11-07
US20030193269A1 (en) 2003-10-16
KR20030081551A (ko) 2003-10-22

Similar Documents

Publication Publication Date Title
KR100616508B1 (ko) Fbar 소자 및 그 제조방법
JP3535474B2 (ja) FBAR(Film Bulk Acoustic Resonator)素子の製造方法
US7128941B2 (en) Method for fabricating film bulk acoustic resonator (FBAR) device
US7212082B2 (en) Method of manufacturing piezoelectric thin film device and piezoelectric thin film device
JP3940932B2 (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
JP4071213B2 (ja) カンチレバー状の圧電薄膜素子およびその製造方法
KR100662865B1 (ko) 박막 벌크 음향 공진기 및 그 제조방법
JP4688070B2 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
US20030129785A1 (en) Structurally supported thin film resonator and method of fabrication
JP4802900B2 (ja) 薄膜圧電共振器およびその製造方法
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
CN107026627A (zh) 垂直阵列纳米柱薄膜体声波谐振器及其制备方法和滤波器
KR100470711B1 (ko) 폴리 실리콘 희생층 및 에칭 방지 벽을 이용한 에어갭형fbar 제조 방법 및 그 장치
EP1471636B1 (en) Film bulk acoustic resonator having an air gap and a method for manufacturing the same
JP2007129776A (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
KR100558461B1 (ko) Fbar 소자 및 그 제조방법
US20190260354A1 (en) Self-supporting cavity structure of a bulk acoustic resonator and method therefor
KR100480030B1 (ko) 박막 필름 벌크 오코스틱 공진기 및 필터 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050121

Effective date: 20060626

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090616

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee