JPWO2018105299A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2018105299A1
JPWO2018105299A1 JP2018554873A JP2018554873A JPWO2018105299A1 JP WO2018105299 A1 JPWO2018105299 A1 JP WO2018105299A1 JP 2018554873 A JP2018554873 A JP 2018554873A JP 2018554873 A JP2018554873 A JP 2018554873A JP WO2018105299 A1 JPWO2018105299 A1 JP WO2018105299A1
Authority
JP
Japan
Prior art keywords
photoresist film
semiconductor wafer
region
semiconductor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018554873A
Other languages
English (en)
Other versions
JP6766885B2 (ja
Inventor
奈緒子 兒玉
奈緒子 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2018105299A1 publication Critical patent/JPWO2018105299A1/ja
Application granted granted Critical
Publication of JP6766885B2 publication Critical patent/JP6766885B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]

Abstract

所定回転数で回転させた半導体ウエハ(10)のおもて面(10a)にフォトレジストを塗布して所定厚さ(t1)のフォトレジスト膜(31)を形成して乾燥させる。次に、フォトレジスト塗布時の所定回転数以下の回転数で半導体ウエハ(10)を回転させながら薬液(44)を滴下することで、フォトレジスト膜(31)の所定厚さ(t1)を維持した状態で、フォトレジスト膜(31)の端部を薬液(44)で溶解し除去する。次に、露光・現像により、フォトレジスト膜(31)を所定パターンにする。現像後、UVキュアまたはポストベークを行わずに、フォトレジスト膜(31)をマスクとして、半導体ウエハ(10)のおもて面(10a)から8μm以上の飛程となるヘリウム照射(32)を行う。これによれば、フォトレジスト膜(31)をマスクとして用いて所定領域に位置精度よく所定不純物を注入することができ、かつコストを低減させることができる。

Description

この発明は、半導体装置の製造方法に関する。
従来、高加速エネルギーでのイオン注入によりライフタイムキラーとなる不純物欠陥を導入することで特性向上および特性改善を図ったパワーデバイスが開発されている。例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)と当該IGBTに逆並列に接続されたFWD(Free Wheeling Diode:還流ダイオード)とを同一半導体チップに内蔵して一体化した構造の逆導通型IGBT(RC−IGBT)では、ヘリウム(He)を照射してライフタイムキラーとなる欠陥をn-型ドリフト領域に形成することが公知である。
図12,13は、従来のRC−IGBTの構造を示す断面図である。図12に示す従来のRC−IGBTでは、n-型ドリフト領域101とp型ベース領域102との界面付近に、ヘリウム照射による欠陥113が形成されている。この欠陥113は、FWD領域112だけでなく、IGBT領域111にも形成されている。IGBT領域111は、IGBTが配置された領域である。FWD領域112は、FWDが配置された領域である。また、図13に示すように、IGBT領域111での漏れ電流低減や損失低減を図るために、FWD領域112のみに欠陥114を形成したRC−IGBTが提案されている(例えば、下記特許文献1〜3参照。)。
このようなRC−IGBTを作製(製造)するにあたって、n+型エミッタ領域103やp+型コンタクト領域104のような拡散領域を選択的に形成するには、各領域に対応する部分が開口したフォトレジスト膜121をマスク(遮蔽膜)として半導体ウエハ110に不純物がイオン注入122される(図14)。図14は、フォトレジスト膜をマスクとして用いたイオン注入工程の状態を模式的に示す断面図である。フォトレジスト膜121はイオン注入122される不純物の飛程に対応した厚さt101で形成され、通常、リン(P)やボロン(B)、砒素(As)等がイオン注入122される。また、フォトレジスト膜121は、イオン注入122の後、灰化処理(アッシング)により除去される。
また、下記特許文献2(第0025〜0027段落)には、FWD領域に対応する部分のみを開口したマスクを用いて、半導体ウエハの所定の深さにヘリウムを選択的に照射することが開示されている。下記特許文献3(第0045段落)には、所定パターンのフォトレジスト膜を遮蔽膜とし、半導体ウエハにヘリウムを選択的に照射することが開示されている。また、高加速エネルギーでのヘリウム照射やプロトン(H+)照射のように、不純物の注入(照射)132の深さ(飛程)が深く、フォトレジスト膜では遮蔽膜としての機能をなさない場合、メタルマスクやシリコン(Si)マスク等のハードマスク131を用いる方法が知られている(図15)。
図15,16は、ハードマスクをマスクとして用いたイオン注入工程の状態を模式的に示す断面図である。図15に示すように、不純物のイオン注入の遮蔽膜としてハードマスク131を用いる場合、半導体ウエハ110に予め形成された位置合わせ用マークを基準として半導体ウエハ110とハードマスク131との位置合わせが行われ、両者が対向する主面同士が接触しないように例えばクリップやネジ(不図示)等で固定される。そして、半導体ウエハ110とハードマスク131とが固定された状態で、ハードマスク131側から高加速エネルギーで不純物を注入132することで、所定領域にのみ所定のイオン種の不純物や欠陥が導入される。
例えば、RC−IGBTにおいて、FWD領域112にのみヘリウム照射による欠陥114を導入する場合の製造途中の状態を図16に示す。図16に示すように、半導体ウエハ110にIGBTおよびFWDの素子構造を形成した後、半導体ウエハ110の裏面(p+型コレクタ領域105側の面)に対向するように、例えばクリップやネジ(不図示)等で半導体ウエハ110にハードマスク131を固定する。そして、ハードマスク131をマスクとして半導体ウエハ110の裏面からヘリウムを照射することで、ハードマスク131の開口部131aからFWD領域112のみにヘリウム照射による欠陥114が導入される。
特開2015−118991号公報 特開2008−192737号公報 特開2014−135476号公報
しかしながら、ハードマスク131は切削加工やワイヤカット加工等により機械的に加工されるため、開口部131aの位置精度に劣る。また、ハードマスク131の開口部131aの加工最小寸法は300μm程度と大きいため、各半導体領域の微細化が難しく、デバイス寸法によっては用いることができない。また、半導体ウエハ110とハードマスク131との位置合わせ精度は±50μm程度であり、フォトリソグラフィにより形成されるフォトレジスト膜121のアライメント精度(±1.5μm程度)と比較して精度に劣る。このため、設計マージンを大きく取る必要があり、チップサイズが大きくなることで、1枚の半導体ウエハから切り出し可能なチップ枚数が減少し、コストが増加する。
一方、フォトレジスト膜121を遮蔽膜とし、不純物のイオン注入122の深さを深くする場合、上述したようにイオン注入122する不純物の飛程に対応した厚さt101でフォトレジスト膜121を形成する必要がある。例えば、フォトレジスト膜121中の飛程が半導体ウエハ110中の飛程の倍となるとする。このとき、半導体ウエハ110への不純物のイオン注入122の深さが0.5μmである場合には、フォトレジスト膜121の厚さt101は1.0μmである。しかし、ヘリウム照射やプロトン(H+)照射のように半導体ウエハ110への不純物のイオン注入122の深さが例えば50μmと深くなる場合、フォトレジスト膜121の厚さt101は100μm以上必要となる。
このように遮蔽膜として用いるフォトレジスト膜(レジストマスク)121の厚さt101を厚くする場合、次の問題が生じる。図9は、従来の半導体装置の製造方法の一部の工程の概要を示すフローチャートである。図10は、従来のレジストマスクの形成途中の状態を示す断面図である。一般に、フォトレジスト膜121を形成する場合、まず、コーター(塗布機)140の回転支持台141に半導体ウエハ110を固定する。次に、ノズル(不図示)から半導体ウエハ110の一方の主面110aにフォトレジストを塗布した後、半導体ウエハ110を回転させて半導体ウエハ110の一方の主面110aの全面に所定の厚さt101でフォトレジスト膜121を形成する(ステップS101)。
次に、半導体ウエハ110を回転させた状態で、フォトレジスト膜121の端部に薬液144を滴下し、フォトレジスト膜121の端部から所定幅w101の部分121aを、フォトレジスト膜121の端部を全周にわたって溶解して除去する(ステップS102)。フォトレジスト膜121の端部付近145の拡大図を図10の下側に示す。ステップS102では、半導体ウエハ110の周縁部110dの全周を露出させる(以下、半導体ウエハ110の端面処理とする)。半導体ウエハ110の周縁部110dとは、半導体チップとして用いない無効領域となる部分であり、半導体ウエハ110の搬送時に、搬送ハンド(不図示)で挟み込む部分や、ウエハカセット(不図示)の内壁に櫛歯状に設けられた溝の側壁に接触する部分である。
ステップS102では、フォトレジスト膜121の厚さt101が厚いと、フォトレジスト膜121の端部から所定幅w101の部分121aを溶解しているときに新たに露出した端面121bの形状が崩れて、溶解したフォトレジストが外側(半導体ウエハ110の端部110c側)へ流れ出してしまう。このため、半導体ウエハ110の周縁部110dに、半導体ウエハ110の一方の主面110aを覆うように、または半導体ウエハ110の一方の主面110aから端部110cまでを覆う、またはさらに他方の主面110bにまでわたって覆うように、フォトレジスト膜121が残ってしまう。すなわち、ステップS102において、フォトレジスト膜121の端部から所定幅w101の部分121aを完全に除去することができず、半導体ウエハ110の周縁部110dを覆った状態で残ってしまう。
半導体ウエハ110の周縁部110dにフォトレジスト膜121が残っている場合、ステップS102の後、フォトレジスト膜121を除去(ステップS107)するまでに行う各工程において、フォトレジスト膜121の、半導体ウエハ110の周縁部110dに残る部分が搬送ハンドやウエハカセットの収納溝、ステッパー(露光装置)等のステージに接触することで剥がれ落ちる。剥がれ落ちたフォトレジスト膜121はパーティクル(微小な塵)の発生源となるため、半導体ウエハ110に付着して不良チップが増大する虞がある。また、フォトレジスト膜121の、半導体ウエハ110の他方の主面110bに残る部分がステッパー等のステージに接触し、当該ステージが汚染される虞がある。
フォトレジスト膜121を除去(ステップS107)するまでに行う各工程とは、露光(ステップS103)、現像(ステップS104)、UV(UltraViolet:紫外線)キュアまたはポストベーク(ステップS105)、およびヘリウム照射(ステップS106)等である。特に、露光工程において、剥がれ落ちたフォトレジスト膜121が半導体ウエハ110やステッパーに悪影響を及ぼす。ステップS105では、フォトレジスト膜121の表面を固めて、ヘリウム照射時にフォトレジスト膜121の表面が変質することを防止している。符号141aは、モータの動力を回転支持台141に伝達する回転軸である。符号142はコーター140のカップ(外輪)であり、符号143は薬液144が吐出されるノズルである。
また、ステップS101では、ステップS106で用いる遮蔽膜として必要な所定厚さt101でフォトレジスト膜121が形成される。そして、ステップS102では、フォトレジスト膜121の、薬液144で溶解させた部分を回転による遠心力で外側へ飛ばして除去するため、ステップS101の処理時の約2倍以上の回転数[rpm:revolution per minute]で半導体ウエハ110を回転させる。通常、フォトレジストの粘度や溶媒の種類が同じ場合、フォトレジスト膜121の厚さt101は、半導体ウエハ110の回転数の増加にともなって指数関数的に減少する(図11参照)。図11は、半導体ウエハの回転数とフォトレジスト膜の厚さとの関係を示す特性図である。
例えば、ステップS102では、ステップS101での半導体ウエハ110の回転数m1[rpm]よりも高い回転数m2[rpm]以上で半導体ウエハ110を回転させるとする(m1<m2<m3)。ステップS102の処理時、フォトレジスト膜121の硬さはステップS101の処理時とほぼ同じである。このため、ステップS101において、半導体ウエハ110の回転数m1[rpm]としてフォトレジスト膜121の所定厚さt101を確保したとしても、ステップS102において半導体ウエハ110の回転数m2[rpm]を高くすることで、フォトレジスト膜121の最終的な厚さt101’は所定厚さt101よりも薄くなってしまう(t101’<t101)。
この発明は、上述した従来技術による問題点を解消するため、フォトレジスト膜をマスクとして用いて所定領域に位置精度よく所定不純物を注入することができ、かつコストを低減させることができる半導体装置の製造方法を提供することを目的とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、半導体ウエハの第1主面にフォトレジストを塗布してフォトレジスト膜を形成する第1工程を行う。次に、前記フォトレジスト膜の所定箇所を開口してレジストマスクを形成する第2工程を行う。次に、前記レジストマスクをマスクとして、前記半導体ウエハの第1主面から8μm以上の飛程となる加速エネルギーで不純物をイオン注入する第3工程を行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1工程では、前記半導体ウエハの第1主面の全面に所定厚さの前記フォトレジスト膜を形成する。前記第1工程の後、前記第2工程の前に、熱処理により前記フォトレジスト膜を乾燥させる乾燥工程を行い、前記乾燥工程の後、前記フォトレジスト膜の端部から所定幅の部分を、前記フォトレジスト膜の端部を全周にわたって薬液で溶解して除去する除去工程を行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1工程では、前記半導体ウエハを当該半導体ウエハの第1主面と直交する中心軸周りに所定回転数で回転させることで前記フォトレジストを前記半導体ウエハの第1主面の全面に広げて前記所定厚さの前記フォトレジスト膜を形成する。前記除去工程では、前記半導体ウエハを前記中心軸周りに前記所定回転数以下の回転数で回転させた状態で前記フォトレジスト膜の端部に前記薬液を滴下して、前記フォトレジスト膜の端部の全周にわたって前記薬液を塗布することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記フォトレジスト膜の厚さは、33μm以上であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記イオン注入の加速エネルギーは、3.0MeV以上であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記不純物はヘリウムであることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記イオン注入のドーズ量を1×1015/cm2以下とする。前記イオン注入の加速エネルギーを5MeV以下とする。前記第2工程の後、他の工程を挟まずに前記第3工程を行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2工程は、前記フォトレジスト膜に所定のマスクパターンを転写する露光工程と、前記マスクパターンに基づいて前記フォトレジスト膜を選択的に溶かして、前記フォトレジスト膜の前記所定箇所を開口する現像工程と、を含む。前記現像工程の後、他の工程を挟まずに前記第3工程を行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、化学増幅型の前記フォトレジストを用いることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、ポジ型の前記フォトレジストを用いることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、ネガ型の前記フォトレジストを用いることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1工程の前に、前記半導体ウエハの第1領域に第1半導体素子を形成し、前記半導体ウエハの第2領域に第2半導体素子を形成する素子形成工程をさらに含む。前記フォトレジスト膜の前記所定箇所は、前記第2領域の形成領域に対応する箇所であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1半導体素子は絶縁ゲート型バイポーラトランジスタである。前記第2半導体素子はダイオードである。前記素子形成工程では、第1導電型の前記半導体ウエハの第1主面の表面層に、前記絶縁ゲート型バイポーラトランジスタのベース領域および前記ダイオードのアノード領域となる第2導電型半導体領域を形成する。前記第3工程では、前記半導体ウエハの第1主面から、前記半導体ウエハの、前記第2導電型半導体領域との界面付近に前記不純物を注入することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1半導体素子は絶縁ゲート型バイポーラトランジスタである。前記第2半導体素子はダイオードである。前記素子形成工程では、第1導電型の前記半導体ウエハの第2主面の表面層に、前記絶縁ゲート型バイポーラトランジスタのベース領域および前記ダイオードのアノード領域となる第2導電型半導体領域を形成する。前記第3工程では、前記半導体ウエハの第1主面から、前記半導体ウエハの、前記第2導電型半導体領域との界面付近に前記不純物を注入することを特徴とする。
上述した発明によれば、レジストマスクを用いることで、ハードマスクを用いる場合と比べて、マスク開口部の最小加工寸法を小さくすることができ、かつ半導体ウエハとの位置合わせ精度を向上させることができる。また、デバイス設計時に設計マージンを削減することができるため、チップサイズを小さくすることができる。これによって、1枚の半導体ウエハから切り出し可能なチップ枚数を増やすことができる。
本発明にかかる半導体装置の製造方法によれば、フォトレジスト膜をマスクとして用いて所定領域に位置精度よく所定不純物を注入することができ、かつコストを低減させることができるという効果を奏する。
図1は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図2は、実施の形態にかかる半導体装置の製造途中の別の一例の状態を示す断面図である。 図3は、実施の形態にかかる半導体装置の製造方法の一部の工程の概要を示すフローチャートである。 図4は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図5は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、図4のステップS5の処理後のフォトレジスト膜の状態を示す断面図である。 図7は、比較例のフォトレジスト膜の状態を示す断面図である。 図8は、ヘリウムの注入深さとフォトレジスト膜の厚さとの関係を示す特性図である。 図9は、従来の半導体装置の製造方法の一部の工程の概要を示すフローチャートである。 図10は、従来のレジストマスクの形成途中の状態を示す断面図である。 図11は、半導体ウエハの回転数とフォトレジスト膜の厚さとの関係を示す特性図である。 図12は、従来のRC−IGBTの構造を示す断面図である。 図13は、従来のRC−IGBTの構造を示す断面図である。 図14は、フォトレジスト膜をマスクとして用いたイオン注入工程の状態を模式的に示す断面図である。 図15は、ハードマスクをマスクとして用いたイオン注入工程の状態を模式的に示す断面図である。 図16は、ハードマスクをマスクとして用いたイオン注入工程の状態を模式的に示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数を表している。
(実施の形態)
実施の形態にかかる半導体装置の製造方法について、FWD領域にヘリウム(He)照射によりヘリウムの欠陥を導入した耐圧1200VクラスのRC−IGBTを例に説明する。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。図1は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。図2は、実施の形態にかかる半導体装置の製造途中の別の一例の状態を示す断面図である。図1,2には、それぞれ、半導体ウエハ10のおもて面10a側および裏面10b側からヘリウム照射を行っている状態を模式的に示す。
RC−IGBTは、例えばトレンチゲート構造のIGBTと、このIGBTに逆並列に接続したFWDとを同一の半導体基板(半導体チップ)上に一体化してなる。具体的には、同一の半導体基板上の活性領域に、IGBTの動作領域となるIGBT領域21と、FWDの動作領域となるFWD領域22とが並列に設けられている(図1参照)。活性領域は、オン状態のときに電流が流れる領域である。活性領域の周囲を囲むエッジ終端領域(不図示)にガードリングやフィールドプレート等の耐圧構造が設けられていてもよい。
まず、図1に示すように、n-型ドリフト領域1となるn-型の半導体ウエハ10を用意する。半導体ウエハ10の材料は、シリコン(Si)であってもよいし、炭化珪素(SiC)であってもよい。以下、半導体ウエハ10がシリコンウエハである場合を例に説明する。半導体ウエハ10の不純物濃度は、例えば比抵抗が20Ωcm以上90Ωcm以下程度となる範囲であってもよい。半導体ウエハ10のおもて面10aは、例えば(001)面であってもよい。半導体ウエハ10の厚さ(後述するバックグラインド前の厚さ)は、例えば725μmであってもよい。
次に、フォトリソグラフィおよびイオン注入を1組とする工程を異なる条件で繰り返し行い、半導体ウエハ10のおもて面10a側に、IGBTのp型ベース領域2、n+型エミッタ領域3およびp+型コンタクト領域4を形成する。p型ベース領域2は、IGBT領域21からFWD領域22にわたって活性領域全面に形成される。p型ベース領域2は、FWD領域22においてp型アノード領域を兼ねる。n+型エミッタ領域3およびp+型コンタクト領域4は、IGBT領域21においてp型ベース領域2の内部に選択的に形成される。
半導体ウエハ10の、p型ベース領域2および後述するn型フィールドストップ(FS)層12、p+型コレクタ領域13およびn+型カソード領域14以外の部分がn-型ドリフト領域1である。IGBT領域21において、n-型ドリフト領域1とp型ベース領域2との間に、n型蓄積層5を形成してもよい。n型蓄積層5は、IGBTのターンオン時にn-型ドリフト領域1の少数キャリア(ホール)の障壁となり、n-型ドリフト領域1に少数キャリアを蓄積する機能を有する。
次に、半導体ウエハ10のおもて面10aを熱酸化して、エッジ終端領域において半導体ウエハ10のおもて面10aを覆うフィールド酸化膜を形成する。次に、フォトリソグラフィおよびエッチングにより、IGBT領域21においてn+型エミッタ領域3、p型ベース領域2およびn型蓄積層5を貫通してn-型ドリフト領域1に達するトレンチ6を形成する。トレンチ6は、半導体ウエハ10のおもて面10a側から見て、例えば、IGBT領域21とFWD領域22とが並ぶ方向(図1の横方向)と直交する方向(図1の奥行き方向)に延びるストライプ状のレイアウトに配置されている。
また、トレンチ6は、IGBT領域21と同様のレイアウトで、FWD領域22にも形成される。FWD領域22において、トレンチ6は、p型ベース領域2(p型アノード領域)を貫通してn-型ドリフト領域1に達する。次に、例えば熱酸化により、トレンチ6の内壁に沿ってゲート絶縁膜7を形成する。次に、半導体ウエハ10のおもて面10a上に、トレンチ6の内部を埋め込むようにポリシリコン(poly−Si)層を形成する。次に、このポリシリコン層を例えばエッジバックして、ゲート電極8となる部分をトレンチ6の内部に残す。
これらのp型ベース領域2、n+型エミッタ領域3、p+型コンタクト領域4、トレンチ6、ゲート絶縁膜7およびゲート電極8でトレンチゲート構造のMOSゲートが構成される。ゲート電極8の形成後に、n+型エミッタ領域3、p+型コンタクト領域4およびn型蓄積層5を形成してもよい。n+型エミッタ領域3は、隣り合うトレンチ6間(メサ領域)の少なくとも1つのメサ領域に配置されていればよく、n+型エミッタ領域3を配置しないメサ領域が存在してもよい。また、n+型エミッタ領域3は、トレンチ6がストライプ状に延びる方向に所定の間隔で選択的に配置されていてもよい。
次に、半導体ウエハ10のおもて面10a上に、ゲート電極8を覆うように層間絶縁膜9を形成する。次に、層間絶縁膜9をパターニングして、層間絶縁膜9を深さ方向に貫通する複数のコンタクトホールを形成する。深さ方向とは、半導体ウエハ10のおもて面10aから裏面10bに向かう方向である。IGBT領域21のコンタクトホールには、n+型エミッタ領域3およびp+型コンタクト領域4が露出される。FWD領域22のコンタクトホールには、p型ベース領域2が露出される。
次に、層間絶縁膜9上に、コンタクトホールを埋め込むようにおもて面電極11を形成する。おもて面電極11は、IGBT領域21においてp型ベース領域2、n+型エミッタ領域3およびp+型コンタクト領域4に電気的に接続され、エミッタ電極として機能する。また、おもて面電極11は、FWD領域22においてp型ベース領域2に電気的に接続され、アノード電極として機能する。おもて面電極11は、n+型エミッタ領域3を配置しないメサ領域においてp型ベース領域2に電気的に接続されていてもよい。
次に、半導体ウエハ10を裏面10b側から研削していき(バックグラインド)、半導体装置として用いる製品厚さ(例えば115μm程度)の位置まで研削する。耐圧1200Vの場合、半導体装置として用いる製品厚さは、例えば110μm以上150μm以下程度である。次に、フォトリソグラフィおよびイオン注入を1組とする工程を異なる条件で繰り返し行い、半導体ウエハ10の裏面10b側に、n型フィールドストップ(FS:Field Stop)層12およびn+型カソード領域14を形成する。
+型カソード領域14は、半導体ウエハ10の研削後の裏面10bの表面層に、半導体ウエハ10の裏面10bの全面にわたって形成される。n型フィールドストップ層12は、半導体ウエハ10の研削後の裏面10bからn+型カソード領域14よりも深い位置に形成される。n型フィールドストップ層12は、少なくともIGBT領域21からFWD領域22にわたって形成される。n型フィールドストップ層12は、n+型カソード領域14に接していてもよい。
次に、フォトリソグラフィおよびイオン注入により、n+型カソード領域14の、IGBT領域21に対応する部分をp+型に変えることでp+型コレクタ領域13を形成する。すなわち、p+型コレクタ領域13は、IGBT領域21とFWD領域22とが並ぶ方向においてn+型カソード領域14に接する。p+型コレクタ領域13は、深さ方向においてn型フィールドストップ層12に接していてもよい。次に、半導体ウエハ10のおもて面10a上に、エッジ終端領域を覆うようにパッシベーション保護膜を形成する。
次に、半導体ウエハ10のおもて面10a上に、FWD領域22に対応する部分が開口したフォトレジスト膜31を形成する。このフォトレジスト膜31をマスク(遮蔽膜)として高加速エネルギー(例えば3.0eV以上程度)で深い飛程(例えば8μm以上程度)のヘリウム照射32を行い、n-型ドリフト領域1の内部にライフタイムキラーとなるヘリウムの欠陥15を導入(形成)する。ヘリウムの欠陥15は、n-型ドリフト領域1の、p型ベース領域2(p型アノード領域)との境界付近に導入される。ヘリウムの注入深さ(飛程)d1は、半導体ウエハ10のおもて面10aから例えば8μm程度である。
ヘリウムの注入深さd1が半導体ウエハ10のおもて面10aから8μm程度である場合に、フォトレジスト膜31を遮蔽膜として機能させるためには、フォトレジスト膜31の厚さt1は後述するように33μm以上程度とする。これにより、フォトレジスト膜31で覆われたIGBT領域21には欠陥15は導入されず、FWD領域22のみに欠陥15が導入される。半導体ウエハ10のおもて面10aからのヘリウム照射32の条件は、例えば、ドーズ量を1×1010/cm2以上1×1013/cm2以下程度とし、加速エネルギーを3.0MeV以上4.5MeV以下程度としてもよい。
そして、灰化処理(アッシング)により、フォトレジスト膜31を除去する。フォトレジスト膜31の形成から、ヘリウム照射32を経てフォトレジスト膜31の除去に至るまでの各工程の詳細な説明については後述する。次に、半導体ウエハ10の裏面10bの全面に、裏面電極(不図示)を形成する。裏面電極は、p+型コレクタ領域13およびn+型カソード領域14に接する。裏面電極は、コレクタ電極として機能するとともに、カソード電極として機能する。その後、半導体ウエハ10をチップ状に切断(ダイシング)して個片化することで、RC−IGBTチップ(半導体チップ)が完成する。
なお、ヘリウム照射32は、半導体ウエハ10のおもて面10a上に、層間絶縁膜9を形成する前に行ってもよい。この場合、ヘリウム照射32は、高加速エネルギーは2.0MeV以上で飛程が8μm程度となる。この場合、灰化処理(アッシング)により、フォトレジスト膜31を除去後に層間絶縁膜9を半導体ウエハ10のおもて面10a上に形成する。
半導体ウエハ10のおもて面10aからのヘリウム照射32に代えて、半導体ウエハ10の裏面10bからヘリウム照射34を行ってもよい(図2参照)。この場合、半導体ウエハ10の裏面10b上に、FWD領域22に対応する部分が開口したフォトレジスト膜33を形成する。そして、このフォトレジスト膜33をマスク(遮蔽膜)としてヘリウム照射34し、n-型ドリフト領域1の内部にライフタイムキラーとなるヘリウムの欠陥15を導入すればよい。ヘリウムの注入深さ(飛程)d2は、半導体ウエハ10の裏面10bから例えば100μm程度である。
このようにヘリウムの注入深さd2が半導体ウエハ10の裏面10bから100μm程度である場合、フォトレジスト膜33を遮蔽膜として機能させるためには、フォトレジスト膜33の厚さt2は後述するように220μm以上程度とする。これにより、半導体ウエハ10のおもて面10aからのヘリウム照射32と同様に、フォトレジスト膜33で覆われたIGBT領域21には欠陥15は導入されず、FWD領域22のみに欠陥15が導入される。半導体ウエハ10の裏面10bからのヘリウム照射34の条件は、例えば、ドーズ量を1×1010/cm2以上1×1013/cm2以下程度とし、加速エネルギーを10MeV以上25MeV以下程度としてもよい。
次に、半導体ウエハ10のおもて面10aからのヘリウム照射32を行う場合を例に、フォトレジスト膜(レジストマスク)31の形成から除去までの間に行う各工程について説明する。図3は、実施の形態にかかる半導体装置の製造方法の一部の工程の概要を示すフローチャートである。図3には、フォトレジスト膜31の形成から除去までの間に行う各工程の概要を順に示す。図4,5は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。図4には図3のステップS3の状態を示し、図5には図3のステップS2の状態を示す。
まず、コーター(塗布機)40の回転支持台41に裏面10bを下側(回転支持台41側)にして半導体ウエハ10を載置し、回転支持台41に一体化された例えば真空チャック(不図示)により回転支持台41に半導体ウエハ10を固定する。次に、ノズル(不図示)から半導体ウエハ10のおもて面10aにフォトレジストを塗布(滴下)する。そして、半導体ウエハ10を回転させることで、半導体ウエハ10のおもて面10aの全面にフォトレジストを広げて、半導体ウエハ10のおもて面10aの全面にフォトレジスト膜31を形成する(ステップS1)。
ステップS1においては、後述するヘリウム照射32において遮蔽膜としてフォトレジスト膜31を用いるために必要な所定厚さt1でフォトレジスト膜31を形成する。フォトレジストの粘度を高くするほど、フォトレジスト膜31の厚さt1を厚くすることができる。フォトレジスト膜31の所定厚さt1を確保するには、半導体ウエハ10に塗布するフォトレジストの粘度および当該フォトレジストに含まれる溶媒の種類に応じて、半導体ウエハ10の回転数[rpm]を決定すればよい。半導体ウエハ10の回転数[rpm]は、例えば、半導体ウエハ10を固定した回転支持台41の回転数[rpm]を制御する例えばモータ(不図示)の動力(=トルク×回転数)により制御される。
フォトレジストの塗布を2回以上繰り返して、フォトレジスト膜31の所定厚さt1を確保してもよい。フォトレジスト膜31の所定の厚さt1を得られればよく、フォトレジスト膜31の材料には、ポジ型およびネガ型のいずれのフォトレジストを用いてもよいし、化学増幅型フォトレジストを用いてもよい。化学増幅型フォトレジストは、樹脂、酸発生剤および溶剤を混合した感光材料であり、通常のフォトレジストに比べて光に反応しやすい。フォトレジスト膜31を厚くするほど露光時間がかかるため、フォトレジスト膜31の材料として化学増幅型のフォトレジストを用いることが好ましい。
次に、加熱源を備えた例えばホットプレート等の加熱手段46(図5参照)の上に、裏面10bを下側(加熱手段46側)にして半導体ウエハ10を載置する。そして、加熱手段46により半導体ウエハ10全体を加熱(以下、乾燥ベークとする)して、フォトレジスト膜31中の溶媒や水を蒸発させることで、フォトレジスト膜31を乾燥させて固める(ステップS2)。乾燥ベークの温度は、例えば80℃以上150℃以下程度であってもよい。コーター40の回転支持台41の載置面から加熱手段46の載置面46aへ(または後述する加熱手段46からコーター40の回転支持台41へ)半導体ウエハ10を搬送するための搬送ハンドや、加熱手段46には、フォトレジスト膜31に接触しない形状の搬送ハンドを用いることが好ましい。
例えば、この搬送ハンドとして、半導体ウエハ10の裏面10bの一部に接触して、回転支持台41(または加熱手段46)の、半導体ウエハ10を載置する面(以下、載置面とする)から半導体ウエハ10を上方に持ち上げて保持可能な搬送ハンドを用いてもよい。この場合、コーター40の回転支持台41の載置面の直径は、半導体ウエハ10の径(直径)よりも小さいことが好ましい。これにより、搬送ハンドに半導体ウエハ10のおもて面10a側や端部10cが接触しないため、半導体ウエハ10からフォトレジスト膜31が剥がれ落ちることを防止することができる。かつ搬送ハンドや当該搬送ハンドを介して他の半導体ウエハがフォトレジストで汚染されることを防止することができる。
例えば、加熱手段46として、加熱手段46の載置面46aに、加熱手段46の載置面46aから離して半導体ウエハ10を保持可能な保持部47が設けられていてもよい(図5参照)。保持部47は、半導体ウエハ10の裏面10bの有効領域に対応する部分の一部に接触して半導体ウエハ10を保持する。保持部47は、例えば、半導体ウエハ10の径よりも小さい直径を有する例えばリング状をなしていてもよい。この保持部47により、半導体ウエハ10の裏面10bは加熱手段46の載置面46aに直接接触しない。このため、半導体ウエハ10の裏面10bにフォトレジストが付着していた場合においても、加熱手段46の載置面46aや当該載置面46aを介して他の半導体ウエハがフォトレジストで汚染されることを防止することができる。
次に、加熱手段46の載置面からコーター40の回転支持台41の載置面へ半導体ウエハ10を搬送する。そして、半導体ウエハ10を回転させた状態でフォトレジスト膜31の端部に薬液44を滴下し、フォトレジスト膜31の端部から所定幅w1の部分31aを、フォトレジスト膜31の端部を全周にわたって溶解して除去する(ステップS3)。薬液44は、例えばシンナー等の樹脂を溶解する性質を有する液体である。フォトレジスト膜31の端部付近45の拡大図を図4の下側に示す。ステップS3においては、半導体ウエハ10の周縁部10dの全周を露出させる(半導体ウエハ10の端面処理)。すなわち、半導体ウエハ10の周縁部10dは、フォトレジスト膜31の、薬液44で溶解される部分31aと略同じ幅w1を有する。
半導体ウエハ10の周縁部10dとは、半導体チップとして用いない無効領域となる部分である。具体的には、半導体ウエハ10の周縁部10dとは、ステップS3以降の工程において半導体ウエハ10の搬送時に、搬送ハンド(不図示)で挟み込む部分や、ウエハカセット(不図示)の内壁に櫛歯状に設けられた溝(以下、収納溝とする)の側壁に接触する部分である。半導体ウエハ10の周縁部10dの幅w1は、半導体ウエハ10の、半導体チップとして用いる有効領域(半導体チップとして切り出される領域)の面積を広げるために可能な限り狭いことが好ましく、例えば最大で6mm程度である。幅w1とは、半導体ウエハ10の中心から端部側へ向かう方向の幅である。
ステップS2の乾燥ベークによりフォトレジスト膜31がすでに固まっているため、フォトレジスト膜31の厚さt1が厚くても、ステップS3においてフォトレジスト膜31の新たに露出した端面31bの形状は崩れない。すなわち、フォトレジスト膜31が半導体ウエハ10の周縁部10dに流れ出さないため、半導体ウエハ10の周縁部10dの全周が所定幅w1で完全に露出される。したがって、ステップS3の後の各工程において、搬送ハンドやウエハカセットの収納溝、製造装置のステージ等にフォトレジスト膜31が接触しない。このため、パーティクル(微小な塵)の発生や、搬送ハンド、ウエハカセットの収納溝および製造装置のステージ等の汚染を防止することができる。
また、ステップS3での半導体ウエハ10の回転数[rpm]は、ステップS1での半導体ウエハ10の回転数[rpm]と同じか、それ未満とする。フォトレジスト膜31の厚さt1は半導体ウエハ10の回転数の増加にともなって指数関数的に減少するが(図11参照)、このようにステップS3での半導体ウエハ10の回転数[rpm]をステップS1での半導体ウエハ10の回転数[rpm]の1倍以下にすることで、フォトレジスト膜31の厚さt1が保たれる。すなわち、フォトレジスト膜31の最終的な厚さt1’として、ステップS1で決定した所定厚さt1を確保することができる(t1’=t1)。
一方、ステップS3での半導体ウエハ10の回転数[rpm]が小さすぎる場合、フォトレジスト膜31の端部に薬液44が部分的に滴下されてしまい、フォトレジスト膜31の端部の全周にわたって薬液44を均一に塗布することができない。これによって、フォトレジスト膜31の端部から所定幅w1の部分31aを溶解しているときに新たに露出した端面31bが半導体ウエハ10のおもて面10a側から見て波打った平面形状となってしまう。すなわち、ステップS3において半導体ウエハ10の周縁部10dの全周を一定の幅w1で露出することができない。このため、半導体ウエハ10の回転数[rpm]は、例えば、ステップS1での半導体ウエハ10の回転数[rpm]の0.5倍以上程度であることが好ましい。
ステップS3で用いるコーター40は、ステップS1と同じコーター40を用いてもよいし(すなわちステップS1,S3共用のコーター40を用意)、ステップS1と異なるコーター40を用いてもよい(すなわちステップS1専用のコーター40と、ステップS3専用のコーター40と、を用意)。ステップS1,S3共用のコーター40を用いる場合、設備にかかるコストを低減させることができる。ステップS1専用のコーター40と、ステップS3専用のコーター40と、を用いる場合、スループットを向上させることができる。符号41aは、モータの動力を回転支持台41に伝達する回転軸である。符号42はコーター40のカップ(外輪)であり、符号43は薬液44が吐出されるノズルである。
次に、フォトレジスト膜31を形成した半導体ウエハ10を、コーター40からステッパー(露光装置:不図示)のステージに搬送する。このとき、例えば、半導体ウエハ10の周縁部10dにおいて半導体ウエハ10の両面を挟み込むように搬送ハンドで半導体ウエハ10を摘まんでウエハカセット(不図示)に収納し、当該ウエハカセットに収納した複数枚の半導体ウエハ10をまとめて搬送する。これにより、後述する露光工程において複数枚の半導体ウエハ10を連続して処理することができる。このため、稼働コストの高いステッパーの稼働時間を短くすることができ、コストを低減させることができる。
次に、ステッパーにより1枚ずつ半導体ウエハ10の全面を走査しながらマスク(レチクル)を通して1チップずつ露光を行うことで、フォトレジスト膜31に所定のマスクパターンを転写する(ステップS4)。次に、PEB(Post Exposure Bake:露光後焼き締め)の後、ディベロッパー(現像機)によりフォトレジスト膜31の所定箇所を溶かしてパターンを現像し、フォトレジスト膜31の、FWD領域22に対応する部分を開口する(ステップS5)。次に、フォトレジスト膜31をマスクとして、半導体ウエハ10のおもて面10aからヘリウム照射32を行う(ステップS6)。
ここで、フォトレジスト膜31の材料としてポジ型フォトレジストを用いる場合、ステップS5とステップS6との間に、従来のようなUVキュアまたはポストベーク(図9のステップS105参照)を行わない。その理由は、次の通りである。図6は、図4のステップS5の処理後のフォトレジスト膜の状態を示す断面図である。図7は、比較例のフォトレジスト膜の状態を示す断面図である。ステップS5の後、フォトレジスト膜31のパターンの端面31cは半導体ウエハ10のおもて面10aに略垂直な状態であり、その厚さt1’は略一様である(図6)。フォトレジスト膜31のパターンの端面31cとは、フォトレジスト膜31のパターンの開口部31dに露出する側面である。
一方、ステップS5とステップS6との間にUVキュアまたはポストベークを行った場合、フォトレジスト膜31’の厚さt1’が厚いと、フォトレジスト膜31’のパターンの端部31e’が変形する。UVキュアまたはポストベークの温度が上がるほど、開口部31d’の上端側が広くなってフォトレジスト膜31’のパターンの端面31c’が傾斜し、フォトレジスト膜31’のパターンの端部31e’の厚さt3が薄くなる(t3<t1’)(図7参照)。
フォトレジスト膜31’のパターンの端部31e’の厚さt3が薄くなった部分では、ヘリウム照射32時にヘリウムが突き抜けてしまう。このため、半導体ウエハ10の、フォトレジスト膜31’のパターンの端部31e’直下の部分(深さ方向に対向する部分)にヘリウムが導入されてしまい、IGBTのゲート閾値が変動したり、漏れ電流が増加してしまう。また、フォトレジスト膜31’のパターンの端部31e’直下にIGBTの素子構造が配置されないようにIGBT領域21の設計マージンを大きくした場合、チップサイズが大きくなってしまうからである。
このようにフォトレジスト膜31の材料としてポジ型フォトレジストを用いる場合において、ステップS5とステップS6との間にUVキュアまたはポストベークを行わないことで、ステップS5の後のフォトレジスト膜31’のパターン形状を維持することができる。その一方で、UVキュアまたはポストベークを行わない場合、ヘリウム照射32時にフォトレジスト膜31の表面が変質して、その後の灰化処理でフォトレジスト膜31を除去しにくくなる。このため、ヘリウム照射32の条件は、フォトレジスト膜31が変質しないドーズ量および加速エネルギーとする。具体的には、ヘリウム照射32の条件は、例えば、ドーズ量を1×1015/cm2以下とし、加速エネルギーを5MeV以下とする。このようにヘリウム照射32の加速エネルギーを抑えることで、ヘリウム照射32時にフォトレジスト膜31の表面が変質することを防止することができる。
図8は、ヘリウムの注入深さとフォトレジスト膜の厚さとの関係を示す特性図である。図8には、注入深さd1でヘリウム照射32を行うにあたって、フォトレジスト膜31の遮蔽に必要な厚さt1’を示す。図8において、○印は遮蔽可能であることを意味し、×印はフォトレジスト膜31の厚さt1’が足りず遮蔽することができない(すなわちヘリウムがフォトレジスト膜31を突き抜けて半導体ウエハ10に導入されてしまう)ことを意味する。上述したようにフォトレジスト膜31の材料としてポジ型フォトレジストを用いる場合、上述したようにヘリウム照射32の加速エネルギーを5MeV以下に抑えるため、ヘリウムの注入深さd1の最大値は30μm程度となる。すなわち、フォトレジスト膜31の材料としてポジ型フォトレジストを用いる場合、フォトレジスト膜31の厚さt1’は最大で66μm程度にすればよい(図8の太枠で囲む部分)。ヘリウムの注入深さd1が8μm以下程度である場合には、フォトレジスト膜31の厚さt1’は33μm以下程度としてもよい。
フォトレジスト膜31の材料としてネガ型フォトレジストを用いる場合には、上述したポジ型フォトレジストに生じる問題は起きないため、ステップS5とステップS6との間に従来のようなUVキュアまたはポストベークを行ってもよい。このため、ヘリウム照射32のドーズ量や加速エネルギーの条件を抑える必要がなく、フォトレジスト膜31の厚さt1’を厚くして、飛程の深いヘリウム照射32を行うことができるが、その後の灰化処理でフォトレジスト膜31を除去しにくくなる。また、ネガ型フォトレジストには腐食性の高い専用の除去液が必要であり、この除去液によりおもて面電極が溶解したり、パッシベーション保護膜に亀裂が入ったりする虞がある。したがって、このような問題を回避可能な程度にフォトレジスト膜31の厚さt1’を決定することが好ましい。
図示省略するが、例えば、フォトレジスト膜31の厚さt1’を220μmとした場合、ヘリウムの注入深さd1を100μm程度まで深くすることができる。ヘリウムの注入深さd1が75μm以下程度である場合には、フォトレジスト膜31の厚さt1’を165μm以下程度とすることができる。また、図8に示すように、ヘリウムの注入深さd1が50μm以下程度である場合には、フォトレジスト膜31の厚さt1’を110μm以下程度とすることができる。ヘリウムの注入深さd1が30μm以下程度である場合には、フォトレジスト膜31の厚さt1’を66μm以下程度とすることができる。ヘリウムの注入深さd1が8μm以下程度である場合には、フォトレジスト膜31の厚さt1’を33μm以下程度とすることができる。
RC−IGBTにおいては、上述したようにn-型ドリフト領域1とp型ベース領域2との界面付近にヘリウム照射32による欠陥15を形成する(図1参照)。このため、半導体ウエハ10のおもて面10aからのヘリウム照射32する場合、フォトレジスト膜31の厚さt1’は比較的薄くなる。このため、フォトレジスト膜31の材料はポジ型およびネガ型のいずれのフォトレジストであってもよい。また、フォトレジスト膜31の開口部31dの幅w2の最小加工寸法は、フォトレジスト膜31の厚さt1’に等しい。フォトレジスト膜31の厚さt1’が比較的薄いことで、フォトレジスト膜31の開口部31dの幅w2の最小加工寸法が小さくなるため、半導体チップの小型化が可能である。その後、灰化処理によりフォトレジスト膜31を除去することで(ステップS7)、ヘリウム照射32を行うための一連の工程が完了する。
フォトレジスト膜33をマスクとして半導体ウエハ10の裏面10bからFWD領域22にヘリウム照射34する場合(図2参照)においても、上述した半導体ウエハ10のおもて面10aからヘリウム照射32を行うための一連の工程(図3〜5参照)を適用可能である。この場合、半導体ウエハ10の裏面10bからFWD領域22にヘリウム照射34する場合、フォトレジスト膜33の厚さt2が比較的厚くなるため、フォトレジスト膜33の材料はネガ型フォトレジストを用いればよい。
以上、説明したように、実施の形態によれば、高加速エネルギーでのイオン注入にレジストマスクを用いることで、ハードマスクを用いる場合と比べて、マスク開口部の最小加工寸法を小さくすることができ、かつ半導体ウエハとの位置合わせ精度を向上させることができる。具体的には、ハードマスクの開口部の最小加工寸法が300μm程度であるのに対して、レジストマスクの開口部の最小加工寸法はレジストマスクの厚さと同程度であり、最大でも220μm程度である。また、半導体ウエハとハードマスクとの位置合わせ精度は±50μm程度であるのに対し、半導体ウエハとレジストマスクとのアライメント精度は±1.5μm程度である。これによって、所定領域に位置精度よく所定不純物を注入することができる。また、デバイス設計時に設計マージンを削減することができるため、チップサイズを小さくすることができる。これによって、1枚の半導体ウエハから切り出し可能なチップ枚数が増加するため、製品単価を低減させることができ、コストを低減させることができる。
また、実施の形態によれば、レジストマスクの開口部の最小加工寸法を小さくすることができることで、IGBTとFWDとを同一半導体チップに内蔵して一体化した構造のRC−IGBTを作製するにあたって、IGBT領域とFWD領域との配置の自由度が上がる。例えば、RC−IGBTは、IGBTとFWDとが交互に動作する。このため、素子がオン状態になったことで発熱している領域と、素子がオフ状態になったことで比較的低温度となっている領域と、が1つの半導体チップ内に同時に存在し、低温度となっている領域が冷却機として機能する。したがって、IGBT領域とFWD領域との配置の自由度が上がることで、小面積のIGBT領域とFWD領域とを交互に配置することができ、半導体チップ自体の発熱をさらに抑制することができる。
また、実施の形態によれば、フォトレジスト膜の端部を薬液により溶解する(半導体ウエハの端面処理)前に、フォトレジスト膜を乾燥ベークすることで、フォトレジスト膜の厚さが厚くても、フォトレジスト膜の端面の形状を崩すことなく、半導体ウエハの端面処理を行うことができる。したがって、パーティクルの発生や、搬送ハンド、ウエハカセットの収納溝および製造装置のステージ等の汚染を防止することができる。また、実施の形態によれば、半導体ウエハの端面処理時の半導体ウエハの回転数を、フォトレジスト塗布時の半導体ウエハの回転数と同じか、それ未満とすることで、フォトレジスト塗布時に決定したフォトレジスト膜の厚さを、半導体ウエハの端面処理後も維持することができる。
また、実施の形態によれば、フォトレジスト膜の現像とヘリウム照射との間にUVキュアやポストベークを行わないことで、フォトレジスト膜のパターンの端部が変形しない。したがって、半導体ウエハの所定の部分(すなわちRC−IGBTを作製する場合にはFWD領域)のみに位置精度よくヘリウム照射を行うことができる。また、実施の形態によれば、RC−IGBTを作製するにあたって、FWD領域にのみヘリウムを導入することができるため、ヘリウム照射のドーズ量を抑える必要がなく、損失低減効果を向上させることができる。また、実施の形態によれば、RC−IGBTを作製するにあたって、IGBT領域にヘリウムが導入されないため、IGBT領域で漏れ電流が増加することを防止することができる。
以上において本発明では、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施の形態では、ヘリウムを照射する場合を例に説明しているが、これに限らず、所定の不純物のイオン注入を例えば1.5MeV以上程度の高加速エネルギー(例えば飛程が8μm以上)で行う場合や、レジストマスク(遮蔽膜)として用いるフォトレジスト膜の厚さが例えば30μm以上程度になる場合に、本発明を適用可能である。また、上述した実施の形態では、RC−IGBTを例に説明しているが、これに限らず、上記条件で高加速度エネルギーのヘリウム照射や不純物のイオン注入を行う様々な素子構造のデバイスに本発明を適用可能である。また、各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置の製造方法は、高加速エネルギーでのイオン注入を行う必要のある半導体装置に有用である。
1 n-型ドリフト領域
2 p型ベース領域
3 n+型エミッタ領域
4 p+型コンタクト領域
5 n型蓄積層
6 トレンチ
7 ゲート絶縁膜
8 ゲート電極
9 層間絶縁膜
10 半導体ウエハ
10a 半導体ウエハのおもて面
10b 半導体ウエハの裏面
10c 半導体ウエハの端部
10d 半導体ウエハの周縁部
11 おもて面電極
12 n型フィールドストップ層
13 p+型コレクタ領域
14 n+型カソード領域
15 欠陥
21 IGBT領域
22 FWD領域
31,33 フォトレジスト膜
31a フォトレジスト膜の端部の溶解される部分
31b フォトレジスト膜の端部の溶解中にフォトレジスト膜の新たに露出される端面
31c フォトレジスト膜のパターンの端面
31d フォトレジスト膜の開口部
32,34 ヘリウム照射
40 コーター
41 回転支持台
41a 回転支持台の回転軸
42 コーターカップ
43 薬液が吐出されるノズル
44 薬液
45 フォトレジスト膜の端部付近
46 加熱手段
46a 加熱手段の載置面
47 加熱手段の載置面の保持部
t1,t1’,t2 フォトレジスト膜の厚さ
w1 半導体ウエハの周縁部の幅、フォトレジスト膜の端部の溶解される部分の幅
w2 フォトレジスト膜の開口部の幅

Claims (14)

  1. 半導体ウエハの第1主面にフォトレジストを塗布してフォトレジスト膜を形成する第1工程と、
    前記フォトレジスト膜の所定箇所を開口してレジストマスクを形成する第2工程と、
    前記レジストマスクをマスクとして、前記半導体ウエハの第1主面から8μm以上の飛程となる加速エネルギーで不純物をイオン注入する第3工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記第1工程では、前記半導体ウエハの第1主面の全面に所定厚さの前記フォトレジスト膜を形成し、
    前記第1工程の後、前記第2工程の前に、
    熱処理により前記フォトレジスト膜を乾燥させる乾燥工程と、
    前記乾燥工程の後、前記フォトレジスト膜の端部から所定幅の部分を、前記フォトレジスト膜の端部を全周にわたって薬液で溶解して除去する除去工程と、をさらに含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第1工程では、前記半導体ウエハを当該半導体ウエハの第1主面と直交する中心軸周りに所定回転数で回転させることで前記フォトレジストを前記半導体ウエハの第1主面の全面に広げて前記所定厚さの前記フォトレジスト膜を形成し、
    前記除去工程では、前記半導体ウエハを前記中心軸周りに前記所定回転数以下の回転数で回転させた状態で前記フォトレジスト膜の端部に前記薬液を滴下して、前記フォトレジスト膜の端部の全周にわたって前記薬液を塗布することを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記フォトレジスト膜の厚さは、33μm以上であることを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 前記イオン注入の加速エネルギーは、3.0MeV以上であることを特徴とする請求項1に記載の半導体装置の製造方法。
  6. 前記不純物はヘリウムであることを特徴とする請求項1に記載の半導体装置の製造方法。
  7. 前記イオン注入のドーズ量を1×1015/cm2以下とし、
    前記イオン注入の加速エネルギーを5MeV以下とし、
    前記第2工程の後、他の工程を挟まずに前記第3工程を行うことを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 前記第2工程は、
    前記フォトレジスト膜に所定のマスクパターンを転写する露光工程と、
    前記マスクパターンに基づいて前記フォトレジスト膜を選択的に溶かして、前記フォトレジスト膜の前記所定箇所を開口する現像工程と、を含み、
    前記現像工程の後、他の工程を挟まずに前記第3工程を行うことを特徴とする請求項7に記載の半導体装置の製造方法。
  9. 化学増幅型の前記フォトレジストを用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  10. ポジ型の前記フォトレジストを用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  11. ネガ型の前記フォトレジストを用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  12. 前記第1工程の前に、前記半導体ウエハの第1領域に第1半導体素子を形成し、前記半導体ウエハの第2領域に第2半導体素子を形成する素子形成工程をさらに含み、
    前記フォトレジスト膜の前記所定箇所は、前記第2領域の形成領域に対応する箇所であることを特徴とする請求項1〜11のいずれか一つに記載の半導体装置の製造方法。
  13. 前記第1半導体素子は絶縁ゲート型バイポーラトランジスタであり、
    前記第2半導体素子はダイオードであり、
    前記素子形成工程では、第1導電型の前記半導体ウエハの第1主面の表面層に、前記絶縁ゲート型バイポーラトランジスタのベース領域および前記ダイオードのアノード領域となる第2導電型半導体領域を形成し、
    前記第3工程では、前記半導体ウエハの第1主面から、前記半導体ウエハの、前記第2導電型半導体領域との界面付近に前記不純物を注入することを特徴とする請求項12に記載の半導体装置の製造方法。
  14. 前記第1半導体素子は絶縁ゲート型バイポーラトランジスタであり、
    前記第2半導体素子はダイオードであり、
    前記素子形成工程では、第1導電型の前記半導体ウエハの第2主面の表面層に、前記絶縁ゲート型バイポーラトランジスタのベース領域および前記ダイオードのアノード領域となる第2導電型半導体領域を形成し、
    前記第3工程では、前記半導体ウエハの第1主面から、前記半導体ウエハの、前記第2導電型半導体領域との界面付近に前記不純物を注入することを特徴とする請求項12に記載の半導体装置の製造方法。
JP2018554873A 2016-12-08 2017-11-08 半導体装置の製造方法 Active JP6766885B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016238914 2016-12-08
JP2016238914 2016-12-08
PCT/JP2017/040334 WO2018105299A1 (ja) 2016-12-08 2017-11-08 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018105299A1 true JPWO2018105299A1 (ja) 2019-04-04
JP6766885B2 JP6766885B2 (ja) 2020-10-14

Family

ID=62491188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554873A Active JP6766885B2 (ja) 2016-12-08 2017-11-08 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10629441B2 (ja)
JP (1) JP6766885B2 (ja)
CN (1) CN109219870B (ja)
DE (1) DE112017002352B4 (ja)
WO (1) WO2018105299A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814694B (zh) * 2014-10-03 2019-03-08 富士电机株式会社 半导体装置以及半导体装置的制造方法
US10867798B2 (en) * 2016-12-08 2020-12-15 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
JP6835291B2 (ja) 2018-03-19 2021-02-24 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2019216085A1 (ja) * 2018-05-10 2019-11-14 富士電機株式会社 半導体装置の製造方法
JP7067636B2 (ja) 2018-10-18 2022-05-16 富士電機株式会社 半導体装置および製造方法
CN112204710A (zh) 2018-12-28 2021-01-08 富士电机株式会社 半导体装置及制造方法
JP7243744B2 (ja) 2019-01-18 2023-03-22 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7201093B2 (ja) * 2019-09-05 2023-01-10 富士電機株式会社 半導体装置および半導体装置の製造方法
CN113711364A (zh) 2019-10-11 2021-11-26 富士电机株式会社 半导体装置和半导体装置的制造方法
US11621158B2 (en) 2020-03-02 2023-04-04 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262124A (ja) * 1992-09-30 1994-09-20 Hoya Corp 処理液供給方法及びその装置並びに不要膜除去方法並びに位相シフトマスクブランク製造方法
JPH08195337A (ja) * 1995-01-13 1996-07-30 Fuji Photo Film Co Ltd レジスト洗浄除去用溶剤
JP2001135831A (ja) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd 半導体装置
JP2004363328A (ja) * 2003-06-04 2004-12-24 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2008103660A (ja) * 2006-09-19 2008-05-01 Hitachi Chemical Dupont Microsystems Ltd 樹脂膜形成方法、レリーフパターンの製造方法及び電子部品
WO2008140083A1 (ja) * 2007-05-16 2008-11-20 Tokuyama Corporation フォトレジスト現像液
JP2010093049A (ja) * 2008-10-08 2010-04-22 Nec Electronics Corp ウェハの処理方法およびウェハの処理装置
JP2015170617A (ja) * 2014-03-04 2015-09-28 東京エレクトロン株式会社 液処理装置
WO2015145929A1 (ja) * 2014-03-25 2015-10-01 株式会社デンソー 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192737A (ja) 2007-02-02 2008-08-21 Denso Corp 半導体装置
EP2061084A1 (en) 2007-11-14 2009-05-20 ABB Technology AG Reverse-conducting insulated gate bipolar transistor and corresponding manufacturing method
JP5695343B2 (ja) 2010-05-13 2015-04-01 株式会社豊田中央研究所 半導体装置
JP6078961B2 (ja) * 2012-03-19 2017-02-15 富士電機株式会社 半導体装置の製造方法
JP6263966B2 (ja) 2012-12-12 2018-01-24 富士電機株式会社 半導体装置
US9627517B2 (en) * 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
US8987825B2 (en) 2013-06-10 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a double deep well
JP6119593B2 (ja) 2013-12-17 2017-04-26 トヨタ自動車株式会社 半導体装置
JP6237902B2 (ja) * 2014-07-17 2017-11-29 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6197773B2 (ja) 2014-09-29 2017-09-20 トヨタ自動車株式会社 半導体装置
JP6809843B2 (ja) * 2015-08-20 2021-01-06 国立大学法人大阪大学 パターン形成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262124A (ja) * 1992-09-30 1994-09-20 Hoya Corp 処理液供給方法及びその装置並びに不要膜除去方法並びに位相シフトマスクブランク製造方法
JPH08195337A (ja) * 1995-01-13 1996-07-30 Fuji Photo Film Co Ltd レジスト洗浄除去用溶剤
JP2001135831A (ja) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd 半導体装置
JP2004363328A (ja) * 2003-06-04 2004-12-24 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2008103660A (ja) * 2006-09-19 2008-05-01 Hitachi Chemical Dupont Microsystems Ltd 樹脂膜形成方法、レリーフパターンの製造方法及び電子部品
WO2008140083A1 (ja) * 2007-05-16 2008-11-20 Tokuyama Corporation フォトレジスト現像液
JP2010093049A (ja) * 2008-10-08 2010-04-22 Nec Electronics Corp ウェハの処理方法およびウェハの処理装置
JP2015170617A (ja) * 2014-03-04 2015-09-28 東京エレクトロン株式会社 液処理装置
WO2015145929A1 (ja) * 2014-03-25 2015-10-01 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
US20190139772A1 (en) 2019-05-09
DE112017002352B4 (de) 2023-12-14
CN109219870B (zh) 2021-09-10
WO2018105299A1 (ja) 2018-06-14
CN109219870A (zh) 2019-01-15
JP6766885B2 (ja) 2020-10-14
DE112017002352T5 (de) 2019-01-24
US10629441B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018105299A1 (ja) 半導体装置の製造方法
JP7325167B2 (ja) 半導体装置の製造方法
JP2015008235A (ja) 半導体装置の製造方法
JP2009295628A (ja) 半導体装置の製造方法
US20200258998A1 (en) Method of manufacturing semiconductor device
US10867798B2 (en) Method of manufacturing semiconductor device
JP6492980B2 (ja) 半導体装置の製造方法
JP2015207733A (ja) 逆導通型igbtの製造方法
JP7230434B2 (ja) 半導体装置の製造方法
JP2006229135A (ja) 半導体装置の製造方法
US9240456B2 (en) Method for manufacturing semiconductor device
CN107170704B (zh) 半导体结构及其形成方法
JP7484224B2 (ja) 半導体装置の製造方法
WO2021044814A1 (ja) 半導体装置および半導体装置の製造方法
JP4710724B2 (ja) 半導体装置の製造方法
US11621158B2 (en) Method of manufacturing semiconductor device
JP2011187593A (ja) 半導体装置の製造方法
JPH06260607A (ja) 半導体装置およびその製造方法
US9859137B2 (en) Substrate heat treatment apparatus and heat treatment method
US20220384235A1 (en) Manufacturing method of semiconductor device
JP5044948B2 (ja) 半導体装置の製造方法
JP2024034700A (ja) 半導体装置および半導体装置の製造方法
CN116206959A (zh) 一种半导体器件及其制造方法和电子装置
JP2023088072A (ja) 半導体装置の製造方法
JP2008227521A (ja) 半導体ウエハおよび半導体装置の製造方法

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20181203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250