JPWO2016125792A1 - 光選択透過型ガラスおよび積層基板 - Google Patents
光選択透過型ガラスおよび積層基板 Download PDFInfo
- Publication number
- JPWO2016125792A1 JPWO2016125792A1 JP2016573378A JP2016573378A JPWO2016125792A1 JP WO2016125792 A1 JPWO2016125792 A1 JP WO2016125792A1 JP 2016573378 A JP2016573378 A JP 2016573378A JP 2016573378 A JP2016573378 A JP 2016573378A JP WO2016125792 A1 JPWO2016125792 A1 JP WO2016125792A1
- Authority
- JP
- Japan
- Prior art keywords
- content
- glass
- glass substrate
- selective transmission
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 343
- 239000000758 substrate Substances 0.000 title claims abstract description 334
- 230000005540 biological transmission Effects 0.000 title claims abstract description 148
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 92
- 229910052710 silicon Inorganic materials 0.000 claims description 92
- 239000010703 silicon Substances 0.000 claims description 92
- 238000003384 imaging method Methods 0.000 claims description 45
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 43
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 41
- 229920005989 resin Polymers 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 37
- 238000010521 absorption reaction Methods 0.000 claims description 24
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 22
- 238000004031 devitrification Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 239000013585 weight reducing agent Substances 0.000 claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- 229910052783 alkali metal Inorganic materials 0.000 abstract 1
- 150000001340 alkali metals Chemical class 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 141
- 238000000034 method Methods 0.000 description 45
- 239000010408 film Substances 0.000 description 35
- 239000000975 dye Substances 0.000 description 34
- 230000008569 process Effects 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 24
- 239000000853 adhesive Substances 0.000 description 20
- 230000001070 adhesive effect Effects 0.000 description 20
- 239000002994 raw material Substances 0.000 description 20
- 230000007547 defect Effects 0.000 description 19
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 239000006060 molten glass Substances 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 15
- 238000001816 cooling Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910052697 platinum Inorganic materials 0.000 description 12
- 238000005259 measurement Methods 0.000 description 9
- 230000005260 alpha ray Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- -1 SO 3 Inorganic materials 0.000 description 7
- 238000001723 curing Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000005352 clarification Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 239000006059 cover glass Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 206010040925 Skin striae Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical class [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 238000010913 antigen-directed enzyme pro-drug therapy Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 229910001417 caesium ion Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003426 chemical strengthening reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000005303 fluorophosphate glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical class C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 125000005506 phthalide group Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B9/041—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
- C03B17/067—Forming glass sheets combined with thermal conditioning of the sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B25/00—Annealing glass products
- C03B25/02—Annealing glass products in a discontinuous way
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/25—Oxides by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/085—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/226—Glass filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2383/00—Polysiloxanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Glass Compositions (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Die Bonding (AREA)
- Optical Filters (AREA)
- Surface Treatment Of Glass (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
本発明は、カメラモジュールの小型化、低背化が実現でき、半導体基板との積層時の歪が少なく、光学特性の均一性に優れ、かつ生産性の高い光学フィルタを実現する。本発明による光選択透過型ガラス10は、ガラス基板12と、ガラス基板12の少なくとも一方の主面に光選択透過層11を備え、ガラス基板12は、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、200℃〜300℃の平均熱膨張係数α200/300を50℃〜100℃の平均熱膨張係数α50/100で除した値α200/300/α50/100が、1.20〜1.30であり、アルカリ金属酸化物の含有量が0%〜0.1%である。
Description
本発明は、光選択透過型ガラスおよび積層基板に関する。
固体撮像素子を用いた撮像装置(代表的にはカメラモジュール)には、特定の範囲の波長を透過・遮断する光学フィルタ(例えば光選択透過型ガラス)が用いられている。例えば、カラー画像生成のためのカラーフィルタや、可視光を透過し近赤外光を遮断する感度補正用光学フィルタなどの撮像装置用の光学フィルタが挙げられる。
感度補正用光学フィルタとしては、例えば、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した近赤外線を選択的に遮断する光学フィルタが知られている(特許文献1参照)。
撮像装置の小型化、低背化が要求されるにともない、撮像装置における光学部品の薄型化や部品点数削減が求められている。撮像装置を小型化する手段として、固体撮像素子と、光学フィルタと、を一体化する検討がなされている。
固体撮像素子は、1〜4μm□サイズの画素で、数十万〜数百万個2次元配列されたCMOSやCCD構造の光検出器アレイを有する。さらに、固体撮像素子は、カラー画像生成のため光検出器の入射側に画素毎、RGBモザイクカラーフィルタを有し、その上に、画素毎に入射光を光検出器の受光面に集光する樹脂マイクロレンズを有する。
例えば、固体撮像素子と光選択透過型ガラスを一体化する場合、光選択透過型ガラスの小片を個々に一体化する工程を経ると生産性が低い。これに対し、シリコン基板の状態で、RGBモザイクカラーフィルタと樹脂マイクロレンズを固体撮像素子毎に形成する基板プロセスの一環として、基板(ウェハ)状態の光選択透過型ガラスを一体化すると生産性が向上できる。
シリコン基板に光選択透過型ガラスを構成するガラス基板を貼合する場合、接着層として熱可塑性樹脂が用いられることが多い。この場合、高温でシリコン基板とガラス基板が接着されるが、高温で固着したガラス基板とシリコン基板を冷却する際、ガラス基板とシリコン基板との間での熱膨張係数の差があると、ガラス基板、シリコン基板それぞれに応力が発生する。その結果、シリコン基板および光選択透過型ガラスに機械的な歪が生じて得られる積層基板が反り、積層基板製造プロセスにて不具合が生じたり、光選択透過型ガラスに光学的な歪が生じる恐れがある。
また、カバーガラスにRGBモザイクカラーフィルタを形成する場合、カラーフィルタと光検出器アレイとのパターンずれが起きることが懸念される。特に、近年、生産性の向上のためシリコン基板のサイズが直径200mmを超えるようになってきており、より熱膨張係数のミスマッチによる機械的な歪、あるいはそれによる光学的な歪が大きくなる懸念があった。
本発明は、シリコン基板と積層して得られる積層基板の変形や光学的な歪が抑制できる光選択透過型ガラスを提供することを目的とする。または、本発明は、変形や歪の発生が抑制された積層基板を提供することを目的とする。
本発明は、ガラス基板と、
前記ガラス基板の少なくとも一方の主面に、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれる少なくとも一を選択的に透過する光選択透過層を備え、
前記ガラス基板は、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、
200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、
200℃〜300℃の平均熱膨張係数α200/300を50℃〜100℃の平均熱膨張係数α50/100で除した値α200/300/α50/100が、1.20〜1.30であり、
アルカリ金属酸化物の含有量が酸化物基準のモル百分率表示で0%〜0.1%である、光選択透過型ガラスであることを特徴とする。
前記ガラス基板の少なくとも一方の主面に、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれる少なくとも一を選択的に透過する光選択透過層を備え、
前記ガラス基板は、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、
200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、
200℃〜300℃の平均熱膨張係数α200/300を50℃〜100℃の平均熱膨張係数α50/100で除した値α200/300/α50/100が、1.20〜1.30であり、
アルカリ金属酸化物の含有量が酸化物基準のモル百分率表示で0%〜0.1%である、光選択透過型ガラスであることを特徴とする。
また、本発明は、シリコン基板上に備えられた固体撮像素子と、上記の光選択透過型ガラスと、を有する、積層基板を提供する。
本明細書において、数値範囲を示す「〜」とは、その前後に記載された数値を下限値および上限値として含む意味で使用される。以下本明細書において、特に明記しない限りは、「〜」は、同様の意味をもって使用される。
また、本明細書において、特に明記しない限りは、ガラス基板およびその製造方法における各成分の含有量の説明で用いる%表示は、酸化物基準のモル百分率表示(モル%)を表す。
本明細書において、数値範囲を示す「〜」とは、その前後に記載された数値を下限値および上限値として含む意味で使用される。以下本明細書において、特に明記しない限りは、「〜」は、同様の意味をもって使用される。
また、本明細書において、特に明記しない限りは、ガラス基板およびその製造方法における各成分の含有量の説明で用いる%表示は、酸化物基準のモル百分率表示(モル%)を表す。
本発明は、シリコン基板と積層して積層基板とした場合に変形や歪の発生が抑制できる光選択透過型ガラスが提供できる。または、本発明は、変形や歪の発生が抑制された積層基板を提供できる。
本発明の一実施形態である光選択透過型ガラスについて、図1A〜図1Cを用いて説明する。本発明の一実施形態である光選択透過型ガラスの用途は特に限定されないが、例えば、近赤外線を遮断し可視光線を選択的に透過する近赤外線カットフィルタ、可視光線を遮断し近赤外線を透過する近赤外線透過フィルタ、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれる少なくとも一を選択的に透過するカラーフィルタ等が挙げられる。
図1Aは、平行平面形状のガラス基板12の片面に、光選択透過層11を有する光選択透過型ガラス10を示す。
(ガラス基板)
ガラス基板12は、少なくとも波長380nm〜780nmの可視光に対して透明なガラス材料からなる。さらに、ガラス基板12の表面は、固体撮像素子の解像度劣化を招く散乱光の発生や透過波面収差が抑制できるような表面平坦性を有していればよく、片面だけでなく両面が鏡面加工されてもよい。
ガラス基板12は、少なくとも波長380nm〜780nmの可視光に対して透明なガラス材料からなる。さらに、ガラス基板12の表面は、固体撮像素子の解像度劣化を招く散乱光の発生や透過波面収差が抑制できるような表面平坦性を有していればよく、片面だけでなく両面が鏡面加工されてもよい。
ガラス基板12は、50℃〜100℃での平均熱膨張係数α50/100が、2.70ppm/℃〜3.20ppm/℃である。α50/100は2.80ppm/℃以上が好ましく、2.90ppm/℃以上がより好ましく、2.91ppm/℃以上がさらに好ましく、2.92ppm/℃以上が特に好ましい。また、α50/100は、3.10ppm/℃以下が好ましく、3.00ppm/℃以下がより好ましく、2.96ppm/℃以下がさらに好ましく、2.94ppm/℃以下が特に好ましい。
α50/100が上記範囲であれば、ガラス基板とシリコン基板との熱膨張係数の差が小さいため、プロセスマージンは確保しつつ、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留歪を小さくすることができる。
ここで、50℃〜100℃の平均熱膨張係数α50/100とは、JIS R3102(1995年)で規定されている方法で測定した、熱膨張係数を測定する温度範囲が50℃〜100℃である平均熱膨張係数である。
また、ガラス基板12は、200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃である。α200/300は、3.55ppm/℃以上が好ましく、3.65ppm/℃以上がより好ましく、3.66ppm/℃以上が特に好ましく、3.68ppm/℃以上が最も好ましい。α200/300は、3.85ppm/℃以下が好ましく、3.75ppm/℃以下がより好ましく、3.73ppm/℃以下が特に好ましく、3.71ppm/℃以下が最も好ましい。
α200/300が上記範囲であれば、ガラス基板をシリコン基板と貼り合わせる際のプロセスマージンは確保しつつ、シリコン基板との熱膨張係数の差に起因する残留歪の発生などの不良を有意に抑制することができる。また、α200/300が3.55ppm/℃〜3.85ppm/℃であれば、シリコン基板との熱膨張係数の差が十分に小さくなるため、熱膨張係数の差に起因する不良をより抑制することができる。
ここで、200℃〜300℃の平均熱膨張係数α200/300とは、JIS R3102(1995年)で規定されている方法で測定した、熱膨張係数を測定する温度範囲が200℃〜300℃である平均熱膨張係数である。
ガラス基板12は、200℃〜300℃での平均熱膨張係数α200/300を50℃〜100℃での平均熱膨張係数α50/100で除した値α200/300/α50/100が1.20〜1.30である。上述の範囲であれば、シリコン基板との熱膨張係数の差が小さいため、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留歪が小さい。α200/300/α50/100は、1.24〜1.27が好ましい。
ガラス基板12は、アルカリ金属酸化物の含有量が0%〜0.1%である。ここで、アルカリ金属酸化物は、Li2O、Na2O、K2Oなどである。アルカリ金属酸化物の含有量が0.1%以下であれば、シリコン基板とガラス基板を貼り合わせる熱処理工程において、アルカリイオンがシリコン基板に拡散しにくい。アルカリ金属酸化物の含有量は、0.05%以下が好ましく、0.02%以下がより好ましく、実質的に含まないことがさらに好ましい。ここで、アルカリ金属酸化物を実質的に含まないとは、アルカリ金属酸化物を全く含まないこと、またはアルカリ金属酸化物を製造上不可避的に混入した不純物として含んでいてもよいことを意味する。
ガラス基板12は、下記の組成が好ましい。
SiO2 :50%〜75%、
Al2O3 :6%〜16%、
B2O3 :0%〜15%、
MgO :0%〜15%、
CaO :0%〜13%、
SrO :0%〜11%、
BaO :0%〜9.5%
SiO2 :50%〜75%、
Al2O3 :6%〜16%、
B2O3 :0%〜15%、
MgO :0%〜15%、
CaO :0%〜13%、
SrO :0%〜11%、
BaO :0%〜9.5%
SiO2はガラスの骨格を形成する成分である。SiO2の含有量が50%以上であれば、耐熱性、化学的耐久性、耐候性が良好となる。SiO2の含有量が75%以下であれば、ガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となる。SiO2の含有量は、60%以上が好ましく、64%以上がより好ましい。またSiO2の含有量は、70%以下が好ましく、68%以下がより好ましい。
Al2O3の含有量が6%以上であれば、耐候性、耐熱性、化学的耐久性が良好となり、ヤング率が高くなる。Al2O3の含有量が16%以下であれば、ガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、失透しにくくなる。Al2O3の含有量は、8%以上が好ましく、11%以上がより好ましい。またAl2O3の含有量は14%以下が好ましい。
B2O3は必須成分ではないが、含有することによりガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、失透しにくくなる。B2O3の含有量が15%以下であれば、ガラス転移温度を高くすることができ、ヤング率が高くなる。B2O3の含有量は、3%以上がより好ましい。また、B2O3の含有量は、12%以下が好ましく、6%以下がより好ましい。
MgOは必須成分ではないが、含有することによりガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、耐候性が向上し、ヤング率が高くなる。MgOの含有量が、15%以下であれば、失透しにくくなる。MgOの含有量は、4%以上が好ましく、6%以上がより好ましい。また、MgOの含有量は、10%以下が好ましく、9.5%以下がより好ましく、9%以下がさらに好ましい。
CaOは必須成分ではないが、含有することによりガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、耐候性が向上する。CaOの含有量が13%以下であれば、失透しにくくなる。CaOの含有量は、4%以上が好ましい。また、CaOの含有量は、10%以下が好ましく、8%以下がより好ましい。
SrOは必須成分ではないが、含有することによりガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、耐候性が向上する。SrOの含有量が11%以下であれば、失透しにくくなる。SrOの含有量は、0.5%以上が好ましい。また、SrOの含有量は、8%以下が好ましく、3%以下がより好ましい。
BaOは必須成分ではないが、含有することによりガラス溶解時の粘性が高くなり過ぎずに溶融性が良好となり、耐候性が向上する。BaOの含有量が9.5%以下であれば、失透しにくくなる。BaOの含有量は、3%以下が好ましく、2%以下がより好ましい。
ガラス基板12は、CaO、SrO、およびBaOの合計含有量が、7%以上が好ましい。CaO、SrO、およびBaOの合計含有量が7%以上であれば、失透しにくくなる。CaO、SrO、およびBaOの合計含有量は7.5%以上がより好ましく、8.0%以上がさらに好ましい。
ガラス基板12は、(Al2O3の含有量)≧(MgOの含有量)が好ましい。(Al2O3の含有量)≧(MgOの含有量)であれば、ガラス基板の平均熱膨張係数をシリコン基板の平均熱膨張係数に合わせやすく、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留歪が小さい。
ガラス基板12は、失透粘性(ηTL)が、103.8d・Pa・s以上が好ましい。失透粘性が103.8d・Pa・s以上であれば、安定して成形をすることができる。失透粘性は104.0d・Pa・s以上がより好ましく、104.2d・Pa・s以上がさらに好ましい。
ガラス基板12は、CMOSセンサーの光学フィルタの基板として用いる場合に、撮影する像の色再現性をより高めるためには、透過率が高い方が良いため、酸化物基準の質量百万分率表示で、Fe2O3の含有量が、200ppm以下が好ましい。Fe2O3の含有量は、150ppm以下がより好ましく、100ppm以下がさらに好ましく、50ppm以下が特に好ましい。
ガラス基板12は、熱伝導率を高くし、溶融性を良好とするためには、酸化物基準の質量百万分率表示で、Fe2O3を、200ppmを超えて1000ppm以下含有することが好ましい。Fe2O3の含有量が200ppmを超えていれば、ガラス基板の熱伝導率を高くし、溶融性を良好とすることができる。Fe2O3の含有量が1000ppm以下であれば、可視光の吸収が強くなり過ぎない。
Fe2O3の含有量は300ppm以上がより好ましく、400ppm以上がさらに好ましく、500ppm以上が特に好ましい。Fe2O3の含有量は800ppm以下がより好ましく、700ppm以下がさらに好ましく、600ppm以下が特に好ましい。
ガラス基板12は、清澄剤として、例えば、SnO2、SO3、Cl、およびFなどを含有させてもよい。
ガラス基板12は、耐候性、溶解性、失透性、紫外線遮蔽、赤外線遮蔽、紫外線透過、赤外線透過等の改善のために、例えば、ZnO、Li2O、WO3、Nb2O5、V2O5、Bi2O3、MoO3、P2O5、Ga2O3、I2O5、In2O5、Ge2O5等を含有させてもよい。
ガラス基板12は、ガラスの化学的耐久性向上のため、ガラス中にZrO2、Y2O3、La2O3、TiO2、SnO2を合量で2%以下含有させてもよく、好ましくは1%以下、より好ましくは0.5%以下で含有させる。これらのうちY2O3、La2O3およびTiO2は、ガラスのヤング率向上にも寄与する。
ガラス基板12は、環境負荷を考慮すると、As2O3、Sb2O3を実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。
ガラス基板12は、100℃〜200℃での平均熱膨張係数α100/200は3.13ppm/℃〜3.63ppm/℃が好ましく、3.23ppm/℃〜3.53ppm/℃がより好ましい。α100/200が上記範囲であれば、シリコン基板との熱膨張係数の差が小さいため、プロセスマージンは確保しつつ、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留応力を小さくすることができる。
α100/200は3.33ppm/℃以上がさらに好ましく、3.34ppm/℃以上が特に好ましく、3.35ppm/℃以上が最も好ましい。また、α100/200は3.43ppm/℃以下がさらに好ましく、3.41ppm/℃以下が特に好ましく、3.38ppm/℃以下が最も好ましい。
ここで、100℃〜200℃の平均熱膨張係数α100/200とは、JIS R3102(1995年)で規定されている方法で測定した、熱膨張係数を測定する温度範囲が100℃〜200℃である平均熱膨張係数である。
ガラス基板12は、ヤング率が、80GPa以上が好ましい。ヤング率が80GPa以上であれば、ガラス基板を製造する際の徐冷工程において発生するガラス基板の反りや割れを抑制することができる。また、シリコン基板や周辺部材等との接触による破損を抑制することができる。ヤング率は81GPa以上がより好ましく、82GPa以上がさらに好ましく、84GPa以上が特に好ましい。
また、ヤング率は、100GPa以下が好ましい。ヤング率が100GPa以下であれば、ガラスが脆くなる事を抑制し、ガラス基板の切削、ダイシング時の欠けを抑えることができる。ヤング率は90GPa以下がより好ましく、87GPa以下がさらに好ましい。
ガラス基板12は、厚さが、1.0mm以下が好ましい。厚さが1.0mm以下であれば、イメージセンサを小型にすることができる。厚さは、0.8mm以下がより好ましく、0.7mm以下がさらに好ましく、0.5mm以下が特に好ましい。
また、厚さは、0.1mm以上が好ましい。厚さが0.1mm以上であれば、シリコン基板や周辺部材等との接触による破損を抑制することができる。また、光選択透過型ガラスの自重たわみを抑えることができる。厚さは、0.2mm以上がより好ましく、0.3mm以上がさらに好ましい。
ガラス基板12は、面積が0.01m2以上が好ましい。面積が0.01m2以上であれば、大きいシリコン基板を用いることができ、多数のイメージセンサを作成することができる。面積は0.02m2以上であってもよく、0.03m2以上であってもよく、0.04m2以上であってもよく、0.05m2以上であってもよい。
また、本発明の一実施形態であるガラス基板12は、α200/300が3.45ppm/℃〜3.95ppm/℃であり、α200/300/α50/100が、1.20〜1.30であるため、面積が0.01m2以上であってもシリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留応力が小さい。面積は、0.1m2以下が好ましい。面積が0.1m2以下であれば光選択透過型ガラスの取り扱いが容易になり、シリコン基板や周辺部材等との接触による破損を抑制することができる。面積は、0.08m2以下がより好ましく、0.06m2以下がさらに好ましい。
本発明の一実施形態であるガラス基板12は、密度が2.60g/cm3以下が好ましい。密度が2.60g/cm3以下であれば、光選択透過型ガラスが軽量である。また、光選択透過型ガラスの自重によるたわみを低減する事ができる。密度は2.55g/cm3以下がより好ましく、2.50g/cm3以下がさらに好ましい。
密度は、2.20g/cm3以上が好ましい。密度が2.20g/cm3以上であれば、ガラスのビッカース硬度が高くなり、ガラス表面に傷をつき難くすることができる。密度は2.30g/cm3以上がより好ましく、2.40g/cm3以上がさらに好ましく、2.45g/cm3以上が特に好ましい。
本発明の一実施形態であるガラス基板12は、ガラス基板に含まれる欠点の密度が1個/cm2以下が好ましい。ガラス基板に含まれる欠点とは、ガラス基板の表面や内部に存在する泡、キズ、白金等の金属異物、および未溶融原料などであり、大きさが0.5μm以上1mm以下のものを指す。欠点が1mmより大きければ、目視で容易に判別でき、欠点を有する基板の除外は容易である。欠点が0.5μmより小さければ、欠点が十分に小さいため、CMOSセンサーやLCOSのカバーガラスとして適用した場合でも素子の特性に影響を及ぼす恐れが無い。
従来の半導体組立工程では、光選択透過型ガラスを切断した後に組立工程を行っていたため、ガラス基板に欠点があった場合、組立工程の初期で欠点がある基板を除外できた。一方でウェハレベルパッケージでは、組立工程の最後に積層基板の個片化を行うため、ガラス基板に欠点があった場合、欠点があるガラス基板を除外できるのは組立工程の最後となる。このようにウェハレベルパッケージでは、ガラス基板の欠点の密度が増加した場合のコスト増加が大きくなるため、高品質の欠点管理が求められる。欠点の密度は0.1個/cm2以下がより好ましく、0.01個/cm2以下がさらに好ましい。
ガラス基板中に、脈理に代表される屈折率の不均一があると、撮影した像、あるいは投影される像が歪み、写真または映像の品質が低下してしまう。そのため、ガラス基板中には、屈折率の不均一がないことが好ましい。また、ガラス基板中に脈理がある場合、屈折率差は10−4以内が好ましく、10−5以内がより好ましい。
ガラス基板の形状は、円形であっても楕円形であっても矩形であっても何でもよい。貼り合わせるシリコン基板の形に合わせるために、ガラス基板の端にノッチがあってもよいし、ガラス基板が円形の場合、ガラス基板の外周の一部が直線であってもよい。
本発明の一実施形態であるガラス基板12は、ガラス転移点(Tg)が、700℃以上が好ましい。ガラス転移点(Tg)が700℃以上であれば、熱処理工程でガラス基板の寸法変化を少なく抑えることができる。ガラス転移点(Tg)は720℃以上がより好ましく、740℃以上がさらに好ましい。
ガラス基板は、仮想粘度が、1011.0d・Pa・s〜1014.1d・Pa・sが好ましい。ガラス基板の仮想粘度を1011.0d・Pa・s〜1014.1d・Pa・sとするためには、ガラス板の成形後の冷却速度を、1℃/分〜1200℃/分相当とする必要がある。仮想粘度が1011.0d・Pa・s〜1014.1d・Pa・sであれば、ガラス基板の平均熱膨張係数がシリコン基板の平均熱膨張係数に近くなり、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留応力が小さい。ガラス基板の仮想粘度は1012.1d・Pa・s〜1013.1d・Pa・s(冷却速度10℃〜100℃/分相当)が好ましい。
ガラスの仮想粘度(η)は下記(式4)(G.W.Scherer,Relaxation in Glass and Composites,Wiley,New York(1986),p.159)にて算出することができる。
ここで、ηの単位はd・Pa・s、qは想定冷却速度で単位は℃/sである。
想定冷却速度qは、次の方法によりガラス基板から求められる。厚さ1mm以下の一枚のガラス基板から複数のガラス板小片を切り出す。たとえばガラス板小片として1センチメートル角の小片を切り出す。切り出した複数のガラス板小片を、それぞれ、様々な冷却速度Vにて熱処理、冷却し、それぞれのガラス板個片の物性値を測定する。冷却開始温度は冷却速度の影響を受けない十分高い温度が好ましい。典型的にはTg+50℃〜+150℃程度が好ましい。
想定冷却速度qは、次の方法によりガラス基板から求められる。厚さ1mm以下の一枚のガラス基板から複数のガラス板小片を切り出す。たとえばガラス板小片として1センチメートル角の小片を切り出す。切り出した複数のガラス板小片を、それぞれ、様々な冷却速度Vにて熱処理、冷却し、それぞれのガラス板個片の物性値を測定する。冷却開始温度は冷却速度の影響を受けない十分高い温度が好ましい。典型的にはTg+50℃〜+150℃程度が好ましい。
測定を実施する物性値は、特に制限はないが、密度や、密度と密接な関係にある物性値(例えば屈折率)などが好ましい。x軸に冷却速度(log10V)をとって、y軸にそれぞれの熱処理を施したガラス板個片の物性値をとり検量線Aを作成する。熱処理を実施していないガラス板個片の物性値から、作成した検量線Aにより、そのガラス基板の想定冷却速度qが求めらPれる。
本発明の一実施形態であるガラス基板12は、粘度が102d・Pa・sとなる温度(T2)が、1800℃以下が好ましい。T2は、1750℃以下がより好ましく、1700℃以下がさらに好ましく、1650℃以下が特に好ましい。
本発明の一実施形態であるガラス基板12は、粘度が104d・Pa・sとなる温度(T4)が、1350℃以下が好ましい。T4は、1300℃以下がより好ましく、1275℃以下がさらに好ましく、1250℃以下が特に好ましい。なお、他の物性確保の容易性を考慮すると、粘度が104d・Pa・sとなる温度(T4)は1100℃以上である。
本発明の一実施形態であるガラス基板12は、失透温度が、1325℃以下が好ましい。1300℃以下がより好ましく、1275℃以下がさらに好ましく、1250℃以下が特に好ましい。ガラス失透温度とは、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
本発明の一実施形態であるガラス基板12は、
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)が2.70〜3.20、
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)が3.13〜3.63、
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)が3.45〜3.95、および
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)が1.20〜1.30を満たすことが好ましい。
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)が2.70〜3.20、
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)が3.13〜3.63、
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)が3.45〜3.95、および
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)が1.20〜1.30を満たすことが好ましい。
ここで、SiO2の含有量、Al2O3の含有量、B2O3の含有量、MgOの含有量、CaOの含有量、SrOの含有量、およびBaOの含有量は、得られたガラスに含有される各成分の含有量、ηは仮想粘度(単位:d・Pa・s)である。
これらを満たせば、プロセスマージンは確保しつつ、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板およびガラス基板に発生する残留歪を小さくしやすい。
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)は、2.80以上がより好ましく、2.90以上がさらに好ましく、2.91以上が特に好ましく、2.92以上が最も好ましい。
また、0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)は、3.10以下がより好ましく、3.00以下がさらに好ましく、2.96以下が特に好ましく、2.94以下が最も好ましい。
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)は、3.23以上がより好ましく、3.33以上がさらに好ましく、3.34以上が特に好ましく、3.35以上が最も好ましい。
また、0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)は、3.53以下がより好ましく、3.43以下がさらに好ましく、3.41以下が特に好ましく、3.38以下が最も好ましい。
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)は、3.55以上がより好ましく、3.65以上がさらに好ましく、3.66以上が特に好ましく、3.68以上が最も好ましい。
また、0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)は、3.85以下がより好ましく、3.73以下がさらに好ましく、3.65以下が特に好ましく、3.71以下が最も好ましい。
さらに、0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)は、1.24以上がより好ましい。
また、0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)は、1.27以下がより好ましい。
本発明の一実施形態であるガラス基板12は、フッ酸水溶液(HF)に対する重量減少量(以下、HF重量減少量とも記す)が0.05(mg/cm2)/分以上、0.20(mg/cm2)/分以下が好ましい。ここで、HF重量減少量とは、ガラス基板を25℃、5質量%フッ酸水溶液に浸漬した際の、単位面積および単位時間当たりの減少量((mg/cm2)/分)である。
本発明の一実施形態であるガラス基板12は、シリコン基板と貼り合わせた後、光学フィルタとしてデバイスに組み込まれる。このような場合、デバイスを小型化するために、ガラス基板をスリミングすることが好ましい。そのため、ガラス基板は、スリミングレートが高い方が好ましい。ガラス基板のスリミングレートの指標として、HF重量減少量を用いることができる。
HF重量減少量が0.05(mg/cm2)/分以上であれば、スリミング工程の生産性が良好になり好ましい。HF重量減少量が0.20(mg/cm2)/分以下であれば、スリミング工程でガラス基板に生じる、エッチング深さが不均一となってガラス基板表面の平滑性が損なわれるなどの不良を防止できるため好ましい。
HF重量減少量は、0.07(mg/cm2)/分以上より好ましく、0.09(mg/cm2)/分以上がさらに好ましく、0.11(mg/cm2)/分以上が特に好ましい。また、HF重量減少量は、0.18(mg/cm2)/分以下がより好ましく、0.16(mg/cm2)/分以下がさらに好ましく、0.14(mg/cm2)/分以下が特に好ましい。
また、本発明の一実施形態である光選択透過型ガラスは、プロジェクション用途のディスプレイデバイス、例えばLCOSの光学フィルタとして適用できる。このような場合に、ガラス基板の光弾性定数が高いと、デバイスのパッケージング工程やデバイス使用時に発生する応力によってガラス基板が複屈折性を有してしまう。その結果、デバイスに入射した光に色変化が生じ、色ムラなどの画質不良が生じる恐れがある。
このような画質不良を防ぐため、本発明の一実施形態であるガラス基板12は、光弾性定数が31nm/(MPa・cm)以下が好ましく、30.5nm/(MPa・cm)以下がより好ましく、30nm/(MPa・cm)以下がさらに好ましく、29.5nm/(MPa・cm)以下が特に好ましい。
また、ガラス基板のα線放出量は、0.5C/cm2・h以下が好ましく、0.3C/cm2・h以下がより好ましく、0.1C/cm2・h以下が特に好ましく、0.05C/cm2・h以下が最も好ましい。なお、単位のCはカウント数の意味である。
例えば、本発明の一実施形態である光選択透過型ガラスを固体撮像素子のカバーガラスに適用する。この場合、ガラス基板から発生するα線が固体撮像素子に入射すると、α線のエネルギーによって正孔−電子対が誘起され、これが原因となって瞬間的に画像に輝点や白点が生じるソフトエラーが起こるおそれがある。そこで、α線放出量の少ないガラス基板を用いることで、このような不具合を防止しやすくなる。なお、ガラス基板の原料として、放射性同位元素の含有量が少なく、α線放出量の少ない高純度原料を使用すれば、α線放出量を低減することができる。また、ガラスの溶融・清澄工程において、放射性同位元素がガラス製造設備の炉材などから溶融ガラス中に混入しないようにすれば、α線放出量を効果的に低減することができる。また、「α線放出量」は、ガスフロー比例計数管測定装置等で測定することができる。
次に、本発明の一実施形態であるガラス基板の製造方法について説明する。
本発明の一実施形態であるガラス基板を製造する場合、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程を経る。
本発明の一実施形態であるガラス基板を製造する場合、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程を経る。
溶解工程は、得られるガラス板の組成となるように原料を調製し、原料を溶解炉に連続的に投入し、好ましくは1450℃〜1650℃程度に加熱して溶融ガラスを得る。
原料には酸化物、炭酸塩、硝酸塩、水酸化物、塩化物などのハロゲン化物なども使用できる。溶解や清澄工程で溶融ガラスが白金と接触する工程がある場合、微小な白金粒子が溶融ガラス中に溶出し、得られるガラス板中に異物として混入してしまう場合があるが、硝酸塩原料の使用はこの白金異物の溶出を防止する効果がある。
硝酸塩としては、硝酸ストロンチウム、硝酸バリウム、硝酸マグネシウム、硝酸カルシウムなどを使用できる。硝酸ストロンチウムを使用することがより好ましい。原料粒度も溶け残りが生じない程度の数百ミクロンの大きな粒径の原料から、原料搬送時の飛散が生じない、二次粒子として凝集しない程度の数ミクロン程度の小さな粒径の原料まで適宜使用できる。造粒体の使用も可能である。原料の飛散を防ぐために原料含水量も適宜調整可能である。β−OH、Feの酸化還元度またはレドックス[Fe2+/(Fe2++Fe3+)]などの溶解条件も適宜調整、使用できる。
次に、清澄工程は、上記溶解工程で得られた溶融ガラスから泡を除く工程である。清澄工程としては、減圧による脱泡法を適用してもよい。また、ガラス基板は、清澄剤としてSO3やSnO2を用いることができる。SO3源としては、Al、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素の硫酸塩が好ましく、アルカリ土類金属の硫酸塩がより好ましく、中でも、CaSO4・2H2O、SrSO4、およびBaSO4が、泡を大きくする作用が著しく、特に好ましい。
減圧による脱泡法における清澄剤としてはClやFなどのハロゲンを使用するのが好ましい。Cl源としては、Al、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素の塩化物が好ましく、アルカリ土類金属の塩化物がより好ましく、中でも、SrCl2・6H2O、およびBaCl2・2H2Oが、泡を大きくする作用が著しく、かつ潮解性が小さいため、特に好ましい。F源としては、Al、Mg、Ca、SrおよびBaから選ばれた少なくとも1種の元素のフッ化物が好ましく、アルカリ土類金属のフッ化物がより好ましく、中でも、CaF2がガラス原料の溶解性を大きくする作用が著しく、より好ましい。
次に、成形工程は、上記清澄工程で泡を除いた溶融ガラスを板状にしてガラスリボンを得る工程である。成形工程としては、溶融ガラスを溶融金属上に流して板状にしてガラスリボンを得るフロート法が適用される。
次に、徐冷工程は、上記成形工程で得られたガラスリボンを室温状態まで徐冷する工程である。徐冷工程としては、ガラスリボンを、粘度が1013d・Pa・sとなる温度から1014.5d・Pa・sとなる温度になるまでの平均冷却速度がRとなるように室温状態まで徐冷する。徐冷したガラスリボンを切断後、ガラス基板を得る。
ガラス基板の製造方法では、得られるガラス基板の組成と、徐冷工程におけるガラスリボンの平均冷却速度R(単位:℃/分)とが、次の条件(1)〜条件(4)を満たす。
条件(1):
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×log10Rが2.70〜3.20
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×log10Rが2.70〜3.20
条件(2):
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×log10Rが3.13〜3.63
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×log10Rが3.13〜3.63
条件(3):
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×log10Rが3.45〜3.95
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×log10Rが3.45〜3.95
条件(4)
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×log10Rが1.20〜1.30
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×log10Rが1.20〜1.30
好ましくは、次の条件(1)〜条件(4)を満たす。
条件(1):
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×log10Rが2.80〜3.10
条件(1):
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×log10Rが2.80〜3.10
条件(2):
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×log10Rが3.23〜3.53
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×log10Rが3.23〜3.53
条件(3):
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×log10Rが3.55〜3.85
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×log10Rが3.55〜3.85
条件(4)
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×log10Rが1.24〜1.27
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×log10Rが1.24〜1.27
ここで、SiO2の含有量、Al2O3の含有量、B2O3の含有量、MgOの含有量、CaOの含有量、SrOの含有量、およびBaOの含有量は、得られたガラスに含有される各成分の含有量である。条件(1)〜条件(4)を満たすことで、熱処理工程でシリコン基板およびガラス基板自体に発生する残留歪を小さくすることができるガラス基板を製造することができる。
以上説明した本発明の一実施形態であるガラス基板にあっては、アルカリ金属酸化物の含有量が0.1%以下であるため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、アルカリイオンがシリコン基板に拡散しにくい。また、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、200℃〜300℃の平均熱膨張係数α200/300を50℃〜100℃の平均熱膨張係数α50/100で除した値α200/300/α50/100が、1.20〜1.30であるため、シリコン基板との熱膨張係数の差が小さく、シリコン基板およびガラス基板に発生する残留歪が小さい。
本発明は上記実施形態に限定されない。本発明の目的を達成できる範囲での変形や改良等は本発明に含まれる。
例えば、本発明に係るガラス基板を製造する場合、成形工程で、フュージョン法やプレス成形法などを適用して溶融ガラスを板状にしてもよい。
また、本発明の一実施形態であるガラス基板を製造する場合、白金坩堝を用いてもよい。白金坩堝を用いた場合、溶解工程は、得られるガラス基板の組成となるように原料を調製し、原料を入れた白金坩堝を電気炉に投入し、好ましくは1450℃〜1650℃程度に加熱して白金スターラーを挿入し1〜3時間撹拌し溶融ガラスを得る。
成形工程は、溶融ガラスを例えばカーボン板状に流し出し板状にする。徐冷工程は、板状のガラスを室温状態まで徐冷し、切断後、ガラス基板を得る。
また、切断して得られたガラス基板を、例えばTg+50℃程度となるように加熱した後、室温状態まで徐冷してもよい。このようにすることで、仮想粘度ηを調節することができる。
(光選択透過層)
光選択透過層11は、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれた少なくとも一を選択的に透過する層である。光選択透過層11は、上記群から選ばれた三以下を選択的に透過する層であることが好ましい。
光選択透過層11は、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれた少なくとも一を選択的に透過する層である。光選択透過層11は、上記群から選ばれた三以下を選択的に透過する層であることが好ましい。
光選択透過層11は、具体的には、(1)近赤外線、(2)可視光線、(3)青の波長域の可視光線、(4)赤の波長域の可視光線、(5)緑の波長域の可視光線、(6)近赤外線および青の波長域の可視光線、(7)近赤外線、青の波長域の可視光線および赤の波長域の可視光線、(8)近赤外線、青の波長域の可視光線および緑の波長域の可視光線、(9)近赤外線および赤の波長域の可視光線、(10)近赤外線、赤の波長域の可視光線および緑の波長域の可視光線、(11)近赤外線および緑の波長域の可視光線、(12)青の波長域の可視光線および赤の波長域の可視光線、(13)青の波長域の可視光線および緑の波長域の可視光線、または、(14)赤の波長域の可視光線および緑の波長域の可視光線、を選択的に透過すればよい。
ここで、各光の波長は、近赤外線:780nm〜1200nm、可視光線:380nm〜780nm、赤の波長域の可視光線:600nm〜780nm、緑の波長域の可視光線:500nm〜600nm、青の波長域の可視光線:380nm〜500nmとする。
また、「選択的に透過する」とは、各波長範囲において、外部透過率として最大で80%以上透過することを意味する。外部透過率は、入射光のうち、反射や吸収によって透過されない成分以外の透過光の透過率であり、市販のダブルビーム型近赤外可視分光光度計などを用いて測定することができる。また、微細な領域の外部透過率は、顕微鏡を付属させた顕微分光光度計を用いて測定することもできる。
光選択透過層11は、近赤外線カットフィルタ用途または近赤外線透過フィルタ用途の場合は、光選択透過層11は吸収層および/または反射層で構成されるのが好ましい。カラーフィルタ用途の場合は、吸収層で構成されるのが好ましい。
吸収層は、例えば、透過させたくない波長の光を吸収する吸収色素と、透明樹脂と、を含有する層で形成すればよい。吸収色素は、複数種類含有されてもよい。
反射層は、例えば、屈折率の異なる2種以上の誘電体薄膜を積層した誘電体多層膜で形成すればよい。反射層の反射作用、具体的には誘電体多層膜の干渉作用により、透過させたくない波長の光を反射させる。反射層は、吸収層では実現しにくい、よりシャープな光選択透過性を与えることができる。例えば、近赤外線カットフィルタ用途の場合、光選択透過層11を反射層で構成することで、吸収層で構成した場合に比べて可視光透過率を高くすることができる。
光選択透過層11は矩形あるいは多角形などに分割されていてもよい。分割された光選択透過層11それぞれの光吸収特性は、例えば赤・緑・青の光に対応するように異なっていてもよい。また、光選択透過層11がブラックマトリクス等の遮光部によって分割されていてもよい。
図1Bは、ガラス基板12の両面に、光選択透過層11a、11bを形成した光選択透過型ガラス20を示す。図1Bにおいて、光選択透過層11a、11bそれぞれの光選択透過特性は同じでもよいし、異なっていてもよい。
また、近赤外線カットフィルタや近赤外線透過フィルタ用途の場合、光選択透過型ガラスは、吸収層に加えて誘電体多層膜からなる反射層を備える構成であってもよい。例えば近赤外線カットフィルタ用途の場合、吸収層に加えて反射層を備えることで、吸収層111だけでは十分に遮断できない近紫外光および近赤外光を反射作用により遮断できる。同様に、近赤外線透過フィルタ用途の場合は、近紫外線および可視光線を遮断できる。
図1Cには、吸収層111からなる光選択透過層に加えて、反射層112a、112b、112cを形成した光選択透過型ガラス30を示す。光選択透過型ガラス30は、上記反射層112a、112bがガラス基板12の片面または/および両面に備えられたり、吸収層111からなる光選択透過層の表面に反射層112cが備えられたりしてもよい。
なお、光選択透過型ガラス30は、反射防止膜を備えてもよく、また、光選択透過層の密着性や信頼性を向上するためのシランカップリング剤による表面処理を施したり、誘電体膜を備えたりしてもよい。光選択透過型ガラス30の表面に位置する112a、112cの一方は、接着剤によりシリコン基板と接合されるため、接着剤の屈折率を考慮して設計するとよい。
なお、光選択透過型ガラス30は、固体撮像素子が形成されたシリコン基板と接合され、画素に近接した位置に配置される。そのため、反射層112a、112b、112c中に異物や微小欠陥があると、それらが直接、画素欠陥となり得るため、その大きさや発生数の許容レベルは、非接合タイプの光学フィルタにおける反射層より厳しい場合が多い。したがって、光選択透過型ガラス30は、品質レベルに応じて、反射層112a、112b、112cを備えることが好ましい。
また、本発明の一実施形態である光選択透過型ガラスは、固体撮像素子を保護するカバーガラスの機能も含むと、撮像装置の小型化、薄型化が期待できる。なお、ガラス基板は、不純物としてα線放出性元素(放射性同位元素)が含まれると、α線を放出して固体撮像素子にソフトエラーを引き起こすおそれがあるので、α線放出性元素含有量が少ない高純度のガラス原料を使用するとよい。ガラス原料は、α線放出性元素のうち、U、Thの含有量が、20ppb以下が好ましく、5ppb以下がより好ましい。また、光選択透過型ガラスは、固体撮像素子に近接する片面にα線を遮蔽する膜を設けてもよい。
(光選択透過層の具体例)
光選択透過層11を構成する吸収層および反射層の具体例を示す。
一例として、光選択透過層11が近赤外線を吸収し、可視光線を透過する吸収層で構成される例を説明する。
光選択透過層11を構成する吸収層は、吸収色素として近赤外線吸収色素(A)(以下、「色素(A)」ともいう。)と透明樹脂(B)とを含有する層であり、典型的には、透明樹脂(B)に色素(A)が均一に溶解または分散してなる層である。光選択透過層11は、さらに近紫外線吸収色素(U)(以下、「色素(U)」ともいう。)を含有するとよい。
光選択透過層11を構成する吸収層および反射層の具体例を示す。
一例として、光選択透過層11が近赤外線を吸収し、可視光線を透過する吸収層で構成される例を説明する。
光選択透過層11を構成する吸収層は、吸収色素として近赤外線吸収色素(A)(以下、「色素(A)」ともいう。)と透明樹脂(B)とを含有する層であり、典型的には、透明樹脂(B)に色素(A)が均一に溶解または分散してなる層である。光選択透過層11は、さらに近紫外線吸収色素(U)(以下、「色素(U)」ともいう。)を含有するとよい。
なお、図1A〜図1Cの光選択透過型ガラスにおいて、光選択透過層11(吸収層111)が、さらに色素(U)を含有する場合も、1層で構成されるように図示するが、この構成に限らない。例えば、光選択透過層11が色素(A)と透明樹脂(B)とを含有し、色素(U)を含まない場合、図1A〜図1Cに図示しない近紫外線吸収層を別途設ける構成でもよい。即ち、近紫外線吸収層は、色素(U)と透明樹脂を含有し、独立した層として設けられてもよい。
この場合、近紫外線吸収層は、ガラス基板12の両主面のうち、光選択透過層11側に設けてもよく、光選択透過層11側と対向する側に設けてもよく、その位置関係に制限はない。ただし、近紫外線吸収層を別途設ける構成であっても、本発明の一実施形態である光選択透過型ガラスは、光選択透過層11がさらに色素(U)を含有する構成の光学特性と同じ光学特性が得られる。また、光選択透過層11が、色素(A)と透明樹脂(B)、さらに色素(U)を含有する場合でも、色素(U)と透明樹脂(B)を含有する近紫外線吸収層を別途設けてもよい。以下、本発明の一実施形態である光選択透過型ガラスは、色素(U)を含有する場合、光選択透過層11に色素(U)が含有される構成として説明をする。
<近赤外線吸収色素(A)>
色素(A)は、可視光域(波長380nm〜780nm)の光を透過し、近赤外線域(波長780nm〜1200nm)の光を吸収する能力を有すれば特に制限されない。なお、本発明における色素は顔料、すなわち分子が凝集した状態でもよい。
色素(A)は、可視光域(波長380nm〜780nm)の光を透過し、近赤外線域(波長780nm〜1200nm)の光を吸収する能力を有すれば特に制限されない。なお、本発明における色素は顔料、すなわち分子が凝集した状態でもよい。
色素(A)としては、例えば、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、スクアリリウム系化合物等が挙げられる。
<近紫外線吸収色素(U)>
近紫外線吸収色素(U)は、波長430nm以下の光を吸収する能力を有すれば特に制限されない。
近紫外線吸収色素(U)は、波長430nm以下の光を吸収する能力を有すれば特に制限されない。
色素(U)の具体例としては、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等が挙げられる。
なお、色素(A)は、光選択透過層11中において、透明樹脂(B)100質量部に対して、0.1〜30質量部含有されるのが好ましく、0.5〜25質量部含有されるのがより好ましく、1〜20質量部含有されるのが特に好ましい。
光選択透過層11中における色素(U)の含有量は、透明樹脂(B)100質量部に対して、0.01〜30質量部含有されるのが好ましく、0.05〜25質量部含有されるのがより好ましく、0.1〜20質量部含有されるのが特に好ましい。
また、光選択透過層11は、色素(A)および透明樹脂(B)、任意成分の色素(U)以外に、光吸収剤、色調補正色素、近紫外線吸収剤、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等を含有してもよい。また、後述する光選択透過層11を形成する際に用いる塗工液に添加する成分、例えば、シランカップリング剤、熱もしくは光重合開始剤、重合触媒に由来する成分等が挙げられる。吸収層における、これらその他の任意成分の含有量は、透明樹脂(B)100質量部に対して、それぞれ15質量部以下含有されるのが好ましい。
光選択透過層11の膜厚は、0.1μm〜10μmが好ましい。膜厚が0.1μm未満では、光吸収能を十分に発現できないおそれがある。また、膜厚が10μm超では膜の平坦性が低下し、吸収率のバラツキが生じるおそれがある。膜厚は、1μm〜10μmがより好ましい。この範囲にあれば、十分な光吸収能と膜厚の平坦性を両立できる。なお、近紫外線吸収層を別途設ける場合でも近紫外線吸収層の膜厚は、上記の範囲を満たせばよい。
光選択透過層11は、例えば、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に色素(U)を溶媒に分散し、溶解させて調製した塗工液を、ガラス基板12上に塗工し、乾燥させ、さらに必要に応じて硬化させて製造できる。光選択透過層11をこのような方法で成膜することで、所望の膜厚で均一に製造できる。光選択透過層11が上記任意成分を含む場合、塗工液が該任意成分を含有する。
ガラス基板12上に上記塗工液を塗工した後、乾燥させることで該ガラス基板12上に光選択透過層11が形成される。塗工液が透明樹脂(B)の原料成分を含有する場合には、さらに硬化処理を行う。反応が熱硬化の場合は乾燥と硬化を同時に行うことができるが、光硬化の場合は、乾燥と別に硬化処理を設ける。
<透明樹脂(B)>
透明樹脂(B)は、具体的に、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂が挙げられる。透明樹脂(B)としては、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
透明樹脂(B)は、具体的に、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂が挙げられる。透明樹脂(B)としては、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
他の例として、光選択透過層11が近赤外線を反射し、可視光線を透過する反射層で構成される例を説明する。
光選択透過層11を構成する反射層は、上述のように誘電体多層膜で形成される。例えば、屈折率が2.0以上の高屈折率層および屈折率が1.7以下の低屈折率層を有する誘電体多層膜で形成される。高屈折率層は、TiO2、Nb2O5、Ta2O5、またはこれらの複合酸化物から選択することができる。低屈折率層は、SiO2、MgF2、Al2O3、またはこれらの複合酸化物から選択することができる。
光選択透過層11を構成する反射層は、上述のように誘電体多層膜で形成される。例えば、屈折率が2.0以上の高屈折率層および屈折率が1.7以下の低屈折率層を有する誘電体多層膜で形成される。高屈折率層は、TiO2、Nb2O5、Ta2O5、またはこれらの複合酸化物から選択することができる。低屈折率層は、SiO2、MgF2、Al2O3、またはこれらの複合酸化物から選択することができる。
光選択透過層11(反射層)は、図1Bに示すように、ガラス基板の両面に設けられていてもよい。誘電体多層膜による光選択透過層11は、ガラス基板上に数十層におよぶ光学薄膜を積層するため、特にガラス基板の厚みが薄い場合には膜応力によるガラス基板の反りが発生することがあるが、ガラス基板両面の膜応力がほぼ等しくなるようにガラス基板の両面に誘電体多層膜を成膜することにより反りを緩和することができる。
光選択透過層11(反射層)を構成する誘電体多層膜の膜厚の基本的な設計として、高屈折率層と低屈折率層とが交互にそれぞれ同じ光学的膜厚で繰り返し積層された繰り返し交互層を有するのが一般的である。繰り返し交互層は、(1H、1L)Sのように表される。ここで、カットしたい波長の中心近くの波長を設計波長λとして、高屈折率層(H)の膜厚を光学的膜厚nd=1/4λの値を1Hとして表記し、低屈折率層(L)を同様に1Lとする。Sはスタック数と呼ばれる繰り返しの回数で、括弧内の構成を周期的に繰り返すことを表している。
この繰り返し交互層によって、カットされる特定の波長が決定される。Sの値が大きくなると吸収−透過へ変化する立ち下がり特性(急峻さ)が急になるため、例えば、感度補正用光学フィルタ(近赤外線カットフィルタ)においては、立ち下がり特性を緩やかにするため、Sの値としては2から7程度の範囲から選定され、また、通常の基本設計の繰り返し交互層の厚さを少しずつ変えて積層することが好ましい。
透過帯域の透過率を高くし、リップルと呼ばれる光透過率の凹凸をフラットな特性にするためには、繰り返し交互層のガラス基板近くと、媒質近くの数層ずつの膜厚を変化させて最適設計を行う。そのため、基板|0.5L、1H・・・HL(HL)sHL・・・H、0.5Lのように表記される。また、高屈折率層にTiO2などを使う場合、最外層を高屈折率層で終わらせるよりも、より耐環境特性にすぐれたSiO2を最外層に追加して設計を行うことが多い。ガラス基板に接する層もTiO2がガラス基板と反応して特性が劣化することがあるので、化学的に安定なSiO2を第1層に追加することもある。このような多層膜による光選択透過層11の設計は市販のソフトウエアを用いて理論的に行うことができる(参考文献:OPTRONICS誌1999 No.5 p.175−190)。
近赤外線カットフィルタの具体的な構造を示すと、低屈折率層としてSiO2(n=1.46)、高屈折率層としてTa2O5(n=2.1)を選定し、設計波長λを755nmとした場合、次のような40層の積層構造を例示することができる。
1.17H、1.13L、(0.95H、0.99L)4、(1.05H、1.1L)4、(1.18H、1.22L)2、(1.25H、1.28L)3、(1.33H、1.34L)5、1.16H、0.59L。
1.17H、1.13L、(0.95H、0.99L)4、(1.05H、1.1L)4、(1.18H、1.22L)2、(1.25H、1.28L)3、(1.33H、1.34L)5、1.16H、0.59L。
高屈折率層と低屈折率層とを交互にガラス基板上に成膜するには、物理的成膜法が一般的であり、通常の真空蒸着法でも可能であるが、膜の屈折率の安定した制御が可能で、保管・仕様環境変化による分光特性の経時変化が少ない膜を作成できるイオンアシスト蒸着やイオンプレーティング法、スパッタリング法が好ましい。
(積層基板)
さらに、本発明は、シリコン基板と光選択透過型ガラスとが接合された積層基板を提供する。例えば、カメラモジュールを製造するための複数の固体撮像素子が形成されたシリコン基板と光選択透過型ガラスとが接合された積層基板を提供する。図2は、本発明の一実施形態である光選択透過型ガラス基板10(20、30)と複数の固体撮像素子19が形成されたシリコン基板15が接合された積層基板40(50)の例を概略的に示す斜視図である。
さらに、本発明は、シリコン基板と光選択透過型ガラスとが接合された積層基板を提供する。例えば、カメラモジュールを製造するための複数の固体撮像素子が形成されたシリコン基板と光選択透過型ガラスとが接合された積層基板を提供する。図2は、本発明の一実施形態である光選択透過型ガラス基板10(20、30)と複数の固体撮像素子19が形成されたシリコン基板15が接合された積層基板40(50)の例を概略的に示す斜視図である。
図3A、図3Bは、本発明の一実施形態である光選択透過型ガラス10(20、30)が固体撮像素子19と一体化した積層基板40(50)の固体撮像素子19周辺を拡大した断面模式図である。固体撮像素子19は、シリコン基板15の片面に、Si半導体(CMOS、CCD)光検出器アレイ16が形成されるとともに画素毎に、RGBモザイクカラーフィルタ17および樹脂マイクロレンズ18が形成されてなる。固体撮像素子19は、シリコン基板15と、光選択透過型ガラス10(20、30)とが、接着剤21を介して一体化され、積層基板40(50)をなす。
図3Aの積層基板40は、光選択透過型ガラス10(20、30)の光選択透過層11側に接着剤21を介して、固体撮像素子19と一体化した構成である。一方、図3Bの積層基板50は、光選択透過層11が空気側に面し、光選択透過層11と対向する側に接着剤21を介して一体化した構成である。接着剤21は、可視光に対して透明な材料であればよい。積層基板は、光選択透過層11の配置が、固体撮像素子19側(図3A)でも、空気側(図3B)でもよい。吸収層は、ガラス基板に比べて柔らかいため、表面にキズが付き易いことから、光選択透過層11が単層からなる場合、それを固体撮像素子19の接合面側に配置すると、その後の製造工程でキズが生じにくい。
積層基板50は、ガラス基板12をシリコン基板15に接合した後、ガラス基板12の表面に光選択透過層11を形成する工程においても得られる構成である。即ち、積層基板50は、光選択透過層11の形成と、ガラス基板と固体撮像素子の接合、の順番は不問であっても同構成が得られる。
固体撮像素子19において、樹脂マイクロレンズ18は、入射光を光検出器アレイ16の受光面に集光する凸レンズ機能となる。そのため、樹脂マイクロレンズ18に用いる透明樹脂の屈折率nMLと接着剤21の屈折率nGは、nML>nGを満たし、屈折率差(nML−nG)は大きいほど好ましい。具体的には、nML≧1.8が好ましく、nML≧1.9がより好ましい。また、nG≦1.5が好ましく、nG≦1.45がより好ましい。
接着剤21は、紫外線硬化型あるいは熱硬化型いずれでもよいが、短時間に接着強度が得られる点で、紫外線硬化型が好ましい。紫外線硬化型の接着剤は、樹脂マイクロレンズ18面と光選択透過型ガラス10(20、30)のガラス面または吸収層面と十分な接着強度が得られる。接着剤21は、硬化時の重合収縮率が3%以下で、高温高質下や急激な温度変化などの周囲環境条件による位置ズレや接着力低下が小さく、かつ、ハロゲン含有量が少なく、硬化後の未反応成分によるアウトガスが少ないものが好ましい。
接着剤21による接合は、硬化前の接着剤を光選択透過型ガラス10(20、30)に塗布し、光選択透過型ガラスと固体撮像素子19の間に、厚さ10μm以下で均一膜厚となるように一体化して、積層基板40(50)を得る。紫外線硬化型の接着剤を用いる場合は、光選択透過型ガラス10(20、30)側から紫外線を接着剤21に照射して重合硬化させるとよい。また、熱硬化型の接着剤を用いる場合は、積層基板50全体を加熱して重合硬化させるとよい。
なお、光選択透過層11が、接着剤21の硬化プロセスにおいて、紫外線を透過しない場合や、熱処理で変質する場合は、ガラス基板12と固体撮像素子19との接着後に、ガラス基板12の表面に光選択透過層11を形成するとよい。
なお、光選択透過層11が、接着剤21の硬化プロセスにおいて、紫外線を透過しない場合や、熱処理で変質する場合は、ガラス基板12と固体撮像素子19との接着後に、ガラス基板12の表面に光選択透過層11を形成するとよい。
また、図3Aおよび図3Bの積層基板において、固体撮像素子19の電圧印加および電気信号取出用の電気配線は省略した。実際には、画素の小型化による感度低下を抑制できる裏面照射型CMOS固体撮像素子の場合、電気配線がシリコン基板15の光検出器アレイ16と対向する側に配置され、シリコン基板15の貫通電極等の技術により、電極が固体撮像素子裏面に引き出される例が挙げられる。
積層基板40(50)は、ダイシング装置などを用いて固体撮像素子19のサイズに切断され、固体撮像装置に搭載される。図5は、固体撮像装置60の要部を概略的に示す断面図であり、光選択透過型ガラス10(20)が接合された固体撮像素子19と、その前面に、反射層112と、撮像レンズ31と、これらを固定する筐体33とを有する。撮像レンズ31は、筐体33の内側に設けられたレンズユニット32により固定される。反射層112は、透明基板の片面または両面に誘電体多層膜を有し、レンズユニット32の光入射側から固体撮像素子19の間の光路中に配置される。図5の固体撮像装置60は、反射層112が、レンズユニット32と光選択透過型ガラス10(20)との間に配置された例を示すが、この例に限らず、反射層112の誘電体多層膜を撮像レンズ31の表面に形成した構成でもよい。
このように、本発明の一実施形態である積層基板40(50)は、固体撮像素子19に光学フィルタ機能をウェハレベルで組み込めるため、生産性が向上するとともに特性の安定化が得られる。さらに、従来の光学フィルタ機能を固体撮像素子19や撮像レンズ31に集積化し、光学フィルタ部品点数の削減によりカメラモジュールの組立調整が簡素化されるとともに、固体撮像装置の小型化が可能となる。
また、本発明の一実施形態の積層基板は、光選択透過型ガラスとシリコン基板とが積層されてなり、ガラス基板の50℃〜100℃の平均熱膨張係数α50/100と、シリコン基板の50℃〜100℃の平均熱膨張係数αSi50/100との差Δα50/100(=α50/100−αSi50/100)が、−0.25ppm/℃〜0.25ppm/℃である。
また、ガラス基板の200℃〜300℃の平均熱膨張係数α200/300と、シリコン基板の200℃〜300℃の平均熱膨張係数αSi200/300との差Δα200/300(=α200/300−αSi200/300)が、−0.25ppm/℃〜0.25ppm/℃である。シリコン基板とガラス基板との熱膨張係数の差が小さいため、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板に発生する残留歪が小さい。
Δα50/100は、−0.15ppm/℃以上がより好ましく、−0.10ppm/℃以上がさらに好ましく、−0.05ppm/℃以上が特に好ましく、−0.03ppm/℃以上が最も好ましい。Δα50/100は、0.15ppm/℃以下がより好ましく、0.10ppm/℃以下がさらに好ましく、0.05ppm/℃以下が特に好ましく、0.03ppm/℃以下が最も好ましい。
Δα200/300は、−0.15ppm/℃以上がより好ましく、−0.10ppm/℃以上がさらに好ましく、−0.05ppm/℃以上が特に好ましく、−0.03ppm/℃以上が最も好ましい。Δα200/300は、0.15ppm/℃以下がより好ましく、0.10ppm/℃以下がさらに好ましく、0.05ppm/℃以下が特に好ましく、0.03ppm/℃以下が最も好ましい。
また、Δα200/300とΔα50/100の差(Δα200/300−Δα50/100)は、−0.16ppm/℃〜0.16ppm/℃である。Δα200/300−Δα50/100が−0.16ppm/℃〜0.16ppm/℃であると、シリコン基板との熱膨張係数の差が小さいため、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板に発生する残留歪が小さい。Δα200/300−Δα50/100は−0.12ppm/℃以上が好ましく、−0.08ppm/℃以上がより好ましい。また、Δα50/100−Δα200/300は0.12ppm/℃以下が好ましく、0.08ppm/℃以下がより好ましい。
また、ガラス基板のアルカリ金属酸化物の含有量が酸化物基準のモル百分率表示で0%〜0.1%である。
本発明の一実施形態の積層基板は、ガラス基板の100℃〜200℃の平均熱膨張係数α100/200と、シリコン基板の100℃〜200℃の平均熱膨張係数αSi100/200との差Δα100/200(=α100/200−αSi100/200)が、−0.25ppm/℃〜0.25ppm/℃が好ましい。Δα100/200が−0.25ppm/℃〜0.25ppm/℃であれば、シリコン基板とガラス基板との熱膨張係数の差が小さいため、シリコン基板とガラス基板を貼り合わせる熱処理工程で、シリコン基板に発生する残留歪が小さい。
Δα100/200は、−0.15ppm/℃以上がより好ましく、−0.10ppm/℃以上がさらに好ましく、−0.05ppm/℃以上が特に好ましく、−0.03ppm/℃以上が最も好ましい。Δα100/200は、0.15ppm/℃以下がより好ましく、0.10ppm/℃以下がさらに好ましく、0.05ppm/℃以下が特に好ましく、0.03ppm/℃以下が最も好ましい。
以下に、本発明を実施例によりさらに詳細に説明する。
[試験例1]
表1〜7に、本発明の一実施形態であるガラス基板に好適なガラス組成を示す。なお、本発明の機能を発現する限り、本実施例の組成に限定されない。
[試験例1]
表1〜7に、本発明の一実施形態であるガラス基板に好適なガラス組成を示す。なお、本発明の機能を発現する限り、本実施例の組成に限定されない。
表1〜7に示すガラス組成となるように珪砂等の各種のガラス原料を調合し、該目標組成の原料100%に対し、酸化物基準の質量百分率表示で、硫酸塩をSO3換算で0.1〜1%、Fを0.16%、Clを1%添加し、白金坩堝を用いて1550〜1650℃の温度で3時間加熱し溶融した。溶融にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後、板状のガラスをTg+50℃程度の温度の電気炉に入れ、冷却速度R(℃/分)で電気炉を降温させ、ガラスが室温になるまで冷却した。
得られたガラスの密度(単位:g/cm3)、平均熱膨張係数(単位:ppm/℃)、ガラス転移点Tg(単位:℃)、ヤング率(単位:GPa)、T2(単位:℃)、T4(単位:℃)、失透温度(単位:℃)、失透粘性log10ηTL(単位:dPa・sec)、および仮想粘度log10η(単位:dPa・sec)を測定し、表1〜7に示した。また、表1〜7に示した(1)〜(4)は、
(1):0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)
(2):0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)
(3):0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)
(4):0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)である。
(1):0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)
(2):0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)
(3):0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)
(4):0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)である。
なお、表中のかっこ書きした値は、計算により求めたものである。ガラス中のFe2O3残存量は酸化物基準の質量百万分率表示で50ppm〜200ppm、SO3残存量は10ppm〜100ppmであった。以下に各物性の測定方法を示す。
(平均熱膨張係数)
JIS R3102(1995年)に規定されている方法に従い、示差熱膨張計(TMA)を用いて測定した。α50/100は測定温度範囲が50℃〜100℃、α100/200は100℃〜200℃、およびα200/300は200℃〜300℃である。単位をppm/℃として表した。
JIS R3102(1995年)に規定されている方法に従い、示差熱膨張計(TMA)を用いて測定した。α50/100は測定温度範囲が50℃〜100℃、α100/200は100℃〜200℃、およびα200/300は200℃〜300℃である。単位をppm/℃として表した。
(シリコン基板との平均熱膨張係数の差)
シリコン基板(信越化学工業製)の平均熱膨張係数αSi50/100、αSi100/200、およびαSi200/300を測定し、それぞれのガラス基板の平均熱膨張係数との差Δα50/100、Δα100/200、Δα200/300を求めた。ここで、
Δα50/100=α50/100−αSi50/100
Δα100/200=α100/200−αSi100/200
Δα200/300=α200/300−αSi200/300
である。シリコン基板の平均熱膨張係数αSi50/100は2.94ppm/℃、αSi100/200は3.37ppm/℃、αSi200/300は3.69ppm/℃であった。
シリコン基板(信越化学工業製)の平均熱膨張係数αSi50/100、αSi100/200、およびαSi200/300を測定し、それぞれのガラス基板の平均熱膨張係数との差Δα50/100、Δα100/200、Δα200/300を求めた。ここで、
Δα50/100=α50/100−αSi50/100
Δα100/200=α100/200−αSi100/200
Δα200/300=α200/300−αSi200/300
である。シリコン基板の平均熱膨張係数αSi50/100は2.94ppm/℃、αSi100/200は3.37ppm/℃、αSi200/300は3.69ppm/℃であった。
(ガラス転移点Tg)
JIS R3103−3(2001年)に規定されている方法に従い、TMAを用いて測定した。
JIS R3103−3(2001年)に規定されている方法に従い、TMAを用いて測定した。
(密度)
泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(ヤング率)
厚さ0.5mm〜10mmのガラスについて、超音波パルス法により測定した。
厚さ0.5mm〜10mmのガラスについて、超音波パルス法により測定した。
(T2)
回転粘度計を用いて粘度を測定し、102d・Pa・sとなるときの温度T2(℃)を測定した。
回転粘度計を用いて粘度を測定し、102d・Pa・sとなるときの温度T2(℃)を測定した。
(T4)
回転粘度計を用いて粘度を測定し、104d・Pa・sとなるときの温度T4(℃)を測定した。
回転粘度計を用いて粘度を測定し、104d・Pa・sとなるときの温度T4(℃)を測定した。
(ガラス失透温度)
ガラス失透温度は、白金製皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
ガラス失透温度は、白金製皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
(失透粘性)
溶融ガラスの高温(1000〜1600℃)における回転粘度計を用いたガラス粘度の測定結果から、フルチャーの式の係数を求め、該係数を用いたフルチャーの式により、ガラス失透温度におけるガラス粘度を求めた。
溶融ガラスの高温(1000〜1600℃)における回転粘度計を用いたガラス粘度の測定結果から、フルチャーの式の係数を求め、該係数を用いたフルチャーの式により、ガラス失透温度におけるガラス粘度を求めた。
(HF重量減少量)
HF重量減少量は、次の様にして測定した。上述のようにして得られたガラス板を切断し、両面を鏡面研磨して、40mm四方、厚さ1mmのガラスサンプルを得た。このガラスサンプルを洗浄後、乾燥させ、重量を測定した。次いで、ガラスサンプルを25℃に保持した5質量%フッ酸に20分間浸漬し、洗浄、乾燥させ、浸漬後の重量を測定し、浸漬前からの重量減少量を算出した。浸漬中に薬液を撹拌するとエッチング速度が変動するため、撹拌は実施しなかった。サンプル寸法から表面積を算出し、重量減少量を表面積で割ったのち、さらに浸漬時間で割ることで、単位面積および単位時間当たりの重量減少量(HF重量減少量)を求めた。
HF重量減少量は、次の様にして測定した。上述のようにして得られたガラス板を切断し、両面を鏡面研磨して、40mm四方、厚さ1mmのガラスサンプルを得た。このガラスサンプルを洗浄後、乾燥させ、重量を測定した。次いで、ガラスサンプルを25℃に保持した5質量%フッ酸に20分間浸漬し、洗浄、乾燥させ、浸漬後の重量を測定し、浸漬前からの重量減少量を算出した。浸漬中に薬液を撹拌するとエッチング速度が変動するため、撹拌は実施しなかった。サンプル寸法から表面積を算出し、重量減少量を表面積で割ったのち、さらに浸漬時間で割ることで、単位面積および単位時間当たりの重量減少量(HF重量減少量)を求めた。
(光弾性定数)
円板圧縮法(「円板圧縮法による化学強化用ガラスの光弾性定数の測定」、横田良助、窯業協会誌、87[10]、1979年、p.519−522)により測定した。
円板圧縮法(「円板圧縮法による化学強化用ガラスの光弾性定数の測定」、横田良助、窯業協会誌、87[10]、1979年、p.519−522)により測定した。
例1〜60、66〜87は実施例であり、例61〜65は比較例である。
実施例である例1〜60、66〜87のガラス基板は、アルカリ金属酸化物の含有量が0.1%以下であるため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、アルカリイオンがシリコン基板に拡散しない。また、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、α200/300をα50/100で除した値α200/300/α50/100が、1.20〜1.30であるため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、シリコン基板およびガラス基板に発生する残留歪が小さくなりやすい。
実施例である例1〜60、66〜87のガラス基板は、アルカリ金属酸化物の含有量が0.1%以下であるため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、アルカリイオンがシリコン基板に拡散しない。また、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、α200/300をα50/100で除した値α200/300/α50/100が、1.20〜1.30であるため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、シリコン基板およびガラス基板に発生する残留歪が小さくなりやすい。
比較例である例61〜65のガラス基板は、α50/100、α200/300、または、α200/300/α50/100のいずれか一以上の範囲が本発明の一実施形態のガラス基板の範囲を逸脱する。または、例61〜65のガラス基板は、Δα50/100、Δα200/300、または、Δα200/300−Δα50/100の範囲が本願発明の一実施形態のガラス基板に関する範囲を逸脱する。または、例61〜65のガラス基板は、得られるガラス基板の組成、または、(1)〜(4)の範囲が本願発明の一実施形態のガラス基板に関する範囲を逸脱する。そのため、シリコン基板とガラス基板を貼り合わせる熱処理工程において、シリコン基板に発生する残留応力が大きくなりやすい。
次に、図6に、例88のガラス基板および例89のガラス基板それぞれについて、シリコン基板を接触させて熱処理をさせた際の、シリコン基板へのアルカリ金属酸化物の拡散量を、二次イオン質量分析法(SIMS)測定を行った結果を示す。例88のガラス基板はアルカリ金属酸化物(Na2O)の含有量が0.1%以下であり、例89のガラス基板はアルカリ金属酸化物の含有量が0.1%よりも多い。なお、図6中に、参照用に未処理のシリコン基板のSIMS測定結果も示す。
SIMS測定には、アルバック・ファイ社のADEPT1010を用いた。SIMS分析の一次イオンにはCsイオンを用いた。二次イオン種としては、28Si+と23Na+の測定を行った。ガラス基板と接触させたシリコン基板の熱処理は、室温から200℃まで10分で昇温し、200℃で1時間保持した後、室温まで10分で冷却を行った。例88、89の組成を表8に示す。
例88は例6にアルカリ金属酸化物であるNa2Oを0.03%外割で添加したものであり、実施例である。例89は例61にアルカリ金属酸化物であるNa2Oを0.32%外割で添加したものであり、比較例である。図6の横軸は、シリコン基板の内、ガラス基板と接触していた側の表面からの深さを示しており、縦軸は、一秒間における23Na+の検出数を28Si+で除した値を示している。図6から、アルカリ金属酸化物の含有量が0.1%よりも多い例89のガラス基板と接触していたシリコン基板からは、表層から100nm付近までNaイオンが拡散していることが分かる。なお、参照用のシリコン基板の測定結果は、例88のプロットとほぼ重なっている。アルカリイオンは電荷を有する為、シリコン基板中でキャリアとして働き、半導体特性を変化させてしまう。それに対して、アルカリ金属酸化物の含有量が0.1%以下である例88のガラス基板と接触していたシリコン基板は、未処理のシリコン基板と同様にNaイオンは検出されず、ガラス基板からシリコン基板へのNaイオンの拡散が生じていないことを示している。
[試験例2]
図1Aに示す、光選択透過型ガラス10の製造例を説明する。光選択透過型ガラス10は、直径15cmの円形で0.2mm厚のガラス基板12の片面に光選択透過層11を備える。
図1Aに示す、光選択透過型ガラス10の製造例を説明する。光選択透過型ガラス10は、直径15cmの円形で0.2mm厚のガラス基板12の片面に光選択透過層11を備える。
ガラス基板12は、表1に記載の例6のガラスを用いる。ここで、アルカリ酸化物(Li2O、Na2O、K2Oなど)の含有量は、0.1%以下とする。ガラス基板12は、両面研磨加工が施されてなる。
次に、ポリイミド樹脂(ネオプリム(登録商標)C3450)の15質量%シクロヘキサノン溶液に色素(U)および色素(A)を混合し、十分に撹拌して溶解させ、塗工液を調製する。この塗工液を、上記ガラス基板12の片方の主面にスピンコート法により塗布し、溶媒を加熱乾燥させた後、φ15cm面内の平均厚さt0=2.7μmの光選択透過層11を形成し、光選択透過型ガラス10を製造する。
ここで、色素(A)は、吸収極大波長λ(Tmin)が705nmのスクアリリウム系化合物を用い、添加量3(透明樹脂(B)100質量部に対する質量部)で混合する。また、色素(U)に、吸収極大波長λ(Tmin)が396nmのオキサゾール系のUvitex(商標)OBを用い、添加量5(透明樹脂(B)100質量部に対する質量部)で混合する。
図4は、光選択透過型ガラス10と併用する誘電体多層膜からなる反射層の分光透過率曲線(入射角:0°)である。反射層は、カメラモジュール内に配置された光学素子に、屈折率1.45のSiO2膜と、屈折率2.41のTiO2膜を交互に40層積層してなるものを用いる。
分光透過率を測定した結果、波長350nm〜400nmの近紫外光における平均透過率が0.3%、波長430nm〜600nmの可視光における平均透過率が92%、波長700nm〜1150nmの近赤外光における平均透過率が0.9%で、波長600nm〜700nmで視感度に近似する分光透過率変化となっていることがわかった。
本発明の一実施形態である光選択透過型ガラス基板およびシリコン基板が積層された積層基板は、固体撮像素子を用いたデジタルスチルカメラ、携帯電話カメラ等の撮像装置に有用である。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年2月6日付で出願された日本特許出願(特願2015−022719)、および2015年12月10日付で出願された日本特許出願(特願2015−241303)に基づいており、その全体が引用により援用される。
10,20,30 光選択透過型ガラス
11,11a,11b 光選択透過層
111 吸収層
112,112a,112b,112c 反射層
12 ガラス基板
15 シリコン基板
16 光検出器アレイ
17 RGBモザイクカラーフィルタ
18 樹脂マイクロレンズ
19 固体撮像素子
21 接着剤
31 撮像レンズ
32 レンズユニット
33 筐体
40,50 積層基板
60 固体撮像装置(カメラモジュール)
11,11a,11b 光選択透過層
111 吸収層
112,112a,112b,112c 反射層
12 ガラス基板
15 シリコン基板
16 光検出器アレイ
17 RGBモザイクカラーフィルタ
18 樹脂マイクロレンズ
19 固体撮像素子
21 接着剤
31 撮像レンズ
32 レンズユニット
33 筐体
40,50 積層基板
60 固体撮像装置(カメラモジュール)
Claims (21)
- ガラス基板と、
前記ガラス基板の少なくとも一方の主面に、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれる少なくとも一を選択的に透過する光選択透過層を備え、
前記ガラス基板は、50℃〜100℃での平均熱膨張係数α50/100が2.70ppm/℃〜3.20ppm/℃であり、
200℃〜300℃での平均熱膨張係数α200/300が3.45ppm/℃〜3.95ppm/℃であり、
200℃〜300℃の平均熱膨張係数α200/300を50℃〜100℃の平均熱膨張係数α50/100で除した値α200/300/α50/100が、1.20〜1.30であり、
アルカリ金属酸化物の含有量が酸化物基準のモル百分率表示で0%〜0.1%である、光選択透過型ガラス。 - 前記ガラス基板の200℃〜300℃での平均熱膨張係数α200/300が、3.55ppm/℃〜3.85ppm/℃である、請求項1に記載の光選択透過型ガラス。
- 前記ガラス基板の組成が、酸化物基準のモル百分率表示で、下記である請求項1または2に記載の光選択透過型ガラス。
SiO2 :50%〜75%、
Al2O3 :6%〜16%、
B2O3 :0%〜15%、
MgO :0%〜15%、
CaO :0%〜13%、
SrO :0%〜11%、
BaO :0%〜9.5% - 前記ガラス基板の組成が、酸化物基準のモル百分率表示で、CaO、SrO、およびBaOの合計含有量が7%以上、かつ(Al2O3の含有量)≧(MgOの含有量)であり、失透粘性が103.8d・Pa・s以上である、請求項1〜3のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板の100℃〜200℃での平均熱膨張係数α100/200が、3.13ppm/℃〜3.63ppm/℃である、請求項1〜4のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板中のFe2O3の含有量が、酸化物基準の質量百万分率表示で、200ppm以下である、請求項1〜5のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板のヤング率が80GPa以上である、請求項1〜6のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板の厚さが1.0mm以下である、請求項1〜7のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板の面積が0.03m2以上である、請求項1〜8のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板に含まれる0.5μm以上1mm以下の欠点の密度が1個/cm2以下である、請求項1〜9のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板の仮想粘度が1011.0d・Pa・s〜1014.1d・Pa・sである、請求項1〜10のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板が、
0.0177×(SiO2の含有量)−0.0173×(Al2O3の含有量)+0.0377×(B2O3の含有量)+0.0771×(MgOの含有量)+0.1543×(CaOの含有量)+0.1808×(SrOの含有量)+0.2082×(BaOの含有量)+0.0344×(12.3+log1060−log10η)が2.70〜3.20、
0.0181×(SiO2の含有量)+0.0004×(Al2O3の含有量)+0.0387×(B2O3の含有量)+0.0913×(MgOの含有量)+0.1621×(CaOの含有量)+0.1900×(SrOの含有量)+0.2180×(BaOの含有量)+0.0391×(12.3+log1060−log10η)が3.13〜3.63、
0.0177×(SiO2の含有量)+0.0195×(Al2O3の含有量)+0.0323×(B2O3の含有量)+0.1015×(MgOの含有量)+0.1686×(CaOの含有量)+0.1990×(SrOの含有量)+0.2179×(BaOの含有量)+0.0312×(12.3+log1060−log10η)が3.45〜3.95、および
0.0111×(SiO2の含有量)+0.0250×(Al2O3の含有量)+0.0078×(B2O3の含有量)+0.0144×(MgOの含有量)+0.0053×(CaOの含有量)+0.0052×(SrOの含有量)+0.0013×(BaOの含有量)−0.0041×(12.3+log1060−log10η)が1.20〜1.30
を満たす、請求項1〜11のいずれか一項に記載の光選択透過型ガラス。
(ここで、SiO2の含有量、Al2O3の含有量、B2O3の含有量、MgOの含有量、CaOの含有量、およびSrOの含有量は、得られたガラスに含有される酸化物基準のモル百分率表示で表した含有量、ηは仮想粘度(単位:d・Pa・s)である。) - 前記ガラス基板の25℃、5質量%のフッ酸水溶液に対する重量減少量が0.05(mg/cm2)/分以上、0.20(mg/cm2)/分以下である、請求項1〜12のいずれか一項に記載の光選択透過型ガラス。
- 前記ガラス基板の光弾性定数が31nm/(MPa・cm)以下である、請求項1〜13のいずれか一項に記載の光選択透過型ガラス。
- 前記光選択透過層として吸収層を備え、
前記吸収層は、透明樹脂と吸収色素を含有する、請求項1〜14のいずれか1項に記載の光選択透過型ガラス。 - 前記吸収色素は、近赤外線吸収色素を含む、請求項15に記載の光選択透過型ガラス。
- 前記吸収色素は、近紫外線吸収色素を含む、請求項15または請求項16に記載の光選択透過型ガラス。
- 前記ガラス基板の少なくとも一方の主面に誘電体多層膜を有する反射層を備える、請求項1〜17のいずれか1項に記載の光選択透過型ガラス。
- シリコン基板上に備えられた固体撮像素子と、請求項1〜18いずれか1項に記載の光選択透過型ガラスと、を有する、積層基板。
- 光選択透過型ガラスとシリコン基板とが積層され、
前記光選択透過型ガラスは、ガラス基板と、前記ガラス基板の少なくとも一方の主面に、近赤外線および可視光線のうち、近赤外線、可視光線、青の波長域の可視光線、赤の波長域の可視光線、および緑の波長域の可視光線の群から選ばれる少なくとも一を選択的に透過する光選択透過層を備え、
前記ガラス基板の50℃〜100℃の平均熱膨張係数α50/100と、前記シリコン基板の50℃〜100℃の平均熱膨張係数αSi50/100との差Δα50/100(=α50/100−αSi50/100)が、−0.25ppm/℃〜0.25ppm/℃であり、
前記ガラス基板の200℃〜300℃の平均熱膨張係数α200/300と、前記シリコン基板の200℃〜300℃の平均熱膨張係数αSi200/300との差Δα200/300(=α200/300−αSi200/300)が、−0.25ppm/℃〜0.25ppm/℃であり、
Δα200/300−Δα50/100が−0.16ppm/℃〜0.16ppm/℃であり、
前記ガラス基板のアルカリ金属酸化物の含有量が酸化物基準のモル百分率表示で0%〜0.1%である積層基板。 - 前記ガラス基板の100℃〜200℃の平均熱膨張係数α100/200と、前記シリコン基板の100℃〜200℃の平均熱膨張係数αSi100/200との差Δα100/200(=α100/200−αSi100/200)が、−0.25ppm/℃〜0.25ppm/℃である請求項20に記載の積層基板。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015022719 | 2015-02-06 | ||
JP2015022719 | 2015-02-06 | ||
JP2015241303 | 2015-12-10 | ||
JP2015241303 | 2015-12-10 | ||
PCT/JP2016/053055 WO2016125792A1 (ja) | 2015-02-06 | 2016-02-02 | 光選択透過型ガラスおよび積層基板 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2016125792A1 true JPWO2016125792A1 (ja) | 2017-12-14 |
Family
ID=56564128
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016573378A Pending JPWO2016125792A1 (ja) | 2015-02-06 | 2016-02-02 | 光選択透過型ガラスおよび積層基板 |
JP2016573375A Active JP6604337B2 (ja) | 2015-02-06 | 2016-02-02 | ガラス基板、積層基板、およびガラス基板の製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016573375A Active JP6604337B2 (ja) | 2015-02-06 | 2016-02-02 | ガラス基板、積層基板、およびガラス基板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10759691B2 (ja) |
JP (2) | JPWO2016125792A1 (ja) |
KR (2) | KR20170110619A (ja) |
CN (2) | CN107207323B (ja) |
TW (2) | TWI675018B (ja) |
WO (2) | WO2016125787A1 (ja) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102466695B1 (ko) * | 2015-05-15 | 2022-11-14 | 니폰 덴키 가라스 가부시키가이샤 | 강화유리판의 제조 방법, 강화용 유리판 및 강화유리판 |
WO2017210781A1 (en) * | 2016-06-07 | 2017-12-14 | Airy3D Inc. | Light field imaging device and method for depth acquisition and three-dimensional imaging |
JP7044064B2 (ja) * | 2016-08-05 | 2022-03-30 | Agc株式会社 | 無アルカリガラス基板、積層基板、およびガラス基板の製造方法 |
JP6879308B2 (ja) * | 2016-09-16 | 2021-06-02 | Agc株式会社 | ガラス基板、および積層基板 |
CN117858581A (zh) * | 2017-01-20 | 2024-04-09 | 索尼半导体解决方案公司 | 显示装置、电子设备及制造显示装置的方法 |
JP6770915B2 (ja) * | 2017-03-08 | 2020-10-21 | 株式会社Screenホールディングス | 熱処理装置 |
CN108663736A (zh) * | 2017-03-27 | 2018-10-16 | 白金光学科技(苏州)有限公司 | 滤光片 |
JP6497407B2 (ja) | 2017-03-31 | 2019-04-10 | Agc株式会社 | 無アルカリガラス基板 |
US11401199B2 (en) * | 2017-04-17 | 2022-08-02 | Nippon Electric Glass Co., Ltd. | Glass plate |
JP2018188336A (ja) * | 2017-05-08 | 2018-11-29 | Agc株式会社 | 積層ガラス、積層基板および積層基板の製造方法 |
JP7077554B2 (ja) * | 2017-09-21 | 2022-05-31 | 日本電気硝子株式会社 | ホルダ付き赤外線吸収ガラス |
US20200369559A1 (en) * | 2017-10-25 | 2020-11-26 | Nippon Sheet Glass Company, Limited | Glass composition |
DE102017127579B3 (de) * | 2017-11-22 | 2019-02-07 | Schott Ag | Substrat für einen optischen Filter und optischer Filter |
CN115894740A (zh) * | 2017-11-24 | 2023-04-04 | 迪睿合株式会社 | 光固化性树脂组合物及图像显示装置的制造方法 |
US11554984B2 (en) * | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
KR101924174B1 (ko) * | 2018-04-04 | 2019-02-22 | (주)유티아이 | 근적외선 필터 및 그 필터의 제조방법 |
CN108614318B (zh) * | 2018-04-23 | 2019-12-24 | 安徽帝显电子有限公司 | 一种车载用导光膜及其制备方法 |
US11440836B2 (en) * | 2018-04-25 | 2022-09-13 | Cdgm Glass Co., Ltd | Glass composition |
TWI676853B (zh) * | 2018-07-25 | 2019-11-11 | 白金科技股份有限公司 | 濾光片 |
KR102205956B1 (ko) * | 2018-08-01 | 2021-01-21 | 인하공업전문대학산학협력단 | 유연성 소자 제조용 유리기판-금속기판 접합체의 제조방법 |
US11114483B2 (en) * | 2018-08-10 | 2021-09-07 | Omnivision Technologies, Inc. | Cavityless chip-scale image-sensor package |
CN112740082B (zh) * | 2018-09-21 | 2022-11-11 | 肖特玻璃科技(苏州)有限公司 | 用于提供高效平行光线的准直系统 |
CN111338171A (zh) * | 2018-12-19 | 2020-06-26 | 青岛海信激光显示股份有限公司 | 一种投影屏幕及激光投影装置 |
WO2020125317A1 (zh) * | 2018-12-19 | 2020-06-25 | 青岛海信激光显示股份有限公司 | 一种投影屏幕及激光投影装置 |
JPWO2020209270A1 (ja) * | 2019-04-12 | 2020-10-15 | ||
US11070786B2 (en) * | 2019-05-02 | 2021-07-20 | Disney Enterprises, Inc. | Illumination-based system for distributing immersive experience content in a multi-user environment |
JP7530897B2 (ja) | 2019-07-12 | 2024-08-08 | 株式会社半導体エネルギー研究所 | 機能パネル、表示装置、入出力装置、情報処理装置 |
KR20220043118A (ko) * | 2019-07-29 | 2022-04-05 | 에이지씨 가부시키가이샤 | 지지 유리 기판 |
US11327084B2 (en) * | 2019-09-19 | 2022-05-10 | Invidx Corp. | Joint hematology and biochemistry point-of-care testing system |
US11161109B2 (en) | 2019-09-19 | 2021-11-02 | Invidx Corp. | Point-of-care testing cartridge with sliding cap |
US11997766B2 (en) | 2019-10-11 | 2024-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Functional panel, display device, input/output device, and data processing device |
WO2021192700A1 (ja) * | 2020-03-23 | 2021-09-30 | Agc株式会社 | 接合体 |
US20220107449A1 (en) * | 2020-10-06 | 2022-04-07 | Viavi Solutions Inc. | Composite optical filter |
JP7569070B2 (ja) | 2020-10-27 | 2024-10-17 | 株式会社Nsc | 機能膜付き基板の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315354A (ja) * | 2003-03-31 | 2004-11-11 | Asahi Glass Co Ltd | 無アルカリガラス |
JP2009286689A (ja) * | 2008-05-30 | 2009-12-10 | Corning Inc | ボロアルミノシリケートガラス |
WO2010107111A1 (ja) * | 2009-03-19 | 2010-09-23 | 日本電気硝子株式会社 | 無アルカリガラス |
JP2011020864A (ja) * | 2009-07-13 | 2011-02-03 | Nippon Electric Glass Co Ltd | ガラス基板の製造方法 |
WO2013099970A1 (ja) * | 2011-12-28 | 2013-07-04 | AvanStrate株式会社 | フラットパネルディスプレイ用ガラス基板およびその製造方法 |
WO2013183681A1 (ja) * | 2012-06-07 | 2013-12-12 | 旭硝子株式会社 | 無アルカリガラスおよびこれを用いた無アルカリガラス板 |
JP2013257532A (ja) * | 2012-03-22 | 2013-12-26 | Nippon Shokubai Co Ltd | 光選択透過フィルター、樹脂シート及び固体撮像素子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3153710B2 (ja) | 1994-01-21 | 2001-04-09 | ホーヤ株式会社 | シリコン台座用ガラス及びシリコン基材型センサー |
WO2004087597A1 (ja) * | 2003-03-31 | 2004-10-14 | Asahi Glass Company Limited | 無アルカリガラス |
JP5435394B2 (ja) | 2007-06-08 | 2014-03-05 | 日本電気硝子株式会社 | 強化ガラス基板及びその製造方法 |
JP3153710U (ja) | 2009-07-03 | 2009-09-17 | モリト株式会社 | 折畳み式包装箱 |
EP2578550A4 (en) | 2010-06-03 | 2015-02-18 | Asahi Glass Co Ltd | GLASS SUBSTRATE AND METHOD OF PRODUCING THE SAME |
US9227295B2 (en) | 2011-05-27 | 2016-01-05 | Corning Incorporated | Non-polished glass wafer, thinning system and method for using the non-polished glass wafer to thin a semiconductor wafer |
WO2012169447A1 (ja) | 2011-06-06 | 2012-12-13 | 旭硝子株式会社 | 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置 |
KR102059198B1 (ko) * | 2012-03-22 | 2019-12-24 | 가부시키가이샤 닛폰 쇼쿠바이 | 광 선택 투과 필터, 수지 시트 및 고체 촬상 소자 |
WO2014034386A1 (ja) | 2012-08-29 | 2014-03-06 | 旭硝子株式会社 | 近赤外線カットフィルタ |
-
2016
- 2016-02-02 CN CN201680008835.9A patent/CN107207323B/zh active Active
- 2016-02-02 CN CN201680008864.5A patent/CN107207324A/zh active Pending
- 2016-02-02 JP JP2016573378A patent/JPWO2016125792A1/ja active Pending
- 2016-02-02 JP JP2016573375A patent/JP6604337B2/ja active Active
- 2016-02-02 KR KR1020177021666A patent/KR20170110619A/ko unknown
- 2016-02-02 KR KR1020177021773A patent/KR102538464B1/ko active IP Right Grant
- 2016-02-02 WO PCT/JP2016/053047 patent/WO2016125787A1/ja active Application Filing
- 2016-02-02 WO PCT/JP2016/053055 patent/WO2016125792A1/ja active Application Filing
- 2016-02-05 TW TW105104200A patent/TWI675018B/zh active
- 2016-02-05 TW TW105104171A patent/TW201639800A/zh unknown
-
2017
- 2017-08-02 US US15/666,862 patent/US10759691B2/en active Active
- 2017-08-02 US US15/667,191 patent/US10683233B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315354A (ja) * | 2003-03-31 | 2004-11-11 | Asahi Glass Co Ltd | 無アルカリガラス |
JP2009286689A (ja) * | 2008-05-30 | 2009-12-10 | Corning Inc | ボロアルミノシリケートガラス |
WO2010107111A1 (ja) * | 2009-03-19 | 2010-09-23 | 日本電気硝子株式会社 | 無アルカリガラス |
JP2011020864A (ja) * | 2009-07-13 | 2011-02-03 | Nippon Electric Glass Co Ltd | ガラス基板の製造方法 |
WO2013099970A1 (ja) * | 2011-12-28 | 2013-07-04 | AvanStrate株式会社 | フラットパネルディスプレイ用ガラス基板およびその製造方法 |
JP2013257532A (ja) * | 2012-03-22 | 2013-12-26 | Nippon Shokubai Co Ltd | 光選択透過フィルター、樹脂シート及び固体撮像素子 |
WO2013183681A1 (ja) * | 2012-06-07 | 2013-12-12 | 旭硝子株式会社 | 無アルカリガラスおよびこれを用いた無アルカリガラス板 |
Also Published As
Publication number | Publication date |
---|---|
US10683233B2 (en) | 2020-06-16 |
WO2016125787A1 (ja) | 2016-08-11 |
CN107207324A (zh) | 2017-09-26 |
JP6604337B2 (ja) | 2019-11-13 |
TWI675018B (zh) | 2019-10-21 |
US10759691B2 (en) | 2020-09-01 |
TW201639800A (zh) | 2016-11-16 |
JPWO2016125787A1 (ja) | 2017-12-14 |
US20170355637A1 (en) | 2017-12-14 |
KR102538464B1 (ko) | 2023-06-01 |
CN107207323B (zh) | 2020-12-11 |
KR20170110619A (ko) | 2017-10-11 |
KR20170115537A (ko) | 2017-10-17 |
WO2016125792A1 (ja) | 2016-08-11 |
US20170327408A1 (en) | 2017-11-16 |
CN107207323A (zh) | 2017-09-26 |
TW201708142A (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016125792A1 (ja) | 光選択透過型ガラスおよび積層基板 | |
JP5849719B2 (ja) | 光吸収体及びこれを用いた撮像装置 | |
US9470820B2 (en) | Microlens array, image pickup element package, and method for manufacturing microlens array | |
WO2016114363A1 (ja) | 近赤外線カットフィルタおよび撮像装置 | |
WO2011055726A1 (ja) | 近赤外線カットフィルタ | |
JP5659499B2 (ja) | 近赤外線カットフィルタガラス | |
JP7251423B2 (ja) | 光学部材及びカメラモジュール | |
JP6772450B2 (ja) | 近赤外線吸収型ガラスウェハおよび半導体ウェハ積層体 | |
TWI753299B (zh) | 光學濾波器及其用途 | |
KR102657651B1 (ko) | 적외선 흡수 유리판 및 그 제조 방법, 그리고 고체 촬상 소자 디바이스 | |
CN108693584B (zh) | 光学滤光片及使用光学滤光片的固体摄像装置 | |
US11567250B2 (en) | Near-infrared ray absorbing article and method for manufacturing thereof, and optical filter and method for manufacturing thereof | |
JP2011049274A (ja) | 固体撮像素子パッケージ用窓材並びに撮像装置 | |
JP4493417B2 (ja) | 半導体パッケージの窓用ガラス、半導体パッケージ用ガラス窓および半導体パッケージ | |
WO2019058858A1 (ja) | 赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイス | |
JP2017072748A (ja) | 光学フィルターおよび光学フィルターを用いた撮像素子 | |
JP2017167557A (ja) | 光吸収体及びこれを用いた撮像装置 | |
JP4433391B2 (ja) | 半導体パッケージの窓用ガラス、半導体パッケージ用ガラス窓および半導体パッケージ | |
JP5672680B2 (ja) | 固体撮像素子パッケージ用窓材並びに撮像装置 | |
JP2024041789A (ja) | 光学フィルタ、近赤外線カットフィルタ、および撮像装置 | |
JP2020109496A (ja) | 光学フィルタおよび近赤外線カットフィルタ | |
TWI388529B (zh) | 吸收式近紅外線濾光玻璃 | |
JP6954400B2 (ja) | 光学フィルターおよび光学フィルターを用いた撮像素子 | |
WO2024048513A1 (ja) | 光学フィルタ | |
JP2016042196A (ja) | 光吸収体及びこれを用いた撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191224 |