WO2020125317A1 - 一种投影屏幕及激光投影装置 - Google Patents

一种投影屏幕及激光投影装置 Download PDF

Info

Publication number
WO2020125317A1
WO2020125317A1 PCT/CN2019/120177 CN2019120177W WO2020125317A1 WO 2020125317 A1 WO2020125317 A1 WO 2020125317A1 CN 2019120177 W CN2019120177 W CN 2019120177W WO 2020125317 A1 WO2020125317 A1 WO 2020125317A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
projection screen
support
layer
projection
Prior art date
Application number
PCT/CN2019/120177
Other languages
English (en)
French (fr)
Inventor
李建军
陈波
赵飞
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811558083.0A external-priority patent/CN111338172B/zh
Priority claimed from CN201811558074.1A external-priority patent/CN111338171A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020125317A1 publication Critical patent/WO2020125317A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens

Definitions

  • the present application relates to the field of display technology, in particular to a projection screen and a laser projection device.
  • the laser projection device Since the laser projection device has small electromagnetic radiation, realistic imaging effect, short projection distance, and easy to realize large screen projection, the laser projection device is increasingly becoming a popular image display device for users.
  • a projection screen is provided for the laser projection device, and the image provided by the laser projection device is projected onto the projection screen.
  • the projection screen uses an optical film, which can project from the laser The light of the device is directionally reflected to the human eye, and at the same time reflects the ambient light from other directions to other directions, thereby improving the brightness of the projected image and minimizing the impact of external ambient light on the projected image.
  • Fresnel optical screen is a projection optical screen that is more commonly used at present. It has good resistance to ambient light and gain value, and the projected picture has higher brightness and greater contrast.
  • FIG. 1 shows a schematic structural diagram of a front projection Fresnel screen.
  • the Fresnel optical screen 100 along the incident direction of the projected light beam, the Fresnel optical screen 100 includes a substrate layer 11, a diffusion layer 12, a uniform dielectric layer 13, and Fresnel that are sequentially stacked The lens layer 14 and the reflective layer 15. Among them, the positions of the diffusion layer 11 and the base material layer 12 can be reversed.
  • the uniform dielectric layer 13 can be omitted, but by providing a uniform dielectric layer, for example, using the same material as the base material layer, the effect of fresnel speckle reduction can be improved.
  • the thickness of the Fresnel optical screen is usually between 0.5 and 2 mm.
  • the light beam emitted by the ultra-short throw projection device 200 is projected obliquely upward onto the Fresnel optical screen 100.
  • the projected light beam is first transmitted through the substrate layer 11, enters the diffusion layer 12, diffuses, and then enters uniform
  • the uniform dielectric layer is a uniform light-transmitting medium, such as the same material as the substrate layer 401.
  • the light beam is transmitted through the uniform medium layer 13 and enters the Fresnel lens layer 14.
  • the Fresnel lens layer 14 converges and collimates the light beam.
  • the collimated light beam is reflected by the reflection layer 15 and then folds back through the Fresnel lens 14, uniform
  • the dielectric layer 13, the diffusion layer 12, and the base material layer 11 are incident on the user's eyes, and the user views the imaging screen.
  • the optical layer part of the optical film of the projection screen is usually made of PV or PET material, and has only a certain degree of rigidity and toughness.
  • the structure needs to be used to fix and support each optical film to ensure that it is not easily deformed by external influences (such as temperature changes, collision of external objects, etc.) during the display of the image, and as long as possible during long-term use To maintain a good flatness to present a high-quality projection picture.
  • the purpose of the present application is to provide a projection screen and a laser projection device for improving the stability of the performance of an optical projection screen, so as to better ensure the imaging effect of the projection screen.
  • the first aspect of the present application provides a projection screen for receiving an image beam and presenting a projection screen.
  • the projection screen includes:
  • the first diaphragm is fixedly installed on the front of the support backplane and is used to receive the image beam and reflect the image beam.
  • the second diaphragm is fixed on the back of the support backplane
  • the support backboard is used to fix and support the first diaphragm and the second diaphragm by bonding, wherein the second diaphragm is not used for imaging by receiving the image beam.
  • the projection screen provided by the present application is provided with a first diaphragm and a second diaphragm at the same time, wherein the first diaphragm is fixedly arranged on the front of the support backplane, and the second diaphragm is fixedly arranged on the back of the support backplane ,
  • the first diaphragm and the second diaphragm can be located on both sides of the support backplate; on this basis, when the first diaphragm and the second diaphragm are deformed by the ambient temperature, the edge is perpendicular to the support back
  • the direction of the plate, the force applied by the first diaphragm to the support backplate is opposite to the direction of the force applied by the second diaphragm to the support backplate, and the difference in magnitude is within a preset range.
  • the deformation force of the two backing plates can be canceled to a certain extent, which helps to reduce the degree of deformation of the backing plate, thereby reducing the projection screen.
  • the degree of bending caused by temperature improves the stability of the performance of the entire projection screen and better guarantees the imaging effect of the projection screen.
  • a second aspect of the present application provides a laser projection device.
  • the laser projection device includes: a projection host, and a projection screen as described above.
  • the laser projection device provided by the present application adopts the projection screen of the solution of the above embodiment, which can reduce the overall deformation and flatness change of the projection screen by reducing the deformation of the supporting back plate of the optical film during use, thereby enhancing the performance of the projection screen
  • the stability of the system can present a better projection imaging effect.
  • FIG. 1 is a schematic structural diagram of a Fresnel screen for projection in the related art
  • FIG. 2 is a schematic diagram of a supporting structure of a projection screen in the related art
  • FIG. 3 is a schematic diagram of an explosion of a projection screen from a first viewing angle in some embodiments of this application;
  • FIG. 4 is a schematic diagram of an explosion of a projection screen from a second viewing angle in some embodiments of this application;
  • FIG. 5 is a front view of a projection screen in some embodiments of this application.
  • FIG. 6 is a partially enlarged schematic view of the area I in FIG. 5;
  • FIG. 7 is a cross-sectional view along A-A direction in FIG. 5;
  • FIG. 8 is a partially enlarged schematic view of area II in FIG. 7;
  • FIG. 9 is a perspective schematic view of a projection screen in a first viewing angle in some embodiments of this application.
  • FIG. 10 is a partially enlarged schematic view of area III in FIG. 9;
  • FIG. 11 is a rear view of a projection screen in some embodiments of this application.
  • FIG. 12 is a perspective schematic view of a projection screen from a second viewing angle in some embodiments of this application.
  • FIG. 13 is a partially enlarged schematic view of the area IV in FIG. 12;
  • FIG. 14 is a perspective schematic view of a wall-mounted bracket in some embodiments of the present application.
  • 15 is a schematic diagram of the deformation of the projection screen when the optical film of the projection optical screen in the related art expands;
  • 16 is a schematic diagram of the deformation of the projection screen when the optical film in the related art contracts
  • 17 is a schematic diagram of a first structure of a projection screen in some embodiments of this application.
  • 18 is a schematic diagram of the deformation of the projection screen when the optical diaphragm expands in some embodiments of the present application;
  • FIG. 19 and FIG. 18 are schematic diagrams of the force of the support backplane perpendicular to the direction of the support backplane
  • 20 is a schematic diagram of the deformation of the projection screen when the optical film contracts in some embodiments of the present application.
  • Figure 21 is a schematic diagram of the force of the support backplane perpendicular to the direction of the support backplane
  • 22 is a schematic structural diagram of a projection screen in some embodiments of this application.
  • FIG. 23 is a schematic structural diagram of a laser projection device in some embodiments of this application.
  • the side of the optical film facing away from the user (the side of the light receiving surface of the optical film is the user side )
  • a honeycomb aluminum plate is glued to support the optical diaphragm.
  • the optical film 1 is disposed on the supporting back plate 2.
  • the optical film 1 cannot be punched, and the optical film 1 is usually fixed to the back plate 2 by means of gluing.
  • the structure of the honeycomb aluminum plate includes: a first panel and a second panel disposed oppositely, and a honeycomb structure disposed between the first panel and the second panel, wherein the first The panel, the second panel, and the honeycomb structure are made of aluminum alloy.
  • the existing honeycomb aluminum plate is relatively expensive; this leads to a high cost of the projection screen when the honeycomb aluminum plate is used as a back plate to support the optical film.
  • the size of the honeycomb aluminum plate is the same as the size of the optical film, which will be relatively large, such as 80 inches, 100 inches or even larger.
  • the size of the honeycomb aluminum plate is large, its surface flatness is difficult to be effectively guaranteed during the processing, resulting in poor surface flatness of the honeycomb aluminum plate.
  • the optical film After the optical film is bonded to the honeycomb aluminum plate, the optical film It will also be deformed, which will affect the imaging effect of the projection screen.
  • the thermal expansion coefficient of the honeycomb aluminum plate is high, and the deformation of the honeycomb aluminum plate is large under different temperature conditions; due to the projection screen during production inspection, transportation, and daily use, the use environment may be Large differences (for example: when conducting extreme temperature tests, different seasons in the same area, or in different areas with different climates, the ambient temperature will change greatly), which will easily lead to the process of making and using projection screens In this case, the deformation of the honeycomb aluminum plate is too large to affect the fixation between the honeycomb aluminum plate and the optical diaphragm, which in turn causes the optical parameters of the projection screen to be affected.
  • the surface energy of the material used to make the honeycomb aluminum plate is low, the adhesion ability of the honeycomb aluminum plate and the adhesive layer is poor, which leads to the easy opening of the projection screen and affects the service life of the projection screen.
  • the projection screen 100 includes: an optical film 1 and a supporting back plate 2 provided on one side of the optical film 1; The back plate 2 is bonded to the optical film 1, and the supporting back plate 2 is a tempered glass plate.
  • the projection screen 100 provided by the embodiment of the present application, by providing a support backboard 2 of tempered glass on one side of the optical film 1, and bonding the support backboard 2 to the optical film 1, the projection screen 100 can have The higher strength can effectively prevent the projection screen 100 from being deformed due to the influence of the outside world.
  • the projection screen 100 provided by the embodiments of the present application also has the following advantages:
  • the projection screen 100 provided by the embodiments of the present application has better resistance to deformation.
  • the cost of tempered glass is much lower than the cost of honeycomb aluminum plates, therefore, in the embodiment of the present application, by making the support back plate 2 a tempered glass plate, the cost of the projection screen 100 can be reduced, thereby helping to obtain the projection screen 100 universal. And because the tempered glass can be standardized, even in different manufacturers and different batches, it can produce tempered glass plates with the same specifications. Therefore, by making the support back plate 2 a tempered glass plate, it can be better Guarantees that the projection screen 100 has the same specifications.
  • the surface flatness of the tempered glass is less affected by the size, and its flatness is better than the honeycomb aluminum plate. Therefore, by making the support back plate 2 a tempered glass plate, the optical can be better guaranteed The flatness of the diaphragm ensures better imaging effect of the projection screen 100.
  • the support backboard 2 can have a small expansion coefficient (for example, 20 ⁇ 3° Under the environment of the environment, the linear expansion coefficient of the tempered glass plate is 3 ⁇ 10 -6 to 41 ⁇ 10 -6 ), which can effectively avoid the extreme temperature test of the projection screen 100 before the factory and the projection screen 100 During transportation and use, the optical parameters of the projection screen 100 are affected due to the excessive deformation of the support backplane 2.
  • the tempered glass has a high surface energy (typically, it can reach 250 to 500 dynes/cm), it is usually greater than the surface energy of the honeycomb aluminum plate, and, when the surface energy of the object is high, As shown in FIG. 8, the adhesive layer 3 can be more firmly attached to the surface of the object. Therefore, in the projection screen provided by the embodiment of the present application, the optical film 1 can be more firmly attached to the surface of the support backplane 2, thereby The optical film 1 can be better prevented from falling off from the supporting back plate 2, and thus the service life of the projection screen 100 can be improved.
  • the optical film 1 can be more firmly attached to the surface of the support backplane 2, thereby The optical film 1 can be better prevented from falling off from the supporting back plate 2, and thus the service life of the projection screen 100 can be improved.
  • the thickness of the honeycomb aluminum plate usually ranges from 10 mm to 100 mm, and in the embodiments of the present application, the strength of the tempered glass plate is higher than the strength of the back plate of the honeycomb aluminum plate Therefore, in the projection screen 100 provided by the embodiment of the present application, under the condition that the strength requirements required to support the optical film 1 are met, the support back plate 2 is made of tempered glass, and its thickness is less than that of the honeycomb aluminum plate in the related art. Thickness, which helps reduce the overall thickness of the projection screen 100.
  • the surface energy of the support backplane is 250 to 500 dyn/cm; moreover, in order to better avoid the size change of the support backplane due to temperature Larger, the linear expansion coefficient of the support backplane is 3 ⁇ 10 -6 to 41 ⁇ 10 -6 .
  • the thickness T1 of the support backplane 2 satisfies 2.5 mm ⁇ T1 ⁇ 5 mm, and the thickness T2 of the optical film 2 satisfies 0.3 mm ⁇ T2 ⁇ 2 mm; under this thickness condition, both The flatness and display effect of the projection screen 100 can be guaranteed, and the projection screen 100 can have a better display effect.
  • the thickness T1 of the supporting backboard 1 can be determined according to the area of the display surface of the projection screen 100. In a specific implementation, as shown in Table 1 below, when the display screen 100 has a diagonal length L of 120 inches, The thickness T1 of the support backboard 2 is 5 mm.
  • the thickness T1 of the support backboard 2 is 4 mm.
  • the thickness T1 of the support backboard 2 is 3 mm, and when the display surface diagonal length L of the projection screen 100 is less than or equal to 60 inches, the thickness T1 of the support backboard 2 is 2.5 mm.
  • the supporting back plate 2 is a toughened glass plate, which has good light transmittance, and can be provided on the side of the optical film 1 facing away from the projection device 200, and a light-absorbing coating is provided on the back side as a positive Cast screen to use. Alternatively, it may be disposed on the side of the optical film 1 facing the projection device 200, and transmits light as a light-transmitting layer before entering the optical film.
  • the support backplane 2 is disposed on the side of the optical film 1 away from the user. Specifically, the support backplane 2 is disposed near the reflective layer 15 in the optical film 1.
  • the reflective layer 14 may be a silver plating layer, an aluminum plating layer, etc., which is not limited herein.
  • the support backboard 2 is bonded to the optical film 1 through an adhesive layer 3, and the adhesive layer 3 may be a double-sided adhesive layer or a glue layer; when the adhesive layer 3 is a double-sided adhesive layer, the The double-sided adhesive layer may be a double-sided adhesive layer based on PE foam.
  • the glue layer 3 is a glue layer
  • the glue layer may be a silicone glue layer, a hot-melt adhesive layer, etc.
  • 3 is a double-sided adhesive layer, which can make the adhesive layer 3 offset the degree of deformation between the support backboard 2 and the optical film 1 to a certain extent when the temperature deformation of the support backboard 2 and the optical film 1 occurs
  • the resulting stress effectively prevents damage to the projection screen 100; by making the adhesive layer 3 a glue layer, it helps to reduce the thickness of the adhesive layer and thereby the thickness of the projection screen 100; of course, the material of the adhesive layer 3 is not limited to this.
  • the range of the thickness T3 of the adhesive layer 3 may satisfy 0.5 mm ⁇ T3 ⁇ 2 mm; in some embodiments, the thickness T3 of the adhesive layer 3 is 1 mm; by making the adhesive layer 3 have the above thickness This can help reduce the overall thickness of the projection screen 100 while ensuring the bonding performance of the bonding layer 3. Moreover, in order to better ensure the flatness of the optical film, the projection of the adhesive layer 3 on the support backplane 2 coincides with the projection of the optical film 1 on the support backplane 2.
  • the projection screen 100 is a front projection screen
  • the support backplane is disposed on the side of the optical film facing away from the projection device 200
  • the support backplane 2 further includes: a support backplane body, and a support backplane The coating on the main surface of the backplane.
  • the surface of the tempered glass backplane is also provided with a coating layer, which is used as a light-shielding layer or a light-absorbing layer; wherein, the light-shielding layer is provided on the side of the backboard body that faces away from the optical film 1, or Orient to the side of the optical film 1, or both sides can be provided.
  • the support backboard 2 is a tempered glass plate, and the tempered glass is a transparent material, which has a certain light transmission capacity; therefore, by providing a shading coating, external light can be prevented from The side facing away from the optical film 1 enters and penetrates the supporting back plate 2, thereby effectively avoiding that part of the external light has an adverse effect on image display.
  • the light-shielding layer may include a light-shielding coating layer coated on the surface of the support backboard body, or the light-shielding layer may include a light-shielding cloth adhered to the surface of the support backboard body.
  • a tempered glass back sheet is provided to support the optical film.
  • the tempered glass back sheet has good rigidity. When vertically suspended, it is not easy to curl and deform due to stress. It is not as good as the metal honeycomb aluminum plate with a larger expansion coefficient, so it can provide more stable support for the projection optical film during use.
  • the projection screen 100 further includes: a fixing frame 4 disposed on the side of the back plate 2 facing away from the optical film 1, the fixing frame 4 It is fixedly connected to the support backplane 2.
  • the fixing frame 4 may be a metal frame, for example, may be a stainless steel frame, an aluminum alloy frame, or other structural steel frames, which is not limited herein.
  • the fixing frame 4 includes: a fixing frame body 41 fixedly connected to the support backboard 2 and located on the fixing frame
  • the hook 42 on the side of the main body 41 facing away from the support backboard 2; in practical applications, a wall hanging bracket 5 can be provided on the wall.
  • the hook 42 may be detachably connected to the fixing frame body 41; alternatively, the hook 42 may also form an integrated structure with the fixing frame body 41 by stamping and forming, which is not limited herein.
  • the projection screen 100 further includes: a buffer frame 6 disposed on the side of the support backboard 2 facing away from the Fresnel diaphragm; the buffer frame 6 facing away from the support back
  • the distance from the surface of the board 2 to the supporting backboard 2 is greater than or equal to the distance from the surface of the fixing frame 4 away from the supporting backboard 2 to the supporting backboard 2.
  • the buffer frame 6 may be an integrated structure or an assembled structure.
  • the buffer frame 6 may be a foam buffer frame 6 or a buffer frame 6 of other materials, which is not limited herein. Moreover, in order to better ensure that the projection screen 100 shakes relative to the wall surface, the buffer frame 6 is disposed around the fixing frame 4 on the surface of the back plate 2 that faces away from the optical film 1.
  • the projection screen 100 further includes: a buffer layer disposed between the fixing frame 4 and the support backplane 2, and the fixing frame 4 is fixedly connected to the support backplane 2 through the buffer layer.
  • a buffer layer disposed between the fixing frame 4 and the support backplane 2
  • the fixing frame 4 is fixedly connected to the support backplane 2 through the buffer layer.
  • the projection screen 100 further includes: a decorative frame 7 disposed on the side of the optical film 1 facing away from the support back plate 2.
  • the decorative frame 7 is located on the optical film 1
  • the decorative frame 7 can improve the aesthetics of the projection screen 100, and at the same time help to avoid damage to the edges of the projection screen 100.
  • the decorative frame 7 and the optical film 1 are connected by means of pressure bonding, adhesion, etc., which is not limited herein.
  • the decorative frame 7 includes: a plurality of decorative strips 71, and the plurality of decorative strips 71 correspond to a plurality of sides of the Fresnel diaphragm; and, In order to shield the gap between two adjacent device strips, the decorative frame 7 further includes a plurality of connecting members 72 for connecting each adjacent two decorative strips 71.
  • the thermal expansion coefficient of the optical film is different from the thermal expansion coefficient of the supporting backboard.
  • the volume of the optical film changes more than The degree of volume change of the backing plate. Therefore, as shown in FIG. 15, when the optical film is thermally expanded, the surface of the supporting back plate connected to the optical film will receive the first expansion force F 1 away from the center of the projection screen; or, as shown in FIG. 16 When the optical film is contracted by cold, the surface of the supporting backplane connected to the optical film will be subjected to the first contraction force F 2 directed toward the center of the projection screen.
  • first expansion force F 1 or first contraction force F 2 The projection screen will be bent and deformed under the effect of the light, and even when the temperature returns to the normal temperature state, the optical diaphragm can be restored to the original state, but the support backplane is difficult to restore to the original state, which will also cause the projection screen The flatness is reduced.
  • the connection between the support backplane and the optical film may change. For example, the edge position is glued, which reduces the reliability of the optical film fixation and adversely affects the imaging effect of the projection screen.
  • an embodiment of the present application provides a projection screen 100.
  • the projection screen 100 is used to receive an image beam and present a projection screen.
  • the projection screen 100 includes: a first diaphragm 1, fixed It is arranged on the front of the support backplane 2 and is used to receive the irradiation of the image beam and reflect the image beam to form an image; the second diaphragm 10 is fixedly arranged on the back of the support backplane 2; the support backplane 2 is used for bonding
  • the first diaphragm 1 and the second diaphragm 10 are fixedly supported, wherein the second diaphragm 2 is not used to receive image beam imaging.
  • the supporting backboard 2 has a certain structural strength, and can play a fixed supporting role for the diaphragms arranged on both sides thereof.
  • the first diaphragm 1 may be the optical diaphragm structure described in the foregoing embodiments, such as the Fresnel optical layer structure shown in FIG. 1.
  • the second diaphragm 10 may be a uniform light-transmitting layer with a certain thickness.
  • the front surface of the support backplane 2 is the receiving side of the image beam; when the first diaphragm 1 and the second diaphragm 10 are deformed by the influence of the ambient temperature, the first diaphragm 1 is in a direction perpendicular to the support backplane 2
  • the force applied to the support back plate 2 is opposite to the force applied to the support back plate 2 by the second diaphragm 10, and the magnitude difference is within a preset range.
  • the coefficients of thermal expansion of the first diaphragm 1 and the second diaphragm 10 is ⁇ P satisfy -2 ⁇ 10 -6 mm / °C ⁇ P ⁇ 2 ⁇ 10 -6 mm / °C; and / or,
  • the difference ⁇ T between the thickness of the first diaphragm 1 and the thickness of the second diaphragm 10 satisfies ⁇ 0.5 mm ⁇ T ⁇ 0.5 mm.
  • the thermal expansion coefficient of the first diaphragm 1 and the thermal expansion coefficient of the second diaphragm 10 are equal, and the thickness of the first diaphragm 1 is equal to the thickness of the second diaphragm 10.
  • the linear expansion coefficient of the support backboard 2 is 3 ⁇ 10 -6 to 41 ⁇ 10 -6 .
  • the thickness T 1 of the first diaphragm satisfies 0.3mm ⁇ T 1 ⁇ 2mm; thickness T 2 of the second membrane 10 satisfies 0.3mm ⁇ T 2 ⁇ 2mm. In this way, it is advantageous to reduce the thickness of the projection screen 100 while ensuring the display effect of the projection screen 100.
  • the direction perpendicular to the support backplane 2 refers to the direction perpendicular to the plane of the support backplane 2, in practical applications, please refer to FIGS. 18 and 19, when the first diaphragm 1 When the second diaphragm 2 expands due to the influence of the ambient temperature, the first diaphragm 1 expands in the direction of D 1.
  • the first diaphragm 2 Since the first diaphragm 1 and the support backplane 2 are fixedly connected, the first diaphragm 2 is away from the support backplane The degree of expansion on the side of 2 is greater than the degree of expansion of the side of the first diaphragm 2 close to the support backboard 2, resulting in a tendency to buckle; at this time, in the direction perpendicular to the support backboard 2, the first diaphragm 1 The force applied by the support back plate 2 is Q 1 .
  • the second diaphragm 10 expands in the direction of D 1 ′, and the degree of expansion of the side of the second diaphragm 10 away from the support backplane 2 is greater than that of the side of the second diaphragm 10 close to the support backplane 2 At this time, in a direction perpendicular to the support backplane 2, the force exerted by the second diaphragm 10 on the support backplane 2 is Q 1 ′.
  • the force applied by the first diaphragm 1 to the support back plate 2 is opposite to the force applied by the second diaphragm 10 to the support back plate 2 and the magnitude difference is within a preset range, the first diaphragm
  • the forces of 1 and the second diaphragm 2 that cause the bending deformation of the support backboard 2 can cancel each other to a certain extent, thereby effectively reducing the degree (or probability) of the support backboard 2 bending.
  • the first diaphragm 1 and the second diaphragm 2 shrink due to temperature
  • the first diaphragm 1 shrinks in the direction of D 2 due to the first diaphragm 1 and the supporting back plate 2
  • the degree of shrinkage of the side of the first diaphragm 2 away from the support back plate 2 is greater than the degree of contraction of the side of the first diaphragm 2 close to the support back plate 2, resulting in a tendency of bending deformation
  • the force applied by the first diaphragm 1 to the support backplane 2 is perpendicular to the direction of the support backplane 2 Q 2 .
  • the second diaphragm 10 shrinks in the direction of D 2 ′, and the degree of shrinkage of the second diaphragm 10 on the side away from the support backboard 2 is greater than that on the side of the second diaphragm 10 near the support backboard 2 At this time, in a direction perpendicular to the support backplane 2, the force exerted by the second diaphragm 10 on the support backplane 2 is Q 2 ′.
  • the force applied by the first diaphragm 1 to the support back plate 2 is opposite to the force applied by the second diaphragm 10 to the support back plate 2 and the magnitude difference is within a preset range, the first diaphragm
  • the forces of 1 and the second diaphragm 2 that cause the bending deformation of the support backboard 2 can cancel each other to a certain extent, thereby effectively reducing the degree (or probability) of the support backboard 2 bending.
  • the first diaphragm 1 and the second diaphragm 10 are located on both sides of the support backboard 2; on this basis, when the first diaphragm 1 and the second diaphragm 10 are deformed by the ambient temperature, the vertical In the direction of supporting the backplane 2, the force applied by the first diaphragm 1 to the support backplane 2 is opposite to the direction of the force applied by the second diaphragm 10 to the support backplane 2, and the magnitude difference is within a preset range Therefore, when the first diaphragm 1 and the second diaphragm 10 are deformed by temperature, the bending deformation force generated by the two on the supporting back plate 2 can be distributed in two opposite directions The degrees cancel each other, which helps to reduce the degree of deformation of the
  • the above-mentioned preset range may include a range in which the projection screen is deformed by temperature under an acceptable level, so that the impact on the image display when the projection screen 100 is deformed is determined by national standards or industry practices.
  • it can be set according to the accuracy requirements of the product. For example, the back plate along a direction perpendicular to the support 2, the first diaphragm 1 is applied to the biasing force F a supporter 2 and the second membrane 10 is applied to the biasing force F B supporter 2 is bonded resultant force F F a size smaller than the size; or, F b ⁇ 2F a.
  • the force applied by the first diaphragm to the support backplane is opposite to the direction of the force applied by the second diaphragm to the support backplane, and the magnitude difference is within a preset range
  • the difference between the thermal expansion coefficients of the first diaphragm 1 and the second diaphragm 10 is within the first preset range
  • the thickness difference between the first diaphragm 1 and the second diaphragm 10 is within the second preset range.
  • the first diaphragm 1 The orthographic projection on the support backplane 2 coincides with the orthographic projection of the second diaphragm 10 on the support backplane 2.
  • the supporter 2 is a glass backplane; in order to avoid the overall thickness of the projection screen 100 is too thick, the thickness T 5 of the supporter 2 meet 2.5mm ⁇ T 5 ⁇ 5mm.
  • the optics are usually mainly made of resin materials, in order to facilitate the thermal expansion coefficient of the second diaphragm 10 to be close to that of the first diaphragm 1, in some embodiments of the present application, the second diaphragm 10 includes PET At least one of a diaphragm, an MS diaphragm, and a PMMA diaphragm.
  • the first diaphragm 1 may have the structure of a Fresnel optical screen as shown in FIG. 1, which includes a substrate layer 11, a diffusion layer 12, a Fresnel lens layer 13 and a reflection arranged in this order Layer 14, wherein in the above multiple layer structure, the base material layer 11 is usually located at the outermost side of the Fresnel optical screen, which plays a role of supporting and protecting the optical layer structure, and has better hardness than the optical film layer And thicker thickness.
  • the material of the second diaphragm 10 and the first diaphragm 1 may be selected
  • the material of the substrate layer 11 in the same is the same, so that under the same environmental conditions, the expansion coefficient of the second diaphragm 10 will be relatively close to the first diaphragm 1, and the size of the support backplate 2 can be applied from the opposite direction Of force.
  • the base material layer 11 When the first diaphragm 1 is exposed to light as the optical diaphragm of the projection screen, in the embodiment of the present application, by providing the base material layer 11, it helps to improve the strength of the first diaphragm 1 itself; The coefficient of thermal expansion is also mainly affected by the base material layer 11. Therefore, by making the material of the second diaphragm 10 the same as that of the base material layer 11, it is helpful to meet the performance requirements of the second diaphragm 10 while simplifying The manufacturing process of the second diaphragm 10.
  • the base material layer 11 in the first diaphragm 1 is usually formed by extrusion molding.
  • the base material layer 11 exists inside Certain retractive stress; in this way, when the projection screen 100 is made using the first diaphragm 1 including the substrate layer 11 and the projection screen 100 is affected by temperature, the retractive stress of the substrate layer 11 may be released, resulting in the first A diaphragm 1 shrinks; the support backboard 2 usually does not undergo stress shrinkage, which also causes the projection screen 100 to bend.
  • this problem is effectively solved by making the material of the second diaphragm 10 and the material of the base material layer 11 the same. Specifically, in some embodiments of the present application, the second diaphragm 10 is extruded.
  • a protective layer may be further provided on the outer side of the base material layer 11 on the side of the first diaphragm 1 facing away from the support back plate 2.
  • the first diaphragm 1 and the supporting back plate 2 and the second diaphragm 10 and the supporting back plate 2 are respectively connected, in order to better ensure the first diaphragm 1 and the second diaphragm
  • the structure of 10 is complete, to avoid damage to the first diaphragm 1 and the second diaphragm 10, please refer to FIG. 22, in some embodiments of the present application, the first diaphragm 1 is bonded to the support back plate 2, the second diaphragm The sheet 10 is bonded to the support backboard 2.
  • the projection screen 100 may include a first adhesive layer 31 for bonding the first diaphragm 1 and the support backplane 2 and a second adhesive for bonding the second diaphragm 10 and the support backplane 2 Connection layer 32;
  • the first adhesive layer 31 may be a double-sided adhesive layer and/or glue adhesive layer;
  • the second adhesive layer 32 may also be a double-sided adhesive layer and/or glue adhesive layer; wherein
  • the first adhesive layer 31 and/or the second adhesive layer 32 are double-sided adhesive layers, the force exerted by the first membrane 1 or the second membrane 10 on the supporting backboard 2 can be better buffered Therefore, it helps to better avoid bending deformation of the projection screen 100;
  • the first adhesive layer 31 and/or the second adhesive layer 32 is a glue adhesive layer, it helps to reduce the thickness of the projection screen 100.
  • the double-sided adhesive bonding layer may include a double-sided adhesive bonding layer of PE foam substrate, a double-sided adhesive bonding layer of a PET substrate, and the adhesive bonding layer may include a hot-melt adhesive bonding layer 1.
  • Silicone adhesive layer moreover, in the embodiment of the present application, the thickness T 3 of the first adhesive layer 31 may satisfy 0.5 mm ⁇ T 3 ⁇ 10 mm, and the thickness T 4 of the second adhesive layer 32 may satisfy 0.5 mm ⁇ T 4 ⁇ 10mm.
  • the surface energy of the supporting backplane is 250-500 dyn/cm, which can provide strong adhesive adhesion.
  • the orthographic projection of the first adhesive layer 31 on the surface of the support backplane 2 coincides with the orthographic projection of the first diaphragm 1 on the support backplane 2; the second bonding The orthographic projection of the layer 32 on the support backplane 2 coincides with the orthographic projection of the second diaphragm 10 on the support backplane 2. In this way, it helps to improve the uniformity of the force between the first diaphragm 1 and the support back plate 2 and between the second diaphragm 10 and the support back plate 2.
  • the first adhesive layer 31 can completely cover the first diaphragm
  • the area where 1 is located is helpful to avoid the wrinkling of the first diaphragm 1 due to the gap area between the first diaphragm 1 and the support backboard 2, thereby helping to ensure the flatness of the first diaphragm 1.
  • first diaphragm 1 and the second diaphragm 10 and the support back plate 2 have the same size.
  • the projection screen includes a first optical film for projection imaging and a support backplane, which may be made of tempered glass.
  • the tempered glass material has better rigidity and exhibits better sag during vertical suspension, which can provide a support surface with good flatness consistency for the optical film, which is conducive to maintaining the flatness of the optical film.
  • the thickness of the tempered glass can be selected to be thin, which is conducive to achieving a thin projection screen structure.
  • the second diaphragm on the back of the tempered glass support backplane, that is, the side away from the optical film for projection imaging.
  • the second diaphragm The material is the same as the material of the supporting substrate layer in the optical film, or a material close to the expansion coefficient of the optical film for projection imaging is selected, so that in the same environment, although the expansion coefficient of the tempered glass back plate It is different from the optical film used for imaging.
  • it can receive almost equal force in the opposite direction, which reduces the deformation of the tempered glass support backplane, and keeps the flatness of the glass backplane to a greater extent. Due to the influence of its own deformation on the flatness of the optical diaphragm for projection imaging, the stability of the optical diaphragm for projection imaging during use is improved.
  • the thickness of the tempered glass back plate can be selected to be smaller, which can meet the support requirements for the optical film. Therefore, although the second film is provided on the other side of the back of the support as in the above embodiment, the thickness is increased, but Since the thickness of the second diaphragm and the thickness of the optical diaphragm are both small, the overall thickness of the projection screen provided in the embodiments of the present application is around 10 mm, compared with the solution where the thickness of the back plate is about 12 mm when using a honeycomb aluminum plate. It can still achieve a thinner projection screen effect, and it has obvious improvements in terms of performance and appearance.
  • the optical diaphragm for projection imaging on one side of the support backplane, and on the other side with the same expansion coefficient as the optical diaphragm for projection imaging or
  • the similar second diaphragm can make the two sides of the support backboard receive the opposite direction when the ambient temperature changes, but a pair of equivalent force and reaction force to prevent the support backboard from deforming in one direction, which is conducive to the long-term use process
  • the middle support backplane itself maintains a good flatness, and the optical diaphragm is fixed on it. In this way, the flatness of the optical diaphragm for projection imaging is also guaranteed, especially for ultra-short throw projection imaging, small flatness changes It will also cause the distortion of the projected image to be easily observed.
  • the above-mentioned supporting backplane can also be a traditional honeycomb aluminum plate, but its processability and thickness are slightly inferior to tempered glass, but it can also achieve the flatness of the projection screen optical film in application The purpose of good stability.
  • the second diaphragm is not used for projection imaging
  • the first diaphragm is used to receive the image beam for imaging and reflect the image beam out of the first diaphragm so as to enter the user's eyes.
  • a light shielding layer or a light absorbing layer may be provided on the surface of the support backplane, and the light shielding layer is used to absorb the light transmitted through the reflective layer. It can be a coating or a light-shielding cloth bonded to the surface supporting the backplane.
  • the supporting back plate is a honeycomb aluminum plate
  • the light-shielding layer is usually provided on the front surface where it is bonded to the first diaphragm.
  • the supporting backing plate is tempered glass, the supporting backing plate itself has translucency, and the shading layer can be provided on the front or back of the supporting backing plate, that is, it can be provided on the bonding surface of the first diaphragm or the second diaphragm.
  • the light shielding layer is provided on the surface of the second diaphragm, specifically, the surface where the second diaphragm is bonded to the support backplane, or the second diaphragm is away from the other side of the support backplane, or, the first The second diaphragm itself can be made of black material.
  • Fresnel optical film is used as an example for description.
  • other optical film types such as black screens, which can provide different types of traditional white plastic screens.
  • Different projection imaging effects are suitable for ultra-short throw projection imaging, and the other optical film types described above can be similarly applied to the overall solution of the projection screen described in the embodiments of the present application.
  • the layer structure of the Fresnel optical film can also have other lamination combinations, as long as it can achieve the purpose of reflecting and imaging light.
  • an embodiment of the present application further provides a laser projection device.
  • the laser projection device includes: a projection host 200, and the projection screen 100 in the embodiment described above.
  • the projection host 200 is an ultra-short throw projection device, which is used to set close to the projection screen 100 and project the image beam onto the projection screen 100 diagonally upward.
  • the projection host 200 may use a pure three-color laser light source, or a light source composed of a laser light source and a fluorescent wheel.
  • the projection host 200 may also include a DLP projection light machine system and an ultra-short throw projection lens.
  • the projection screen 100 is a front projection screen.
  • the projection screen 100 can be hung on the wall or configured at a preset distance from the projection host to achieve a smaller projection ratio of the projection system, for example, less than 0.25, which can achieve a closer distance between the projection host and the projection screen
  • the laser projection device may be an ultra-short-throw projection TV to achieve home use.
  • the laser projection device provided by the embodiment of the present application adopts the projection screen 100 of the solution of the above embodiment, and also has the effects of multiple embodiments of the above projection screen, which can be reduced by reducing the deformation of the support backboard during use Ensure the flatness of the projection optical film and improve the stability of the projection screen performance, thereby presenting a more stable projection imaging effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种投影屏幕(100),包括:第一膜片(1),固定设置在支撑背板(2)的正面,用于接收影像光束的照射并将所述影像光束反射成像;第二膜片(10),固定设置在支撑背板(2)的背面;所述支撑背板(2),用于通过粘接方式固定支撑所述第一膜片(1)和所述第二膜片(2),所述第二膜片(2)不用于接收影像光束成像。还提供一种激光投影装置。

Description

一种投影屏幕及激光投影装置
本申请要求于2018年12月19日提交中国专利局、申请号为201811558083.0,申请名称为“一种投影屏幕”,以及,2018年12月19日提交中国专利局、申请号为2018115580874.1,申请名称为“一种投影屏幕及激光投影装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种投影屏幕及激光投影装置。
背景技术
由于激光投影装置的电磁辐射小、成像效果逼真、投影距离短、容易实现大屏幕投放,因此,激光投影装置日益成为受到用户欢迎的图像显示设备。
为了保证激光投影装置具有较好的图像显示效果,在一些相关技术中,为激光投影装置配设投影屏幕,将激光投影装置提供的图像投射到投影屏幕上。而且,为了降低外界环境光对投影屏幕上的投影图像造成影响,使用户能够在白天的时候也可以看到非常清晰的投影图像,投影屏幕使用光学膜片,该光学膜片能够将来自激光投影装置的光线定向反射至人眼,同时将来自其他方向的环境光反射到其他方向,从而提高投影图像的亮度,最大限度的降低外界环境光对投影图像造成的影响。
菲涅尔光学屏是目前较为常用的一种投影光学屏,其具有良好的抗环境光和增益值,投影出的画面亮度较高,对比度较大。
示例性地,图1示出了一种正投菲涅尔屏幕的结构示意图。请参阅图1,在本申请的一些实施例中,沿着投影光束的入射方向,菲涅尔光学屏幕100包括依次层叠设置的基材层11、扩散层12、均匀介质层13、菲涅尔透镜层14以及反射层15。其中,扩散层11和基材层12的位置可以调换。均匀介质 层13可以省略,但通过设置均匀介质层,比如采用与基材层相同的材质,可以提高菲涅尔光学屏消散斑的效果。菲涅尔光学屏的厚度通常在0.5~2mm之间。超短焦投影设备200发出的光束斜向上投影至菲涅尔光学屏100上,如图1所示的光路,投影光束首先透射通过基材层11,进入扩散层12,进行扩散,再进入均匀介质层13,均匀介质层为均匀透光介质,比如与基材层401材质相同。光束透射通过均匀介质层13,入射菲涅尔透镜层14,菲涅尔透镜层14将光束进行会聚准直,准直后的光束被反射层15反射后折返再次通过菲涅尔透镜14、均匀介质层13,扩散层12,以及基材层11,并入射至用户眼中,用户观看到成像画面。
投影屏幕的光学膜片的光学层部分通常是由PV或PET材质制成的,仅具有一定程度的刚度和韧性。需要使用结构将其各光学膜片进行固定支撑,以保证在显示图像的过程中,不易受到外界影响(例如温度变化、外界物体碰撞等)而发生变形,以及在长期的使用过程中,尽可能的保持较好的平整度,以呈现高质量的投影画面。
发明内容
本申请的目的在于提供一种投影屏幕及激光投影装置,用于提高光学投影屏幕性能的稳定性,从而更好的保证投影屏幕的成像效果。
为了实现上述目的,本申请提供如下技术方案:
本申请的第一方面提供了一种投影屏幕,用于接收影像光束并呈现投影画面,该投影屏幕包括:
第一膜片,固定设置在支撑背板的正面,用于接收影像光束的照射并将影像光束反射成像,
第二膜片,固定设置在支撑背板的背面;
支撑背板,用于通过粘接方式固定支撑第一膜片和第二膜片,其中,第二膜片不用于接收影像光束成像。
本申请提供的投影屏幕,同时设置有第一膜片和第二膜片,其中,通过 使第一膜片固定设置在支撑背板的正面、并使第二膜片固定设置在支撑背板背面,可以使第一膜片和第二膜片分别位于支撑背板的两侧;在此基础上,由于当第一膜片与第二膜片受环境温度影响发生变形时,沿垂直于支撑背板的方向,第一膜片施加给支撑背板的作用力与第二膜片施加给支撑背板的作用力方向相反、且大小差值在预设范围之内,因此,当第一膜片和第二膜片受温度影响发生变形时,可以使二者对支撑背板的产生的形变力在一定程度上相互抵消,从而有助于降低支撑背板形变的程度,进而降低了投影屏幕受温度影响而弯曲的程度,提高了整个投影屏幕性能的稳定性,更好的保证投影屏幕的成像效果。
本申请的第二方面提供了一种激光投影装置,该激光投影装置包括:投影主机,以及如上所述的投影屏幕。
本申请提供的激光投影装置采用上述实施例方案的投影屏幕,能够在使用过程中通过降低光学膜片的支撑背板的变形来降低投影屏幕整体的形变和平整度的变化,增强了投影屏幕性能的稳固性,能够呈现较佳的投影成像效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为相关技术中一种投影用菲涅尔屏幕的结构示意图;
图2为相关技术中一种投影屏幕的支撑结构示意图;
图3为本申请的一些实施例中第一视角下投影屏幕的爆炸示意图;
图4为本申请的一些实施例中第二视角下投影屏幕的爆炸示意图;
图5为本申请的一些实施例中投影屏幕的主视图;
图6为图5中区域I的局部放大示意图;
图7为图5中沿A‐A方向的剖视图;
图8为图7中区域II的局部放大示意图;
图9为本申请的一些实施例中第一视角下投影屏幕的立体示意图;
图10为图9中区域III的局部放大示意图;
图11为本申请的一些实施例中投影屏幕的后视图;
图12为本申请的一些实施例中第二视角下投影屏幕的立体示意图;
图13为图12中区域IV的局部放大示意图;
图14为本申请的一些实施例中壁挂支架的立体示意图。
图15为相关技术中投影光学屏光学膜片膨胀时投影屏幕的变形示意图;
图16为相关技术中光学膜片收缩时投影屏幕的变形示意图;
图17为本申请的一些实施例中投影屏幕的第一种结构示意图;
图18为本申请的一些实施例中光学膜片膨胀时投影屏幕的变形示意图;
图19图18中沿垂直于支撑背板方向的支撑背板受力示意图;
图20为本申请的一些实施例中光学膜片收缩时投影屏幕的变形示意图;
图21中沿垂直于支撑背板方向的支撑背板受力示意图;
图22为本申请的一些实施例中投影屏幕的结构示意图;
图23为本申请的一些实施例中激光投影装置的结构示意图;
附图标记:
100‐投影屏幕,               200‐投影装置,
1‐光学膜片,第一膜片         10‐第二膜片,
11‐基材层,12‐扩散层,13‐均匀介质层,
14‐菲涅尔透镜层,            15‐反射层,
2‐支撑背板,                 3‐粘接层,
31‐第一粘接层,              32‐第二粘接层,
4‐固定架,41‐固定架本体,   42‐挂钩,
5‐壁挂支架,                 6‐缓冲框,
7‐装饰边框,                 71‐装饰条,
72‐连接部件。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面将结合说明书附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
在一些相关技术中,为了对投影屏幕(光学膜片部分)进行固定支撑,提高投影光学屏幕的平整度,通过在光学膜片背离用户的一侧(光学膜片的受光面一侧为用户侧)粘设蜂窝铝板,来支撑光学膜片。如图1‐2所示,光学膜片1设置于支撑背板2上。为了保证光学成像效果,光学膜片1不能进行打孔,光学膜片1通常通过胶粘方式与背板2实现固定。
当支撑背板2为蜂窝铝板结构时,该蜂窝铝板的结构包括:相对设置的第一面板和第二面板、以及设置在第一面板和第二面板之间的蜂窝状结构,其中,第一面板、第二面板、以及蜂窝状结构均为铝合金材质。
但是,由于蜂窝铝板的制作工艺比较复杂,因此现有的蜂窝铝板造价较高;这导致在利用蜂窝铝板作为背板支撑光学膜片时,投影屏幕的造价较高。
为了满足支撑光学膜片的目的,蜂窝铝板的尺寸与光学膜片的尺寸一致,会比较大,比如80寸,100寸甚至更大。而当蜂窝铝板的尺寸较大时,其表面平整度难以在加工过程中得到有效保证,导致蜂窝铝板的表面平整度较差,这样,当光学膜片粘接在蜂窝铝板上后,光学膜片也会随之变形,从而影响投影屏幕的成像效果。
并且,蜂窝铝板的热膨胀系数较高,在不同的温度条件下,蜂窝铝板的形变量较大;由于投影屏幕在生产检测过程中、运输过程中、以及日常使用过程中,使用环境可能会存在较大的差别(例如:在进行极限温度测试时、在同一地区的不同季节、或在具有不同气候的不同地区,环境温度都会产生 较大的变化),这样容易导致在制作和使用投影屏幕的过程中,由于蜂窝铝板的形变量太大而影响蜂窝铝板与光学膜片之间的固定,进而导致投影屏幕的光学参数受到影响。
并且,由于用于制作蜂窝铝板的材料的表面能较低,因此,蜂窝铝板与粘接层的附着能力较差,这样导致投影屏幕容易开胶,影响了投影屏幕的使用寿命。
可见,上述投影屏幕在制作、使用和运输过程中,存在固定稳定性差,平整程度难以保证等问题。
本申请一实施例提供了一种投影屏幕100,请参阅图1~图5,该投影屏幕100包括:光学膜片1,以及设置在光学膜片1一侧的支撑背板2;其中,支撑背板2与光学膜片1粘接,支撑背板2为钢化玻璃板。
在本申请实施例提供的投影屏幕100中,通过在光学膜片1的一侧设置钢化玻璃的支撑背板2,并使支撑背板2与光学膜片1粘接,可以使投影屏幕100具有较高的强度,从而可以有效避免投影屏幕100由于受到外界的影响而发生变形。
与其他相关技术相比,本申请实施例提供的投影屏幕100,还具有以下优点:
在本申请实施例中,由于钢化玻璃板的硬度高于蜂窝铝板的硬度,因此,与相关技术中的投影屏幕100相比,本申请实施例提供的投影屏幕100的抗变形能力更好。
由于钢化玻璃的造价远低于蜂窝铝板的造价,因此,在本申请实施例中,通过使支撑背板2为钢化玻璃板,可以降低投影屏幕100的造价,从而有助于使投影屏幕100得到普及。并且由于钢化玻璃能够被标准化生产,即使是在厂家不同、批次不同的情况下,也能够生产出具有相同规格的钢化玻璃板,因此,通过使支撑背板2为钢化玻璃板,能够更好的保证投影屏幕100具有相同的规格。
以及,由于工艺制作水平,钢化玻璃的表面平整度受尺寸的影响较小, 而且其自身平整度也优于蜂窝铝板,因此,通过使支撑背板2为钢化玻璃板,可以更好的保证光学膜片的平整程度,从而较好的保证投影屏幕100的成像效果。
并且,由于钢化玻璃的膨胀系数较低,因此,在本申请实施例中,通过将钢化玻璃板作为支撑背板2,可以使支撑背板2具有较小的膨胀系数(例如,20±3°的环境下,钢化玻璃板的线性膨胀系数为3×10 ‐6~41×10 ‐6),从而可以有效避免在投影屏幕100出厂前对投影屏幕100进行极限温度测试时、以及在投影屏幕100的运输和使用过程中,由于支撑背板2的形变量过大而影响投影屏幕100的光学参数。
同时,由于钢化玻璃具有较高的表面能(通常情况下,可以达到250~500达因/cm),通常情况下,要大于蜂窝铝板的表面能,而且,当物体的表面能较高时,如图8所示,粘接层3能够更牢固的附着在物体表面,因此,在本申请实施例提供的投影屏幕中,光学膜片1能够更加牢固的附着在支撑背板2的表面,从而可以更好的避免光学膜片1从支撑背板2上脱落,进而能够提高投影屏幕100的使用寿命。
而且,在相关技术中,由于制作工艺的限制,蜂窝铝板的厚度通常范围通常在10mm~100mm之间,而在本申请的实施例中,由于钢化玻璃板的强度高于蜂窝铝板背板的强度,因此,在本申请的实施例提供的投影屏幕100中,在满足支撑光学膜片1所需的强度要求的条件下,支撑背板2采用钢化玻璃材质,其厚度小于相关技术中蜂窝铝板的厚度,这样有助于降低投影屏幕100的整体厚度。
具体实施时,为了使光学膜片与支撑背板较好地粘接,支撑背板的表面能为250~500dyn/cm;而且,为了较好地避免支撑背板由于受温度影响而导致尺寸变化较大,支撑背板的线性膨胀系数为3×10 ‐6~41×10 ‐6
在本申请的一些具体实施例中,支撑背板2的厚度T1的大小满足2.5mm≤T1≤5mm,光学膜片2的厚度T2满足为0.3mm≤T2≤2mm;在该厚度条件下,既可以保证投影屏幕100的平整度和显示效果,又可以使投影屏幕100 具有较好的显示效果。其中,支撑背板1的厚度T1可以根据投影屏幕100的显示面的面积来确定,具体实施时,如下述表1所示,当投影屏幕100的显示面对角线长度L为120英寸时,支撑背板2的厚度T1为5mm,当投影屏幕100的显示面对角线长度L为100英寸时,支撑背板2的厚度T1为4mm,当投影屏幕100的显示面对角线长度L为70英寸时,支撑背板2的厚度T1为3mm,当投影屏幕100的显示面对角线长度L小于或等于60英寸时,支撑背板2的厚度T1为2.5mm。
Figure PCTCN2019120177-appb-000001
表1
在本申请实施例中,支撑背板2为钢化玻璃板,本身具有良好的透光性,可以设置在光学膜片1的背离投影装置200的一侧,并在背面设置吸光涂层,作为正投屏幕使用。或者,也可以设置在光学膜片1的朝向投影装置200的一侧,作为一透光层透光后再入射至光学膜片。
在本申请的一些实施例中,支撑背板2设置于光学膜片1远离用户的一侧,具体地,支撑背板2靠近光学膜片1中的反射层15设置。在一些具体实施中,反射层14可以是银镀层、铝镀层等,此处不做限定。
请参阅图8,支撑背板2通过粘接层3与光学膜片1粘接,该粘接层3可以是双面胶层或胶水层;当粘接层3为双面胶层时,该双面胶层可以是以PE泡棉为基底的双面胶层,当粘接层3为胶水层时,该胶水层可以是硅胶胶水层、热熔胶层等;其中,通过使粘接层3为双面胶层,可以在支撑背板2与光学膜片1发生温度变形时,使粘接层3能够在一定程度上抵消支撑背板2与光学膜片1之间由于形变量不同而产生的应力,从而有效避免投影屏幕100 损坏;通过使粘接层3为胶水层,有助于降低粘接层的厚度,进而降低投影屏幕100的厚度;当然,粘接层3的材料不限于此。在本申请实施例中,粘接层3的厚度T3的范围可以满足0.5mm≤T3≤2mm;在一些实施例中,粘接层3的厚度T3为1mm;通过使粘接层3具有上述厚度,可以在保证粘接层3的粘接性能的同时,有助于降低投影屏幕100的整体厚度。而且,为了更好的保证光学膜片的平整程度,粘接层3在支撑背板2的投影与光学膜片1在支撑背板2的投影重合。
在本申请的一些实施例中,投影屏幕100为正投屏幕,支撑背板设置在光学膜片的背离投影装置200的一侧,支撑背板2还包括:支撑背板主体、以及设置在支撑背板主体表面的涂层。由于光学膜片中的反射层不能做到100%的光反射率,因此,为了防止从光学膜片中的反射层透射过的光束再次透过玻璃背板,形成杂散光,而对投影画面的对比度造成影响,在本实施例中,钢化玻璃背板的表面还设置有涂层,用作遮光层或吸光层;其中,遮光层设置在支撑背板主体的背离光学膜片1一侧,或者朝向光学膜片1一侧,或者,两侧都可以设置。在本实施例中,由于支撑背板2为钢化玻璃板,且钢化玻璃是一种透明材质,具有一定的透光能力;因此,通过设置遮光涂层,可以防止外界光线从支撑背板2的背离所述光学膜片1的一侧进入并穿透支撑背板2,进而有效避免该部分外界光线对图像显示造成不利影响。具体实施时,遮光层可以包括涂覆在支撑背板主体表面的遮光涂层,或者,遮光层可以包括粘设在支撑背板主体表面的遮光布。
在上述多个具体实施例中,提供了一种钢化玻璃背板用于支撑光学膜片,钢化玻璃背板具有较好的刚度,在竖直悬挂时,不容易因为应力发生卷曲应力变形,也不如金属制的蜂窝铝板具有较大的膨胀系数,因此在使用过程中对投影光学膜片可以提供更为稳定的支撑。
以及,请参阅图4、图11和图12,在本申请的一些实施例中,投影屏幕100还包括:设置在支撑背板2的背离光学膜片1一侧的固定架4,固定架4与支撑背板2固定连接。通过设置固定架4,可以便于将投影屏幕100固定在 墙上。具体实施时,固定架4可以是金属框架,例如,可以是不锈钢框架、铝合金框架、或者是其他结构钢框架,此处不做限定。
请继续参阅图12~图14,为了进一步简化投影屏幕100的固定过程,在本申请的一些实施例中,固定架4包括:与支撑背板2固定连接的固定架本体41,以及位于固定架本体41的背离支撑背板2一侧的挂钩42;在实际应用时,可以在墙壁上设置壁挂支架5,通过使挂钩42与壁挂支架5配合,能够将投影屏幕100挂装在墙壁上。挂钩42可以与固定架本体41可拆卸连接;或者,挂钩42也可以通过冲压成型等方式与固定架本体41形成一体结构,此处不做限定。
请参阅图4和图12,在本申请的一些实施例中,投影屏幕100还包括:设置在支撑背板2的背离菲涅尔膜片一侧的缓冲框6;缓冲框6的背离支撑背板2的表面到支撑背板2的距离,大于或等于固定架4的背离支撑背板2的表面到支撑背板2的距离。这样,可以在将投影屏幕100挂装在墙壁上后,更好的保证投影屏幕100与墙面平行,并可以更有效的避免投影屏幕100在受到外力按压后发生损坏。缓冲框6可以是一体结构,也可以是拼装结构,该缓冲框6可以是泡棉缓冲框6,也可以是其他材质的缓冲框6,此处不做限定。而且,为了更好的保证投影屏幕100相对于墙面发生晃动,缓冲框6在支撑背板2的背离光学膜片1的表面环绕固定架4设置。
在本申请的一些实施例中,投影屏幕100还包括:设置在固定架4与支撑背板2之间的缓冲层,固定架4通过缓冲层与支撑背板2固定连接。通过设置缓冲层,可以避免固定架4与支撑背板2发生刚性接触,从而有效避免支撑背板2和光学膜片1发生损坏。在具体实施时,由于泡棉层比较容易制备,而且具有较好的缓冲效果,在本申请的实施例中,缓冲层可以是泡棉层;当然,缓冲层可以是由其他材料形成的膜层,此处不做限定。
请参阅图5~图10,在本申请的一些实施例中,投影屏幕100还包括:设置在光学膜片1的背离支撑背板2一侧的装饰边框7,装饰边框7位于光学膜片1的边缘;通过设置装饰边框7,可提高投影屏幕100的美观程度,同时有 助于避免投影屏幕100的边缘发生破损。具体实施时,装饰边框7与光学膜片1通过压接、粘接等方式连接,此处不做限定。
为了简化装饰边框7的制作过程,在本申请的一些实施例中,装饰边框7包括:多个装饰条71,多个装饰条71与菲涅膜片的多个侧边一一对应;而且,为了遮挡相邻两个装置条之间的缝隙,装饰边框7还包括用于连接每相邻两个装饰条71的多个连接部件72。
在申请人在研发过程中还发现,由于材质的不同,光学膜片的热膨胀系数与支撑背板的热膨胀系数不同,当支撑背板受热膨胀或受冷收缩时,光学膜片的体积变化程度大于支撑背板的体积变化程度。因此,会发生如图15所示,当光学膜片受热膨胀时,支撑背板的与光学膜片相连的表面会受到背离投影屏幕中心的第一扩张力F 1;或者,如图16所示,当光学膜片受冷收缩时,支撑背板的与光学膜片相连的表面会受到指向投影屏幕中心的第一收缩力F 2,在上述第一扩张力F 1或第一收缩力F 2的作用下,投影屏幕会发生弯曲变形,而即便是温度回归常温状态时,光学膜片可以恢复到原始状态,但是支撑背板却很难恢复到原始状态,这也会造成一方面投影屏幕的平整度降低,另一方面支撑背板与光学膜片的连接关系可能发生变化,比如边缘位置开胶,降低了光学膜片固定的可靠性,对投影屏幕的成像效果也造成不利影响。
因此,本申请一实施例提供了一种投影屏幕100,在该投影屏幕100用于接收影像光束并呈现投影画面,请参阅图17的示例,该投影屏幕100包括:第一膜片1,固定设置在支撑背板2的正面,用于接收影像光束的照射并将影像光束反射成像;第二膜片10,固定设置在支撑背板2的背面;支撑背板2,用于通过粘接方式固定支撑第一膜片1和所述第二膜片10,其中,第二膜片2不用于接收影像光束成像。支撑背板2,具有一定的结构强度,能够对设置于其两侧的膜片起到固定支撑作用。其中,第一膜片1可以是前述实施例中所述的光学膜片结构,比如如图1所示的菲涅尔光学层结构。第二膜片10可以为具有一定厚度的均匀透光层。
其中,支撑背板2的正面为影像光束的接收侧;当第一膜片1与第二膜片10受环境温度影响发生变形时,沿垂直于支撑背板2的方向,第一膜片1施加给支撑背板2的作用力与第二膜片10施加给支撑背板2的作用力方向相反、且大小差值在预设范围之内。
在一种具体实施中,第一膜片1与第二膜片10的热膨胀系数差值ΔP满足‐2×10 ‐6mm/℃≤ΔP≤2×10 ‐6mm/℃;和/或,第一膜片1的厚度与第二膜片10的厚度差值ΔT满足‐0.5mm≤ΔT≤0.5mm。在该范围内,既可以有助于保证投影屏幕100的平整程度,又可以有助于将投影屏幕的制作难度控制在合理范围。其中,第一膜片1的热膨胀系数和第二膜片10的热膨胀系数相等,第一膜片1的厚度与第二膜片10的厚度相等。
以及,在一具体实施例中,支撑背板2的线性膨胀系数为3×10 ‐6~41×10 ‐6
在本申请的一些实施例中,第一膜片1的厚度T 1满足0.3mm≤T 1≤2mm;第二膜片10的厚度T 2满足0.3mm≤T 2≤2mm。这样,有利于在保证显示投影屏幕100的显示效果的同时,减小投影屏幕100的厚度。
在本申请的一具体实施中,垂直于支撑背板2的方向是指垂直于支撑背板2的板平面的方向,在实际应用时,请参阅图18和图19,当第一膜片1和第二膜片2受环境温度影响膨胀时,第一膜片1沿D 1方向膨胀,由于第一膜片1和支撑背板2固定连接,因此,第一膜片2的远离支撑背板2一侧的膨胀程度大于第一膜片2的靠近支撑背板2一侧的膨胀程度,从而产生弯曲变形的趋势;此时,沿垂直于支撑背板2的方向,第一膜片1向支撑背板2施加的力为Q 1。基于类似的原理,第二膜片10沿D 1'方向膨胀,且第二膜片10的远离支撑背板2一侧的膨胀程度大于第二膜片10的靠近支撑背板2一侧的膨胀程度;此时,沿垂直于支撑背板2的方向,第二膜片10向支撑背板2施加的力为Q 1'。由于第一膜片1施加给支撑背板2的作用力与第二膜片10施加给支撑背板2的作用力方向相反、且大小差值在预设范围之内,这样,第一膜片1和第二膜片2使支撑背板2发生弯曲变形的力能够在一定程度上 相互抵消,从而有效降低支撑背板2发生弯曲的程度(或概率)。
或者,请参阅图20和图21,当第一膜片1和第二膜片2受温度影响收缩时,第一膜片1沿D 2方向收缩,由于第一膜片1和支撑背板2固定连接,因此,第一膜片2的远离支撑背板2一侧的收缩程度大于第一膜片2的靠近支撑背板2一侧的收缩程度,从而产生弯曲变形的趋势;此时,沿垂直于支撑背板2的方向,第一膜片1向支撑背板2施加的力为Q 2。基于类似的原理,第二膜片10沿D 2'方向收缩,且第二膜片10的远离支撑背板2一侧的收缩程度大于第二膜片10的靠近支撑背板2一侧的收缩程度;此时,沿垂直于支撑背板2的方向,第二膜片10向支撑背板2施加的力为Q 2'。由于第一膜片1施加给支撑背板2的作用力与第二膜片10施加给支撑背板2的作用力方向相反、且大小差值在预设范围之内,这样,第一膜片1和第二膜片2使支撑背板2发生弯曲变形的力能够在一定程度上相互抵消,从而有效降低支撑背板2发生弯曲的程度(或概率)。
通过上述分析可知,本申请实施例提供的投影屏幕100中,通过使第一膜片1固定设置在支撑背板2的正面、并使第二膜片10固定设置在支撑背板2背面,可以使第一膜片1和第二膜片10分别位于支撑背板2的两侧;在此基础上,由于当第一膜片1和第二膜片10受环境温度影响发生变形时,沿垂直于支撑背板2的方向,第一膜片1施加给支撑背板2的作用力与第二膜片10施加给支撑背板2的作用力方向相反、且大小差值在预设范围之内,因此,在当第一膜片1和第二膜片10受温度影响发生变形时,可以使二者对支撑背板2的产生的弯曲形变力分布在相反的两个方向上,并在一定程度上相互抵消,从而有助于降低支撑背板2形变的程度,进而降低了投影屏幕100受温度影响而弯曲的程度,提高了整个投影屏幕100结构的稳定性,更好的保证投影屏幕100的成像效果。
具体实施时,上述预设范围可以包括使投影屏幕受温度影响发生变形的程度在可以接受的程度的范围,以使投影屏幕100发生变形时对图像显示所造成的影响在国家标准或行业惯例所要求的控制的范围内,具体可以根据产 品的精度要求来设定。例如,沿垂直于支撑背板2的方向,第一膜片1施加给支撑背板2的作用力F a与第二膜片10施加给支撑背板2的作用力F b的合力F 的大小小于F a的大小;或者,F b≤2F a
为了便于实现沿垂直于支撑背板2的方向,第一膜片施加给支撑背板的作用力与第二膜片施加给支撑背板的作用力方向相反、且大小差值在预设范围之内,第一膜片1和第二膜片10的热膨胀系数差值在第一预设范围之内,第一膜片1与第二膜片10的厚度差值在第二预设范围内。其中,通过使第一膜片1和第二膜片10的热膨胀系数差值在第一预设范围之内,可以在当第一膜片1和第二膜片10受温度影响发生变形时,使二者的形变量接近;通过使第一膜片1和第二膜片10的厚度差值在第二预设范围内,可以在第一膜片1和第二膜片10的形变量接近时,使二者对支撑背板2产生的作用力的大小接近。
为了更好的保证第一膜片1施加给支撑背板2的作用力与第二膜片10施加给支撑背板2的作用力平衡,在本申请的一些实施例中,第一膜片1在支撑背板2上的正投影与第二膜片10在支撑背板2上的正投影重合。
在本申请的实施例中,支撑背板2为钢化玻璃背板;为了避免投影屏幕100的整体厚度过厚,支撑背板2的厚度T 5可以满足2.5mm≤T 5≤5mm。而且,由于光学通常主要采用树脂材料制成,为了便于使第二膜片10的热膨胀系数与第一膜片1的热膨胀系数接近,在本申请的一些实施例中,第二膜片10包括PET膜片、MS膜片和PMMA膜片中的至少一种。
在本申请的一些实施例中,第一膜片1可以如图1所示的菲涅尔光学屏的结构,包括依次设置的基材层11、扩散层12、菲涅尔透镜层13和反射层14,其中在上述多个层结构中,基材层11通常位于菲涅尔光学屏的最外侧,起到支撑和保护光学层结构的作用,相比于光学膜层就有较好的硬度和较厚的厚度。在具体实施例中,为了使得第二膜片10与第一膜片1对支撑背板2的施加的变形力的大小尽可能相等,可选择第二膜片10的材质与第一膜片1 中的基材层11的材质相同,这样,在同等的环境条件下,第二膜片10的膨胀系数会相对接近第一膜片1,可以从相对的方向对支撑背板2施加大小相接近的力。
当第一膜片1作为投影屏幕的光学膜片接受光线照射时,在本申请的实施例中,通过设置基材层11,有助于提高第一膜片1自身的强度;光学膜片的热膨胀系数也会主要受基材层11影响,因此,通过使第二膜片10的材质与基材层11的材质相同,有助于在满足对第二膜片10的性能要求的同时,简化第二膜片10的制作工艺。
以及,在现阶段,由于制作工艺的限制,第一膜片1中的基材层11通常采用挤塑成型方式制作成型,采用该方式将基材层11制作成型后,基材层11内部存在一定的回缩应力;这样,当利用包含该基材层11的第一膜片1制作投影屏幕100、且投影屏幕100受到温度影响时,基材层11的回缩应力可能会释放,导致第一膜片1收缩;而支撑背板2通常不会发生应力收缩,这同样会导致投影屏幕100弯曲。而在本实施例中,通过使第二膜片10的材质与基材层11的材质相同有效解决这一问题。具体时,在本申请的一些实施例中,第二膜片10为挤塑成型。
当然,在本申请的实施例中,为了避免光学结构层发生磨损,在第一膜片1的背离支撑背板2的一侧,还可以在基材层11外侧再设置有保护层。
在本申请的实施例中,第一膜片1与支撑背板2、以及第二膜片10与支撑背板2分别进行连接时,为了更好的保证第一膜片1和第二膜片10的结构完整,避免第一膜片1和第二膜片10发生破损,请参阅图22,在本申请的一些实施例中,第一膜片1与支撑背板2粘接,第二膜片10与支撑背板2粘接。
具体实施时,投影屏幕100可以包括用于粘接第一膜片1与支撑背板2的第一粘接层31,以及用于粘接第二膜片10与支撑背板2的第二粘接层32;第一粘接层31可以为双面胶粘接层和/或胶水粘接层;第二粘接层32也可以为双面胶粘接层和/或胶水粘接层;其中,当第一粘接层31和/或第二粘接层32为双面胶层时,可以较好的缓冲第一膜片1或第二膜片10施加在支撑背板 2上的作用力,从而有助于更好的避免投影屏幕100弯曲变形;当第一粘接层31和/或第二粘接层32为胶水粘接层时,有助于降低投影屏幕100的厚度。
在本申请的实施例中,双面胶粘接层可以包括PE泡棉基材双面胶粘接层、PET基材双面胶粘接层,胶水粘接层可以包括热熔胶粘接层、硅胶粘接层;而且,在本申请的实施例中,第一粘接层31的厚度T 3可以满足0.5mm≤T 3≤10mm,第二粘接层32的厚度T 4可以满足0.5mm≤T 4≤10mm。
以及,在上述实施例中,支撑背板的表面能为250~500dyn/cm,可以提供较强的粘接附着力。
请参阅图10,在本申请的一些实施例中,第一粘接层31在支撑背板2表面的正投影与第一膜片1在支撑背板2上的正投影重合;第二粘接层32在支撑背板2上的正投影与第二膜片10在支撑背板2上的正投影重合。这样,有助于提高第一膜片1与支撑背板2之间、以及第二膜片10与支撑背板2之间力的均匀程度。且,通过使第一粘接层31在支撑背板2表面的正投影与第一膜片1在支撑背板2上的正投影重合,可以使第一粘接层31完全覆盖第一膜片1所在的区域,这样有利于避免由于第一膜片1与支撑背板2之间存在空隙区域而导致第一膜片1发生褶皱,从而有利于保证第一膜片1的平整程度。
以及,在一具体实施例中,第一膜片1和第二膜片10和支撑背板2的尺寸相同。
在上述一个及多个实施例中,投影屏幕包括投影成像用的第一光学膜片以及支撑背板,支撑背板可采用钢化玻璃材质。一方面,钢化玻璃材质具有较好的刚性,在进行垂直悬挂时表现出较好的垂度,从而能够为光学膜片提供平整度一致性好的支撑面,利于光学膜片平整度的保持。同时,在提供相同支撑强度的同时,钢化玻璃可以选取的厚度较薄,利于实现薄型化的投影屏幕结构。
以及,在申请人实施上述方案的同时,还提出了在钢化玻璃支撑背板的背面,即远离投影成像用光学膜片的一面,设置第二膜片,在具体实施中,第二膜片的材质与光学膜片中起支撑作用的基材层的材质相同,或者选择与 投影成像用光学膜片的膨胀系数相接近的材质,从而在相同的环境下,虽然钢化的玻璃背板的膨胀系数与成像用光学膜片的不同,但是,可以在相反的方向受到大小几乎相等的力,使钢化玻璃支撑背板发生的形变量减小,较大限度的保持玻璃背板的平面平整度,减小因自身形变对投影成像用光学膜片平整度带来的影响,提高了投影成像用光学膜片在使用过程中的稳定性。
由于钢化玻璃背板可以选择较小的厚度,即可达到对光学膜片的支撑要求,因此,虽然如上述实施例中,在支撑背面另一面设置第二膜片,对厚度有所增加,但是由于第二膜片的厚度和光学膜片的厚度均较小,与使用蜂窝铝板时背板的厚度在12mm左右的方案相比,本申请实施例中提供的投影屏幕的整体厚度在10mm左右,仍可以实现较薄的投影屏幕效果,无论在使用性能还是外观上都具有较明显的进步。
以及,基于通过在支撑背板两侧均设置膜片的方案,通过在支撑背板的一侧设置投影成像用的光学膜片,而另一侧设置与投影成像用光学膜片膨胀系数相同或相近的第二膜片,可以使环境温度变化时,支撑背板两侧能够受到方向相反,但数值相当的一对作用力与反作用力,从而防止支撑背板朝向一个方向变形,利于长期使用过程中支撑背板本身维持较好的平面度,光学膜片固定其上,这样,投影成像用光学膜片本身的平整度也得以保证,尤其对于超短焦投影成像而言,微小的平整度变化也会使投影成像画面发生易于观察到的画面畸变。
因此,基于上述原理,上述支撑背板也可以为传统的蜂窝铝板,只是相比于钢化玻璃而言,其加工性和厚度方面稍逊,但是在应用时也能达到投影屏幕光学膜片平整度稳定性佳的目的。
以及,在上述一个及多个实施例中,第二膜片不用于投影成像,第一膜片用于接收影像光束进行成像,并将影像光束反射出第一膜片,以便进入用户眼中。为了防止未被第一膜片中的反射层反射的光束形成杂散光透射,可以在支撑背板的表面设置遮光层或吸光层,遮光层用于将透射过反射层的光 线进行吸收,遮光层可以为一涂层,也可以为一遮光布粘接至支撑背板的表面。当支撑背板为蜂窝铝板时,遮光层通常设置于其与第一膜片粘接的正面。当支撑背板为钢化玻璃时,支撑背板本身具有透光性,遮光层可以设置在支撑背板的正面或者背面,即设置在于第一膜片或第二膜片的粘接表面均可,还可以是,将遮光层设置于第二膜片的表面,具体地,可以是第二膜片与支撑背板粘接的表面,或者第二膜片远离支撑背板的另一面,或者,第二膜片本身可以采用黑色材质制作。
需要说明的是,在上述实施例中是以应用菲涅尔光学膜片为例进行说明,在激光投影显示领域,还有黑栅幕等其他光学膜片类型,能够提供不同于传统白塑幕不同的投影成像效果,适用于超短焦投影成像,上述其他光学膜片类型也可以同理地应用本申请实施例中所阐述的投影屏幕的整体方案。
以及,在一些具体实施中,菲涅尔光学膜片的层结构也可以具有其他的层叠组合方式,只要能够达到对光线能够反射且成像的目的即可。
以及,请参阅图23,本申请实施例还提供了一种激光投影装置。该激光投影装置包括:投影主机200,以及如上所述实施例中的投影屏幕100。
投影主机200为超短焦投影设备,用于靠近投影屏幕100设置,并斜向上将影像光束投射至投影屏幕100上。投影主机200可以采用纯三色激光光源,也可以采用激光光源和荧光轮组成的光源,投影主机200中还可以包括DLP投影光机系统,以及超短焦投影镜头。以及,投影屏幕100为正投屏幕,投影屏幕100可以挂墙或者与投影主机按照预设距离配置,实现投影系统较小的投射比,比如小于0.25,可以实现投影主机和投影屏幕较近距离的设置,该激光投影装置可以是超短焦投影电视,实现家用。
需要说明的是,本申请实施例提供的激光投影装置采用上述实施例方案的投影屏幕100,也具有上述投影屏幕中多个实施例的效果,能够在使用过程中通过降低支撑背板的形变来保证投影光学膜片的平整度,提高投影屏幕性能的稳定性,从而呈现较稳定的投影成像效果。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种投影屏幕,用于接收影像光束并呈现投影画面,其特征在于,包括:
    第一膜片,固定设置在支撑背板的正面,用于接收影像光束的照射并将所述影像光束反射成像,
    第二膜片,固定设置在支撑背板的背面;
    所述支撑背板,用于通过粘接方式固定支撑所述第一膜片和所述第二膜片,所述第二膜片不用于接收影像光束成像。
  2. 根据权利要求1所述的投影屏幕,其特征在于,
    所述第一膜片与所述第二膜片的热膨胀系数差值ΔP满足-2×10-6mm/℃≤ΔP≤2×10-6mm/℃。
  3. 根据权利要求2所述的投影屏幕,其特征在于,所述支撑背板的线性膨胀系数为3×10 ‐6~41×10 ‐6
  4. 根据权利要求1所述的投影屏幕,其特征在于,
    所述第一膜片至少包括依次设置的基材层,扩散层,菲涅尔透镜层和反射层;所述第二膜片的材质与所述基材层的材质相同。
  5. 根据权利要求1所述的投影屏幕,其特征在于,
    所述第二膜片包括PET膜片、MS膜片和PMMA膜片中的至少一种。
  6. 根据权利要求1所述的投影屏幕,其特征在于,
    所述支撑背板为钢化玻璃背板或蜂窝铝板。
  7. 根据权利要求1所述的投影屏幕,其特征在于,所述第一膜片与所述支撑背板通过第一粘接层粘接,所述第一粘接层的厚度T3满足0.5mm≤T3≤2mm;所述第二膜片与所述支撑背板通过第二粘接层粘接,所述第二粘接层的厚度T4满足0.5mm≤T4≤2mm;所述第一粘结层及所述第二粘结层为双面胶或胶水。
  8. 根据权利要求7所述的投影屏幕,其特征在于,所述支撑背板的表面能为250~500dyn/cm。
  9. 根据权利要求1所述的投影屏幕,其特征在于,所述支撑背板表面还设置有遮光层,或者,所述第二膜片表面还设置有遮光层。
  10. 根据权利要求1~9任一项所述的投影屏幕,其特征在于,
    所述第一膜片的厚度T1满足0.3mm≤T1≤2mm;所述第二膜片的厚度T2满足0.3mm≤T2≤2mm;所述支撑背板的厚度T5满足2.5mm≤T5≤15mm。
  11. 一种激光投影装置,其特征在于,包括:投影主机,用于发出影像光束至投影屏幕,所述投影屏幕为上述权利要求1至10任一所述的投影屏幕。
PCT/CN2019/120177 2018-12-19 2019-11-22 一种投影屏幕及激光投影装置 WO2020125317A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811558083.0A CN111338172B (zh) 2018-12-19 2018-12-19 一种投影屏幕
CN201811558074.1 2018-12-19
CN201811558074.1A CN111338171A (zh) 2018-12-19 2018-12-19 一种投影屏幕及激光投影装置
CN201811558083.0 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020125317A1 true WO2020125317A1 (zh) 2020-06-25

Family

ID=71100214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120177 WO2020125317A1 (zh) 2018-12-19 2019-11-22 一种投影屏幕及激光投影装置

Country Status (1)

Country Link
WO (1) WO2020125317A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683993A (zh) * 2004-04-13 2005-10-19 三菱瓦斯化学株式会社 用于背面投影屏的透镜片
JP2007093867A (ja) * 2005-09-28 2007-04-12 Central Glass Co Ltd 透過型スクリーン用光学部品
CN102486601A (zh) * 2010-12-01 2012-06-06 宏瞻科技股份有限公司 激光投影系统中的投影幕
CN204256365U (zh) * 2014-11-07 2015-04-08 广东威创视讯科技股份有限公司 一种屏幕
CN107207324A (zh) * 2015-02-06 2017-09-26 旭硝子株式会社 光选择透射型玻璃和层叠基板
CN107728419A (zh) * 2016-08-11 2018-02-23 海信集团有限公司 一种投影屏幕及投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683993A (zh) * 2004-04-13 2005-10-19 三菱瓦斯化学株式会社 用于背面投影屏的透镜片
JP2007093867A (ja) * 2005-09-28 2007-04-12 Central Glass Co Ltd 透過型スクリーン用光学部品
CN102486601A (zh) * 2010-12-01 2012-06-06 宏瞻科技股份有限公司 激光投影系统中的投影幕
CN204256365U (zh) * 2014-11-07 2015-04-08 广东威创视讯科技股份有限公司 一种屏幕
CN107207324A (zh) * 2015-02-06 2017-09-26 旭硝子株式会社 光选择透射型玻璃和层叠基板
CN107728419A (zh) * 2016-08-11 2018-02-23 海信集团有限公司 一种投影屏幕及投影系统

Similar Documents

Publication Publication Date Title
CN105785498B (zh) 背光模组、液晶显示装置
CN108628082B (zh) 一种柔性可卷曲光学投影屏幕
CN101089721A (zh) 前投反射式显示装置
CN105842850B (zh) 带反射膜层的hud玻璃制品
US10261399B2 (en) Projection system
CN111785167A (zh) 屏幕组件和显示装置
JPH09133971A (ja) 背面プロジェクションtvセットの投射スクリーン
JP2001005103A (ja) 背面投射型スクリーンとその製造方法及び背面投射型ディスプレイ
WO2020125317A1 (zh) 一种投影屏幕及激光投影装置
TW200523662A (en) Fresnel lens sheet, translucent type screen, and rear projection display device using the same
CN111338171A (zh) 一种投影屏幕及激光投影装置
CN111338172B (zh) 一种投影屏幕
CN209928172U (zh) 液晶模组
CN212723599U (zh) 侧入式背光模组、液晶模组及显示装置
CN209805924U (zh) 潜望式摄像头模组和电子设备
JP2007316415A (ja) シート状部材、透過型スクリーンおよび背面投射型映像表示装置
CN112255877A (zh) 一种反射式侧向投影屏幕及投影系统
JP2001338508A (ja) 背面光源およびそれを用いた表示装置
TW202307513A (zh) 反射鏡曲率輔助式擴散片的指向性背光顯示裝置
TWI691764B (zh) 液晶顯示模組及顯示裝置
WO2022000690A1 (zh) 显示装置
CN112987150A (zh) 复合棱镜模块以及图像获取模块
CN208607472U (zh) 一种用于固定膜片的胶带、背光模组及液晶显示装置
CN111624813A (zh) 曲面显示装置
CN113035061B (zh) 盖板组件及其制备方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900801

Country of ref document: EP

Kind code of ref document: A1