JPWO2007026903A1 - オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法 - Google Patents

オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法 Download PDF

Info

Publication number
JPWO2007026903A1
JPWO2007026903A1 JP2007533370A JP2007533370A JPWO2007026903A1 JP WO2007026903 A1 JPWO2007026903 A1 JP WO2007026903A1 JP 2007533370 A JP2007533370 A JP 2007533370A JP 2007533370 A JP2007533370 A JP 2007533370A JP WO2007026903 A1 JPWO2007026903 A1 JP WO2007026903A1
Authority
JP
Japan
Prior art keywords
component
solid
solid catalyst
compound
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007533370A
Other languages
English (en)
Inventor
保坂 元基
元基 保坂
浩之 河野
浩之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Publication of JPWO2007026903A1 publication Critical patent/JPWO2007026903A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/656Pretreating with metals or metal-containing compounds with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(A)マグネシウム、チタンおよびハロゲン原子を含有する固体成分(a)に、一般式〔CH2=CH−(CH2)n〕qSiR14−qで表される有機ケイ素化合物(b)を接触させて得られるオレフィン類重合用固体触媒成分、および(B)一般式R2rAlQ3−rで表される有機アルミニウム化合物から形成されるオレフィン類重合用触媒、並びに当該触媒の存在下に、オレフィン類の重合を行うオレフィン類重合体の製造方法であって、当該触媒を用いれば、高い触媒活性と高い立体規則性の重合体を収率良く得ることができ、かつ活性持続性が良好となる。

Description

本発明は、ポリマーの立体規則性及び収率を高度に維持でき、かつ活性持続性に優れたオレフィン類の重合用固体触媒成分および触媒並びにそれを使用するオレフィン類の重合体の製造方法に関するものである。
従来、プロピレンなどのオレフィン類の重合においては、マグネシウム、チタン、電子供与性化合物およびハロゲンを必須成分として含有する固体触媒成分が知られている。また該固体触媒成分、有機アルミニウム化合物および有機ケイ素化合物からなるオレフィン類重合用触媒の存在下に、オレフィン類を重合もしくは共重合させる方法が数多く提案されている。たとえば、特許文献1(特開昭57−63310号公報)ならびに特許文献2(特開昭57−63311号公報)においては、マグネシウム化合物、チタン化合物およびSi−O−C結合を有する有機ケイ素化合物との組み合わせからなる触媒を用いて、特にプロピレンを重合させる方法が提案されている。しかしながら、これらの方法は、高立体規則性ポリマーを高収率で得るには、必ずしも充分に満足したものではなく、より一層の改善が望まれていた。
一方、特許文献3(特開平3−234707号公報)では、チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分、Si−OR結合を2つ以上含有し、かつ少なくとも1つの炭化水素残基を有するものであって、該炭化水素基はケイ素原子に隣接する炭素原子が2級または3級の炭素原子である有機ケイ素化合物、ビニルシラン化合物および有機アルミニウム化合物を接触させて得られるα−オレフィン重合用チーグラー型固体触媒成分が開示されている。この固体触媒成分を用いてプロピレンを重合することにより、得られるポリマーの結晶性が向上し、また触媒活性も改善され、さらには従来重合時に用いられている電子供与性化合物を省略できるという効果もあった。しかしながら、固体触媒成分の特性の経時劣化の問題、また重合時に活性が低下するという問題があった。
さらには、複数の有機ケイ素化合物とまた有機ケイ素化合物で処理を行なうため製造工程が煩雑であり、コストアップになるという問題もあった。
特開昭57−63310号公報(特許請求の範囲) 特開昭57−63311号公報(特許請求の範囲) 特開平 3−234707号公報(特許請求の範囲)
従って、本発明の目的は、ポリマーの立体規則性及び収率を高度に維持でき、かつ重合時の触媒活性の低下が少ない活性持続性に優れたオレフィン類の重合用固体触媒成分および触媒並びにそれを使用するオレフィンの重合体の製造方法を提供することにある。
かかる実情において、本発明者らは、鋭意検討を重ねた結果、マグネシウム、チタンおよびハロゲン原子を含有する固体成分に、特定の構造を有する有機ケイ素化合物を接触させて得られる固体触媒成分が上記した従来の触媒よりオレフィン類の重合用触媒として好適であることを見出し、本発明を完成するに至った。
すなわち、本発明は、マグネシウム、チタン、ハロゲン原子および下記一般式(1);〔CH=CH−(CHSiR 4−q (1)
(式中、Rは水素原子、炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子を示し、同一または異なっていてもよく、nは0または1〜5の整数であり、qは1〜4の整数である。ただし、qが1の場合、Rの少なくとも1つは炭素数2〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子である。)
で表される有機ケイ素化合物、またはその重合体を含有することを特徴とするオレフィン類重合用固体触媒成分を提供するものである。
また、本発明は、マグネシウム、チタンおよびハロゲン原子を含有する固体成分(a)に、下記一般式(1);
〔CH=CH−(CHSiR 4−q (1)
(式中、Rは水素原子、炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子を示し、同一または異なっていてもよく、nは0または1〜5の整数であり、qは1〜4の整数である。ただし、qが1の場合、Rの少なくとも1つは炭素数2〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子である。)で表される有機ケイ素化合物(b)を接触させて得られることを特徴とするオレフィン類重合用固体触媒成分を提供するものである。
さらに、本発明は、前記固体触媒成分、および
(B)下記一般式(2);R AlQ3−r (2)
(式中、Rは炭素数1〜4のアルキル基を示し、Qは水素原子あるいはハロゲン原子を示し、rは0<p≦3の実数である。)で表される有機アルミニウム化から形成されることを特徴とするオレフィン類重合用触媒を提供するものである。
また、本発明は、前記オレフィン類重合用触媒の存在下に、オレフィン類の重合を行なうことを特徴とするオレフィン類重合体の製造方法を提供するものである。
第1図は、本発明の触媒成分及び重合触媒を調製する工程を示すフローチャート図である。
本発明の固体触媒成分(A)(以下、「成分(A)」ということがある。)は、マグネシウム、チタンおよびハロゲン原子を含有する固体成分(a)(以下、「成分(a)」ということがある。)に、前記一般式(1)で表される有機ケイ素化合物(b)(以下、「成分(b)」ということがある。)を接触させて得ることができる。
前記固体成分(a)は、マグネシウム、チタンおよびハロゲン原子以外に電子供与性化合物を更に含有していてもよい。固体成分(a)は、例えばマグネシウム化合物(i)(以下、「成分(i)」ということがある。)、チタン化合物(ii)(以下、「成分(ii)」ということがある。)および電子供与性化合物(iii)(以下、「成分(iii)」ということがある。)を接触して得ることができる。また、固体成分(a)は、成分(i)、成分(ii)および成分(iii)の他、有機溶媒も併せて接触して得ることができる。
前記固体成分の調製に用いられるマグネシウム化合物(i)としては、ジハロゲン化マグネシウム、ジアルキルマグネシウム、ハロゲン化アルキルマグネシウム、ジアルコキシマグネシウム、ジアリールオキシマグネシウム、ハロゲン化アルコキシマグネシウムあるいは脂肪酸マグネシウム等が挙げられる。これらのマグネシウム化合物の中、ジハロゲン化マグネシウム、ジハロゲン化マグネシウムとジアルコキシマグネシウムの混合物、ジアルコキシマグネシウムが好ましく、特にジアルコキシマグネシウムが好ましく、具体的にはジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム等が挙げられ、ジエトキシマグネシウムが特に好ましい。
また、これらのジアルコキシマグネシウムは、金属マグネシウムを、ハロゲン含有有機金属等の存在下にアルコールと反応させて得たものでもよい。上記のジアルコキシマグネシウムは、単独あるいは2種以上併用することもできる。
更に、好適に用いられるジアルコキシマグネシウムは、顆粒状または粉末状であり、その形状は不定形あるいは球状のものを使用し得る。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取り扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する重合体の分離装置におけるフィルターの閉塞等の問題が解決される。
上記の球状ジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることも出来る。具体的にその粒子の形状は、長軸径Lと短軸径Wとの比(L/W)が3以下であり、好ましくは1〜2であり、より好ましくは1〜1.5である。
また、上記ジアルコキシマグネシウムの平均粒径は1〜200μmのものが使用し得る。好ましくは5〜150μmである。球状のジアルコキシマグネシウムの場合、平均粒径は1〜100μm、好ましくは5〜80μmであり、さらに好ましくは10〜60μmである。また、その粒度については、微粉及び粗粉が少なく、かつ粒度分布の狭いものを使用することが好ましい。具体的には、5μm以下の粒子が20%以下であり、好ましくは10%以下である。一方、100μm以上の粒子が10%以下であり、好ましくは5%以下である。更にその粒度分布をD90/D10(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒度である。)で表すと3以下であり、好ましくは2以下である。
上記の如き球状のジアルコキシマグネシウムの製造方法は、例えば特開昭58−4132号公報、特開昭62−51633号公報、特開平3−74341号公報、特開平4−368391号公報、特開平8−73388号公報などに例示されている。
固体成分(a)の調製に用いられるチタン化合物(ii)は、一般式;Ti(OR4−n(式中、Rは炭素数1〜4のアルキル基を示し、Xはハロゲン原子を示し、nは0≦n≦4の整数である。)で表される四価のチタンハライドもしくはアルコキシチタンハライド群から選択される化合物の1種或いは2種以上である。
具体的には、チタンハライドとしてチタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライドが例示され、アルコキシチタンハライドとしてメトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n−ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ−n−ブトキシチタンジクロライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ−n−ブトキシチタンクロライド等が例示される。これらのうち、チタンテトラハライドが好ましく、特に好ましくはチタンテトラクロライドである。これらチタン化合物は単独あるいは2種以上併用することもできる。
固体成分(a)の調製に用いられる電子供与性化合物(iii)は、酸素原子あるいは窒素原子を含有する有機化合物であり、例えばアルコール類、フェノール類、エーテル類、エステル類、ケトン類、酸ハライド類、アルデヒト類、アミン類、アミド類、ニトリル類、イソシアネート類、Si−O−C結合またはSi−N−C結合を含む有機ケイ素化合物などが挙げられる。
具体的には、メタノール、エタノール、n−プロパノール、2−エチルヘキサノール等のアルコール類、フェノール、クレゾール等のフェノール類、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミールエーテル、ジフェニールエーテル、9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1、3−ジメトキシプロパン等のエーテル類、ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸エチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル安息香酸フェニル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エチル類、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジブチル、マロン酸ジイソブチル、マロン酸ジペンチル、マロン酸ジネオペンチル、イソプロピルブロモマロン酸ジエチル、ブチルブロモマロン酸ジエチル、ジイソブチルブロモマロン酸ジエチル、ジイソプロマロン酸ジエチル、ジブチルマロン酸ジエチル、ジイソブチルマロン酸ジエチル、ジイソペンチルマロン酸ジエチル、イソプロピルブチルマロン酸ジエチル、イソプロピルイソペンチルマロン酸ジメチル、ビス(3−クロロ−n−プロピル)マロン酸ジエチル、ビス(3−ブロモ−n−プロピル)マロン酸ジエチル、マレイン酸ジエチル、マレイン酸ジブチル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジプロピル、アジピン酸ジブチル、アジピン酸ジイソデシル、アジピン酸ジオクチル、フタル酸ジエステル、フタル酸ジエステル誘導体等のジカルボン酸ジエステル類、アセトン、メチルエチルケトン、メチルブチルケトン、アセトフェノン、ベンゾフェノン等のケトン類、フタル酸ジクロライド、テレフタル酸ジクロライド等の酸クロライド類、アセトアルデヒド、プロピオンアルドヒド、オクチルアルデヒド、ベンズアルデヒド等のアルデヒド類、メチルアミン、エチルアミン、トリブチルアミン、ピペリジン、アニリン、ピリジン等のアミン類、オレフィン酸アミド、ステリアリン酸アミド等のアミド類、アセトニトリル、ベンゾニトリル、トルニトリル等のニトリル類、イソシアン酸メチル、イソシアン酸エチル等のイソシアネート類、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン等のSi−O−C結合を含む有機珪素化合物、ビス(アルキルアミノ)ジアルコキシシラン、ビス(シクロアルキルアミノ)ジアルコキシシラン、アルキル(アルキルアミノ)ジアルコキシシラン、ジアルキルアミノトリアルコキシシラン、シクロアルキルアミノトリアルコキシシラン、等のSi−N−C結合を含む有機珪素化合物を挙げることができる。
上記の電子供与性化合物のうち、エステル類、とりわけ芳香族ジカルボン酸ジエステルが好ましく用いられ、特にフタル酸ジエステルおよびフタル酸ジエステル誘導体が好適である。これらのフタル酸ジエステルの具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジ−イソプロピル,フタル酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸エチルメチル、フタル酸メチルイソプロピル、フタル酸エチル(n−プロピル)、フタル酸エチル(n−ブチル)、フタル酸エチル−イソブチル、フタル酸ジ−n−ペンチル、フタル酸ジイソペンチル、フタル酸ジネオペンチル、フタル酸ジヘキシル、フタル酸ジ−n−ヘプチル、フタル酸ジ−n−オクチル、フタル酸ビス(2,2−ジメチルヘキシル)、フタル酸ビス(2−エチルヘキシル)、フタル酸ジ−n−ノニル、フタル酸ジ−イソデシル、フタル酸ビス(2、2−ジメチルヘプチル)、フタル酸n−ブチル−イソヘキシル、フタル酸n−ブチル(2−エチルヘキシル)、フタル酸n−ペンチルヘキシル、フタル酸n−ペンチルイソヘキシル、フタル酸イソペンチル(ヘプチル)、フタル酸n−ペンチル(2−エチルヘシル)、フタル酸n−ペンチル−イソノニル、フタル酸イソペンチル(n−デシル)、フタル酸n−ペンチルウンデシル、フタル酸イソペンチルイソヘキシル、フタル酸n−ヘキシル(2,2−ジメチルヘキシル)、フタル酸n−ヘキシルイソノニル、フタル酸n−ヘキシル(n−デシル)、フタル酸n−ヘプチル(2−エチルヘキシル)、フタル酸n−ヘプチルイソノニル、フタル酸n−ヘプチル(neo−デシル)、フタル酸2−エチルヘキシルイソノニルが例示され、これらのフタル酸ジエステルは1種あるいは2種以上が使用される。
またフタル酸ジエステル誘導体としては、上記のフタル酸ジエステルの2つのエステル基が結合するベンゼン環の1または2個の水素原子が、炭素数1〜5のアルキル基、または塩素原子、臭素原子およびフッ素原子などのハロゲン原子に置換されたものが挙げられる。該フタル酸ジエステル誘導体を電子供与性化合物として用いて調製した固体触媒成分により、より一層水素量のメルトフローレートへの大きな効果、即ち水素レスポンスを向上させることができ、重合時に添加する水素が同量あるいは少量でもポリマーのメルトフローレートを向上することができる。具体的には、4−メチルフタル酸ジネオペンチル、4−エチルフタル酸ジネオペンチル、4、5、−ジメチルフタル酸ジネオペンチル、4,5−ジエチルフタル酸ジネオペンチル、4−クロロフタル酸ジエチル、4−クロロフタル酸ジ−n−ブチル、4−クロロフタル酸ジネオペンチル、4−クロロフタル酸ジイソブチル、4−クロロフタル酸ジイソヘキシル、4−クロロフタル酸ジイソオクチル、4−ブロモフタル酸ジエチル、4−ブロモフタル酸ジ−n−ブチル、4−ブロモフタル酸ジネオペンチル、4−ブロモフタル酸ジイソブチル、4−ブロモフタル酸ジイソヘキシル、4−ブロモフタル酸ジイソオクチル、4,5−ジクロロフタル酸ジエチル、4,5−ジクロロフタル酸ジ−n−ブチル、4,5−ジクロロフタル酸ジイソヘキシル、4,5−ジクロロフタル酸ジイソオクチルが挙げられ、このうち、4−ブロモフタル酸ジネオペンチル、4−ブロモフタル酸ジ−n−ブチル、および4−ブロモフタル酸ジイソブチルが好ましい。
なお、上記のエステル類は、2種以上組み合わせて用いることも好ましく、その際用いるエステルのアルキル基の炭素数合計が他のエステルのそれと比べ、その差が4以上になると該エステル類を組み合わせることが望ましい。
本発明においては、上記成分(i)、(ii)、及び(iii)を溶媒の不存在下に直接接触させることもできるが、操作の容易性や得られる固体触媒成分の性能をより向上させるために、有機溶媒の存在下に接触させることが望ましい。有機溶媒としては、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素化合物又は脂環式炭化水素化合物、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素化合物、クロロベンゼン、ジクロロベンゼン、テトラクロロエタン等のハロゲン化炭化水素化合物が挙げられる。これらの中でも、トルエン、キシレン、エチルベンゼンなどの沸点が50〜150℃の芳香族炭化水素化合物が好ましく用いられる。また、これらは単独で用いても、2種以上混合して使用してもよい。
本発明における固体成分(a)の特に好ましい調製方法としては、成分(i)と成分(iii)と沸点50〜150℃の芳香族炭化水素化合物(iv)(以下、「成分(iv)」ということがある。)とから懸濁液を形成し、成分(ii)と成分(iv)とから形成した混合溶液を該懸濁液に接触させ、その後反応させることによる調製方法を挙げることができる。
本発明の固体成分(a)の調製においては、上記成分の他、更に、ポリシロキサン(v)(以下単に「成分(v)」ということがある。)を使用することが好ましく、ポリシロキサンを用いることにより生成ポリマーの立体規則性あるいは結晶性を向上させることができ、さらには生成ポリマーの微粉を低減することが可能となる。ポリシロキサンは、主鎖にシロキサン結合(−Si−O結合)を有する重合体であるが、シリコンオイルとも総称され、25℃における粘度が0.02〜100cm2/s(2〜10000センチストークス)を有する、常温で液状あるいは粘ちょう状の鎖状、部分水素化、環状あるいは変性ポリシロキサンである。
鎖状ポリシロキサンとしては、ジメチルポリシロキサン、メチルフェニルポリシロキサンが、部分水素化ポリシロキサンとしては、水素化率10〜80%のメチルハイドロジェンポリシロキサンが、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルキクロテトラシロキサン、デカメチルシクロペンタンシロキサン、2,4,6−トリメチルシクロトリシロキサン、2,4,6,8−テトラメチルシクロテトラシロキサンが、また変性ポリシロキサンとしては、高級脂肪酸基置換ジメチルシロキサン、エポキシ基置換ジメチルシロキサン、ポリオキシアルキレン基置換ジメチルシロキサンが例示される。これらの中で、デカメチルシクロペンタシロキサン、及びジメチルポリシロキサンが好ましく、デカメチルシクロペンタシロキサンが特に好ましい。
本発明では上記成分(i)、(ii)及び(iii)、また必要に応じて成分(iv)または成分(v)を接触させ固体成分(a)を形成させるが、以下に、本発明の固体成分(a)の調製方法について述べる。具体的には、マグネシウム化合物(i)を、4価のチタンハロゲン化合物(ii)または芳香族炭化水素化合物(iv)に懸濁させ、フタル酸ジエステルなどの電子供与性化合物(iii)、更に必要に応じて4価のチタンハロゲン化合物(ii)を接触して固体成分(a)を得る方法が挙げられる。該方法において、球状のマグネシウム化合物を用いることにより、球状でかつ粒度分布のシャープな固体成分(a)を得ることができ、また球状のマグネシウム化合物を用いなくとも、例えば噴霧装置を用いて溶液あるいは懸濁液を噴霧・乾燥させる、いわゆるスプレードライ法により粒子を形成させることにより、同様に球状でかつ粒度分布のシャープな固体成分(aa)を得ることが出来る。
各成分の接触は、不活性ガス雰囲気下、水分等を除去した状況下で、攪拌機を具備した容器中で、攪拌しながら行われる。接触温度は、各成分の接触時は、各成分の接触時の温度であり、反応させる温度と同じ温度でも異なる温度でもよい。接触温度は、単に接触させて攪拌混合する場合や、分散あるいは懸濁させて変性処理する場合には、室温付近の比較的低温域であっても差し支えないが、接触後に反応させて生成物を得る場合には、40〜130℃の温度域が好ましい。反応時の温度が40℃未満の場合は十分に反応が進行せず、結果として調製された固体触媒成分の性能が不十分となり、130℃を超えると使用した溶媒の蒸発が顕著になるなどして、反応の制御が困難になる。反応時間は1分以上、好ましくは10分以上、より好ましくは30分以上である。
本発明の好ましい固体成分(a)の調製方法としては、成分(i)を成分(iv)に懸濁させ、次いで成分(ii)を接触させた後に成分(iii)及び成分(iv)を接触させ、反応させることにより固体成分(a)を調製する方法、あるいは、成分(i)を成分(iv)に懸濁させ、次いで成分(iii)を接触させた後に成分(ii)を接触させ、反応させることにより固体成分(a)を調製する方法を挙げることが出来る。またこのように調製した固体成分(a)に再度または複数回、成分(ii)、または成分(ii)および成分(iii)を接触させることによって、最終的な固体触成分の性能を向上させることができる。この際、芳香族炭化水素化合物(iv)の存在下に行うことが望ましい。
本発明における固体成分(a)の好ましい調製方法としては、成分(i)と成分(iii)と沸点50〜150℃の芳香族炭化水素化合物(iv)とから懸濁液を形成し、成分(ii)と成分(iv)とから形成した混合溶液を該懸濁液に接触させ、その後反応させることによる調製方法を挙げることが出来る。
本発明における固体成分(a)の好ましい調製方法としては、以下に示す方法を挙げることができる。上記成分(i)と成分(iii)と沸点50〜150℃の芳香族炭素化水素化合物(iv)とから懸濁液を形成する。成分(iii)及び沸点50〜150℃の芳香族炭素化水素化合物(iv)から混合溶液を形成しておき、この混合溶液中に上記懸濁液を添加する。その後、得られた混合溶液を昇温して反応処理(第一次反応処理)する。反応終了後、得られた固体物質を常温で液体の炭化水素化合物で洗浄し、洗浄後の固体物質を固体生成物とする。なお、その後、該洗浄後の固体物質に、更に、新たに成分(ii)および沸点50〜150℃の芳香族炭化水素化合物(iv)を−20〜100℃で接触させ、昇温して、反応処理(第二次反応処理)して、反応終了後、常温で液体の炭化水素化合物で洗浄する操作を1〜10回繰り返した、固体成分(a)を得ることもできる。
以上を踏まえ、本発明における固体成分(a)の特に好ましい調製方法としては、ジアルコキシマグネシウム(i)を沸点50〜150℃の芳香族炭化水素化合物(iv)に懸濁させ、次いでこの懸濁液に4価のチタンハロゲン化合物(ii)を接触させた後、反応処理を行う。この際、該懸濁液に4価のチタンハロゲン化合物(ii)を接触させる前又は接触した後に、フタル酸ジエステルなどの電子供与性化合物(iii)の1種あるいは2種以上を、−20〜130℃で接触させ、必要に応じて成分(v)を接触させて、反応処理を行い、固体生成物(1)を得る。この際、電子供与性化合物の1種あるいは2種以上を接触させる前又は後に、低温で熟成反応を行うことが望ましい。この固体生成物(1)を常温の液体の炭化水素化合物で洗浄(中間洗浄)した後、再度4価チタンハロゲン化合物(ii)を、芳香族炭化水素化合物の存在下に、−20〜100℃で接触させ、反応処理を行い、固体生成物(2)を得る。なお必要に応じ、中間洗浄及び反応処理を更に複数回繰り返してもよい。次いで固体生成物(2)をデカンテーションにより常温で液体の炭化水素化合物で洗浄して固体成分(a)を得る。
固体成分(a)を調製する際の各成分の使用量比は、調製法により異なるため一概には既定できないが、例えばマグネシウム化合物(i)1モルあたり、4価のチタンハロゲン化合物(ii)が0.5〜100モル、好ましくは0.5〜50モル、より好ましくは1〜10モルであり、電子供与性化合物(iii)が0.01〜10モル、好ましくは0.01〜1モル、より好ましくは0.02〜0.6モルであり、芳香族炭化水素化合物(iv)が0.001〜500モル、好ましくは0.001〜100モル、より好ましくは0.005〜10モルでありポリシロキサン(v)が0.01〜100g、好ましくは0.05〜80g、より好ましくは1〜50gである。
また本発明における固体成分(a)中のチタン、マグネシウム、ハロゲン原子、電子供与性化合物の含有量は特に既定されないが、好ましくは、チタンが1.0〜8.0重量%、好ましくは2.0〜8.0重量%、より好ましくは3.0〜8.0重量%、マグネシウムが10〜70重量%、より好ましくは10〜50重量%、特に好ましくは15〜40重量%、さらに好ましくは15〜25重量%、ハロゲン原子が20〜90重量%、より好ましくは30〜85重量%、特に好ましくは40〜80重量%、さらに好ましくは45〜75重量%、また電子供与性化合物が合計0.5〜30重量%、より好ましくは合計1〜25重量%、特に好ましくは合計2〜20重量%である。
本発明のオレフィン類重合用固体触媒成分を構成する有機ケイ素化合物(b)(以下単に「成分(b)」ということがある。)としては、上記一般式(1)で表される化合物であれば特に制限されないが、具体的には、アルケニル基含有フェニルシラン、アルケニル基含有アルキルハロゲン化シラン、アルケニル基含有ハロゲン化シランである。上記一般式(1)において、Rとしてはメチル基、エチル基または塩素原子が好ましく、qが2および3のジアルケニルシランおよびトリアルケニルシランが好ましく、またnが0のビニルシラン、nが1のアリルシランおよびnが2の3−ブテニルシランが好ましい。さらにqが2以上の場合、アルケニル基は同一でも異なっていてもよい。
上記の有機ケイ素化合物(b)を具体的に例示すると、ビニルトリメチルシラン、ビニルトリエチルシラン、ジビニルジメチルシラン、ジビニルジエチルシラン、トリビニルメチルシラン、トリビニルエチルシラン、ビニルメチルジクロロシラン、ビニルトリクロロシラン、ビニルトリブロモシラン、
アリルトリエチルシラン、アリルトリビニルシラン、アリルメチルジビニルシラン、アリルジメチルビニルシラン、アリルメチルジクロロシラン、アリルトリクロロシラン、アリルトリブロモシラン、
ジアリルジメチルシラン、ジアリルジエチルシラン、ジアリルジビニルシラン、ジアリルメチルビニルシラン、ジアリルメチルクロロシラン、ジアリルジクロロシラン、ジアリルジブロモシラン、トリアリルメチルシラン、トリアリルエチルシラン、トリアリルビニルシラン、トリアリルクロロシラン、トリアリルブロモシラン、テトラアリルシラン、
ジ−3−ブテニルシランジメチルシラン、ジ−3−ブテニルシランジエチルシラン、ジ−3−ブテニルシランジビニルシラン、ジ−3−ブテニルシランメチルビニルシラン、ジ−3−ブテニルシランメチルクロロシラン、ジ−3−ブテニルシランジクロロシラン、ジアリルジブロモシラン、トリアリルメチルシラン、トリ−3−ブテニルシランエチルシラン、トリ−3−ブテニルシランビニルシラン、トリ−3−ブテニルシランクロロシラン、トリ−3−ブテニルシランブロモシラン、テトラ−3−ブテニルシランシランが好ましく用いられ、これらの中でも特にジビニルジエチルシラン、アリルジメチルビニルシラン、ジアリルジメチルシラン、トリアリルメチルシラン、ジ−3−ブテニルシランジメチルシランが好ましい。該有機ケイ素化合物(b)は1種あるいは2種以上組合せて用いることができる。
(固体触媒成分(A)の調製方法)
本発明の固体触媒成分(A)は、前記固体成分(a)に前記成分(b)を接触させて得られる。成分(a)および(b)の接触には、操作の容易性を考慮して、不活性溶媒の存在下に行なう。不活性溶媒としてはとしては、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素化合物又は脂環式炭化水素化合物、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素化合物、クロロベンゼン、ジクロロベンゼン、テトラクロロエタン等のハロゲン化炭化水素化合物、あるいはシリコンオイルが挙げられる。これらの中でも、トルエン、キシレン、エチルベンゼンなどの沸点が50〜150℃の芳香族炭化水素化合物が好ましく用いられる。また、これらは単独で用いても、2種以上混合して使用してもよい。また、上記のように各成分を接触させた後、不要な成分を除去するためにヘプタンなどの不活性溶媒で洗浄する。
本発明において、固体触媒成分(A)を調製する際、成分(a)と成分(b)を接触させる際には、特許文献3(特開平3−234707号公報)に記載されるトリエチルアルミニウムのような有機アルミニウム化合物は接触させない。すなわち、従来の固体触媒成分では、マグネシウムおよびチタンを含有する固体成分に有機ケイ素化合物を接触させた後、有機アルミニウム化合物を接触させ反応させ、その後洗浄して固体触媒成分を形成していた。これに対して本発明の固体触媒成分は、上記成分(a)と成分(b)のみを接触させて得られる。また必要に応じて不活性有機溶媒で洗浄し乾燥させるが、洗浄しなくとも遊離の成分(b)の残留した有機溶媒に懸濁させた固体触媒成分をそのまま、オレフィン類の重合に供してもよい。
各成分を接触させる際の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常成分(b)は成分(a)中のチタン原子1モル当たり、0.1〜5モル、好ましくは0.5〜2モルの範囲で使用される。
上記各成分を接触させるときの温度は、−10〜150℃、好ましくは0〜100℃、特に好ましくは20〜80℃である。接触時間は、1分〜10時間、好ましくは10分〜5時間、特に好ましくは30分〜2時間である。また、上記成分(a)と成分(b)を接触させる際の条件により、成分(b)が重合し重合物となる場合がある。接触温度が30℃以上の場合、成分(b)の重合が始まり一部または全部が重合物となり、結果として得られるオレフィン類重合体の結晶性や触媒活性が向上する。
上記成分(a)および(b)を接触させて固体触媒成分(A)を調製する際、上記成分の他、更に、ポリシロキサン(e)(以下単に「成分(e)」ということがある。)を使用することが好ましく、ポリシロキサンを用いることにより固体触媒成分の劣化を防止でき、触媒活性や経時的な劣化や生成ポリマーの結晶性の低下を防止することができる。ポリシロキサン(e)は、前述した固体成分(a)の任意成分である成分(v)と同じものを用いることができ、ジメチルポリシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルキクロテトラシロキサン、デカメチルシクロペンタンシロキサン、2,4,6−トリメチルシクロトリシロキサン、2,4,6,8−テトラメチルシクロテトラシロキサンが好ましく用いられる。
さらに、上記成分(a)および(b)の他、四塩化チタン、三塩化チタン、四塩化ケイ素、三塩化アルミなどの塩化物を共存させてもよい。
本発明の固体触媒成分(A)は、マグネシウム、チタン、ハロゲン原子および前記一般式(1)で表される有機ケイ素化合物、またはその重合体を含有する。また、本発明の固体触媒成分(A)は、更に電子供与性化合物を含有してもよい。ここで、一般式(1)で表される有機ケイ素化合物の重合体は、一般式(1)中の2つの炭素原子間の2重結合(ビニル基)の1つの結合が外れ、重合した重合体である。当該重合体とは、低重合物である重合度2〜20程度のオリゴマーおよびそれ以上の重合度の重合体を含む。従って、本発明の固体触媒成分(A)は、該有機ケイ素化合物の単量体およびオリゴマーを含む重合体の両方を含有してもよい。本発明の固体触媒成分(A)中の一般式(1)で表される有機ケイ素化合物及びその重合体は、公知の分析方法により確認することができる。また、本発明の固体触媒成分(A)中に含まれる一般式(1)で表される有機ケイ素化合物、電子供与性化合物は、前記同様のものが挙げられる。
本発明の固体触媒成分(A)は、マグネシウム、チタン、ハロゲン原子および成分(b)または成分(b)の重合体を含有し、各構成成分の含有量は、マグネシウムが10〜70重量%、好ましくは15〜40重量%、チタンが1.0〜8.0重量%、好ましくは1.5〜6.0重量%、ハロゲン原子が20〜85重量%、好ましくは40〜80重量%、成分(b)は、ケイ素原子として0.1〜10重量%であり、好ましくは、0.5〜5重量%、より好ましくは、1〜3重量%である。
固体触媒成分(A)が、遊離の成分(b)の残留した有機溶媒に懸濁されたものである場合、固体触媒成分(A)をそのまま、オレフィン類の重合に供してもよい。この際、有機アルミニウム化合物(B)、また必要に応じて有機ケイ素化合物などの外部電子供与性化合物と共に重合触媒を形成し重合を行なう。この重合触媒を形成する際、重合系内で各成分は接触するが、洗浄して固形物を分離する操作を行なう必要はなく、その際はオレフィン類が共存しており、同時にオレフィンの重合が開始される。
本発明のオレフィン重合用触媒を形成する際に用いられる有機アルミニウム化合物(B)(以下単に「成分(B)」ということがある。)としては、上記一般式(2)で表される化合物であれば、特に制限されないが、Rとしては、エチル基、イソブチル基が好ましく、Qとしては、水素原子、塩素原子、臭素原子が好ましく、rは、2又は3が好ましく、3が特に好ましい。このような有機アルミニウム化合物(B)の具体例としては、トリエチルアルミニウム、ジエチルアルミニウムクロライド、トリイソブチルアルミニウム、ジエチルアルミニウムブロマイド、ジエチルアルミニウムハイドライドが挙げられ、1種あるいは2種以上が使用できる。好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。
本発明のオレフィン類重合触媒を形成する際、上記成分(A)および成分(B)の他に、外部電子供与性化合物(C)(以下「成分(C)」ということがある。)を用いることもできる。外部電子供与性化合物(C)としては、酸素原子あるいは窒素原子を含有する有機化合物であり、例えばアルコール類、フェノール類、エーテル類、エステル類、ケトン類、酸ハライド類、アルデヒド類、アミン類、アミド類、ニトリル類、イソシアネート類、Si−O−C結合を含む有機ケイ素化合物等が挙げられる。
具体的には、メタノール、エタノール、n−プロパノール、2−エチルヘキサノール等のアルコール類、フェノール、クレゾール等のフェノール類、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミルエーテル、ジフェニルエーテル、9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン等のエーテル類、ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類、マレイン酸ジエチル、マレイン酸ジブチル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジブチル、アジピン酸ジイソデシル、アジピン酸ジオクチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジブチル、フタル酸ジペンチル、フタル酸ジヘキシル、フタル酸ジヘプチル、フタル酸ジオクチル、フタル酸ジノニル、フタル酸ジデシル等のジカルボン酸エステル類、アセトン、メチルエチルケトン、メチルブチルケトン、アセトフェノン、ベンゾフェノン等のケトン類、フタル酸ジクロライド、テレフタル酸ジクロライド等の酸ハライド類、アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド等のアルデヒド類、メチルアミン、エチルアミン、トリブチルアミン、ピペリジン、アニリン、ピリジン等のアミン類、オレイン酸アミド、ステアリン酸アミド等のアミド類、アセトニトリル、ベンゾニトリル、トルニトリル等のニトリル類、イソシアン酸メチル、イソシアン酸エチル等のイソシアネート類等を挙げることができる。上記のなかでも特に安息香酸エチル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類が好ましい。
また有機ケイ素化合物も成分(C)として好ましく用いられ、下記一般式(3);R Si(OR4−p (3)
(式中、Rは炭素数1〜12のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基のいずれかで、同一または異なっていてもよい。Rは炭素数1〜4のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基を示し、同一または異なっていてもよい。pは0≦p≦3の整数である。)で表される化合物が用いられる。
このような有機ケイ素化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン等を挙げることができる。
上記の有機ケイ素化合物を具体的に例示すると、トリメチルメトキシシラン、トリメチルエトキシシラン、トリ−n−プロピルメトキシシラン、トリ−n−プロピルエトキシシラン、トリ−n−ブチルメトキシシラン、トリ−iso−ブチルメトキシシラン、トリ−t−ブチルメトキシシラン、トリ−n−ブチルエトキシシラン、トリシクロヘキシルメトキシシラン、トリシクロヘキシルエトキシシラン、シクロヘキシルジメチルメトキシシラン、シクロヘキシルジエチルメトキシシラン、シクロヘキシルジエチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−iso−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−iso−プロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−iso−ブチルジメトキシシラン、ジ−t−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、n−ブチルメチルジメトキシシラン、ビス(2−エチルヘキシル)ジメトキシシラン、ビス(2−エチルヘキシル)ジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、ビス(3−メチルシクロヘキシル)ジメトキシシラン、ビス(4−メチルシクロヘキシル)ジメトキシシラン、ビス(3,5−ジメチルシクロヘキシル)ジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、シクロヘキシルシクロペンチルジプロポキシシラン、3−メチルシクロヘキシルシクロペンチルジメトキシシラン、4−メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロペンチルジメトキシシラン、3−メチルシクロヘキシルシクロヘキシルジメトキシシラン、4−メチルシクロヘキシルシクロヘキシルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロヘキシルジメトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロペンチル(iso−プロピル)ジメトキシシラン、シクロペンチル(iso−ブチル)ジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、シクロヘキシル(n−プロピル)ジメトキシシラン、シクロヘキシル(iso−プロピル)ジメトキシシラン、シクロヘキシル(n−プロピル)ジエトキシシラン、シクロヘキシル(iso−ブチル)ジメトキシシラン、シクロヘキシル(n−ブチル)ジエトキシシラン、シクロヘキシル(n−ペンチル)ジメトキシシラン、シクロヘキシル(n−ペンチル)ジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、iso−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、iso−ブチルトリメトキシシラン、t−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、2−エチルヘキシルトリメトキシシラン、2−エチルヘキシルトリエトキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランが好ましく用いられる。また該有機ケイ素化合物(C)は、1種あるいは2種以上組み合わせて用いることができる。
本発明のオレフィン類重合用触媒の存在下にオレフィン類の単独重合、ランダム共重合もしくはブロック共重合を実施する。オレフィン類としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することが出来る。とりわけ、エチレン、プロピレン、1−ブテンが好適に用いられる。特に好ましいのはプロピレンである。プロピレンの場合、他のオレフィン類との共重合を行うことができる。共重合されるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレン、1−ブテンが好適に用いられる。プロピレンと他のオレフィン類との共重合としては、プロピレンと少量のエチレンをコモノマーとして1段で重合するランダム共重合と、第一段階(第一重合槽)でプロピレンの単独重合を行い、第二段階(第二重合槽)あるいはそれ以上の多段階(多段重合槽)でプロピレンとエチレンの共重合を行う、所謂プロピレン−エチレンブロック共重合が代表的である。このようなランダム共重合やブロック共重合においても、上記の成分(A)および成分(B)、または成分(C)からなる本発明の触媒は有効であり、触媒活性、立体規則性及び/または水素レスポンスが良好であるばかりでなく、共重合特性や得られた共重合体の特性も良好である。また、特にプロピレンの単独重合からブロック共重合に移行する際に、最終製品中のジェル生成を防止するために、アルコール類を重合系に添加することができる。アルコール類の具体例としては、エチルアルコール、イソプロピルアルコール等が挙げられ、使用量は成分(B)1モルに対し0.01〜10モル好ましくは0.1〜2モルである。
各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常成分(B)は成分(A)中のチタン原子1モル当たり、1〜2000モル、好ましくは50〜1000モルの範囲で使用される。成分(C)は成分(B)1モル当たり、0.002〜10モル、好ましくは0.01〜2モル、特に好ましくは0.1〜0.5モルの範囲で用いられる。
各成分の接触順序は任意であるが、重合系内にまず有機アルミニウム化合物(B)を装入し、固体触媒成分(A)を接触させることが望ましい。成分(C)を用いる場合、重合系内にまず有機アルミニウム化合物(B)を装入し、次いで、成分(C)を装入しその後固体触媒成分(A)を接触させる。また、各成分を重合系内に装入する場合、プロピレンなどのオレフィン類が存在していることが望ましい。
本発明における重合方法は、有機溶媒の存在下でも不存在下でも行うことができ、また、プロピレン等のオレフィン単量体は、気体および液体のいずれの状態でも重合に用いることができる。重合温度は200℃以下、好ましくは100℃以下であり、重合圧力は10MPa以下、好ましくは6MPa以下である。また、連続重合法、バッチ式重合法のいずれも可能である。更に、重合反応を1段で行っても良いし、2段以上の多段で行ってもよい。
更に、本発明において成分(A)および成分(B)、または成分(C)から形成される触媒を用いてオレフィンを重合するにあたり(「本重合」ともいう。)、触媒活性、立体規則性及び生成する粒子性状度等を一層改善させるために、本重合に先立ち予備重合を行うことが望ましい。予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることが出来る。具体的には、オレフィン類の存在下に成分(A)および成分(B)、または成分(C)を接触させ、成分(A)1g当たり0.1〜100gのポリオレフィンを予備的に重合させ、更に成分(B)及び/又は成分(C)を接触させ触媒を形成する。
予備重合を行うに際して、各成分及びモノマーの接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはプロピレンなどの重合を行うガス雰囲気に設定した予備重合系内にまず成分(B)を装入し、次いで成分(A)を接触させた後、プロピレン等のオレフィン及び/又は1種あるいは2種以上の他のオレフィン類を接触させる。予備重合温度は任意であり、特に制限はないが、好ましくは−10℃〜70℃の範囲、更に好ましくは0℃〜50℃の範囲である。
本発明のオレフィン類重合触媒の存在下で、オレフィン類の重合を行った場合、従来の触媒を使用した場合に比べ、高い立体規則性を保持し、しかも水素レスポンスが向上している。
以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
<固体成分の調製>
攪拌機を具備し、窒素ガスで充分に置換された、容量2000mlの丸底フラスコに、ジエトキシマグネシウム150g及びトルエン750mlを装入し、懸濁状態とした。次いで、該懸濁液を、攪拌機を具備し、窒素ガスで充分に置換された、容量3000mlの丸底フラスコに予め装填されたトルエン450ml及び四塩化チタン300mlの溶液中に添加した。次いで、該懸濁液を5℃で1時間反応させた。その後、フタル酸−n−ブチル42mlを添加して、100℃まで昇温した後、攪拌しながら2時間反応処理した。反応終了後、生成物を80℃のトルエン1300mlで4回洗浄し、新たにトルエン600ml及び四塩化チタン300mlを加えて、攪拌しながら110℃で2時間の反応処理を行った。中間洗浄及び第2処理を、更にもう一度繰り返した。次いで、生成物を40℃のヘプタン1000mlで7回洗浄し、濾過、乾燥して、粉末状の固体成分を得た。この固体成分中のチタン含有量を測定したところ、3.1重量%であった。
<固体触媒成分の調製>
上記で得られた固体成分30gを、ヘプタン300mlに懸濁させ、この懸濁液中に、ジアリルジメチルシラン30mmolを添加して、30℃で2時間攪拌しながら接触させた。次いで、生成物を40℃のヘプタン300mlで2回洗浄し、濾過、乾燥して、粉末状の固体触媒成分を得た。この固体触媒成分を分析したところ、チタンが2.5重量%、マグネシウム原子が20重量%、塩素原子が65重量%であった。また、有機ケイ素化合物成分をガスクロマトグラフィーで分析したところジアリルジメチルシランは重合体として含有しており、ケイ素原子が1.7重量%であった。
<重合用触媒の形成及び重合>
窒素ガスで完全に置換された内容積2.0リットルの攪拌機付オートクレーブに、トリエチルアルミニウム1.32mmol、シクロヘキシルメチルジメトキシシラン0.09mmolおよび前記固体触媒成分をチタン原子として0.0018mmol装入し、重合触媒を形成した。その後、水素ガス1.5リットル、液化プロピレン1.4リットルを装入し、20℃で5分間予備重合を行った後に昇温し、70℃で1〜3時間重合反応を行った。得られた重合時間1時間の重合体について、触媒活性、沸騰ヘプタン不溶解分(HI、重量%)、メルトフローレート(MI、g−PP/10分)で示し、23℃でのキシレン溶解成分量(XS、重量%)を測定した。その結果を第1表に併載する。
固体触媒成分1g当たり、重合時間の1時間、2時間及び3時間当たりの生成重合体量(F)gを示す触媒活性は下式により算出した。
触媒活性=生成重合体(F)g/固体触媒成分g
また、この重合体を沸騰n−ヘプタンで6時間連続抽出した後のn−ヘプタンに不溶解の重合体(G)を乾燥後、重量測定し、重合体中の沸騰ヘプタン不溶解分(HI、重量%))の割合を下式より算出した。
HI(重量%)=(G)g/(F)g×100
なお、重合体のキシレン溶解成分(XS:重量%)は以下の方法で測定した。
キシレン溶解成分の測定方法;4.0gの重合体を200mlのパラキシレン中に装入し、トルエンの沸点下(138℃)で2時間かけて重合体を溶解した。その後23℃まで冷却し、不溶解成分と溶解成分とを濾過分別した。その溶解成分の溶媒を留去、加熱乾燥し、得られた重合体をキシレン可溶成分とし、生成重合体(F)に対する相対値(XS、重量%)で示した。
重合体のメルトフローレートを示すメルトインデックス(MI)の値はASTM D 1238、JIS K 7210に準じて測定した。
ジアリルジメチルシランの代りにトリアリルメチルシランを用いた以外は、実施例1と同じ条件で、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.7重量%、トリアリルメチルシランは単量体及び重合体で含有しており、ケイ素原子が1.6重量%であった。
ジアリルジメチルシランの代りにジアリルジクロロシランを用いた以外は、実施例1と同じ条件で、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.8重量%、ジアリルジクロロシランは重合体として含有しており、ケイ素原子が1.8重量%であった。
ジアリルジメチルシランの代りにアリルジメチルビニルシランを用いた以外は、実施例1と同じ条件で、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.7重量%、アリルジメチルビニルシランは重合体として含有しており、ケイ素原子が1.5重量%であった。
ジアリルジメチルシランの代りにビニルトリメチルシランを用いた以外は、実施例1と同じ条件で、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.7重量%、ビニルトリメチルシランは単量体および重合体で含有しており、ケイ素原子が1.4重量%であった。
ジアリルジメチルシランの代りにジビニルジクロロシランを用いた以外は、実施例1と同じ条件で、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.6重量%、ジビニルジクロロシランは単量体および重合体で含有しており、ケイ素原子が1.6重量%であった。
フタル酸−n−ブチルの代りにフタル酸−i−ブチルを用いた以外は、実施例1と同じ条件で、固体成分の調製、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが3.1重量%、ジアリルジメチルシランは重合体として含有しており、ケイ素原子が1.7重量%であった。
フタル酸−n−ブチルの代りにジ−i−ブチルマロン酸ジエチルを用いた以外は、実施例1と同じ条件で、固体成分の調製、固体触媒成分の調製、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが3.8重量%、ジアリルジメチルシランは重合体として含有しており、ケイ素原子が1.3重量%であった。
<固体成分の調製>
攪拌機を具備し、窒素ガスで充分に置換された、容量1000mlの丸底フラスコに、グリニャール用削状マグネシウム32gを投入した。次いで、該マグネシウムに、ブチルクロライド120g及びジブチルエーテル500mlの混合液を、50℃で4時間かけて滴下し、その後60℃で1時間反応させた。反応終了後、反応溶液を室温に冷却し、濾過により固形分を除去し、マグネシウム化合物溶液を得た。次いで、攪拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、ヘキサン240ml、テトラブトキシチタン5.4g及びテトラエトキシシラン61.4gを装入し均一溶液としたところへ、該マグネシウム化合物溶液150mlを、5℃で4時間かけて滴下し反応させ、その後室温で1時間撹拌した。次いで、該反応溶液を室温で濾過し、液状部分を除去した後、残った固体分をヘキサン240mlで8回洗浄し、減圧乾燥させて、固体生成物を得た。次いで、該固体生成物8.6gを、攪拌機を具備し、窒素ガスで充分に置換された、容量100mlの丸底フラスコに装入し、更にトルエン48ml及びフタル酸ジイソブチル5.8mlを加え、95℃で1時間反応させた。その後、濾過により液状部分を除去した後、残った固体分をトルエン85mlで8回洗浄した。洗浄終了後、フラスコにトルエン21ml、フタル酸ジイソブチル0.48ml及びチタンテトラクロライド12.8mlを加え、95℃で8時間反応させた。反応終了後、95℃で固液分離し、固形分をトルエン48mlで2回洗浄し、次いで上記フタル酸ジイソブチル及びチタンテトラクロライドの混合物による処理を同一条件で再度行い、ヘキサン48mlで8回洗浄し、濾過、乾燥して、粉末状の固体成分を得た。この固体成分中のチタン含有量を測定したところ、2.5重量%であった。
<固体触媒成分の調製>
上記で得られた固体成分を用いた以外は、実施例1と同様に固体触媒成分の調製を行った。この固体触媒成分を分析したところ、チタンが2.1重量%、ジアリルジメチルシランは重合体として含有しており、ケイ素原子が1.6重量%であった。
<重合用触媒の形成及び重合>
上記で得られた固体触媒成分を用いた以外は、実施例1と同様に重合用触媒の形成及び重合を行った。得られた結果を第1表に示す。
<固体成分の調製>
撹拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、無水塩化マグネシウム4.76g、デカン25ml及び2−エチルヘキシルアルコール23.4mlを装入し、130℃で2時間反応させ、均一溶液とした。次いで、該均一溶液に無水フタル酸1.11gを添加し、130℃で1時間反応させた。次いで該溶液を、攪拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに装入され、−20℃に保持されたチタンテトラクロライド200ml中へ、1時間かけて全量滴下した。次いで、該混合溶液を4時間かけて110℃まで昇温した後、フタル酸ジイソブチル2.68mlを添加し、2時間反応させた。反応終了後、濾過により液体部分を除去し、残った固体成分を110℃でデカン及びヘキサンで遊離のチタン化合物が検出されなくなるまで洗浄し、濾過、乾燥して、粉末状の固体成分を得た。この固体成分中のチタン含有量を測定したところ、3.1重量%であった。
<固体触媒成分の調製>
上記で得られた固体成分を用いた以外は、実施例1と同様に固体触媒成分の調製を行った。この固体触媒成分を分析したところ、チタンが2.7重量%、ジアリルジメチルシランは重合体として含有しており、ケイ素原子が1.4重量%であった。
<重合用触媒の形成及び重合>
上記で得られた固体触媒成分を用いた以外は、実施例1と同様に重合用触媒の形成及び重合を行った。得られた結果を第1表に示す。
<固体触媒成分の調製>
実施例1で得られた固体成分30gを、ヘプタン300mlに懸濁させ、この懸濁液中に、ジアリルジメチルシラン30mmolを添加した。その後、30℃で2時間攪拌しながら接触させ、固体触媒成分を得た。この固体触媒成分を分析したところ、チタンが2.5重量%、ジアリルジメチルシランは単量体および重合体として含有しており、ケイ素原子が2.2重量%であった。
<重合用触媒の形成及び重合>
上記で得られた固体触媒成分を用いた以外は、実施例1と同様に重合用触媒の形成及び重合を行った。得られた結果を第1表に示す。
<重合用触媒の形成及び重合>
窒素ガスで十分に乾燥し、次いでプロピレンガスで置換された内容積1800mlの攪拌装置付きステンレス製オートクレーブに、n−ヘプタン700mlを装入し、プロピレンガス雰囲気下に保ちつつ、トリエチルアルミニウム2.10mmol、シクロヘキシルメチルジメトキシシラン0.21mmol、及び実施例1で得られた固体触媒成分をTiとして0.0053mmol装入し、重合用触媒を形成した。次いで、0.1MPaのプロピレン圧をかけ、攪拌を保ちながら20℃で30分間予備的な重合を行った。その後、5.4mmolの水素を装入し、系内のプロピレン圧を0.6MPaとして70℃で1〜3時間重合を継続した。なお、重合が進行するにつれて低下する圧力は、プロピレンのみを連続的に供給することにより補い、重合中一定の圧力に保持した。上記重合方法に従い、プロピレンの重合を行い、生成された重合体をろ別し、減圧乾燥して固体重合体を得た。一方、ろ液を凝縮して重合溶媒に溶存する重合体を得、その量を(M)とし、固体重合体の量を(N)とする。また、得られた重合時間1時間の重合体を沸騰n−ヘプタンで6時間抽出し、n−ヘプタンに不溶解の重合体を得、この量を(P)とする。固体触媒成分当たりの重合活性(Y)を下記式で表す。
(Y)=[(M)+(N)](g)/固体触媒成分量(g)
また、n−ヘプタンに不溶な全ポリマー(HI)を下記式で表わす。
(HI)={(P)(g)/[(M)+(N)](g)}×100
さらに、重合時間1時間の重合体のMIを測定したところ、第1表に示すような結果が得られた。
<重合用触媒の形成及び重合>
窒素ガスで完全に置換された内容積2.0リットルの攪拌機付オートクレーブに、トリエチルアルミニウム2.20mmol、シクロヘキシルメチルジメトキシシラン0.083mmolおよび実施例1で得られた固体触媒成分をチタン原子として0.0055mmol装入し、重合触媒を形成した。その後、0.007MPaの水素圧および0.1MPaのプロピレン圧をかけ、攪拌を保ちながら20℃で10分間予備重合を行った後に昇温した。80℃に達した時点で2.8MPaのプロピレン圧をかけ、80℃で1〜3時間重合反応を行った。得られた重合時間1時間の重合体について、触媒活性、XS、MIを測定したところ、第1表に示すような結果が得られた。重合時間2時間および3時間の重合体は、触媒活性のみ算出し、第1表に併載した。
比較例1
固体触媒成分に代えて固体成分を用いた以外は、実施例1と同じ条件で、重合用触媒の形成及び重合を行った。得られた結果を第1表に示す。
比較例2
<固体触媒成分の調製>
実施例1で得られた固体成分30gを、ヘプタン300mlに懸濁させ、この懸濁液中に、ビニルトリメチルシラン30mmolを添加して、30℃で1時間反応させた。反応終了後、反応溶液を15℃まで冷却し、ヘプタンに希釈したトリエチルアルミニウム90mmolを30分かけて滴下して、その後30℃で2時間攪拌しながら反応させた。次いで、生成物を30℃のヘプタン300mlで7回洗浄し、固体触媒成分を得た。
<重合用触媒の形成及び重合>
上記で得られた固体触媒成分を用いた以外は、実施例1と同様に重合用触媒の形成及び重合を行った。得られた結果を第1表に示す。この固体触媒成分を分析したところ、チタンが2.7重量%、ビニルトリメチルシランは単量体で含有し、ケイ素原子が1.8重量%であった。
比較例3
固体触媒成分に代えて固体成分を用いた以外は、実施例9と同じ条件で、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。
比較例4
固体触媒成分に代えて固体成分を用いた以外は、実施例10と同じ条件で、重合触媒の形成及び重合を行った。得られた結果を第1表に示す。
以上の結果から、本発明の固体触媒成分を用いると、高い立体規則性の重合体を収率良く得られ、かつ活性持続性が良好であることがわかる。
Figure 2007026903
本発明のオレフィン類重合用触媒は、従来の触媒よりもポリマーの立体規則性及び収率を高度に維持でき、かつ重合時の触媒活性の低下が少ない活性持続性に優れる。従って、汎用ポリオレフィンを低コストで提供し得ると共に、高機能性を有するオレフィン類の重合体の製造において有用である。

Claims (13)

  1. マグネシウム、チタン、ハロゲン原子および下記一般式(1);
    〔CH=CH−(CHSiR 4−q (1)
    (式中、Rは水素原子、炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子を示し、同一または異なっていてもよく、nは0または1〜5の整数であり、qは1〜4の整数である。ただし、qが1の場合、Rの少なくとも1つは炭素数2〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子である。)
    で表される有機ケイ素化合物、またはその重合体を含有することを特徴とするオレフィン類重合用固体触媒成分。
  2. 電子供与性化合物を更に含有するものであることを特徴とする請求項1記載のオレフィン類重合用固体触媒成分。
  3. マグネシウム、チタンおよびハロゲン原子を含有する固体成分(a)に、下記一般式(1);
    〔CH=CH−(CHSiR 4−q (1)
    (式中、Rは水素原子、炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子を示し、同一または異なっていてもよく、nは0または1〜5の整数であり、qは1〜4の整数である。ただし、qが1の場合、Rの少なくとも1つは炭素数2〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基またはハロゲン原子である。)
    で表される有機ケイ素化合物(b)を接触させて得られることを特徴とするオレフィン類重合用固体触媒成分。
  4. 前記固体成分(a)が、電子供与性化合物を更に含有するものであることを特徴とする請求項3に記載のオレフィン類重合用固体触媒成分。
  5. 前記固体成分(a)が、マグネシウム化合物(ii)、チタン化合物(ii)および電子供与性化合物(iii)を接触して得られることを特徴とする請求項3に記載のオレフィン類重合用固体触媒成分。
  6. 前記固体成分(a)が、マグネシウム化合物(i)、チタン化合物(ii)、電子供与性化合物(iii)および芳香族炭化水素化合物(iv)を接触して得られることを特徴とする請求項3に記載のオレフィン類重合用固体触媒成分。
  7. 前記マグネシウム化合物(i)が、ジアルコキシマグネシウムである請求項5または6に記載のオレフィン類重合用固体触媒成分。
  8. 前記チタン化合物(ii)が、四塩化チタンである請求項5または6に記載のオレフィン類重合用固体触媒成分。
  9. 前記電子供与性化合物(iii)が、フタル酸ジエステルおよびその誘導体である請求項5または6に記載のオレフィン類重合用固体触媒成分。
  10. 前記有機ケイ素化合物(b)が、ジアリルジアルキルシランであることを特徴とする請求項3に記載のオレフィン類重合用固体触媒成分。
  11. (A)請求項1〜10のいずれか1項に記載の固体触媒成分、および(B)下記一般式(2);R AlQ3−r (2)
    (式中、Rは炭素数1〜4のアルキル基を示し、Qは水素原子あるいはハロゲン原子を示し、rは0<p≦3の実数である。)で表される有機アルミニウム化合物から形成されることを特徴とするオレフィン類重合用触媒。
  12. 請求項11に記載のオレフィン類重合用触媒の存在下に、オレフィン類の重合を行なうことを特徴とするオレフィン類重合体の製造方法。
  13. 前記オレフィン類が、プロピレンであることを特徴とする請求項12に記載のオレフィン類重合体の製造方法。
JP2007533370A 2005-08-31 2006-08-28 オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法 Pending JPWO2007026903A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005250579 2005-08-31
JP2005250579 2005-08-31
PCT/JP2006/317391 WO2007026903A1 (ja) 2005-08-31 2006-08-28 オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法

Publications (1)

Publication Number Publication Date
JPWO2007026903A1 true JPWO2007026903A1 (ja) 2009-03-12

Family

ID=37808987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533370A Pending JPWO2007026903A1 (ja) 2005-08-31 2006-08-28 オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法

Country Status (6)

Country Link
US (1) US20090253874A1 (ja)
EP (1) EP1921093A4 (ja)
JP (1) JPWO2007026903A1 (ja)
KR (1) KR101012905B1 (ja)
BR (1) BRPI0615036A2 (ja)
WO (1) WO2007026903A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234427B1 (ko) 2005-05-31 2013-02-18 도호 티타늄 가부시키가이샤 아미노실란 화합물, 올레핀류 중합용 촉매 성분 및 촉매 및이것을 이용한 올레핀류 중합체의 제조 방법
CN101671408B (zh) * 2008-09-11 2012-01-11 中国石油天然气股份有限公司 丙烯聚合固体催化剂组成
US8546290B2 (en) 2009-01-07 2013-10-01 Toho Titanium Co., Ltd. Solid catalyst component for olefin polymerization, manufacturing method, and catalyst and olefin polymer manufacturing method
US8426537B2 (en) 2009-03-17 2013-04-23 Toho Titanium Co., Ltd. Solid catalyst component and catalyst for polymerization of olefins, and process for production of olefin polymers using same
CN102040691B (zh) * 2009-10-20 2013-02-27 中国石油化工股份有限公司 用于丙烯聚合的催化剂组分及其催化剂
CN102453162B (zh) * 2010-10-22 2013-07-03 中国石油化工股份有限公司 一种聚丙烯催化剂组分及其催化剂
JP5785805B2 (ja) * 2011-07-04 2015-09-30 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法
CN102898558B (zh) * 2011-07-26 2015-06-17 中国石油化工股份有限公司 一种催化剂组分在烯烃聚合中的应用
CN102898557B (zh) * 2011-07-26 2015-06-17 中国石油化工股份有限公司 一种催化剂组分在烯烃聚合中的应用
BR112014001784A2 (pt) * 2011-07-26 2017-02-21 Beijing Res Inst Chemical Ind China Petroleum & Chemical Corp componente de catalisador (a) para polimerização olefínica, processo para preparar o componente de catalisador (a), catalisador para polimerização olefínica, e uso do componente de catalisador ou do catalisador
CN102898555B (zh) * 2011-07-26 2015-06-17 中国石油化工股份有限公司 一种催化剂组分在烯烃聚合中的应用
SG11201408147TA (en) 2012-07-18 2015-02-27 Toho Titanium Co Ltd Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
CN104640886B (zh) 2013-02-27 2018-04-27 东邦钛株式会社 用于聚合烯烃的固体催化剂组分的制造方法、用于聚合烯烃的催化剂和聚合烯烃的制造方法
KR102060850B1 (ko) 2013-02-27 2020-02-11 도호 티타늄 가부시키가이샤 올레핀류 중합용 고체 촉매 성분의 제조 방법, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법
IN2015DN01714A (ja) 2013-02-27 2015-05-29 Toho Titanium Co Ltd
TWI639626B (zh) * 2013-09-30 2018-11-01 中國石油化工科技開發有限公司 Catalyst composition for olefin polymerization and application thereof
CN107207646A (zh) * 2015-01-30 2017-09-26 东邦钛株式会社 烯烃类聚合用固体催化剂成分、烯烃类聚合催化剂的制造方法和烯烃类聚合物的制造方法
US10836846B2 (en) * 2015-10-12 2020-11-17 Institute Of Chemistry, Chinese Academy Of Sciences Olefin polymerization catalyst, preparation method thereof, olefin polymerization catalyst system, use thereof, and method of preparing polyolefin resin
CN108659150B (zh) * 2017-03-30 2020-01-10 中国科学院化学研究所 一种有机硅烷的应用以及聚丙烯及其制备方法
CN108659151B (zh) * 2017-03-30 2020-01-10 中国科学院化学研究所 一种有机硅烷的应用以及聚丙烯及其制备方法
CN115806636B (zh) * 2021-09-15 2024-02-13 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂体系和烯烃聚合方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158704A (ja) * 1986-01-06 1987-07-14 Toho Titanium Co Ltd オレフイン類重合用触媒
JPH02124906A (ja) * 1988-11-04 1990-05-14 Chisso Corp ポリプロピレン製造法
JPH03234707A (ja) * 1990-02-08 1991-10-18 Mitsubishi Petrochem Co Ltd α‐オレフィン重合体の製造
JPH04293910A (ja) * 1991-03-22 1992-10-19 Mitsubishi Petrochem Co Ltd オレフィン重合体の製造
JPH072923A (ja) * 1993-06-15 1995-01-06 Mitsubishi Chem Corp オレフィンの重合法
JPH0725927A (ja) * 1993-07-15 1995-01-27 Mitsubishi Chem Corp オレフィンの重合法
JPH09169808A (ja) * 1995-09-01 1997-06-30 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分および触媒
JP2003261613A (ja) * 2002-03-11 2003-09-19 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒
JP2003292522A (ja) * 2002-04-08 2003-10-15 Japan Polychem Corp α−オレフィン重合用固体触媒及びα−オレフィンの重合方法
JP2003327616A (ja) * 2002-05-15 2003-11-19 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440179A (en) * 1963-09-12 1969-04-22 Owens Illinois Inc Three-component catalytic system including a tetrasubstituted hydrocarbyl silane,and method for the polymerization of olefins
JPH0784499B2 (ja) * 1988-05-02 1995-09-13 チッソ株式会社 オレフィン重合用チタン触媒成分およびその製造方法
JP2554538B2 (ja) * 1989-04-06 1996-11-13 チッソ株式会社 ポリプロピレンの製造方法
JPH07292029A (ja) * 1994-04-28 1995-11-07 Toho Titanium Co Ltd オレフィン類重合用触媒および重合方法
KR100421551B1 (ko) * 2000-12-16 2004-03-09 삼성아토피나주식회사 올레핀 전중합 촉매 및 이를 이용한 올레핀 중합방법
JP2003292523A (ja) * 2002-04-08 2003-10-15 Japan Polychem Corp α−オレフィンの重合用触媒およびこれを用いたα−オレフィン重合体の製造方法
JP2004263076A (ja) * 2003-02-28 2004-09-24 Japan Polypropylene Corp α−オレフィン重合用触媒成分、α−オレフィン重合用触媒及びそれを用いるα−オレフィンの重合方法
JP2005320362A (ja) * 2004-05-06 2005-11-17 Toho Catalyst Co Ltd オレフィン類重合用触媒およびオレフィン類の重合方法
EP1790667A4 (en) * 2004-05-18 2011-05-18 Toho Titanium Co Ltd CATALYST FOR THE POLYMERIZATION OF OLEFINES AND METHOD FOR POLYMERIZING OLEFINES
JP4749726B2 (ja) * 2005-01-18 2011-08-17 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158704A (ja) * 1986-01-06 1987-07-14 Toho Titanium Co Ltd オレフイン類重合用触媒
JPH02124906A (ja) * 1988-11-04 1990-05-14 Chisso Corp ポリプロピレン製造法
JPH03234707A (ja) * 1990-02-08 1991-10-18 Mitsubishi Petrochem Co Ltd α‐オレフィン重合体の製造
JPH04293910A (ja) * 1991-03-22 1992-10-19 Mitsubishi Petrochem Co Ltd オレフィン重合体の製造
JPH072923A (ja) * 1993-06-15 1995-01-06 Mitsubishi Chem Corp オレフィンの重合法
JPH0725927A (ja) * 1993-07-15 1995-01-27 Mitsubishi Chem Corp オレフィンの重合法
JPH09169808A (ja) * 1995-09-01 1997-06-30 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分および触媒
JP2003261613A (ja) * 2002-03-11 2003-09-19 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒
JP2003292522A (ja) * 2002-04-08 2003-10-15 Japan Polychem Corp α−オレフィン重合用固体触媒及びα−オレフィンの重合方法
JP2003327616A (ja) * 2002-05-15 2003-11-19 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒

Also Published As

Publication number Publication date
EP1921093A1 (en) 2008-05-14
WO2007026903A1 (ja) 2007-03-08
EP1921093A4 (en) 2011-07-13
KR20080048480A (ko) 2008-06-02
BRPI0615036A2 (pt) 2012-01-31
US20090253874A1 (en) 2009-10-08
KR101012905B1 (ko) 2011-02-08

Similar Documents

Publication Publication Date Title
JPWO2007026903A1 (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP5348888B2 (ja) オレフィン類重合用触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP5543430B2 (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP4750021B2 (ja) オレフィン類重合用触媒およびオレフィン類の重合方法
JP4749726B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP5253911B2 (ja) アルコキシマグネシウムの合成方法
JP4803636B2 (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体又は共重合体の製造方法
JP4775908B2 (ja) オレフィン類重合用触媒およびこれを用いたオレフィン類重合体の製造方法
JP2007224097A (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP5394747B2 (ja) オレフィン類重合用触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP4947632B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP3989714B2 (ja) オレフィン類重合用触媒およびオレフィン類の重合方法
JP4624115B2 (ja) オレフィン類重合用固体触媒成分および触媒並びにオレフィン類重合体の製造方法
JPH11246620A (ja) オレフィン類重合用固体触媒成分及び触媒
JP4497414B2 (ja) アルコキシマグネシウム被覆固形物の調製方法、オレフィン類重合用固体触媒成分の製造方法および触媒の製造方法
JP5394630B2 (ja) アルコキシマグネシウムの合成方法、オレフィン類重合用固体触媒成分の製造方法
JP3765278B2 (ja) オレフィン類重合用固体触媒成分及び触媒
JP4947622B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP2007224250A (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP3679068B2 (ja) オレフィン類重合用固体触媒成分及び触媒
JP5143472B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP3714913B2 (ja) オレフィン類重合用触媒及びオレフィン類の重合方法
JP3745982B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP3943216B2 (ja) オレフィン類重合用固体触媒成分及び触媒
JP2005187651A (ja) オレフィン類重合用固体触媒成分及び触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130130