JPWO2004042691A1 - サンプルホールド回路およびそれを用いた画像表示装置 - Google Patents

サンプルホールド回路およびそれを用いた画像表示装置 Download PDF

Info

Publication number
JPWO2004042691A1
JPWO2004042691A1 JP2005502149A JP2005502149A JPWO2004042691A1 JP WO2004042691 A1 JPWO2004042691 A1 JP WO2004042691A1 JP 2005502149 A JP2005502149 A JP 2005502149A JP 2005502149 A JP2005502149 A JP 2005502149A JP WO2004042691 A1 JPWO2004042691 A1 JP WO2004042691A1
Authority
JP
Japan
Prior art keywords
potential
circuit
node
type transistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005502149A
Other languages
English (en)
Inventor
飛田 洋一
洋一 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2004042691A1 publication Critical patent/JPWO2004042691A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only

Abstract

このサンプルホールド回路(14)は、データ線(6)と第1ノード(N10)との間に接続された第1スイッチ(15)と、第1ノード(N10)と第2ノード(N20)との間に接続された第2スイッチ(16)と、第2ノード(N20)と共通電位(VCOM)のラインとの間に接続されたキャパシタ(19)と、第2ノード(N20)に等しい電位を第1ノード(N10)および液晶セル(2)の一方電極に与える駆動回路(20)とを備えたものである。第1スイッチ(15)および第2スイッチ(16)は、走査線(4)が「H」レベルの場合に導通する。

Description

この発明はサンプルホールド回路およびそれを用いた画像表示装置に関し、特に、入力電位をサンプリングし、サンプリングした電位を保持および出力するサンプルホールド回路と、それを用いた画像表示装置とに関する。
図76は、従来の液晶表示装置の要部を示す回路図である。図76において、この液晶表示装置では、走査線301とデータ線302の交差部に液晶セル303およびサンプルホールド回路304が配置されている。サンプルホールド回路304は、スイッチ305およびキャパシタ307を含む。スイッチ305は、データ線302とノードN300との間に接続され、走査線301が選択レベルの「H」レベルの期間に導通する。スイッチ305は、寄生抵抗を有する。図76では、寄生抵抗は、スイッチ305に並列接続された抵抗素子306で示されている。キャパシタ307は、ノードN300と共通電位VCOMのラインとの間に接続される。液晶セル303は、ノードN300と共通電位VCOMのラインとの間に接続される。
走査線301が選択レベルの「H」レベルに立上げられると、スイッチ305が導通し、ノードN300はデータ線302の電位に充電される。走査線301が非選択レベルの「L」レベルに立下げられると、スイッチ305が非導通になり、ノードN300の電位はキャパシタ307によって保持される。液晶セル303は、ノードN300の電位に応じた光透過率を示す。
しかし、従来の液晶表示装置では、走査線301が「L」レベルにされた状態でデータ線302の電位が変化したときに、抵抗素子306を介してノードN300とデータ線302との間にリーク電流が流れ、ノードN300の電位が変化してしまう。このため所定周期でノードN300の電位をリフレッシュ(再書込)する必要があり、比較的大きな電力が消費されていた。
それゆえに、この発明の主たる目的は、保持電位の変化が小さいサンプルホールド回路と、それを用いた画像表示装置とを提供することである。
この発明に係るサンプルホールド回路では、その一方電極が入力電位を受け、第1の期間に導通する第1のスイッチング素子と、その一方電極が第1のスイッチング素子の他方電極に接続され、第2の期間に導通する第2のスイッチング素子と、その一方電極が第1のスイッチング素子の他方電極に接続され、その他方電極が所定の電位を受ける第1のキャパシタと、その入力ノードが第2のスイッチング素子の他方電極に接続され、その出力ノードが第1のスイッチング素子の他方電極に接続され、入力ノードの電位に応じた電位を出力ノードに出力する駆動回路とが設けられる。したがって、第1および第2のスイッチング素子を第1および第2の期間に導通させて入力電位をサンプリングした後に、入力電位が変化したときでも、第1のスイッチング素子の他方電極の電位を駆動回路によって保持するので、サンプリングした電位の変化が小さくて済む。
また、この発明に係る画像表示装置では、上記サンプルホールド回路と、その出力電位によって駆動される液晶セルまたは発光素子とが設けられる。この場合は、階調電位または階調電流のリフレッシュの頻度が少なくて済み、消費電力の低減化を図ることができる。
図1は、この発明の実施の形態1によるカラー液晶表示装置の全体構成を示すブロック図である。
図2は、図1に示した水平走査回路の要部を示す回路ブロック図である。
図3は、図1に示した各液晶セルに対応して設けられたサンプルホールド回路の構成を示す回路図である。
図4は、図3に示した駆動回路の構成を示す回路図である。
図5は、図4に示した駆動回路の動作を説明するための回路図である。
図6は、図4に示した駆動回路の動作を説明するためのタイムチャートである。
図7は、実施の形態1の変更例を示す回路図である。
図8は、実施の形態1の他の変更例を示す回路図である。
図9は、実施の形態1のさらに他の変更例を示す回路図である。
図10は、実施の形態1のさらに他の変更例を示す回路図である。
図11は、実施の形態1のさらに他の変更例を示す回路図である。
図12は、この発明の実施の形態2によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図13は、図12に示した駆動回路の構成をより詳細に示す回路図である。
図14は、実施の形態2の変更例を示す回路図である。
図15は、実施の形態2の他の変更例を示す回路図である。
図16は、実施の形態2のさらに他の変更例を示す回路図である。
図17は、この発明の実施の形態3によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図18は、図17に示した駆動回路の動作を示すタイムチャートである。
図19は、実施の形態3の変更例を示す回路図である。
図20は、この発明の実施の形態4によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図21は、実施の形態4の変更例を示す回路図である。
図22は、実施の形態4の他の変更例を示す回路図である。
図23は、実施の形態4のさらに他の変更例を示す回路図である。
図24は、実施の形態4のさらに他の変更例を示す回路図である。
図25は、実施の形態4のさらに他の変更例を示す回路図である。
図26は、この発明の実施の形態5によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図27は、図26に示した駆動回路の動作を示すタイムチャートである。
図28は、実施の形態5の変更例を示す回路図である。
図29は、この発明の実施の形態6によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図30は、実施の形態6の変更例を示す回路図である。
図31は、この発明の実施の形態7によるサンプルホールド回路の駆動回路の構成を示す回路図である。
図32は、図31に示した駆動回路の構成を示す回路図である。
図33は、この発明の実施の形態8によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
図34は、図33に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
図35は、この発明の実施の形態9によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
図36は、図35に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
図37は、図35に示したオフセット補償機能付駆動回路の動作を示す他のタイムチャートである。
図38は、実施の形態9の変更例を示す回路図である。
図39は、実施の形態9の他の変更例を示す回路図である。
図40は、実施の形態9のさらに他の変更例を示す回路図である。
図41は、実施の形態9のさらに他の変更例を示す回路図である。
図42は、実施の形態9のさらに他の変更例を示す回路図である。
図43は、実施の形態9のさらに他の変更例を示す回路図である。
図44は、実施の形態9のさらに他の変更例を示す回路図である。
図45は、実施の形態9のさらに他の変更例を示す回路図である。
図46は、実施の形態9のさらに他の変更例を示す回路図である。
図47は、実施の形態9のさらに他の変更例を示す回路図である。
図48は、実施の形態9のさらに他の変更例を示す回路図である。
図49は、実施の形態9のさらに他の変更例を示す回路図である。
図50は、この発明の実施の形態10によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
図51は、図50に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
図52は、図50に示したオフセット補償機能付駆動回路の動作を示す他のタイムチャートである。
図53は、この発明の実施の形態11によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
図54は、図53に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
図55は、この発明の実施の形態12によるサンプルホールド回路のプッシュ型駆動回路の構成を示す回路図である。
図56は、図55に示したプッシュ型駆動回路の構成をより詳細に示す回路図である。
図57は、実施の形態12の変更例を示す回路図である。
図58は、実施の形態12の他の変更例を示す回路図である。
図59は、この発明の実施の形態13によるサンプルホールド回路のプル型駆動回路の構成を示す回路図である。
図60は、実施の形態13の変更例を示す回路図である。
図61は、この発明の実施の形態14によるサンプルホールド回路の駆動回路の構成を示す回路ブロック図である。
図62は、実施の形態14の変更例を示す回路図である。
図63は、実施の形態14の他の変更例を示す回路図である。
図64は、実施の形態14のさらに他の変更例を示す回路図である。
図65は、図64に示した駆動回路の構成をより詳細に示す回路図である。
図66は、この発明の実施の形態15によるカラー液晶表示装置の要部を示す回路図である。
図67は、この発明の実施の形態16によるカラー液晶表示装置の要部を示す回路図である。
図68は、図67に示した駆動回路の構成を示す回路図である。
図69は、図68に示した駆動回路の動作を示すタイムチャートである。
図70は、実施の形態16の変更例を示す回路図である。
図71は、実施の形態16の他の変更例を示す回路図である。
図72は、実施の形態16のさらに他の変更例を示す回路図である。
図73は、実施の形態16のさらに他の変更例を示す回路図である。
図74は、この発明の実施の形態17による画像表示装置の要部を示す回路ブロック図である。
図75は、この発明の実施の形態18による画像表示装置の要部を示す回路ブロック図である。
図76は、従来の液晶表示装置の要部を示す回路図である。
[実施の形態1]
図1は、この発明の実施の形態1によるカラー液晶表示装置の構成を示すブロック図である。図1において、このカラー液晶表示装置は、液晶パネル1、垂直走査回路7および水平走査回路8を備え、たとえば携帯電話機に設けられる。
液晶パネル1は、複数行複数列に配列された複数の液晶セル2と、各行に対応して設けられた走査線4および共通電位線5と、各列に対応して設けられたデータ線6とを含む。
液晶セル2は、各行において3つずつ予めグループ化されている。各グループの3つの液晶セル2には、それぞれR,G,Bのカラーフィルタが設けられている。各グループの3つの液晶セル2は、1つの画素3を構成している。
垂直走査回路7は、画像信号に従って、複数の走査線4を所定時間ずつ順次選択し、選択した走査線4を選択レベルの「H」レベルにする。走査線4が選択レベルの「H」レベルにされると、その走査線4に対応する各液晶セル2とその液晶セル2に対応するデータ線6とが結合される。
水平走査回路8は、画像信号に従って、垂直走査回路7によって1本の走査線4が選択されている間に複数のデータ線6をたとえば12本ずつ順次選択し、選択した各データ線6に階調電位VGを与える。液晶セル2の光透過率は、階調電位VGのレベルに応じて変化する。
垂直走査回路7および水平走査回路8によって液晶パネル1の全液晶セル2が走査されると、液晶パネル1には1つの画像が表示される。
図2は、図1に示した水平走査回路8の要部を示す回路ブロック図である。図2において、水平走査回路8は、階調電位発生回路10および駆動回路13を含む。階調電位発生回路10および駆動回路13は、水平走査回路8によって同時に選択されるデータ線6の数(この場合は12)だけ設けられている。
階調電位発生回路10は、第1電源電位V1(5V)のノードと第2電源電位V2(0V)のノードとの間に直列接続されたn+1個(ただし、nは自然数である)の抵抗素子11.1〜11.n+1と、n+1個の抵抗素子11.1〜11.n+1の間のn個のノードと出力ノード10aとの間にそれぞれ接続されたn個のスイッチ12.1〜12.nとを含む。
n+1個の抵抗素子11.1〜11.n+1の間のn個のノードには、それぞれn段階の電位が現われる。スイッチ12.1〜12.nは、画像濃度信号φPによって制御され、それらのうちのいずれか1つのみが導通状態にされる。出力ノード10aには、n段階の電位のうちのいずれか1つの段階の電位が階調電位VGとして出力される。駆動回路13は、選択されたデータ線6が階調電位VGになるようにデータ線6に電流を供給する。
図3は、各液晶セル2に対応して設けられたサンプルホールド回路14の構成を示す回路図である。図3において、このサンプルホールド回路14は、スイッチ15,16、キャパシタ19および駆動回路20を含む。スイッチ15,16は、対応のデータ線6と駆動回路20の入力ノードN20との間に直列接続される。スイッチ15,16は、ともに、対応の走査線4が選択レベルの「H」レベルの場合に導通し、対応の走査線4が非選択レベルの「L」レベルの場合に非導通になる。
スイッチ15,16の各々の端子間には寄生抵抗が存在する。図3では、スイッチ15,16の寄生抵抗は、それぞれ抵抗素子17,18で示されている。抵抗素子17,18は、それぞれスイッチ15,16に並列接続されている。スイッチ15,16の各々は、たとえば、N型トランジスタ、またはP型トランジスタ、または並列接続されたN型トランジスタおよびP型トランジスタで構成される。走査線4は、スイッチ15,16に含まれるN型トランジスタのゲートに直接接続される。また走査線4は、スイッチ15,16に含まれるP型トランジスタのゲートにインバータを介して接続される。
キャパシタ19の一方電極はノードN20に接続され、キャパシタ19の他方電極は共通電位線5から共通電位VCOMを受ける。駆動回路20は、入力ノードN20の電位に等しい電位を出力ノードN30に出力する。駆動回路20の出力ノードN30は、スイッチ15と16の間のノードN10に接続されるとともに、液晶セル2の一方電極に接続される。液晶セル2の他方電極には共通電位VCOMが与えられる。
次に、このサンプルホールド回路14の動作について説明する。走査線4が選択レベルの「H」レベルにされると、スイッチ15,16が導通し、ノードN10,N20,N30の電位がデータ線6の電位と同じになる。走査線4が非選択レベルの「L」レベルにされると、ノードN20の電位はキャパシタ19によって保持される。ノードN10の電位は、駆動回路20によってノードN20と同じ電位に保持される。ノードN20の電位は、抵抗素子17,18を介してデータ線6の電位変化に影響を受けて変化しようとするが、ノードN10の電位を駆動回路20によって保持するので、データ線6の電位変化がノードN10の電位に対して及ぼす影響は従来に比べて小さい。
図4は、駆動回路20の構成を示す回路図である。図4において、駆動回路20は、レベルシフト回路21,25、キャパシタ29、プルアップ回路30およびプルダウン回路33を含む。
レベルシフト回路21は、第3電源電位V3(15V)のノードと接地電位GNDのノードとの間に直列接続された抵抗素子22、N型電界効果トランジスタ(以下、N型トランジスタと称す)23およびP型電界効果トランジスタ(以下、P型トランジスタと称す)24を含む。N型トランジスタ23のゲートは、そのドレイン(ノードN22)に接続されている。N型トランジスタ23は、ダイオード素子を構成する。P型トランジスタ24のゲートは、入力ノードN20に接続される。抵抗素子22の抵抗値は、トランジスタ23,24の導通抵抗値よりも十分大きな値に設定されている。
入力ノードN20の電位(階調電位)をVIとし、P型トランジスタのしきい値電圧をVTPとし、N型トランジスタのしきい値電圧をVTNとすると、P型トランジスタ24のソース(ノードN23)の電位V23およびN型トランジスタ23のドレイン(ノードN22)の電位V22はそれぞれ次式(1)(2)で表わされる。
V23=VI+|VTP| …(1)
V22=VI+|VTP|+VTN …(2)
したがって、レベルシフト回路21は、入力電位VIを|VTP|+VTNだけレベルシフトさせた電位V22を出力する。
レベルシフト回路25は、第4電源電位V4(5V)のノードと第5電源電位V5(−10V)との間に直列接続されたN型トランジスタ26、P型トランジスタ27および抵抗素子28を含む。N型トランジスタ26のゲートは、入力ノードN20に接続される。P型トランジスタ27のゲートは、そのドレイン(ノードN27)に接続される。P型トランジスタ27は、ダイオード素子を構成する。抵抗素子28の抵抗値は、トランジスタ26,27の導通抵抗値よりも十分大きな値に設定されている。
N型トランジスタ26のソース(ノードN26)の電位V26およびP型トランジスタ27のドレイン(ノードN27)の電位V27は、それぞれ次式(3)(4)で表わされる。
V26=VI−VTN …(3)
V27=VI−VTN−|VTP| …(4)
したがって、レベルシフト回路25は、入力電位VIを−VTN−|VTP|だけレベルシフトさせた電位V27を出力する。
キャパシタ29は、レベルシフト回路21の出力ノードN22とレベルシフト回路25の出力ノードN27との間に接続される。キャパシタ26は、ノードN22の電位変化をノードN27に伝達するとともに、ノードN27の電位変化をノードN27に伝達する。
プルアップ回路30は、第6電源電位V6(15V)のノードと出力ノードN30との間に直列接続されたN型トランジスタ31およびP型トランジスタ32を含む。出力ノードN30には、負荷容量(液晶セル2およびスイッチ15,16の寄生容量)36が接続されている。N型トランジスタ31のゲートは、レベルシフト回路21の出力電位V22を受ける。P型トランジスタ32のゲートは、そのドレインに接続されている。P型トランジスタ30は、ダイオード素子を構成する。N型トランジスタ31は飽和領域で動作するように第6電源電位V6が設定されているので、N型トランジスタ31はいわゆるソースフォロア動作を行なう。
今、説明の都合上、図5に示すように、P型トランジスタ32のドレイン(ノードN30′)と出力ノードN30との間が非導通状態にあると仮定する。N型トランジスタ31のソース(ノードN31)の電位V31およびP型トランジスタ32のドレイン(ノードN30′)の電位V30′は、それぞれ次式(5)(6)で表わされる。
V31=V22−VTN=VI+|VTP| …(5)
V30′=V31−|VTP|=VI …(6)
図4に戻って、プルダウン回路33は、第7電源電位V7(−10V)のノードと出力ノードN30との間に直列接続されたP型トランジスタ35およびN型トランジスタ34を含む。P型トランジスタ35のゲートは、レベルシフト回路25の出力電位V27を受ける。N型トランジスタ34のゲートは、そのドレインに接続されている。N型トランジスタ34は、ダイオード素子を構成する。P型トランジスタ35は飽和領域で動作するように第7電源電位V7が設定されているので、P型トランジスタ35はいわゆるソースフォロア動作を行なう。
今、説明の都合上、図5に示すように、N型トランジスタ34のドレイン(ノードN30″)と出力ノードN30との間が非導通状態にあると仮定する。P型トランジスタ35のソース(ノードN34)の電位V34およびN型トランジスタ34のドレイン(ノードN30″)の電位V30″は、それぞれ次式(7)(8)で表わされる。
V34=V27+|VTP|=VI−VTN …(7)
V30″=V34+VTN=VI …(8)
数式(7)(8)は、P型トランジスタ32のドレイン(ノードN30′)とN型トランジスタ34のドレイン(ノードN30″)とを接続しても第6電源電位V6のノードと第7電源電位V7のノードとの間には電流は流れず、出力ノードN30の電位VOが入力ノードN20の電位VIと同じになることを示している。したがって、抵抗素子22,28の抵抗値を十分に大きくしておけば、VO=VIとなった定常状態では、貫通電流は極めて小さくなる。
図6は、この駆動回路20の交流動作(遷移状態での動作)を説明するためのタイムチャートである。図6において、初期状態では、VI=VLとされているものとする。これにより、V22,V27,VOは、それぞれ以下のようになっている。
V22=VL+|VTP|+VTN
V27=VL−|VTP|−VTN
VO=VL
時刻t1においてVIがVLからVHに立上げられると、V22,V27,VOは所定時間の経過後にそれぞれ以下のようになる。
V22=VH+|VTP|+VTN
V27=VH−|VTP|−VTN
VO=VH
このレベル変化の過程で、以下の動作が行なわれる。レベルシフト回路25では、時刻t1において入力電位VIがVLからVHに立上げられると、N型トランジスタ26の駆動能力が高くなり、ノードN26の電位V26が急速に上昇する。これにより、P型トランジスタ27のソース−ゲート間電圧が大きくなってP型トランジスタ27の駆動能力も高くなり、ノードN27の電位V27が急速に上昇する。
ノードN27の電位V27が急速に上昇すると、容量結合によってキャパシタ29を介してノードN22の電位V22がVH−VL分だけ急速に上昇する。これに応じて出力ノードN30の電位VOもVLからVHに急速に立上げられる。
また時刻t2において入力電位VIがVHからVLに立下げられると、P型トランジスタ24の駆動能力が高くなり、ノードN23の電位V23が急速に低下する。これにより、N型トランジスタ23のゲート−ソース間電圧が大きくなってN型トランジスタ23の駆動能力も高くなり、ノードN22の電位V22が急速に低下する。
ノードN22の電位V22が急速に低下すると、容量結合によってキャパシタ26を介してノードN27の電位V27がVH−VL分だけ急速に低下する。これに応じて出力ノードN30の電位VOもVHからVLに急速に立下げられる。
また駆動回路20では、定常状態ではプルアップ回路30およびプルダウン回路33に貫通電流は流れず、抵抗素子22,26の抵抗値をトランジスタ23,24,26,27の導通抵抗値よりも十分高くすることによりレベルシフト回路21,25の貫通電流も小さくすることができるので、直流電流の低減化を図ることができる。また、キャパシタ26を設けたので、入力電位VIの変化に対しても迅速に応答することができる。
この実施の形態1では、サンプルホールド回路14において、データ線6と駆動回路20の入力ノードN20との間に2つのスイッチ15,16を直列接続し、駆動回路20によってスイッチ15,16間のノードN10の電位をノードN20の電位に保持するので、データ線6の電位が変化した場合でもノードN10,N20,N30の電位変化を小さく抑えることができる。したがって、ノードN10,N20,N30の電位をリフレッシュする頻度を少なくすることができ、消費電力の低減化を図ることができる。
なお、液晶セル2の駆動電圧の極性を所定周期で切換えることにより、液晶表示装置の低消費電力化を図ることも可能である。液晶セル2の駆動電圧の極性を所定周期で切換える方法としては、たとえば、図2の第1電源電位V1を所定周期で5Vおよび0Vに交互に切換え、第2電源電位V2を0Vおよび5Vに所定周期で交互に切換え、図3の共通電位VCOMを所定周期で0Vおよび5Vに交互に切換える方法がある。
また、サンプルホールド回路14は、液晶表示装置のような画像表示装置において階調電位をサンプルリングおよびホールドすることに用いられるだけでなく、アナログ電位をサンプリングおよびホールドして負荷回路に与える回路としてどのような用途にも使用可能であることは言うまでもない。
また、駆動回路20は、液晶表示装置のような画像表示装置において階調電位を伝達することに用いられるだけでなく、入力されたアナログ電位と同電位になるように出力ノードの電位を制御するアナログバッファとしてどのような用途にも使用可能であることは言うまでもない。
また、駆動回路20の電界効果トランジスタは、MOSトランジスタでもよいし、TFT(薄膜トランジスタ)でもよい。また、抵抗素子は高誘電金属で形成してもよいし、不純物拡散層で形成してもよいし、占有面積低減化のために電界効果トランジスタで形成してもよい。
また、電界効果トランジスタをTFTで構成する場合は、抵抗素子を真性a−Si薄膜で構成するとよい。すなわち、TFTは、ガラス基板上に形成された真性a−Si薄膜の表面にゲート電極を形成し、ゲート電極の上方から所定領域に不純物を注入してゲート電極の一方側および他方側にそれぞれソースおよびドレインを形成したものである。ゲート電極によってマスクされて不純物が注入されていない部分がチャネル領域となる。チャネルができないときのチャネル領域の抵抗値、すなわち非導通時のTFTの抵抗値は、1012Ωオーダになる。
抵抗素子をトランジスタと同じサイズにすると、抵抗素子の抵抗値が非導通時のトランジスタの抵抗値と同程度になり、レベルシフト回路21,25の電源電圧V3,V4−V5が抵抗素子とトランジスタで分圧されて出力レベルV22,V27が低下し、所望の電位が得られなくなる。これを防止するためには、抵抗素子の抵抗値をトランジスタのオフ抵抗値よりも小さくする必要がある。たとえば、抵抗素子の幅をトランジスタの幅の10〜100倍にして抵抗素子の抵抗値をトランジスタの抵抗値の1/10〜1/100倍にするとよい。あるいは、不純物を注入したa−Si膜で抵抗素子を構成すれば、抵抗素子の面積を大きくすることなく、抵抗素子の抵抗値を小さくすることができる。
以下、種々の変更例について説明する。図7の駆動回路40は、図4の駆動回路20からキャパシタ29を除去したものである。負荷容量36の容量値が比較的小さい場合は、トランジスタ23,24,26,27,31,32,34,35の寸法を小さくすることができる。トランジスタ23,27,31,35の寸法を小さくするとトランジスタ23,27,31,35のゲート容量が小さくなり、ノードN22,N27の寄生容量が小さくなる。したがって、キャパシタ29がなくても抵抗素子22,28を介して行われる充放電によってノードN22,N27の電位V22,V27の立上げおよび立下げが可能となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
図8の駆動回路41は、図4の駆動回路20からダイオード接続されたトランジスタ23,27,32,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図4の駆動回路20と同様に使用することができる。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。
図9の駆動回路42は、図8の駆動回路37からさらにキャパシタ29を除去したものである。負荷容量36の容量値が比較的小さい場合は、トランジスタ24,26,31,35の寸法を小さくすることができ、ノードN22,N27の寄生容量を小さくすることができる。したがって、キャパシタ29がなくても抵抗素子22,28を介して行われる充放電によってノードN22,N27の電位V22,V27の立上げおよび立下げが可能となる。この変更例では、キャパシタ29を除去したので、回路の占有面積をさらに小さくすることができる。
図10のカラー液晶表示装置では、各行に対応して2本の走査線4a,4bが設けられる。スイッチ15,16は、それぞれ走査線4a,4bが選択レベルの「H」レベルの場合に導通する。スイッチ15,16が同時にオンされ、スイッチ16がオフされた後にスイッチ15がオフされる。この場合は、駆動回路20の動作の安定化を図ることができる。
図11の画像表示装置は、実施の形態1のカラー液晶表示装置において液晶セル2をP型トランジスタ50および有機EL(エレクトロルミネッセンス)素子51で置換したものである。P型トランジスタ50および有機EL素子51は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。P型トランジスタ50のゲートは、駆動回路20の出力ノードN30に接続される。駆動回路20の出力電位に応じてP型トランジスタ50の導通抵抗値が変化し、有機EL素子51に流れる電流値が変化する。これにより、有機EL素子51の明るさが変化する。有機EL素子51は、複数行複数列に配置されて1枚のパネルを構成し、そのパネルには1つの画像が表示される。
[実施の形態2]
図12は、この発明の実施の形態2によるサンプルホールド回路の駆動回路60の構成を示す回路図である。図12を参照して、この駆動回路60が図4の駆動回路20と異なる点は、レベルシフト回路21,25がそれぞれレベルシフト回路61,63で置換されている点である。レベルシフト回路61はレベルシフト回路21の抵抗素子22を定電流源62で置換し、レベルシフト回路63はレベルシフト回路25の抵抗素子28を定電流源64で置換したものである。
定電流源62は、図13に示すように、P型トランジスタ65,66および抵抗素子67を含む。P型トランジスタ65は第3電源電位V3のラインとノードN22との間に接続され、P型トランジスタ66および抵抗素子67は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続される。P型トランジスタ65,66のゲートは、ともにP型トランジスタ66のドレインに接続される。P型トランジスタ65,66は、カレントミラー回路を構成する。P型トランジスタ66および抵抗素子67には抵抗素子67の抵抗値に応じた値の定電流が流れ、P型トランジスタ65にはP型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。なお、抵抗素子67の一方電極は接地電位GNDのラインに接続されているが、第3電源電位V3からP型トランジスタ66のしきい値電圧の絶対値|VTP|を減算した電位よりも低い他の電源電位のラインに抵抗素子67の一方電極を接続してもよい。また、定電流源としてトランジスタ65,66および抵抗素子67の代りに、ゲートとソースを互いに接続したデプレッション型のトランジスタを第3電源電位V3のラインとノードN22との間に設けてもよい。
また定電流源64は、抵抗素子68およびN型トランジスタ69,70を含む。抵抗素子68およびN型トランジスタ69は第4電源電位V4のラインと第5電源電位V5のラインとの間に直列接続され、N型トランジスタ70はノードN27と第5電源電位V5のラインとの間に接続される。N型トランジスタ69,74のゲートは、ともにN型トランジスタ69のドレインに接続される。N型トランジスタ69,70は、カレントミラー回路を構成する。抵抗素子68およびN型トランジスタ69には抵抗素子68の抵抗値に応じた値の定電流が流れ、N型トランジスタ70にはN型トランジスタ69に流れる定電流の値に応じた値の定電流が流れる。なお、抵抗素子68の一方電極は第4電源電位V4に接続されているが、第5電源電位V5にN型トランジスタ69のしきい値電圧VTNを加算した電位よりも高い他の電源電位のラインに抵抗素子68の一方電極を接続してもよい。また、定電流源としてトランジスタ69,70および抵抗素子68の代りに、ゲートとソースを互いに接続したデプレッション型のトランジスタを第5電源電位V5のラインとノードN27との間に設けてもよい。他の構成および動作は、図4の駆動回路20と同じであるので、その説明は繰返さない。
この実施の形態2では、図4の駆動回路20の抵抗素子22,28をそれぞれ定電流源62,64で置換したので入力電位VIの値に関係なく、入力電位VIに等しい出力電位VOを得ることができる。
以下、この実施の形態2の種々の変更例について説明する。図14の駆動回路71は、図12の駆動回路60からキャパシタ29を除去したものである。この変更例は、負荷容量36の容量値が比較的小さい場合に有効となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
図15の駆動回路72は、図13の駆動回路60からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。ただし、出力電位VOは、VO=VI+|VTP|−VTNとなる。
図16の駆動回路73は、図15の駆動回路72からキャパシタ29を除去したものである。この変更例は、負荷容量36の容量値が比較的小さい場合に有効となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
[実施の形態3]
たとえば図4の駆動回路20において、負荷容量36を充放電する際、トランジスタ31,32,34,35の各々はいわゆるソースフォロア動作を行なう。その際、出力電位VOが入力電位VIに近づくにつれてトランジスタ31,32,34,35の各々のゲート−ソース間電圧が小さくなり、トランジスタ31,32,34,35の電流駆動能力が低下する。トランジスタ32,34についてはそれらのゲート電極幅を広くすることによって駆動能力の低下を防ぐことが可能になるが、トランジスタ31,35のゲート電極幅を広くするとゲート容量が増大し、駆動回路20の動作速度が低下してしまう。この実施の形態7では、この問題の解決が図られる。
図17は、この発明の実施の形態3によるサンプルホールド回路の駆動回路75の構成を示す回路図である。図17を参照して、この駆動回路75は、図14の駆動回路71にキャパシタ76,77を追加したものである。キャパシタ76の一方電極は昇圧信号φBを受け、その他方電極はノードN22に接続される。キャパシタ77の一方電極は昇圧信号φBの相補信号/φBを受け、その他方電極はノードN27に接続される。
図18は、図17に示した駆動回路75の動作を示すタイムチャートである。図18では、理解を容易にするため、ノードN22,N27の電位V22,V27および出力電位VOの遷移時間が実際よりも長く示されている。時刻t1において、入力電位VIが「L」レベルVLから「H」レベルVHに立上げられると、電位V22,V27,VOの各々が徐々に上昇する。上述のとおり、電位V22,V27,VOの各々は、電位変化の周期は比較的速く立上がるが、最終レベルに近づくにつれて上昇速度が遅くなる。
時刻t1から所定時間経過後の時刻t2において、昇圧信号φBが「H」レベルに立上げられるとともに信号/φBが「L」レベルに立下げられる。信号φBが「H」レベルに立上げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ上昇する。信号/φBが「L」レベルに立下げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電位ΔV2だけ低下する。このとき、出力ノードN30に「H」レベルVHを出力する動作を行なっており、N型トランジスタ31の導通抵抗値の方がP型トランジスタ35の導通抵抗値よりも低くなっているので、V22によるレベル上昇作用の方がV27によるレベル降下作用よりも強く働き、出力電位VOは時刻t2から急速に上昇する(V22を昇圧しない場合は破線で示すようになる)。
昇圧された電位V22は、ノードN22からトランジスタ23,24を介して接地電位GNDのラインに電流が流出することにより、VI+|VTP|+VTNまで低下する。また降圧された電位V27は、第4電源電位V4のラインからトランジスタ26,27を介してノードN27に電流が流入することにより、VI−|VTP|−VTNまで上昇する。
時刻t3において、昇圧信号φBが「L」レベルに立下げられるとともに信号/φBが「H」レベルに立上げられる。信号φBが「L」レベルに立下げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ低下する。また信号/φBが「H」レベルに立上げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電圧ΔV2だけ上昇する。V22がΔV1だけ低下してもプルアップ回路30には出力電位VOを低下させる能力がなく、V27がΔV2だけ上昇してもプルダウン回路33には出力電位VOを上昇させる能力がないので、出力電位VOは変化しない。
降圧された電位V22は、第3電源電位V3のラインからP型トランジスタ65を介してノードN22に電流が流入することにより、VI+|VTP|+VTNまで上昇する。ただし、低消費電力化のためP型トランジスタ65の電流駆動能力が小さく設定されているので、ノードN22の電位V22が本来のレベルVI+|VTP|+VTNに上昇するのに必要な時間は、V22がそのレベルVI+|VTP|+VTNに低下するのに必要な時間よりも長くなる。
また昇圧された電位V27は、ノードN27からN型トランジスタ70を介して第5電源電位V5のラインに電流が流出することにより、VI−VTN−|VTP|まで低下する。ただし、低消費電力化のためN型トランジスタの電流駆動能力は小さく設定されているので、ノードN27の電位V27が本来のレベルVI−VTN−|VTP|に低下するのに必要な時間は、V22がそのレベルVI−VTN−|VTP|に上昇するのに必要な時間よりも長くなる。
次に時刻t4において、入力電位VIが「H」レベルVHから「L」レベルVLに立下げられると、電位V22,V27,V4の各々が徐々に低下する。電位V22,V27,V4の各々は、電位変化の初期は比較的速く立下がるが、最終レベルに近づくにつれて下降速度が遅くなる。
時刻t4から所定時間経過後の時刻t5において、昇圧信号φBが「H」レベルに立上げられるとともに信号/φBが「L」レベルに立下げられる。信号φBが「H」レベルに立上げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ上昇する。信号/φBが「L」レベルに立下げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電位ΔV2だけ低下する。このとき、出力ノードN30に「L」レベルVLを出力する動作を行なっており、P型トランジスタ35の導通抵抗値の方がN型トランジスタ31の導通抵抗値よりも低くなっているので、V27によるレベル下降作用の方がV22によるレベル上昇作用よりも強く働き、出力電位VOは時刻t5から急速に低下する(V27を降圧しない場合は破線で示すようになる)。
昇圧された電位V22は、ノードN22からトランジスタ23,24を介して接地電位GNDのラインに電流が流出することにより、VI+|VTP|+VTNまで低下する。また降圧された電位V27は、第4電源電位V4のラインからトランジスタ26,27を介してノードN27に電流が流入することにより、VI−|VTP|−VTNまで上昇する。
時刻t6において、昇圧信号φBが「L」レベルに立下げられるとともに信号/φBが「H」レベルに立上げられる。信号φBが「L」レベルに立下げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ低下する。また信号/φBが「H」レベルに立上げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電圧ΔV2だけ上昇する。ΔV1が低下してもプルアップ回路30には出力電位VOを低下させる能力がなく、ΔV2が上昇してもプルダウン回路33には出力電位VOを上昇させる能力がないので、出力電位VOは変化しない。
降圧された電位V22は、第3電源電位V3のラインからP型トランジスタ65を介してノードN22に電流が流入することにより、VI+|VTP|+VTNまで上昇する。ただし、低消費電力化のためP型トランジスタ65の電流駆動能力は小さく設定されているので、ノードN22の電位V22が本来のレベルVI+|VTP|+VTNに上昇するのに必要な時間は、V22がそのレベルVI+|VTP|+VTNに低下するのに必要な時間よりも長くなる。
また昇圧された電位V27は、ノードN27からN型トランジスタ70を介して第5電源電位VOのラインに電流が流出することにより、VI−VTN−|VTP|まで低下する。ただし、低消費電力化のためN型トランジスタ70の電流駆動能力は小さく設定されているので、ノードN27の電位V27が本来のレベルVI−VTN−|VTP|に低下するのに必要な時間は、V22がそのレベルVI−VTN−|VTP|に上昇するのに必要な時間よりも長くなる。
この実施の形態3では、入力電位VIが「L」レベルVLから「H」レベルVHに立上げられたことに応じてノードN22の電位V22を本来到達すべき電位VI+|VTP|+VTNよりも高い電位に昇圧するので、出力電位VOの上昇速度を速くすることができる。また、入力電位VIが「H」レベルVHから「L」レベルVLに立下げられたことに応じてノードN27の電位V27も本来到達すべき電位VI−|VTP|−VTNよりも低い電位に降圧するので、出力電位VOの下降速度を速くすることができる。したがって、駆動回路75の応答速度の高速化を図ることができる。
図19は、この実施の形態3の変更例による駆動回路78の構成を示す回路図である。この駆動回路78は、図17の駆動回路75のトランジスタ23,27,32,34を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
[実施の形態4]
図20は、この発明の実施の形態4によるサンプルホールド回路の駆動回路80の構成を示す回路図である。図20を参照して、この駆動回路80は、図14の駆動回路71にP型トランジスタ81およびN型トランジスタ82を追加したものである。P型トランジスタ81は、第3電源電位V3のラインとノードN22との間に接続され、そのゲートはプルアップ信号/φPを受ける。N型トランジスタ82は、ノードN27と第5電源電位V5のラインとの間に接続され、そのゲートはプルアップ信号/φPの相補信号φPを受ける。
信号φP,/φPは、実施の形態3で示した信号φB,/φBと同様のタイミングでレベル変化される。すなわち、入力信号VIが「L」レベルVLから「H」レベルVHに立上げられてから所定時間経過後に、信号/φP,φPがそれぞれパルス的に「L」レベルおよび「H」レベルにされて、P型トランジスタ81およびN型トランジスタ82がパルス的に導通する。これにより、ノードN22の電位V22は、第3電源電位V3をトランジスタ81とトランジスタ23,24とで分圧した電位に昇圧された後、所定値VI+|VTP|+VTNになる。また、ノードN27の電位V27は、第4電源電位V4と第5電源電位V5の間の電圧V4−V5をトランジスタ26,27とトランジスタ82とで分圧した電位に降圧された後、所定値VI−VTN−|VTP|になる。このとき、実施の形態3でも述べたように、N型トランジスタ31による充電作用の方がP型トランジスタ35による放電作用よりも強く働き、出力電位VOは急速に入力電位VIに等しくなる。入力電位VIが「H」レベルVHから「L」レベルVLに立下げられた場合は、P型トランジスタ35による放電作用の方がN型トランジスタ31による充電作用よりも強く働き、出力電位VOは急速に入力電位VIに等しくなる。
この実施の形態4でも、実施の形態3と同じ効果が得られる。
以下、この実施の形態4の種々の変更例について説明する。図21の駆動回路83は、図20の駆動回路80からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
図22の駆動回路85は、図20の駆動回路80にN型トランジスタ86およびP型トランジスタ87を追加したものである。N型トランジスタ86は、P型トランジスタ24のソースと接地電位GNDのラインとの間に接続され、そのゲートはプルアップ信号/φPを受ける。P型トランジスタ87は、第4電源電位V4のラインとN型トランジスタ26のドレインとの間に接続され、そのゲートはプルアップ信号/φPの相補信号φPを受ける。この変更例では、P型トランジスタ81の導通時にN型トランジスタ86が非導通になるので、第3電源電位V3のラインからトランジスタ81,23,24,86を介して接地電位GNDのラインに貫通電流が流れるのを防止することができる。また、N型トランジスタ82の導通時にP型トランジスタ87が非導通になるので、第4電源電位V4のラインからトランジスタ87,26,27,82を介して第5電源電位V5のラインに貫通電流が流れるのを防止することができる。したがって、回路61,63の消費電流が小さくてすむ。
図23の駆動回路88は、図22の駆動回路85からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOがVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
図24の駆動回路90は、図20の駆動回路80のP型トランジスタ24のソースに接地電位GNDの代わりに信号φPを与えるとともにN型トランジスタのドレインに第4電源電位VOの代わりに信号/φPを与えたものである。この変更例では、P型トランジスタ81の導通時にP型トランジスタ24のドレインを「H」レベルにするので、トランジスタ81,23,24に貫通電流が流れるのを防止することができる。また、N型トランジスタ82の導通時にN型トランジスタ26のドレインを「L」レベルにするので、トランジスタ26,27,82に貫通電流が流れるのを防止することができる。したがって、回路61,63の消費電流の低減化を図ることができる。
図25の駆動回路91は、図24の駆動回路90からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
[実施の形態5]
図26は、この発明の実施の形態5によるサンプルホールド回路の駆動回路95の構成を示す回路図である。図26を参照して、この駆動回路95が図17の駆動回路75と異なる点は、レベルシフト回路61,63がそれぞれレベルシフト回路96,102で置換されている点である。
レベルシフト回路96は、レベルシフト回路61にP型トランジスタ97,98およびN型トランジスタ99〜101を追加したものである。P型トランジスタ97は、N型トランジスタ99,100およびP型トランジスタ98は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続され、N型トランジスタ101は第3電源電位V3のラインとノードN22との間に接続される。P型トランジスタ97のゲートは、P型トランジスタ66のゲートに接続される。したがって、トランジスタ97,99,100,98には、P型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。N型トランジスタ99,100のゲートは、それぞれそれらのドレインに接続される。N型トランジスタ99,100の各々はダイオードを構成する。P型トランジスタ98のゲートは、入力電位VIを受ける。トランジスタ97,99の間のノードの電位V99は、V99=VI+|VTP|+2VTNとなる。V99は、N型トランジスタ101のゲートに与えられる。N型トランジスタ101は、ノードN22をV99−VTN=VI+|VTP|+VTNに充電する。
レベルシフト回路102は、レベルシフト回路63にN型トランジスタ103,104およびP型トランジスタ105〜107を追加したものである。N型トランジスタ103、P型トランジスタ105,106およびN型トランジスタ104は、第4電源電位V4のラインと第5電源電位V5のラインとの間に直列接続され、P型トランジスタ107はノードN27と第5電源電位V5のラインとの間に接続される。N型トランジスタ103のゲートは、入力電位VIを受ける。P型トランジスタ105,106のゲートは、それぞれそれらのドレインに接続される。P型トランジスタ105,106の各々は、ダイオードを構成する。N型トランジスタ104のゲートは、N型トランジスタ69のゲートに接続される。N型トランジスタ104には、N型トランジスタ69に流れる定電流の値に応じた値の定電流が流れる。MOSトランジスタ106と104の間のノードの電位V106は、V106=VI−VTN−2|VTP|となる。V106は、P型トランジスタ107のゲートに与えられる。P型トランジスタ107は、ノードN27をV106−|VTP|=VI−VTN−|VTP|に放電する。他の構成および動作は、図17の駆動回路75と同じであるので、その説明は繰返さない。
図27は、図26に示した駆動回路95の動作を示すタイムチャートであって、図18と対比される図である。図27を参照して、この駆動回路95では、トランジスタ97〜101によってノードN22をVI+|VTP|+VTNに充電するので、ノードN22の電位V22が所定値VI+|VTP|+VTNよりも低下したとき(時刻t3,t6)、ノードN22の電位V22を急速に所定値VI+|VTP|+VTNに戻すことができる。また、トランジスタ103〜107によってノードN27をVI−VTN−|VTP|に放電するので、ノードN27の電位V27が所定値VI−VTN−|VTP|よりも上昇したとき(時刻t3,t6)、ノードN27の電位V27を急速に所定値VI−VTN−|VTP|に戻すことができる。したがって、回路の応答速度の高速化を図ることができる。
図28は、この実施の形態5の変更例を示す回路図である。この駆動回路108は、図26の駆動回路95からN型トランジスタ23,34,100およびP型トランジスタ27,32,105を除去したものである。この変更例では、トランジスタ23,27,32,34,100,105を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
[実施の形態6]
図29は、この発明の実施の形態6によるサンプルホールド回路の駆動回路110の構成を示す回路図である。図29において、この駆動回路110が図26の駆動回路95と異なる点は、レベルシフト回路96,102がレベルシフト回路111,112で置換されている点である。
レベルシフト回路111は、レベルシフト回路96からP型トランジスタ97,98およびN型トランジスタ100を除去し、N型トランジスタ99をP型トランジスタ65のソースとノードN22との間に接続したものである。N型トランジスタ99のゲートは、N型トランジスタ99のドレインおよびN型トランジスタ101のゲートに接続される。N型トランジスタ99,101のゲートの電位V99は、V99=VI+|VTP|+2VTNとなる。N型トランジスタ101は、ノードN22をV99−VTN=VO+|VTP|+VTNに充電する。
レベルシフト回路112は、レベルシフト回路102からN型トランジスタ103,104およびP型トランジスタ105を除去し、P型トランジスタ106をノードN27とN型トランジスタ70のドレインとの間に接続したものである。P型トランジスタ106のゲートは、そのドレインおよびP型トランジスタ107のゲートに接続される。P型トランジスタ106,107のゲートの電位V106は、V106=VI−VTN−2|VTP|となる。P型トランジスタ107は、ノードN27をV106+|VTP|=VI−VTN−|VTP|に放電する。他の構成および動作は、図26の駆動回路95と同じであるので、その説明は繰返さない。
この実施の形態6では、実施の形態5と同じ効果が得られる他、第3電源電位V3のラインからトランジスタ97,99,100,98を介して接地電位GNDのラインに流れる電流、および第4の電源電位VOのラインからトランジスタ103,105,106,104を介して第5電源電位V5のラインに流れる電流を削減できるので、消費電流が小さくてすむ。また、トランジスタ97,98,100,103〜105を除去したので、回路の占有面積が小さくてすむ。
図30は、この実施の形態6の変更例を示す回路図である。この駆動回路113は、図29の駆動回路110からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
[実施の形態7]
図31は、この発明の実施の形態7による半導体集積回路装置の要部を示す回路ブロック図である。図31において、この半導体集積回路装置は、j個(ただし、jは2以上の整数である)の駆動回路115.1〜115.jを備える。
駆動回路115.1は、図32に示すように、図13の駆動回路60のレベルシフト回路61,63をそれぞれレベルシフト回路116,117で置換したものである。レベルシフト回路116はレベルシフト回路61からP型トランジスタ66および抵抗素子67を除去したものであり、レベルシフト回路117はレベルシフト回路63から抵抗素子68およびN型トランジスタ69を除去したものである。トランジスタ65,70のゲートは、それぞれバイアス電位VBP,VBNを受ける。他の駆動回路115.2〜115.jの各々も駆動回路115.1と同じ構成である。
図31に戻って、この半導体集積回路装置では、バイアス電位VBPを生成するためのP型トランジスタ66および抵抗素子67とバイアス電位VBNを生成するための抵抗素子68およびN型トランジスタ69とが駆動回路115.1〜115.jに共通に設けられる。
P型トランジスタ66および抵抗素子67は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続され、P型トランジスタ66のゲートはそのドレイン(ノードN66)に接続される。ノードN66には、バイアス電位VBPが現れる。ノードN66と接地電位GNDのラインとの間には、バイアス電位VBPを安定化させるためのキャパシタ118が接続される。駆動回路115.1〜115.jの各々のP型トランジスタ65には、P型トランジスタ66に流れる定電流に応じた値の定電流が流れる。
抵抗素子68およびN型トランジスタ69は第4電源電位V4のラインと第5電源電位V5のラインとの間に接続され、N型トランジスタ69のゲートはそのドレイン(ノードN68)に接続される。ノードN68には、バイアス電位VBNが現れる。ノードN68と接地電位GNDのラインとの間には、バイアス電位VBNを安定化させるためのキャパシタ119が接続される。駆動電位115.1〜115.jの各々のN型トランジスタ70は、N型トランジスタ69に流れる定電流に応じた値の定電流が流れる。
この実施の形態7では、実施の形態2と同じ効果が得られる他、バイアス電位VBP,VBNを生成するための回路を駆動回路115.1〜115.jに共通に設けたので、駆動回路115.1〜115.j1つ当りの占有面積が小さくてすむ。
[実施の形態8]
図33は、この発明の実施の形態8によるサンプルホールド回路のオフセット補償機能付駆動回路120の構成を示す回路ブロック図である。図33において、このオフセット補償機能付駆動回路120は、駆動回路121、キャパシタ122およびスイッチS1〜S4を含む。駆動回路121は、実施の形態1〜11で示した駆動回路のうちのいずれかの駆動回路である。キャパシタ122およびスイッチS1〜S4は、駆動回路121のトランジスタのしきい値電圧のばらつきなどにより駆動回路121の入力電位と出力電位の間に電位差すなわちオフセット電圧VOFが生じた場合に、このオフセット電圧VOFを補償するためのオフセット補償回路を構成する。
すなわち、スイッチS1は入力ノードN120と駆動回路121の入力ノードN20との間に接続され、スイッチS4は出力ノードN121と駆動回路121の出力ノードN30との間に接続される。キャパシタ122およびスイッチS2は、駆動回路121の入力ノードN20と出力ノードN30との間に直列接続される。スイッチS3は、入力ノードN120とキャパシタ122およびスイッチS2間のノードN122との間に接続される。スイッチS1〜S4の各々は、P型トランジスタでもよいし、N型トランジスタでもよいし、P型トランジスタおよびN型トランジスタを並列接続したものでもよい。スイッチS1〜S4の各々は、制御信号(図示せず)によってオン/オフ制御される。
今、駆動回路121の出力電位が入力電位よりもオフセット電圧VOFだけ低い場合について説明する。図34に示すように、初期状態では、すべてのスイッチS1〜S4はオフ状態にされている。ある時刻t1においてスイッチS1,S2がオン状態にされると、駆動回路121の入力ノードN20の電位V20はV20=VIになり、駆動回路121の出力電位V30およびノードN122の電位V122はV30=V122=VI−VOFとなり、キャパシタ122はオフセット電圧VOFに充電される。
次に時刻t2においてスイッチS1,S2がオフ状態にされると、オフセット電圧VOFはキャパシタ122に保持される。次いで時刻t3においてスイッチS3がオン状態にされると、ノードN122の電位V122はV122=VIになり、駆動回路121の入力電位V20はV20=VI+VOFとなる。この結果、駆動回路121の出力電位V30はV30=V20−VOF=VIとなり、駆動回路121のオフセット電圧VOFは打消されたことになる。次に時刻t4においてスイッチS4がオン状態にされると、出力電位VOがVO=VIとなり負荷に供給される。
この実施の形態8では、駆動回路121のオフセット電圧VOFを打消すことができ、出力電位VOと入力電位VIを一致させることができる。
なお、スイッチS4は必ずしも必要でない。ただし、スイッチS4を設けないと、負荷容量36の容量値が大きい場合は時刻t1においてスイッチS1,S2をオン状態にしてからキャパシタ122の端子間電圧VOFが安定するまでの時間が長くなる。
[実施の形態9]
図35は、この発明の実施の形態9によるサンプルホールド回路のオフセット補償機能付駆動回路125の構成を示す回路ブロック図である。図35において、このオフセット補償機能付駆動回路125は、図12の駆動回路60にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bを追加したものである。
スイッチS1a,S1bは、それぞれ入力ノードN120とトランジスタ24,26のゲート(ノードN20a,N20b)との間に接続される。スイッチS4a,S4bは、それぞれ出力ノードN121とトランジスタ32,34のドレイン(ノードN30a,N30b)との間に接続される。キャパシタ122aおよびスイッチS2aは、ノードN20aとN30aの間に直列接続される。キャパシタ122bおよびスイッチS2bは、ノードN20bとN30bの間に直列接続される。スイッチS3aは、入力ノードN120とキャパシタ122aおよびスイッチS2a間のノードN122aとの間に接続される。スイッチ3bは、入力ノードN120とキャパシタ122bおよびスイッチS2b間のノードN122bとの間に接続される。キャパシタ126a,126bの一方電極はそれぞれノードN30a,N30bに接続され、それらの他方電極はそれぞれリセット信号/φRおよびその相補信号φRを受ける。
図36は、図35に示したオフセット補償機能付駆動回路125の動作を示すタイムチャートである。定電流源62およびトランジスタ23,24,31,32からなる充電回路と、定電流源64およびトランジスタ26,27,34,35からなる放電回路とは、充電と放電の違いはあるが同様の動作をするので、図36では充電回路の動作のみについて説明する。今、N型トランジスタ31のしきい値電圧VTNがN型トランジスタのしきい値電圧VTNよりもVOFaだけ大きいために充電回路側にオフセット電圧VOFaがあり、放電回路側にオフセット電圧VOFbはないものとする。
初期状態では、スイッチS1a〜S3aがオフ状態にされるとともにスイッチS4aがオン状態にされ、ノードN20a,N122a,N30a,N121には前回の電位VI′が保持されている。時刻t1においてスイッチS1a,S2aがオン状態にされると、ノードN20a,N122a,N30a,N121の電位V20a,V122a,V30a,VOはともに入力電位VIに等しい電位になる。また、ノードN22の電位V22は、V22=VI+|VTP|+VTNとなる。N型トランジスタ31のしきい値電圧VTN′がN型トランジスタ23のしきい値電圧VTNよりもVOFaだけ高いにもかかわらずV20a,V122a,V30a,VOがともにVIに等しい電位になるのは、出力ノードN121は放電回路によって入力電位VIまで放電されるが、それ以下には放電されないからである。
次に、時刻t2においてスイッチS4aがオフ状態にされて、充電回路の出力ノードN30aと放電回路の出力ノードN30bとが電気的に切離される。次いで時刻t3においてリセット信号/φRが「H」レベルから「L」レベルに立下げられると、キャパシタ126aを介して容量結合により、ノードN30a,N122aの電位V30a,V122aが所定電圧だけ降圧される。これにより、トランジスタ31,32が導通してノードN30a,N122aの電位V30a,V122aがVI−VOFaまで上昇し、キャパシタ122aがVOFaに充電される。
ノードN30a,N122aの電位V30a,V122aが安定した後、時刻t4においてスイッチS1a,S2aがオフ状態にされ、さらに時刻t5においてスイッチS3aがオン状態にされると、入力電位VIにオフセット電圧VOFaを加算した電位VI+VOFaがノードN20aに与えられる。これにより、ノードN22の電位V22はV22=VI+|VTP|+VTN+VOFaとなり、ノードN30a,N122aの電位V30a,V122aは入力電位VIと同じレベルになる。
充電回路の出力電位V30aは時刻t1からV30a=VIになるが、時刻t1〜t2の期間は配線容量などによって保持された電位にすぎず、負極性のノイズがあった場合はV30aはVI−VOFまで低下してしまう。これに対して時刻t5以降は、負極性のノイズがあってもトランジスタ31,32によって充電されるので、V30aはVIに維持される。
次に時刻t6においてスイッチS3aがオフ状態にされ、さらに時刻t7においてスイッチS4aがオン状態にされると、負荷容量36が駆動回路によって駆動される。時刻t8においてリセット信号/φRが「H」レベルに立上げられると、初期状態に戻る。この時刻t8では、出力インピーダンスが十分に低くなっているので、リセット信号/φRが「H」レベルに立上げられても出力電位VOはほとんど変化しない。放電回路側でも同様の動作が行なわれ、出力電位VOはVIに維持される。
図37は、図35に示したオフセット補償機能付駆動回路125の動作を示す他のタイムチャートである。定電流源62およびトランジスタ23,24,31,32からなる充電回路と、定電流源64およびトランジスタ26,27,34,35からなる放電回路とは、充電と放電の違いはあるが同様の動作をするので、図37では放電回路の動作のみについて説明する。今、P型トランジスタ35のしきい値電圧の絶対値|VTP′|がP型トランジスタ27のしきい値電圧の絶対値|VTP|よりもVOFbだけ大きいために放電回路側にオフセット電圧VOFbがあり、充電回路側にはオフセット電圧VOFaはないものとする。
初期状態では、スイッチS1b〜S3bがオフ状態にされるとともにスイッチS4bがオン状態にされ、ノードN20b,N122b,N30b,N121には前回の電位VI′が保持されている。時刻t1においてスイッチS1b,S2bがオン状態にされると、ノードN20b,N122b,N30b,N121の電位V20b,V122b,V30b,VOはともに入力電位VIに等しい電位になる。また、ノードN27の電位V27は、V27=VI−|VTP|−VTNとなる。P型トランジスタ35のしきい値電圧の絶対値|VTP′|がV型トランジスタ27のしきい値電圧の絶対値|VTP|よりもVOFbだけ高いにもかかわらずV20b,V122b,V30b,VOはともにVIに等しい電位になるのは、出力ノードN121が充電回路によって入力電位VIまで充電されるが、それ以上には充電されないからである。
次に、時刻t2においてスイッチS4bがオフ状態にされて、充電回路の出力ノードN30aと放電回路の出力ノードN30bとが電気的に切離される。次いで時刻t3において信号φRが「L」レベルから「H」レベルに立上げられると、キャパシタ126bを介して容量結合により、ノードN30b,N122bの電位V30b,V122bが所定電圧だけ昇圧される。これにより、トランジスタ34,35が導通してノードN30b,N122bの電位V30b,V122bがVI+VOFbまで低下し、キャパシタ122bがVOFbに充電される。
ノードN30b,N122bの電位V30b,V122bが安定した後、時刻t4においてスイッチS1b,S2bがオフ状態にされ、さらに時刻t5においてスイッチS3bがオン状態にされると、入力電位VIからオフセット電圧VOFbを減算した電位VI−VOFがノードN20bに与えられる。これにより、ノードN27の電位V27がV27=VI−VTN−|VTP|−VOFbとなり、ノードN30b,V122bの電位V30b,V122bは入力電位VIと同レベルになる。
放電回路の出力電位V30bは時刻t1からV30b=VIになるが、時刻t1〜t2の期間は配線容量などによって保持された電位にすぎず、正極性のノイズがあった場合はV30bはVI+VOFbまで上昇してしまう。これに対して時刻t5以降は、正極性のノイズがあってもトランジスタ34,35によって放電されるので、V30bはVIに維持される。
次に時刻t6においてスイッチS3bがオフ状態にされ、さらに時刻t7においてスイッチS4bがオン状態にされると、負荷容量36が駆動回路によって駆動される。時刻t8において信号φRが「L」レベルに立下げられると、初期状態に戻る。この時刻t8では、出力インピーダンスが低くなっているので、信号φRが「L」レベルに立上げられても出力電位Vはほとんど変化しない。放電回路側でも同様の動作が行なわれ、出力電位VOはVIに維持される。
以下、この実施の形態9の種々の変更例について説明する。図38のオフセット補償機能付駆動回路127は、図35のオフセット補償機能付駆動回路125からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
図39のオフセット補償機能付駆動回路130は、図35のオフセット補償機能付駆動回路125のキャパシタ126a,126bをそれぞれN型トランジスタ131aおよびP型トランジスタ131bで置換したものである。N型トランジスタ131aは、第8電源電位V8のラインとノードN30aとの間に接続され、そのゲートはリセット信号φR′を受ける。P型トランジスタ131bは、ノードN30bと第9電源電位V9のラインとの間に接続され、そのゲートはリセット信号φR′の相補信号/φR′を受ける。
通常時は信号φR′,/φR′がそれぞれ「L」レベルおよび「H」レベルにされており、N型トランジスタ131aおよびP型トランジスタ131bはともに非導通にされている。図36および図37の時刻t3において、信号φR′が所定時間だけパルス的に「H」レベルにされるとともに信号/φR′が所定時間だけパルス的に「L」レベルにされる。これにより、N型トランジスタ131aがパルス的に導通してノードN30aの電位V30aが第8電源電位V8に低下されるとともに、P型トランジスタ131bがパルス的に導通してノードN30bの電位V30bが第9電源電位V9に上昇される。この後、図36で説明した場合ではノードN30aがVI−VOFに充電され、図37で説明した場合ではノードN30bがVO+VOFに放電される。この変更例では、図36および図37の時刻t8においても、出力電位VOにノイズが発生することはない。なお、信号φR′,/φR′のパルス幅は必要最小限の値に設定される。
図40のオフセット補償機能付駆動回路132は、図20の駆動回路80にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号/φPはパルス的に「L」レベルにされるとともに信号φPがパルス的に「H」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
図41のオフセット補償機能付駆動回路133は、図40のオフセット補償機能付駆動回路132からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
図42のオフセット補償機能付駆動回路135は、図22のオフセット補償機能付駆動回路85にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。この変更例では、信号/φP,φPがそれぞれ「L」レベルおよび「H」レベルになってトランジスタ81,82が導通したときに、同時にトランジスタ86,87が非導通になるので、貫通電流が流れるのを防止することができ、消費電流が小さくてすむ。
図43のオフセット補償機能付駆動回路136は、図42のオフセット補償機能付駆動回路135からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積は小さくてすむ。
図44のオフセット補償機能付駆動回路140は、図24の駆動回路90にキャパシタ122a,122b,126a,126bおよびスイッチS1〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。この変更例では、信号/φPが「L」レベルにされてP型トランジスタ81が導通したときにP型トランジスタ24のドレインが「H」レベルにされ、信号φPが「H」レベルにされてN型トランジスタ82が導通したときにN型トランジスタ26のドレインが「L」レベルにされるので、貫通電流が流れることを防止することができ、消費電力が小さくてすむ。
図45のオフセット補償機能付駆動回路141は、図44のオフセット補償機能付駆動回路140からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
図46のオフセット補償機能付駆動回路145は、図26のオフセット補償機能付駆動回路95にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号φBがパルス的に「H」レベルにされるとともに信号/φBがパルス的に「L」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
図47のオフセット補償機能付駆動回路146は、図46のオフセット補償機能付駆動回路145からN型トランジスタ23,34,100およびP型トランジスタ27,32,105を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
図48のオフセット補償機能付駆動回路150は、図29の駆動回路110にキャパシタ122a,122b,126a,126bおよびスイッチS1〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号φBがパルス的に「H」レベルにされるとともに信号/φBがパルス的に「L」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
図49のオフセット補償機能付駆動回路151は、図48のオフセット補償機能付駆動回路150からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
[実施の形態10]
図50は、この発明の実施の形態10によるサンプルホールド回路のオフセット補償機能付駆動回路155の構成を示す回路図である。図50において、このオフセット補償機能付駆動回路155が図46のオフセット補償機能付駆動回路145と異なる点は、スイッチS5およびキャパシタ156が追加されている点と、昇圧信号φB,/φBがそれぞれ昇圧信号φB1,/φB1で置換されている点である。
スイッチS5は、スイッチS4a,S4b間のノードと出力ノードN121との間に接続される。キャパシタ156は、スイッチS4a,S4b間のノードと接地電位GNDのラインとの間に接続される。キャパシタ156の容量値は、負荷容量36の容量値よりも小さく設定されている。
図51は、図50に示したオフセット補償機能付駆動回路155の動作を示すタイムチャートであって、図36と対比される図である。ここでも充電回路側の動作のみについて説明する。図51を参照して、時刻t9まではスイッチS5がオフ状態にされており、負荷容量36が電気的に切離されているので、たとえば時刻t1〜t2において電位V22,V30a,V122aが迅速に入力電位VIに到達する。
時刻t9においてスイッチS5がオン状態にされると、出力ノードN121に接続されたデータ線の電位VOに応じてスイッチS4a,S4b間の電位V156が変化する。図51では、データ線の電位VOがV156よりも低かった場合が示されており、時刻t9において電位V156が低下した後、トランジスタ31,32によって電流が供給されて電位V156が徐々に上昇する。次いで時刻t10において信号φB1が「L」レベルから「H」レベルに立上げられてノードN22の電位V22がパルス的に上昇し、N型トランジスタ31を流れる電流が増加して電位V156=VOが急速に入力電位VIに到達する。
図52は、図50に示したオフセット補償機能付駆動回路155の動作を示す他のタイムチャートであって、図37と対比される図である。ここでも、放電回路側の動作のみについて説明する。図52を参照して、時刻t9まではスイッチS5がオフ状態にされており、負荷容量36が電気的に切離されているので、たとえば時刻t1〜t2において電位V27,V30b,V122bが迅速に入力電位VIに到達する。
時刻t9においてスイッチS5がオン状態にされると、出力ノードN121に接続されたデータ線の電位VOに応じてスイッチS4a,S4b間の電位V156が変化する。図52では、データ線の電位VOがV156よりも高かった場合が示されており、時刻t9において電位V156が上昇した後、トランジスタ34,35によって電流が排出されて電位V156が徐々に低下する。
次いで時刻t10において信号/φB1が「H」レベルから「L」レベルに立下げられてノードN27の電位V27がパルス的に低下し、P型トランジスタ35に流れる電流が増加して電位V156=VOは急速に入力電位VIに到達する。
この実施の形態10では、負荷容量36の容量値が大きい場合でも、速い動作速度を得ることができる。
[実施の形態11]
図53は、この発明の実施の形態11によるオフセット補償機能付駆動回路157の構成を示す回路図である。図53を参照して、このオフセット補償機能付駆動回路157が図50のオフセット補償機能付駆動回路155と異なる点は、キャパシタ156が除去されている点と、スイッチS5のオン/オフのタイミングおよび信号φB1,/φB1のレベル変化のタイミングである。
図54は、図53に示したオフセット補償機能付駆動回路157の動作を示すタイムチャートである。ここでは、N型トランジスタ31のしきい値電圧VTN′がN型トランジスタ23のしきい値電圧VTNよりもVOFだけ大きいものとする。初期状態では、スイッチS1a〜S3a,S1b〜S3bはオフ状態にされるとともにスイッチS4a,S4b,S5がオン状態にされ、ノードN30a,N30b,N20aの電位V30a,V30b,V20aはともに前回の入力電位(図ではVH)になっている。
時刻t1においてスイッチS5がオフ状態にされてスイッチS30a,S30bの間のノードと負荷容量36とが電気的に切離される。時刻t2においてスイッチS1a,S1b,S2a,S2bがオン状態にされるとともに、入力電位VIが今回の電位(図ではVL)に設定される。このように、ノードN30a,N30b,N20bの電位V30a,V30b,V20bはともにVI=VLになる。N型トランジスタ31のしきい値電圧VTN′が他のN型トランジスタのしきい値電圧VTNよりもVOFだけ高いにもかかわらずV30a,V30bがVI=VLになるのは、放電回路がノードN30a,N30bをVI=VLまで放電するが、それ以下には放電しないからである。
時刻t3においてスイッチS4a,S4bがオフ状態にされて、充電回路と放電回路は電気的に切離される。時刻t4においてリセット信号/φRが「H」レベルから「L」レベルに立下げられるとともに信号φRが「L」レベルから「H」レベルに立上げられる。これにより、ノードN30aの電位V30aがVLからパルス的に降圧された後VL−VOFになるととももに、ノードN30bの電位V30bがVLからパルス的に昇圧された後VLになる。
時刻t5においてスイッチS1a,S1b,S2a,s2bがオフ状態にされ、次いで時刻t6においてスイッチS3a,S3bがオン状態にされると、ノードN20aの電位V20aがVL+VOFになり、オフセット電圧VOFが打消されてノードN30aの電位V30aはVI=VLになる。
時刻t7においてスイッチS3a,S3bがオフ状態にされ、次いで時刻t8においてスイッチS4a,S4b,S5がオン状態にされると、負荷容量36が前回の電位であるVHに充電されているので、ノードN30a,N30bの電位V30a,V30bは一旦上昇した後、徐々に低下する。時刻t9において、信号φB1が「L」レベルから「H」レベルに立上げられるとともに、信号/φB1が「H」レベルから「L」レベルに立下げられる。
このように、キャパシタ76を介してノードN22の電位V22が昇圧されるとともに、キャパシタ77を介してノードN27の電位V27が降圧される。このとき、出力ノードN121に「L」レベルVLを出力する動作を行なっており、P型トランジスタ35の導通抵抗値はN型トランジスタ31の導通抵抗値よりも低くなっているので、V27によるレベル降下作用の方がV22によるレベル上昇作用よりも強く働き、ノードN30a,N30b,N121の電位V30a,V30b,VOは急速に低下してVLに到達する。
この実施の形態11では、動作速度の高速化を図ることができる。
[実施の形態12]
図55は、この発明の実施の形態12によるサンプルホールド回路のプッシュ型駆動回路160の構成を示す回路図である。図55において、このプッシュ型駆動回路160は、レベルシフト回路61、プルアップ回路30、および定電流源161を備える。レベルシフト回路61およびプルアップ回路30は、図12で示したものと同じである。
すなわち、レベルシフト回路61は、第3電源電位V3(15V)のノードと接地電位GNDのノードとの間に直列接続された定電流源62、N型トランジスタ23およびP型トランジスタ24を含む。定電流源62は、図56に示すように、P型トランジスタ65,66および抵抗素子67を含む。P型トランジスタ65は第3電源電位V3のノードとN型トランジスタ23のドレイン(ノードN22)との間に接続され、P型トランジスタ66および抵抗素子67は第3電源電位V3のノードと接地電位GNDのノードとの間に直列接続される。P型トランジスタ65,66のゲートは、ともにP型トランジスタ66のドレインに接続される。P型トランジスタ65,66は、カレントミラー回路を構成する。P型トランジスタ66および抵抗素子67には抵抗素子67の抵抗値に応じた値の定電流が流れ、P型トランジスタ65にはP型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。N型トランジスタ23のゲートは、そのドレイン(ノードN22)に接続されている。N型トランジスタ23は、ダイオード素子を構成する。P型トランジスタ24のゲートは、入力ノードN20に接続される。定電流源62の電流値は、トランジスタ23,24の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
入力ノードN20の電位(階調電位)をVIとし、P型トランジスタのしきい値電圧をVTPとし、N型トランジスタのしきい値電圧をVTNとすると、P型トランジスタ24のソース(ノードN23)の電位V23およびN型トランジスタ23のドレイン(ノードN22)の電位V22はそれぞれV23=VI+|VTP|,V22=VI+|VTP|+VTNとなる。したがって、レベルシフト回路61は、入力電位VIを|VTP|+VTNだけレベルシフトさせた電位V22を出力する。
プルアップ回路30は、第6電源電位V6(15V)のノードと出力ノードN30との間に直列接続されたN型トランジスタ31およびP型トランジスタ32を含む。N型トランジスタ31のゲートは、レベルシフト回路61の出力電位V22を受ける。P型トランジスタ32のゲートは、そのドレインに接続されている。P型トランジスタ32は、ダイオード素子を構成する。N型トランジスタ31は飽和領域で動作するように第6電源電位V6が設定されているので、N型トランジスタ31はいわゆるソースフォロア動作を行なう。
定電流源161は、出力ノードN30と接地電位GNDのノードとの間に接続される。定電流源161は、図56に示すように、N型トランジスタ162,163および抵抗素子164を含む。N型トランジスタ162は出力ノードN30と接地電位GNDのノードとの間に接続され、抵抗素子164およびN型トランジスタ163は第6電源電位V6のノードと接地電位GNDのノードとの間に直列接続される。N型トランジスタ162,163のゲートは、ともにN型トランジスタ163のドレインに接続される。N型トランジスタ162,163は、カレントミラー回路を構成する。抵抗素子164およびN型トランジスタ163には抵抗素子164の抵抗値に応じた値の定電流が流れ、N型トランジスタ162にはN型トランジスタ163に流れる定電流の値に応じた値の定電流が流れる。定電流源161の電流値は、トランジスタ31,32の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
N型トランジスタ31のソース(ノードN31)の電位V31はV31=V22−VTN=VI+|VTP|となり、出力ノードN30の電位VOはVO=V31−|VTP|=VIとなる。
この実施の形態12では、トランジスタ23,24,31,32の各々に所定のしきい値電圧を発生させるために必要な最小限の値の貫通電流を流せば足りるので、消費電流が小さくて済む。
また、図57は、この実施の形態12の変更例によるプッシュ型駆動回路165の構成を示す回路図である。図57を参照して、この駆動回路165が図56の駆動回路160と異なる点は、抵抗素子164が除去され、抵抗素子67が2つの定電流源62と161で共用されている点である。抵抗素子67およびN型トランジスタ163は、P型トランジスタ66のソースと接地電位GNDのノードとの間に直列接続される。N型トランジスタ163のゲートはそのドレインに接続される。この変更例では、抵抗素子67と164の抵抗値のバラツキによってオフセット電圧が発生することを防止することができる。
また、図58のプッシュ型駆動回路166は、図55のプッシュ型駆動回路160からダイオード接続されたトランジスタ23,32を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図55の駆動回路160と同様に使用することができる。この変更例では、トランジスタ23,32を除去したので、回路の占有面積を小さくすることができる。
また、定電流源62,161の各々を抵抗素子で置換してもよい。この場合は、回路構成の簡単化を図ることができる。
[実施の形態13]
図59は、この発明の実施の形態13によるプル型駆動回路170の構成を示す回路図である。図59において、この駆動回路170は、レベルシフト回路63、定電流源171およびプルダウン回路33を含む。レベルシフト回路63およびプルダウン回路33は、図12で示したものと同じである。
すなわち、レベルシフト回路63は、第4電源電位V4(5V)のノードと第5電源電位V5(−10V)のノードとの間に直列接続されたN型トランジスタ26、P型トランジスタ27および定電流源64を含む。N型トランジスタ26のゲートは、入力ノードN20の電位VIを受ける。P型トランジスタ27のゲートは、そのドレイン(ノードN27)に接続される。P型トランジスタ27は、ダイオード素子を構成する。定電流源64の電流値は、トランジスタ26,27の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
N型トランジスタ26のソース(ノードN26)の電位V26はV26=VI−VTNとなる。P型トランジスタ27のドレイン(ノードN27)の電位V127は、V27=VI−VTN−|VTP|となる。したがって、レベルシフト回路63は、入力電位VIを−VTN−|VTP|だけレベルシフトさせた電位V27を出力する。
定電流源171は、第4電源電位V4のノードと出力ノードN30との間に接続される。プルダウン回路33は、第7電源電位V7(−10V)のノードと出力ノードN30との間に直列接続されたP型トランジスタ35およびN型トランジスタ34を含む。P型トランジスタ35のゲートは、レベルシフト回路63の出力電位V27を受ける。N型トランジスタ34のゲートは、そのドレインに接続されている。N型トランジスタ34は、ダイオード素子を構成する。P型トランジスタ35は飽和領域で動作するように第7電源電位V7が設定されているので、P型トランジスタ35はいわゆるソースフォロア動作を行なう。定電流源71の電流値は、トランジスタ34,35の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
P型トランジスタ35のソース(ノードN34)の電位V34は、V34=V27+|VTP|=VI−VTNとなる。出力ノードN30の電位VOは、VO=V34+VTN=VIとなる。
この実施の形態13では、トランジスタ26,27,34,35の各々に所定のしきい値電圧を発生させるために必要な最小限の値の貫通電流を流せば足りるので、消費電流が小さくて済む。
また、図60は、この実施の形態13の変更例によるプル型駆動回路172の構成を示す回路図である。図60を参照して、このプル型駆動回路172は、図59のプル型駆動回路170からダイオード接続されたトランジスタ27,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図59の駆動回路170と同様に使用することができる。この変更例では、トランジスタ27,34を除去したので、回路の占有面積を小さくすることができる。
また、定電流源164,171の各々を抵抗素子で置換してもよい。この場合は、回路構成の簡単化を図ることができる。
[実施の形態14]
図61は、この発明の実施の形態14による駆動回路175の構成を示す回路図である。図61において、この駆動回路175は、図55のプッシュ型駆動回路160と、図59のプル型駆動回路170とを組合せたものである。レベルシフト回路61のP型トランジスタ24のゲートおよびレベルシフト回路63のN型トランジスタ26のゲートは、入力ノードN20の電位VIを受ける。プルアップ回路30のP型トランジスタ32のドレインおよびプルダウン回路33のN型トランジスタ34のドレインは、ともに出力ノードN30に接続される。
出力電位VOが入力電位VIよりも高い場合は、プルアップ回路30のトランジスタ31,32が非導通になるとともに、プルダウン回路33のトランジスタ34,35が導通し、出力電位VOが低下する。出力電位VOが入力電位VIよりも低い場合は、プルダウン回路33のトランジスタ34,35が非導通になるとともに、プルアップ回路30のトランジスタ31,32が導通し、出力電位VOが上昇する。したがって、VO=VIとなる。
この駆動回路175は、プッシュ型駆動回路、プル型駆動回路、またはプッシュプル型駆動回路として用いられる。駆動回路175がプッシュ型駆動回路として用いられる場合は、プルダウン回路33のトランジスタ34,35の電流駆動能力がプルアップ回路30のトランジスタ31,32の電流駆動能力に比べて十分に小さなレベルに設定される。駆動回路175がプル型駆動回路として用いられる場合は、プルアップ回路30のトランジスタ31,32の電流駆動能力がプルダウン回路33のトランジスタ34,35の電流駆動能力に比べて十分に小さなレベルに設定される。駆動回路175がプッシュプル型駆動回路として用いられる場合は、プルアップ回路30のトランジスタ31,32の電流駆動能力とプルダウン回路33のトランジスタ34,35の電流駆動能力とは同じレベルに設定される。
この実施の形態14でも、貫通電流が小さな駆動回路175を得ることができ、消費電力の低減化を図ることができる。
また、図62は、この実施の形態14の変更例による駆動回路176の構成を示す回路図である。図62を参照して、この駆動回路176は、図61の駆動回路170からダイオード接続されたトランジスタ23,27,32,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図61の駆動回路175と同様に使用することができる。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。
また、図63は、この実施の形態14の他の変更例による駆動回路180の構成を示す回路図である。図63において、この駆動回路180は、図61の駆動回路175のレベルシフト回路61,63をそれぞれレベルシフト回路181,183で置換したものである。レベルシフト回路181は、レベルシフト回路61の定電流源62を抵抗素子182で置換したものである。レベルシフト回路183は、レベルシフト回路63の定電流源64を抵抗素子184で置換したものである。抵抗素子182,184の抵抗値は、抵抗素子182,184が定電流源62,64と同程度の電流を流すような値に設定されている。この変更例でも、図61の駆動回路175と同じ効果が得られる。
また、図64は、この実施の形態14のさらに他の変更例による駆動回路185の構成を示す回路図である。図64を参照して、この駆動回路185が図61の駆動回路175と異なる点は、定電流源161が出力ノードN30と第5電源電位V5のノードとの間に接続され、定電流源171が第3電源電位V3のノードと出力ノードN30との間に接続されている点である。
定電流源62,64,161,171は、図65に示すように、抵抗素子67、P型トランジスタ65,66,189、およびN型トランジスタ186〜188で構成される。P型トランジスタ66、抵抗素子67およびN型トランジスタ186は、第3電源電位V3のノードと第5電源電位V5のノードとの間に直列接続される。P型トランジスタ66のゲートはそのドレインに接続され、N型トランジスタ186のゲートはそのドレインに接続される。トランジスタ66,186の各々は、ダイオード素子を構成する。
P型トランジスタ65は、第3電源電位V3のノードとノードN22との間に接続され、そのゲートはP型トランジスタ66のゲートに接続される。P型トランジスタ189は、第3電源電位V3のノードと出力ノードN30との間に接続され、そのゲートはP型トランジスタ66のゲートに接続される。P型トランジスタ66,65,189は、カレントミラー回路を構成する。P型トランジスタ65,189の各々には、P型トランジスタ66に流れる電流に応じた値の電流が流れる。P型トランジスタ65,189は、それぞれ定電流源62,171を構成する。
N型トランジスタ187は、第5電源電位V5のノードとノードN27との間に接続され、そのゲートはN型トランジスタ186のゲートに接続される。N型トランジスタ188は、第5電源電位V5のノードと出力ノードN30との間に接続され、そのゲートはN型トランジスタ186のゲートに接続される。N型トランジスタ186〜188は、カレントミラー回路を構成する。N型トランジスタ187,188の各々には、N型トランジスタ186に流れる電流に応じた値の電流が流れる。N型トランジスタ187,188は、それぞれ定電流源64,161を構成する。他の構成および動作は、図61の駆動回路175と同じであるので、その説明は繰り返さない。この変更例でも、図61の駆動回路175と同じ効果が得られる。
[実施の形態15]
図66は、この発明の実施の形態15によるカラー液晶表示装置の要部を示す回路図であって、図3と対比される図である。図66を参照して、このカラー液晶表示装置が実施の形態1のカラー液晶表示装置と異なる点は、液晶セル2の一方電極が駆動回路20の出力ノードN30の代わりに入力ノードN20に接続されている点である。
ノードN30とN20の電位差が大きい場合は、スイッチ16の寄生抵抗(抵抗素子18)を介してノードN30とN20の間にリーク電流が流れ、ノードN20の電位が変化する。しかし、ノードN30とN20の電位差が駆動回路20の通常のオフセット電圧程度であれば、ノードN30とN20の間のリーク電流は無視できる程度に小さくなり、ノードN20の電位は変化しない。したがって、データ線6の諧調電位VGが液晶セル2の一方電極に正確に与えられ、正確な光透過率が得られる。
なお、駆動回路20を実施の形態1〜14で示した他の駆動回路で置換しても同じ効果が得られることは言うまでもない。駆動回路は、オフセット補償機能を持たない簡易な構成のもので差し支えない。
[実施の形態16]
図67は、この発明の実施の形態16によるカラー液晶表示装置の要部を示す回路図であって、図66と対比される図である。図67を参照して、このカラー液晶表示装置が実施の形態15のカラー液晶表示装置と異なる点は、サンプルホールド回路14がサンプルホールド回路190で置換されている点である。
サンプルホールド回路190は、サンプルホールド回路14の駆動回路20をプッシュ型駆動回路191で置換し、キャパシタ192を追加したものである。キャパシタ192の一方電極はプッシュ型駆動回路191の出力ノードN30に接続され、その他方電極は共通電位VCOMを受ける。プッシュ型駆動回路191は、図68に示すように、レベルシフト回路21、プルアップ回路30、スイッチ201〜203および抵抗素子204を含む。レベルシフト回路21およびプルアップ回路30の構成および動作は、図4および図5で説明したとおりである。
スイッチ201の一方電極は第3電源電位V3を受け、その他方電極は抵抗素子22を介してノードN22に接続される。スイッチ202の一方電極は第6電源電位V6を受け、その他方電極はN型トランジスタ31のドレインに接続される。スイッチ203は、P型トランジスタ32のドレインと出力ノードN30との間に接続される。抵抗素子204は、P型トランジスタ32のドレインと接地電位GNDのラインとの間に接続される。
図69は、このプッシュ型駆動回路191の動作を示すタイムチャートである。スイッチ201〜203は、所定周期(t3−t1)で所定時間(t2−t1)だけオンされる。スイッチ201〜203がオンされると、抵抗素子22,204にそれぞれ電流I1,I2が流れ、キャパシタ192が充電されてVO=VIとなる。スイッチ201〜203がオフされると、キャパシタ192の電荷がたとえばデータ線にリークしてVOが徐々に低下する。VOの低下分ΔVが許容範囲内になるようにスイッチ201〜203のオン時間とオフ時間の比が設定されている。
この実施の形態16では、実施の形態15と同じ効果が得られる他、駆動回路191の電源を間欠的にオン/オフするので、消費電流の低減化を図ることができる。
なお、スイッチ201は、抵抗素子22、N型トランジスタ23およびP型トランジスタ24と直列に接続されていれば、どの位置に設けてもよい。たとえばスイッチ201と抵抗素子22の位置を逆にしてもよい。またスイッチ202は、N型トランジスタ31、P型トランジスタ32および抵抗素子204と直列に接続されていれば、どの位置に設けてもよい。
以下、この実施の形態16の種々の変更例について説明する。図70のプル型駆動回路205は、レベルシフト回路25、プルダウン回路33、スイッチ206〜208および抵抗素子209を含む。レベルシフト回路25およびプルダウン回路33の構成および動作は、図4および図5で説明したとおりである。スイッチ206の一方電極は第5電源電位V5を受け、その他方電極は抵抗素子28を介してノードN27に接続される。スイッチ207の一方電極は第7電源電位V7を受け、その他方電極はP型トランジスタ35のドレインに接続される。スイッチ208は、N型トランジスタ34のドレインと出力ノードN30との間に接続される。抵抗素子209は、N型トランジスタ34のドレインと第4の電源電位V4のラインとの間に接続される。スイッチ206〜208は、図68および図69で示したスイッチ201〜203と同様にオン/オフされる。この変更例でも、消費電力の低減化を図ることができる。
図71のプッシュプル型駆動回路210は、図68のプッシュ型駆動回路191と図70のプル型駆動回路205とを組合せたものである。但し、スイッチ208は除去され、P型トランジスタ32のドレインおよびN型トランジスタ34のドレインは、共にスイッチ203を介して出力ノードN30に接続される。スイッチ201〜203,206,207は同時にオン/オフされる。この変更例でも、消費電力の低減化を図ることができる。
図72のプッシュプル型駆動回路215は、図71のプッシュプル型駆動回路210からスイッチ206,207を除去し、スイッチ201,202をプッシュ側とプル側で共用するものである。N型トランジスタ26のドレインは、スイッチ201と抵抗素子22の間のノードに接続される。N型トランジスタ34のドレインは、抵抗素子209を介してN型トランジスタ31のドレインに接続される。この変更例では、スイッチの数が少なくて済む。
図73のカラー液晶表示装置では、液晶セル2の一方電極はプッシュ型駆動回路191の出力ノードN30に接続される。この変更例でも、消費電力の低減化が図られる。
[実施の形態17]
図74は、この発明の実施の形態17による画像表示装置の要部を示す回路図である。この画像表示装置の全体構成は図1のカラー液晶表示装置と同様であり、走査線4とデータ線6の各交差部にEL素子220およびサンプルホールド回路221が設けられている。水平走査回路8の階調電位発生回路10および駆動回路13は、画像信号に応じたレベルの階調電流IGをデータ線6に流す電流源230で置換されている。
サンプルホールド回路221は、P型トランジスタ222、キャパシタ223、駆動回路224およびスイッチ225〜229を含む。P型トランジスタ222、スイッチ228およびEL素子220は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。キャパシタ223は、P型トランジスタ222のソースおよびゲート間に接続されている。スイッチ225,226は、P型トランジスタ222のゲートおよびドレイン間に直列接続される。スイッチ227は、データ線6とP型トランジスタ222のドレインとの間に接続される。駆動回路224およびスイッチ229は、P型トランジスタ222のゲートとスイッチ225,226間のノードとの間に接続される。スイッチ225〜229は、走査線4によってオン/オフ制御される。
走査線4が選択レベルの「H」レベルにされた場合は、スイッチ225〜227がオンされるとともにスイッチ228,229がオフされる。これにより、P型トランジスタ222がスイッチ225,226によってダイオード接続され、電源電位VCCのラインからP型トランジスタ222、スイッチ227およびデータ線6を介して電流源230に画像信号に応じたレベルの階調電流IGが流れる。このとき、P型トランジスタ222のゲートは階調電流IGに応じたレベルの電位になっており、キャパシタ223はP型トランジスタ222のソース−ゲート間電圧に充電される。
走査線4が非選択レベルの「L」レベルに立下げられると、スイッチ225〜227がオフされるとともにスイッチ228,229がオンされる。P型トランジスタ222のゲート電位はキャパシタ223によって保持されているので、電源電圧VCCのラインからP型トランジスタ222、スイッチ228およびEL素子20を介して接地電位GNDのラインに階調電流IGが流れ、EL素子220は階調電流IGに応じた輝度で発光する。
このとき、駆動回路224によってスイッチ225,226間のノードの電位がP型トランジスタ222のゲート電位に保持されるので、P型トランジスタ222のゲート電位が一定に保持され、EL素子220は一定の輝度で発光し続ける。
なお、駆動回路224およびスイッチ226,229がない場合は、スイッチ225,227の寄生抵抗を介してP型トランジスタ222のゲートとデータ線6の間にリーク電流が流れ、P型トランジスタ222のゲート電位が変化してEL素子220の輝度が変化する。
[実施の形態18]
図75は、この発明の実施の形態18による画像表示装置の要部を示す回路図である。この画像表示装置の全体構成は図1のカラー液晶表示装置と同様であり、走査線4とデータ線6の各交差部にEL素子220およびサンプルホールド回路231が設けられている。水平走査回路8の階調電位発生回路10および駆動回路13は、画像信号に応じたレベルの階調電流IGをデータ線6に流す電流源240で置換されている。
サンプルホールド回路231は、N型トランジスタ232、キャパシタ233、駆動回路234およびスイッチ235〜239を含む。EL素子220、スイッチ238およびN型トランジスタ232は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。スイッチ235は、データ線6とN型トランジスタ232のドレインとの間に接続される。スイッチ236,237は、N型トランジスタ232のドレインおよびゲート間に直列接続される。キャパシタ233は、N型トランジスタ232のゲートおよびソース間に接続される。駆動回路234およびスイッチ239は、N型トランジスタ232のゲートとスイッチ236,237間のノードとの間に直列接続される。スイッチ235〜239は、走査線4によってオン/オフ制御される。
走査線4が選択レベルの「H」レベルにされた場合は、スイッチ235〜237がオンされるとともにスイッチ238,239がオフされる。これにより、N型トランジスタ232がスイッチ236,237によってダイオード接続され、電流源240からデータ線6、スイッチ235およびN型トランジスタ232を介して接地電位GNDのラインに画像信号に応じたレベルの階調電流IGが流れる。このときN型トランジスタ232のゲートは階調電流IGに応じたレベルの電位になっており、キャパシタ233はN型トランジスタ230のゲート−ソース間電圧に充電される。
走査線4が選択レベルの「L」レベルに立下げられると、スイッチ235〜237がオフされるとともにスイッチ238,239がオンされる。N型トランジスタ232のゲート電位はキャパシタ233に保持されているので、電源電位VCCのラインからEL素子220、スイッチ238およびN型トランジスタ232を介して接地電位GNDのラインに階調電流IGが流れ、EL素子220は階調電流IGに応じた輝度で発光する。
このとき、駆動回路234によってスイッチ236,237間のノードの電位がN型トランジスタ232のゲート電位に保持されるので、N型トランジスタ232のゲート電位が一定に保持され、EL素子220は一定の輝度で発光し続ける。
なお、駆動回路234およびスイッチ236,239がない場合は、スイッチ235,237の寄生抵抗を介してN型トランジスタ232のゲートとデータ線6の間にリーク電流が流れ、N型トランジスタ232のゲート電位が変化してEL素子220の輝度が変化する。
なお、以上の実施の形態1〜18では、液晶セル2、EL素子51,220を用いたアクティブマトリックス型表示装置について説明したが、この発明は他のどのような電気−光変換素子を用いたアクティブマトリックス型表示装置にも適用可能であることは言うまでもない。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【書類名】 明細書
【特許請求の範囲】
【請求項1】 入力電位をサンプリングし、サンプリングした電位を保持および出力するサンプルホールド回路であって、
その一方電極が前記入力電位を受け、第1の期間に導通する第1のスイッチング素子、
その一方電極が前記第1のスイッチング素子の他方電極に接続され、第2の期間に導通する第2のスイッチング素子、
その一方電極が前記第2のスイッチング素子の他方電極に接続され、その他方電極が所定の電位を受ける第1のキャパシタ、および
その入力ノードが前記第2のスイッチング素子の他方電極に接続され、その出力ノードが前記第1のスイッチング素子の他方電極に接続され、前記入力ノードの電位に応じた電位を出力ノードに出力する駆動回路を備え、
前記駆動回路の電源電圧は、間欠的に供給される、サンプルホールド回路。
【請求項2】 前記第1および第2の期間は同じ期間である、請求項1に記載のサンプルホールド回路。
【請求項3】 前記第2の期間は前記第1の期間内の期間である、請求項1に記載のサンプルホールド回路。
【請求項4】 前記駆動回路は、
前記入力ノードの電位を予め定められた第1の電圧だけある電位方向にレベルシフトさせた電位を出力する第1のレベルシフト回路、
前記第1のレベルシフト回路の出力電位を前記ある電位方向と逆の電位方向に予め定められた第2の電圧だけレベルシフトさせた電位を前記出力ノードに出力する第2のレベルシフト回路を含む、請求項1に記載のサンプルホールド回路。
【請求項5】 前記駆動回路は、
その一方電極が第1の電源電位を受ける第1の電流制限素子、
その第1の電極が前記第1の電流制限素子の他方電極に接続され、その第2の電極が第2の電源電位を受け、その入力電極が前記入力ノードの電位を受ける第1の導電形式の第1のトランジスタ、および
その第1の電極が第3の電源電位を受け、その第2の電極が前記出力ノードに接続され、その入力電極が前記第1の電流制限素子の他方電極に接続された第2の導電形式の第2のトランジスタを含む、請求項1に記載のサンプルホールド回路。
【請求項6】 前記駆動回路は、
さらに、その第1の電極および入力電極が前記第1の電流制限素子の他方電極に接続され、その第2の電極が前記第1のトランジスタの第1の電極に接続された第2の導電形式の第3のトランジスタ、および
その第1の電極が前記第2のトランジスタの第2の電極に接続され、その第2の電極および入力電極が前記出力ノードに接続された第1の導電形式の第4のトランジスタを含む、請求項5に記載のサンプルホールド回路。
【請求項7】 前記駆動回路は、さらに、前記出力ノードと第4の電源電位のラインとの間に接続された第2の電流制限素子を含む、請求項5に記載のサンプルホールド回路。
【請求項8】 前記第1および第3の電源電位は同電位であり、
前記第2および第4の電源電位は同電位である、請求項7に記載のサンプルホールド回路。
【請求項9】 前記第1および第2の電流制限素子は、それぞれ第1および第2の抵抗素子を含む、請求項7に記載のサンプルホールド回路。
【請求項10】 前記第1の電流制限素子は、その入力電極が第1の定電圧を受ける第1の導電形式の第3のトランジスタを含み、
前記第2の電流制限素子は、その入力電極が第2の定電圧を受ける第2の導電形式の第4のトランジスタを含む、請求項7に記載のサンプルホールド回路。
【請求項11】 前記駆動回路は、さらに、前記入力ノードの電位が前記ある電位方向に変化されたことに応じて前記第1および第2のレベルシフト回路間の所定のノードの電位を前記ある電位方向にパルス的に変化させるパルス発生回路を含む、請求項4に記載のサンプルホールド回路。
【請求項12】 前記パルス発生回路は、その一方電極が前記第1のノードに接続され、その他方電極の電位が前記入力ノードの電位が前記ある電位方向に変化されたことに応じて前記ある電位方向にパルス的に変化される第2のキャパシタを含む、請求項11に記載のサンプルホールド回路。
【請求項13】 前記パルス発生回路は、その一方電極が第1の電源電位を受け、その他方電極が前記所定のノードに接続され、前記入力ノードの電位が前記ある電位方向に変化されたことに応じてパルス的に導通する第3のスイッチング素子を含む、請求項11に記載のサンプルホールド回路。
【請求項14】 前記駆動回路は、さらに、オフセット電圧を打消すオフセット補償回路を含む、請求項4に記載のサンプルホールド回路。
【請求項15】 前記第2のレベルシフト回路の出力電位は、前記出力ノードの代りに第2のノードに接続され、
前記オフセット補償回路は、
第2のキャパシタ、
前記第2のキャパシタの一方電極および前記第1のレベルシフト回路に前記入力ノードの電位を与えるとともに前記第2のキャパシタの他方電極を前記所定のノードに接続する第1の切換回路、および
前記第2のキャパシタの他方電極に前記入力ノードの電位を与えるとともに前記第2のキャパシタの一方電極の電位を前記入力ノードの電位の代りに前記第1のレベルシフト回路に与える第2の切換回路、および
前記第2のノードの電位を前記出力ノードに与える第3の切換回路を含む、請求項14に記載のサンプルホールド回路。
【請求項16】 前記オフセット補償回路は、さらに、前記第1の切換回路によって前記第2のキャパシタの一方電極に前記入力電位が与えられるとともに前記第2のキャパシタの他方電極が前記所定のノードに接続されている期間において、前記所定のノードの電位を前記ある電位方向と逆の電位方向にパルス的に変化させるパルス発生回路を含む、請求項15に記載のサンプルホールド回路。
【請求項17】 請求項1のサンプルホールド回路と、その一方電極が前記駆動回路の出力ノードに接続され、その他方電極が共通電位を受ける液晶セルとを備える、画像表示装置。
【請求項18】 請求項1のサンプルホールド回路と、その一方電極が前記駆動回路の入力ノードに接続され、その他方電極が共通電位を受ける液晶セルとを備える、画像表示装置。
【請求項19】 請求項1のサンプルホールド回路、
その第1の電極が前記第1のスイッチング素子の一方電極に接続され、その入力電極が前記第2のスイッチング素子の他方電極に接続され、その第2の電極が前記第1のキャパシタの他方電極に接続されたトランジスタ、
前記第1および第2のスイッチング素子が共に導通している前記第1および第2の期間に前記トランジスタの第1の電極に接続されて前記トランジスタに階調電流を流す電流源、および
前記第1および第2の期間の経過後に前記トランジスタの第1の電極と電源電位のラインとの間に接続され、前記トランジスタに流れる電流に応じた輝度で発光する発光素子を備える、画像表示装置。
【請求項20】 入力電位をサンプリングし、サンプリングした電位を保持および出力するサンプルホールド回路であって、
その一方電極が前記入力電位を受け、第1の期間に導通する第1のスイッチング素子、
その一方電極が前記第1のスイッチング素子の他方電極に接続され、第2の期間に導通する第2のスイッチング素子、
その一方電極が前記第2のスイッチング素子の他方電極に接続され、その他方電極が所定の電位を受けるキャパシタ、および
その入力ノードが前記第2のスイッチング素子の他方電極に接続され、その出力ノードが前記第1のスイッチング素子の他方電極に接続され、前記入力ノードの電位に応じた電位を出力ノードに出力する駆動回路を備え、
前記駆動回路は、
その一方電極が第1の電源電位を受ける第1の電流制限素子、
その第1の電極および入力電極が前記第1の電流制限素子の他方電極に接続された第1の導電形式の第1のトランジスタ、
その第1の電極が前記第1のトランジスタの第2の電極に接続され、その第2の電極が第2の電源電位を受け、その入力電極が前記入力ノードの電位を受ける第2の導電形式の第2のトランジスタ、
その第1の電極が第3の電源電位を受け、その入力電極が前記第1の電流制限素子の他方電極に接続された第1の導電形式の第3のトランジスタ、および
その第1の電極が前記第3のトランジスタの第2の電極に接続され、その第2の電極および入力電極が前記出力ノードに接続された第2の導電形式の第4のトランジスタを含む、サンプルホールド回路。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
この発明はサンプルホールド回路およびそれを用いた画像表示装置に関し、特に、入力電位をサンプリングし、サンプリングした電位を保持および出力するサンプルホールド回路と、それを用いた画像表示装置とに関する。
【0002】
【従来の技術】
図76は、従来の液晶表示装置の要部を示す回路図である。図76において、この液晶表示装置では、走査線301とデータ線302の交差部に液晶セル303およびサンプルホールド回路304が配置されている。サンプルホールド回路304は、スイッチ305およびキャパシタ307を含む。スイッチ305は、データ線302とノードN300との間に接続され、走査線301が選択レベルの「H」レベルの期間に導通する。スイッチ305は、寄生抵抗を有する。図76では、寄生抵抗は、スイッチ305に並列接続された抵抗素子306で示されている。キャパシタ307は、ノードN300と共通電位VCOMのラインとの間に接続される。液晶セル303は、ノードN300と共通電位VCOMのラインとの間に接続される。
【0003】
走査線301が選択レベルの「H」レベルに立上げられると、スイッチ305が導通し、ノードN300はデータ線302の電位に充電される。走査線301が非選択レベルの「L」レベルに立下げられると、スイッチ305が非導通になり、ノードN300の電位はキャパシタ307によって保持される。液晶セル303は、ノードN300の電位に応じた光透過率を示す。
【0004】
【発明が解決しようとする課題】
しかし、従来の液晶表示装置では、走査線301が「L」レベルにされた状態でデータ線302の電位が変化したときに、抵抗素子306を介してノードN300とデータ線302との間にリーク電流が流れ、ノードN300の電位が変化してしまう。このため所定周期でノードN300の電位をリフレッシュ(再書込)する必要があり、比較的大きな電力が消費されていた。
【0005】
それゆえに、この発明の主たる目的は、保持電位の変化が小さいサンプルホールド回路と、それを用いた画像表示装置とを提供することである。
【0006】
【課題を解決するための手段および発明の効果】
この発明に係るサンプルホールド回路では、その一方電極が入力電位を受け、第1の期間に導通する第1のスイッチング素子と、その一方電極が第1のスイッチング素子の他方電極に接続され、第2の期間に導通する第2のスイッチング素子と、その一方電極が第2のスイッチング素子の他方電極に接続され、その他方電極が所定の電位を受ける第1のキャパシタと、その入力ノードが第2のスイッチング素子の他方電極に接続され、その出力ノードが第1のスイッチング素子の他方電極に接続され、入力ノードの電位に応じた電位を出力ノードに出力する駆動回路とが設けられ、駆動回路の電源電圧は、間欠的に供給される。したがって、第1および第2のスイッチング素子を第1および第2の期間に導通させて入力電位をサンプリングした後に、入力電位が変化したときでも、第1のスイッチング素子の他方電極の電位を駆動回路によって保持するので、サンプリングした電位の変化が小さくて済む。また、駆動回路の電源電圧は間欠的に供給されるので、消費電力が小さくて済む。
【0007】
また、この発明に係る画像表示装置では、上記サンプルホールド回路と、その出力電位によって駆動される液晶セルまたは発光素子とが設けられる。この場合は、階調電位または階調電流のリフレッシュの頻度が少なくて済み、消費電力の低減化を図ることができる。
【0008】
【発明の実施の形態】
[実施の形態1]
図1は、この発明の実施の形態1によるカラー液晶表示装置の構成を示すブロック図である。図1において、このカラー液晶表示装置は、液晶パネル1、垂直走査回路7および水平走査回路8を備え、たとえば携帯電話機に設けられる。
【0009】
液晶パネル1は、複数行複数列に配列された複数の液晶セル2と、各行に対応して設けられた走査線4および共通電位線5と、各列に対応して設けられたデータ線6とを含む。
【0010】
液晶セル2は、各行において3つずつ予めグループ化されている。各グループの3つの液晶セル2には、それぞれR,G,Bのカラーフィルタが設けられている。各グループの3つの液晶セル2は、1つの画素3を構成している。
【0011】
垂直走査回路7は、画像信号に従って、複数の走査線4を所定時間ずつ順次選択し、選択した走査線4を選択レベルの「H」レベルにする。走査線4が選択レベルの「H」レベルにされると、その走査線4に対応する各液晶セル2とその液晶セル2に対応するデータ線6とが結合される。
【0012】
水平走査回路8は、画像信号に従って、垂直走査回路7によって1本の走査線4が選択されている間に複数のデータ線6をたとえば12本ずつ順次選択し、選択した各データ線6に階調電位VGを与える。液晶セル2の光透過率は、階調電位VGのレベルに応じて変化する。
【0013】
垂直走査回路7および水平走査回路8によって液晶パネル1の全液晶セル2が走査されると、液晶パネル1には1つの画像が表示される。
【0014】
図2は、図1に示した水平走査回路8の要部を示す回路ブロック図である。図2において、水平走査回路8は、階調電位発生回路10および駆動回路13を含む。階調電位発生回路10および駆動回路13は、水平走査回路8によって同時に選択されるデータ線6の数(この場合は12)だけ設けられている。
【0015】
階調電位発生回路10は、第1電源電位V1(5V)のノードと第2電源電位V2(0V)のノードとの間に直列接続されたn+1個(ただし、nは自然数である)の抵抗素子11.1〜11.n+1と、n+1個の抵抗素子11.1〜11.n+1の間のn個のノードと出力ノード10aとの間にそれぞれ接続されたn個のスイッチ12.1〜12.nとを含む。
【0016】
n+1個の抵抗素子11.1〜11.n+1の間のn個のノードには、それぞれn段階の電位が現われる。スイッチ12.1〜12.nは、画像濃度信号φPによって制御され、それらのうちのいずれか1つのみが導通状態にされる。出力ノード10aには、n段階の電位のうちのいずれか1つの段階の電位が階調電位VGとして出力される。駆動回路13は、選択されたデータ線6が階調電位VGになるようにデータ線6に電流を供給する。
【0017】
図3は、各液晶セル2に対応して設けられたサンプルホールド回路14の構成を示す回路図である。図3において、このサンプルホールド回路14は、スイッチ15,16、キャパシタ19および駆動回路20を含む。スイッチ15,16は、対応のデータ線6と駆動回路20の入力ノードN20との間に直列接続される。スイッチ15,16は、ともに、対応の走査線4が選択レベルの「H」レベルの場合に導通し、対応の走査線4が非選択レベルの「L」レベルの場合に非導通になる。
【0018】
スイッチ15,16の各々の端子間には寄生抵抗が存在する。図3では、スイッチ15,16の寄生抵抗は、それぞれ抵抗素子17,18で示されている。抵抗素子17,18は、それぞれスイッチ15,16に並列接続されている。スイッチ15,16の各々は、たとえば、N型トランジスタ、またはP型トランジスタ、または並列接続されたN型トランジスタおよびP型トランジスタで構成される。走査線4は、スイッチ15,16に含まれるN型トランジスタのゲートに直接接続される。また走査線4は、スイッチ15,16に含まれるP型トランジスタのゲートにインバータを介して接続される。
【0019】
キャパシタ19の一方電極はノードN20に接続され、キャパシタ19の他方電極は共通電位線5から共通電位VCOMを受ける。駆動回路20は、入力ノードN20の電位に等しい電位を出力ノードN30に出力する。駆動回路20の出力ノードN30は、スイッチ15と16の間のノードN10に接続されるとともに、液晶セル2の一方電極に接続される。液晶セル2の他方電極には共通電位VCOMが与えられる。
【0020】
次に、このサンプルホールド回路14の動作について説明する。走査線4が選択レベルの「H」レベルにされると、スイッチ15,16が導通し、ノードN10,N20,N30の電位がデータ線6の電位と同じになる。走査線4が非選択レベルの「L」レベルにされると、ノードN20の電位はキャパシタ19によって保持される。ノードN10の電位は、駆動回路20によってノードN20と同じ電位に保持される。ノードN20の電位は、抵抗素子17,18を介してデータ線6の電位変化に影響を受けて変化しようとするが、ノードN10の電位を駆動回路20によって保持するので、データ線6の電位変化がノードN10の電位に対して及ぼす影響は従来に比べて小さい。
【0021】
図4は、駆動回路20の構成を示す回路図である。図4において、駆動回路20は、レベルシフト回路21,25、キャパシタ29、プルアップ回路30およびプルダウン回路33を含む。
【0022】
レベルシフト回路21は、第3電源電位V3(15V)のノードと接地電位GNDのノードとの間に直列接続された抵抗素子22、N型電界効果トランジスタ(以下、N型トランジスタと称す)23およびP型電界効果トランジスタ(以下、P型トランジスタと称す)24を含む。N型トランジスタ23のゲートは、そのドレイン(ノードN22)に接続されている。N型トランジスタ23は、ダイオード素子を構成する。P型トランジスタ24のゲートは、入力ノードN20に接続される。抵抗素子22の抵抗値は、トランジスタ23,24の導通抵抗値よりも十分大きな値に設定されている。
【0023】
入力ノードN20の電位(階調電位)をVIとし、P型トランジスタのしきい値電圧をVTPとし、N型トランジスタのしきい値電圧をVTNとすると、P型トランジスタ24のソース(ノードN23)の電位V23およびN型トランジスタ23のドレイン(ノードN22)の電位V22はそれぞれ次式(1)(2)で表わされる。
V23=VI+|VTP| …(1)
V22=VI+|VTP|+VTN …(2)
したがって、レベルシフト回路21は、入力電位VIを|VTP|+VTNだけレベルシフトさせた電位V22を出力する。
【0024】
レベルシフト回路25は、第4電源電位V4(5V)のノードと第5電源電位V5(−10V)との間に直列接続されたN型トランジスタ26、P型トランジスタ27および抵抗素子28を含む。N型トランジスタ26のゲートは、入力ノードN20に接続される。P型トランジスタ27のゲートは、そのドレイン(ノードN27)に接続される。P型トランジスタ27は、ダイオード素子を構成する。抵抗素子28の抵抗値は、トランジスタ26,27の導通抵抗値よりも十分大きな値に設定されている。
【0025】
N型トランジスタ26のソース(ノードN26)の電位V26およびP型トランジスタ27のドレイン(ノードN27)の電位V27は、それぞれ次式(3)(4)で表わされる。
V26=VI−VTN …(3)
V27=VI−VTN−|VTP| …(4)
したがって、レベルシフト回路25は、入力電位VIを−VTN−|VTP|だけレベルシフトさせた電位V27を出力する。
【0026】
キャパシタ29は、レベルシフト回路21の出力ノードN22とレベルシフト回路25の出力ノードN27との間に接続される。キャパシタ29は、ノードN22の電位変化をノードN27に伝達するとともに、ノードN27の電位変化をノードN27に伝達する。
【0027】
プルアップ回路30は、第6電源電位V6(15V)のノードと出力ノードN30との間に直列接続されたN型トランジスタ31およびP型トランジスタ32を含む。出力ノードN30には、負荷容量(液晶セル2およびスイッチ15,16の寄生容量)36が接続されている。N型トランジスタ31のゲートは、レベルシフト回路21の出力電位V22を受ける。P型トランジスタ32のゲートは、そのドレインに接続されている。P型トランジスタ32は、ダイオード素子を構成する。N型トランジスタ31は飽和領域で動作するように第6電源電位V6が設定されているので、N型トランジスタ31はいわゆるソースフォロア動作を行なう。
【0028】
今、説明の都合上、図5に示すように、P型トランジスタ32のドレイン(ノードN30′)と出力ノードN30との間が非導通状態にあると仮定する。N型トランジスタ31のソース(ノードN31)の電位V31およびP型トランジスタ32のドレイン(ノードN30′)の電位V30′は、それぞれ次式(5)(6)で表わされる。
V31=V22−VTN=VI+|VTP| …(5)
V30′=V31−|VTP|=VI …(6)
図4に戻って、プルダウン回路33は、第7電源電位V7(−10V)のノードと出力ノードN30との間に直列接続されたP型トランジスタ35およびN型トランジスタ34を含む。P型トランジスタ35のゲートは、レベルシフト回路25の出力電位V27を受ける。N型トランジスタ34のゲートは、そのドレインに接続されている。N型トランジスタ34は、ダイオード素子を構成する。P型トランジスタ35は飽和領域で動作するように第7電源電位V7が設定されているので、P型トランジスタ35はいわゆるソースフォロア動作を行なう。
【0029】
今、説明の都合上、図5に示すように、N型トランジスタ34のドレイン(ノードN30″)と出力ノードN30との間が非導通状態にあると仮定する。P型トランジスタ35のソース(ノードN34)の電位V34およびN型トランジスタ34のドレイン(ノードN30″)の電位V30″は、それぞれ次式(7)(8)で表わされる。
V34=V27+|VTP|=VI−VTN …(7)
V30″=V34+VTN=VI …(8)
数式(7)(8)は、P型トランジスタ32のドレイン(ノードN30′)とN型トランジスタ34のドレイン(ノードN30″)とを接続しても第6電源電位V6のノードと第7電源電位V7のノードとの間には電流は流れず、出力ノードN30の電位VOが入力ノードN20の電位VIと同じになることを示している。したがって、抵抗素子22,28の抵抗値を十分に大きくしておけば、VO=VIとなった定常状態では、貫通電流は極めて小さくなる。
【0030】
図6は、この駆動回路20の交流動作(遷移状態での動作)を説明するためのタイムチャートである。図6において、初期状態では、VI=VLとされているものとする。これにより、V22,V27,VOは、それぞれ以下のようになっている。
V22=VL+|VTP|+VTN
V27=VL−|VTP|−VTN
VO=VL
時刻t1においてVIがVLからVHに立上げられると、V22,V27,VOは所定時間の経過後にそれぞれ以下のようになる。
V22=VH+|VTP|+VTN
V27=VH−|VTP|−VTN
VO=VH
このレベル変化の過程で、以下の動作が行なわれる。レベルシフト回路25では、時刻t1において入力電位VIがVLからVHに立上げられると、N型トランジスタ26の駆動能力が高くなり、ノードN26の電位V26が急速に上昇する。これにより、P型トランジスタ27のソース−ゲート間電圧が大きくなってP型トランジスタ27の駆動能力も高くなり、ノードN27の電位V27が急速に上昇する。
【0031】
ノードN27の電位V27が急速に上昇すると、容量結合によってキャパシタ29を介してノードN22の電位V22がVH−VL分だけ急速に上昇する。これに応じて出力ノードN30の電位VOもVLからVHに急速に立上げられる。
【0032】
また時刻t2において入力電位VIがVHからVLに立下げられると、P型トランジスタ24の駆動能力が高くなり、ノードN23の電位V23が急速に低下する。これにより、N型トランジスタ23のゲート−ソース間電圧が大きくなってN型トランジスタ23の駆動能力も高くなり、ノードN22の電位V22が急速に低下する。
【0033】
ノードN22の電位V22が急速に低下すると、容量結合によってキャパシタ29を介してノードN27の電位V27がVH−VL分だけ急速に低下する。これに応じて出力ノードN30の電位VOもVHからVLに急速に立下げられる。
【0034】
また駆動回路20では、定常状態ではプルアップ回路30およびプルダウン回路33に貫通電流は流れず、抵抗素子22,26の抵抗値をトランジスタ23,24,26,27の導通抵抗値よりも十分高くすることによりレベルシフト回路21,25の貫通電流も小さくすることができるので、直流電流の低減化を図ることができる。また、キャパシタ26を設けたので、入力電位VIの変化に対しても迅速に応答することができる。
【0035】
この実施の形態1では、サンプルホールド回路14において、データ線6と駆動回路20の入力ノードN20との間に2つのスイッチ15,16を直列接続し、駆動回路20によってスイッチ15,16間のノードN10の電位をノードN20の電位に保持するので、データ線6の電位が変化した場合でもノードN10,N20,N30の電位変化を小さく抑えることができる。したがって、ノードN10,N20,N30の電位をリフレッシュする頻度を少なくすることができ、消費電力の低減化を図ることができる。
【0036】
なお、液晶セル2の駆動電圧の極性を所定周期で切換えることにより、液晶表示装置の低消費電力化を図ることも可能である。液晶セル2の駆動電圧の極性を所定周期で切換える方法としては、たとえば、図2の第1電源電位V1を所定周期で5Vおよび0Vに交互に切換え、第2電源電位V2を0Vおよび5Vに所定周期で交互に切換え、図3の共通電位VCOMを所定周期で0Vおよび5Vに交互に切換える方法がある。
【0037】
また、サンプルホールド回路14は、液晶表示装置のような画像表示装置において階調電位をサンプルリングおよびホールドすることに用いられるだけでなく、アナログ電位をサンプリングおよびホールドして負荷回路に与える回路としてどのような用途にも使用可能であることは言うまでもない。
【0038】
また、駆動回路20は、液晶表示装置のような画像表示装置において階調電位を伝達することに用いられるだけでなく、入力されたアナログ電位と同電位になるように出力ノードの電位を制御するアナログバッファとしてどのような用途にも使用可能であることは言うまでもない。
【0039】
また、駆動回路20の電界効果トランジスタは、MOSトランジスタでもよいし、TFT(薄膜トランジスタ)でもよい。また、抵抗素子は高誘電金属で形成してもよいし、不純物拡散層で形成してもよいし、占有面積低減化のために電界効果トランジスタで形成してもよい。
【0040】
また、電界効果トランジスタをTFTで構成する場合は、抵抗素子を真性a−Si薄膜で構成するとよい。すなわち、TFTは、ガラス基板上に形成された真性a−Si薄膜の表面にゲート電極を形成し、ゲート電極の上方から所定領域に不純物を注入してゲート電極の一方側および他方側にそれぞれソースおよびドレインを形成したものである。ゲート電極によってマスクされて不純物が注入されていない部分がチャネル領域となる。チャネルができないときのチャネル領域の抵抗値、すなわち非導通時のTFTの抵抗値は、1012Ωオーダになる。
【0041】
抵抗素子をトランジスタと同じサイズにすると、抵抗素子の抵抗値が非導通時のトランジスタの抵抗値と同程度になり、レベルシフト回路21,25の電源電圧V3,V4−V5が抵抗素子とトランジスタで分圧されて出力レベルV22,V27が低下し、所望の電位が得られなくなる。これを防止するためには、抵抗素子の抵抗値をトランジスタのオフ抵抗値よりも小さくする必要がある。たとえば、抵抗素子の幅をトランジスタの幅の10〜100倍にして抵抗素子の抵抗値をトランジスタの抵抗値の1/10〜1/100倍にするとよい。あるいは、不純物を注入したa−Si膜で抵抗素子を構成すれば、抵抗素子の面積を大きくすることなく、抵抗素子の抵抗値を小さくすることができる。
【0042】
以下、種々の変更例について説明する。図7の駆動回路40は、図4の駆動回路20からキャパシタ29を除去したものである。負荷容量36の容量値が比較的小さい場合は、トランジスタ23,24,26,27,31,32,34,35の寸法を小さくすることができる。トランジスタ23,27,31,35の寸法を小さくするとトランジスタ23,27,31,35のゲート容量が小さくなり、ノードN22,N27の寄生容量が小さくなる。したがって、キャパシタ29がなくても抵抗素子22,28を介して行われる充放電によってノードN22,N27の電位V22,V27の立上げおよび立下げが可能となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
【0043】
図8の駆動回路41は、図4の駆動回路20からダイオード接続されたトランジスタ23,27,32,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図4の駆動回路20と同様に使用することができる。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。
【0044】
図9の駆動回路42は、図8の駆動回路41からさらにキャパシタ29を除去したものである。負荷容量36の容量値が比較的小さい場合は、トランジスタ24,26,31,35の寸法を小さくすることができ、ノードN22,N27の寄生容量を小さくすることができる。したがって、キャパシタ29がなくても抵抗素子22,28を介して行われる充放電によってノードN22,N27の電位V22,V27の立上げおよび立下げが可能となる。この変更例では、キャパシタ29を除去したので、回路の占有面積をさらに小さくすることができる。
【0045】
図10のカラー液晶表示装置では、各行に対応して2本の走査線4a,4bが設けられる。スイッチ15,16は、それぞれ走査線4a,4bが選択レベルの「H」レベルの場合に導通する。スイッチ15,16が同時にオンされ、スイッチ16がオフされた後にスイッチ15がオフされる。この場合は、駆動回路20の動作の安定化を図ることができる。
【0046】
図11の画像表示装置は、実施の形態1のカラー液晶表示装置において液晶セル2をP型トランジスタ50および有機EL(エレクトロルミネッセンス)素子51で置換したものである。P型トランジスタ50および有機EL素子51は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。P型トランジスタ50のゲートは、駆動回路20の出力ノードN30に接続される。駆動回路20の出力電位に応じてP型トランジスタ50の導通抵抗値が変化し、有機EL素子51に流れる電流値が変化する。これにより、有機EL素子51の明るさが変化する。有機EL素子51は、複数行複数列に配置されて1枚のパネルを構成し、そのパネルには1つの画像が表示される。
【0047】
[実施の形態2]
図12は、この発明の実施の形態2によるサンプルホールド回路の駆動回路60の構成を示す回路図である。図12を参照して、この駆動回路60が図4の駆動回路20と異なる点は、レベルシフト回路21,25がそれぞれレベルシフト回路61,63で置換されている点である。レベルシフト回路61はレベルシフト回路21の抵抗素子22を定電流源62で置換し、レベルシフト回路63はレベルシフト回路25の抵抗素子28を定電流源64で置換したものである。
【0048】
定電流源62は、図13に示すように、P型トランジスタ65,66および抵抗素子67を含む。P型トランジスタ65は第3電源電位V3のラインとノードN22との間に接続され、P型トランジスタ66および抵抗素子67は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続される。P型トランジスタ65,66のゲートは、ともにP型トランジスタ66のドレインに接続される。P型トランジスタ65,66は、カレントミラー回路を構成する。P型トランジスタ66および抵抗素子67には抵抗素子67の抵抗値に応じた値の定電流が流れ、P型トランジスタ65にはP型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。なお、抵抗素子67の一方電極は接地電位GNDのラインに接続されているが、第3電源電位V3からP型トランジスタ66のしきい値電圧の絶対値|VTP|を減算した電位よりも低い他の電源電位のラインに抵抗素子67の一方電極を接続してもよい。また、定電流源としてトランジスタ65,66および抵抗素子67の代りに、ゲートとソースを互いに接続したデプレッション型のトランジスタを第3電源電位V3のラインとノードN22との間に設けてもよい。
【0049】
また定電流源64は、抵抗素子68およびN型トランジスタ69,70を含む。抵抗素子68およびN型トランジスタ69は第4電源電位V4のラインと第5電源電位V5のラインとの間に直列接続され、N型トランジスタ70はノードN27と第5電源電位V5のラインとの間に接続される。N型トランジスタ69,74のゲートは、ともにN型トランジスタ69のドレインに接続される。N型トランジスタ69,70は、カレントミラー回路を構成する。抵抗素子68およびN型トランジスタ69には抵抗素子68の抵抗値に応じた値の定電流が流れ、N型トランジスタ70にはN型トランジスタ69に流れる定電流の値に応じた値の定電流が流れる。なお、抵抗素子68の一方電極は第4電源電位V4に接続されているが、第5電源電位V5にN型トランジスタ69のしきい値電圧VTNを加算した電位よりも高い他の電源電位のラインに抵抗素子68の一方電極を接続してもよい。また、定電流源としてトランジスタ69,70および抵抗素子68の代りに、ゲートとソースを互いに接続したデプレッション型のトランジスタを第5電源電位V5のラインとノードN27との間に設けてもよい。他の構成および動作は、図4の駆動回路20と同じであるので、その説明は繰返さない。
【0050】
この実施の形態2では、図4の駆動回路20の抵抗素子22,28をそれぞれ定電流源62,64で置換したので入力電位VIの値に関係なく、入力電位VIに等しい出力電位VOを得ることができる。
【0051】
以下、この実施の形態2の種々の変更例について説明する。図14の駆動回路71は、図12の駆動回路60からキャパシタ29を除去したものである。この変更例は、負荷容量36の容量値が比較的小さい場合に有効となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
【0052】
図15の駆動回路72は、図13の駆動回路60からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。ただし、出力電位VOは、VO=VI+|VTP|−VTNとなる。
【0053】
図16の駆動回路73は、図15の駆動回路72からキャパシタ29を除去したものである。この変更例は、負荷容量36の容量値が比較的小さい場合に有効となる。この変更例では、キャパシタ29を除去したので、回路の占有面積が小さくてすむ。
【0054】
[実施の形態3]
たとえば図4の駆動回路20において、負荷容量36を充放電する際、トランジスタ31,32,34,35の各々はいわゆるソースフォロア動作を行なう。その際、出力電位VOが入力電位VIに近づくにつれてトランジスタ31,32,34,35の各々のゲート−ソース間電圧が小さくなり、トランジスタ31,32,34,35の電流駆動能力が低下する。トランジスタ32,34についてはそれらのゲート電極幅を広くすることによって駆動能力の低下を防ぐことが可能になるが、トランジスタ31,35のゲート電極幅を広くするとゲート容量が増大し、駆動回路20の動作速度が低下してしまう。この実施の形態3では、この問題の解決が図られる。
【0055】
図17は、この発明の実施の形態3によるサンプルホールド回路の駆動回路75の構成を示す回路図である。図17を参照して、この駆動回路75は、図14の駆動回路71にキャパシタ76,77を追加したものである。キャパシタ76の一方電極は昇圧信号φBを受け、その他方電極はノードN22に接続される。キャパシタ77の一方電極は昇圧信号φBの相補信号/φBを受け、その他方電極はノードN27に接続される。
【0056】
図18は、図17に示した駆動回路75の動作を示すタイムチャートである。図18では、理解を容易にするため、ノードN22,N27の電位V22,V27および出力電位VOの遷移時間が実際よりも長く示されている。時刻t1において、入力電位VIが「L」レベルVLから「H」レベルVHに立上げられると、電位V22,V27,VOの各々が徐々に上昇する。上述のとおり、電位V22,V27,VOの各々は、電位変化の周期は比較的速く立上がるが、最終レベルに近づくにつれて上昇速度が遅くなる。
【0057】
時刻t1から所定時間経過後の時刻t2において、昇圧信号φBが「H」レベルに立上げられるとともに信号/φBが「L」レベルに立下げられる。信号φBが「H」レベルに立上げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ上昇する。信号/φBが「L」レベルに立下げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電位ΔV2だけ低下する。このとき、出力ノードN30に「H」レベルVHを出力する動作を行なっており、N型トランジスタ31の導通抵抗値の方がP型トランジスタ35の導通抵抗値よりも低くなっているので、V22によるレベル上昇作用の方がV27によるレベル降下作用よりも強く働き、出力電位VOは時刻t2から急速に上昇する(V22を昇圧しない場合は破線で示すようになる)。
【0058】
昇圧された電位V22は、ノードN22からトランジスタ23,24を介して接地電位GNDのラインに電流が流出することにより、VI+|VTP|+VTNまで低下する。また降圧された電位V27は、第4電源電位V4のラインからトランジスタ26,27を介してノードN27に電流が流入することにより、VI−|VTP|−VTNまで上昇する。
【0059】
時刻t3において、昇圧信号φBが「L」レベルに立下げられるとともに信号/φBが「H」レベルに立上げられる。信号φBが「L」レベルに立下げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ低下する。また信号/φBが「H」レベルに立上げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電圧ΔV2だけ上昇する。V22がΔV1だけ低下してもプルアップ回路30には出力電位VOを低下させる能力がなく、V27がΔV2だけ上昇してもプルダウン回路33には出力電位VOを上昇させる能力がないので、出力電位VOは変化しない。
【0060】
降圧された電位V22は、第3電源電位V3のラインからP型トランジスタ65を介してノードN22に電流が流入することにより、VI+|VTP|+VTNまで上昇する。ただし、低消費電力化のためP型トランジスタ65の電流駆動能力が小さく設定されているので、ノードN22の電位V22が本来のレベルVI+|VTP|+VTNに上昇するのに必要な時間は、V22がそのレベルVI+|VTP|+VTNに低下するのに必要な時間よりも長くなる。
【0061】
また昇圧された電位V27は、ノードN27からN型トランジスタ70を介して第5電源電位V5のラインに電流が流出することにより、VI−VTN−|VTP|まで低下する。ただし、低消費電力化のためN型トランジスタの電流駆動能力は小さく設定されているので、ノードN27の電位V27が本来のレベルVI−VTN−|VTP|に低下するのに必要な時間は、V27がそのレベルVI−VTN−|VTP|に上昇するのに必要な時間よりも長くなる。
【0062】
次に時刻t4において、入力電位VIが「H」レベルVHから「L」レベルVLに立下げられると、電位V22,V27,V4の各々が徐々に低下する。電位V22,V27,V4の各々は、電位変化の初期は比較的速く立下がるが、最終レベルに近づくにつれて下降速度が遅くなる。
【0063】
時刻t4から所定時間経過後の時刻t5において、昇圧信号φBが「H」レベルに立上げられるとともに信号/φBが「L」レベルに立下げられる。信号φBが「H」レベルに立上げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ上昇する。信号/φBが「L」レベルに立下げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電位ΔV2だけ低下する。このとき、出力ノードN30に「L」レベルVLを出力する動作を行なっており、P型トランジスタ35の導通抵抗値の方がN型トランジスタ31の導通抵抗値よりも低くなっているので、V27によるレベル下降作用の方がV22によるレベル上昇作用よりも強く働き、出力電位VOは時刻t5から急速に低下する(V27を降圧しない場合は破線で示すようになる)。
【0064】
昇圧された電位V22は、ノードN22からトランジスタ23,24を介して接地電位GNDのラインに電流が流出することにより、VI+|VTP|+VTNまで低下する。また降圧された電位V27は、第4電源電位V4のラインからトランジスタ26,27を介してノードN27に電流が流入することにより、VI−|VTP|−VTNまで上昇する。
【0065】
時刻t6において、昇圧信号φBが「L」レベルに立下げられるとともに信号/φBが「H」レベルに立上げられる。信号φBが「L」レベルに立下げられると、キャパシタ76を介して容量結合により、ノードN22の電位V22が所定電圧ΔV1だけ低下する。また信号/φBが「H」レベルに立上げられると、キャパシタ77を介して容量結合により、ノードN27の電位V27が所定電圧ΔV2だけ上昇する。ΔV1が低下してもプルアップ回路30には出力電位VOを低下させる能力がなく、ΔV2が上昇してもプルダウン回路33には出力電位VOを上昇させる能力がないので、出力電位VOは変化しない。
【0066】
降圧された電位V22は、第3電源電位V3のラインからP型トランジスタ65を介してノードN22に電流が流入することにより、VI+|VTP|+VTNまで上昇する。ただし、低消費電力化のためP型トランジスタ65の電流駆動能力は小さく設定されているので、ノードN22の電位V22が本来のレベルVI+|VTP|+VTNに上昇するのに必要な時間は、V22がそのレベルVI+|VTP|+VTNに低下するのに必要な時間よりも長くなる。
【0067】
また昇圧された電位V27は、ノードN27からN型トランジスタ70を介して第5電源電位V5のラインに電流が流出することにより、VI−VTN−|VTP|まで低下する。ただし、低消費電力化のためN型トランジスタ70の電流駆動能力は小さく設定されているので、ノードN27の電位V27が本来のレベルVI−VTN−|VTP|に低下するのに必要な時間は、V27がそのレベルVI−VTN−|VTP|に上昇するのに必要な時間よりも長くなる。
【0068】
この実施の形態3では、入力電位VIが「L」レベルVLから「H」レベルVHに立上げられたことに応じてノードN22の電位V22を本来到達すべき電位VI+|VTP|+VTNよりも高い電位に昇圧するので、出力電位VOの上昇速度を速くすることができる。また、入力電位VIが「H」レベルVHから「L」レベルVLに立下げられたことに応じてノードN27の電位V27も本来到達すべき電位VI−|VTP|−VTNよりも低い電位に降圧するので、出力電位VOの下降速度を速くすることができる。したがって、駆動回路75の応答速度の高速化を図ることができる。
【0069】
図19は、この実施の形態3の変更例による駆動回路78の構成を示す回路図である。この駆動回路78は、図17の駆動回路75のトランジスタ23,27,32,34を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0070】
[実施の形態4]
図20は、この発明の実施の形態4によるサンプルホールド回路の駆動回路80の構成を示す回路図である。図20を参照して、この駆動回路80は、図14の駆動回路71にP型トランジスタ81およびN型トランジスタ82を追加したものである。P型トランジスタ81は、第3電源電位V3のラインとノードN22との間に接続され、そのゲートはプルアップ信号/φPを受ける。N型トランジスタ82は、ノードN27と第5電源電位V5のラインとの間に接続され、そのゲートはプルアップ信号/φPの相補信号φPを受ける。
【0071】
信号φP,/φPは、実施の形態3で示した信号φB,/φBと同様のタイミングでレベル変化される。すなわち、入力信号VIが「L」レベルVLから「H」レベルVHに立上げられてから所定時間経過後に、信号/φP,φPがそれぞれパルス的に「L」レベルおよび「H」レベルにされて、P型トランジスタ81およびN型トランジスタ82がパルス的に導通する。これにより、ノードN22の電位V22は、第3電源電位V3をトランジスタ81とトランジスタ23,24とで分圧した電位に昇圧された後、所定値VI+|VTP|+VTNになる。また、ノードN27の電位V27は、第4電源電位V4と第5電源電位V5の間の電圧V4−V5をトランジスタ26,27とトランジスタ82とで分圧した電位に降圧された後、所定値VI−VTN−|VTP|になる。このとき、実施の形態3でも述べたように、N型トランジスタ31による充電作用の方がP型トランジスタ35による放電作用よりも強く働き、出力電位VOは急速に入力電位VIに等しくなる。入力電位VIが「H」レベルVHから「L」レベルVLに立下げられた場合は、P型トランジスタ35による放電作用の方がN型トランジスタ31による充電作用よりも強く働き、出力電位VOは急速に入力電位VIに等しくなる。
【0072】
この実施の形態4でも、実施の形態3と同じ効果が得られる。
【0073】
以下、この実施の形態4の種々の変更例について説明する。図21の駆動回路83は、図20の駆動回路80からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0074】
図22の駆動回路85は、図20の駆動回路80にN型トランジスタ86およびP型トランジスタ87を追加したものである。N型トランジスタ86は、P型トランジスタ24のソースと接地電位GNDのラインとの間に接続され、そのゲートはプルアップ信号/φPを受ける。P型トランジスタ87は、第4電源電位V4のラインとN型トランジスタ26のドレインとの間に接続され、そのゲートはプルアップ信号/φPの相補信号φPを受ける。この変更例では、P型トランジスタ81の導通時にN型トランジスタ86が非導通になるので、第3電源電位V3のラインからトランジスタ81,23,24,86を介して接地電位GNDのラインに貫通電流が流れるのを防止することができる。また、N型トランジスタ82の導通時にP型トランジスタ87が非導通になるので、第4電源電位V4のラインからトランジスタ87,26,27,82を介して第5電源電位V5のラインに貫通電流が流れるのを防止することができる。したがって、回路61,63の消費電流が小さくてすむ。
【0075】
図23の駆動回路88は、図22の駆動回路85からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOがVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0076】
図24の駆動回路90は、図20の駆動回路80のP型トランジスタ24のソースに接地電位GNDの代わりに信号φPを与えるとともにN型トランジスタ26のドレインに第4電源電位V4の代わりに信号/φPを与えたものである。この変更例では、P型トランジスタ81の導通時にP型トランジスタ24のドレインを「H」レベルにするので、トランジスタ81,23,24に貫通電流が流れるのを防止することができる。また、N型トランジスタ82の導通時にN型トランジスタ26のドレインを「L」レベルにするので、トランジスタ26,27,82に貫通電流が流れるのを防止することができる。したがって、回路61,63の消費電流の低減化を図ることができる。
【0077】
図25の駆動回路91は、図24の駆動回路90からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0078】
[実施の形態5]
図26は、この発明の実施の形態5によるサンプルホールド回路の駆動回路95の構成を示す回路図である。図26を参照して、この駆動回路95が図17の駆動回路75と異なる点は、レベルシフト回路61,63がそれぞれレベルシフト回路96,102で置換されている点である。
【0079】
レベルシフト回路96は、レベルシフト回路61にP型トランジスタ97,98およびN型トランジスタ99〜101を追加したものである。P型トランジスタ97は、N型トランジスタ99,100およびP型トランジスタ98は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続され、N型トランジスタ101は第3電源電位V3のラインとノードN22との間に接続される。P型トランジスタ97のゲートは、P型トランジスタ66のゲートに接続される。したがって、トランジスタ97,99,100,98には、P型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。N型トランジスタ99,100のゲートは、それぞれそれらのドレインに接続される。N型トランジスタ99,100の各々はダイオードを構成する。P型トランジスタ98のゲートは、入力電位VIを受ける。トランジスタ97,99の間のノードの電位V99は、V99=VI+|VTP|+2VTNとなる。V99は、N型トランジスタ101のゲートに与えられる。N型トランジスタ101は、ノードN22をV99−VTN=VI+|VTP|+VTNに充電する。
【0080】
レベルシフト回路102は、レベルシフト回路63にN型トランジスタ103,104およびP型トランジスタ105〜107を追加したものである。N型トランジスタ103、P型トランジスタ105,106およびN型トランジスタ104は、第4電源電位V4のラインと第5電源電位V5のラインとの間に直列接続され、P型トランジスタ107はノードN27と第5電源電位V5のラインとの間に接続される。N型トランジスタ103のゲートは、入力電位VIを受ける。P型トランジスタ105,106のゲートは、それぞれそれらのドレインに接続される。P型トランジスタ105,106の各々は、ダイオードを構成する。N型トランジスタ104のゲートは、N型トランジスタ69のゲートに接続される。N型トランジスタ104には、N型トランジスタ69に流れる定電流の値に応じた値の定電流が流れる。MOSトランジスタ106と104の間のノードの電位V106は、V106=VI−VTN−2|VTP|となる。V106は、P型トランジスタ107のゲートに与えられる。P型トランジスタ107は、ノードN27をV106−|VTP|=VI−VTN−|VTP|に放電する。他の構成および動作は、図17の駆動回路75と同じであるので、その説明は繰返さない。
【0081】
図27は、図26に示した駆動回路95の動作を示すタイムチャートであって、図18と対比される図である。図27を参照して、この駆動回路95では、トランジスタ97〜101によってノードN22をVI+|VTP|+VTNに充電するので、ノードN22の電位V22が所定値VI+|VTP|+VTNよりも低下したとき(時刻t3,t6)、ノードN22の電位V22を急速に所定値VI+|VTP|+VTNに戻すことができる。また、トランジスタ103〜107によってノードN27をVI−VTN−|VTP|に放電するので、ノードN27の電位V27が所定値VI−VTN−|VTP|よりも上昇したとき(時刻t3,t6)、ノードN27の電位V27を急速に所定値VI−VTN−|VTP|に戻すことができる。したがって、回路の応答速度の高速化を図ることができる。
【0082】
図28は、この実施の形態5の変更例を示す回路図である。この駆動回路108は、図26の駆動回路95からN型トランジスタ23,34,100およびP型トランジスタ27,32,105を除去したものである。この変更例では、トランジスタ23,27,32,34,100,105を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0083】
[実施の形態6]
図29は、この発明の実施の形態6によるサンプルホールド回路の駆動回路110の構成を示す回路図である。図29において、この駆動回路110が図26の駆動回路95と異なる点は、レベルシフト回路96,102がレベルシフト回路111,112で置換されている点である。
【0084】
レベルシフト回路111は、レベルシフト回路96からP型トランジスタ97,98およびN型トランジスタ100を除去し、N型トランジスタ99をP型トランジスタ65のソースとノードN22との間に接続したものである。N型トランジスタ99のゲートは、N型トランジスタ99のドレインおよびN型トランジスタ101のゲートに接続される。N型トランジスタ99,101のゲートの電位V99は、V99=VI+|VTP|+2VTNとなる。N型トランジスタ101は、ノードN22をV99−VTN=VO+|VTP|+VTNに充電する。
【0085】
レベルシフト回路112は、レベルシフト回路102からN型トランジスタ103,104およびP型トランジスタ105を除去し、P型トランジスタ106をノードN27とN型トランジスタ70のドレインとの間に接続したものである。P型トランジスタ106のゲートは、そのドレインおよびP型トランジスタ107のゲートに接続される。P型トランジスタ106,107のゲートの電位V106は、V106=VI−VTN−2|VTP|となる。P型トランジスタ107は、ノードN27をV106+|VTP|=VI−VTN−|VTP|に放電する。他の構成および動作は、図26の駆動回路95と同じであるので、その説明は繰返さない。
【0086】
この実施の形態6では、実施の形態5と同じ効果が得られる他、第3電源電位V3のラインからトランジスタ97,99,100,98を介して接地電位GNDのラインに流れる電流、および第4の電源電位V4のラインからトランジスタ103,105,106,104を介して第5電源電位V5のラインに流れる電流を削減できるので、消費電流が小さくてすむ。また、トランジスタ97,98,100,103〜105を除去したので、回路の占有面積が小さくてすむ。
【0087】
図30は、この実施の形態6の変更例を示す回路図である。この駆動回路113は、図29の駆動回路110からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、トランジスタ23,27,32,34を除去したので、出力電位VOはVO=VI+|VTP|−VTNになるが、回路の占有面積が小さくてすむ。
【0088】
[実施の形態7]
図31は、この発明の実施の形態7による半導体集積回路装置の要部を示す回路ブロック図である。図31において、この半導体集積回路装置は、j個(ただし、jは2以上の整数である)の駆動回路115.1〜115.jを備える。
【0089】
駆動回路115.1は、図32に示すように、図13の駆動回路60のレベルシフト回路61,63をそれぞれレベルシフト回路116,117で置換したものである。レベルシフト回路116はレベルシフト回路61からP型トランジスタ66および抵抗素子67を除去したものであり、レベルシフト回路117はレベルシフト回路63から抵抗素子68およびN型トランジスタ69を除去したものである。トランジスタ65,70のゲートは、それぞれバイアス電位VBP,VBNを受ける。他の駆動回路115.2〜115.jの各々も駆動回路115.1と同じ構成である。
【0090】
図31に戻って、この半導体集積回路装置では、バイアス電位VBPを生成するためのP型トランジスタ66および抵抗素子67とバイアス電位VBNを生成するための抵抗素子68およびN型トランジスタ69とが駆動回路115.1〜115.jに共通に設けられる。
【0091】
P型トランジスタ66および抵抗素子67は第3電源電位V3のラインと接地電位GNDのラインとの間に直列接続され、P型トランジスタ66のゲートはそのドレイン(ノードN66)に接続される。ノードN66には、バイアス電位VBPが現れる。ノードN66と接地電位GNDのラインとの間には、バイアス電位VBPを安定化させるためのキャパシタ118が接続される。駆動回路115.1〜115.jの各々のP型トランジスタ65には、P型トランジスタ66に流れる定電流に応じた値の定電流が流れる。
【0092】
抵抗素子68およびN型トランジスタ69は第4電源電位V4のラインと第5電源電位V5のラインとの間に接続され、N型トランジスタ69のゲートはそのドレイン(ノードN68)に接続される。ノードN68には、バイアス電位VBNが現れる。ノードN68と接地電位GNDのラインとの間には、バイアス電位VBNを安定化させるためのキャパシタ119が接続される。駆動電位115.1〜115.jの各々のN型トランジスタ70は、N型トランジスタ69に流れる定電流に応じた値の定電流が流れる。
【0093】
この実施の形態7では、実施の形態2と同じ効果が得られる他、バイアス電位VBP,VBNを生成するための回路を駆動回路115.1〜115.jに共通に設けたので、駆動回路115.1〜115.j1つ当りの占有面積が小さくてすむ。
【0094】
[実施の形態8]
図33は、この発明の実施の形態8によるサンプルホールド回路のオフセット補償機能付駆動回路120の構成を示す回路ブロック図である。図33において、このオフセット補償機能付駆動回路120は、駆動回路121、キャパシタ122およびスイッチS1〜S4を含む。駆動回路121は、実施の形態1〜11で示した駆動回路のうちのいずれかの駆動回路である。キャパシタ122およびスイッチS1〜S4は、駆動回路121のトランジスタのしきい値電圧のばらつきなどにより駆動回路121の入力電位と出力電位の間に電位差すなわちオフセット電圧VOFが生じた場合に、このオフセット電圧VOFを補償するためのオフセット補償回路を構成する。
【0095】
すなわち、スイッチS1は入力ノードN120と駆動回路121の入力ノードN20との間に接続され、スイッチS4は出力ノードN121と駆動回路121の出力ノードN30との間に接続される。キャパシタ122およびスイッチS2は、駆動回路121の入力ノードN20と出力ノードN30との間に直列接続される。スイッチS3は、入力ノードN120とキャパシタ122およびスイッチS2間のノードN122との間に接続される。スイッチS1〜S4の各々は、P型トランジスタでもよいし、N型トランジスタでもよいし、P型トランジスタおよびN型トランジスタを並列接続したものでもよい。スイッチS1〜S4の各々は、制御信号(図示せず)によってオン/オフ制御される。
【0096】
今、駆動回路121の出力電位が入力電位よりもオフセット電圧VOFだけ低い場合について説明する。図34に示すように、初期状態では、すべてのスイッチS1〜S4はオフ状態にされている。ある時刻t1においてスイッチS1,S2がオン状態にされると、駆動回路121の入力ノードN20の電位V20はV20=VIになり、駆動回路121の出力電位V30およびノードN122の電位V122はV30=V122=VI−VOFとなり、キャパシタ122はオフセット電圧VOFに充電される。
【0097】
次に時刻t2においてスイッチS1,S2がオフ状態にされると、オフセット電圧VOFはキャパシタ122に保持される。次いで時刻t3においてスイッチS3がオン状態にされると、ノードN122の電位V122はV122=VIになり、駆動回路121の入力電位V20はV20=VI+VOFとなる。この結果、駆動回路121の出力電位V30はV30=V20−VOF=VIとなり、駆動回路121のオフセット電圧VOFは打消されたことになる。次に時刻t4においてスイッチS4がオン状態にされると、出力電位VOがVO=VIとなり負荷に供給される。
【0098】
この実施の形態8では、駆動回路121のオフセット電圧VOFを打消すことができ、出力電位VOと入力電位VIを一致させることができる。
【0099】
なお、スイッチS4は必ずしも必要でない。ただし、スイッチS4を設けないと、負荷容量36の容量値が大きい場合は時刻t1においてスイッチS1,S2をオン状態にしてからキャパシタ122の端子間電圧VOFが安定するまでの時間が長くなる。
【0100】
[実施の形態9]
図35は、この発明の実施の形態9によるサンプルホールド回路のオフセット補償機能付駆動回路125の構成を示す回路ブロック図である。図35において、このオフセット補償機能付駆動回路125は、図12の駆動回路60にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bを追加したものである。
【0101】
スイッチS1a,S1bは、それぞれ入力ノードN120とトランジスタ24,26のゲート(ノードN20a,N20b)との間に接続される。スイッチS4a,S4bは、それぞれ出力ノードN121とトランジスタ32,34のドレイン(ノードN30a,N30b)との間に接続される。キャパシタ122aおよびスイッチS2aは、ノードN20aとN30aの間に直列接続される。キャパシタ122bおよびスイッチS2bは、ノードN20bとN30bの間に直列接続される。スイッチS3aは、入力ノードN120とキャパシタ122aおよびスイッチS2a間のノードN122aとの間に接続される。スイッチ3bは、入力ノードN120とキャパシタ122bおよびスイッチS2b間のノードN122bとの間に接続される。キャパシタ126a,126bの一方電極はそれぞれノードN30a,N30bに接続され、それらの他方電極はそれぞれリセット信号/φRおよびその相補信号φRを受ける。
【0102】
図36は、図35に示したオフセット補償機能付駆動回路125の動作を示すタイムチャートである。定電流源62およびトランジスタ23,24,31,32からなる充電回路と、定電流源64およびトランジスタ26,27,34,35からなる放電回路とは、充電と放電の違いはあるが同様の動作をするので、図36では充電回路の動作のみについて説明する。今、N型トランジスタ31のしきい値電圧VTNがN型トランジスタのしきい値電圧VTNよりもVOFaだけ大きいために充電回路側にオフセット電圧VOFaがあり、放電回路側にオフセット電圧VOFbはないものとする。
【0103】
初期状態では、スイッチS1a〜S3aがオフ状態にされるとともにスイッチS4aがオン状態にされ、ノードN20a,N122a,N30a,N121には前回の電位VI′が保持されている。時刻t1においてスイッチS1a,S2aがオン状態にされると、ノードN20a,N122a,N30a,N121の電位V20a,V122a,V30a,VOはともに入力電位VIに等しい電位になる。また、ノードN22の電位V22は、V22=VI+|VTP|+VTNとなる。N型トランジスタ31のしきい値電圧VTN′がN型トランジスタ23のしきい値電圧VTNよりもVOFaだけ高いにもかかわらずV20a,V122a,V30a,VOがともにVIに等しい電位になるのは、出力ノードN121は放電回路によって入力電位VIまで放電されるが、それ以下には放電されないからである。
【0104】
次に、時刻t2においてスイッチS4aがオフ状態にされて、充電回路の出力ノードN30aと放電回路の出力ノードN30bとが電気的に切離される。次いで時刻t3においてリセット信号/φRが「H」レベルから「L」レベルに立下げられると、キャパシタ126aを介して容量結合により、ノードN30a,N122aの電位V30a,V122aが所定電圧だけ降圧される。これにより、トランジスタ31,32が導通してノードN30a,N122aの電位V30a,V122aがVI−VOFaまで上昇し、キャパシタ122aがVOFaに充電される。
【0105】
ノードN30a,N122aの電位V30a,V122aが安定した後、時刻t4においてスイッチS1a,S2aがオフ状態にされ、さらに時刻t5においてスイッチS3aがオン状態にされると、入力電位VIにオフセット電圧VOFaを加算した電位VI+VOFaがノードN20aに与えられる。これにより、ノードN22の電位V22はV22=VI+|VTP|+VTN+VOFaとなり、ノードN30a,N122aの電位V30a,V122aは入力電位VIと同じレベルになる。
【0106】
充電回路の出力電位V30aは時刻t1からV30a=VIになるが、時刻t1〜t2の期間は配線容量などによって保持された電位にすぎず、負極性のノイズがあった場合はV30aはVI−VOFまで低下してしまう。これに対して時刻t5以降は、負極性のノイズがあってもトランジスタ31,32によって充電されるので、V30aはVIに維持される。
【0107】
次に時刻t6においてスイッチS3aがオフ状態にされ、さらに時刻t7においてスイッチS4aがオン状態にされると、負荷容量36が駆動回路によって駆動される。時刻t8においてリセット信号/φRが「H」レベルに立上げられると、初期状態に戻る。この時刻t8では、出力インピーダンスが十分に低くなっているので、リセット信号/φRが「H」レベルに立上げられても出力電位VOはほとんど変化しない。放電回路側でも同様の動作が行なわれ、出力電位VOはVIに維持される。
【0108】
図37は、図35に示したオフセット補償機能付駆動回路125の動作を示す他のタイムチャートである。定電流源62およびトランジスタ23,24,31,32からなる充電回路と、定電流源64およびトランジスタ26,27,34,35からなる放電回路とは、充電と放電の違いはあるが同様の動作をするので、図37では放電回路の動作のみについて説明する。今、P型トランジスタ35のしきい値電圧の絶対値|VTP′|がP型トランジスタ27のしきい値電圧の絶対値|VTP|よりもVOFbだけ大きいために放電回路側にオフセット電圧VOFbがあり、充電回路側にはオフセット電圧VOFaはないものとする。
【0109】
初期状態では、スイッチS1b〜S3bがオフ状態にされるとともにスイッチS4bがオン状態にされ、ノードN20b,N122b,N30b,N121には前回の電位VI′が保持されている。時刻t1においてスイッチS1b,S2bがオン状態にされると、ノードN20b,N122b,N30b,N121の電位V20b,V122b,V30b,VOはともに入力電位VIに等しい電位になる。また、ノードN27の電位V27は、V27=VI−|VTP|−VTNとなる。P型トランジスタ35のしきい値電圧の絶対値|VTP′|がP型トランジスタ27のしきい値電圧の絶対値|VTP|よりもVOFbだけ高いにもかかわらずV20b,V122b,V30b,VOはともにVIに等しい電位になるのは、出力ノードN121が充電回路によって入力電位VIまで充電されるが、それ以上には充電されないからである。
【0110】
次に、時刻t2においてスイッチS4bがオフ状態にされて、充電回路の出力ノードN30aと放電回路の出力ノードN30bとが電気的に切離される。次いで時刻t3において信号φRが「L」レベルから「H」レベルに立上げられると、キャパシタ126bを介して容量結合により、ノードN30b,N122bの電位V30b,V122bが所定電圧だけ昇圧される。これにより、トランジスタ34,35が導通してノードN30b,N122bの電位V30b,V122bがVI+VOFbまで低下し、キャパシタ122bがVOFbに充電される。
【0111】
ノードN30b,N122bの電位V30b,V122bが安定した後、時刻t4においてスイッチS1b,S2bがオフ状態にされ、さらに時刻t5においてスイッチS3bがオン状態にされると、入力電位VIからオフセット電圧VOFbを減算した電位VI−VOFがノードN20bに与えられる。これにより、ノードN27の電位V27がV27=VI−VTN−|VTP|−VOFbとなり、ノードN30b,V122bの電位V30b,V122bは入力電位VIと同レベルになる。
【0112】
放電回路の出力電位V30bは時刻t1からV30b=VIになるが、時刻t1〜t2の期間は配線容量などによって保持された電位にすぎず、正極性のノイズがあった場合はV30bはVI+VOFbまで上昇してしまう。これに対して時刻t5以降は、正極性のノイズがあってもトランジスタ34,35によって放電されるので、V30bはVIに維持される。
【0113】
次に時刻t6においてスイッチS3bがオフ状態にされ、さらに時刻t7においてスイッチS4bがオン状態にされると、負荷容量36が駆動回路によって駆動される。時刻t8において信号φRが「L」レベルに立下げられると、初期状態に戻る。この時刻t8では、出力インピーダンスが低くなっているので、信号φRが「L」レベルに立上げられても出力電位Vはほとんど変化しない。放電回路側でも同様の動作が行なわれ、出力電位VOはVIに維持される。
【0114】
以下、この実施の形態9の種々の変更例について説明する。図38のオフセット補償機能付駆動回路127は、図35のオフセット補償機能付駆動回路125からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
【0115】
図39のオフセット補償機能付駆動回路130は、図35のオフセット補償機能付駆動回路125のキャパシタ126a,126bをそれぞれN型トランジスタ131aおよびP型トランジスタ131bで置換したものである。N型トランジスタ131aは、第8電源電位V8のラインとノードN30aとの間に接続され、そのゲートはリセット信号φR′を受ける。P型トランジスタ131bは、ノードN30bと第9電源電位V9のラインとの間に接続され、そのゲートはリセット信号φR′の相補信号/φR′を受ける。
【0116】
通常時は信号φR′,/φR′がそれぞれ「L」レベルおよび「H」レベルにされており、N型トランジスタ131aおよびP型トランジスタ131bはともに非導通にされている。図36および図37の時刻t3において、信号φR′が所定時間だけパルス的に「H」レベルにされるとともに信号/φR′が所定時間だけパルス的に「L」レベルにされる。これにより、N型トランジスタ131aがパルス的に導通してノードN30aの電位V30aが第8電源電位V8に低下されるとともに、P型トランジスタ131bがパルス的に導通してノードN30bの電位V30bが第9電源電位V9に上昇される。この後、図36で説明した場合ではノードN30aがVI−VOFに充電され、図37で説明した場合ではノードN30bがVO+VOFに放電される。この変更例では、図36および図37の時刻t8においても、出力電位VOにノイズが発生することはない。なお、信号φR′,/φR′のパルス幅は必要最小限の値に設定される。
【0117】
図40のオフセット補償機能付駆動回路132は、図20の駆動回路80にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号/φPはパルス的に「L」レベルにされるとともに信号φPがパルス的に「H」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
【0118】
図41のオフセット補償機能付駆動回路133は、図40のオフセット補償機能付駆動回路132からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
【0119】
図42のオフセット補償機能付駆動回路135は、図22の駆動回路85にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。この変更例では、信号/φP,φPがそれぞれ「L」レベルおよび「H」レベルになってトランジスタ81,82が導通したときに、同時にトランジスタ86,87が非導通になるので、貫通電流が流れるのを防止することができ、消費電流が小さくてすむ。
【0120】
図43のオフセット補償機能付駆動回路136は、図42のオフセット補償機能付駆動回路135からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積は小さくてすむ。
【0121】
図44のオフセット補償機能付駆動回路140は、図24の駆動回路90にキャパシタ122a,122b,126a,126bおよびスイッチS1〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。この変更例では、信号/φPが「L」レベルにされてP型トランジスタ81が導通したときにP型トランジスタ24のドレインが「H」レベルにされ、信号φPが「H」レベルにされてN型トランジスタ82が導通したときにN型トランジスタ26のドレインが「L」レベルにされるので、貫通電流が流れることを防止することができ、消費電力が小さくてすむ。
【0122】
図45のオフセット補償機能付駆動回路141は、図44のオフセット補償機能付駆動回路140からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
【0123】
図46のオフセット補償機能付駆動回路145は、図26のオフセット補償機能付駆動回路95にキャパシタ122a,122b,126a,126bおよびスイッチS1a〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号φBがパルス的に「H」レベルにされるとともに信号/φBがパルス的に「L」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
【0124】
図47のオフセット補償機能付駆動回路146は、図46のオフセット補償機能付駆動回路145からN型トランジスタ23,34,100およびP型トランジスタ27,32,105を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
【0125】
図48のオフセット補償機能付駆動回路150は、図29の駆動回路110にキャパシタ122a,122b,126a,126bおよびスイッチS1〜S4a,S1b〜S4bからなるオフセット補償回路を付加したものである。図36および図37の時刻t1〜t2の期間において信号φBがパルス的に「H」レベルにされるとともに信号/φBがパルス的に「L」レベルにされる。この変更例では、ノードN22,N27の電位V22,V27が所定値に迅速に到達するので、動作速度の高速化を図ることができる。
【0126】
図49のオフセット補償機能付駆動回路151は、図48のオフセット補償機能付駆動回路150からN型トランジスタ23,34およびP型トランジスタ27,32を除去したものである。この変更例では、回路の占有面積が小さくてすむ。
【0127】
[実施の形態10]
図50は、この発明の実施の形態10によるサンプルホールド回路のオフセット補償機能付駆動回路155の構成を示す回路図である。図50において、このオフセット補償機能付駆動回路155が図46のオフセット補償機能付駆動回路145と異なる点は、スイッチS5およびキャパシタ156が追加されている点と、昇圧信号φB,/φBがそれぞれ昇圧信号φB1,/φB1で置換されている点である。
【0128】
スイッチS5は、スイッチS4a,S4b間のノードと出力ノードN121との間に接続される。キャパシタ156は、スイッチS4a,S4b間のノードと接地電位GNDのラインとの間に接続される。キャパシタ156の容量値は、負荷容量36の容量値よりも小さく設定されている。
【0129】
図51は、図50に示したオフセット補償機能付駆動回路155の動作を示すタイムチャートであって、図36と対比される図である。ここでも充電回路側の動作のみについて説明する。図51を参照して、時刻t9まではスイッチS5がオフ状態にされており、負荷容量36が電気的に切離されているので、たとえば時刻t1〜t2において電位V22,V30a,V122aが迅速に入力電位VIに到達する。
【0130】
時刻t9においてスイッチS5がオン状態にされると、出力ノードN121に接続されたデータ線の電位VOに応じてスイッチS4a,S4b間の電位V156が変化する。図51では、データ線の電位VOがV156よりも低かった場合が示されており、時刻t9において電位V156が低下した後、トランジスタ31,32によって電流が供給されて電位V156が徐々に上昇する。次いで時刻t10において信号φB1が「L」レベルから「H」レベルに立上げられてノードN22の電位V22がパルス的に上昇し、N型トランジスタ31を流れる電流が増加して電位V156=VOが急速に入力電位VIに到達する。
【0131】
図52は、図50に示したオフセット補償機能付駆動回路155の動作を示す他のタイムチャートであって、図37と対比される図である。ここでも、放電回路側の動作のみについて説明する。図52を参照して、時刻t9まではスイッチS5がオフ状態にされており、負荷容量36が電気的に切離されているので、たとえば時刻t1〜t2において電位V27,V30b,V122bが迅速に入力電位VIに到達する。
【0132】
時刻t9においてスイッチS5がオン状態にされると、出力ノードN121に接続されたデータ線の電位VOに応じてスイッチS4a,S4b間の電位V156が変化する。図52では、データ線の電位VOがV156よりも高かった場合が示されており、時刻t9において電位V156が上昇した後、トランジスタ34,35によって電流が排出されて電位V156が徐々に低下する。
【0133】
次いで時刻t10において信号/φB1が「H」レベルから「L」レベルに立下げられてノードN27の電位V27がパルス的に低下し、P型トランジスタ35に流れる電流が増加して電位V156=VOは急速に入力電位VIに到達する。
【0134】
この実施の形態10では、負荷容量36の容量値が大きい場合でも、速い動作速度を得ることができる。
【0135】
[実施の形態11]
図53は、この発明の実施の形態11によるオフセット補償機能付駆動回路157の構成を示す回路図である。図53を参照して、このオフセット補償機能付駆動回路157が図50のオフセット補償機能付駆動回路155と異なる点は、キャパシタ156が除去されている点と、スイッチS5のオン/オフのタイミングおよび信号φB1,/φB1のレベル変化のタイミングである。
【0136】
図54は、図53に示したオフセット補償機能付駆動回路157の動作を示すタイムチャートである。ここでは、N型トランジスタ31のしきい値電圧VTN′がN型トランジスタ23のしきい値電圧VTNよりもVOFだけ大きいものとする。初期状態では、スイッチS1a〜S3a,S1b〜S3bはオフ状態にされるとともにスイッチS4a,S4b,S5がオン状態にされ、ノードN30a,N30b,N20aの電位V30a,V30b,V20aはともに前回の入力電位(図ではVH)になっている。
【0137】
時刻t1においてスイッチS5がオフ状態にされてスイッチS30a,S30bの間のノードと負荷容量36とが電気的に切離される。時刻t2においてスイッチS1a,S1b,S2a,S2bがオン状態にされるとともに、入力電位VIが今回の電位(図ではVL)に設定される。このように、ノードN30a,N30b,N20bの電位V30a,V30b,V20bはともにVI=VLになる。N型トランジスタ31のしきい値電圧VTN′が他のN型トランジスタのしきい値電圧VTNよりもVOFだけ高いにもかかわらずV30a,V30bがVI=VLになるのは、放電回路がノードN30a,N30bをVI=VLまで放電するが、それ以下には放電しないからである。
【0138】
時刻t3においてスイッチS4a,S4bがオフ状態にされて、充電回路と放電回路は電気的に切離される。時刻t4においてリセット信号/φRが「H」レベルから「L」レベルに立下げられるとともに信号φRが「L」レベルから「H」レベルに立上げられる。これにより、ノードN30aの電位V30aがVLからパルス的に降圧された後VL−VOFになるととももに、ノードN30bの電位V30bがVLからパルス的に昇圧された後VLになる。
【0139】
時刻t5においてスイッチS1a,S1b,S2a,s2bがオフ状態にされ、次いで時刻t6においてスイッチS3a,S3bがオン状態にされると、ノードN20aの電位V20aがVL+VOFになり、オフセット電圧VOFが打消されてノードN30aの電位V30aはVI=VLになる。
【0140】
時刻t7においてスイッチS3a,S3bがオフ状態にされ、次いで時刻t8においてスイッチS4a,S4b,S5がオン状態にされると、負荷容量36が前回の電位であるVHに充電されているので、ノードN30a,N30bの電位V30a,V30bは一旦上昇した後、徐々に低下する。時刻t9において、信号φB1が「L」レベルから「H」レベルに立上げられるとともに、信号/φB1が「H」レベルから「L」レベルに立下げられる。
【0141】
このように、キャパシタ76を介してノードN22の電位V22が昇圧されるとともに、キャパシタ77を介してノードN27の電位V27が降圧される。このとき、出力ノードN121に「L」レベルVLを出力する動作を行なっており、P型トランジスタ35の導通抵抗値はN型トランジスタ31の導通抵抗値よりも低くなっているので、V27によるレベル降下作用の方がV22によるレベル上昇作用よりも強く働き、ノードN30a,N30b,N121の電位V30a,V30b,VOは急速に低下してVLに到達する。
【0142】
この実施の形態11では、動作速度の高速化を図ることができる。
【0143】
[実施の形態12]
図55は、この発明の実施の形態12によるサンプルホールド回路のプッシュ型駆動回路160の構成を示す回路図である。図55において、このプッシュ型駆動回路160は、レベルシフト回路61、プルアップ回路30、および定電流源161を備える。レベルシフト回路61およびプルアップ回路30は、図12で示したものと同じである。
【0144】
すなわち、レベルシフト回路61は、第3電源電位V3(15V)のノードと接地電位GNDのノードとの間に直列接続された定電流源62、N型トランジスタ23およびP型トランジスタ24を含む。定電流源62は、図56に示すように、P型トランジスタ65,66および抵抗素子67を含む。P型トランジスタ65は第3電源電位V3のノードとN型トランジスタ23のドレイン(ノードN22)との間に接続され、P型トランジスタ66および抵抗素子67は第3電源電位V3のノードと接地電位GNDのノードとの間に直列接続される。P型トランジスタ65,66のゲートは、ともにP型トランジスタ66のドレインに接続される。P型トランジスタ65,66は、カレントミラー回路を構成する。P型トランジスタ66および抵抗素子67には抵抗素子67の抵抗値に応じた値の定電流が流れ、P型トランジスタ65にはP型トランジスタ66に流れる定電流の値に応じた値の定電流が流れる。N型トランジスタ23のゲートは、そのドレイン(ノードN22)に接続されている。N型トランジスタ23は、ダイオード素子を構成する。P型トランジスタ24のゲートは、入力ノードN20に接続される。定電流源62の電流値は、トランジスタ23,24の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
【0145】
入力ノードN20の電位(階調電位)をVIとし、P型トランジスタのしきい値電圧をVTPとし、N型トランジスタのしきい値電圧をVTNとすると、P型トランジスタ24のソース(ノードN23)の電位V23およびN型トランジスタ23のドレイン(ノードN22)の電位V22はそれぞれV23=VI+|VTP|,V22=VI+|VTP|+VTNとなる。したがって、レベルシフト回路61は、入力電位VIを|VTP|+VTNだけレベルシフトさせた電位V22を出力する。
【0146】
プルアップ回路30は、第6電源電位V6(15V)のノードと出力ノードN30との間に直列接続されたN型トランジスタ31およびP型トランジスタ32を含む。N型トランジスタ31のゲートは、レベルシフト回路61の出力電位V22を受ける。P型トランジスタ32のゲートは、そのドレインに接続されている。P型トランジスタ32は、ダイオード素子を構成する。N型トランジスタ31は飽和領域で動作するように第6電源電位V6が設定されているので、N型トランジスタ31はいわゆるソースフォロア動作を行なう。
【0147】
定電流源161は、出力ノードN30と接地電位GNDのノードとの間に接続される。定電流源161は、図56に示すように、N型トランジスタ162,163および抵抗素子164を含む。N型トランジスタ162は出力ノードN30と接地電位GNDのノードとの間に接続され、抵抗素子164およびN型トランジスタ163は第6電源電位V6のノードと接地電位GNDのノードとの間に直列接続される。N型トランジスタ162,163のゲートは、ともにN型トランジスタ163のドレインに接続される。N型トランジスタ162,163は、カレントミラー回路を構成する。抵抗素子164およびN型トランジスタ163には抵抗素子164の抵抗値に応じた値の定電流が流れ、N型トランジスタ162にはN型トランジスタ163に流れる定電流の値に応じた値の定電流が流れる。定電流源161の電流値は、トランジスタ31,32の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
【0148】
N型トランジスタ31のソース(ノードN31)の電位V31はV31=V22−VTN=VI+|VTP|となり、出力ノードN30の電位VOはVO=V31−|VTP|=VIとなる。
【0149】
この実施の形態12では、トランジスタ23,24,31,32の各々に所定のしきい値電圧を発生させるために必要な最小限の値の貫通電流を流せば足りるので、消費電流が小さくて済む。
【0150】
また、図57は、この実施の形態12の変更例によるプッシュ型駆動回路165の構成を示す回路図である。図57を参照して、この駆動回路165が図56の駆動回路160と異なる点は、抵抗素子164が除去され、抵抗素子67が2つの定電流源62と161で共用されている点である。抵抗素子67およびN型トランジスタ163は、P型トランジスタ66のソースと接地電位GNDのノードとの間に直列接続される。N型トランジスタ163のゲートはそのドレインに接続される。この変更例では、抵抗素子67と164の抵抗値のバラツキによってオフセット電圧が発生することを防止することができる。
【0151】
また、図58のプッシュ型駆動回路166は、図55のプッシュ型駆動回路160からダイオード接続されたトランジスタ23,32を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図55の駆動回路160と同様に使用することができる。この変更例では、トランジスタ23,32を除去したので、回路の占有面積を小さくすることができる。
【0152】
また、定電流源62,161の各々を抵抗素子で置換してもよい。この場合は、回路構成の簡単化を図ることができる。
【0153】
[実施の形態13]
図59は、この発明の実施の形態13によるプル型駆動回路170の構成を示す回路図である。図59において、この駆動回路170は、レベルシフト回路63、定電流源171およびプルダウン回路33を含む。レベルシフト回路63およびプルダウン回路33は、図12で示したものと同じである。
【0154】
すなわち、レベルシフト回路63は、第4電源電位V4(5V)のノードと第5電源電位V5(−10V)のノードとの間に直列接続されたN型トランジスタ26、P型トランジスタ27および定電流源64を含む。N型トランジスタ26のゲートは、入力ノードN20の電位VIを受ける。P型トランジスタ27のゲートは、そのドレイン(ノードN27)に接続される。P型トランジスタ27は、ダイオード素子を構成する。定電流源64の電流値は、トランジスタ26,27の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
【0155】
N型トランジスタ26のソース(ノードN26)の電位V26はV26=VI−VTNとなる。P型トランジスタ27のドレイン(ノードN27)の電位V127は、V27=VI−VTN−|VTP|となる。したがって、レベルシフト回路63は、入力電位VIを−VTN−|VTP|だけレベルシフトさせた電位V27を出力する。
【0156】
定電流源171は、第4電源電位V4のノードと出力ノードN30との間に接続される。プルダウン回路33は、第7電源電位V7(−10V)のノードと出力ノードN30との間に直列接続されたP型トランジスタ35およびN型トランジスタ34を含む。P型トランジスタ35のゲートは、レベルシフト回路63の出力電位V27を受ける。N型トランジスタ34のゲートは、そのドレインに接続されている。N型トランジスタ34は、ダイオード素子を構成する。P型トランジスタ35は飽和領域で動作するように第7電源電位V7が設定されているので、P型トランジスタ35はいわゆるソースフォロア動作を行なう。定電流源171の電流値は、トランジスタ34,35の各々に所定のしきい値電圧を発生させるために必要な最小限の値に設定されている。
【0157】
P型トランジスタ35のソース(ノードN34)の電位V34は、V34=V27+|VTP|=VI−VTNとなる。出力ノードN30の電位VOは、VO=V34+VTN=VIとなる。
【0158】
この実施の形態13では、トランジスタ26,27,34,35の各々に所定のしきい値電圧を発生させるために必要な最小限の値の貫通電流を流せば足りるので、消費電流が小さくて済む。
【0159】
また、図60は、この実施の形態13の変更例によるプル型駆動回路172の構成を示す回路図である。図60を参照して、このプル型駆動回路172は、図59のプル型駆動回路170からダイオード接続されたトランジスタ27,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図59の駆動回路170と同様に使用することができる。この変更例では、トランジスタ27,34を除去したので、回路の占有面積を小さくすることができる。
【0160】
また、定電流源164,171の各々を抵抗素子で置換してもよい。この場合は、回路構成の簡単化を図ることができる。
【0161】
[実施の形態14]
図61は、この発明の実施の形態14による駆動回路175の構成を示す回路図である。図61において、この駆動回路175は、図55のプッシュ型駆動回路160と、図59のプル型駆動回路170とを組合せたものである。レベルシフト回路61のP型トランジスタ24のゲートおよびレベルシフト回路63のN型トランジスタ26のゲートは、入力ノードN20の電位VIを受ける。プルアップ回路30のP型トランジスタ32のドレインおよびプルダウン回路33のN型トランジスタ34のドレインは、ともに出力ノードN30に接続される。
【0162】
出力電位VOが入力電位VIよりも高い場合は、プルアップ回路30のトランジスタ31,32が非導通になるとともに、プルダウン回路33のトランジスタ34,35が導通し、出力電位VOが低下する。出力電位VOが入力電位VIよりも低い場合は、プルダウン回路33のトランジスタ34,35が非導通になるとともに、プルアップ回路30のトランジスタ31,32が導通し、出力電位VOが上昇する。したがって、VO=VIとなる。
【0163】
この駆動回路175は、プッシュ型駆動回路、プル型駆動回路、またはプッシュプル型駆動回路として用いられる。駆動回路175がプッシュ型駆動回路として用いられる場合は、プルダウン回路33のトランジスタ34,35の電流駆動能力がプルアップ回路30のトランジスタ31,32の電流駆動能力に比べて十分に小さなレベルに設定される。駆動回路175がプル型駆動回路として用いられる場合は、プルアップ回路30のトランジスタ31,32の電流駆動能力がプルダウン回路33のトランジスタ34,35の電流駆動能力に比べて十分に小さなレベルに設定される。駆動回路175がプッシュプル型駆動回路として用いられる場合は、プルアップ回路30のトランジスタ31,32の電流駆動能力とプルダウン回路33のトランジスタ34,35の電流駆動能力とは同じレベルに設定される。
【0164】
この実施の形態14でも、貫通電流が小さな駆動回路175を得ることができ、消費電力の低減化を図ることができる。
【0165】
また、図62は、この実施の形態14の変更例による駆動回路176の構成を示す回路図である。図62を参照して、この駆動回路176は、図61の駆動回路170からダイオード接続されたトランジスタ23,27,32,34を除去したものである。出力電位VOは、VO=VI+|VTP|−VTNとなる。ただし、|VTP|≒VTNと設定すれば、VO≒VIとなる。あるいは、|VTP|−VTNの値をオフセット値として使用上考慮しておけば図61の駆動回路175と同様に使用することができる。この変更例では、トランジスタ23,27,32,34を除去したので、回路の占有面積を小さくすることができる。
【0166】
また、図63は、この実施の形態14の他の変更例による駆動回路180の構成を示す回路図である。図63において、この駆動回路180は、図61の駆動回路175のレベルシフト回路61,63をそれぞれレベルシフト回路181,183で置換したものである。レベルシフト回路181は、レベルシフト回路61の定電流源62を抵抗素子182で置換したものである。レベルシフト回路183は、レベルシフト回路63の定電流源64を抵抗素子184で置換したものである。抵抗素子182,184の抵抗値は、抵抗素子182,184が定電流源62,64と同程度の電流を流すような値に設定されている。この変更例でも、図61の駆動回路175と同じ効果が得られる。
【0167】
また、図64は、この実施の形態14のさらに他の変更例による駆動回路185の構成を示す回路図である。図64を参照して、この駆動回路185が図61の駆動回路175と異なる点は、定電流源161が出力ノードN30と第5電源電位V5のノードとの間に接続され、定電流源171が第3電源電位V3のノードと出力ノードN30との間に接続されている点である。
【0168】
定電流源62,64,161,171は、図65に示すように、抵抗素子67、P型トランジスタ65,66,189、およびN型トランジスタ186〜188で構成される。P型トランジスタ66、抵抗素子67およびN型トランジスタ186は、第3電源電位V3のノードと第5電源電位V5のノードとの間に直列接続される。P型トランジスタ66のゲートはそのドレインに接続され、N型トランジスタ186のゲートはそのドレインに接続される。トランジスタ66,186の各々は、ダイオード素子を構成する。
【0169】
P型トランジスタ65は、第3電源電位V3のノードとノードN22との間に接続され、そのゲートはP型トランジスタ66のゲートに接続される。P型トランジスタ189は、第3電源電位V3のノードと出力ノードN30との間に接続され、そのゲートはP型トランジスタ66のゲートに接続される。P型トランジスタ66,65,189は、カレントミラー回路を構成する。P型トランジスタ65,189の各々には、P型トランジスタ66に流れる電流に応じた値の電流が流れる。P型トランジスタ65,189は、それぞれ定電流源62,171を構成する。
【0170】
N型トランジスタ187は、第5電源電位V5のノードとノードN27との間に接続され、そのゲートはN型トランジスタ186のゲートに接続される。N型トランジスタ188は、第5電源電位V5のノードと出力ノードN30との間に接続され、そのゲートはN型トランジスタ186のゲートに接続される。N型トランジスタ186〜188は、カレントミラー回路を構成する。N型トランジスタ187,188の各々には、N型トランジスタ186に流れる電流に応じた値の電流が流れる。N型トランジスタ187,188は、それぞれ定電流源64,161を構成する。他の構成および動作は、図61の駆動回路175と同じであるので、その説明は繰り返さない。この変更例でも、図61の駆動回路175と同じ効果が得られる。
【0171】
[実施の形態15]
図66は、この発明の実施の形態15によるカラー液晶表示装置の要部を示す回路図であって、図3と対比される図である。図66を参照して、このカラー液晶表示装置が実施の形態1のカラー液晶表示装置と異なる点は、液晶セル2の一方電極が駆動回路20の出力ノードN30の代わりに入力ノードN20に接続されている点である。
【0172】
ノードN30とN20の電位差が大きい場合は、スイッチ16の寄生抵抗(抵抗素子18)を介してノードN30とN20の間にリーク電流が流れ、ノードN20の電位が変化する。しかし、ノードN30とN20の電位差が駆動回路20の通常のオフセット電圧程度であれば、ノードN30とN20の間のリーク電流は無視できる程度に小さくなり、ノードN20の電位は変化しない。したがって、データ線6の諧調電位VGが液晶セル2の一方電極に正確に与えられ、正確な光透過率が得られる。
【0173】
なお、駆動回路20を実施の形態1〜14で示した他の駆動回路で置換しても同じ効果が得られることは言うまでもない。駆動回路は、オフセット補償機能を持たない簡易な構成のもので差し支えない。
【0174】
[実施の形態16]
図67は、この発明の実施の形態16によるカラー液晶表示装置の要部を示す回路図であって、図66と対比される図である。図67を参照して、このカラー液晶表示装置が実施の形態15のカラー液晶表示装置と異なる点は、サンプルホールド回路14がサンプルホールド回路190で置換されている点である。
【0175】
サンプルホールド回路190は、サンプルホールド回路14の駆動回路20をプッシュ型駆動回路191で置換し、キャパシタ192を追加したものである。キャパシタ192の一方電極はプッシュ型駆動回路191の出力ノードN30に接続され、その他方電極は共通電位VCOMを受ける。プッシュ型駆動回路191は、図68に示すように、レベルシフト回路21、プルアップ回路30、スイッチ201〜203および抵抗素子204を含む。レベルシフト回路21およびプルアップ回路30の構成および動作は、図4および図5で説明したとおりである。
【0176】
スイッチ201の一方電極は第3電源電位V3を受け、その他方電極は抵抗素子22を介してノードN22に接続される。スイッチ202の一方電極は第6電源電位V6を受け、その他方電極はN型トランジスタ31のドレインに接続される。スイッチ203は、P型トランジスタ32のドレインと出力ノードN30との間に接続される。抵抗素子204は、P型トランジスタ32のドレインと接地電位GNDのラインとの間に接続される。
【0177】
図69は、このプッシュ型駆動回路191の動作を示すタイムチャートである。スイッチ201〜203は、所定周期(t3−t1)で所定時間(t2−t1)だけオンされる。スイッチ201〜203がオンされると、抵抗素子22,204にそれぞれ電流I1,I2が流れ、キャパシタ192が充電されてVO=VIとなる。スイッチ201〜203がオフされると、キャパシタ192の電荷がたとえばデータ線にリークしてVOが徐々に低下する。VOの低下分ΔVが許容範囲内になるようにスイッチ201〜203のオン時間とオフ時間の比が設定されている。
【0178】
この実施の形態16では、実施の形態15と同じ効果が得られる他、駆動回路191の電源を間欠的にオン/オフするので、消費電流の低減化を図ることができる。
【0179】
なお、スイッチ201は、抵抗素子22、N型トランジスタ23およびP型トランジスタ24と直列に接続されていれば、どの位置に設けてもよい。たとえばスイッチ201と抵抗素子22の位置を逆にしてもよい。またスイッチ202は、N型トランジスタ31、P型トランジスタ32および抵抗素子204と直列に接続されていれば、どの位置に設けてもよい。
【0180】
以下、この実施の形態16の種々の変更例について説明する。図70のプル型駆動回路205は、レベルシフト回路25、プルダウン回路33、スイッチ206〜208および抵抗素子209を含む。レベルシフト回路25およびプルダウン回路33の構成および動作は、図4および図5で説明したとおりである。スイッチ206の一方電極は第5電源電位V5を受け、その他方電極は抵抗素子28を介してノードN27に接続される。スイッチ207の一方電極は第7電源電位V7を受け、その他方電極はP型トランジスタ35のドレインに接続される。スイッチ208は、N型トランジスタ34のドレインと出力ノードN30との間に接続される。抵抗素子209は、N型トランジスタ34のドレインと第4の電源電位V4のラインとの間に接続される。スイッチ206〜208は、図68および図69で示したスイッチ201〜203と同様にオン/オフされる。この変更例でも、消費電力の低減化を図ることができる。
【0181】
図71のプッシュプル型駆動回路210は、図68のプッシュ型駆動回路191と図70のプル型駆動回路205とを組合せたものである。但し、スイッチ208は除去され、P型トランジスタ32のドレインおよびN型トランジスタ34のドレインは、共にスイッチ203を介して出力ノードN30に接続される。スイッチ201〜203,206,207は同時にオン/オフされる。この変更例でも、消費電力の低減化を図ることができる。
【0182】
図72のプッシュプル型駆動回路215は、図71のプッシュプル型駆動回路210からスイッチ206,207を除去し、スイッチ201,202をプッシュ側とプル側で共用するものである。N型トランジスタ26のドレインは、スイッチ201と抵抗素子22の間のノードに接続される。N型トランジスタ34のドレインは、抵抗素子209を介してN型トランジスタ31のドレインに接続される。この変更例では、スイッチの数が少なくて済む。
【0183】
図73のカラー液晶表示装置では、液晶セル2の一方電極はプッシュ型駆動回路191の出力ノードN30に接続される。この変更例でも、消費電力の低減化が図られる。
【0184】
[実施の形態17]
図74は、この発明の実施の形態17による画像表示装置の要部を示す回路図である。この画像表示装置の全体構成は図1のカラー液晶表示装置と同様であり、走査線4とデータ線6の各交差部にEL素子220およびサンプルホールド回路221が設けられている。水平走査回路8の階調電位発生回路10および駆動回路13は、画像信号に応じたレベルの階調電流IGをデータ線6に流す電流源230で置換されている。
【0185】
サンプルホールド回路221は、P型トランジスタ222、キャパシタ223、駆動回路224およびスイッチ225〜229を含む。P型トランジスタ222、スイッチ228およびEL素子220は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。キャパシタ223は、P型トランジスタ222のソースおよびゲート間に接続されている。スイッチ225,226は、P型トランジスタ222のゲートおよびドレイン間に直列接続される。スイッチ227は、データ線6とP型トランジスタ222のドレインとの間に接続される。駆動回路224およびスイッチ229は、P型トランジスタ222のゲートとスイッチ225,226間のノードとの間に接続される。スイッチ225〜229は、走査線4によってオン/オフ制御される。
【0186】
走査線4が選択レベルの「H」レベルにされた場合は、スイッチ225〜227がオンされるとともにスイッチ228,229がオフされる。これにより、P型トランジスタ222がスイッチ225,226によってダイオード接続され、電源電位VCCのラインからP型トランジスタ222、スイッチ227およびデータ線6を介して電流源230に画像信号に応じたレベルの階調電流IGが流れる。このとき、P型トランジスタ222のゲートは階調電流IGに応じたレベルの電位になっており、キャパシタ223はP型トランジスタ222のソース−ゲート間電圧に充電される。
【0187】
走査線4が非選択レベルの「L」レベルに立下げられると、スイッチ225〜227がオフされるとともにスイッチ228,229がオンされる。P型トランジスタ222のゲート電位はキャパシタ223によって保持されているので、電源電圧VCCのラインからP型トランジスタ222、スイッチ228およびEL素子20を介して接地電位GNDのラインに階調電流IGが流れ、EL素子220は階調電流IGに応じた輝度で発光する。
【0188】
このとき、駆動回路224によってスイッチ225,226間のノードの電位がP型トランジスタ222のゲート電位に保持されるので、P型トランジスタ222のゲート電位が一定に保持され、EL素子220は一定の輝度で発光し続ける。
【0189】
なお、駆動回路224およびスイッチ226,229がない場合は、スイッチ225,227の寄生抵抗を介してP型トランジスタ222のゲートとデータ線6の間にリーク電流が流れ、P型トランジスタ222のゲート電位が変化してEL素子220の輝度が変化する。
【0190】
[実施の形態18]
図75は、この発明の実施の形態18による画像表示装置の要部を示す回路図である。この画像表示装置の全体構成は図1のカラー液晶表示装置と同様であり、走査線4とデータ線6の各交差部にEL素子220およびサンプルホールド回路231が設けられている。水平走査回路8の階調電位発生回路10および駆動回路13は、画像信号に応じたレベルの階調電流IGをデータ線6に流す電流源240で置換されている。
【0191】
サンプルホールド回路231は、N型トランジスタ232、キャパシタ233、駆動回路234およびスイッチ235〜239を含む。EL素子220、スイッチ238およびN型トランジスタ232は、電源電位VCCのラインと接地電位GNDのラインとの間に直列接続される。スイッチ235は、データ線6とN型トランジスタ232のドレインとの間に接続される。スイッチ236,237は、N型トランジスタ232のドレインおよびゲート間に直列接続される。キャパシタ233は、N型トランジスタ232のゲートおよびソース間に接続される。駆動回路234およびスイッチ239は、N型トランジスタ232のゲートとスイッチ236,237間のノードとの間に直列接続される。スイッチ235〜239は、走査線4によってオン/オフ制御される。
【0192】
走査線4が選択レベルの「H」レベルにされた場合は、スイッチ235〜237がオンされるとともにスイッチ238,239がオフされる。これにより、N型トランジスタ232がスイッチ236,237によってダイオード接続され、電流源240からデータ線6、スイッチ235およびN型トランジスタ232を介して接地電位GNDのラインに画像信号に応じたレベルの階調電流IGが流れる。このときN型トランジスタ232のゲートは階調電流IGに応じたレベルの電位になっており、キャパシタ233はN型トランジスタ232のゲート−ソース間電圧に充電される。
【0193】
走査線4が選択レベルの「L」レベルに立下げられると、スイッチ235〜237がオフされるとともにスイッチ238,239がオンされる。N型トランジスタ232のゲート電位はキャパシタ233に保持されているので、電源電位VCCのラインからEL素子220、スイッチ238およびN型トランジスタ232を介して接地電位GNDのラインに階調電流IGが流れ、EL素子220は階調電流IGに応じた輝度で発光する。
【0194】
このとき、駆動回路234によってスイッチ236,237間のノードの電位がN型トランジスタ232のゲート電位に保持されるので、N型トランジスタ232のゲート電位が一定に保持され、EL素子220は一定の輝度で発光し続ける。
【0195】
なお、駆動回路234およびスイッチ236,239がない場合は、スイッチ235,237の寄生抵抗を介してN型トランジスタ232のゲートとデータ線6の間にリーク電流が流れ、N型トランジスタ232のゲート電位が変化してEL素子220の輝度が変化する。
【0196】
なお、以上の実施の形態1〜18では、液晶セル2、EL素子51,220を用いたアクティブマトリックス型表示装置について説明したが、この発明は他のどのような電気−光変換素子を用いたアクティブマトリックス型表示装置にも適用可能であることは言うまでもない。
【0197】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるカラー液晶表示装置の全体構成を示すブロック図である。
【図2】 図1に示した水平走査回路の要部を示す回路ブロック図である。
【図3】 図1に示した各液晶セルに対応して設けられたサンプルホールド回路の構成を示す回路図である。
【図4】 図3に示した駆動回路の構成を示す回路図である。
【図5】 図4に示した駆動回路の動作を説明するための回路図である。
【図6】 図4に示した駆動回路の動作を説明するためのタイムチャートである。
【図7】 実施の形態1の変更例を示す回路図である。
【図8】 実施の形態1の他の変更例を示す回路図である。
【図9】 実施の形態1のさらに他の変更例を示す回路図である。
【図10】 実施の形態1のさらに他の変更例を示す回路図である。
【図11】 実施の形態1のさらに他の変更例を示す回路図である。
【図12】 この発明の実施の形態2によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図13】 図12に示した駆動回路の構成をより詳細に示す回路図である。
【図14】 実施の形態2の変更例を示す回路図である。
【図15】 実施の形態2の他の変更例を示す回路図である。
【図16】 実施の形態2のさらに他の変更例を示す回路図である。
【図17】 この発明の実施の形態3によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図18】 図17に示した駆動回路の動作を示すタイムチャートである。
【図19】 実施の形態3の変更例を示す回路図である。
【図20】 この発明の実施の形態4によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図21】 実施の形態4の変更例を示す回路図である。
【図22】 実施の形態4の他の変更例を示す回路図である。
【図23】 実施の形態4のさらに他の変更例を示す回路図である。
【図24】 実施の形態4のさらに他の変更例を示す回路図である。
【図25】 実施の形態4のさらに他の変更例を示す回路図である。
【図26】 この発明の実施の形態5によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図27】 図26に示した駆動回路の動作を示すタイムチャートである。
【図28】 実施の形態5の変更例を示す回路図である。
【図29】 この発明の実施の形態6によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図30】 実施の形態6の変更例を示す回路図である。
【図31】 この発明の実施の形態7によるサンプルホールド回路の駆動回路の構成を示す回路図である。
【図32】 図31に示した駆動回路の構成を示す回路図である。
【図33】 この発明の実施の形態8によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
【図34】 図33に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
【図35】 この発明の実施の形態9によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
【図36】 図35に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
【図37】 図35に示したオフセット補償機能付駆動回路の動作を示す他のタイムチャートである。
【図38】 実施の形態9の変更例を示す回路図である。
【図39】 実施の形態9の他の変更例を示す回路図である。
【図40】 実施の形態9のさらに他の変更例を示す回路図である。
【図41】 実施の形態9のさらに他の変更例を示す回路図である。
【図42】 実施の形態9のさらに他の変更例を示す回路図である。
【図43】 実施の形態9のさらに他の変更例を示す回路図である。
【図44】 実施の形態9のさらに他の変更例を示す回路図である。
【図45】 実施の形態9のさらに他の変更例を示す回路図である。
【図46】 実施の形態9のさらに他の変更例を示す回路図である。
【図47】 実施の形態9のさらに他の変更例を示す回路図である。
【図48】 実施の形態9のさらに他の変更例を示す回路図である。
【図49】 実施の形態9のさらに他の変更例を示す回路図である。
【図50】 この発明の実施の形態10によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
【図51】 図50に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
【図52】 図50に示したオフセット補償機能付駆動回路の動作を示す他のタイムチャートである。
【図53】 この発明の実施の形態11によるサンプルホールド回路のオフセット補償機能付駆動回路の構成を示す回路ブロック図である。
【図54】 図53に示したオフセット補償機能付駆動回路の動作を示すタイムチャートである。
【図55】 この発明の実施の形態12によるサンプルホールド回路のプッシュ型駆動回路の構成を示す回路図である。
【図56】 図55に示したプッシュ型駆動回路の構成をより詳細に示す回路図である。
【図57】 実施の形態12の変更例を示す回路図である。
【図58】 実施の形態12の他の変更例を示す回路図である。
【図59】 この発明の実施の形態13によるサンプルホールド回路のプル型駆動回路の構成を示す回路図である。
【図60】 実施の形態13の変更例を示す回路図である。
【図61】 この発明の実施の形態14によるサンプルホールド回路の駆動回路の構成を示す回路ブロック図である。
【図62】 実施の形態14の変更例を示す回路図である。
【図63】 実施の形態14の他の変更例を示す回路図である。
【図64】 実施の形態14のさらに他の変更例を示す回路図である。
【図65】 図64に示した駆動回路の構成をより詳細に示す回路図である。
【図66】 この発明の実施の形態15によるカラー液晶表示装置の要部を示す回路図である。
【図67】 この発明の実施の形態16によるカラー液晶表示装置の要部を示す回路図である。
【図68】 図67に示した駆動回路の構成を示す回路図である。
【図69】 図68に示した駆動回路の動作を示すタイムチャートである。
【図70】 実施の形態16の変更例を示す回路図である。
【図71】 実施の形態16の他の変更例を示す回路図である。
【図72】 実施の形態16のさらに他の変更例を示す回路図である。
【図73】 実施の形態16のさらに他の変更例を示す回路図である。
【図74】 この発明の実施の形態17による画像表示装置の要部を示す回路ブロック図である。
【図75】 この発明の実施の形態18による画像表示装置の要部を示す回路ブロック図である。
【図76】 従来の液晶表示装置の要部を示す回路図である。

Claims (20)

  1. 入力電位(VG)をサンプリングし、サンプリングした電位を保持および出力するサンプルホールド回路(14)であって、
    その一方電極が前記入力電位(VG)を受け、第1の期間に導通する第1のスイッチング素子(15)、
    その一方電極が前記第1のスイッチング素子(15)の他方電極に接続され、第2の期間に導通する第2のスイッチング素子(16)、
    その一方電極が前記第2のスイッチング素子(16)の他方電極に接続され、その他方電極が所定の電位(VCOM)を受ける第1のキャパシタ(19)、および
    その入力ノード(N20)が前記第2のスイッチング素子(16)の他方電極に接続され、その出力ノード(N30)が前記第1のスイッチング素子(15)の他方電極に接続され、前記入力ノード(N20)の電位に応じた電位を出力ノード(N30)に出力する駆動回路(160)を備える、サンプルホールド回路。
  2. 前記第1および第2の期間は同じ期間である、請求項1に記載のサンプルホールド回路。
  3. 前記第2の期間は前記第1の期間内の期間である、請求項1に記載のサンプルホールド回路。
  4. 前記駆動回路(160)は、
    前記入力ノード(N20)の電位(VI)を予め定められた第1の電圧だけある電位方向にレベルシフトさせた電位(V22)を出力する第1のレベルシフト回路(61)、
    前記第1のレベルシフト回路(61)の出力電位(V22)を前記ある電位方向と逆の電位方向に予め定められた第2の電圧だけレベルシフトさせた電位を前記出力ノード(N30)に出力する第2のレベルシフト回路(30,161)を含む、請求項1に記載のサンプルホールド回路。
  5. 前記第1のレベルシフト回路(61)は、
    その一方電極が第1の電源電位(V3)を受ける第1の電流制限素子(62)、および
    その第1の電極が前記第1の電流制限素子(62)の他方電極に接続され、その第2の電極が第2の電源電位(GND)を受け、その入力電極が前記入力ノード(N20)の電位(VI)を受ける第1の導電形式の第1のトランジスタ(24)を含み、
    前記第2のレベルシフト回路(30,161)は、その第1の電極が第3の電源電位(V6)を受け、その第2の電極が前記出力ノード(N30)に接続され、その入力電極が前記第1の電流制限素子(62)の他方電極に接続された第2の導電形式の第2のトランジスタ(31)を含む、請求項4に記載のサンプルホールド回路。
  6. 前記第1のレベルシフト回路(61)は、さらに、その第1の電極および入力電極が前記第1の電流制限素子(62)の他方電極に接続され、その第2の電極が前記第1のトランジスタ(24)の第1の電極に接続された第2の導電形式の第3のトランジスタ(23)を含み、
    前記第2のレベルシフト回路(30,161)は、さらに、その第1の電極が前記第2のトランジスタ(31)の第2の電極に接続され、その第2の電極および入力電極が前記出力ノード(N30)に接続された第1の導電形式の第4のトランジスタ(32)を含む、請求項5に記載のサンプルホールド回路。
  7. 前記第2のレベルシフト回路(30,161)は、さらに、前記出力ノード(N30)と第4の電源電位(GND)のラインとの間に接続された第2の電流制限素子(161)を含む、請求項5に記載のサンプルホールド回路。
  8. 前記第1および第3の電源電位(V3,V6)は同電位であり、
    前記第2および第4の電源電位(GND,GND)は同電位である、請求項7に記載のサンプルホールド回路。
  9. 前記第1および第2の電流制限素子(62,161)はそれぞれ第1および第2の抵抗素子を含む、請求項7に記載のサンプルホールド回路。
  10. 前記第1の電流制限素子(62)は、その入力電極が第1の定電圧を受ける第2の導電形式の第3のトランジスタ(65)を含み、
    前記第2の電流制限素子(162)は、その入力電極が第2の定電圧を受ける第1の導電形式の第4のトランジスタ(161)を含む、請求項7に記載のサンプルホールド回路。
  11. 前記駆動回路(75,80)は、さらに、前記入力ノード(N20)の電位(VI)が前記ある電位方向に変化されたことに応じて前記第1および第2のレベルシフト回路(61,30)間の所定のノード(N22)の電位(V22)を前記ある電位方向にパルス的に変化させるパルス発生回路(76,81)を含む、請求項4に記載のサンプルホールド回路。
  12. 前記パルス発生回路(76)は、その一方電極が前記第1のノード(N22)に接続され、その他方電極の電位が前記入力ノード(N20)の電位(VI)が前記ある電位方向に変化されたことに応じて前記ある電位方向にパルス的に変化される第2のキャパシタ(76)を含む、請求項11に記載のサンプルホールド回路。
  13. 前記パルス発生回路(81)は、その一方電極が第1の電源電位(V3)を受け、その他方電極が前記所定のノード(N22)に接続され、前記入力ノード(N20)の電位(VI)が前記ある電位方向に変化されたことに応じてパルス的に導通する第3のスイッチング素子(81)を含む、請求項11に記載のサンプルホールド回路。
  14. 前記駆動回路(125)は、さらに、オフセット電圧を打消すオフセット補償回路(122a,S1a〜S3a)を含む、請求項4に記載のサンプルホールド回路。
  15. 前記第2のレベルシフト回路(30)の出力電位は、前記出力ノード(N121)の代りに第2のノード(N30a)に接続され、
    前記オフセット補償回路(122a,S1a〜S3a)は、
    第2のキャパシタ(122a)、
    前記第2のキャパシタ(122a)の一方電極および前記第1のレベルシフト回路(61)に前記入力ノードの電位(VI)を与えるとともに前記第2のキャパシタ(122a)の他方電極を前記所定のノード(N30a)に接続する第1の切換回路(S1a,S2a)、および
    前記第2のキャパシタ(122a)の他方電極に前記入力ノードの電位(VI)を与えるとともに前記第2のキャパシタ(122a)の一方電極の電位を前記入力ノードの電位(VI)の代りに前記第1のレベルシフト回路(61)に与える第2の切換回路(S3a)、および
    前記第2のノード(N30a)の電位を前記出力ノード(N121)に与える第3の切換回路(S4a)を含む、請求項14に記載のサンプルホールド回路。
  16. 前記オフセット補償回路(122a,126a,131a,S1a〜S3a)は、さらに、前記第1の切換回路(S1a,S2a)によって前記第2のキャパシタ(122a)の一方電極に前記入力電位が与えられるとともに前記第2のキャパシタ(122a)の他方電極が前記所定のノード(N30a)に接続されている期間において、前記所定のノード(N30a)の電位を前記ある電位方向と逆の電位方向にパルス的に変化させるパルス発生回路(126a,131a)を含む、請求項15に記載の駆動回路。
  17. 前記駆動回路(191)は、さらに、前記第1および第2のレベルシフト回路(21,30)に電源電圧を間欠的に与える切換回路(201,202)を含む、請求項4に記載のサンプルホールド回路。
  18. 請求項1のサンプルホールド回路(14)と、その一方電極が前記駆動回路(20)の出力ノード(N30)に接続され、その他方電極が共通電位(VCOM)を受ける液晶セル(2)とを備える、画像表示装置。
  19. 請求項1のサンプルホールド回路(14)と、その一方電極が前記駆動回路(20)の入力ノード(N20)に接続され、その他方電極が共通電位(VCOM)を受ける液晶セル(2)とを備える、画像表示装置。
  20. 請求項1のサンプルホールド回路(226,225,223,224)、
    その第1の電極が前記第1のスイッチング素子(226)の一方電極に接続され、その入力電極が前記第2のスイッチング素子(225)の他方電極に接続され、その第2の電極が前記第1のキャパシタ(223)の他方電極に接続されたトランジスタ(222)、
    前記第1および第2のスイッチング素子(226,225)が共に導通している前記第1および第2の期間に前記トランジスタ(222)の第1の電極に接続されて前記トランジスタ(222)に階調電流(IG)を流す電流源(230)、および
    前記第1および第2の期間の経過後に前記トランジスタ(222)の第1の電極と電源電位(GND)のラインとの間に接続され、前記トランジスタ(222)に流れる電流に応じた輝度で発光する発光素子(220)を備える、画像表示装置。
JP2005502149A 2002-11-06 2003-06-27 サンプルホールド回路およびそれを用いた画像表示装置 Withdrawn JPWO2004042691A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPPCT/JP02/11587 2002-11-06
JP0211587 2002-11-06
JP0302757 2003-03-07
JPPCT/JP03/02757 2003-03-07
PCT/JP2003/008249 WO2004042691A1 (ja) 2002-11-06 2003-06-27 サンプルホールド回路およびそれを用いた画像表示装置

Publications (1)

Publication Number Publication Date
JPWO2004042691A1 true JPWO2004042691A1 (ja) 2006-03-09

Family

ID=32314019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005502149A Withdrawn JPWO2004042691A1 (ja) 2002-11-06 2003-06-27 サンプルホールド回路およびそれを用いた画像表示装置

Country Status (7)

Country Link
US (1) US7573451B2 (ja)
JP (1) JPWO2004042691A1 (ja)
KR (1) KR100698952B1 (ja)
CN (1) CN100375144C (ja)
DE (1) DE10392192T5 (ja)
TW (1) TWI304141B (ja)
WO (1) WO2004042691A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009214B2 (ja) * 2003-03-14 2007-11-14 松下電器産業株式会社 電流駆動装置
KR100557501B1 (ko) * 2003-06-30 2006-03-07 엘지.필립스 엘시디 주식회사 아날로그 버퍼 및 그 구동방법
JP4596243B2 (ja) * 2004-09-02 2010-12-08 ソニー株式会社 信号出力装置及び映像表示装置
JP4647294B2 (ja) * 2004-11-26 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
CN101197921B (zh) * 2006-12-07 2010-11-03 比亚迪股份有限公司 一种图像信号采样电路及其方法
KR101674690B1 (ko) * 2010-03-30 2016-11-09 가부시키가이샤 제이올레드 인버터 회로 및 표시 장치
GB2481008A (en) 2010-06-07 2011-12-14 Sharp Kk Active storage pixel memory
WO2012132630A1 (ja) * 2011-03-29 2012-10-04 シャープ株式会社 液晶表示装置
US8836680B2 (en) * 2011-08-04 2014-09-16 Sharp Kabushiki Kaisha Display device for active storage pixel inversion and method of driving the same
US8896512B2 (en) 2011-08-04 2014-11-25 Sharp Kabushiki Kaisha Display device for active storage pixel inversion and method of driving the same
CN108877655A (zh) * 2018-07-03 2018-11-23 深圳吉迪思电子科技有限公司 一种像素电路、显示屏及电子设备
FR3113796B1 (fr) * 2020-08-31 2023-01-13 St Microelectronics Grenoble 2 Dispositif et procédé de décalage de niveau

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296815A (ja) * 1988-05-25 1989-11-30 Canon Inc 半導体集積回路
US4945259A (en) * 1988-11-10 1990-07-31 Burr-Brown Corporation Bias voltage generator and method
JP2758911B2 (ja) * 1988-12-09 1998-05-28 株式会社リコー 薄膜二端子素子
JPH03293813A (ja) * 1990-04-12 1991-12-25 Fujitsu Ltd 半導体集積回路
JPH0456888A (ja) * 1990-06-25 1992-02-24 Nippon Telegr & Teleph Corp <Ntt> ドットマトリクス駆動回路
US5206544A (en) * 1991-04-08 1993-04-27 International Business Machines Corporation CMOS off-chip driver with reduced signal swing and reduced power supply disturbance
JP3053276B2 (ja) * 1991-11-22 2000-06-19 株式会社東芝 液晶表示装置
JPH05142572A (ja) * 1991-11-22 1993-06-11 Toshiba Corp 液晶表示装置
JPH05291917A (ja) * 1992-04-16 1993-11-05 Olympus Optical Co Ltd 高速バッファ回路
GB2312773A (en) * 1996-05-01 1997-11-05 Sharp Kk Active matrix display
DE19804379A1 (de) * 1997-02-05 1998-08-06 Denso Corp Abtast- und Haltekreis
JPH10254412A (ja) 1997-03-14 1998-09-25 Fujitsu Ltd サンプリングホールド回路
JPH11242207A (ja) * 1997-12-26 1999-09-07 Sony Corp 電圧発生回路、光学空間変調素子、画像表示装置並びに画素の駆動方法
GB9812742D0 (en) 1998-06-12 1998-08-12 Philips Electronics Nv Active matrix electroluminescent display devices
JP2000194323A (ja) 1998-12-25 2000-07-14 Fujitsu Ltd アナログバッファ回路及び液晶表示装置
JP2000214800A (ja) * 1999-01-20 2000-08-04 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
JP2001147659A (ja) * 1999-11-18 2001-05-29 Sony Corp 表示装置
JP4428813B2 (ja) 2000-05-17 2010-03-10 三菱電機株式会社 アナログ出力回路
FR2811460B1 (fr) 2000-07-06 2002-11-29 Mp Serigraphie Dispositif pour la fixation d'affiches
KR20020032570A (ko) * 2000-07-07 2002-05-03 구사마 사부로 유기 전계 발광 표시장치용 전류 샘플링 회로
CN1297950C (zh) 2000-11-30 2007-01-31 汤姆森特许公司 用于液晶显示器的驱动电路及其方法
JP3846293B2 (ja) 2000-12-28 2006-11-15 日本電気株式会社 帰還型増幅回路及び駆動回路
JP2004096702A (ja) * 2002-02-20 2004-03-25 Mitsubishi Electric Corp 駆動回路
US6980194B2 (en) * 2002-03-11 2005-12-27 Mitsubishi Denki Kabushiki Kaisha Amplitude conversion circuit for converting signal amplitude
CN1589461A (zh) * 2002-10-11 2005-03-02 三菱电机株式会社 显示装置

Also Published As

Publication number Publication date
US7573451B2 (en) 2009-08-11
US20050088396A1 (en) 2005-04-28
CN1615506A (zh) 2005-05-11
KR20040081109A (ko) 2004-09-20
CN100375144C (zh) 2008-03-12
TW200407591A (en) 2004-05-16
TWI304141B (en) 2008-12-11
KR100698952B1 (ko) 2007-03-23
WO2004042691A1 (ja) 2004-05-21
DE10392192T5 (de) 2005-01-05

Similar Documents

Publication Publication Date Title
KR100562057B1 (ko) 저소비 전류의 구동회로
US6052426A (en) Shift register using M.I.S. transistors of like polarity
US5945970A (en) Liquid crystal display devices having improved screen clearing capability and methods of operating same
US6064713A (en) Shift register using &#34;MIS&#34; transistors of like polarity
US7324079B2 (en) Image display apparatus
US20060061403A1 (en) Input circuit, display device and information display apparatus
CN100365934C (zh) 数据锁存电路和电子装置
US6392627B1 (en) Liquid crystal display device and driver circuit thereof
KR100698952B1 (ko) 샘플홀드회로 및 그것을 사용한 화상표시장치
JP4334353B2 (ja) 画像表示装置
US7742044B2 (en) Source-follower type analogue buffer, compensating operation method thereof, and display therewith
KR100616338B1 (ko) 구동회로 및 화상표시장치
JP5484608B2 (ja) 駆動回路
US9111811B2 (en) Analog memory cell circuit for the LTPS TFT-LCD
CN109887469B (zh) 移位寄存器及具备该移位寄存器的显示装置
KR100543227B1 (ko) 오프셋 보상회로
KR20060041927A (ko) 액정 디스플레이의 구동 장치
KR20190069182A (ko) 시프트레지스터 및 이를 포함하는 표시장치
KR101073263B1 (ko) 쉬프트 레지스터 및 그 구동 방법
KR20120011823A (ko) 액정 구동 회로
KR100597312B1 (ko) 액정표시장치용 저전력 소스 드라이버
KR20230021257A (ko) 터치 디스플레이 장치, 구동 신호 출력 회로, 터치 디스플레이 장치의 구동 신호 출력 방법
JP2005043711A (ja) 画像表示装置

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090727