JPWO2004034399A1 - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
JPWO2004034399A1
JPWO2004034399A1 JP2004542807A JP2004542807A JPWO2004034399A1 JP WO2004034399 A1 JPWO2004034399 A1 JP WO2004034399A1 JP 2004542807 A JP2004542807 A JP 2004542807A JP 2004542807 A JP2004542807 A JP 2004542807A JP WO2004034399 A1 JPWO2004034399 A1 JP WO2004034399A1
Authority
JP
Japan
Prior art keywords
air
optical
optical head
semiconductor laser
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004542807A
Other languages
English (en)
Inventor
若林 寛爾
寛爾 若林
益生 丸山
益生 丸山
佐治 義人
義人 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2004034399A1 publication Critical patent/JPWO2004034399A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1406Reducing the influence of the temperature
    • G11B33/1426Reducing the influence of the temperature by cooling plates, e.g. fins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1406Reducing the influence of the temperature

Landscapes

  • Optical Head (AREA)

Abstract

筐体状のドライブケース(2)内に、半導体レーザ(5)を搭載した光ヘッド(7)と、光ディスク(8)を駆動する回転駆動手段と、光ヘッド(7)を移送する移送機構とを備えた光ディスクドライブメカニズムが配置されており、ドライブケース(2)内の空気を流動させる撹拌ファン(12)を備えており、撹拌ファン(12)の回転により、ドライブケース(2)内の空気が撹拌ファン(12)側に吸気され、かつ吸気された空気が光ヘッド(7)又は半導体レーザ(5)に向けて吹き出すように空気が流動する風路が形成されている。このことにより、防塵性を確保しつつ、半導体レーザ(5)の温度上昇を効果的に抑制することができる。

Description

本発明は、光ディスクドライブを搭載した光ディスク装置に関する。
一般に、光ディスクドライブ内に塵埃が侵入し続けると、光ヘッドの光学系、特に対物レンズに埃が付着し光ヘッドから出射する光の光量の低下が進行する。光の光量の低下が進行すると、記録再生信号、対物レンズのフォーカシング制御信号、及びトラッキング制御信号の振幅が劣化し続け、ついにはシステムが破綻し記録再生ができなくなる。したがって、光ディスクドライブの信頼性を確保するために、光ディスクドライブを密閉構造とするなど塵埃の侵入を極力防ぐ防塵対策が必要となる。
その一方で、光ディスクドライブを搭載した光ディスク装置には、ディスクモータ、光ヘッド移送モータ、光ヘッドに搭載される半導体レーザ、これらを駆動するドライブ回路、及び電源といった発熱源となる部品が装備されている。
前記のような防塵対策のため、光ディスクドライブを密閉構造とすると、当然各々の発熱源の熱は移動しにくくなり、熱がその場に留まって蓄積されていくこととなる。特に半導体レーザは、使用温度環境と寿命との間に相関があり、高温で使用すると素子の寿命が短くなる。このため、できるだけ低い温度環境で動作させることが望ましいが、高出力で使用する記録時には素子自身の発熱が大きくなる。
さらに光ディスクドライブが密閉されていることによって、熱が蓄積して素子の温度が上昇し、寿命を考慮した素子の保証温度範囲を超えてしまう。すなわち、装置としての十分な信頼性を確保するためには、半導体レーザの放熱対策が必要となる。
防塵対策と放熱対策という相反する課題を同時に解決するものとして、例えば下記特許文献1に提案されている光ディスクサブシステム装置がある。この装置は、光ディスクドライブと、光ディスクドライブを駆動するための電源と、筐体内を冷却するための冷却手段とを搭載した光ディスクサブシステム装置において、筐体内を敷居板により第1室と第2室とに区画形成し、第1室を密閉して光ディスクドライブ及び冷却手段を配置し、この冷却手段により内部空気循環路を形成するというものである。
この従来例によれば、第1室は密閉されているので、配置される光ディスクドライブは防塵による悪影響は除去され、また冷却手段により内部に空気が循環するので、第1室内の温度の分布が徐々に均質化され、光ヘッドに搭載された半導体レーザの温度も低下することになる。
しかしながら、この構成は密閉された第1室内に内部空気循環路を形成して、第1室の室内全体に空気の流れを形成するものである。この空気の流れは、室内の温度分布を均一化させる熱移動を起こす効果があるが、一般に空冷による熱移動は空気の流れの流量と流速が大きいほど効率よく行われる。
このため、熱源が発生する熱量に対して、流量又は流速が小さいと熱源の放熱効果も小さいものとなる。半導体レーザは、光ディスクの構成要素の中で最も耐熱性が低くかつ熱源でもあるので、半導体レーザの温度上昇を抑制することが、装置の熱的な信頼性及び耐久性を向上するために最も効果的である。
前記特許文献1に記載の装置は、第1室の室内全体に空気の流れを形成するものであり、半導体レーザに到達する空気の流れの流量及び流速は、ファンによって発生させた空気の流れの一部である。この構成では、半導体レーザの温度上昇を抑制するには効率が低くなり、十分な放熱効果を得ることができない。この場合、半導体レーザの放熱効果を高めるには、径の大きなファンを用いて流量を増大させ、ファンの回転数を上げて流速を高める必要がある。
しかしながら、ファンの径を大きくすると、装置が大型化してしまい商品性を損なうため流量の増大には限界がある。さらに、ファンの回転数を上げるとファンの騒音が大きくなり商品性を損なうことに加えて、ファン自身の発熱が大きくなり、このことが放熱効果を低下させることになり、流速の向上にも限界がある。
したがって、特許文献1の構成では、半導体レーザに対して所望の放熱効果を得るためには限界があり、装置の熱的な信頼性及び耐久性を確保することができないという問題点があった。
また、上記の従来例の装置では、光ディスクドライブが構成されるエリア以外の場所を通過する空気循環路を形成しており、装置全体が大型化してしまい商品性を損なうという問題点があった。
特開平08−102180号公報
本発明は、前記のような従来の問題点を解決するものであり、光ディスクドライブを密閉構造として防塵性を確保しながら、効率的な熱移動により半導体レーザの温度上昇を抑制することができ、装置の熱的な信頼性及び耐久性を向上することができる光ディスク装置を提供することを目的としている。
前記目的を達成するために、本発明の光ディスク装置は、筐体状のドライブケース内に、半導体レーザを搭載した光ヘッドと、光ディスクを駆動する回転駆動手段と、前記光ヘッドを移送する移送機構とを備えた光ディスクドライブメカニズムが配置されており、前記ドライブケース内の空気を流動させる撹拌ファンを備えており、前記撹拌ファンの回転により、前記ドライブケース内の空気が前記撹拌ファン側に吸気され、かつ前記吸気された空気が前記光ヘッド又は前記半導体レーザに向けて吹き出すように空気が流動する風路が形成されていることを特徴とする。
図1は、本発明の実施の形態1に係る光ディスク装置の内部構造の概略を示す正面図。
図2は、図1に示した光ディスク装置の内部構造の概略を示す平面図。
図3は、本発明の実施の形態1に係る光ディスク装置の実験結果を示す図。
図4は、本発明の実施の形態2に係る光ディスク装置の内部構造の概略を示す平面図。
図5は、本発明の実施の形態3に係る光ディスク装置の光ヘッド7が光ディスク8の内周側にある状態の内部構造の概略を示す平面図。
図6は、本発明の実施の形態3に係る光ディスク装置の光ヘッド7が光ディスク8の外周側にある状態の内部構造の概略を示す平面図。
図7は、本発明の実施の形態4に係る光ディスク装置の内部構造の概略を示す平面図。
図8は、図7に示した光ディスク装置の内部構造の概略を示す正面図。
図9は、図7に示した光ディスク装置の内部構造の概略を示す側面図。
図10は、図7に示した光ディスク装置において、第1の光ヘッド26の動作時における光ディスク装置の内部構造の概略を示す正面図。
図11は、図10の状態における光ディスク装置の内部構造の概略を示す側面図。
図12は、図7に示した光ディスク装置において、第2の光ヘッド32の動作時における光ディスク装置の内部構造の概略を示す正面図。
図13は、図12の状態における光ディスク装置の内部構造の概略を示す側面図。
図14は、本発明の実施の形態5に係る光ディスク装置の内部構造の概略を示す側面図。
本発明によれば、ドライブケース内に光ヘッドを収めて防塵性を確保した上で、ドライブケース内から吸気し攪拌ファンから吹き出した空気を光ヘッド又は半導体レーザに吹き付けるので、防塵性を確保しつつ、半導体レーザの温度上昇を効果的に抑制することができる。
前記本発明の光ディスク装置においては、前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されていることが好ましい。この構成によれば、デッキ領域の通気孔から導入した外気により、デッキ領域の冷却を行うことができ、ドライブ回路や電源で発生する熱が、ドライブケースの内部へ熱移動することを抑えることができる。
また、前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、前記光ヘッドは、短波長の半導体レーザを搭載した第1の光ヘッドと、長波長の半導体レーザを搭載した第2の光ヘッドとであり、前記光ディスクドライブメカニズムは、前記第1、第2の光ヘッドと、前記第1の光ヘッドを移送する第1の移送機構と、前記第2の光ヘッドを移送する第2の移送機構と、前記第1及び第2の移送機構にそれぞれ独立して設けられ光ディスクを駆動する回転駆動手段とを備えており、前記第1及び第2の移送機構は、前記回転駆動手段に搭載された光ディスクの面と平行で、かつ前記第1及び第2の光ヘッドの移送方向と垂直な方向に並列配置されており、前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されており、前記撹拌ファンは、前記撹拌ファンから吹き出した空気が、前記第1の移送機構、前記第2の移送機構の順に流れるように、前記第1の移送機構と対向する位置に配置されていることが好ましい。
この構成によれば、第1、第2の光ヘッドを備えた構成において、攪拌ファンに近い側に、短波長の半導体レーザ用の第1の移送機構が配置されているので、長波長の半導体レーザに比べ温度上昇の大きい短波長の半導体レーザを効率的に冷却することができる。
さらに、デッキ領域の通気孔から導入した外気により、デッキ領域の冷却を行うことができ、ドライブ回路や電源で発生する熱が、ドライブケースの内部へ熱移動することを抑えることができる。
また、前記短波長の半導体レーザは、前記第1の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されていることが好ましい。この構成によれば、短波長の半導体レーザをより効率的に冷却できる。
また、前記長波長の半導体レーザは、前記第2の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されていることが好ましい。この構成によれば、長波長の半導体レーザをより効率的に冷却できる。
また、前記第2の光ヘッドの記録再生時においては、前記撹拌ファンから吹き出した空気が、第2の光ヘッドに直接吹き付けられるように、前記第1の移送機構の位置が変化することが好ましい。この構成によれば、攪拌ファンの位置から遠い第2の光ヘッドの動作時においても、攪拌ファンからの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、長波長の半導体レーザに直接吹き付けられることになり、長波長の半導体レーザを効率良く冷却できる。
また、前記風路は、前記光ヘッドより下方の空気を吸気し、前記吸気された空気が、前記撹拌ファンを経て、前記光ヘッド又は前記半導体レーザに向けて吹き出すように形成されていることが好ましい。この構成によれば、前記光ヘッドの下方の低温空気を光ヘッド又は半導体レーザに向けて吹き出すので、冷却を効率良く行なうことができる。
また、前記ドライブケースの側壁に、前記ドライブケース内の空気を吸気する吸気口と、前記ドライブケース内に空気を吹き出す吹出口とが形成されており、前記風路は、前記吸気口と前記吹出口とをつなぎ、前記ドライブケースの外側に延出した風導管で形成されており、前記撹拌ファンは前記風導管内に配置されていることが好ましい。この構成によれば、風導管は、ドライブケースの外側に延出するように配置されているので、デッキ領域の空間を有効利用でき、装置を大型化することなく、撹拌ファンを設けることができる。
また、前記風導管は、断熱材で覆われていることが好ましい。この構成によれば、デッキ領域に配置されている回路基板又は電源の熱によって、風導管の内部を通過する空気の温度が上昇することを防止できるので、半導体レーザを高出力で使用する記録時においても、半導体レーザの温度を低く保つことができる。
また、前記風導管を通過する空気を冷却する冷却手段を備えたことが好ましい。この構成によれば、撹拌ファンによる冷却効果を高めることができ、周囲の温度状況による冷却効果の低下を抑えることができる。
また、前記冷却手段は、空冷方式であることが好ましい。この構成によれば、構造が簡単になる。
また、前記冷却手段は、前記風導管に取付けたヒートパイプ又は高熱伝導性材料であることが好ましい。この構成によれば、撹拌ファンによる冷却効果の向上に優れている。
また、前記冷却手段は、ペルチェ素子であることが好ましい。この構成によれば、撹拌ファンによる冷却効果の向上に優れている。
また、前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、前記攪拌ファンが配置されていることが好ましい。この構成によれば、半導体レーザの温度を常に低く保つことができる。
また、前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、ダクトが配置されていることが好ましい。この構成によれば、半導体レーザの温度を常に低く保つことができる。
また、前記ダクトは風向板であり、前記光ヘッドの前記光ディスクの半径方向の移動と連動して前記風向板の傾斜角度が変化し、前記傾斜角度の変化により、前記撹拌ファンの吹出流の向きが、前記光ヘッドの移動に追従することが好ましい。この構成によれば、光ヘッドが可動範囲のどの位置にあっても、攪拌ファンの吹出流が直接半導体レーザに吹き付けられることになり、半導体レーザの温度は、常に低く保たれることになる。
また、前記吸気された空気の集塵をする集塵フィルタを設けていることが好ましい。この構成によれば、ドライブケース内の塵埃は、撹拌ファンによる吸気の際に除塵され、吸気が継続するにつれて、ドライブケースの内部は、よりクリーンな環境が形成されていくことになる。
また、前記撹拌ファンの吹出流の前記ドライブケース内への吹き出し位置と、前記光ヘッドに搭載され前記半導体レーザの光を集光する対物レンズとを結ぶ直線上に、遮蔽板を設けていることが好ましい。この構成によれば、対物レンズに向かって吹き付けられた空気の流れを対物レンズの手前で乱すことができ、この空気に含まれている塵埃が対物レンズに付着するのを防止できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1に係る光ディスク装置の内部構造の概略を示す正面図、図2は図1に示した光ディスク装置の内部構造の概略を示す平面図である。図1、2において、筐体状の本体ケース1の内部には筐体状のドライブケース2が搭載されている。このドライブケース2によって本体ケース1の内部はデッキ領域3とドライブ領域4とに区画されている。また、ドライブ領域4は、ドライブケース2によって外気から密閉された密閉構造になっている。
図2に示したように、ドライブ領域4には、光ヘッド7が配置されており、光ヘッド7はガイドシャフト11a、11bに支持されている。光ヘッド7には、記録再生のための光源である半導体レーザ5、及び半導体レーザ5の光を集光する対物レンズ6が搭載されている。ガイドシャフト11aは、スクリューシャフトであり、その端部が送りモータ10の回転軸に連結されている。これらのガイドシャフト11a、11b、及び送りモータ10によって、光ヘッド移送機構が構成されている。
光ディスク8は、回転駆動手段であるディスクモータ9にチャッキングされて配置されている。光ディスク8には、対物レンズ6によって集光された光が照射される。この光ヘッド7及びディスクモータ9に加え、前記の光ヘッド移送機構によって光ディスクドライブメカニズムが構成されている。
なお、図示は省略しているが、本実施の形態では、トレイ上に載置した光ディスク8を、ドライブケース2に搬入、及びドライブケース2から搬出させるローディング機構、この搬入及び搬出のためのドライブケース2の開閉機構を備えている。
図1に示したように、ドライブケース2の側面のうち、ドライブケース2の下部には、吸気口12aが設けられている。この吸気口12aの上部に、吹出口12bが形成されている。吸気口12aと吹出口12bは、風導管12cによってつながっている。風導管12cは、ドライブ領域4の密閉性を損なわないように、ドライブケース2に密着して取付けられている。風導管12cの内部には、撹拌ファン12が取付けられている。
風導管12cは、ドライブケース2の外側に延出するように配置されているので、デッキ領域3の空間を有効利用でき、装置を大型化することなく、撹拌ファン12を設けることができる。
撹拌ファン12の回転により、ドライブケース2内の空気は、ドライブケース2の下部の吸気口12aを経て攪拌ファン12に向けて吸気され、上部の吹出口12bからドライブケース2内に吹き出される。
攪拌ファン12と半導体レーザ5とは、対向するように配置されているので、攪拌ファン12からの吹出流は、半導体レーザ5に向けて直接吹き付けられることになる。
次に、デッキ領域3のうち、ドライブケース2の上側には、光ディスクドライブメカニズムを駆動するドライブ回路13が配置されている。ドライブケース2の側面側には、ドライブ回路13に電力を供給する電源14が配置されている。
以上のように構成された光ディスク装置について、以下その動作をより具体的に説明する。光ディスク8がディスクモータ9に装着されて、光ディスク装置が記録再生動作を開始すると、電源14自身が発熱する。さらに、半導体レーザ5、光ディスク8を回転駆動するディスクモータ9、光ヘッド7を光ディスク8の半径方向に移送する駆動力を発生する送りモータ10、及び光ディスクドライブメカニズムを駆動するドライブ回路13に電源14によって電力が供給される。このため、これらの各構成要素も発熱する。
ここで、図2に示したように、本体ケース1に形成された排気孔19の位置には、デッキファン15が取付けられており、本体ケース1の下面には通気孔16が設けられている。デッキファン15の回転軸方向について見ると、デッキファン15と、電源14とは回転軸方向に並列して配置されている。また、図1に示したように、デッキファン15の正面側から見ると、デッキファン15と、電源14とは上下方向に並列して配置されている。
デッキファン15の回転により、通気孔16から外部の空気がデッキ領域3に取り入れられ、デッキ領域3の空気は排気孔19を経て本体ケース1の外部に排出される。この空気の流れの途中に、ドライブ回路13及び電源14があるので、これらから発生している熱は、外部から吸引され連続的に供給される空気に移動し、その空気は外部に排出されることになる。
このことにより、デッキ領域3の冷却が行われ、ドライブ回路13や電源14で発生する熱が、ドライブケース2の内部へ熱移動することを極力抑えることができる。また、前記のようなデッキファン15と電源14との位置関係により、電源14の発熱により温度上昇した暖気を効率的に排出できる。
一方、ドライブケース2の内部では半導体レーザ5、ディスクモータ9、送りモータ10が発熱し、温度分布が生じている。この場合、光源である半導体レーザ5の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域4の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
この下方の低温空気は、撹拌ファン12の回転により、吸気口12aから吸気され、吹出口12bから対向する半導体レーザ5に向けて直接吹き付けられる。このことにより、半導体レーザ5の熱を強制的に放熱させることができる。この場合、半導体レーザ5と吹出口12bは対向しているので、攪拌ファン12が発生する風の流量及び流速が最も大きい状態で、下方の低温空気は半導体レーザ5に吹き付けられることになる。このため、効率の高い熱移動が起こり、半導体レーザ5の温度上昇は効果的に抑制されることになる。
半導体レーザ5に吹き付けられた空気は、ドライブケース2の上方を流動後、下方に還流し再び吸気口12aから吸気されることになる。すなわち、撹拌ファン12の回転により、ドライブケース2の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、半導体レーザ5以外の熱源であるディスクモータ9や送りモータ10の温度上昇も抑えられることになる。
また、光ヘッド7が光ディスク8の内周から外周までの径方向(図2の矢印a方向)の可動範囲内のどの位置にあっても、攪拌ファン12からの吹出流が半導体レーザ5に吹き付けられるようにすれば、常に半導体レーザ5の温度は低く保たれることになる。これは、攪拌ファン12の配置位置の調整によって実現できる。具体的には、光ディスク8の径方向における攪拌ファン12の配置位置の調整、攪拌ファン12と半導体レーザ5との間の距離の調整や、吹出口12bの大きさの調整を行うことになる。
以上のように、本実施の形態によれば、ドライブケース2を密閉構造として防塵性を確保した上で、装置を大型化することなく半導体レーザ5の温度上昇を効果的に抑制することができる。このため、半導体レーザ5を高出力で使用する記録時においても、素子の温度を低く保つことができ、素子寿命の長期化が可能となり、光ディスク装置として熱及び塵埃に対する高い信頼性と耐久性を実現することができる。
なお、本実施の形態では、攪拌ファンからの吹出流は、半導体レーザに吹き付けられるが、この吹出流は半導体レーザだけでなく、その近傍の光ヘッドにも吹き付けられることになる。このため、半導体レーザ近傍に配置され半導体レーザを駆動するためのLSIや回路部品についても、冷却効果が高くなる。このことは、以下の実施の形態においても同様である。
また、本実施の形態では、前記のように、本体ケース1の内部は、ドライブケース2によって、密閉構造のドライブ領域4と、外気と通気性があるデッキ領域3とに区画されている。このため、ドライブ領域4の内部は防塵性が確保されており、光ヘッド7の光学系、特に対物レンズ6の防塵性も確保されている。
しかしながら、光ディスクの出し入れ時には、ドライブケース2の一部が開放するので、塵埃がドライブ領域4内に混入する可能性があり、塵埃が付着した光ディスクがドライブ領域4内に取り込まれる可能性もある。
可換媒体である光ディスク13に塵埃が付着した状態でディスクモータ9に装着されると、ドライブケース2の内部で光ディスク13の回転や撹拌ファン12の気流により、空気が撹拌され塵埃が拡散することになる。
本実施の形態では、図1に示したように、吸気口12aには集塵フィルタ17が取付けられているので、この塵埃は吸気口12aから吸気される際に集塵フィルタ17によって除塵される。この動作を繰り返し行うことにより、ドライブケース2の内部は、よりクリーンな環境が形成されていくことになる。
また、空気が集塵フィルタ17を通過しても、塵埃の一部が除去されなかった場合や、ドライブケース2の内部に浮遊する塵埃が吹出口12bからの気流に巻き込まれた場合には、対物レンズ6に塵埃が付着する可能性がある。本実施の形態では、光ヘッド7上で吹出口12bと対物レンズ6とを結ぶ直線上に遮蔽板18が構成されている。このため、対物レンズ6に向かって吹き付けられた吹出流の流れを対物レンズの手前で乱すことができ、吹出流に含まれた塵埃が対物レンズ6に付着することを防止している。
以下、本実施の形態の効果を確認する実験を行ったので説明する。図3は、実験結果を示すグラフである。横軸は運転開始からの経過時間t(分)で、縦軸は温度T(℃)である。t1で示した区間は、撹拌ファン12の動作を停止させた区間であり、t2で示した区間は、撹拌ファン12を動作させた区間である。線50は半導体レーザ5の温度、線51はドライブケース2の空間上部の温度、線52はドライブケース2の空間下部の温度を示している。
区間t1について見ると、ドライブケース2の空間温度は、時間が経過してもほとんど変化していない。これに対して、半導体レーザ5の温度は時間経過とともに上昇し、ドライブケース2の空間下部の温度に比べると最大20℃程度の温度差を生じている。
一方、撹拌ファン12を動作させた区間t2について見ると、半導体レーザ5の温度は、急激に低下し100分経過後は、区間t2の最大値から12℃程度低下した状態で、ほぼ安定状態になっている。
このような大幅な温度の下降は、半導体レーザ5の温度に比べ、約20℃温度の低いドライブケース2の空間下部の空気を半導体レーザ5に直接吹き付けたことによるものと考えられ、本実施の形態の効果を確認することができた。
(実施の形態2)
図4は、本発明の実施の形態2に係る光ディスク装置の内部構造の概略を示す平面図である。図4において、図2と同一の作用をする部位には同じ符号を付している。
図4において、吹出口12bの近傍にダクト19が設けられている。ダクト19は、吹出口12bからの吹出流が、半導体レーザ5に向かって流動するように配置されている。
図4の構成では、半導体レーザ5と吹出口12bとが対向するように配置されていないが、ダクト19により、吹出流の向きを変えることができ、撹拌ファン12からの吹出流を半導体レーザ5に直接吹き付けることができる。この構成においても、ドライブケース2の下方の空気が吸気され、半導体レーザ5に向けて直接吹き付けられることは、前記実施の形態1と同様である。
また、ダクト19は平板状部材で形成することができ、簡単な構造で、吹出流の向きを変えることができる。
本実施の形態によれば、半導体レーザ5と吹出口12bとが対向していない場合においても、ダクト19を設けることにより、簡単な構造で吹出流を半導体レーザ5に直接吹き付けることができ、前記実施の形態1と同様の効果が得られる。
(実施の形態3)
図5及び図6は、本発明の実施の形態3に係る光ディスク装置の内部構造の概略を示す平面図である。図5及び図6において、図2と同一の作用をする部位には同じ符号を付している。図5の状態は、光ヘッド7が光ディスク8の内周側にある状態を示しており、図6の状態は、光ヘッド7が光ディスク8の外周側にある状態を示している。
ダクトを形成する風向板20は、2つの羽根板20a及び20bが、連結板20cで連結され、平行リンクを構成している。2つの羽根板20a及び20bの一端はドライブケース2に回動可能に固定され、他端は連結板20cに回動可能に固定されている。このような固定は、突出ピンと羽根板20a及び20bに設けた孔とを係合させることにより可能である。また、連結板20cは、光ヘッド7に固定されているので、光ヘッド7の移動と一体になって移動する。
図5に示すように、光ヘッド7が光ディスク8の内周側に移動したときは、光ヘッド7の移動により連結板20cに並進方向の駆動力が作用し、これにより羽根板20a、20bが光ディスク8の内周側に回動し、吹出口12bから半導体レーザ5に向かうダクトが形成される。このことにより、吹出口12bから吹き出す吹出流は、半導体レーザ5に向けて直接吹き付けられることとなる。
図6に示すように、光ヘッド7が光ディスク8の外周側に移動したときは、羽根板20a、20bが光ディスク8の外周側に回動し、吹出口12bから半導体レーザ5に向かうダクトが形成される。このことにより、吹出口12bから吹き出す吹出流は、半導体レーザ5に向けて直接吹き付けられることとなる。
本実施の形態によれば、光ヘッド7の移動に連動して風向板20が回動して風向板20の傾斜角度が変化し、撹拌ファン12の吹出流の向きが変化することになる。この傾斜角度の変化により、吹出流の向きが光ヘッド7の移動に追従することになる。このため、光ヘッド7が可動範囲のどの位置にあっても、攪拌ファン12の吹出流が直接半導体レーザ5に吹き付けられることになり、半導体レーザ5の温度は、常に低く保たれることになる。
また、風向板20によって、風向き制御可能なダクトが形成されるので、吹出流のほとんど全てを半導体レーザ5に向けて直接吹き付けることができる。このため、より効率の高い熱移動を起こすことができ、半導体レーザ5の温度上昇をより効果的に抑制することができる。また、このように攪拌ファン12の能力を効率的に発揮できるので、攪拌ファン12の小型化も可能となり、装置の小型化を実現することができる。
(実施の形態4)
図7は、本発明の実施の形態4に係る光ディスク装置の内部構造の概略を示す平面図である。図8は、図7に示した光ディスク装置の内部構造の概略を示す正面図である。図9は、図7に示した光ディスク装置の内部構造の概略を示す側面図である。
図10は、図7に示した光ディスク装置において、第1の光ヘッド26の動作時における光ディスク装置の内部構造の概略を示す正面図である。図11は、図10の状態における光ディスク装置の内部構造の概略を示す側面図ある。
図12は、図7に示した光ディスク装置において、第2の光ヘッド32の動作時における光ディスク装置の内部構造の概略を示す正面図である。図13は、図12の状態にける光ディスク装置の内部構造の概略を示す側面図である。
図7に示したように、光ディスク装置の本体ケース21の内部には、ドライブケース22が搭載されている。ドライブケース22によって、本体ケース21の内部は、デッキ領域23とドライブ領域24とに区画されている。ドライブ領域24は、外気に対して密閉構造になっている。
ドライブ領域24には、短波長での記録再生のための光源である青色レーザ25が搭載された第1の光ヘッド26が、第1のガイドシャフト29a、29bに支持されて配置されている。第1のガイドシャフト29aは、スクリューシャフトであり、その端部が第1の送りモータ28の回転軸に連結されている。
青色レーザ用光ディスク45は、回転駆動手段である第1のディスクモータ27にチャッキングされて回転駆動される。第1のディスクモータ27、第1の光ヘッド26を支持した第1のガイドシャフト29a、29b及び第1の送りモータ28は、第1の移送ベース30に固定されている。これらの各構成要素により、第1の移送機構53が構成されている。
また、長波長での記録再生のための光源である赤色レーザ31が搭載された第2の光ヘッド32が、第2のガイドシャフト35a、35bに支持されて配置されている。第2のガイドシャフト35aは、スクリューシャフトであり、その端部が第2の送りモータ34の回転軸に連結されている。
赤色レーザ用光ディスク46(図12参照)は、回転駆動手段である第2のディスクモータ33にチャッキングされて回転駆動される。第2のディスクモータ33、第2の光ヘッド32を支持した第2のガイドシャフト35a、35b及び第2の送りモータ34は、第2の移送ベース36に固定されている。これらの各構成要素により、第2の移送機構54が構成されている。
第1の移送ベース30及び第2の移送ベース36は、青色レーザ用光ディスク45又は赤色レーザ用光ディスク46の面と平行な平面内に、第1、第2の移送ベース30、36の移送方向と垂直な方向(矢印b方向)に並列配置されており、昇降回動軸47によって、各々独立に回動自在なように支持されている。
前記の構成において、第1、第2の光ヘッド26、32、第1、第2ディスクモータ27、33、及び第1、第2の移送機構53、54によって光ディスクドライブメカニズムが構成されている。
なお、図示は省略しているが、本実施の形態では、トレイ上に載置した、青色レーザ用光ディスク45、赤色レーザ用光ディスク46をそれぞれ別個に、ドライブケース22に搬入、及びドライブケース22から搬出させるローディング機構、この搬入及び搬出のためのドライブケース22の開閉機構を備えている。
図8に示したように、ドライブケース22の側面のうち、ドライブケース22の下部には、吸気口38が設けられている。この吸気口38の上部に、吹出口39が形成されている。吸気口38と吹出口39は、風導管40によってつながっている。風導管40は、ドライブ領域24の密閉性を損なわないように、ドライブケース22に密着して取付けられている。風導管40の内部には、撹拌ファン37が取付けられている。
風導管40は、ドライブケース22の外側に延出するように配置されているので、デッキ領域23の空間を有効利用でき、装置を大型化することなく、撹拌ファン37を設けることができる。
また、吹出口39からの吹出流が青色レーザ25に向けて直接吹き付けられるように、吹出口39と青色レーザ25とが対向して配置されている。さらに、風導管40が形成された突出部分は、断熱材48で覆われている。
図8に示したように、ケース本体21内のデッキ領域23には、第1、第2の移送機構を駆動する回路基板41がドライブケース22の下方に配置されており、この回路基板41に電力を供給する電源42が、ドライブケース22の側面側に配置されている。
以上のように構成された光ディスク装置について、以下その動作をより具体的に説明する。
図7に示したように、第1の光ヘッド26による記録再生時には、青色レーザ用光ディスク45がディスクモータ27に装着されて、光ディスク装置が記録再生動作を開始する。この状態では、図10に示したように、第2の光ヘッド32は非動作状態であり、第2の移送ベース36は昇降回動軸47を回動中心として、回動傾斜して第2の光ヘッド32は、記録再生動作時の位置から降下した位置に位置決めされている。
第1の光ヘッド26の記録再生の開始により、電源42自身が発熱する。さらに、光ヘッド7の青色レーザ25、光ディスク45を回転駆動する第1のディスクモータ27、第1の光ヘッド26を光ディスク45の半径方向に移送する駆動力を発生する第1の送りモータ28、及び光ディスクドライブメカニズムを駆動するドライブ回路41に、電源42によって電力が供給される。このため、これらの各構成要素も発熱する。
ここで、図7に示したように、筐体21に形成された排気孔49の位置には、デッキファン43が取付けられており、筐体21の下面には通気孔44が設けられている。デッキファン43の回転軸方向について見ると、デッキファン43と、電源42とは回転軸方向に並列して配置されている。また、図8に示したように、デッキファン43の正面側から見ると、デッキファン43と、電源42とは上下方向に並列して配置されている。
デッキファン43の回転により、通気孔44から外部の空気がデッキ領域23の内部に取り入れられ、デッキ領域23の空気は排気孔49を経て筐体21の外部に排出される。
この空気の流れの途中に、回路基板41及び電源42があるので、これらから発生している熱は、外部から吸引され連続的に供給される空気に移動し、その空気は外部に排出されることになる。このことにより、デッキ領域23の冷却が行われ、回路基板41や電源42で発生する熱が、ドライブケース22の内部へ熱移動することを極力抑えている。
また前記のようなデッキファン43と電源42との位置関係により、電源42の発熱により温度上昇した暖気を効率的に排出できる。
さらに、風導管40は、断熱材48で覆われているので、デッキ領域23に配置されている回路基板又41は電源42の熱によって、風導管40の内部を通過する空気の温度が上昇することを防止できるので、半導体レーザを高出力で使用する記録時においても、半導体レーザの温度を低く保つことができる。
一方、ドライブケース22の内部では青色レーザ25、第1のディスクモータ27、第1の送りモータ28が発熱し、温度分布が生じている。この場合、光源である青色レーザ25の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域24の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
この下方の低温空気は、図10に示したように、撹拌ファン37の回転により、吸気口38から吸気され、吹出口39から対向する青色レーザ25に向けて直接吹き付けられる。このことにより、青色レーザ25の熱を強制的に放熱させることができる。この場合、青色レーザ25と吹出口39は対向しているので、撹拌ファン37が発生する風の流量及び流速が最も大きい状態で、下方の低温空気は青色レーザ25に吹き付けられることとなる。このため、効率の高い熱移動が起こり、青色レーザ25の温度上昇は効果的に抑制されることになる。
青色レーザ25に吹き付けられた空気は、ドライブケース22の上方を流動後、下方に還流し再び吸気口38から吸気されることになる。すなわち、攪拌ファン37の回転により、ドライブケース22の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、青色レーザ25以外の熱源である第1のディスクモータ27や第1の送りモータ28の温度上昇も抑えられることになる。
また、第1の光ヘッド26が可動範囲内のどの位置にあっても、攪拌ファン37からの吹出流が青色レーザ25に吹き付けられるようにすれば、常に青色レーザ25の温度は低く保たれることになる。これは、攪拌ファン37の配置位置の調整によって実現できる。具体的には、光ディスクの径方向における攪拌ファン37の配置位置の調整、攪拌ファン37と半導体レーザ25との間の距離の調整や、吹出口39の大きさの調整を行うことになる。
ここで、第1、第2の光ヘッド26、32は並列して配置されているが、攪拌ファン37に近い側に、青色レーザ25用の第1の光ヘッド26が配置されている。さらに、青色レーザ25は、第1の光ヘッド26の移送方向と垂直な方向における側面のうち、撹拌ファン37に近い側の側面に配置されている。このことにより、短波長で赤色レーザ31に比べ温度上昇の大きい青色レーザ25を効率的に冷却することができる。
次に、第2の光ヘッド32の記録再生時には、青色レーザ用光ディスク46(図12)が、図7に示した第2のディスクモータ33に装着されて、光ディスク装置が記録再生動作を開始すると、電源42自身が発熱する。さらに、赤色レーザ31に加え、光ディスク46を回転駆動する第2のディスクモータ33、第2の光ヘッド32を光ディスク46の半径方向に移送する駆動力を発生する第2の送りモータ34、及び光ディスクドライブメカニズムを駆動するドライブ回路41に、電源42によって電力が供給されるので、これらの各構成要素も発熱する。
この状態では、図12に示したように、第1の光ヘッド26は非動作状態であり、第1の移送ベース30は昇降回動軸47を回動中心として回動傾斜して第1の光ヘッド26が記録再生動作時の位置から降下した位置に位置決めされている。
デッキファン43の回転により、デッキ領域23に通気孔44からデッキファン43へと流動する空気の流れが生じる。このため、回路基板41や電源42で発生する熱が、ドライブケース22の内部へ熱移動することが抑えられる。このことは、第1の光ヘッド26の動作時と同様である。
ドライブケース22の内部では赤色レーザ31、第2のディスクモータ33、第2の送りモータ34が発熱し、温度分布が生じている。この場合、光源の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域24の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
ここで、前記のように、第1の光ヘッド26は非動作状態であり、第1の光ヘッド26の周囲は、第1の光ヘッド26自体による温度上昇はない。また、第1の光ヘッド26は、図12、13に示したように、回動軸47を中心として下方に回動している。また、赤色レーザ31は、第2の光ヘッド32の移送方向と垂直な方向における側面のうち、撹拌ファン37に近い側の側面に配置されている。
このことにより、攪拌ファン37からの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、図12に示したように、第1の光ヘッド26の上側の空間を通過して、赤色レーザ31に直接吹き付けられることになる。すなわち、ドライブケース22の下方の低温空気は、攪拌ファン37の回転により、吸気口38から吸気され、吹出口39から対向する赤色レーザ31に向けて直接吹き付けられるので、赤色レーザ31の熱を強制的に放熱させることができる。
赤色レーザ31に吹き付けられた空気は、下方に還流し再び吸気口38から吸気されることになる。すなわち、攪拌ファン37の回転により、ドライブケース22の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、赤色レーザ31以外の熱源である第2のディスクモータ33や第2の送りモータ34の温度上昇も抑えられることになる。
ここで、本実施の形態は、2つのヘッドユニットを用いているが、前記のように、攪拌ファン37の位置から遠い位置にある赤色レーザ用の光ヘッドの動作時においても、攪拌ファン37からの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、第1の光ヘッド26の上側の空間を通過して、赤色レーザ31に直接吹き付けられることになる。このため、特別に攪拌ファン37を増加させる必要がなく、攪拌ファン37は1個で足り、装置の大型化を抑えることができる。
また、ドライブ領域24の内部の防塵性が確保され、光ヘッド26、32の光学系、特に対物レンズの防塵性も確保されていることは、前記実施の形態1と同様である。
以上のように、本実施の形態は、2つのヘッドユニットを用いた構成であるが、前記実施の形態1と同様に、装置を大型化せず半導体レーザの温度上昇を効果的に抑制することができ、光ディスク装置として熱及び塵埃に対する高い信頼性と耐久性を実現することができる。
(実施の形態5)
図14は、本発明の実施の形態5に係る光ディスク装置の内部構造の概略を示す側面図である。本図において、図8と同一の作用をする部位には同じ符号を付している。
本実施の形態の構成は、風導管40が形成された突出部分は、高熱伝導材53によって覆われており、その外側にペルチェ素子54を挟み込んで放熱フィン55が密着して取付けられている。
ペルチェ素子54の熱電変換作用により、高熱伝導材53が冷却され、風導管40の内部を通過する空気を強制的に冷却することができる。また、ペルチェ素子54自身が発熱する熱は、放熱フィン55に熱移動し、デッキファン43による風によって放熱される。
この構成によれば、強制冷却された空気が、吹出口39からドライブケース22の内部に吹き出すので、周囲の温度状況にかかわらず、青色レーザ25又は赤色レーザ31を強制的に冷却することができる。
このため、青色レーザ25及び赤色レーザ31を高出力で使用する記録時においても、レーザ素子の温度を低く保つことができ、素子寿命の長期化が可能になる。
本実施の形態では、冷却手段としてペルチェ素子53を用いた例で説明したが、放熱フィン55のみの構成でもよい。また、ヒートパイプや高熱伝導性材と放熱フィンとを組み合わせた構成でもよい。この構成によれば、ヒートパイプや高熱伝導性材により熱移動が促進されるので、冷却効果を高めることができる。
また、本実施の形態は、第1の移送機構及び第2の移送機構を備えた構成の例で説明したが、移送機構が1つの構成に適用してもよい。
なお、前記実施の形態1において、集塵フィルタ17を設けた例で説明したが、集塵フィルタは実施の形態2から5のいずれかに設けてもよい。
また、前記実施の形態2においてダクト19を設けた構成、前記実施の形態3において風切板20を設けた構成について説明したが、これらを前記実施の形態1、4、5のいずれかに設けてもよい。
また、前記実施の形態4において、風導管40が断熱材48で覆われた構成を説明したが、これを前記実施の形態1から3のいずれかに適用してもよい。
また、前記実施の形態1において、光ヘッド7上に吹出口12bと対物レンズ6とを結ぶ直線上に遮蔽板18を設けた構成を説明したが、実施の形態2から5のいずれかに設けてもよい。
以上のように、本発明によれば、防塵性を確保した上で、装置を大型化することなく半導体レーザの温度上昇を効果的に抑制することができ、熱及び塵埃に対する高い信頼性と耐久性を実現することができるので、映像用、音楽用、コンピュータ・データ用等の情報記録媒体である光ディスクを用いて情報の記録再生を行う光ディスク装置に有用である。
本発明は、光ディスクドライブを搭載した光ディスク装置に関する。
一般に、光ディスクドライブ内に塵埃が侵入し続けると、光ヘッドの光学系、特に対物レンズに埃が付着し光ヘッドから出射する光の光量の低下が進行する。光の光量の低下が進行すると、記録再生信号、対物レンズのフォーカシング制御信号、及びトラッキング制御信号の振幅が劣化し続け、ついにはシステムが破綻し記録再生ができなくなる。したがって、光ディスクドライブの信頼性を確保するために、光ディスクドライブを密閉構造とするなど塵埃の侵入を極力防ぐ防塵対策が必要となる。
その一方で、光ディスクドライブを搭載した光ディスク装置には、ディスクモータ、光ヘッド移送モータ、光ヘッドに搭載される半導体レーザ、これらを駆動するドライブ回路、及び電源といった発熱源となる部品が装備されている。
前記のような防塵対策のため、光ディスクドライブを密閉構造とすると、当然各々の発熱源の熱は移動しにくくなり、熱がその場に留まって蓄積されていくこととなる。特に半導体レーザは、使用温度環境と寿命との間に相関があり、高温で使用すると素子の寿命が短くなる。このため、できるだけ低い温度環境で動作させることが望ましいが、高出力で使用する記録時には素子自身の発熱が大きくなる。
さらに光ディスクドライブが密閉されていることによって、熱が蓄積して素子の温度が上昇し、寿命を考慮した素子の保証温度範囲を超えてしまう。すなわち、装置としての十分な信頼性を確保するためには、半導体レーザの放熱対策が必要となる。
防塵対策と放熱対策という相反する課題を同時に解決するものとして、例えば下記特許文献1に提案されている光ディスクサブシステム装置がある。この装置は、光ディスクドライブと、光ディスクドライブを駆動するための電源と、筐体内を冷却するための冷却手段とを搭載した光ディスクサブシステム装置において、筐体内を敷居板により第1室と第2室とに区画形成し、第1室を密閉して光ディスクドライブ及び冷却手段を配置し、この冷却手段により内部空気循環路を形成するというものである。
この従来例によれば、第1室は密閉されているので、配置される光ディスクドライブは防塵による悪影響は除去され、また冷却手段により内部に空気が循環するので、第1室内の温度の分布が徐々に均質化され、光ヘッドに搭載された半導体レーザの温度も低下することになる。
特開平08−102180号公報
しかしながら、この構成は密閉された第1室内に内部空気循環路を形成して、第1室の室内全体に空気の流れを形成するものである。この空気の流れは、室内の温度分布を均一化させる熱移動を起こす効果があるが、一般に空冷による熱移動は空気の流れの流量と流速が大きいほど効率よく行われる。
このため、熱源が発生する熱量に対して、流量又は流速が小さいと熱源の放熱効果も小さいものとなる。半導体レーザは、光ディスクの構成要素の中で最も耐熱性が低くかつ熱源でもあるので、半導体レーザの温度上昇を抑制することが、装置の熱的な信頼性及び耐久性を向上するために最も効果的である。
前記特許文献1に記載の装置は、第1室の室内全体に空気の流れを形成するものであり、半導体レーザに到達する空気の流れの流量及び流速は、ファンによって発生させた空気の流れの一部である。この構成では、半導体レーザの温度上昇を抑制するには効率が低くなり、十分な放熱効果を得ることができない。この場合、半導体レーザの放熱効果を高めるには、径の大きなファンを用いて流量を増大させ、ファンの回転数を上げて流速を高める必要がある。
しかしながら、ファンの径を大きくすると、装置が大型化してしまい商品性を損なうため流量の増大には限界がある。さらに、ファンの回転数を上げるとファンの騒音が大きくなり商品性を損なうことに加えて、ファン自身の発熱が大きくなり、このことが放熱効果を低下させることになり、流速の向上にも限界がある。
したがって、特許文献1の構成では、半導体レーザに対して所望の放熱効果を得るためには限界があり、装置の熱的な信頼性及び耐久性を確保することができないという問題点があった。
また、上記の従来例の装置では、光ディスクドライブが構成されるエリア以外の場所を通過する空気循環路を形成しており、装置全体が大型化してしまい商品性を損なうという問題点があった。
本発明は、前記のような従来の問題点を解決するものであり、光ディスクドライブを密閉構造として防塵性を確保しながら、効率的な熱移動により半導体レーザの温度上昇を抑制することができ、装置の熱的な信頼性及び耐久性を向上することができる光ディスク装置を提供することを目的としている。
前記目的を達成するために、本発明の光ディスク装置は、筐体状のドライブケース内に、半導体レーザを搭載した光ヘッドと、光ディスクを駆動する回転駆動手段と、前記光ヘッドを移送する移送機構とを備えた光ディスクドライブメカニズムが配置されており、前記ドライブケース内の空気を流動させる撹拌ファンを備えており、前記撹拌ファンの回転により、前記ドライブケース内の空気が前記撹拌ファン側に吸気され、かつ前記吸気された空気が前記光ヘッド又は前記半導体レーザに向けて吹き出すように空気が流動する風路が形成されていることを特徴とする。
本発明によれば、ドライブケース内に光ヘッドを収めて防塵性を確保した上で、ドライブケース内から吸気し攪拌ファンから吹き出した空気を光ヘッド又は半導体レーザに吹き付けるので、防塵性を確保しつつ、半導体レーザの温度上昇を効果的に抑制することができる。
前記本発明の光ディスク装置においては、前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されていることが好ましい。この構成によれば、デッキ領域の通気孔から導入した外気により、デッキ領域の冷却を行うことができ、ドライブ回路や電源で発生する熱が、ドライブケースの内部へ熱移動することを抑えることができる。
また、前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、前記光ヘッドは、短波長の半導体レーザを搭載した第1の光ヘッドと、長波長の半導体レーザを搭載した第2の光ヘッドとであり、前記光ディスクドライブメカニズムは、前記第1、第2の光ヘッドと、前記第1の光ヘッドを移送する第1の移送機構と、前記第2の光ヘッドを移送する第2の移送機構と、前記第1及び第2の移送機構にそれぞれ独立して設けられ光ディスクを駆動する回転駆動手段とを備えており、前記第1及び第2の移送機構は、前記回転駆動手段に搭載された光ディスクの面と平行で、かつ前記第1及び第2の光ヘッドの移送方向と垂直な方向に並列配置されており、前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されており、前記撹拌ファンは、前記撹拌ファンから吹き出した空気が、前記第1の移送機構、前記第2の移送機構の順に流れるように、前記第1の移送機構と対向する位置に配置されていることが好ましい。
この構成によれば、第1、第2の光ヘッドを備えた構成において、攪拌ファンに近い側に、短波長の半導体レーザ用の第1の移送機構が配置されているので、長波長の半導体レーザに比べ温度上昇の大きい短波長の半導体レーザを効率的に冷却することができる。
さらに、デッキ領域の通気孔から導入した外気により、デッキ領域の冷却を行うことができ、ドライブ回路や電源で発生する熱が、ドライブケースの内部へ熱移動することを抑えることができる。
また、前記短波長の半導体レーザは、前記第1の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されていることが好ましい。この構成によれば、短波長の半導体レーザをより効率的に冷却できる。
また、前記長波長の半導体レーザは、前記第2の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されていることが好ましい。この構成によれば、長波長の半導体レーザをより効率的に冷却できる。
また、前記第2の光ヘッドの記録再生時においては、前記撹拌ファンから吹き出した空気が、第2の光ヘッドに直接吹き付けられるように、前記第1の移送機構の位置が変化することが好ましい。この構成によれば、攪拌ファンの位置から遠い第2の光ヘッドの動作時においても、攪拌ファンからの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、長波長の半導体レーザに直接吹き付けられることになり、長波長の半導体レーザを効率良く冷却できる。
また、前記風路は、前記光ヘッドより下方の空気を吸気し、前記吸気された空気が、前記撹拌ファンを経て、前記光ヘッド又は前記半導体レーザに向けて吹き出すように形成されていることが好ましい。この構成によれば、前記光ヘッドの下方の低温空気を光ヘッド又は半導体レーザに向けて吹き出すので、冷却を効率良く行なうことができる。
また、前記ドライブケースの側壁に、前記ドライブケース内の空気を吸気する吸気口と、前記ドライブケース内に空気を吹き出す吹出口とが形成されており、前記風路は、前記吸気口と前記吹出口とをつなぎ、前記ドライブケースの外側に延出した風導管で形成されており、前記撹拌ファンは前記風導管内に配置されていることが好ましい。この構成によれば、風導管は、ドライブケースの外側に延出するように配置されているので、デッキ領域の空間を有効利用でき、装置を大型化することなく、撹拌ファンを設けることができる。
また、前記風導管は、断熱材で覆われていることが好ましい。この構成によれば、デッキ領域に配置されている回路基板又は電源の熱によって、風導管の内部を通過する空気の温度が上昇することを防止できるので、半導体レーザを高出力で使用する記録時においても、半導体レーザの温度を低く保つことができる。
また、前記風導管を通過する空気を冷却する冷却手段を備えたことが好ましい。この構成によれば、撹拌ファンによる冷却効果を高めることができ、周囲の温度状況による冷却効果の低下を抑えることができる。
また、前記冷却手段は、空冷方式であることが好ましい。この構成によれば、構造が簡単になる。
また、前記冷却手段は、前記風導管に取付けたヒートパイプ又は高熱伝導性材料であることが好ましい。この構成によれば、撹拌ファンによる冷却効果の向上に優れている。
また、前記冷却手段は、ペルチェ素子であることが好ましい。この構成によれば、撹拌ファンによる冷却効果の向上に優れている。
また、前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、前記攪拌ファンが配置されていることが好ましい。この構成によれば、半導体レーザの温度を常に低く保つことができる。
また、前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、ダクトが配置されていることが好ましい。この構成によれば、半導体レーザの温度を常に低く保つことができる。
また、前記ダクトは風向板であり、前記光ヘッドの前記光ディスクの半径方向の移動と連動して前記風向板の傾斜角度が変化し、前記傾斜角度の変化により、前記撹拌ファンの吹出流の向きが、前記光ヘッドの移動に追従することが好ましい。この構成によれば、光ヘッドが可動範囲のどの位置にあっても、攪拌ファンの吹出流が直接半導体レーザに吹き付けられることになり、半導体レーザの温度は、常に低く保たれることになる。
また、前記吸気された空気の集塵をする集塵フィルタを設けていることが好ましい。この構成によれば、ドライブケース内の塵埃は、撹拌ファンによる吸気の際に除塵され、吸気が継続するにつれて、ドライブケースの内部は、よりクリーンな環境が形成されていくことになる。
また、前記撹拌ファンの吹出流の前記ドライブケース内への吹き出し位置と、前記光ヘッドに搭載され前記半導体レーザの光を集光する対物レンズとを結ぶ直線上に、遮蔽板を設けていることが好ましい。この構成によれば、対物レンズに向かって吹き付けられた空気の流れを対物レンズの手前で乱すことができ、この空気に含まれている塵埃が対物レンズに付着するのを防止できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1に係る光ディスク装置の内部構造の概略を示す正面図、図2は図1に示した光ディスク装置の内部構造の概略を示す平面図である。図1、2において、筐体状の本体ケース1の内部には筐体状のドライブケース2が搭載されている。このドライブケース2によって本体ケース1の内部はデッキ領域3とドライブ領域4とに区画されている。また、ドライブ領域4は、ドライブケース2によって外気から密閉された密閉構造になっている。
図2に示したように、ドライブ領域4には、光ヘッド7が配置されており、光ヘッド7はガイドシャフト11a、11bに支持されている。光ヘッド7には、記録再生のための光源である半導体レーザ5、及び半導体レーザ5の光を集光する対物レンズ6が搭載されている。ガイドシャフト11aは、スクリューシャフトであり、その端部が送りモータ10の回転軸に連結されている。これらのガイドシャフト11a、11b、及び送りモータ10によって、光ヘッド移送機構が構成されている。
光ディスク8は、回転駆動手段であるディスクモータ9にチャッキングされて配置されている。光ディスク8には、対物レンズ6によって集光された光が照射される。この光ヘッド7及びディスクモータ9に加え、前記の光ヘッド移送機構によって光ディスクドライブメカニズムが構成されている。
なお、図示は省略しているが、本実施の形態では、トレイ上に載置した光ディスク8を、ドライブケース2に搬入、及びドライブケース2から搬出させるローディング機構、この搬入及び搬出のためのドライブケース2の開閉機構を備えている。
図1に示したように、ドライブケース2の側面のうち、ドライブケース2の下部には、吸気口12aが設けられている。この吸気口12aの上部に、吹出口12bが形成されている。吸気口12aと吹出口12bは、風導管12cによってつながっている。風導管12cは、ドライブ領域4の密閉性を損なわないように、ドライブケース2に密着して取付けられている。風導管12cの内部には、撹拌ファン12が取付けられている。
風導管12cは、ドライブケース2の外側に延出するように配置されているので、デッキ領域3の空間を有効利用でき、装置を大型化することなく、撹拌ファン12を設けることができる。
撹拌ファン12の回転により、ドライブケース2内の空気は、ドライブケース2の下部の吸気口12aを経て攪拌ファン12に向けて吸気され、上部の吹出口12bからドライブケース2内に吹き出される。
攪拌ファン12と半導体レーザ5とは、対向するように配置されているので、攪拌ファン12からの吹出流は、半導体レーザ5に向けて直接吹き付けられることになる。
次に、デッキ領域3のうち、ドライブケース2の上側には、光ディスクドライブメカニズムを駆動するドライブ回路13が配置されている。ドライブケース2の側面側には、ドライブ回路13に電力を供給する電源14が配置されている。
以上のように構成された光ディスク装置について、以下その動作をより具体的に説明する。光ディスク8がディスクモータ9に装着されて、光ディスク装置が記録再生動作を開始すると、電源14自身が発熱する。さらに、半導体レーザ5、光ディスク8を回転駆動するディスクモータ9、光ヘッド7を光ディスク8の半径方向に移送する駆動力を発生する送りモータ10、及び光ディスクドライブメカニズムを駆動するドライブ回路13に電源14によって電力が供給される。このため、これらの各構成要素も発熱する。
ここで、図2に示したように、本体ケース1に形成された排気孔19の位置には、デッキファン15が取付けられており、本体ケース1の下面には通気孔16が設けられている。デッキファン15の回転軸方向について見ると、デッキファン15と、電源14とは回転軸方向に並列して配置されている。また、図1に示したように、デッキファン15の正面側から見ると、デッキファン15と、電源14とは上下方向に並列して配置されている。
デッキファン15の回転により、通気孔16から外部の空気がデッキ領域3に取り入れられ、デッキ領域3の空気は排気孔19を経て本体ケース1の外部に排出される。この空気の流れの途中に、ドライブ回路13及び電源14があるので、これらから発生している熱は、外部から吸引され連続的に供給される空気に移動し、その空気は外部に排出されることになる。
このことにより、デッキ領域3の冷却が行われ、ドライブ回路13や電源14で発生する熱が、ドライブケース2の内部へ熱移動することを極力抑えることができる。また、前記のようなデッキファン15と電源14との位置関係により、電源14の発熱により温度上昇した暖気を効率的に排出できる。
一方、ドライブケース2の内部では半導体レーザ5、ディスクモータ9、送りモータ10が発熱し、温度分布が生じている。この場合、光源である半導体レーザ5の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域4の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
この下方の低温空気は、撹拌ファン12の回転により、吸気口12aから吸気され、吹出口12bから対向する半導体レーザ5に向けて直接吹き付けられる。このことにより、半導体レーザ5の熱を強制的に放熱させることができる。この場合、半導体レーザ5と吹出口12bは対向しているので、攪拌ファン12が発生する風の流量及び流速が最も大きい状態で、下方の低温空気は半導体レーザ5に吹き付けられることになる。このため、効率の高い熱移動が起こり、半導体レーザ5の温度上昇は効果的に抑制されることになる。
半導体レーザ5に吹き付けられた空気は、ドライブケース2の上方を流動後、下方に還流し再び吸気口12aから吸気されることになる。すなわち、撹拌ファン12の回転により、ドライブケース2の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、半導体レーザ5以外の熱源であるディスクモータ9や送りモータ10の温度上昇も抑えられることになる。
また、光ヘッド7が光ディスク8の内周から外周までの径方向(図2の矢印a方向)の可動範囲内のどの位置にあっても、攪拌ファン12からの吹出流が半導体レーザ5に吹き付けられるようにすれば、常に半導体レーザ5の温度は低く保たれることになる。これは、攪拌ファン12の配置位置の調整によって実現できる。具体的には、光ディスク8の径方向における攪拌ファン12の配置位置の調整、攪拌ファン12と半導体レーザ5との間の距離の調整や、吹出口12bの大きさの調整を行うことになる。
以上のように、本実施の形態によれば、ドライブケース2を密閉構造として防塵性を確保した上で、装置を大型化することなく半導体レーザ5の温度上昇を効果的に抑制することができる。このため、半導体レーザ5を高出力で使用する記録時においても、素子の温度を低く保つことができ、素子寿命の長期化が可能となり、光ディスク装置として熱及び塵埃に対する高い信頼性と耐久性を実現することができる。
なお、本実施の形態では、攪拌ファンからの吹出流は、半導体レーザに吹き付けられるが、この吹出流は半導体レーザだけでなく、その近傍の光ヘッドにも吹き付けられることになる。このため、半導体レーザ近傍に配置され半導体レーザを駆動するためのLSIや回路部品についても、冷却効果が高くなる。このことは、以下の実施の形態においても同様である。
また、本実施の形態では、前記のように、本体ケース1の内部は、ドライブケース2によって、密閉構造のドライブ領域4と、外気と通気性があるデッキ領域3とに区画されている。このため、ドライブ領域4の内部は防塵性が確保されており、光ヘッド7の光学系、特に対物レンズ6の防塵性も確保されている。
しかしながら、光ディスクの出し入れ時には、ドライブケース2の一部が開放するので、塵埃がドライブ領域4内に混入する可能性があり、塵埃が付着した光ディスクがドライブ領域4内に取り込まれる可能性もある。
可換媒体である光ディスク13に塵埃が付着した状態でディスクモータ9に装着されると、ドライブケース2の内部で光ディスク13の回転や撹拌ファン12の気流により、空気が撹拌され塵埃が拡散することになる。
本実施の形態では、図1に示したように、吸気口12aには集塵フィルタ17が取付けられているので、この塵埃は吸気口12aから吸気される際に集塵フィルタ17によって除塵される。この動作を繰り返し行うことにより、ドライブケース2の内部は、よりクリーンな環境が形成されていくことになる。
また、空気が集塵フィルタ17を通過しても、塵埃の一部が除去されなかった場合や、ドライブケース2の内部に浮遊する塵埃が吹出口12bからの気流に巻き込まれた場合には、対物レンズ6に塵埃が付着する可能性がある。本実施の形態では、光ヘッド7上で吹出口12bと対物レンズ6とを結ぶ直線上に遮蔽板18が構成されている。このため、対物レンズ6に向かって吹き付けられた吹出流の流れを対物レンズの手前で乱すことができ、吹出流に含まれた塵埃が対物レンズ6に付着することを防止している。
以下、本実施の形態の効果を確認する実験を行ったので説明する。図3は、実験結果を示すグラフである。横軸は運転開始からの経過時間t(分)で、縦軸は温度T(℃)である。t1で示した区間は、撹拌ファン12の動作を停止させた区間であり、t2で示した区間は、撹拌ファン12を動作させた区間である。線50は半導体レーザ5の温度、線51はドライブケース2の空間上部の温度、線52はドライブケース2の空間下部の温度を示している。
区間t1について見ると、ドライブケース2の空間温度は、時間が経過してもほとんど変化していない。これに対して、半導体レーザ5の温度は時間経過とともに上昇し、ドライブケース2の空間下部の温度に比べると最大20℃程度の温度差を生じている。
一方、撹拌ファン12を動作させた区間t2について見ると、半導体レーザ5の温度は、急激に低下し100分経過後は、区間t2の最大値から12℃程度低下した状態で、ほぼ安定状態になっている。
このような大幅な温度の下降は、半導体レーザ5の温度に比べ、約20℃温度の低いドライブケース2の空間下部の空気を半導体レーザ5に直接吹き付けたことによるものと考えられ、本実施の形態の効果を確認することができた。
(実施の形態2)
図4は、本発明の実施の形態2に係る光ディスク装置の内部構造の概略を示す平面図である。図4において、図2と同一の作用をする部位には同じ符号を付している。
図4において、吹出口12bの近傍にダクト19が設けられている。
ダクト19は、吹出口12bからの吹出流が、半導体レーザ5に向かって流動するように配置されている。
図4の構成では、半導体レーザ5と吹出口12bとが対向するように配置されていないが、ダクト19により、吹出流の向きを変えることができ、撹拌ファン12からの吹出流を半導体レーザ5に直接吹き付けることができる。この構成においても、ドライブケース2の下方の空気が吸気され、半導体レーザ5に向けて直接吹き付けられることは、前記実施の形態1と同様である。
また、ダクト19は平板状部材で形成することができ、簡単な構造で、吹出流の向きを変えることができる。
本実施の形態によれば、半導体レーザ5と吹出口12bとが対向していない場合においても、ダクト19を設けることにより、簡単な構造で吹出流を半導体レーザ5に直接吹き付けることができ、前記実施の形態1と同様の効果が得られる。
(実施の形態3)
図5及び図6は、本発明の実施の形態3に係る光ディスク装置の内部構造の概略を示す平面図である。図5及び図6において、図2と同一の作用をする部位には同じ符号を付している。図5の状態は、光ヘッド7が光ディスク8の内周側にある状態を示しており、図6の状態は、光ヘッド7が光ディスク8の外周側にある状態を示している。
ダクトを形成する風向板20は、2つの羽根板20a及び20bが、連結板20cで連結され、平行リンクを構成している。2つの羽根板20a及び20bの一端はドライブケース2に回動可能に固定され、他端は連結板20cに回動可能に固定されている。このような固定は、突出ピンと羽根板20a及び20bに設けた孔とを係合させることにより可能である。また、連結板20cは、光ヘッド7に固定されているので、光ヘッド7の移動と一体になって移動する。
図5に示すように、光ヘッド7が光ディスク8の内周側に移動したときは、光ヘッド7の移動により連結板20cに並進方向の駆動力が作用し、これにより羽根板20a、20bが光ディスク8の内周側に回動し、吹出口12bから半導体レーザ5に向かうダクトが形成される。このことにより、吹出口12bから吹き出す吹出流は、半導体レーザ5に向けて直接吹き付けられることとなる。
図6に示すように、光ヘッド7が光ディスク8の外周側に移動したときは、羽根板20a、20bが光ディスク8の外周側に回動し、吹出口12bから半導体レーザ5に向かうダクトが形成される。このことにより、吹出口12bから吹き出す吹出流は、半導体レーザ5に向けて直接吹き付けられることとなる。
本実施の形態によれば、光ヘッド7の移動に連動して風向板20が回動して風向板20の傾斜角度が変化し、撹拌ファン12の吹出流の向きが変化することになる。この傾斜角度の変化により、吹出流の向きが光ヘッド7の移動に追従することになる。このため、光ヘッド7が可動範囲のどの位置にあっても、攪拌ファン12の吹出流が直接半導体レーザ5に吹き付けられることになり、半導体レーザ5の温度は、常に低く保たれることになる。
また、風向板20によって、風向き制御可能なダクトが形成されるので、吹出流のほとんど全てを半導体レーザ5に向けて直接吹き付けることができる。このため、より効率の高い熱移動を起こすことができ、半導体レーザ5の温度上昇をより効果的に抑制することができる。また、このように攪拌ファン12の能力を効率的に発揮できるので、攪拌ファン12の小型化も可能となり、装置の小型化を実現することができる。
(実施の形態4)
図7は、本発明の実施の形態4に係る光ディスク装置の内部構造の概略を示す平面図である。図8は、図7に示した光ディスク装置の内部構造の概略を示す正面図である。図9は、図7に示した光ディスク装置の内部構造の概略を示す側面図である。
図10は、図7に示した光ディスク装置において、第1の光ヘッド26の動作時における光ディスク装置の内部構造の概略を示す正面図である。図11は、図10の状態における光ディスク装置の内部構造の概略を示す側面図ある。
図12は、図7に示した光ディスク装置において、第2の光ヘッド32の動作時における光ディスク装置の内部構造の概略を示す正面図である。図13は、図12の状態にける光ディスク装置の内部構造の概略を示す側面図である。
図7に示したように、光ディスク装置の本体ケース21の内部には、ドライブケース22が搭載されている。ドライブケース22によって、本体ケース21の内部は、デッキ領域23とドライブ領域24とに区画されている。ドライブ領域24は、外気に対して密閉構造になっている。
ドライブ領域24には、短波長での記録再生のための光源である青色レーザ25が搭載された第1の光ヘッド26が、第1のガイドシャフト29a、29bに支持されて配置されている。第1のガイドシャフト29aは、スクリューシャフトであり、その端部が第1の送りモータ28の回転軸に連結されている。
青色レーザ用光ディスク45は、回転駆動手段である第1のディスクモータ27にチャッキングされて回転駆動される。第1のディスクモータ27、第1の光ヘッド26を支持した第1のガイドシャフト29a、29b及び第1の送りモータ28は、第1の移送ベース30に固定されている。これらの各構成要素により、第1の移送機構53が構成されている。
また、長波長での記録再生のための光源である赤色レーザ31が搭載された第2の光ヘッド32が、第2のガイドシャフト35a、35bに支持されて配置されている。第2のガイドシャフト35aは、スクリューシャフトであり、その端部が第2の送りモータ34の回転軸に連結されている。
赤色レーザ用光ディスク46(図12参照)は、回転駆動手段である第2のディスクモータ33にチャッキングされて回転駆動される。第2のディスクモータ33、第2の光ヘッド32を支持した第2のガイドシャフト35a、35b及び第2の送りモータ34は、第2の移送ベース36に固定されている。これらの各構成要素により、第2の移送機構54が構成されている。
第1の移送ベース30及び第2の移送ベース36は、青色レーザ用光ディスク45又は赤色レーザ用光ディスク46の面と平行な平面内に、第1、第2の移送ベース30、36の移送方向と垂直な方向(矢印b方向)に並列配置されており、昇降回動軸47によって、各々独立に回動自在なように支持されている。
前記の構成において、第1、第2の光ヘッド26、32、第1、第2ディスクモータ27、33、及び第1、第2の移送機構53、54によって光ディスクドライブメカニズムが構成されている。
なお、図示は省略しているが、本実施の形態では、トレイ上に載置した、青色レーザ用光ディスク45、赤色レーザ用光ディスク46をそれぞれ別個に、ドライブケース22に搬入、及びドライブケース22から搬出させるローディング機構、この搬入及び搬出のためのドライブケース22の開閉機構を備えている。
図8に示したように、ドライブケース22の側面のうち、ドライブケース22の下部には、吸気口38が設けられている。この吸気口38の上部に、吹出口39が形成されている。吸気口38と吹出口39は、風導管40によってつながっている。風導管40は、ドライブ領域24の密閉性を損なわないように、ドライブケース22に密着して取付けられている。風導管40の内部には、撹拌ファン37が取付けられている。
風導管40は、ドライブケース22の外側に延出するように配置されているので、デッキ領域23の空間を有効利用でき、装置を大型化することなく、撹拌ファン37を設けることができる。
また、吹出口39からの吹出流が青色レーザ25に向けて直接吹き付けられるように、吹出口39と青色レーザ25とが対向して配置されている。さらに、風導管40が形成された突出部分は、断熱材48で覆われている。
図8に示したように、ケース本体21内のデッキ領域23には、第1、第2の移送機構を駆動する回路基板41がドライブケース22の下方に配置されており、この回路基板41に電力を供給する電源42が、ドライブケース22の側面側に配置されている。
以上のように構成された光ディスク装置について、以下その動作をより具体的に説明する。
図7に示したように、第1の光ヘッド26による記録再生時には、青色レーザ用光ディスク45がディスクモータ27に装着されて、光ディスク装置が記録再生動作を開始する。この状態では、図10に示したように、第2の光ヘッド32は非動作状態であり、第2の移送ベース36は昇降回動軸47を回動中心として、回動傾斜して第2の光ヘッド32は、記録再生動作時の位置から降下した位置に位置決めされている。
第1の光ヘッド26の記録再生の開始により、電源42自身が発熱する。さらに、光ヘッド7の青色レーザ25、光ディスク45を回転駆動する第1のディスクモータ27、第1の光ヘッド26を光ディスク45の半径方向に移送する駆動力を発生する第1の送りモータ28、及び光ディスクドライブメカニズムを駆動するドライブ回路41に、電源42によって電力が供給される。このため、これらの各構成要素も発熱する。
ここで、図7に示したように、筐体21に形成された排気孔49の位置には、デッキファン43が取付けられており、筐体21の下面には通気孔44が設けられている。デッキファン43の回転軸方向について見ると、デッキファン43と、電源42とは回転軸方向に並列して配置されている。また、図8に示したように、デッキファン43の正面側から見ると、デッキファン43と、電源42とは上下方向に並列して配置されている。
デッキファン43の回転により、通気孔44から外部の空気がデッキ領域23の内部に取り入れられ、デッキ領域23の空気は排気孔49を経て筐体21の外部に排出される。
この空気の流れの途中に、回路基板41及び電源42があるので、これらから発生している熱は、外部から吸引され連続的に供給される空気に移動し、その空気は外部に排出されることになる。このことにより、デッキ領域23の冷却が行われ、回路基板41や電源42で発生する熱が、ドライブケース22の内部へ熱移動することを極力抑えている。
また前記のようなデッキファン43と電源42との位置関係により、電源42の発熱により温度上昇した暖気を効率的に排出できる。
さらに、風導管40は、断熱材48で覆われているので、デッキ領域23に配置されている回路基板又41は電源42の熱によって、風導管40の内部を通過する空気の温度が上昇することを防止できるので、半導体レーザを高出力で使用する記録時においても、半導体レーザの温度を低く保つことができる。
一方、ドライブケース22の内部では青色レーザ25、第1のディスクモータ27、第1の送りモータ28が発熱し、温度分布が生じている。この場合、光源である青色レーザ25の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域24の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
この下方の低温空気は、図10に示したように、撹拌ファン37の回転により、吸気口38から吸気され、吹出口39から対向する青色レーザ25に向けて直接吹き付けられる。このことにより、青色レーザ25の熱を強制的に放熱させることができる。この場合、青色レーザ25と吹出口39は対向しているので、撹拌ファン37が発生する風の流量及び流速が最も大きい状態で、下方の低温空気は青色レーザ25に吹き付けられることとなる。このため、効率の高い熱移動が起こり、青色レーザ25の温度上昇は効果的に抑制されることになる。
青色レーザ25に吹き付けられた空気は、ドライブケース22の上方を流動後、下方に還流し再び吸気口38から吸気されることになる。すなわち、攪拌ファン37の回転により、ドライブケース22の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、青色レーザ25以外の熱源である第1のディスクモータ27や第1の送りモータ28の温度上昇も抑えられることになる。
また、第1の光ヘッド26が可動範囲内のどの位置にあっても、攪拌ファン37からの吹出流が青色レーザ25に吹き付けられるようにすれば、常に青色レーザ25の温度は低く保たれることになる。これは、攪拌ファン37の配置位置の調整によって実現できる。具体的には、光ディスクの径方向における攪拌ファン37の配置位置の調整、攪拌ファン37と半導体レーザ25との間の距離の調整や、吹出口39の大きさの調整を行うことになる。
ここで、第1、第2の光ヘッド26、32は並列して配置されているが、攪拌ファン37に近い側に、青色レーザ25用の第1の光ヘッド26が配置されている。さらに、青色レーザ25は、第1の光ヘッド26の移送方向と垂直な方向における側面のうち、撹拌ファン37に近い側の側面に配置されている。このことにより、短波長で赤色レーザ31に比べ温度上昇の大きい青色レーザ25を効率的に冷却することができる。
次に、第2の光ヘッド32の記録再生時には、色レーザ用光ディスク46(図12)が、図7に示した第2のディスクモータ33に装着されて、光ディスク装置が記録再生動作を開始すると、電源42自身が発熱する。さらに、赤色レーザ31に加え、光ディスク46を回転駆動する第2のディスクモータ33、第2の光ヘッド32を光ディスク46の半径方向に移送する駆動力を発生する第2の送りモータ34、及び光ディスクドライブメカニズムを駆動するドライブ回路41に、電源42によって電力が供給されるので、これらの各構成要素も発熱する。
この状態では、図12に示したように、第1の光ヘッド26は非動作状態であり、第1の移送ベース30は昇降回動軸47を回動中心として回動傾斜して第1の光ヘッド26が記録再生動作時の位置から降下した位置に位置決めされている。
デッキファン43の回転により、デッキ領域23に通気孔44からデッキファン43へと流動する空気の流れが生じる。このため、回路基板41や電源42で発生する熱が、ドライブケース22の内部へ熱移動することが抑えられる。このことは、第1の光ヘッド26の動作時と同様である。
ドライブケース22の内部では赤色レーザ31、第2のディスクモータ33、第2の送りモータ34が発熱し、温度分布が生じている。この場合、光源の熱は自然放熱により上方へ移動する割合が高いので、ドライブ領域24の高さ方向においては、上方の領域に比べて下方の領域の温度が低くなる。
ここで、前記のように、第1の光ヘッド26は非動作状態であり、第1の光ヘッド26の周囲は、第1の光ヘッド26自体による温度上昇はない。また、第1の光ヘッド26は、図12、13に示したように、回動軸47を中心として下方に回動している。また、赤色レーザ31は、第2の光ヘッド32の移送方向と垂直な方向における側面のうち、撹拌ファン37に近い側の側面に配置されている。
このことにより、攪拌ファン37からの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、図12に示したように、第1の光ヘッド26の上側の空間を通過して、赤色レーザ31に直接吹き付けられることになる。すなわち、ドライブケース22の下方の低温空気は、攪拌ファン37の回転により、吸気口38から吸気され、吹出口39から対向する赤色レーザ31に向けて直接吹き付けられるので、赤色レーザ31の熱を強制的に放熱させることができる。
赤色レーザ31に吹き付けられた空気は、下方に還流し再び吸気口38から吸気されることになる。すなわち、攪拌ファン37の回転により、ドライブケース22の内部の空気を下方から上方へ、さらに上方から下方へと流動するように、強制対流させることができる。このことにより、赤色レーザ31以外の熱源である第2のディスクモータ33や第2の送りモータ34の温度上昇も抑えられることになる。
ここで、本実施の形態は、2つのヘッドユニットを用いているが、前記のように、攪拌ファン37の位置から遠い位置にある赤色レーザ用の光ヘッドの動作時においても、攪拌ファン37からの吹出流は、温度上昇することなく、遮蔽物に妨げられて流速が低下することもなく、第1の光ヘッド26の上側の空間を通過して、赤色レーザ31に直接吹き付けられることになる。このため、特別に攪拌ファン37を増加させる必要がなく、攪拌ファン37は1個で足り、装置の大型化を抑えることができる。
また、ドライブ領域24の内部の防塵性が確保され、光ヘッド26、32の光学系、特に対物レンズの防塵性も確保されていることは、前記実施の形態1と同様である。
以上のように、本実施の形態は、2つのヘッドユニットを用いた構成であるが、前記実施の形態1と同様に、装置を大型化せず半導体レーザの温度上昇を効果的に抑制することができ、光ディスク装置として熱及び塵埃に対する高い信頼性と耐久性を実現することができる。
(実施の形態5)
図14は、本発明の実施の形態5に係る光ディスク装置の内部構造の概略を示す側面図である。本図において、図8と同一の作用をする部位には同じ符号を付している。
本実施の形態の構成は、風導管40が形成された突出部分は、高熱伝導材53によって覆われており、その外側にペルチェ素子54を挟み込んで放熱フィン55が密着して取付けられている。
ペルチェ素子54の熱電変換作用により、高熱伝導材53が冷却され、風導管40の内部を通過する空気を強制的に冷却することができる。また、ペルチェ素子54自身が発熱する熱は、放熱フィン55に熱移動し、デッキファン43による風によって放熱される。
この構成によれば、強制冷却された空気が、吹出口39からドライブケース22の内部に吹き出すので、周囲の温度状況にかかわらず、青色レーザ25又は赤色レーザ31を強制的に冷却することができる。
このため、青色レーザ25及び赤色レーザ31を高出力で使用する記録時においても、レーザ素子の温度を低く保つことができ、素子寿命の長期化が可能になる。
本実施の形態では、冷却手段としてペルチェ素子53を用いた例で説明したが、放熱フィン55のみの構成でもよい。また、ヒートパイプや高熱伝導性材と放熱フィンとを組み合わせた構成でもよい。この構成によれば、ヒートパイプや高熱伝導性材により熱移動が促進されるので、冷却効果を高めることができる。
また、本実施の形態は、第1の移送機構及び第2の移送機構を備えた構成の例で説明したが、移送機構が1つの構成に適用してもよい。
なお、前記実施の形態1において、集塵フィルタ17を設けた例で説明したが、集塵フィルタは実施の形態2から5のいずれかに設けてもよい。
また、前記実施の形態2においてダクト19を設けた構成、前記実施の形態3において風切板20を設けた構成について説明したが、これらを前記実施の形態1、4、5のいずれかに設けてもよい。
また、前記実施の形態4において、風導管40が断熱材48で覆われた構成を説明したが、これを前記実施の形態1から3のいずれかに適用してもよい。
また、前記実施の形態1において、光ヘッド7上に吹出口12bと対物レンズ6とを結ぶ直線上に遮蔽板18を設けた構成を説明したが、実施の形態2から5のいずれかに設けてもよい。
以上のように、本発明によれば、防塵性を確保した上で、装置を大型化することなく半導体レーザの温度上昇を効果的に抑制することができ、熱及び塵埃に対する高い信頼性と耐久性を実現することができるので、映像用、音楽用、コンピュータ・データ用等の情報記録媒体である光ディスクを用いて情報の記録再生を行う光ディスク装置に有用である。
本発明の実施の形態1に係る光ディスク装置の内部構造の概略を示す正面図。 図1に示した光ディスク装置の内部構造の概略を示す平面図。 本発明の実施の形態1に係る光ディスク装置の実験結果を示す図。 本発明の実施の形態2に係る光ディスク装置の内部構造の概略を示す平面図。 本発明の実施の形態3に係る光ディスク装置の光ヘッド7が光ディスク8の内周側にある状態の内部構造の概略を示す平面図。 本発明の実施の形態3に係る光ディスク装置の光ヘッド7が光ディスク8の外周側にある状態の内部構造の概略を示す平面図。 本発明の実施の形態4に係る光ディスク装置の内部構造の概略を示す平面図。 図7に示した光ディスク装置の内部構造の概略を示す正面図。 図7に示した光ディスク装置の内部構造の概略を示す側面図。 図7に示した光ディスク装置において、第1の光ヘッド26の動作時における光ディスク装置の内部構造の概略を示す正面図。 図10の状態における光ディスク装置の内部構造の概略を示す側面図。 図7に示した光ディスク装置において、第2の光ヘッド32の動作時における光ディスク装置の内部構造の概略を示す正面図。 図12の状態における光ディスク装置の内部構造の概略を示す側面図。 本発明の実施の形態5に係る光ディスク装置の内部構造の概略を示す側面図。

Claims (18)

  1. 筐体状のドライブケース内に、半導体レーザを搭載した光ヘッドと、光ディスクを駆動する回転駆動手段と、前記光ヘッドを移送する移送機構とを備えた光ディスクドライブメカニズムが配置されており、
    前記ドライブケース内の空気を流動させる撹拌ファンを備えており、
    前記撹拌ファンの回転により、前記ドライブケース内の空気が前記撹拌ファン側に吸気され、かつ前記吸気された空気が前記光ヘッド又は前記半導体レーザに向けて吹き出すように空気が流動する風路が形成されていることを特徴とする光ディスク装置。
  2. 前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、
    前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されている請求項1に記載の光ディスク装置。
  3. 前記ドライブケースは、筐体状の本体ケース内に配置されており、前記本体ケース内は、前記ドライブケースと、外気との通気孔を有するデッキ領域とに区画されており、
    前記光ヘッドは、短波長の半導体レーザを搭載した第1の光ヘッドと、長波長の半導体レーザを搭載した第2の光ヘッドとであり、
    前記光ディスクドライブメカニズムは、前記第1、第2の光ヘッドと、前記第1の光ヘッドを移送する第1の移送機構と、前記第2の光ヘッドを移送する第2の移送機構と、前記第1及び第2の移送機構にそれぞれ独立して設けられ光ディスクを駆動する回転駆動手段とを備えており、
    前記第1及び第2の移送機構は、前記回転駆動手段に搭載された光ディスクの面と平行で、かつ前記第1及び第2の光ヘッドの移送方向と垂直な方向に並列配置されており、
    前記デッキ領域に、前記光ディスクドライブメカニズムを駆動するドライブ回路と、前記ドライブ回路の電源が配置されており、
    前記撹拌ファンは、前記撹拌ファンから吹き出した空気が、前記第1の移送機構、前記第2の移送機構の順に流れるように、前記第1の移送機構と対向する位置に配置されている請求項1に記載の光ディスク装置。
  4. 前記短波長の半導体レーザは、前記第1の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されている請求項3に記載の光ディスク装置。
  5. 前記長波長の半導体レーザは、前記第2の光ヘッドの移送方向と垂直な方向における側面のうち、前記撹拌ファンに近い側の側面に配置されている請求項3に記載の光ディスク装置。
  6. 前記第2の光ヘッドの記録再生時においては、前記撹拌ファンから吹き出した空気が、第2の光ヘッドに直接吹き付けられるように、前記第1の移送機構の位置が変化する請求項3に記載の光ディスク装置。
  7. 前記風路は、前記光ヘッドより下方の空気を吸気し、前記吸気された空気が、前記撹拌ファンを経て、前記光ヘッド又は前記半導体レーザに向けて吹き出すように形成されている請求項1に記載の光ディスク装置。
  8. 前記ドライブケースの側壁に、前記ドライブケース内の空気を吸気する吸気口と、前記ドライブケース内に空気を吹き出す吹出口とが形成されており、
    前記風路は、前記吸気口と前記吹出口とをつなぎ、前記ドライブケースの外側に延出した風導管で形成されており、前記撹拌ファンは前記風導管内に配置されている請求項1に記載の光ディスク装置。
  9. 前記風導管は、断熱材で覆われている請求項8に記載の光ディスク装置。
  10. 前記風導管を通過する空気を冷却する冷却手段を備えた請求項8に記載の光ディスク装置。
  11. 前記冷却手段は、空冷方式である請求項10に記載の光ディスク装置。
  12. 前記冷却手段は、前記風導管に取付けたヒートパイプ又は高熱伝導性材料である請求項10に記載の光ディスク装置。
  13. 前記冷却手段は、ペルチェ素子である請求項10に記載の光ディスク装置。
  14. 前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、前記攪拌ファンが配置されている請求項1に記載の光ディスク装置。
  15. 前記光ヘッドの可動範囲の全域にわたって、前記光ヘッド又は前記半導体レーザに、前記撹拌ファンから吹き出した空気を吹き付けるように、ダクトが配置されている請求項1に記載の光ディスク装置。
  16. 前記ダクトは風向板であり、前記光ヘッドの前記光ディスクの半径方向の移動と連動して前記風向板の傾斜角度が変化し、前記傾斜角度の変化により、前記撹拌ファンの吹出流の向きが、前記光ヘッドの移動に追従する請求項15に記載の光ディスク装置。
  17. 前記吸気された空気の集塵をする集塵フィルタを設けている請求項1に記載の光ディスク装置。
  18. 前記撹拌ファンの吹出流の前記ドライブケース内への吹き出し位置と、前記光ヘッドに搭載され前記半導体レーザの光を集光する対物レンズとを結ぶ直線上に、遮蔽板を設けている請求項1に記載の光ディスク装置。
JP2004542807A 2002-10-10 2003-07-28 光ディスク装置 Withdrawn JPWO2004034399A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002297297 2002-10-10
JP2002297297 2002-10-10
PCT/JP2003/009556 WO2004034399A1 (ja) 2002-10-10 2003-07-28 光ディスク装置

Publications (1)

Publication Number Publication Date
JPWO2004034399A1 true JPWO2004034399A1 (ja) 2006-02-09

Family

ID=32089266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004542807A Withdrawn JPWO2004034399A1 (ja) 2002-10-10 2003-07-28 光ディスク装置

Country Status (5)

Country Link
US (1) US7421720B2 (ja)
JP (1) JPWO2004034399A1 (ja)
KR (1) KR100655206B1 (ja)
CN (1) CN100552803C (ja)
WO (1) WO2004034399A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004061840A1 (ja) * 2002-12-26 2006-05-18 松下電器産業株式会社 ディスク装置
JP4557797B2 (ja) * 2005-05-20 2010-10-06 株式会社日立製作所 光ディスク装置
JP4301218B2 (ja) * 2005-07-27 2009-07-22 ソニー株式会社 ディスク装置
JP4908883B2 (ja) * 2006-03-15 2012-04-04 株式会社日立製作所 光ディスク装置
US7957093B2 (en) * 2009-07-15 2011-06-07 Seagate Technology Llc Recording head with current controlled gamma ratio
CN104040628B (zh) * 2012-11-06 2017-02-22 松下知识产权经营株式会社 光盘装置
KR20140106051A (ko) * 2013-02-25 2014-09-03 도시바삼성스토리지테크놀러지코리아 주식회사 광디스크 드라이브 모듈이 결합된 휴대용 컴퓨터의 냉각장치
WO2019118352A1 (en) * 2017-12-11 2019-06-20 Schlumberger Technology Corporation Air cooled variable-frequency drive

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114072B2 (ja) * 1985-09-10 1995-12-06 オリンパス光学工業株式会社 光学式情報読取装置
US5000000A (en) * 1988-08-31 1991-03-19 University Of Florida Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes
JPH0358373A (ja) * 1989-07-26 1991-03-13 Fujitsu Ltd 光ディスク装置
JPH03102652A (ja) * 1989-09-18 1991-04-30 Canon Inc 光学的情報記録再生装置
JP2505250Y2 (ja) 1989-12-20 1996-07-24 株式会社リコー 画像形成装置
JP2690579B2 (ja) * 1989-12-27 1997-12-10 株式会社日立製作所 光ディスク装置
JP2716576B2 (ja) * 1990-07-03 1998-02-18 キヤノン株式会社 光学式情報記録再生装置
JPH04195793A (ja) * 1990-11-26 1992-07-15 Ricoh Co Ltd 光ディスク装置
JPH04195988A (ja) * 1990-11-28 1992-07-15 Nikon Corp 光学式情報媒体のドライブ装置
US5493457A (en) * 1991-10-18 1996-02-20 Matsushita Electric Industrial Co., Ltd. Optical disk apparatus with cooling arrangement
US5255256A (en) * 1992-01-07 1993-10-19 International Business Machines Corporation Optical data storage system with reduced particle contamination
JPH05325533A (ja) * 1992-05-19 1993-12-10 Ricoh Co Ltd 光ディスクドライブ装置
JPH0676555A (ja) * 1992-08-31 1994-03-18 Nippon Seiko Kk 光ディスク駆動装置
JPH06236677A (ja) * 1993-02-12 1994-08-23 Ricoh Co Ltd 光学的情報記録再生装置
JPH087560A (ja) * 1994-06-17 1996-01-12 Hitachi Ltd リム−バブルディスク装置
JPH08102180A (ja) 1994-09-29 1996-04-16 Ricoh Co Ltd 光ディスクサブシステム装置
JPH08147740A (ja) * 1994-11-24 1996-06-07 Sony Corp 光ディスク装置のダスト除去装置
JPH10124917A (ja) * 1996-10-18 1998-05-15 Sony Corp 光学ピックアップ及び光ディスク装置
JPH11110959A (ja) * 1997-10-02 1999-04-23 Matsushita Electric Ind Co Ltd 光ディスク装置
JPH11112177A (ja) * 1997-10-02 1999-04-23 Nippon Columbia Co Ltd 電子機器の冷却装置
JP3414649B2 (ja) * 1998-09-10 2003-06-09 船井電機株式会社 ディスク装置
JP2000285667A (ja) * 1999-03-31 2000-10-13 Hitachi Ltd ディスク装置の冷却構造
JP2001155478A (ja) * 1999-11-25 2001-06-08 Nec Eng Ltd 光ディスク装置
JP2001319469A (ja) * 2000-05-10 2001-11-16 Hitachi Ltd ディスク装置
JP2001338460A (ja) * 2000-05-25 2001-12-07 Hitachi Ltd ディスク装置
JP2002184167A (ja) 2000-12-07 2002-06-28 Hitachi Ltd ディスク装置
JP2002184166A (ja) 2000-12-07 2002-06-28 Hitachi Ltd ディスク装置

Also Published As

Publication number Publication date
KR100655206B1 (ko) 2006-12-11
WO2004034399A1 (ja) 2004-04-22
US7421720B2 (en) 2008-09-02
CN1689105A (zh) 2005-10-26
KR20050014878A (ko) 2005-02-07
CN100552803C (zh) 2009-10-21
US20060072382A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
TWI277068B (en) Optical disk apparatus
JPWO2004034399A1 (ja) 光ディスク装置
US7937721B2 (en) Optical disc apparatus including airflow cooling mechanism
JP2006092728A (ja) 光ディスク装置
TWI264710B (en) Disc apparatus
KR20040076650A (ko) 광픽업 장치
CN1645510A (zh) 光盘装置
JP4311274B2 (ja) 光ディスク装置
JP2000231782A (ja) ディスク装置及びその放熱方法
JP2004164733A (ja) 光ディスクドライブ装置
JPH05298813A (ja) 光ディスク駆動装置およびスピンドルモ−タ
JP2006040376A (ja) ディスク用電子機器の放熱装置及びディスク用電子機器の放熱方法
JP4685692B2 (ja) 電子機器
JP2002184167A (ja) ディスク装置
JP2005166218A (ja) 光ディスク装置
JP2003249070A (ja) ディスクドライブ装置と電子機器および冷却用ディスク
JPS58212684A (ja) 磁気デイスク装置
JP2000231783A (ja) ディスク装置及びその冷却方法
JP2005339736A (ja) 光ディスク装置
KR20070114745A (ko) 냉각장치를 갖는 광 디스크 드라이브 유니트
JP2007172799A (ja) ディスク装置
JP2008293610A (ja) 放熱構造、光ピックアップ装置および光記録再生装置
KR100603110B1 (ko) 공랭 방식의 광픽업 장치
KR100518823B1 (ko) 광디스크 드라이브의 방열장치
JP2000163948A (ja) ディスク装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090518