JPH11273688A - ガス拡散電極用の改良された構造体および製造方法ならびに電極部品 - Google Patents

ガス拡散電極用の改良された構造体および製造方法ならびに電極部品

Info

Publication number
JPH11273688A
JPH11273688A JP11000172A JP17299A JPH11273688A JP H11273688 A JPH11273688 A JP H11273688A JP 11000172 A JP11000172 A JP 11000172A JP 17299 A JP17299 A JP 17299A JP H11273688 A JPH11273688 A JP H11273688A
Authority
JP
Japan
Prior art keywords
gas diffuser
layer
web
carbon black
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11000172A
Other languages
English (en)
Other versions
JP4425364B2 (ja
Inventor
Marinis Michael De
マイケル・デマリニス
Castro Emory S De
エモリー・エス・デ・カストロ
Robert J Allen
ロバート・ジェイ・アレン
Khaleda Shaikh
クハレダ・シャイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora SpA
Original Assignee
De Nora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora SpA filed Critical De Nora SpA
Publication of JPH11273688A publication Critical patent/JPH11273688A/ja
Application granted granted Critical
Publication of JP4425364B2 publication Critical patent/JP4425364B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 電解質としてイオン導電膜を使用するシステ
ムに適する新らしく改良された構造体を有する拡散電極
および拡散体を提供することである。 【解決手段】 電気的に導電性のウエブ(1)と、カー
ボンブラック粒子および結合剤粒子を含有する層(2,
3)とを含むガス拡散体において、前記層が、ウエブの
1つの表面上にのみ存在し、ウエブの前記表面のみをカ
ーボンブラック粒子、結合剤粒子および溶剤の高剪断均
質化された混合物で塗装することによって得られること
を特徴とするガス拡散体。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電解質としてイオン導
電膜を使用するシステムに適する新らしく改良された構
造体を有する拡散電極および拡散体、および、それらを
連続的に大量生産する自動化された方法に関する。構造
内に新しい分散プロセスを組み込み、適用した配合物を
溶液添加剤と再配合し、導電性ウエブ上に新しい塗装構
造を生じさせることによって、電極を介してのガスおよ
び蒸気輸送の予想だにしえなかった改良が達成される。
さらに、塗装方法の上手な選択とこれらの変形変更を組
み合わせることによって、連続的、かつ、自動的にこれ
ら材料を製造することが可能である。
【0002】
【従来の技術】ガス拡散電極(GDE)は、固体相とガ
ス相との間で直接的な電子移動を許容しつつ、ガス供給
により消費または減極される。電解質とともに、GDE
は、イオン性移動のための経路を提供し、これがまさし
く重要である。GDEは、典型的には、金属メッシュ、
カーボン布またはカーボン紙のような導電性支持体より
構成される。この支持体は、ウエブと称されることが多
い。ウエブは、疎水性湿潤防止層で塗装され、最終的
に、触媒層が1つの表面に塗装されることが最も一般的
である。触媒層は、結合剤と混合した貴金属の非常に微
細な粒子からなることもできるものの、多くは、Petro
w, et al.の米国特許No. 4,082,699の方法と類似した方
法が使用される。この特許は、貴金属の小さな(数十Å
の)粒子についての基板としてカーボンブラックのよう
な微細なカーボン粒子の使用を教示している。かくし
て、“支持された(supported)”触媒と称され、この方
法は、電気化学用途における触媒の優れた性能と利用性
とを示す。
【0003】GDEは、燃料電池における鍵となる部品
として挙げられることが多い。ここで、アノードは、典
型的には、水素で減極され、他方、カソードは、酸素ま
たは空気で減極される。生ずる生成物は、電気、若干の
熱および水の形態のエネルギーである。酸またはアルカ
リ性燃料電池の例は、周知である。燃料電池のエネルギ
ー生産特性を工業的な電気化学プロセスに適合させ、か
くして、エネルギーを節約し、したがって、運転コスト
を低減することもまた実現されている。典型的なクロル
−アルカリ電池は、2つの固体電極を使用し、水酸化ナ
トリウム、水素および塩素を生成する。この場合、アノ
ードおよびカソードともエネルギーを費やし、それぞ
れ、ガス、塩素および水素を発生する。典型的なクロル
−アルカリカソードは、Miles et al.の米国特許No. 4,
578,159等に示されているように、酸素減極カソードで
代替することができる。このような電池の運転は、ほぼ
1ボルトを節約する。塩化水素酸水溶液が主要な化学的
副生物である。HCl溶液を酸化することによって高価
な塩素を回収することができ、かくして、化学プラント
に対する供給原料として塩素をリサイクルすることがで
きる。
【0004】電解は、標準水素発生カソードを酸素消費
ガス拡散電極で代替する時、エネルギー消費の有意な低
下により、極めて魅力的となる。
【0005】GDEは、また、ガス状の供給原料より直
接商品を製造することも可能とする。例えば、Foller e
t al.(The Fifth International Forum on Electolysis
inthe Chemical Industry, November 10-14, 1991, Fo
rt Lauderdale, FI., Sponsored by tne Electorosynth
esis Co., Inc.)は、苛性アルカリで5重量%の過酸化
水素を製造するためのGDEの使用を記載している。こ
の場合、酸素が供給原料であり、特殊なカーボンブラッ
ク(貴金属なし)が触媒である。この例および先の例で
首尾よく作動するためのガス拡散電極の能力は、正し
く、ガス拡散電極の構造に依存し;これら全ての場合に
おいて、電極は、電流分配器として、および、最も重要
には、液体バリヤーとして、液体−気体−固体接触のた
めのゾーンとしての役割を果たす。
【0006】イオン交換膜の出現は、ガス拡散電極の使
用を非常に拡大させた。イオン交換膜は、従来の液相を
代替し、骨格鎖に結合した固定イオン交換基により、イ
オン性電荷を移動させる固体ポリマー電解質によって構
成される。最も広く一般的なイオン交換膜は、DuPont C
ompany, USAによって、商標NafionRの下に販売されてい
る。それは、スルホン酸基またはカルボン酸基のような
イオン性基を固定結合させた過フッ素化された骨格を含
む。その他の会社、例えば、Gore Associates,Asahi Ch
emical and Asahi Glassも同様な製品を市販している。
過フッ素化されていないイオン交換膜は、Raipore(Haup
pauge, New York)およびその他の販売元、例えば、The
Electrosynthesis Co., Inc.(Lancaster, New York)を
通して入手可能である。アニオン交換膜は、典型的に
は、高分子支持体上に第4級アミンを使用し、これもま
た市販されている。
【0007】例えば、膜水素/空気燃料電池の場合のよ
うに、ガス拡散電極がイオン交換膜と組み合わせて使用
される時、それらの内部構造は、固体電極それ自体、ガ
ス状の反応体および固体ポリマー電解質の間に有効な3
相接触を可能とするように設計する必要がある。3相接
触のためのゾーンを備えるのに加えて、ガス拡散電極構
造は、触媒と電気的な接触をするのを補助し、反応体ガ
スのそのゾーンへの輸送を高め、そのゾーンからの生成
物(例えば、水蒸気)の容易な輸送を生ずる。
【0008】ガス状の水素およびガス状の空気に加え
て、例えば、メタノール/空気(O2)燃料電池のよう
な混合相システムも使用される。ここで、液体メタノー
ルは、アノードで酸化され、他方、酸素は、カソードで
還元される。イオン導電膜およびガス拡散電極のもう1
つの利用としては、純粋なガス類の電気化学的発生[例
えば、Fujita et al., Journal of Applied Electroche
mistry, vol. 16, page935 (1986)参照]、電気−有機
合成[例えば、Fedkiw et al., Jounal of theElexctr
ochemical Society, vol. 137, no. 5, page 1451 (199
0)参照]またはガスセンサーにおける変換器[例えば、
Mayo et al., Analytical Chimica Acta. vol. 310, pa
ge 139, (1995)参照]としてが挙げられる。
【0009】膜および電極構造(MEA)は、電極をイ
オン導電膜に対して伏勢することによって構成すること
ができる。米国特許No. 4,272,353;No. 3,134,697;お
よび、No. 4,364,813は、全て、電極を導電膜に対して
保持する機械的方法を開示している。しかし、電極をポ
リマー膜電解質と緊密に接触させるための機械的方法の
有効性は、導電膜が水和および温度の変化で寸法変形す
ることがよくありうるので、限られている。膨潤または
収縮は、機械的接触の度合いを変化させる。
【0010】かくして、電極をポリマー膜電解質と接触
させる別法としては、薄い電極の導電ポリマー基板の一
方の側または両側への直接析出が挙げられる。Nagel et
al.は、米国特許No. 4,326,930において、白金を膜上
に電気化学的に析出させるための方法を開示している。
金属塩をポリマー膜内で還元することによる化学的な方
法も使用されている[例えば、Fedkiw et al., Journal
of the Electrochemical Society, vol. 139, no. 1 p
age 15(1192)参照]。
【0011】化学的方法および電気化学的方法の両方法
において、導電膜上への金属の沈殿が避けられない。こ
の沈殿は、イオン導電ポリマー膜の性質、金属塩の形態
および金属を沈殿させるために使用される特異的な方法
により、抑制することが困難でありうる。薄くて、多孔
質で、均一な金属層の目的は、沈殿により対処できない
ことが多いので、他の析出法が求められてきた。例え
ば、支持された触媒および溶剤によって構成されるイン
キで膜を被覆するための方法が、Wilson and Gottesfel
d, Journal of the Electrochemical Society, volume
139, page 128, 1992によって開示されており、触媒ま
たは支持された触媒のイオン導電膜上への析出にデカル
コマニアを使用する方法が、Wilson et al.によって、
Electrochimica Acta. volume 40, page 355, 1995にま
とめられている。続いて、膜上に析出または塗布された
各触媒層に対抗して未触媒ガス拡散体が配列される。
【0012】さらなる別法において、触媒は、未触媒ガ
ス拡散構造体上に塗布され、ついで、機械的手段および
/または熱的手段によって膜に結合される。未触媒ガス
拡散構造体は、“拡散体(diffuser)”、電極“基材(bac
king)”、“ガス拡散媒体(gas diffusion media)”
“ガス拡散層(gas diffusion layer)”または“未触媒
ガス拡散電極(uncatalyzed gas diffusion electrod
e)”と種々に称され、高電流密度で作動する間、MEA
特性を支配することができる。拡散体という用語は、こ
こで、これら同義語を全て包含するために使用される。
拡散体とは、(1)触媒と電気化学的電池集電装置との
間に電気的接触を提供し、(2) 供給ガスまたはガス
類の触媒層への有効な輸送を分配および促進し、(3)
触媒層からの生成物の迅速な輸送のための管路(condu
it)となる材料である。
【0013】拡散体の商業的な供給者は、数が少ない。
Gore Associates(Elkton, MD)は、導電性微孔質ポリマ
ーであるCarbelTMを提供している。E-TEK, Inc.(Natic
k, MA)は、それらのカタログに見られるガス拡散電極の
未触媒変種を提供している。これらのうち、未触媒EL
ATTMがMEA用途についての最良の材料として挙げら
れている。
【0014】ELATTM拡散体の典型的な構成は、Alle
n et al.による米国特許No. 4,293,396に詳細に記載さ
れている。ここでは、カーボン布がウエブとしての役割
を果たす。カーボンブラックは、米国特許No. 4,166,14
3に挙げられた技術を使用することによってカーボンウ
エブに塗布されるために製造され、Vulcan XC-72または
Shawingan acetylene Black(SAB)の溶液が水と混
合され、ソニックホルン(sonic horn)で超音波的に分散
される。カーボン類は、表面積の広い物質であるので、
均一かつ安定な懸濁液を調製することが重要である。カ
ーボンブラックは、溶液にエネルギーまたは剪断応力の
有意なインプットをしない限り“湿潤(wet-out)”しな
い。超音波ホルンは、容器を介して圧力波を生ずる溶液
中に浸漬したステンレススチールより誘導される高周波
数の電気エネルギーによって湿潤のこの機能を果たす。
限られた製造試験またはR&Dサイズの試料に適してい
るが、超音波には幾つかの制限が存在する。第1に、エ
ネルギーが1つの源、すなわち、ホルンより発射される
ので、パワーは、ホルンからの距離の関数であり、遠ざ
かるにつれ、有意に減少する。第2に、カーボンブラッ
クのホルンに及ぼす作用は、摩耗および腐蝕の促進をも
たらすので、ホルンより生ずる発射されるパワースペク
トルは、経時的に変化する。これらの理由により、超音
波は、拡散体の大量生産には適当でないかもしない。つ
いで、分散液は、TeflonR粒子と混合し、濾過される。T
eflonは、ポリテトラフルオロエチレンについてのDuPon
t Company, USAの登録商標である。SAB配合物層は、
ウエブの各側の湿潤防止層としての役割を果たす。最後
に、Vulcan配合物層をアセンブリの1つの側に塗装す
る。最終塗装後、Teflonを流動させるに十分な温度、典
型的には、300−350℃、空気中で、アセンブリは
焼結される。配合物のウエブへの侵入の重要性が考察さ
れているが、実際の塗装方法は開示されていない。報告
されている製造物は、限られたロット寸法を有してお
り、かくして、個々に製造されたかも知れない。この構
造体が経済的な手段で如何に製造することができるかに
ついては、情報は提供されていない。
【0015】クリーンな電力源として適当なプロトン交
換膜(PEM燃料電池)に基づく膜燃料電池の出現およ
びそれと並行した工業的用途およびセンサー用途におけ
るMEAの使用の増大とともに、簡素で機能的な最適構
造を有する拡散体について強い要請が存在する。また、
現在のルーチン的なソニックホルンの使用によっては、
不均一で、かつ、拡散体の大量バッチ製造について制御
することが困難な塗装用のカーボンブラック分散液を生
成する分散液の製造、および、安価な製品を製造するの
に極めて重要であると考えられる工程であるウエブを連
続的に塗装するための、現在の方法では、その適合性が
限られている製造方法における改良が必要である。
【0016】
【発明が解決しようとする課題】本発明の目的は、ME
Aタイプの電極として適当な輸送特性を有する改良され
たガス拡散体を提供することである。
【0017】本発明のもう1つの目的は、それに直接塗
布された触媒層を有する拡散体(以降、ガス拡散電極と
称す)を提供することである。
【0018】本発明のさらなる目的は、この技術によっ
て製造されるカーボンブラックから製造される拡散体お
よびガス拡散電極からの性能において予想だにしえなか
った増強を提供する分散法を導入することである。
【0019】本発明のなおさらなる目的は、拡散体およ
びガス拡散電極について、連続的な自動化に適合する製
造方法を導入することである。
【0020】本発明のこれらおよびその他の目的ならび
に利点は、以下に詳述する説明より明らかとなるであろ
う。
【0021】
【課題を解決するための手段】本発明のタイプAおよび
タイプBの拡散体を、それぞれ、図1aおよび図1bに
概略的に示し、商標ELATTMの下に市販されている従
来技術の拡散体図1cと比較する。
【0022】従来技術のELATTM構造体は、好ましく
は、カーボン布もしくはカーボン紙または金属メッシュ
製の電気的に導電性のウエブ(1)、両側の高度に疎水
性の層(2)および一方の側のさらに親水性の層(3)
を含む。
【0023】図1の全ての層は、カーボンブラックと、
結合剤粒子、好ましくは、ポリテトラフルオロエチレ
ン、例えば、DuPont,USA製のTeflonRとの配合物を塗布
して得られる。疎水性または親水性の度合いは、カーボ
ンブラックのタイプに依存し、カーボンブラックは、S
AB、Vulcan XC-72、Black Pearls 2000またはKetjenB
lackを含む群において選択することができる。ほんの例
として、SABは、高度に疎水性であり、他方、Vulcan
XC-72は、より親水性であることを思い起こすことが必
要である。疎水性および親水性は、また、種々の層に含
まれる結合剤の量に基づいて変化させることができる。
結合剤が高度に疎水性であるポリテトラフルオロエチレ
ンである最も一般的な場合において、その量は、通常、
5重量%−80重量%の間を占め、さらに好ましくは、
30重量%−70重量%の間を占め、より疎水性の層に
ついてより量が多く、より親水性の層についてより量が
少ない。図1の概略図において、各層は、塗膜を表す
が、しかし、表された塗膜の数は、本発明の限定として
受け取るべきではない。実際、塗膜の数は、通常、実施
例に示すように1−8の間を占める。
【0024】図1cから明らかなように、従来技術のE
LAT拡散体は、異なる疎水性を特徴とする2つのタイ
プの塗膜を含み、最も疎水性の塗膜(2)がウエブの両
面に塗布される。
【0025】図1aを参照すると、タイプ“A”の拡散
体は、ELAT拡散体の構造と類似した構造を有し、こ
の拡散体もまた、ウエブの一方の側のみに塗布された異
なる疎水性を有する2つのタイプの塗膜(2,3)を含
む。
【0026】本発明の最も簡単な拡散体構造体は、1つ
の面にのみ塗布された1つのタイプの塗膜のみを含むタ
イプ“B”によって表される。しかし、また、親水性の
層(3)のみを塗布することができることを理解する必
要がある。
【0027】図1の拡散体は、MEA構造体、すなわ
ち、触媒の薄いフィルムで被覆された表面を有する膜に
押圧、または、より良好には、結合される。
【0028】図1の構造体は、また、従来技術のELA
Tガス拡散体および本発明のタイプ“A”のガス拡散体
の場合に、親水性塗膜(3)およびタイプ“B”の塗膜
(2または3)のみが、並のカーボンブラックの代わり
に、支持された触媒を使用することによって少なくとも
一部得られる時、対応するガス拡散電極を表す。このよ
うにして得られたガス拡散電極は、未塗装表面を有する
膜に押圧、または、より良好には、結合される。この押
圧または結合を得る前に、支持された触媒を含有するガ
ス拡散電極の層上に、膜のポリマーのそれらに類似した
イオン交換特性を有するイオノマーの最終層を塗布する
ことが通例である。例えば、Nafionの5−10重量%溶
液が、水−アルコール混合物で使用することができ、こ
れが、いわゆる“液体Nafion"である。Nafionの0.1
−2mg/cm2を含むフィルムは、膜と接触するのを補助す
るのに向けられる。
【0029】拡散体タイプ“A”の標準ELAT拡散体
との比較において、多数の塗装された層の数は少なく、
合計析出固体はより少なくなり、その塗膜層は、カーボ
ン布ウエブの一方の側のみに配置される。ウエブの未塗
装側は、さて、ガス供給流に向けられ、他方、塗装され
た層は、MEA(すなわち、膜電極アセンブリの面)に
対向して配置される。実施例において見られるように、
これら少ない層および一方の側の塗膜は、製造工程数を
少なくすることを可能とし、より薄く、より開口した構
造は高ガスフラックス速度を容易とする。
【0030】拡散体タイプ“A”については、構造体の
構成に使用されるカーボンブラックのなお2つ以上のタ
イプが存在する。これらは、構造体の全体にわたって疎
水性の勾配を生じさせ、触媒界面でより容易に湿潤する
ことのできる層を生ずるように選択される。しかし、1
種のカーボンブラックが適当である用途も存在し、図1
の拡散体タイプ“B”は、この別個の構造体を示す。拡
散体タイプ“B”については、カーボンブラックおよび
結合剤の1つ以上の塗膜がウエブの一方の側に塗布され
る。この拡散体は、タイプ“A”として位置付けられ、
すなわち、未塗装側が供給ガスプレナムに向けられ、他
方、塗装された側は、MEAの面に対抗する。拡散体タ
イプ“B”は、より容易に製造することができ、最も安
価に製造することができる。
【0031】ガス拡散電極の構造および性能について多
く照準が合わされてきたが、ガス拡散電極用のカーボン
ブラック製造法の性質および効果においてはほとんど貢
献がなされていない。ソニックホルンがしばしば挙げら
れるが、ここでは、他の分散法により拡散体およびガス
拡散電極特性における驚くべき改良を達成することがで
きることを示す。例えば、1つの好ましい方法は、流れ
を2つの流れに分割する“Y”字状のチャンバに溶剤お
よびカーボンブラックの加圧した流動流を導入し、もう
1つの“Y”を使用して、分割流を下流域で再度合流さ
せる。流れを分割し、再度合流させる効果は、溶剤およ
びカーボンブラックに高剪断応力および圧力差を導き、
均一かつばらつきがないように粒子を効率よく湿潤す
る。市販装置は、Microfluidics(Newton, MA)のような
会社を介して入手可能である。他の方法は、一連のブレ
ードが固定され、他方、もう1つの一連のブレードが固
定されたセットの周りを高速で回転するローター/ステ
ーター法を使用する。このような動作は、試料に高剪断
応力を生ずる。ローター/ステーター操作は、バッチ式
で行われることが多い。もう1つの装置は、プレートを
備えたスピニングバレル(spinning barrel)が溶液への
剪断エネルギーを供給する機能を果たすミルである。Ka
dy Company(Scarborough, ME)は、一連のこれら機械を
提供している。これらおよび類似の装置は、“ホモジナ
イザー”と称され、固体を溶剤中に均一かつばらつきの
ないように分散する必要な機能を果たす。以下の実施例
部分は、そのような製造方法を説明し、カーボンブラッ
ク溶液の単純な均質化によっては予想だにしえなかった
拡散体およびガス拡散電極についての結果を報告する。
【0032】カーボンブラック層の配置および数が構造
体を制御し、カーボンブラックを分散させるために使用
される方法もまた性能を決定するが、配合物でウエブを
塗装するために使用される技術もまたその最終的な構造
体を決定する。先に挙げたELAT特許は、繊維束を配
合物で包むために、織られた構造体への物理的侵入によ
って生ずるカーボン布ウエブ上の首尾よい塗装を記載し
ている。この機能に最も適した塗装方法は、スロット−
ダイ、ナイフ−オーバー−ブレード、または、噴霧に続
くナイフ操作である。スロットが一定量の配合物を計量
する制御機構として働くので、スロット−ダイ塗装が好
ましい方法である。ウエブ上に置かれた固体の重量は、
ライン速度、スロットダイを通るポンプ輸送速度および
配合物の組成(%固体)によって決定される。さらに、
スロットダイは、スロットダイヘッドと移動ウエブとの
間に一定量の配合物を生じさせることを通して役割を果
たすので、この塗装動作は、布に若干の侵入を生じ、か
つ、布に固有な表面粗さを補償する役割を果たす。
【0033】スロット−ダイは、種々の固体多孔質基板
を塗装するために使用されるものの、ガス拡散電極およ
び拡散体を形成するためのスロット−ダイの使用は、新
規な応用である。スロット−ダイの典型的な幅は、5−
250mmの範囲であるが、それより大きなダイを構成す
ることもできる。スロットダイの空隙は、間隙調製板を
介して調節することができ、典型的な範囲は、4−10
0ミルであり、さらに好ましくは、15−30ミルであ
る。配合物の塗膜と塗装機械の乾燥部分の寸法とは、新
たに塗装されたウエブが次に加熱されたチャンバ内に走
行するので、ライン速度を決定する。典型的なライン速
度は、0.1−5m/分の範囲である。多重塗膜は、一
連のスロット−ダイステーションによって塗布すること
ができるか、または、新たに塗装されたウエブをその機
械を通して再度走行させることによって塗布することが
できる。製造ラインに対するその他の付属品としては、
連続焼結オーブンおよび最終製品を所望される寸法に切
断するためのスリッチングマシン(slitting machine)が
挙げられる。
【0034】カーボンブラック(または支持触媒)およ
びポリテトラフルオロエチレンからなる配合物について
は、グラビア形式の塗装方法もまた使用することができ
る。グラビア塗装は、下方半分で配合物に浸漬され、つ
いで、他の上方セグメントで移動ウエブと接触するスピ
ニングロッドを使用する。典型的には、グラビア塗装ヘ
ッドは、移動ウエブの方向と反対方向に回転し、配合物
のウエブへの若干の侵入を可能とする。パス当たりウエ
ブに塗布される配合物の量は、配合物レオロジー、ライ
ン速度、グラビア回転速度およびグラビア圧痕パター
ン、および、ヘッドと接触するウエブの面積によって制
御される。グラビア塗装は、低粘度配合物で最良に機能
する。
【0035】例えば、スロット−ダイ、グラビア、ナイ
フ−オーバー−プレートまたは噴霧のような塗装方法の
選択は、配合物の流体動力学、塗装プロセス間の配合物
安定性、ウエブに所望される電極および/または拡散体
構造に依存する。1つの塗装方法に限定されるものでは
ない。典型的には、1つより多い塗装ステーションが移
動ウエブに適用可能であり、所望とあらば、多層構造を
構成し、その際、塗装ステーションの選択は、配合物の
要件に依存する。
【0036】ある場合には、分散されるカーボンブラッ
ク配合物の組成は、iso−プロピルアルコール(0.
1−100%、さらに一般的には、5−30%、好まし
くは、25%)、Fluorinert FC 75、または、同様に、
Neoflon AD-2CR、ポリビニルアルコール、PolyoxR、あ
るいは、安定剤のような添加剤を加えることによって改
質することができる。
【0037】若干の運転においては、例えば、有機蒸気
の取り扱い上の制約およびコスト的理由により、iso
−プロピルアルコールを避けることが好ましく、水基体
配合物が使用される。このタイプの配合物については、
以下の安定剤および増粘剤の1種以上を使用することが
できる:Fluorinert FC 75、または、同様に、Neoflon
AD-2CR、ポリビニルアルコール、エチレングリコール、
ポリエチレングリコールアルキルエーテル、PolyoxR、T
ritonR X100、TweenR Joncryl 61J、Rhoplex AC-61、Ac
rysol GS(アクリル系ポリマー溶液);および、ナフタ
レンホルムアルデヒド縮合物スルホネート類。
【0038】支持触媒を使用する時、その触媒は、E. D
e CastroによりElectrochemical Society Meeting held
in San Diego, May 3-8,1998において説明された、例
えば、白金またはロジウム−ロジウムオキシド触媒のよ
うないずれの慣用的な触媒であってもよい。個々の塗装
方法および安定剤は、所望される拡散体の構造に依存す
る。
【0039】
【実施例】以下の実施例において、本発明を例示するた
めの幾つかの好ましい実施例を記載する。しかし、本発
明を個々の実施例に限定することを意図するものと理解
するべきではない。製造実施例 1 タイプ“A”または“B”の拡散体またはガス拡散電極
と比較するために標準ELATを組み立てた。ほぼ25
−50ヤーン/インチおよびカーボン含量97−99%
を有するたて糸対よこ糸比一単位を有するカーボン布か
らなるウエブを利用可能な厚さ5−50ミル、好ましく
は、ほぼ10ミルから選択した。同じカーボン布を以下
の実施例のいずれの拡散体または拡散電極についても使
用した。適当な重量のSABまたはVulkan XC-72を超音
波ホルンで分散させた。Teflon粒子の分散液を配合物に
加えて、50重量%(固体)成分を形成した。スパチュ
ラを使用し、被覆面積ほぼ3.5−7mg/cm2が達成され
るまで、ウエブに分散SABの第1の混合物を各側に手
動で塗装した(hand coated)。この層は、疎水性と考え
ることができ、また、湿潤防止層と称した。各塗膜間で
電極を室温で風乾した。この乾燥したアセンブリに、Vu
lcan XC-72およびTeflon上に支持された白金触媒の第2
の同様の配合物を一方の側に塗装した。所望される金属
負荷、典型的には、0.2−0.5mg触媒/cm2を達成
するために、1−8層の塗膜を設けた。最終塗布後、塗
装したウエブを340℃まで約20分間加熱した。上記
したようにして、ガス拡散電極が得られた。拡散体を製
造するために、未触媒Vulcan XC-72を使用する以外は、
同様の工程を行った。製造実施例 2 本発明のタイプ“A”構造のガス拡散電極または拡散体
を組み立てるために、SAB/Teflon湿潤防止層をウエ
ブの一方の側に手動により合計カーボンブラック負荷の
ほぼ半分、すなわち、1.5−3mg/cm2に塗布した以外
は、実施例1について概説したと同一の処理を行った。
触媒Vulcan XC-72塗装および最終処理は、上記詳述した
処理に従った。拡散体を製造するために、負荷範囲0.
5−1.5mg/cm2カーボンブラックを有する未触媒Vulc
an XC-72を使用した以外は、同様の工程を行った。製造実施例 3 本発明のタイプ“B”構造のガス拡散電極または拡散体
を組み立てるために、実施例2について概説したと同一
の処理に従った。しかし、触媒SAB/Teflon湿潤防止
層または触媒Vulcan XC-72のみをウエブの一方の側に合
計負荷0.5−5mg/cm2に塗布した。実施例1と同様の
乾燥および加熱工程に従った。触媒なしのSABまたは
Vulcan XC-72を使用した以外は、同様にして、拡散体を
組み立てた。製造実施例 4 実施例3のそれと同様のタイプ“B”ガス拡散電極を自
動化されたコーターにより組み立てた。この実施例につ
いては、ナイフ−オーバー−プレートコーターを使用
し、そのコーターは、45℃面取りエッジを有する25
5mmの垂直ステンレススチールブレードを使用した。ブ
レードは、布上に、一定間隙ほぼ10ミルで位置決めし
た。ライン速度は、2メートル/分であり、実施例3に
おけるようにして製造した配合物を連続速度でブレード
の前面の溜めに供給した。かくして製造した試料は、実
施例1と同様の加熱および乾燥工程に賦した。製造実施例 5 Microfluidicのマイクロフルイダイザーの使用によりカ
ーボンブラックの均質化した配合物を生成させた。水お
よび適当な重量のSABまたはVulcan XC-72の懸濁液を
機械に供給し、これを空気圧で操作した。10ミクロン
チャンバを使用し、1個のチャンバ配置を使用したが、
その他のチャンバ寸法もまた使用することができた。ホ
モジナイザーを1回通した後、実施例1で設定したと同
じ量比でTeflonを配合物に加えた。配合物を濾過し、実
施例1または実施例2に詳述したように、カーボンウエ
ブ上に塗装した。製造実施例 6 スロットダイコーチング法でタイプ“A”と同様の拡散
体を製造するために、濾過前に、有限量のTriton X100
をカーボンブラック溶液に加え、カーボンブラックの重
量に対してほぼ1重量%のTriton Xを構成した以外は、
実施例5に記載したそれと同様の配合物を調製した。こ
の添加剤についての典型的な範囲は、カーボンブラック
の重量基準で、0−5%である。さらに、若干の溶解さ
せたPolyoxを溶液に加え、カーボンブラック基準で10
重量%の量とする。この添加剤の典型的な範囲は、カー
ボンブラックの重量基準で0−20%である。ついで、
濾過によって、過剰の溶液を除去する。
【0040】上記製造したShawingan Acetylene Black
(SAB)またはVulcan XC-72の配合物を、スロットダ
イに接続する加圧容器内に入れる。容器に10−15ps
iの圧力を加え、適当な速度で、配合物をスロット−ダ
イヘッドに供給する。250mm長さのスロットダイをカ
ーボン布ウエブに載せ、スロットダイについて、18ミ
ルの間隙を設定する。SABおよびVulcan配合物の両者
について、ウエブは、2メートル/分でコーチングヘッ
ドを通過する。適当な重量のカーボンが分配されるま
で、SABおよびVulcanの多層塗膜をウエブに塗布す
る。各さらなる塗装の前に、塗装した布を乾燥させる。
最終アセンブリは、試験前に、340℃で20分間焼結
される。製造実施例 7 グラビア塗装法でタイプ“A”と同様の触媒ガス拡散電
極を製造するために、水の除去量が少なく、粘稠な粘度
が達成される以外は実施例5に記載したと同様の配合物
を製造する。また、Vulcan XC-72は、30重量%の白金
で触媒される。カーボン布は、100rpmで回転する1
2.7mm径、250mm長さのグラビアヘッドを越えて巻
き取られる。このグラビアヘッドは、配合物の含浸およ
び分配を助成する表面を横切る5.3cell/cm2パター
ンを有する。ウエブは、最初、2メートル/分の速度で
SABで塗装される。幾つかの塗膜が塗装間に風乾され
て塗布される。次に、Vulcan XC-72上30%のPt層
が、塗装間に乾燥されて1メートル/分に塗布される。
最終アセンブリは、試験前に、340℃で20分間焼結
される。製造実施例 8 本発明の新しい拡散体構造体の種々の態様を例示するた
めに、一連の拡散体を製造し、市販入手可能なELAT
TM拡散体と比較する。厚さの異なる幾つかのタイプ
“A”拡散体を、固体の合計重量を増減させて、最終ア
センブリの厚さを調整する以外は、実施例2に記載した
方法に従い製造する。SABのタイプ“B”拡散体を実
施例3に記載した方法に従い製造する。これら両タイプ
の“A”および“B”拡散体について、実施例5の分散
法を使用する。表1は、種々の塗膜間の鍵となる相違を
まとめて示す。各拡散体の厚さを全体(100cm2
料)を横切る9個の測定値で採用する。各タイプの拡散
体の代表的な厚さは、これら9個の測定値と試料の数と
の総平均である。
【0041】
【表1】
【0042】多孔質および/または繊維質ガス濾過媒体
について、流動抵抗性が品質制御および性能についての
特徴的な尺度として使用されることが多い。“Gurley"
装置と称される市販製造されている機器を使用するこの
測定は、標準化され、かくして広く行われている。ガー
レイ(Gurley)数は、試料の一定面積を介して一定圧力を
移動させるのにかかる時間であり、かくして、ガーレイ
数は、ガス流に対する抵抗性を示す。拡散体透過率が最
適化操作のための重要なパラメータであるので、ガーレ
イ数は、定量的な特性決定のための良好な方法である。
【0043】種々の拡散体の“ガーレイ”数を決定する
ために、一方が80cm長さでかつ他方が40cm長さの2
つの水を満たした“U字”気圧計チューブ、窒素流量計
(0−20LPM)および背圧バルブを使用して、流動
抵抗性を測定するための装置を組み立てた。電極基材試
料(10×10cm)を切断し、ガスケット(5×5cm暴
露面積)を備えたマニホールドに取り付け、基材の未塗
装側が窒素導入口に向くようにした。試料をマニホール
ドに取り付ける前に、流速範囲にわたって気圧計チュー
ブ内の背圧を測定することによって、ガス流に対するシ
ステム固有の抵抗性を評価する。このシステム“抵抗
性”は、続く拡散体測定値における補正として使用す
る。
【0044】最初に、適当な評価範囲を確立するため
に、標準タイプ“A”拡散体の5つの試料を一連のアウ
トプット流速に賦した。これらアウトプット速度は、背
圧バルブおよび/またはインプット流速を介してインプ
ット流を漸次増大させ、アウトプット流と、インプット
およびアウトプットU字チューブ圧力とを記録すること
によって調整される。アウトプット流は、1−7LPM
で変化させた。システム抵抗性について補正した圧力差
を計算し、LPMのアウトプット流速は、H2Oのcm単
位の示差圧力で割り、これは、ついで、暴露基材面積2
5cm2に対して規格化する。得られる値は、流動抵抗性
についての特性定数であり、ガーレイ数と同一である。
アウトプット流対計算した流動抵抗性のプロットは、不
均一流が遅い流速および速い流速で実現され、2−4L
PMのアウトプット範囲が拡散体材料についてのこれら
測定値について最良であることを示す。この結果に基づ
き、3.0LPMのアウトプット流が続く比較測定のた
めに選択された。
【0045】拡散体のさらなる効果は、PEM燃料電池
に使用した時に、水平衡を維持することを補助するその
役割に関する。燃料電池内の水平衡は、塗膜内での疎水
性と親水性との微妙な平衡を必然的に引き起こす。この
平衡は、操作の電流密度(如何に多量の水が発生するか
を決定する)、保湿条件およびガスの電池内への流入速
度のような操作パラメータに決定的に依存する。かくし
て、電流密度、水和、イオン交換膜のタイプ、拡散体に
対する流動特性に関して燃料電池が如何に連続して変わ
るかに依存し、塗膜の親水性もまた拡散体の構造と同様
にきわめて重要である。かくして、種々の拡散体構造体
が操作条件の一定の設定の下で輸送に如何に影響するか
を例示するために、PEM燃料電池試験装置の1個の電
池内でこれら同様の試料を評価した。試験実施例 ELATまたはタイプ“A”のガス拡散電極の試料を実
験よりシステム効果を取り除くように設計された装置内
で小規模試験に賦した。すなわち、燃料電池または電気
化学的プロセスの典型的な操作は、電池設計、アセンブ
リおよびシステム制御パラメータに依存する。この試験
は、典型的な拡散体とMEAとの間の接触分散を除去す
るために、電解質溶液および触媒電極を使用した。かく
して、このシステム内の触媒は、“湿潤され”、この結
果は、同一の触媒および触媒負荷を使用した時の電極構
造の差異を反映する。
【0046】0.5MのH2SO4を含有する溶液中に触
媒面を位置決めし、他方、裏側をほぼ20ccの開放ガス
プレナムに賦したガス拡散電極ホルダー(1cm径)を組
み立てた。ポテンショッスタットと3つの電極構成を使
用し、試験試料に加えられる電位を正確に制御した。白
金のシート(2.5×2.5cm)を対向電極とした。実
施例1の方法を使用して、30%Pt/C,1mg/cm2
含有する標準ELAT試料を製造した。実施例2の工程
に従いタイプ“A”の電極を製造し、その際、触媒およ
び負荷は、ELATと同様にした。各電極にNafionを噴
霧し、0.5mg/cm2の被覆面積を生成させた。ホルダー
に取り付けた後、試料は、酸溶液に浸漬し、これをほぼ
55℃に加熱した。酸素を還元するために、負の電位を
標準飽和カロメル電極(SCE)に加えて、コンディシ
ョニングするために、非常に低い圧力〜2mmH2Oの下
で化学量論的に過剰(10倍より大)で、電極に、最
初、酸素を供給した。酸素に暴露した後、電池を絶縁し
て、窒素でフラッシュし、同様に低い圧力と化学量論的
に過剰の下、水素を電極に供給した。正の電位を加え、
電流を記録した。測定において、IRについて調整をし
なかったが、電極ホルダーを介して0.5−1Ωが測定
された。各ELATまたはタイプ“A”のガス拡散電極
よりの多数の試料を試験し、平均を採り、報告されたエ
ラーバー(errorbars)は、1標準偏差であった。
【0047】図2は、これら試験のプロットである。加
えた電位は、横座標上に挙げ、他方、水素の酸化によっ
て生ずる電流を縦軸に示す。触媒および湿潤特性は、こ
れらの構造体について同一であるので、ELATガス拡
散電極に優るタイプ“A”についての電流の増加は、タ
イプ“A”電極の改良された構造によるものであったと
結論する。
【0048】均質化されたカーボンの驚くべき効果を図
3および図4に示す。この試験において、標準ELAT
拡散体は、実施例1に概説したようにして製造したが、
さて、実施例5に記載したように、均質化されたSAB
およびVucan XC-72を使用した。酸素および水素曲線を
記録した以外は上記詳述したと同様の試験法を使用し
て、3つの異なるガス拡散電極(標準ELAT、均質化
した湿潤防止層を有するELATおよび均質化されたS
ABおよびVulcan層を有するELAT)を試験した。図
3は、酸素還元曲線である。補償していないIRによる
データに若干の分散があるが、層が漸次均質化されるに
つれ、固定された電位について、より少ない(または負
の)電流が発生したことを見てとることができる。EL
AT性能における有意かつ予想だにしえなかった改良が
カーボンブラックの均質化を通して実現された。図4
は、周囲水素中で電極をアノードとして使用した以外は
同様のプロットであり、有意かつ予想だにしえなかった
改良を示した。
【0049】次に、改良を確認するために、燃料電池シ
ステム内に同様の電極を組み立てた。この試験について
は、標準燃料電池試験ステーション(Fuel cell Technol
ogies, Inc. NM)を使用して、供給ガス類を制御および
保湿し、電子負荷を与え、電池16cm2よりのデータを
記録した。これら試験について、電極は、Nafion 115膜
に対して機械的に圧縮して、MEAを形成した。均質化
したSABおよびVulcan XC-72層を有するELATをカ
ソードとして使用し、試験は、空気および酸素中で行っ
た。図5は、空気をオキシダントとして使用する時の典
型的な均質化されたカーボンブラックELATと比較し
た5つの複製標準ELAT拡散体の平均結果を示す。こ
れらプロットについては、調整された電池電圧が縦軸に
挙げられ、他方、記録された電流が横軸にある。図6
は、純粋な酸素がオキシダントであった以外は、図5と
同様である。図5および図6の両者において、実際のシ
ステムにおいて、これら電極について改良が見られた。
単なる加工工程、すなわち、均質化が、調整された電圧
(より大きな電力)について、このような電流の増大を
生ずることは驚きである。
【0050】次の実施例は、カーボンブラック均質化の
改良と新しい構造との組み合わせであった。タイプ
“A”拡散体を実施例5の均質化法に従い組み立てた。
これは拡散体であるので、それは、触媒層をイオン導電
膜上に直接析出させたMEAの部品として組み立てた。
この試験において、電池50cm2を組み込んだ燃料電池
構成における標準ELAT拡散体とタイプ“A”構造体
との比較をなした。電池を水素と空気とで作動させ、そ
の負荷を系統的に変化させた。図7は、構造的または均
質化変化のみによって予想だにしえなかった改良を現す
データを示す。“オールド”と標識されたトレースは、
標準ELAT拡散体であり、“ニュー”と標識されたト
レースは、均質化されたカーボンを有する新しい拡散体
構造である。極限的な負荷で、酸素および水蒸気を輸送
する拡散体の能力の試験が存在し、それは、電池電圧ほ
ぼ0.4ボルトについての電流密度における顕著な10
0%改良を示す。この実施例は、明らかに、カーボン分
散と新しい拡散体の構造との間の顕著な相乗効果を示
す。
【0051】上記実施例は、燃料電池試験を使用した
が、拡散体およびMEAは、工業的電気化学的プロセス
においても使用することができる。Nafion 430膜に対し
て押圧された白金触媒Vulcan XC-72によって構成される
タイプ“B”の手製のガス拡散電極を組み立て、つい
で、同形式の電極を実施例4に記載したナイフ−オン−
プレート法により製造した。濃HCl溶液中酸素消費電
極として作動するこれらカソードの性能を比較した。図
8は、タイプ“B”アセンブリの6.25cm2試料から
誘導される電流電位曲線をまとめて示す。ここに示され
ているように、自動化した塗装法は、電極の構造におい
て有意な変化を導入できず、電流の差は得られない。
【0052】白金含量を相互に10%以内とすることに
より、実施例2に示したように手製によって構成される
タイプ“B”のガス拡散電極を実施例7において示した
グラビア法機械塗装されたタイプ“B”のガス拡散電極
と比較する。各々16cm2試料を水素−空気PEM燃料
電池内のアノードおよびカソードとして70℃で使用す
ることにより2つの電極を試験する。図9は、これら試
料より誘導される電流電位曲線をまとめて示す。ここに
示されているように、自動化された塗装法は、電極の構
造において有意な変化を導入できず、電流の差は得られ
ない。
【0053】改良ガーレイ装置を使用することによっ
て、本発明の構造体によって利用可能なガス透過速度の
範囲を示すために、表1の一連の拡散体を使用する。3
つのタイプの電極基材についての流動抵抗性の測定値の
まとめを図10において棒グラフとして示す。タイプ
“A”については、3つの異なる厚さのカーボンブラッ
クを試験した。流動抵抗性は、拡散体厚さの増大ととも
に増大するはずであると予想できるであろう。この傾向
は、データに従う。標準両側ELATおよび厚いタイプ
“A”の拡散体は、標準タイプ“A”よりもより大きな
流動抵抗性を示す。薄いタイプ“A”の拡散体が測定値
の平均を横切って最大の相対的な標準偏差を示すことに
気付くことが重要であり、これは、カーボンブラックの
微孔質塗膜がランダムなピンホールを有し、かくして、
標準タイプ“A”より低い流動抵抗性を示すことを示
す。これらデータは、拡散体構造体内の多孔度およびく
ねり度を調整することができ、流動抵抗性定数の適した
範囲が0.06−0.005LPM/cm H2O/cm2
範囲にわたり、さらに好ましくは、0.05−0.00
8LPM/cm H2O/cm2の範囲であることを示す。
【0054】(ガーレイ測定によって巨視的スケールで
測定した)多孔度およびくねり度が(ここで示されるで
あろうように)性能に寄与するが、例えば、触媒層透過
率およびイオン導電率、疎水性ならびに塗膜を介しての
水輸送のようなその他の因子も、さらに有意にこれら効
果を示すのに寄与することができ、表1の一連のものが
PEM燃料電池試験装置内での評価に賦される。
【0055】100%酸素およびN2中13.5%のO2
で得られる分極曲線のコレクションを図11に示す。そ
の結果は、タイプ“A”厚い拡散体および標準ELAT
拡散体は、その他の場合についてよりも約20%低い電
流密度で制限電流挙動を示す。これは、低いガス透過速
度を有するより厚い塗膜がカソード流動流の特に希釈部
分により鋭敏であることを示す。
【0056】均一な疎水性タイプ“B”は、低い電流密
度で薄い標準タイプ“A”に関して幾分低い性能を示す
が、この拡散体は、高い電流密度で同様な性能を有す
る。かくして、完全に均一な疎水性を有する拡散体を製
造することにはいくつかのメリットが存在する。これら
の結果は、ここで、多種多様な構造体がPEM燃料電池
に適し、拡散体(またはガス拡散電極)の構造が、個々
の作動条件および電池設計に合致する必要があることを
示す。これら構造体は、全て、希釈カソード供給下で標
準ELAT設計に優る改良を示す。
【0057】これら実施例は、製造工程での均質化を新
しいガス拡散電極構造体と組み合わせる時、性能におい
て新しく予想だにしえなかった進歩が達成されることを
示す。これらは、触媒塗装された膜で拡散体を組み立て
ることによるか、または、ガス拡散電極に膜を組み込む
ことによって、MEAに製造される。均質化の工程は、
自動化された塗装用の配合物を製造するために使用する
ことができ、新しい構造体は、自動的に製造することが
可能である。
【図面の簡単な説明】
【図1】カーボンブラックの各層が塗膜を表すが、表さ
れた塗膜の数はこれら実施例を制限するものではない新
しい拡散体およびガス拡散電極構造体の概略図である。
【図2】標準ELATガス拡散電極対タイプ“A”電極
の3電極試験であり、両電極とも、30%Pt/C,1
mg/cm2負荷によって構成される。電極は、実施例1およ
び実施例2の記載に従い組み立てられ、周囲圧力で水素
中で試験される。
【図3】標準ELATガス拡散電極内での均質化された
カーボンの3電極試験である。全ての電極は、30%P
t/C,1mg/cm2負荷によって構成した。電極は実施例
5に従い組み立て、その際、湿潤防止SAB層またはS
AB層とVulcan層との両層を均質化した。周囲圧力で酸
素中で試験した。
【図4】標準ELATガス拡散電極内での均質化された
カーボンの3電極試験である。全ての電極は、30%P
t/C,1mg/cm2負荷によって構成し、実施例5に従い
組み立て、その際、湿潤防止SAB層またはSAB層と
Vulcan層との両層を均質化した。周囲圧力で水素中で試
験した。
【図5】実施例5に従い組み立てた標準ELATと比較
した標準ELATガス拡散電極の燃料電池試験であり、
その際に、SAB層およびVulcan層とも均質化した。全
ての電極は、30%Pt/C,1mg/cm2負荷によって構
成し、Nafion115膜を使用して、MEAを組み立てた。
このシステムは、70℃の水和されたガス類、3.5バ
ール(絶対)の水素および4.0バール(絶対)の空気
で作動させた。化学量論量の2倍過剰のオキシダントを
最高の電流密度に基づき供給した。
【図6】実施例5に従い組み立てた標準ELATと比較
した標準ELATガス拡散電極の燃料電池試験であり、
その際に、SAB層およびVulcan層とも均質化した。全
ての電極は、30%Pt/C,1mg/cm2負荷によって構
成し、Nafion115膜を使用して、MEAを組み立てた。
このシステムは、70℃の水和されたガス類、3.5バ
ール(絶対)の水素および4.0バール(絶対)の空気
で作動させた。化学量論量の2倍過剰のオキシダントを
最高の電流密度に基づき供給した。
【図7】実施例5に従い組み立てたタイプ“A”拡散体
(“ニュー”と標識)と比較した標準ELATガス拡散
体(“オールド”と標識)の燃料電池試験であり、その
際に、SAB層およびVulcan層とも均質化した。各試験
について、同一のMEAを使用し、システムは、1 A
/cm2に基づく空気の化学量論的に2倍過剰の空気で試
験し、他方、水素は、負荷要件に基づき2倍の化学量論
で連続的に変化させた。
【図8】手製により製造したタイプ“B”電極とナイフ
−オーバー−ブレード自動塗装によって製造した“B”
電極との比較である。両電極は、30%Pt/C,1mg
/cm2負荷によって構成し、Nafion430膜で組み立てて、
MEAを形成した。酸素は、最高記録電流および背圧5
0cmより上で5倍の化学量論的に過剰であった。H2
を使用し、他方、184g/lのHClを循環させ、55
℃に保った。
【図9】手製により製造したタイプ“A”電極とグラビ
ア機械塗装によって製造したタイプ“A”電極との比較
である。両電極は、30%Pt/Cによって構成し;手
製電極1mg/cm2で、Nafion 115膜で組み立ててMEAを
製造した。電池は、水和したガス類、3.5バール(絶
対)の水素および4.0バール(絶対)の空気で70℃
で作動させた。最高電流密度に基づき2倍の化学量論的
に過剰の空気を使用した。
【図10】表1に記載した一連のタイプ“A”、タイプ
“B”および標準E−TEK−ELATについての流動
抵抗性を比較する棒グラフである。試料の群についての
平均厚さは、棒グラフにおける標準偏差とともに列挙す
る。
【図11】図10に挙げた種々の拡散体構造体を使用す
るMEAについての電流対電位の比較である。試験条
件:50cm2の電池、金属をNafion膜上に直接析出させ
るアノードおよびカソードについてのPt負荷0.15
−0.2mg/cm2。電池は、80℃で作動させ、他方、ア
ノードおよびカソード背圧=30psig;1.5化学量論
量のアノードおよびカソード流速。ニート(neat)酸素お
よび13.5%酸素をオキシダントとして使用する。水
素が還元体である。
【符号の説明】
1 電気的に導電性のウエブ 2 疎水性の層 3 より親水性の層
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロバート・ジェイ・アレン アメリカ合衆国マサチューセッツ州01960, ソーグス,アダムズ・アベニュー 130 (72)発明者 クハレダ・シャイク アメリカ合衆国マサチューセッツ州01801, ウォバーン,ニュー・ヴィレッジ・ロード 9

Claims (23)

    【特許請求の範囲】
  1. 【請求項1】 電気的に導電性のウエブ(1)と、カー
    ボンブラック粒子および結合剤粒子を含有する層(2,
    3)とを含むガス拡散体において、前記層が、ウエブの
    1つの表面上にのみ存在し、ウエブの前記表面のみをカ
    ーボンブラック粒子、結合剤粒子および溶剤の高剪断均
    質化された混合物で塗装することによって得られること
    を特徴とするガス拡散体。
  2. 【請求項2】 前記導電性ウエブ(1)が、カーボン
    布、カーボン紙または金属メッシュであることを特徴と
    する、請求項1に記載のガス拡散体。
  3. 【請求項3】 前記高剪断均質化された混合物が、マイ
    クロフルイダイザー、ブレードを備えたローター/ステ
    イター装置、プレートを備えたスピニングバレル装置に
    よって得られることを特徴とする、請求項1に記載のガ
    ス拡散体。
  4. 【請求項4】 カーボンブラック粒子、結合剤粒子およ
    び溶剤の混合物の前記結合剤が疎水性であることを特徴
    とする、請求項1に記載のガス拡散体。
  5. 【請求項5】 前記疎水性結合剤がポリテトラフルオロ
    エチレンであることを特徴とする、請求項4に記載のガ
    ス拡散体。
  6. 【請求項6】 ポリテトラフルオロエチレンが前記混合
    物に含有される合計固体の50重量%を占めることを特
    徴とする、請求項5に記載のガス拡散体。
  7. 【請求項7】 カーボンブラック粒子、結合剤粒子およ
    び溶剤の前記混合物が、iso−プロピルアルコール、
    Fluorinert FC 75、Neoflon AD-2CR、ポリビニルアルコ
    ール、エチレングリコール、ポリエチレングリコールア
    ルキルエーテル、PolyoxR、TritonR X100、TweenR、Jon
    cryl 61J、Rhoplex AC-61、Acrysol GS(アクリル系ポ
    リマー溶液)およびナフタレンホルムアルデヒド縮合物
    スルホネートの群より選択される安定剤を含むことを特
    徴とする、請求項1に記載のガス拡散体。
  8. 【請求項8】 前記層(2,3)が導電性ウエブ(1)
    の内部に侵入することを特徴とする、請求項1に記載の
    ガス拡散体。
  9. 【請求項9】 前記層(2,3)が、1つのタイプのみ
    のカーボンブラック粒子を含むことを特徴とする、請求
    項1に記載のガス拡散体。
  10. 【請求項10】 前記層(2,3)が、層全体に疎水性
    の勾配を生ずるように、異なる疎水性を有する2つのタ
    イプのカーボンブラック粒子を含むことを特徴とする、
    請求項1に記載のガス拡散体。
  11. 【請求項11】 前記層(2,3)が、疎水性の勾配を
    生ずるように、ウエブ側から外部側へと少なくなる量の
    前記疎水性結合剤を含むことを特徴とする、請求項1に
    記載のガス拡散体。
  12. 【請求項12】 そのガス流動抵抗性が、水カラム/cm
    2の分/cm当たり0.005〜0.06リットルを占
    め、さらに好ましくは、水カラム/cm2の分/cm当たり
    0.008〜0.05リットルを占めることを特徴とす
    る、請求項1に記載のガス拡散体。
  13. 【請求項13】 前記層(2,3)が、スロット−ダ
    イ、ナイフ−オーバー−ブレード、噴霧に続くナイフ操
    作、グラビア機械のうちの1つによって製造されること
    を特徴とする、請求項1に記載のガス拡散体。
  14. 【請求項14】 前記層(2,3)が、少なくともその
    外部表面に触媒の微細粒子を支持するカーボンブラック
    粒子を含むことを特徴とする、請求項1に記載のガス拡
    散体。
  15. 【請求項15】 前記触媒が、白金族金属およびそれら
    の酸化物から選択されることを特徴とする、請求項14
    に記載のガス拡散体。
  16. 【請求項16】 前記触媒が、白金、ロジウムまたはロ
    ジウムオキシドであることを特徴とする、請求項15に
    記載のガス拡散体。
  17. 【請求項17】 ガス拡散体またはガス拡散電極を製造
    する方法であって、 (a) マイクロフルイダイザー、ブレードを備えたロ
    ーター/ステイター装置、プレートを備えたスピニング
    バレル装置のような高剪断均質化装置を使用することに
    よって、カーボンブラック粒子または触媒カーボンブラ
    ック粒子の分散液混合物を調製し; (b) 生成させた混合物に結合剤を加え; (c) その混合物に少なくとも1種の分散液安定化物
    質を加え; (d) グラビア、スロット−ダイ、ナイフ−オーバー
    −ブレード、噴霧に続くナイフ操作、塗装ヘッドの少な
    くとも1つを使用することによって、電気導電性ウエブ
    の1つの側にのみその混合物を塗装し; (e) 塗装したウエブを乾燥させ; (f) 塗装したウエブを300−400℃で焼結す
    る;ことを含む製造方法。
  18. 【請求項18】 安定化物質が、iso−プロピルアル
    コール、FluorinertFC 75、Neoflon AD-2CR、ポリビニ
    ルアルコール、エチレングリコール、ポリエチレングリ
    コールアルキルエーテル、PolyoxR、TritonR X100、Twe
    enR、Joncryl61J、Rhoplex AC-61、Acrysol GS(アクリ
    ル系ポリマー溶液)およびナフタレンホルムアルデヒド
    縮合物スルホネートからなる群より選択されることを特
    徴とする、請求項17に記載の製造方法。
  19. 【請求項19】 前記ガス拡散体が、電気化学的電池内
    で、1つの触媒層を備えたイオン交換膜の1つの表面に
    よって緊密に接触されることを特徴とする、請求項1〜
    請求項13に記載のガス拡散体の使用。
  20. 【請求項20】 前記一対のガス拡散体が、電気化学的
    電池内で、1つの触媒層を備えた両面を有するイオン交
    換膜によって緊密に接触されることを特徴とする、請求
    項1〜請求項13に記載のガス拡散体の使用。
  21. 【請求項21】 前記ガス拡散体が、電気化学的電池内
    で、1つの触媒層を備えたイオン交換膜の1つの表面に
    よって緊密に接触されることを特徴とする、請求項14
    〜請求項16に記載のガス拡散体の使用。
  22. 【請求項22】 前記一対のガス拡散体が、電気化学的
    電池内で、1つの触媒層を備えた両面を有するイオン交
    換膜によって緊密に接触されることを特徴とする、請求
    項14〜請求項16に記載のガス拡散体の使用。
  23. 【請求項23】 前記電気化学電池が燃料電池であるこ
    とを特徴とする、請求項20および請求項22に記載の
    使用。
JP00017299A 1998-01-02 1999-01-04 ガス拡散電極用の改良された構造体および製造方法ならびに電極部品 Expired - Lifetime JP4425364B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7034298P 1998-01-02 1998-01-02
US09/184,089 US6103077A (en) 1998-01-02 1998-10-30 Structures and methods of manufacture for gas diffusion electrodes and electrode components
US60/070342 1998-10-30
US184089 1998-10-30

Publications (2)

Publication Number Publication Date
JPH11273688A true JPH11273688A (ja) 1999-10-08
JP4425364B2 JP4425364B2 (ja) 2010-03-03

Family

ID=26751034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00017299A Expired - Lifetime JP4425364B2 (ja) 1998-01-02 1999-01-04 ガス拡散電極用の改良された構造体および製造方法ならびに電極部品

Country Status (7)

Country Link
US (3) US6103077A (ja)
EP (1) EP0928036B1 (ja)
JP (1) JP4425364B2 (ja)
CA (1) CA2256975C (ja)
DE (1) DE69911077T2 (ja)
DK (1) DK0928036T3 (ja)
ES (1) ES2207033T3 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117865A (ja) * 2000-04-28 2002-04-19 Dmc 2 Degussa Metals Catalysts Cerdec Ag ポリマー電解質−燃料電池用のガス分配構造体、この種の電池用の膜−電極ユニット、ポリマー電解質−燃料電池、及びガス分配構造体の製造方法
JP2003059498A (ja) * 2001-08-10 2003-02-28 Equos Research Co Ltd 燃料電池
JP2004031326A (ja) * 2002-04-12 2004-01-29 Sgl Carbon Ag 電気化学的電池用の炭素繊維電極基板
WO2004075331A1 (ja) * 2003-02-18 2004-09-02 Nec Corporation 燃料電池およびその製造方法
JP2004311276A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 高分子膜電極接合体および高分子電解質型燃料電池
JP2006066396A (ja) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd 燃料電池用電極,燃料電池,燃料電池の製造方法
JP2006278038A (ja) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd 燃料電池
JP2007500424A (ja) * 2003-07-28 2007-01-11 ゼネラル・モーターズ・コーポレーション 様々な動作湿度に最適化されたガス拡散層および対応する燃料電池
KR100708732B1 (ko) 2005-11-26 2007-04-17 삼성에스디아이 주식회사 연료전지용 애노드, 그 제조방법 및 이를 구비한 연료전지
JP2008186728A (ja) * 2007-01-30 2008-08-14 Aisin Chem Co Ltd 燃料電池電極用撥水ペースト
JP2009140898A (ja) * 2007-10-23 2009-06-25 High Tech Battery Inc 多層構造を備えた空気負極及びその製造方法
WO2010073900A1 (ja) * 2008-12-24 2010-07-01 株式会社 東芝 直接メタノール型燃料電池用アノード電極、それを用いた膜電極複合体および燃料電池
KR101093708B1 (ko) 2004-06-08 2011-12-15 삼성에스디아이 주식회사 연료전지용 전극 및 이를 포함하는 연료전지
KR101297304B1 (ko) * 2005-01-26 2013-08-20 인텔리전트 에너지 리미티드 다층 연료 전지 확산기
JP2013175368A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd アノードガス拡散層
JP2014531513A (ja) * 2011-09-15 2014-11-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ ガス拡散電極
WO2017130694A1 (ja) 2016-01-27 2017-08-03 東レ株式会社 ガス拡散電極、微多孔層塗料およびその製造方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673127B1 (en) * 1997-01-22 2004-01-06 Denora S.P.A. Method of forming robust metal, metal oxide, and metal alloy layers on ion-conductive polymer membranes
US6103077A (en) * 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
US6884535B2 (en) 1998-06-05 2005-04-26 Nisshinbo Industries, Inc. Fuel cell separator
CA2273619A1 (en) * 1998-06-05 1999-12-05 Nisshinbo Industries Inc. Fuel cell separator and process for producing same
WO2000013243A2 (de) * 1998-08-26 2000-03-09 Siemens Aktiengesellschaft Verbesserte gasdiffusionselektrode, herstellungsverfahren dazu und verfahren zur hydrophobierung einer gasdiffusionselektrode
GB9905950D0 (en) * 1999-03-16 1999-05-05 Johnson Matthey Plc Substrates
DE19937910A1 (de) * 1999-08-11 2001-03-15 Inst Angewandte Photovoltaik G Elektrode und photoelektrochemische Zelle sowie Verfahren zur Herstellung einer kohlenstoffhaltigen, druckfähigen Paste und einer Elektrode
US6517962B1 (en) * 1999-08-23 2003-02-11 Ballard Power Systems Inc. Fuel cell anode structures for voltage reversal tolerance
EP1231656B1 (en) * 1999-09-21 2009-04-29 Panasonic Corporation Polymer electrolytic fuel cell and method for producing the same
US6350539B1 (en) * 1999-10-25 2002-02-26 General Motors Corporation Composite gas distribution structure for fuel cell
US6527943B1 (en) * 1999-11-08 2003-03-04 Ballard Power Systems, Inc. Fuel cell concentration sensor
JP4470271B2 (ja) 2000-03-31 2010-06-02 株式会社エクォス・リサーチ 燃料電池および燃料電池装置
JP4974403B2 (ja) 2000-05-31 2012-07-11 日本ゴア株式会社 固体高分子電解質型燃料電池
US6531238B1 (en) 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
GB0027119D0 (en) 2000-11-07 2000-12-20 Johnson Matthey Plc Gas diffusion substrate
US6861171B1 (en) * 2000-11-27 2005-03-01 Freudenberg-Nok General Partnership Gasket assembly
US6627035B2 (en) 2001-01-24 2003-09-30 Gas Technology Institute Gas diffusion electrode manufacture and MEA fabrication
US6716551B2 (en) * 2001-05-02 2004-04-06 Ballard Power Systems Inc. Abraded fluid diffusion layer for an electrochemical fuel cell
EP1261057B1 (de) * 2001-05-22 2005-01-19 Umicore AG & Co. KG Verfahren zur Herstellung einer Membran-Elektrodeneinheit und dadurch hergestellte Membran-Elektrodeneinheit
DE60236059D1 (de) * 2001-09-28 2010-06-02 Panasonic Corp Polymer-Elektrolyt Brennstoffzelle
WO2003077329A2 (en) * 2001-10-19 2003-09-18 Metalic Power, Inc. Polymer composites, electrodes and fuel cells
DE10159476A1 (de) * 2001-12-04 2003-07-17 Omg Ag & Co Kg Verfahren zur Herstellung von Membran-Elektrodeneinheiten für Brennstoffzellen
US6465041B1 (en) * 2001-12-19 2002-10-15 3M Innovative Properties Company Method of making gas diffusion layers for electrochemical cells
FR2834818B1 (fr) 2002-01-14 2006-09-15 Atofina Poudre microcomposite a base de plaquettes de graphite et d'un fluoropolymere et objets fabriques avec cette poudre
US6890680B2 (en) * 2002-02-19 2005-05-10 Mti Microfuel Cells Inc. Modified diffusion layer for use in a fuel cell system
AU2003228942A1 (en) * 2002-05-09 2003-11-11 Anuvu, Inc. , A California Corporation Electrochemical fuel cell comprised of a series of conductive compression gaskets and method of manufacture
US20040020785A1 (en) * 2002-07-31 2004-02-05 Minteer Shelley D. Magnetically-enhanced electrolytic cells for generating chlor-alkali and methods related thereto
GB0219955D0 (en) * 2002-08-28 2002-10-02 Univ Newcastle Fuel cell electrode
US7470483B2 (en) * 2002-12-11 2008-12-30 Panasonic Corporation Electrolyte membrane-electrode assembly for fuel cell and operation method of fuel cell using the same
WO2004059043A1 (en) * 2002-12-23 2004-07-15 Anuvu, Inc., A California Corporation Channel-less proton exchange membrane fuel cell
US6928893B2 (en) * 2003-01-15 2005-08-16 General Motors Corporation Method of making a gas diffusion media and quality controls for same
US7303835B2 (en) * 2003-01-15 2007-12-04 General Motors Corporation Diffusion media, fuel cells, and fuel cell powered systems
US7107864B2 (en) * 2003-01-15 2006-09-19 General Motors Corporation Quality control methods for gas diffusion media
US7291417B2 (en) * 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
JP4207120B2 (ja) * 2003-04-08 2009-01-14 ソニー株式会社 触媒電極並びに電気化学デバイス
US7211344B2 (en) * 2003-05-14 2007-05-01 The Gillette Company Fuel cell systems
JP4293831B2 (ja) * 2003-05-16 2009-07-08 三洋電機株式会社 燃料電池
ATE458282T1 (de) * 2003-05-27 2010-03-15 Thomas Haering Schichtstrukturen und verfahren zu deren herstellung
US7332240B2 (en) * 2003-07-28 2008-02-19 General Motors Corporation Spatially varying diffusion media and devices incorporating the same
US20080233436A1 (en) * 2003-07-28 2008-09-25 General Motors Corporation Diffusion media tailored to account for variations in operating humidity and devices incorporating the same
US6967039B2 (en) * 2003-07-28 2005-11-22 General Motors Corporation Untreated diffusion media with mesoporous layer and devices incorporating the same
US20050058869A1 (en) * 2003-09-16 2005-03-17 Mathias Mark F. Low cost gas diffusion media for use in PEM fuel cells
KR100696462B1 (ko) * 2003-09-26 2007-03-19 삼성에스디아이 주식회사 연료전지용 전극 확산층
US7157178B2 (en) * 2003-11-24 2007-01-02 General Motors Corporation Proton exchange membrane fuel cell
TWI258239B (en) * 2004-06-02 2006-07-11 High Tech Battery Inc Air electrode constituting multilayer sintered structure and manufacturing method thereof
US9346673B2 (en) * 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
KR100578981B1 (ko) * 2004-09-08 2006-05-12 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 시스템
US7734559B2 (en) * 2004-09-28 2010-06-08 Huelsman David L Rule processing method and apparatus providing exclude cover removal to simplify selection and/or conflict advice
US7629071B2 (en) * 2004-09-29 2009-12-08 Giner Electrochemical Systems, Llc Gas diffusion electrode and method of making the same
US20060105159A1 (en) * 2004-11-12 2006-05-18 O'hara Jeanette E Gas diffusion medium with microporous bilayer
KR100658675B1 (ko) * 2004-11-26 2006-12-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100669456B1 (ko) * 2004-11-26 2007-01-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100825196B1 (ko) * 2005-03-28 2008-04-24 산요덴키가부시키가이샤 연료 전지
US7601216B2 (en) * 2005-04-14 2009-10-13 Basf Fuel Cell Gmbh Gas diffusion electrodes, membrane-electrode assemblies and method for the production thereof
CN100408727C (zh) * 2005-06-14 2008-08-06 河北工业大学 空气电极及其制造方法
KR100684797B1 (ko) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
FR2891403A1 (fr) * 2005-09-29 2007-03-30 St Microelectronics Sa Pile a combustible recouverte d'une couche de polymeres hydrophiles
FR2891280B1 (fr) * 2005-09-29 2008-01-18 St Microelectronics Sa Formation de silicium poreux dans une plaquette de silicium
WO2007059278A2 (en) * 2005-11-16 2007-05-24 General Motors Corporation Method of making a membrane electrode assembly comprising a vapor barrier layer, a gas diffusion layer, or both
JP4993915B2 (ja) * 2006-01-24 2012-08-08 ノードソン コーポレーション 液体の塗布及び乾燥方法
FR2897070B1 (fr) 2006-02-03 2008-12-19 Commissariat Energie Atomique Procede dli-mocvd pour la fabrication d'electrodes pour reacteurs electrochimiques, electrodes obtenues par ce procede et pile a combustible et accumulateur mettant en oeuvre de telles electrodes
FR2897205B1 (fr) 2006-02-03 2009-06-05 Commissariat Energie Atomique Cathode pour reacteur electrochimique, reacteur electrochimique integrant de telles cathodes et procede de fabrication d'une telle cathode
US8168025B2 (en) * 2006-04-21 2012-05-01 Bdf Ip Holdings Ltd. Methods of making components for electrochemical cells
WO2007139550A1 (en) * 2006-05-30 2007-12-06 Utc Power Corporation Fuel cell employing hydrated non-perfluorinated hydrocarbon lon exchange membrane
US20080057380A1 (en) * 2006-09-06 2008-03-06 Dabel Jeremy W Membrane electrode assembly fabrication
JP4912290B2 (ja) * 2006-12-28 2012-04-11 信越ポリマー株式会社 選択透過材料及び空調システム
DE102007025207A1 (de) * 2007-05-30 2008-12-04 Volkswagen Ag Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle
CN101325259B (zh) * 2007-06-13 2010-07-28 中国科学院大连化学物理研究所 一种质子交换膜燃料电池气体扩散层的制备方法
US8290929B2 (en) * 2007-10-26 2012-10-16 Yahoo! Inc. Media enhancement mechanism using embed code
US20090145781A1 (en) * 2007-12-11 2009-06-11 Gm Global Technology Operations, Inc. Method of treating nanoparticles using a proton exchange membrane and liquid electrolyte cell
CN103739712B (zh) * 2008-06-24 2016-10-05 德国杰特贝林生物制品有限公司 具有延长的体内半衰期的因子viii、冯·维勒布兰德因子或它们的复合物
US20100028750A1 (en) * 2008-08-04 2010-02-04 Gm Global Technology Operations, Inc. Gas diffusion layer with lower gas diffusivity
US20100028744A1 (en) * 2008-08-04 2010-02-04 Gm Global Technology Operations, Inc. Gas diffusion layer with lower gas diffusivity
US7947410B2 (en) * 2008-08-22 2011-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell electrodes with triazole modified polymers and membrane electrode assemblies incorporating same
EP2228857A1 (de) * 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten
JP5010757B2 (ja) * 2009-09-10 2012-08-29 日産自動車株式会社 燃料電池用ガス拡散層の製造方法
CN102337554B (zh) * 2010-07-28 2013-11-06 中国石油化工股份有限公司 交流电弧法溶解铑粉的电解池系统及其应用
CN102517602B (zh) * 2011-12-29 2014-10-29 北京化工大学 一种气体扩散电极的明胶造孔方法
EP2639577A1 (en) * 2012-03-16 2013-09-18 SolviCore GmbH & Co KG Electrochemical gas sensor comprising an anion-exchange membrane
JP2015527483A (ja) 2012-06-15 2015-09-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 求核試薬の存在下での有機基材の陽極酸化
FI124932B (fi) * 2012-06-21 2015-03-31 Coligro Oy Menetelmä huokoisen tuotteen käsittelemiseksi ja huokoinen tuote
JP6026561B2 (ja) * 2012-12-27 2016-11-16 日産自動車株式会社 膜電極接合体および膜電極接合体の製造方法
WO2014170733A2 (en) 2013-04-16 2014-10-23 Basf Se Process for the manufacture of membrane electrode units
EP3011625B1 (en) 2013-06-20 2021-05-05 Gencell Ltd. Gas diffusion electrode and process for making same
TW201504477A (zh) * 2013-07-17 2015-02-01 Industrie De Nora Spa 電解電池和鹼溶液電解槽以及在電池內之電解方法
DK2843743T3 (en) 2013-09-02 2018-07-16 Basf Se Membrane electrode units for high temperature fuel cells with improved stability
DK2869382T3 (en) 2013-10-30 2019-04-01 Basf Se Improved diaphragm electrode devices
CN111193040B (zh) * 2020-01-09 2022-09-20 上海电气集团股份有限公司 一种燃料电池气体扩散层及其制备方法、燃料电池
DE102021209217A1 (de) * 2021-08-23 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Gasdiffusionsschicht
DE102021213141A1 (de) * 2021-11-23 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen einer Gasdiffusionslage, Gasdiffusionslage, Brennstoffzelle sowie Vorrichtung zum Herstellen einer Gasdiffusionslage
CN115036519A (zh) * 2022-07-04 2022-09-09 上海电气集团股份有限公司 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用
CN116377759B (zh) * 2023-03-23 2023-12-08 因达孚先进材料(苏州)股份有限公司 一种燃料电池用亲水-疏水碳纸的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1499879A (fr) * 1965-12-16 1967-11-03 Inst Francais Du Petrole Nouvelles électrodes de piles à combustible et leur procédé de fabrication
US4044193A (en) * 1971-06-16 1977-08-23 Prototech Company Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same
US4248682A (en) * 1979-09-27 1981-02-03 Prototech Company Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
DE2941774C2 (de) * 1979-10-16 1985-03-21 Varta Batterie Ag, 3000 Hannover Verfahren und Vorrichtung zur Herstellung einer kunststoffgebundenen Aktivkohleschicht für dünne Gasdiffusionselektroden
US5395705A (en) * 1990-08-31 1995-03-07 The Dow Chemical Company Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
US5260143A (en) * 1991-01-15 1993-11-09 Ballard Power Systems Inc. Method and apparatus for removing water from electrochemical fuel cells
WO1992021156A1 (en) * 1991-05-23 1992-11-26 Alupower, Inc. Improved electrochemical electrode
JP3249227B2 (ja) * 1993-02-10 2002-01-21 田中貴金属工業株式会社 ガス拡散電極の製造方法
US6180163B1 (en) * 1993-11-22 2001-01-30 E. I. Du Pont De Nemours And Company Method of making a membrane-electrode assembly
US6159533A (en) * 1997-09-11 2000-12-12 Southwest Research Institute Method of depositing a catalyst on a fuel cell electrode
JP2805458B2 (ja) * 1995-08-03 1998-09-30 長一 古屋 ガス拡散電極の製造方法
EP0791974B2 (en) * 1996-02-28 2005-08-17 Johnson Matthey Public Limited Company Catalytically active gas diffusion electrodes comprising a nonwoven fibrous structure
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
US6103077A (en) * 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117865A (ja) * 2000-04-28 2002-04-19 Dmc 2 Degussa Metals Catalysts Cerdec Ag ポリマー電解質−燃料電池用のガス分配構造体、この種の電池用の膜−電極ユニット、ポリマー電解質−燃料電池、及びガス分配構造体の製造方法
JP2003059498A (ja) * 2001-08-10 2003-02-28 Equos Research Co Ltd 燃料電池
JP2004031326A (ja) * 2002-04-12 2004-01-29 Sgl Carbon Ag 電気化学的電池用の炭素繊維電極基板
US7410720B2 (en) 2003-02-18 2008-08-12 Nec Corporation Fuel cell and method for manufacturing the same
WO2004075331A1 (ja) * 2003-02-18 2004-09-02 Nec Corporation 燃料電池およびその製造方法
JP2004311276A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 高分子膜電極接合体および高分子電解質型燃料電池
JP2007500424A (ja) * 2003-07-28 2007-01-11 ゼネラル・モーターズ・コーポレーション 様々な動作湿度に最適化されたガス拡散層および対応する燃料電池
KR101093708B1 (ko) 2004-06-08 2011-12-15 삼성에스디아이 주식회사 연료전지용 전극 및 이를 포함하는 연료전지
JP2006066396A (ja) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd 燃料電池用電極,燃料電池,燃料電池の製造方法
JP4607708B2 (ja) * 2004-08-25 2011-01-05 三星エスディアイ株式会社 燃料電池用電極,燃料電池,燃料電池の製造方法
US8440363B2 (en) 2004-08-25 2013-05-14 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell comprising same
KR101297304B1 (ko) * 2005-01-26 2013-08-20 인텔리전트 에너지 리미티드 다층 연료 전지 확산기
JP4530893B2 (ja) * 2005-03-28 2010-08-25 三洋電機株式会社 固体高分子形燃料電池
JP2006278038A (ja) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd 燃料電池
KR100708732B1 (ko) 2005-11-26 2007-04-17 삼성에스디아이 주식회사 연료전지용 애노드, 그 제조방법 및 이를 구비한 연료전지
JP2008186728A (ja) * 2007-01-30 2008-08-14 Aisin Chem Co Ltd 燃料電池電極用撥水ペースト
JP2009140898A (ja) * 2007-10-23 2009-06-25 High Tech Battery Inc 多層構造を備えた空気負極及びその製造方法
WO2010073900A1 (ja) * 2008-12-24 2010-07-01 株式会社 東芝 直接メタノール型燃料電池用アノード電極、それを用いた膜電極複合体および燃料電池
JP2014531513A (ja) * 2011-09-15 2014-11-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ ガス拡散電極
JP2013175368A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd アノードガス拡散層
WO2017130694A1 (ja) 2016-01-27 2017-08-03 東レ株式会社 ガス拡散電極、微多孔層塗料およびその製造方法
KR20180104613A (ko) 2016-01-27 2018-09-21 도레이 카부시키가이샤 가스 확산 전극, 미다공층 도료 및 그의 제조 방법

Also Published As

Publication number Publication date
ES2207033T3 (es) 2004-05-16
DK0928036T3 (da) 2004-01-26
EP0928036B1 (en) 2003-09-10
EP0928036A1 (en) 1999-07-07
US6103077A (en) 2000-08-15
JP4425364B2 (ja) 2010-03-03
CA2256975A1 (en) 1999-07-02
CA2256975C (en) 2011-12-20
US6368476B1 (en) 2002-04-09
DE69911077T2 (de) 2004-07-08
US6444602B1 (en) 2002-09-03
DE69911077D1 (de) 2003-10-16

Similar Documents

Publication Publication Date Title
JP4425364B2 (ja) ガス拡散電極用の改良された構造体および製造方法ならびに電極部品
KR100468102B1 (ko) 고분자 전해질형 연료전지
RU2172542C2 (ru) Способ непрерывного получения соединения "мембрана-электроды"
EP1732155B1 (en) Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
US20060099482A1 (en) Fuel cell electrode
KR101520119B1 (ko) 촉매층
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
KR101201816B1 (ko) 막-전극 어셈블리, 그 제조방법, 및 이를 포함하는 연료전지 시스템
CN108539215B (zh) 燃料电池用催化剂油墨、燃料电池用催化剂层和膜电极接合体
WO2008037411A1 (en) Structures for gas diffusion electrodes
Farhat et al. Fabrication of a “Soft” Membrane Electrode Assembly Using Layer‐by‐Layer Technology
CN100377401C (zh) 催化剂层形成用墨、使用该墨的电极及膜电极接合体
WO2015044734A1 (en) Fuel cell separator, fuel cell, and manufacturing method of fuel cell separator
US20050271930A1 (en) Polymer electrolyte fuel cell and manufacturing method thereof
JP2007115637A (ja) 燃料電池用貴金属触媒、燃料電池用電極触媒、燃料電池用電極触媒の製造方法、および、燃料電池用膜電極接合体
JP6160591B2 (ja) 触媒電極層、膜電極接合体、および、燃料電池
JPH10189004A (ja) 燃料電池用電極及びその製造方法
JP2007073283A (ja) 触媒電極およびその製造方法、並びにそれを用いた燃料電池
JP2006173028A (ja) 燃料電池の触媒層
JP2023533104A (ja) 触媒調製
JP2023546077A (ja) 触媒被覆膜と水電解セル
JP2007250366A (ja) 燃料電池用電極の触媒層

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term