JP7420167B2 - 回路基板の製造方法 - Google Patents

回路基板の製造方法 Download PDF

Info

Publication number
JP7420167B2
JP7420167B2 JP2022100693A JP2022100693A JP7420167B2 JP 7420167 B2 JP7420167 B2 JP 7420167B2 JP 2022100693 A JP2022100693 A JP 2022100693A JP 2022100693 A JP2022100693 A JP 2022100693A JP 7420167 B2 JP7420167 B2 JP 7420167B2
Authority
JP
Japan
Prior art keywords
magnetic
resin composition
mass
cured product
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022100693A
Other languages
English (en)
Other versions
JP2022126796A (ja
Inventor
秀樹 大山
孝幸 田中
恵理 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JP2022126796A publication Critical patent/JP2022126796A/ja
Application granted granted Critical
Publication of JP7420167B2 publication Critical patent/JP7420167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、磁性粉体を含む樹脂組成物を用いる回路基板の製造方法;当該樹脂組成物に関する。
パワーインダクタ、高周波帯域用インダクタ、コモンモードチョークコイルと呼ばれることがあるインダクタは、携帯電話機、スマートフォンなどの情報端末に数多く搭載されている。従来は独立したインダクタ部品が回路基板上に実装されていたが、近年は回路基板の導体パターンによりコイルを形成し、インダクタを回路基板の内部に設ける手法が行われるようになってきている。
例えば、特許文献1には、多層基板の複数層に複数回巻きの渦巻状導体パターンを形成し、各層の導体パターンの端を上層及び下層と層間接続し、全体としてらせん状のコイルを形成した、インダクタが内蔵された多層回路基板が開示されている。また特許文献2には、回路基板の薄型化のため、インダクタ部品を回路基板のコア基板に内蔵することが開示されている。
このように絶縁層上に形成される複数の導体パターンによりインダクタを形成したインダクタ部品を製造する場合、絶縁層を形成するための材料として磁性粉体を含有する樹脂組成物を用いることが考えられる。磁性粉体を含む絶縁層(磁性硬化物層)を用いれば、インダクタンス値を高くすることができ、またインダクタ外への磁力線の漏れも防ぐことができる。例えば、特許文献2には、支持体付き樹脂シートの樹脂組成物層を構成する樹脂組成物に磁性粉体を含有させ、形成される絶縁層を磁性体とすることが開示されている。
また、例えば、特許文献3には、インダクタ部品用の回路基板におけるスルーホールを、磁性粉体を含む樹脂組成物で充填して、磁性体コアを形成し、回路基板の配線層の形成されたコイルの中心に、該磁性体コアを配置することで、小型で高いインダクタンスを達成したインダクタ部品が開示されている。
特開2009-16504号公報 特開2012-186440号公報 特開2016-197624号公報
これらインダクタ部品(回路基板)の製造においては、磁性粉体を含む磁性硬化物層上に、導体層を形成することがあり、コスト面で有利な湿式めっきにより導体層を形成することが望まれる。
磁性粉体を含まない絶縁層上に導体層を形成する際、通常、酸化剤で絶縁層の表面を処理した後に導体層を形成する方法が一般的である。しかしながら、本発明者らはこれまでに、磁性粉体を含有する磁性硬化物層上に導体層を形成する場合、磁性硬化物層の表面を酸化剤で処理すると樹脂及び磁性粉体が溶出し、磁性硬化物層が脆くなってしまうことから、めっき密着性を良好なものにすることが困難となることを見出している。
このため、本発明者らは、酸化剤を使用しないで磁性硬化物層上に導体層を形成するプロセスとして、磁性硬化物層の表面を研磨して導体層を形成する方法を検討した。しかしながら、磁性硬化物層の表面を研磨後、磁性硬化物層上への湿式めっきによる導体層の形成を行ったところ、湿式めっきを行うプロセスにおいて、磁性硬化物層中に含まれる磁性粉体に由来すると考えられる沈殿物や析出物等の磁性異物が生成し、浴及び基板等を汚染するという新たな課題を見出した。特に、無電解めっきを行う場合に、磁性硬化物層表面にパラジウム等の触媒を付与した後、該触媒を還元剤で活性化する触媒活性化工程において汚染が顕著となることを見出した。
本発明は、上記の事情に鑑みてなされたものであり、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、磁性粉体を含む磁性硬化物層上に湿式めっきによる導体層が形成される回路基板の製造において、磁性異物の生成を抑制することができる基板の製造方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく、鋭意検討した結果、樹脂組成物中に含有させる磁性粉体としてニッケルを含むものを使用することにより、酸化剤による磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスにおける磁性異物の生成を抑制できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の内容を含む。
[1] (1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、(2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び(3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、回路基板の製造方法であって、樹脂組成物が、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む、回路基板の製造方法。
[2] (A)成分が、ニッケル鉄合金系金属粉である、上記[1]に記載の回路基板の製造方法。
[3] (A)成分中のニッケル含有量が、30質量%~90質量%である、上記[1]又は[2]に記載の回路基板の製造方法。
[4] 樹脂組成物中の(A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、70質量%~98質量%である、上記[1]~[3]の何れかに記載の回路基板の製造方法。
[5] 2N硫酸に40℃5分浸漬した場合の(A)成分の重量保持率が、90%以上である、上記[1]~[4]の何れかに記載の回路基板の製造方法。
[6] (B)成分が、25℃で液状のエポキシ樹脂を含む、上記[1]~[5]の何れかに記載の回路基板の製造方法。
[7] (C)成分が、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤からなる群から選ばれる硬化剤である、上記[1]~[6]の何れかに記載の回路基板の製造方法。
[8] (1)工程で得られる磁性硬化物の表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、F~5Hである、上記[1]~[7]の何れかに記載の回路基板の製造方法。
[9] (1)工程で得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合のエッチングレートが、25mg/cm以下である、上記[1]~[8]の何れかに記載の回路基板の製造方法。
[10] 樹脂組成物がペースト状である、上記[1]~[9]の何れかに記載の回路基板の製造方法。
[11] (A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む、樹脂組成物。
本発明における樹脂組成物を硬化させて得られる磁性硬化物を回路基板の製造に使用することにより、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、湿式めっきプロセスで処理液中に生成し得る磁性異物の生成量を抑制することができる。
図1は、回路基板の製造方法の第1実施形態の一例としてのコア基板の模式的な断面図である。 図2は、回路基板の製造方法の第1実施形態の一例としてのスルーホールを形成したコア基板の模式的な断面図である。 図3は、回路基板の製造方法の第1実施形態の一例としてのスルーホール内にめっき層を形成した様子を示す模式的な断面図である。 図4は、回路基板の製造方法の第1実施形態の一例としてのスルーホール内にスルーホール充填用ペーストを充填させた様子を示す模式的な断面図である。 図5は、回路基板の製造方法の第1実施形態の一例としての充填させたスルーホール充填用ペーストを熱硬化させた磁性硬化物の様子を示す模式的な断面図である。 図6は、回路基板の製造方法の第1実施形態の一例としての磁性硬化物を研磨した後の様子を示す模式的な断面図である。 図7は、回路基板の製造方法の第1実施形態の一例としての研磨した面上に導体層を形成した様子を示す模式的な断面図である。 図8は、回路基板の製造方法の第1実施形態の一例としてのパターン導体層を形成した様子を示す模式的な断面図である。 図9は、回路基板の製造方法の第2実施形態の一例としての(α)工程を説明するための模式的な断面図である。 図10は、回路基板の製造方法の第2実施形態の一例としての(α)工程を説明するための模式的な断面図である。 図11は、回路基板の製造方法の第2実施形態の一例としての(β)工程を説明するための模式的な断面図である。 図12は、回路基板の製造方法の第2実施形態の一例としてのパターン導体層を形成した様子を示す模式的な断面図である。 図13は、一例としての回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品をその厚さ方向の一方からみた模式的な平面図である。 図14は、一例としてのII-II一点鎖線で示した位置で切断した回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品の切断端面を示す模式的な図である。 図15は、一例としての回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品のうちの第1導体層の構成を説明するための模式的な平面図である。
以下、図面を参照して、本発明の実施形態について説明する。なお、各図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置により、製造されたり、使用されたりするとは限らない。
[回路基板]
回路基板とは、片面又は両面に導体層(回路)が形成された基板をいう。回路基板は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。
以下、回路基板の製造方法について説明する。
[回路基板の製造方法]
本発明の回路基板の製造方法は、(1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、(2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び(3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程、をこの順で含む。また、樹脂組成物は、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む。このように、本発明における樹脂組成物には磁性粉体として酸に強い(A)ニッケルを含む磁性粉体が用いられているため、その磁性硬化物を回路基板の製造に用いることにより、酸化剤による磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスにおいて、処理液中に生じ得る磁性異物の生成量が低く抑えられるため、浴、基板等の汚染を防止することができる。特に(A)ニッケルを含む磁性粉体を含む面を有する磁性硬化物と、前記面に形成された導体層とを備える回路基板を、磁性異物の生成量を抑制しながら回路基板を製造できる。また、一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れていることから、湿式めっきプロセスの(2)研磨工程の研磨を効率的に行うことができる。
-(1)工程-
(1)工程は、樹脂組成物を熱硬化させ、磁性硬化物を得る工程である。磁性硬化物の形状は特に限定されず、使用態様などに応じて適宜設定される。(1)工程を行うにあたって、樹脂組成物を準備する工程を含んでいてもよい。(1)工程における樹脂組成物の硬化温度は、樹脂組成物の組成や種類によっても異なるが、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。樹脂組成物の硬化時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは120分以下、より好ましくは100分以下、さらに好ましくは90分以下である。
樹脂組成物を熱硬化させる前に、樹脂組成物に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。例えば、樹脂組成物を熱硬化させるのに先立ち、通常50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物を、通常5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)、予備加熱してもよい。
(1)工程において得られる磁性硬化物の硬化度としては、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。硬化度は、例えば示差走査熱量測定装置を用いて測定することができる。
-(2)工程-
(2)工程は、磁性硬化物の表面を研磨する工程である。研磨する面は、磁性硬化物の表面の少なくとも一部であればよい。研磨方法としては、例えば、バフ研磨、ベルト研磨等が挙げられる。市販されているバフ研磨装置としては石井表記社製「NT-700IM」等が挙げられる。
磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
(2)工程後(3)工程前に、磁性硬化物の硬化度をさらに高める等の目的で、必要により熱処理工程を行ってもよい。熱処理工程における温度は上記した硬化温度に準じて行えばよく、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。熱処理時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは90分以下、より好ましくは70分以下、さらに好ましくは60分以下である。
(2)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
-(3)工程-
(3)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。磁性硬化物の研磨面には(A)ニッケルを含む磁性粉体が存在し得るが、(A)ニッケルを含む磁性粉体は、めっきで使用する液に溶出し難いので、磁性異物の発生を抑制できる。導体層の材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ、インジウム等の単金属;金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムの群から選択される2種以上の金属の合金が挙げられる。中でも、汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金、銅ニッケル合金、銅チタン合金を用いることが好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金を用いることがより好ましく、銅を用いることがさらに好ましい。
(3)工程の好適な実施形態では、湿式めっき処理として無電解めっき処理を行い、導体層を形成することが好ましく、無電解めっき処理を行った後、さらに電解めっき処理を行い、導体層を形成することがより好ましい。よって、(3)工程は、セミアディティブ法、フルアディティブ法等によって磁性硬化物の表面にめっきし導体層を形成することが好ましい。(3)工程は、導体層の製造のしやすさの観点から、セミアディティブ法により導体層を形成することが好ましい。
セミアディティブ法の詳細は、まず、磁性硬化物の表面に、無電解めっき処理によりめっきシード層を形成する。次いで、形成されためっきシード層上に、所望の配線パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっき処理により導体層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。
無電解めっき処理は、無電解めっき液に磁性硬化物を浸漬させて行う。無電解めっき処理としては、例えば、無電解銅めっき、無電解ニッケルめっき、無電解ニッケル-タングステンめっき、無電解スズめっき、無電解金めっき等が挙げられ、無電解銅めっきが好ましい。
無電解めっき処理に用いる無電解めっき液としては、例えば、銅、ニッケル、タングステン、錫、金、パラジウム、PdCl等の金属イオンを含有する液が挙げられる。また、無電解めっき液は、還元剤などのその他の添加剤を含んでいてもよい。無電解めっき液は、市販品を用いることができる。市販品としては、例えば、上村工業社製の「スルカップPEA」や、日本カニゼン社製の「S-KPD」等が挙げられる。
無電解めっき処理の処理時間としては、触媒を活性化させる観点から、好ましくは10分以上、より好ましくは20分以上、さらに好ましくは30分以上であり、好ましくは60分以下、より好ましくは50分以下、さらに好ましくは40分以下である。
無電解めっき処理の処理温度としては、導体層形成の効率化の観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは55℃以下、さらに好ましくは50℃以下である。
無電解めっき処理によりめっきシード層を形成した後、めっきシード層上に、ドライフィルムを積層する。その後、所望の配線パターンに対応してめっきシード層の一部が露出するようにフォトマスクを用いて所定の条件で露光、現像を行い、マスクパターンを形成する。露光及び現像条件は、すでに公知の条件にて行うことできる。
ドライフィルムとしては、フォトレジスト組成物からなる感光性のドライフィルムを用いることができる。このようなドライフィルムとしては、例えば、ノボラック樹脂、アクリル樹脂等が挙げられる。
マスクパターンは、電解銅めっき処理におけるめっきマスクとして使用する。電解めっき処理後、マスクパターンは除去される。
電解めっき処理は、めっき浴に無電解めっき処理後の磁性硬化物を浸漬させて行う。その際、めっき浴に電流を流して行う。電解めっき処理としては、電解銅めっき、電解ニッケルめっき、電解スズめっき、電解金めっき等が挙げられ、電解銅めっきが好ましい。
電解めっき処理に用いるめっき浴としては、硫酸銅、ピロリン酸銅、シアン化銅等を含む浴が挙げられる。
電解めっき処理の処理時間としては、触媒を活性化させる観点から、好ましくは30分以上、より好ましくは40分以上、さらに好ましくは50分以上であり、好ましくは90分以下、より好ましくは80分以下、さらに好ましくは70分以下である。
電解めっき処理の処理温度としては、導体層形成の効率化の観点から、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。
電解めっき処理の電流密度としては、導体層形成の効率化の観点から、好ましくは1.0A/dm以上、より好ましくは1.5A/dm以上、さらに好ましくは2.0A/dm以上であり、好ましくは4.0A/dm以下、より好ましくは3.5A/dm以下、さらに好ましくは3.0A/dm以下である。
導体層形成後、導体層のピール強度を向上させる等の目的で、必要によりアニール処理を行ってもよい。アニール処理は、例えば、基板を150~200℃で20~90分間加熱することにより行うことができる。
導体層の厚さは、薄型化の観点から、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下、さらにより好ましくは40μm以下、特に好ましくは30μm以下、20μm以下、15μm以下又は10μm以下である。下限は好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上である。
以下、回路基板の製造方法のより具体的な例として、第1実施形態及び第2実施形態について説明する。当然、本発明に係る回路基板の製造方法は、以下に例示する第1及び第2実施形態に限定されない。
<第1実施形態>
第1実施形態における回路基板は、スルーホールが形成された基板と、前記スルーホールを充填する磁性硬化物と、を含む。したがって、第1実施形態における回路基板の製造方法は、
(1A)基板のスルーホール内に樹脂組成物を充填し、樹脂組成物を熱硬化して磁性硬化物を形成する工程、
(2A)磁性硬化物の表面の少なくとも一部を研磨する工程、
(3A)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む。
第1実施形態における回路基板の製造方法は、さらに(2A)工程後(3A)工程前に、
(2A-1)磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング工程、及び
(2A-2)磁性硬化物表面に触媒を付与する触媒化工程
をこの順でさらに含むことが好ましく、
(2A-2)工程後(3A)工程前に、
(2A-3)触媒を活性化する触媒活性化工程
をさらに含むことがより好ましい。(2A-1)~(2A-3)工程を(2A)工程終了後に行う場合、特に(2A-2)工程及び(2A-3)工程において発生する不溶物等の発生を抑制することが可能となる。
また、(2A-1)工程後(2A-2)工程前に、
(2A-1-1)界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程を含んでいてもよい。
-(1A)工程-
(1A)工程は、基板のスルーホール内に樹脂組成物を充填し、樹脂組成物を熱硬化して磁性硬化物を形成する工程である。(1A)工程では、磁性ペーストを用いて磁性硬化物を形成することが好ましい。また、(1A)工程を行うにあたって、図1に一例を示すように、支持基板11、並びに該支持基板11の両表面に設けられた銅箔等の金属からなる第1金属層12、及び第2金属層13を備えるコア基板10を準備する工程を含んでいてもよい。支持基板11の材料の例としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。
また、図2に一例を示すように、コア基板10にスルーホール14を形成する工程を含んでいてもよい。スルーホール14は、例えば、ドリル、レーザー照射、プラズマ照射等により形成することができる。具体的には、ドリル等を用いてコア基板10に貫通穴を形成することにより、スルーホール14を形成することができる。
スルーホール14の形成は、市販されているドリル装置を用いて実施することができる。市販されているドリル装置としては、例えば、日立ビアメカニクス社製「ND-1S211」等が挙げられる。
コア基板10にスルーホール14を形成した後、図3に一例を示すように、コア基板10の粗化処理を行い、スルーホール14内、第1金属層12の表面上、及び第2金属層13の表面上にめっき層20を形成する工程を含んでいてもよい。
前記の粗化処理としては、乾式及び湿式のいずれの粗化処理を行ってもよい。乾式の粗化処理の例としては、プラズマ処理等が挙げられる。また、湿式の粗化処理の例としては、膨潤液による膨潤処理、酸化剤による粗化処理、及び、中和液による中和処理をこの順に行う方法が挙げられる。
めっき層20は、めっき法により形成され、めっき法によりめっき層20が形成される手順は、後述する(3A)工程における導体層の形成と同様である。
スルーホール14内にめっき層20を形成されたコア基板10を用意した後で、図4に一例を示すように、樹脂組成物30aをスルーホール14へ充填する。充填方法としては、例えば、スキージを介してスルーホール14へ樹脂組成物30aを充填する方法、カートリッジを介して樹脂組成物30aを充填する方法、マスク印刷して樹脂組成物30aを充填する方法、ロールコート法、インクジェット法等が挙げられる。樹脂組成物30aは磁性ペーストであることが好ましい。
スルーホール14内に樹脂組成物30aを充填後、樹脂組成物30aを熱硬化して、図5に一例を示すように、スルーホール14内に磁性硬化物30を形成する。(1A)工程における樹脂組成物30aの熱硬化条件、及び磁性硬化物30の硬化度は、上述した(1)工程で示したものと同様である。
-(2A)工程-
(2A)工程は、磁性硬化物の表面の少なくとも一部を研磨する工程である。(2A)工程では、図6に一例を示すように、コア基板10から突出又は付着している余剰の磁性硬化物30を研磨することにより除去し、平坦化する。研磨方法としては、コア基板10から突出又は付着している余剰の磁性硬化物30を研磨することができる方法を用いることができる。このような研磨方法は、上述した(2)工程で示したものと同様である。
(2A)工程後の磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
(2A)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
(2A)工程後(3A)工程前に、上記(2)工程後(3)工程前と同様に、磁性硬化物の硬化度をさらに高める等の目的で、必要により熱処理工程を行ってもよい。
-(2A-1)工程-
(2A-1)工程は、磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング工程である。(2A-1)工程では、通常、界面活性剤を含む溶液と磁性硬化物表面とを接触させることで、磁性硬化物表面の洗浄とともに、(2A-2)工程における触媒の吸着を容易にできるように表面電荷を調整する。
(2A-1)工程で使用する界面活性剤を含む溶液としては、磁性硬化物表面の洗浄とともに、(2A-2)工程における触媒の吸着を容易にできるように表面電荷を調整することができる界面活性剤を含む溶液を用いることができる。このような溶液としては、界面活性剤を含むアルカリ溶液、界面活性剤を含む酸溶液等が挙げられるが、不溶物等を抑制する観点から界面活性剤を含むアルカリ溶液が好ましい。アルカリ溶液としては水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。
界面活性剤を含むアルカリ溶液のpHとしては、好ましくは7を超え、より好ましくは8以上、さらに好ましくは10以上である。上限は特に制限はないが、好ましくは14以下、13以下等とし得る。界面活性剤を含む酸溶液のpHとしては、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。上限は特に制限はないが、好ましくは7未満、6以下等とし得る。
界面活性剤としては、例えば、アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン性界面活性剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルホン酸ナトリウム塩等のアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンオクチフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等の非イオン性界面活性剤等が挙げられる。
界面活性剤は、市販品を用いることができる。市販品としては、例えばアトテックジャパン社製の「セキュリガンド902」、上村工業社製「PED-104」等が挙げられる。
(2A-1)工程の処理時間としては、触媒の吸着を容易にする観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
界面活性剤を含む溶液の温度としては、触媒の吸着を容易にする観点から、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上であり、好ましくは90℃以下、より好ましくは80℃以下、さらに好ましくは70℃以下である。
(2A-1)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-1-1)工程-
(2A-1-1)工程は、界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程である。(2A-1-1)工程では、通常、マイクロエッチング液と磁性硬化物表面とを接触させることで、界面活性剤が不要な部位から界面活性剤を除去する。界面活性剤が不要な部位としては、例えば第1金属層12及び第2金属層13等が挙げられる。
マイクロエッチング液としては、塩酸、硫酸、過酸化水素水、過硫酸ナトリウム、過硫酸アンモニウム塩及びこれらの組み合わせからなる液等が挙げられる。
マイクロエッチング液の濃度としては、界面活性剤を不要な部位のみから除去する観点から、規定度で、通常は2N以下、好ましくは1.5N以下、より好ましくは1N以下であり、界面活性剤の除去を容易にする観点から、好ましくは0.1N以上、より好ましくは0.2N以上、さらに好ましくは0.5N以上である。
マイクロエッチング液の温度としては、界面活性剤の除去を容易にする観点から、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。
(2A-1-1)工程の処理時間としては、界面活性剤の除去を容易にする観点から、好ましくは10秒以上、より好ましくは15秒以上、さらに好ましくは30秒以上であり、好ましくは60秒以下、より好ましくは50秒以下、さらに好ましくは40秒以下である。
(2A-1-1)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-2)工程-
(2A-2)工程は、磁性硬化物表面に触媒を付与する触媒化工程である。(2A-2)工程では、磁性硬化物表面に触媒を付与することで、磁性硬化物と導体層との間の密着性を向上させることができる。通常、(2A-2)工程では、触媒を含有する溶液に磁性硬化物を浸漬し、磁性硬化物表面に触媒を吸着させる。
触媒としては、例えば、パラジウム塩、パラジウム錯化合物、スズ・パラジウムの錯塩、スズ・パラジウムコロイド、等が挙げられる。
触媒を含有する溶液は、通常、アルカリ性の溶液を用いる。これにより、不溶物等の発生を顕著に抑制することができる。このアルカリ性の溶液のpHとしては、好ましくは7を超え、より好ましくは8以上、さらに好ましくは10以上である。上限は特に制限はないが、好ましくは14以下、13以下等とし得る。
また、触媒を含有する溶液の濃度としては、磁性硬化物全体に触媒を吸着させる観点から、規定度で、好ましくは1mmol/L以上、より好ましくは5mmol/L以上、さらに好ましくは10mmol/L以上であり、好ましくは500mmol/L以下、より好ましくは300mmol/L以下、さらに好ましくは100mmol/L以下である。
触媒を含有する溶液は、市販品を用いることができる。市販品としては、例えば、アトテックジャパン社製の「アクチベーター・ネオガンド834」、日本カニゼン社製の「ブラウンシューマー」等が挙げられる。
(2A-2)工程の処理時間としては、磁性硬化物全体に触媒を吸着させる観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
触媒を含有する溶液の温度としては、磁性硬化物全体に触媒を吸着させる観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下である。
(2A-2)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-3)工程-
(2A-3)工程は、触媒を活性化する触媒活性化工程である。(2A-3)工程では、触媒を活性化することで、磁性硬化物と導体層との間の密着性を向上させることができる。通常、(2A-3)工程では、触媒が付与された磁性硬化物を還元剤溶液に浸漬し触媒の核を生成させ、磁性硬化物表面に付与された触媒を活性化させる。
従来の一般的な磁性粉体(Niを含まない金属粉体など)は、還元剤溶液に溶解しやすかった。また、溶解した磁性粉体の成分の一部又は全部は、還元剤による還元によって析出し、異物が生じやすかった。しかし、本願発明で使用する(A)成分は、還元剤溶液に溶解し難いので、異物の発生を抑制できる。
(2A-3)工程で用いられる還元剤としては、例えば、次亜リン酸塩、ジメチルアミンボランと有機酸のカリウム塩の混合液等が挙げられる。
還元剤溶液は、通常、酸性の溶液を用いる。このような酸性の溶液は、一般的な磁性粉体を溶解しやすいが、(A)ニッケルを含む磁性粉体は、溶解し難いので、不溶物等の発生を顕著に抑制することができる。この酸性溶液のpHとしては、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。上限は特に制限はないが、好ましくは7未満、6以下等とし得る。
また、還元剤溶液中の還元剤濃度としては、磁性硬化物表面に付与された触媒を活性化させる観点から、規定度で、好ましくは0.3N以上、より好ましくは0.4N以上、さらに好ましくは0.5N以上であり、好ましくは3N以下、より好ましくは2N以下、さらに好ましくは1N以下である。
還元剤溶液は、市販品を用いることができる。市販品としては、例えば、アトテックジャパン社製「リデューサーアクセラレーター810mod.」、「リデューサーネオガントWA」、日本カニゼン社製「K-PVD」等が挙げられる。
(2A-3)工程の処理時間としては、触媒を活性化させる観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
還元剤溶液の温度としては、触媒を活性化させる観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下である。
(2A-3)工程終了後、必要に応じて水洗処理を行ってもよい。
-(3A)工程-
(3A)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。(3A)工程では、図7に一例を示すように、研磨した磁性硬化物30上に、湿式めっきにより導体層40を形成する。さらに、導体層40を形成後、図8に一例を示すように、エッチング等の処理により導体層40、第1金属層12、第2金属層13、及びめっき層20の一部を除去してパターン導体層41を形成してもよい。(3A)工程における導体層40及びパターン導体層41の材料、形成方法等は、上述した(3)工程における導体層の材料、形成方法等として示したものを適用することができる。
<第2実施形態>
第2実施形態における回路基板は、配線を含む基板と、前記配線を封止保護する磁性硬化物と、を含む。例えば、層状の磁性硬化物を備える形態である。第2実施形態における回路基板の製造方法は、
(1B)磁性シートを、樹脂組成物層が基板と接合するように基板上に積層し、樹脂組成物層を熱硬化して磁性硬化物を形成する工程、
(2B)磁性硬化物の表面の少なくとも一部を研磨する工程、及び
(3B)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む。
第2実施形態における回路基板の製造方法は、さらに(1B)工程後(2B)工程前に、
(1B-1)磁性硬化物に穴あけ加工を行う工程を含むことが好ましい。
さらに(2B)工程後(3B)工程前に、
(2B-1)磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング
工程、及び
(2B-2)磁性硬化物表面に触媒を付与する触媒化工程
をこの順でさらに含むことがより好ましく、
(2B-2)工程後(3B)工程前に、
(2B-3)触媒を活性化する触媒活性化工程
をさらに含むことがさらに好ましい。
また、(2B-1)工程後(2B-2)工程前に、
(2B-1-1)界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程を含んでいてもよい。
-(1B)工程-
(1B)工程は、磁性シートを、樹脂組成物層が基板と接合するように基板上に積層し、樹脂組成物層を熱硬化して磁性硬化物を形成する工程である。(1B)工程を行うにあたって、磁性シートを準備する工程を含んでいてもよい。
(1B)工程において、図9に一例を示すように、支持体330と、該支持体330上に設けられた樹脂組成物層320aとを含む磁性シート310を、樹脂組成物層320aが内層基板200と接合するように、内層基板200上に磁性シート310を積層させる。
内層基板200は、絶縁性の基板である。内層基板200の材料としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。内層基板200は、その厚さ内に配線等が作り込まれた内層回路基板であってもよい。
図9に一例を示すように、内層基板200は、第1主表面200a上に設けられる第1導体層420と、第2主表面200b上に設けられる外部端子240とを有している。第1導体層420は、複数の配線を含んでいる。図示例ではインダクタ素子のコイル状導電性構造体400を構成する配線のみが示されている。外部端子240は図示されていない外部の装置等と電気的に接続するための端子である。外部端子240は、第2主表面200bに設けられる導体層の一部として構成することができる。
第1導体層420、外部端子240、その他の導体層を構成し得る導体材料としては、(3)工程において説明した導体層の材料と同様である。
第1導体層420、外部端子240、その他の導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。また、第1導体層420、外部端子240、その他の導体層の厚さは、第1実施形態におけるパターン導体層と同様である。
第1導体層420及び外部端子240のライン(L)/スペース(S)比は特に制限されないが、表面の凹凸を減少させて平滑性に優れる磁性硬化物を得る観点から、通常、900/900μm以下、好ましくは700/700μm以下、より好ましくは500/500μm以下、さらに好ましくは300/300μm以下、さらにより好ましくは200/200μm以下である。ライン/スペース比の下限は特に制限されないが、スペースへの樹脂組成物層の埋め込みを良好にする観点から、好ましくは1/1μm以上である。
内層基板200は第1主表面200aから第2主表面200bに至るように内層基板200を貫通する複数のスルーホール220を有している。スルーホール220にはスルーホール内配線220aが設けられている。スルーホール内配線220aは、第1導体層420と外部端子240とを電気的に接続している。
樹脂組成物層320aと内層基板200との接合は、例えば、支持体330側から、磁性シート310を内層基板200に加熱圧着することにより行うことができる。磁性シート310を内層基板200に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(ステンレス(SUS)鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を磁性シート310に直接的に接触させてプレスするのではなく、内層基板200の表面の凹凸に磁性シート310が十分に追随するよう、耐熱ゴム等の弾性材からなるシート等を介してプレスするのが好ましい。
加熱圧着する際の温度は、好ましくは80℃~160℃、より好ましくは90℃~140℃、さらに好ましくは100℃~120℃の範囲であり、加熱圧着する際の圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着する際の時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。磁性シートと内層基板との接合は、圧力26.7hPa以下の減圧条件下で実施することが好ましい。
磁性シート310の樹脂組成物層320aと内層基板200との接合は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアプリケーター等が挙げられる。
磁性シート310と内層基板200との接合の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された磁性シート31の平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理とは、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
磁性シートを内層基板に積層した後、樹脂組成物層を熱硬化して磁性硬化物を形成する。図10に一例を示すように、内層基板200に接合させた樹脂組成物層320aを熱硬化し第1磁性硬化物層320を形成する。樹脂組成物層320aの熱硬化条件、及び第1磁性硬化物層320の硬化度は、(1)工程において説明した熱硬化条件及び硬化度と同様である。
支持体330は、(1B)工程の熱硬化後と(2B)工程との間に除去してもよく、(2B)工程の後に剥離してもよい。
また、(1B)工程は、磁性シートを内層基板上に積層する代わりに、ペースト状の樹脂組成物(磁性ペースト)を内層基板上に直接塗布又は印刷することにより行ってもよい。
-(1B-1)工程-
(1B-1)工程は、磁性硬化物に穴あけ加工を行う工程である。(1B-1)工程において、図11に一例を示すように、第1磁性硬化物層320に穴あけ加工をし、ビアホール360を形成する。ビアホール360は、第1導体層420と、後述する第2導体層440とを電気的に接続するための経路となる。ビアホール360の形成は(1)工程において説明したスルーホールの形成と同様の方法により行うことができる。
-(2B)工程-
(2B)工程は、磁性硬化物の表面の少なくとも一部を研磨する工程である。(2B)工程における研磨方法としては、第1実施形態の(2A)工程において説明したものと同様の研磨により行うことができる。
(2B)工程後の磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
(2B)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
(2B-1)~(2B-3)工程はそれぞれ第1実施形態の(2A-1)~(2A-3)工程において説明したとおりである。
-(3B)工程-
(3B)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。(3B)工程では、図12に一例を示すように、第1磁性硬化物層320の研磨した面上に、部分的に、第2導体層440を形成する。第2導体層440の形成方法は、第1実施形態において説明したとおりである。なお、この工程により、ビアホール360内にビアホール内配線360aが併せて形成される。第2導体層440を形成することで導体層400が形成する。第2導体層440は、複数の配線を含んでいる。
第2導体層440を構成し得る導体材料は、第1導体層420と同様である。第2導体層440は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。第2導体層440が複層構造である場合、磁性硬化物と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケルクロム合金の合金層であることが好ましい。また、第2導体層440の厚さは、第1導体層420の厚さと同様である。
第1導体層420及び第2導体層440は、例えば後述する図13~15に一例を示すように、渦巻状に設けられていてもよい。一例において、第2導体層440の渦巻状の配線部のうちの中心側の一端はビアホール内配線360aにより第1導体層420の渦巻状の配線部のうちの中心側の一端に電気的に接続されている。第2導体層440の渦巻状の配線部のうちの外周側の他端はビアホール内配線360aにより第1導体層42のランド420aに電気的に接続されている。よって第2導体層440の渦巻状の配線部のうちの外周側の他端はビアホール内配線360a、ランド420a、スルーホール内配線220aを経て外部端子240に電気的に接続される。
コイル状導電性構造体400は、第1導体層420の一部分である渦巻状の配線部、第2導体層440の一部分である渦巻状の配線部、第1導体層420の渦巻状の配線部と第2導体層440の渦巻状の配線部とを電気的に接続しているビアホール内配線360aにより構成されている。
(3B)工程後、さらに導体層上に磁性硬化物を形成する工程を行ってもよい。詳細は、図14に一例を示すように、第2導体層440及びビアホール内配線360aが形成された第1磁性硬化物層320上に第2磁性硬化物を形成する。第2磁性硬化物は既に説明した工程と同様の工程により形成すればよい。
[磁性ペースト]
本発明における樹脂組成物は、液状のエポキシ樹脂等を使用することにより、有機溶剤を含まなくともペースト状の磁性ペーストとすることができる。磁性ペーストが有機溶媒を含む場合、その含有量は、磁性ペーストの全質量に対して、好ましくは1.0質量%未満、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。下限は、特に制限はないが0.001質量%以上、又は含有しないことである。磁性ペースト中の有機溶剤の含有量が少ない、または有機溶剤を含まないことにより、有機溶剤の揮発によるボイドの発生を抑制することができ、さらに取扱い性、作業性にも優れたものとすることができる。
磁性ペーストの粘度は、25℃で好ましくは20Pa・s以上、より好ましくは25Pa・s以上、さらに好ましくは30Pa・s以上、50Pa・s以上であり、通常200Pa・s未満、好ましくは180Pa・s以下、より好ましくは160Pa・s以下である。粘度は、磁性ペーストの温度を25±2℃に保ち、E型粘度計を用いて測定することができる。
このような磁性ペーストは、基板のスルーホール内に充填する際に有用である。
[磁性シート]
磁性シートは、支持体と、該支持体上に設けられた、本発明における樹脂組成物で形成された樹脂組成物層とを含む。
樹脂組成物層の厚さは、薄型化の観点から、好ましくは250μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下、100μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、5μm以上等とし得る。
支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理を施してあってもよい。
また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
支持体の厚みとしては、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
磁性シートは、例えば、有機溶剤に樹脂組成物を溶解した磁性ペーストを調製し、この磁性ペーストを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。なお、樹脂組成物がペースト状の場合、ダイコーター等を用いて支持体上に直接樹脂組成物を塗布して樹脂組成物層を形成させることにより製造することができる。
有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)及びシクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル類、セロソルブ及びブチルカルビトール等のカルビトール類、トルエン及びキシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。磁性ペースト中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む磁性ペーストを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。
磁性シートにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを抑制することができる。磁性シートは、ロール状に巻きとって保存することが可能である。磁性シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
[インダクタ部品]
本発明における回路基板としては、パターン導体層により形成されたインダクタ素子を有するインダクタ部品であることが好ましい。
インダクタ部品は、本発明における回路基板の製造方法により得られた回路基板を含む。このようなインダクタ部品は、回路基板の製造方法の第1実施形態により得られた回路基板を含む場合、前記の樹脂組成物の磁性硬化物の周囲の少なくとも一部に導体によって形成されたインダクタ素子を有する。このようなインダクタ部品は、例えば特開2016-197624号公報に記載のものを適用できる。
また、回路基板の製造方法の第2実施形態により得られた回路基板を含む場合、インダクタ部品は、樹脂組成物(樹脂組成物層)の磁性硬化物と、この磁性硬化物に少なくとも一部分が埋め込まれた導電性構造体とを有しており、この導電性構造体と、磁性硬化物の厚さ方向に延在し、かつ導電性構造体に囲まれた磁性硬化物のうちの一部分によって構成されるインダクタ素子を含んでいる。ここで図13は、インダクタ素子を内蔵するインダクタ部品をその厚さ方向の一方からみた模式的な平面図である。図14は、図13のII-II一点鎖線で示した位置で切断したインダクタ部品の切断端面を示す模式的な図である。図15は、インダクタ部品のうちの第1導体層の構成を説明するための模式的な平面図である。
インダクタ部品100は、図13及び図14に一例として示されるように、複数の磁性硬化物(第1磁性硬化物層320、第2磁性硬化物層340)及び複数の導体層(第1導体層420、第2導体層440)を有する、即ちビルドアップ磁性硬化物層及びビルドアップ導体層を有するビルドアップ配線板であり得る。また、インダクタ部品100は、内層基板200を備えている。
図14より、第1磁性硬化物層320及び第2磁性硬化物層340は一体的な磁性硬化物としてみることができる磁性部300を構成している。よってコイル状導電性構造体400は、磁性部300に少なくとも一部分が埋め込まれるように設けられている。すなわち、本実施形態のインダクタ部品100において、インダクタ素子はコイル状導電性構造体400と、磁性部300の厚さ方向に延在し、かつコイル状導電性構造体400に囲まれた磁性部300のうちの一部分である芯部によって構成されている。
図15に一例として示されるように、第1導体層420はコイル状導電性構造体400を構成するための渦巻状の配線部と、スルーホール内配線220aと電気的に接続される矩形状のランド420aとを含んでいる。図示例では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とランド420aを迂回する迂回部を含んでいる。図示例では第1導体層420の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり反時計回りに巻いている形状を有している。
同様に、第1磁性硬化物層320上には第2導体層440が設けられている。第2導体層440はコイル状導電性構造体400を構成するための渦巻状の配線部を含んでいる。図13又は図14では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とを含んでいる。図13又は図14では第2導体層44の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり時計回りに巻いている形状を有している。
このようなインダクタ部品は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。また、かかる配線板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装したプリント配線板として用いることもできる。
また、かかる配線板を用いて、種々の態様の半導体装置を製造することができる。かかる配線板を含む半導体装置は、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に好適に用いることができる。
[樹脂組成物]
本発明における樹脂組成物は、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む。樹脂組成物は、さらに(D)非磁性無機充填材を含有する場合があり、さらに必要に応じて(E)その他の添加剤を含み得る。
このような樹脂組成物の磁性硬化物を回路基板の製造に用いることにより、磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスで処理液中に生じ得る磁性異物の生成量を抑制することができるため、浴、基板等の汚染を防止することができる。一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れる。以下、本発明における樹脂組成物の各成分について説明する。
<(A)ニッケルを含む磁性粉体>
本発明における樹脂組成物は、(A)ニッケルを含む磁性粉体を含有する。ニッケルを含む磁性粉体としては、例えば、純ニッケル粉末;Ni-Zn系フェライト粉末、Ba-Ni系フェライト粉末、Ba-Ni-Co系フェライト粉末等のニッケル含有酸化鉄粉;Fe-Ni-Cr系合金粉末、Fe-Ni系合金粉末、Fe-Ni-Mo系合金粉末、Fe-Ni-Mo-Cu系合金粉末等のニッケル鉄合金系金属粉等が挙げられる。
ニッケルを含む磁性粉体としては、中でも、ニッケル含有酸化鉄粉及びニッケル鉄合金系金属粉から選ばれる少なくとも1種であることが好ましく、ニッケル鉄合金系金属粉がより好ましく、Fe-Ni系合金粉末及びFe-Ni-Mo系合金粉末であることが特に好ましい。ニッケル含有酸化鉄粉は、Fe、Niに加えて、Cu、Mn、及びZnから選ばれる少なくとも1種を含むものであってもよい。また、ニッケル鉄合金系金属粉は、Fe、Niに加えて、Si、Cr、Al、Mo、Cu、及びCoから選ばれる少なくとも1種を含む鉄合金系金属粉を含むものであってもよい。
(A)成分中のニッケル含有量は、本発明の所望の効果を顕著に得る観点から、例えば10質量%以上、20質量%以上、30質量%以上であり、好ましくは35質量%以上、より好ましくは40質量%以上、特に好ましくは45質量%以上である。上限は、特に限定されるものではないが、例えば、100質量%以下、100質量%未満、95質量%以下、90質量%以下、85質量%以下等とし得る。
(A)成分中の鉄含有量は、特に限定されるものではないが、例えば90質量%以下、80質量%以下、70質量%以下であり、好ましくは65質量%以下、より好ましくは60質量%以下、特に好ましくは55質量%以下である。下限は、特に限定されるものではないが、例えば、0質量%以上、0質量%超、5質量%以上、10質量%以上、15質量%以上等とし得る。
(A)成分としては、市販の磁性粉体を用いることができる。用いられ得る市販の磁性粉体の具体例としては、DOWAエレクトロニクス社製「MA-RCO-5」、エプソンアトミックス社製「80%Ni-4Mo」等が挙げられる。磁性粉体は1種単独で用いてもよく、又は2種以上を併用してもよい。
(A)成分は、球状であることが好ましい。磁性粉体の長軸の長さを短軸の長さで除した値(アスペクト比)としては、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。一般に、磁性粉体は球状ではない扁平な形状であるほうが、比透磁率を向上させやすい。しかし、特に球状の磁性粉体を用いる方が、通常、磁気損失を低くでき、また好ましい粘度を有するペーストを得る観点から好ましい。
(A)成分の平均粒径は、比透磁率を向上させる観点から、好ましくは0.01μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。
(A)成分の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、磁性粉体の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、磁性粉体を超音波により水に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。
(A)成分の比表面積は、比透磁率を向上させる観点から、好ましくは0.05m/g以上、より好ましくは0.1m/g以上、さらに好ましくは0.3m/g以上である。また、好ましくは10m/g以下、より好ましくは8m/g以下、さらに好ましくは5m/g以下である。磁性粉体の比表面積は、BET法によって測定できる。
(A)成分の酸浸漬時の未溶解率、即ち重量保持率は、本発明の所望の効果を顕著に得る観点から、例えば、2N硫酸に40℃5分間浸漬した場合において、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましい。
(A)成分の含有量(体積%)は、比透磁率を向上させ及び損失係数を低減させる観点から、樹脂組成物中の不揮発成分を100体積%とした場合、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上である。また、好ましくは85体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下である。
(A)成分の含有量(質量%)は、比透磁率を向上させ及び損失係数を低減させる観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは78質量%以上である。また、好ましくは98質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。
<(B)エポキシ樹脂>
本発明における樹脂組成物は、(B)エポキシ樹脂を含有する。
(B)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
樹脂組成物は、(B)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。本発明の所望の効果を顕著に得る観点から、(B)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。
エポキシ樹脂には、温度25℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度25℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂を含む。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、固体状エポキシ樹脂を含む。本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよいが、好適な実施形態では、液状エポキシ樹脂のみを含む。
液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。
液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。
液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」(グリシジルアミン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。
固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましい。
固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);新日鉄住金化学社製の「ESN475V」(ナフトール型エポキシ樹脂);新日鉄住金化学社製の「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX4000HK」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(キシレン構造含有ノボラック型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(B)エポキシ樹脂として液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、液状エポキシ樹脂の固体状エポキシ樹脂に対する質量比(液状エポキシ樹脂/固体状エポキシ樹脂)は、質量比で、好ましくは1以上、より好ましくは10以上、特に好ましくは50以上である。
(B)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5000g/eq.、より好ましくは50g/eq.~3000g/eq.、さらに好ましくは80g/eq.~2000g/eq.、さらにより好ましくは110g/eq.~1000g/eq.である。この範囲となることで、磁性シートの磁性硬化物の架橋密度が十分となり、表面粗さの小さい磁性硬化物層をもたらすことができる。エポキシ当量は、1当量のエポキシ基を含む樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。
(B)エポキシ樹脂の重量平均分子量(Mw)は、本発明の所望の効果を顕著に得る観点から、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
(B)エポキシ樹脂の含有量は、特に限定されるものではないが、本発明の所望の効果を顕著に得る観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上、特に好ましくは10質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは20質量%以下である。
<(C)硬化剤>
本発明における樹脂組成物は、(C)硬化剤を含む。
(C)硬化剤としては、エポキシ樹脂を硬化する機能を有する限り特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、リン系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、グアニジン系硬化剤、金属系硬化剤等が挙げられる。中でも、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤が好ましい。(C)硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、被着体に対する密着性の観点から、含窒素フェノール系硬化剤又は含窒素ナフトール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤又はトリアジン骨格含有ナフトール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000H」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」等が挙げられる。
酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられる。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物/ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物(市販品としては新日本理化社製の「HNA-100」)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。
活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンタレン-フェニレンからなる2価の構造単位を表す。
活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000」、「HPC-8000H」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。
ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」などが挙げられる。
シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
カルボジイミド系硬化剤の具体例としては、日清紡ケミカル社製の「V-03」、「V-07」等が挙げられる。
リン系硬化剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。
アミン系硬化剤としては、例えば、トリエチルアミン、トリブチルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセン等の脂肪族アミン系硬化剤;ベンジジン、o-トリジン、4,4’-ジアミノジフェニルメタン、4、4’-ジアミノ-3,3’-ジメチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-100」)、4、4’-ジアミノ-3,3’-ジエチルジフェニルメタン(市販品としては日本化薬製の「カヤハードA-A」)、4、4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-200S」)、4、4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-300S」)、4、4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン(市販品としては三井化学製の「ビスアニリンM」)、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン(市販品としては三井化学製の「ビスアニリンP」)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(市販品としては和歌山精化製の「BAPP」)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミン系硬化剤が挙げられる。
イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン、等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。
イミダゾール系硬化剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200-H50」等が挙げられる。
グアニジン系硬化剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。
金属系硬化剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
エポキシ樹脂と硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2~1:2の範囲が好ましく、1:0.3~1:1.5がより好ましく、1:0.4~1:1.2がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の不揮発成分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の不揮発成分質量を反応基当量で除した値をすべての硬化剤について合計した値である。エポキシ樹脂と硬化剤との量比を斯かる範囲とすることにより、得られる硬化物の耐熱性がより向上する。
(C)硬化剤の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上である。その上限は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。
<(D)非磁性無機充填材>
本発明における樹脂組成物は、任意成分として(D)非磁性無機充填材を含む場合がある。(D)非磁性無機充填材は、(A)成分とは異なり、磁性を伴わない成分である。
(D)非磁性無機充填材の材料は特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられ、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。またシリカとしては球形シリカが好ましい。(D)非磁性無機充填材は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。
(D)非磁性無機充填材の市販品としては、例えば、日本アエロジル社製「RY-200」、「A200」;電化化学工業社製の「UFP-30」;新日鉄住金マテリアルズ社製の「SP60-05」、「SP507-05」;アドマテックス社製の「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」;デンカ社製の「UFP-30」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;アドマテックス社製の「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;などが挙げられる。
(D)非磁性無機充填材の平均粒径は、特に限定されるものではないが、本発明の所望の効果を得る観点から、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは8μm以下、さらにより好ましくは6μm以下、特に好ましくは5μm以下である。非磁性無機充填材の平均粒径の下限は、本発明の所望の効果を得る観点から、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、さらにより好ましくは3μm以上、特に好ましくは4μm以上である。非磁性無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、非磁性無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、非磁性無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で非磁性無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出した。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。
(D)非磁性無機充填材は、耐湿性及び分散性を高める観点から、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、アルコキシシラン化合物、オルガノシラザン化合物、チタネート系カップリング剤などの1種以上の表面処理剤で処理されていることが好ましい。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。
表面処理剤による表面処理の程度は、非磁性無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、非磁性無機充填材100質量%は、0.2質量%~5質量%の表面処理剤で表面処理されていることが好ましく、0.2質量%~3質量%で表面処理されていることが好ましく、0.3質量%~2質量%で表面処理されていることが好ましい。
表面処理剤による表面処理の程度は、非磁性無機充填材の単位表面積当たりのカーボン量によって評価することができる。非磁性無機充填材の単位表面積当たりのカーボン量は、非磁性無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、磁性ペーストの溶融粘度やシート形態での溶融粘度の上昇を防止する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。
(D)非磁性無機充填材の単位表面積当たりのカーボン量は、表面処理後の非磁性無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された非磁性無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて非磁性無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。
(D)非磁性無機充填材の比表面積は、本発明の効果をより向上させる観点から、好ましくは1m/g以上、より好ましくは2m/g以上、特に好ましくは3m/g以上である。上限に特段の制限は無いが、好ましくは50m/g以下、より好ましくは20m/g以下、10m/g以下又は5m/g以下である。非磁性無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。
(D)非磁性無機充填材の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下である。樹脂組成物が(D)非磁性無機充填材を含有する場合、その含有量の下限は、特に限定されるものではないが、例えば、0.001質量%以上、0.01質量%以上、0.1質量%以上、0.2質量%以上等とし得る。
<(E)その他の添加剤>
本発明における樹脂組成物は、さらに必要に応じて、(E)その他の添加剤を含んでいてもよい。斯かるその他の添加剤としては、例えば、その他の樹脂成分、分散剤、ホウ酸トリエチル等の硬化遅延剤、難燃剤、増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤、有機溶剤等が挙げられる。その他の添加剤の含有量は、当業者により適宜設定され得る。
<樹脂組成物の特性>
本発明における樹脂組成物は、磁性粉体としてニッケルを含む磁性粉体を使用しているため、当該樹脂組成物の磁性硬化物を回路基板の製造に使用することにより、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、基板製造における湿式めっきプロセスで処理液中に生成し得る磁性異物の生成量を抑制することができる。
本発明における樹脂組成物を熱硬化して得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合の単位表面積あたりの質量減少量、即ちエッチングレートは、好ましくは25mg/cm以下、より好ましくは20mg/cm以下、さらに好ましくは15mg/cm以下、特に好ましくは12mg/cm以下である。下限は、特に制限されるものではないが、例えば、0.01mg/cm以上、0.1mg/cm以上、1mg/cm以上等とし得る。
本発明における樹脂組成物を熱硬化して得られる磁性硬化物の測定周波数100MHz、室温23℃での比透磁率(μ’)は、好ましくは2以上、より好ましくは3以上、さらに好ましくは3.5以上、特に好ましくは4以上である。
一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れているため、湿式めっきプロセスの(2)研磨工程の研磨を容易に行うことができる。本発明における樹脂組成物は(A)成分を含有していることにより、例えば、樹脂組成物を熱硬化して得られる磁性硬化物表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、好ましくは5H以下、特に好ましくは4H以下となり得る。下限は、好ましくはF以上、より好ましくはH以上、さらに好ましくは2H以上、特に好ましくは3H以上となり得る。
<樹脂組成物の製造方法>
樹脂組成物は、例えば、配合成分を、3本ロール、回転ミキサー、高速回転ミキサーなどの撹拌装置を用いて撹拌する方法によって製造できる。樹脂組成物は、製造後等に脱泡を行ってよい。例えば、静置による脱泡、遠心分離による脱泡、真空脱泡、撹拌脱泡、及びこれらの組合せ等による脱泡が挙げられる。
基板の磁性硬化物を形成するにあたって、樹脂組成物は、ペースト状の樹脂組成物(磁性ペースト)の形態で用いてもよく、該樹脂組成物の層を含む磁性シートの形態で用いてもよい。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
<実施例1>
エポキシ樹脂(「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、日鉄ケミカル&マテリアル社製)8.3質量部、硬化剤(「2MZA-PW」、イミダゾール系硬化促進剤、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、四国化成社製)1質量部、フュームドシリカ(「RY200」、日本アエロジル社製)0.2質量部、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を混合し、ペースト状の樹脂組成物を調製した。
<実施例2>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、53質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例3>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、70質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例4>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「80%Ni-4Mo」、Fe-Ni-Mo系合金、Ni含有率80%:Fe含有率16%:Mo含有率4%、平均粒径3μm、エプソンアトミックス社製)62質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例5>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、44質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例6>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、36質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<比較例1>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「AW2-08PF3F」、Fe-Si系合金、平均粒径3μm、エプソンアトミックス社製)53質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<比較例2>
実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「Fe-6.5Si-4.5Cr」、Fe-Si-Cr系合金、平均粒径3μm、エプソンアトミックス社製)62質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<試験例1:磁性粉体の溶解性評価>
ペースト状樹脂組成物の原料である磁性粉体を10g計量し、2N硫酸100mLに投入し、40℃5分浸漬した。その後、磁性粉体をろ紙(桐山製作所社製、No.5B 60mmφ)を用いて回収し、100℃60分の乾燥を行った後に精密天秤を用いて磁性粉体の重量測定を行い、重量保持率(%)を算出した。
<試験例2:比透磁率評価>
支持体として、シリコン系離型剤処理を施したポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET501010」、厚さ50μm)を用意した。実施例および比較例のペースト状樹脂組成物を上記PETフィルムの離型面上に、乾燥後のペースト層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、樹脂シートを得た。得られた樹脂シートを180℃で90分間加熱することによりペースト層を熱硬化し、支持体を剥離することによりシート状硬化物を得た。
作製したシート状硬化物を、幅5mm、長さ18mmの試験片に切断し、評価サンプルとした。この評価サンプルを、アジレントテクノロジーズ(Agilent Technologies社製、「HP8362B」)を用いて、3ターンコイル法にて測定周波数を100MHzとし、室温23℃にて比透磁率(μ’)を測定した。
<試験例3:エッチングレート評価>
実施例および比較例のペースト状樹脂組成物を用いて作製した試験例2のシート状硬化物を5cmx5cmの大きさに裁断し、130℃で15分乾燥し、該乾燥直後の質量を測定した。これを試料Aとし、試料Aの質量を「X1」とする。試料Aをアトテックジャパン社製のクリーナー・セキュリガンド902に60℃で5分間浸漬し、水洗処理後、ソフトエッチング液(Na:100g/L,HSO(75%aq.)14.2ml/L)に30℃で1分間浸漬した後、粗化試料Aを得た。粗化試料Aを水洗し、130℃で15分乾燥した直後の質量を測定した。該乾燥した直後の粗化試料Aの質量を「X2」とする。下記式により、樹脂組成物の硬化物の粗化処理によるエッチングレート(mg/cm)を求めた。
エッチングレート(mg/cm)={(X1-X2)/25}
<試験例4:鉛筆硬度評価>
実施例および比較例のペースト状樹脂組成物を用いて作製した試験例2のシート状硬化物のPETフィルムと対向していなかった面について、JIS K 5600-5-4の試験方法に従って、シート状硬化物表面の硬度を測定した。キズ跡が生じなかったもっとも硬い鉛筆の硬度を鉛筆硬度とした。
<試験例5:不溶物量評価>
印刷基板として、ガラス布基材エポキシ樹脂両面銅張積層版(銅箔の厚さ18μm、基板厚み0.8mm、松下電工社製R1515A)の両面をマイクロエッチング剤(メック社製CZ8100)にて1μmエッチングして銅表面の粗化処理を行ったものを用意した。用意した印刷基板上に、作製した樹脂組成物をドクターブレードにて均一に塗布し、およそ120μm厚のペースト層を形成した。ペースト層を130℃で30分間加熱し、さらに145℃で30分加熱することにより熱硬化し、磁性硬化物を形成した。形成した磁性硬化物の表面のバフ研磨を実施した後、高圧水洗(3.0MPa、15秒)により洗浄し、180℃で30分加熱することにより熱処理を行った。作製した基板を5cm角に切断した後、この基板を評価基板とした。
作製した評価基板(5cm角)を、還元用溶液(「リデューサーアクセラレーター810mod.」、アトテックジャパン社製、60ml、「リデューサーネオガントWA」、アトテックジャパン社製、3ml)に40℃で24時間浸漬した。析出した沈殿物をろ紙(桐山製作所社製、No.5B 60mmφ)を用いて不溶物としてろ別し、5時間真空乾燥させた後に精密天秤を用いて不溶物量(mg/L)の測定を行い、以下の基準で評価した。
○:不溶物量が300mg/L未満
×:不溶物量が300mg/L以上
実施例及び比較例の樹脂組成物の不揮発成分及びその含有量、並びに試験例の測定結果及び評価を下記表1に示す。
Figure 0007420167000001
実施例より、磁性粉体としてニッケルを含むものを使用した場合に、不溶物量を大きく抑えられることがわかった。一方、ニッケルを含む磁性粉体を使用していない比較例は、多量の不溶物が析出した。また、実施例より、磁性粉体としてニッケルを含むものを使用した場合は、使用していない場合と比較して、鉛筆硬度が低く、研磨性に優れていることがわかった。
10 コア基板
11 支持基板
12 第1金属層
13 第2金属層
14 スルーホール
20 めっき層
30a 樹脂組成物
30 磁性硬化物
40 導体層
41 パターン導体層
100 インダクタ部品
200 内層基板
200a 第1主表面
200b 第2主表面
220 スルーホール
220a スルーホール内配線
240 外部端子
300 磁性部
310 磁性シート
320a 樹脂組成物層
320 第1磁性硬化物層
330 支持体
340 第2磁性硬化物層
360 ビアホール
360a ビアホール内配線
400 コイル状導電性構造体
420 第1導体層
420a ランド
440 第2導体層

Claims (13)

  1. (1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、
    (2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び
    (3)磁性硬化物の研磨した面の直上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、パターン導体層により形成されたインダクタ素子を有する回路基板の製造方法であって、
    樹脂組成物が、
    (A)ニッケルを含む磁性粉体、
    (B)エポキシ樹脂、及び
    (C)硬化剤
    を含み、
    (A)成分中のニッケル含有量が、10質量%~90質量%である、回路基板の製造方法。
  2. (1A)基板のスルーホール内に樹脂組成物を充填し、樹脂組成物を熱硬化して磁性硬化物を形成する工程、
    (2A)磁性硬化物の表面の少なくとも一部を研磨する工程、
    (3A)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、請求項1に記載の回路基板の製造方法。
  3. 樹脂組成物中の(A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、75質量%以上である、請求項1に記載の回路基板の製造方法。
  4. 樹脂組成物中の(A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、98質量%以下である、請求項1に記載の回路基板の製造方法。
  5. (A)成分が、ニッケル鉄合金系金属粉である、請求項1に記載の回路基板の製造方法。
  6. (A)成分中のニッケル含有量が、30質量%~85質量%である、請求項1に記載の回路基板の製造方法。
  7. 2N硫酸に40℃5分浸漬した場合の(A)成分の重量保持率が、90%以上である、請求項1に記載の回路基板の製造方法。
  8. (B)成分が、25℃で液状のエポキシ樹脂を含む、請求項1に記載の回路基板の製造方法。
  9. (C)成分が、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤からなる群から選ばれる硬化剤である、請求項1に記載の回路基板の製造方法。
  10. (1)工程で得られる磁性硬化物の表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、F~5Hである、請求項1に記載の回路基板の製造方法。
  11. (1)工程で得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合のエッチングレートが、25mg/cm以下である、請求項1に記載の回路基板の製造方法。
  12. 樹脂組成物がペースト状である、請求項1に記載の回路基板の製造方法。
  13. (1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、
    (2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び
    (3)磁性硬化物の研磨した面の直上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、パターン導体層により形成されたインダクタ素子を有する回路基板の製造方法に使用するための樹脂組成物であって、
    (A)ニッケルを含む磁性粉体、
    (B)エポキシ樹脂、及び
    (C)硬化剤
    を含み、
    (A)成分中のニッケル含有量が、10質量%~90質量%である、樹脂組成物。
JP2022100693A 2019-03-18 2022-06-22 回路基板の製造方法 Active JP7420167B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019050281 2019-03-18
JP2019050281 2019-03-18
JP2021507382A JP7414805B2 (ja) 2019-03-18 2020-03-17 回路基板の製造方法
PCT/JP2020/011829 WO2020189692A1 (ja) 2019-03-18 2020-03-17 回路基板の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021507382A Division JP7414805B2 (ja) 2019-03-18 2020-03-17 回路基板の製造方法

Publications (2)

Publication Number Publication Date
JP2022126796A JP2022126796A (ja) 2022-08-30
JP7420167B2 true JP7420167B2 (ja) 2024-01-23

Family

ID=72520158

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021507382A Active JP7414805B2 (ja) 2019-03-18 2020-03-17 回路基板の製造方法
JP2022100693A Active JP7420167B2 (ja) 2019-03-18 2022-06-22 回路基板の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021507382A Active JP7414805B2 (ja) 2019-03-18 2020-03-17 回路基板の製造方法

Country Status (6)

Country Link
EP (1) EP3944272A4 (ja)
JP (2) JP7414805B2 (ja)
KR (1) KR20210138607A (ja)
CN (1) CN113597652A (ja)
TW (1) TW202103188A (ja)
WO (1) WO2020189692A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763499B (zh) * 2021-05-24 2022-05-01 大陸商宏啟勝精密電子(秦皇島)有限公司 電路板及其製造方法
CN113573486B (zh) * 2021-09-28 2021-12-14 广东科翔电子科技股份有限公司 一种rf-ic载板制作装置以及制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096665A (ja) 1999-10-01 2001-04-10 Tdk Corp 基 板
JP2001203463A (ja) 2000-01-21 2001-07-27 Taiyo Ink Mfg Ltd 層間接続用導電性ペースト、及びそれを用いた多層プリント配線板とその製造方法
JP2002175921A (ja) 2000-09-20 2002-06-21 Tdk Corp 電子部品およびその製造方法
JP2004047700A (ja) 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
JP2005317351A (ja) 2004-04-28 2005-11-10 Alps Electric Co Ltd 導電性ペースト
JP2008081818A (ja) 2006-09-28 2008-04-10 Sumitomo Osaka Cement Co Ltd ニッケル―鉄合金ナノ粒子の前駆体粉末の製造方法およびニッケル―鉄合金ナノ粒子の前駆体粉末、ニッケル―鉄合金ナノ粒子の製造方法およびニッケル―鉄合金ナノ粒子
KR101564197B1 (ko) 2015-05-19 2015-10-28 주식회사 뉴프린텍 홀 플러깅용 복합 수지 조성물
JP2016197624A (ja) 2015-04-02 2016-11-24 イビデン株式会社 インダクタ部品、インダクタ部品の製造方法、インダクタ部品を内蔵するプリント配線板
JP2018133358A (ja) 2017-02-13 2018-08-23 株式会社豊田中央研究所 印刷用磁性体ペースト及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129449A (ja) * 1995-10-30 1997-05-16 Toshiba Corp インダクタおよびその製造方法
TW575632B (en) * 2000-07-13 2004-02-11 Ngk Spark Plug Co Paste for filling throughhole and printed wiring board using same
JP2009016504A (ja) 2007-07-03 2009-01-22 Shinko Electric Ind Co Ltd インダクタ内蔵型多層配線基板
JP2012131899A (ja) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂シート、金属ベース回路基板、インバータ装置、及びパワー半導体装置
JP2012186440A (ja) 2011-02-18 2012-09-27 Ibiden Co Ltd インダクタ部品とその部品を内蔵しているプリント配線板及びインダクタ部品の製造方法
JP6407186B2 (ja) * 2016-03-23 2018-10-17 Tdk株式会社 電子回路パッケージ
JP6953279B2 (ja) * 2016-12-07 2021-10-27 日東電工株式会社 モジュールの製造方法
WO2018194100A1 (ja) * 2017-04-19 2018-10-25 味の素株式会社 樹脂組成物
JP6901327B2 (ja) * 2017-06-12 2021-07-14 株式会社フジミインコーポレーテッド フィラー、成形体、及び放熱材料
KR20200130323A (ko) * 2018-03-23 2020-11-18 아지노모토 가부시키가이샤 스루홀 충전용 페이스트

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096665A (ja) 1999-10-01 2001-04-10 Tdk Corp 基 板
JP2001203463A (ja) 2000-01-21 2001-07-27 Taiyo Ink Mfg Ltd 層間接続用導電性ペースト、及びそれを用いた多層プリント配線板とその製造方法
JP2002175921A (ja) 2000-09-20 2002-06-21 Tdk Corp 電子部品およびその製造方法
JP2004047700A (ja) 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
JP2005317351A (ja) 2004-04-28 2005-11-10 Alps Electric Co Ltd 導電性ペースト
JP2008081818A (ja) 2006-09-28 2008-04-10 Sumitomo Osaka Cement Co Ltd ニッケル―鉄合金ナノ粒子の前駆体粉末の製造方法およびニッケル―鉄合金ナノ粒子の前駆体粉末、ニッケル―鉄合金ナノ粒子の製造方法およびニッケル―鉄合金ナノ粒子
JP2016197624A (ja) 2015-04-02 2016-11-24 イビデン株式会社 インダクタ部品、インダクタ部品の製造方法、インダクタ部品を内蔵するプリント配線板
KR101564197B1 (ko) 2015-05-19 2015-10-28 주식회사 뉴프린텍 홀 플러깅용 복합 수지 조성물
JP2018133358A (ja) 2017-02-13 2018-08-23 株式会社豊田中央研究所 印刷用磁性体ペースト及びその製造方法

Also Published As

Publication number Publication date
JP2022126796A (ja) 2022-08-30
JP7414805B2 (ja) 2024-01-16
EP3944272A4 (en) 2022-12-28
KR20210138607A (ko) 2021-11-19
WO2020189692A1 (ja) 2020-09-24
EP3944272A1 (en) 2022-01-26
TW202103188A (zh) 2021-01-16
CN113597652A (zh) 2021-11-02
JPWO2020189692A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
TWI781166B (zh) 樹脂組成物、硬化物、接著薄膜、內載電感元件之配線板、晶片電感零件以及印刷配線板
JP7235081B2 (ja) スルーホール充填用ペースト
TWI701289B (zh) 樹脂組成物
JP7392743B2 (ja) 磁性ペースト
JP7393856B2 (ja) インダクタ基板の製造方法
JP7420167B2 (ja) 回路基板の製造方法
JP7354525B2 (ja) 樹脂組成物
JP2017179058A (ja) 樹脂シート
JP2017149861A (ja) 支持体付き樹脂シート
JP2017177461A (ja) 樹脂シート
JP2023164858A (ja) 磁性組成物
JP2017177469A (ja) 樹脂シート
JP7287418B2 (ja) 樹脂組成物
JP2024010200A (ja) 樹脂組成物
JP7379829B2 (ja) プリント配線板の製造方法
JP2017103332A (ja) 半導体チップパッケージの製造方法
JP7222228B2 (ja) 基板の製造方法
JP7371590B2 (ja) プリント配線板の製造方法
TW202245556A (zh) 樹脂組成物
JP7463736B2 (ja) 樹脂組成物
TWI811344B (zh) 附有支撐體的接著薄片
JP7423896B2 (ja) 基板の製造方法
TW202134341A (zh) 磁性糊料
WO2024048283A1 (ja) 磁性基板の製造方法、及び、磁性基板
WO2023176284A1 (ja) 樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7420167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150