WO2024048283A1 - 磁性基板の製造方法、及び、磁性基板 - Google Patents

磁性基板の製造方法、及び、磁性基板 Download PDF

Info

Publication number
WO2024048283A1
WO2024048283A1 PCT/JP2023/029610 JP2023029610W WO2024048283A1 WO 2024048283 A1 WO2024048283 A1 WO 2024048283A1 JP 2023029610 W JP2023029610 W JP 2023029610W WO 2024048283 A1 WO2024048283 A1 WO 2024048283A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
mass
resin composition
resin
Prior art date
Application number
PCT/JP2023/029610
Other languages
English (en)
French (fr)
Inventor
孝幸 田中
駿介 森元
達也 本間
秀樹 大山
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2024048283A1 publication Critical patent/WO2024048283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a method for manufacturing a magnetic substrate and a magnetic substrate.
  • a method for directly providing an inductor on a substrate for example, a method is known in which a magnetic layer is formed in the hole of the substrate using a cured product of a resin composition containing a magnetic material, and a conductive layer is formed on the surface of the magnetic layer. ing.
  • the conductor layer is usually formed by a plating method. Among plating methods, electroless plating can form a conductive layer on the surface of a non-conductive material, but it is generally difficult to increase the thickness of the conductive layer.
  • the present invention was devised in view of the above problems, and includes a method for manufacturing a magnetic substrate, which includes forming a conductive layer on the surface of a magnetic layer by electroplating;
  • An object of the present invention is to provide a magnetic substrate including a conductor layer formed by the method.
  • the present inventors of the present invention have made extensive studies to solve the above problems. As a result, the present inventor discovered that the surface of a cured resin composition containing a combination of (A) magnetic powder and (B) thermosetting resin containing the (A-1) alloy powder in a specific range. In addition, we discovered that a conductor layer can be formed by electroplating. Then, the present inventors completed the present invention based on the knowledge that the above-mentioned problems can be solved by applying the above-mentioned cured product to a magnetic layer. That is, the present invention includes the following.
  • a method for manufacturing a magnetic substrate comprising a magnetic layer and a conductor layer formed on the surface of the magnetic layer, Including a step (EP) of forming a conductive layer on the surface of the magnetic layer by electroplating,
  • the magnetic layer includes a cured product of a resin composition containing (A) magnetic powder and (B) a thermosetting resin,
  • a step (LF) of forming a resin composition layer containing the resin composition Before the process (EP), A step (LF) of forming a resin composition layer containing the resin composition;
  • step (EP) Before the step (EP), including a step (HF) of forming a second hole in the magnetic layer, The method for manufacturing a magnetic substrate according to any one of [1] to [4], wherein the step (EP) includes forming a conductor layer on the surface of the second hole of the magnetic layer by electroplating.
  • step (EP) Production of the magnetic substrate according to any one of [1] to [5], wherein the amount of the magnetic powder (A) is 60% by mass or more based on 100% by mass of nonvolatile components in the resin composition. Method.
  • the alloy powder is one or more selected from the group consisting of Fe-Ni alloy powder, Fe-Cr-Si alloy powder, and Fe-Ni-Cr alloy powder.
  • the method for manufacturing a magnetic substrate according to any one of [1] to [7].
  • a magnetic substrate comprising a magnetic layer in which a hole is formed and a conductor layer formed in the hole, The magnetic layer and the conductor layer are in direct contact with each other, and there is no plating catalyst at the interface between the magnetic layer and the conductor layer.
  • the magnetic layer includes a cured product of a resin composition containing (A) magnetic powder and (B) a thermosetting resin, (A) A magnetic substrate in which the magnetic powder contains 30% by mass or more of (A-1) alloy powder based on 100% by mass of the (A) magnetic powder. [10] The magnetic substrate according to [9], wherein the conductor layer is made of copper.
  • a method for manufacturing a magnetic substrate includes forming a conductor layer on the surface of a magnetic layer by electroplating; the method includes: a magnetic layer; and a conductor layer formed on the surface of the magnetic layer by electroplating A magnetic substrate; can be provided.
  • FIG. 1 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 2 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 3 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 4 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 5 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 6 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 7 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 8 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 9 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 10 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 11 is a schematic cross-sectional view for explaining the steps of a method for manufacturing a magnetic substrate according to an example.
  • FIG. 12 is a schematic cross-sectional view of a magnetic substrate according to an example.
  • the resin component of the resin composition refers to the non-volatile components of the resin composition excluding (A) inorganic particles such as magnetic powder.
  • a manufacturing method is a method for manufacturing a magnetic substrate including a magnetic layer and a conductor layer formed on the surface of the magnetic layer.
  • the magnetic layer includes a cured product of a resin composition containing (A) magnetic powder and (B) a thermosetting resin.
  • the (A) magnetic powder contains the (A-1) alloy powder in an amount within a specific range. Since a conductor layer can be formed on the surface of such a magnetic layer by electroplating, formation of a conductor layer (seed layer) by electroless plating can be omitted. Therefore, the manufacturing method according to the present embodiment can include a step (EP) of forming a conductor layer on the surface of the magnetic layer by electroplating.
  • the above-mentioned conductor layer formed by electroplating on the surface of the magnetic layer is sometimes referred to as an "electroplated layer" hereinafter.
  • the manufacturing method according to this embodiment Since the formation of a conductor layer (seed layer) by electroless plating can be omitted, according to the manufacturing method according to this embodiment, it is possible to reduce the number of steps and form an electroplated layer simply and in a short time. Furthermore, since electroless plating is not required, a chemical solution for electroless plating is not required. Therefore, since there is no need to manage the components of the chemical solution, the manufacturing process of the magnetic substrate can be simplified. In this regard, if a chemical solution for electroless plating is used, depending on the type of (A-1) alloy powder, the (A-1) alloy powder may dissolve in the chemical solution, making management of the chemical components complicated.
  • a magnetic layer containing the (A-1) alloy powder can usually have excellent magnetic properties.
  • metal ions in the plating solution are reduced and precipitated on the surface of the cathode to be plated, so that a conductor layer is formed. Since the reduction of metal ions requires the application of electric current, it has conventionally been common knowledge among those skilled in the art that reduction of metal ions occurs only on the surface of the cathode formed of a conductor. For example, with a conventional magnetic layer having a high volume resistance, even if electroplating was performed, it was not possible to form a conductor layer on the surface of the magnetic layer.
  • the magnetic layer containing the (A) magnetic powder containing the (A-1) alloy powder in a specific range has a resistance greater than that of the conductor. It is possible to form an electroplated layer as a conductive layer on the surface of the substrate by electroplating. Even if the magnetic layer according to the present embodiment has a volume resistance comparable to that of a conventional magnetic layer, the magnetic layer containing (A) magnetic powder containing (A-1) alloy powder in a specific range of amount An electroplated layer can be formed on the surface of the magnetic layer according to the embodiment. Such a phenomenon is surprising to those skilled in the art.
  • the present inventor conjectures as follows how the electroplated layer is formed on the surface of the magnetic layer by electroplating as described above. Assume that wiring is connected to the magnetic layer for electroplating.
  • the (A-1) alloy powder has conductivity, but all or most of the particles of the (A-1) alloy powder are usually insulated from each other by a resin component. Therefore, the magnetic layer usually has insulating properties.
  • the (A-1) alloy powder in the (A) magnetic powder The distance between the particles is close.
  • the manufacturing method according to the present embodiment includes, before the step (EP), a step (LF) of forming a resin composition layer containing a resin composition, and a step (LF) of curing the resin composition layer to form a magnetic layer.
  • CU a step of forming a resin composition layer (LF), a step of curing the resin composition layer to form a magnetic layer (CU), and electroplating on the surface of the magnetic layer.
  • the step (EP) of forming an electroplating layer may be included in this order.
  • the manufacturing method according to the present embodiment does not include a step of forming a conductive layer on the surface of the magnetic layer by a method other than electroplating between the step (CU) and the step (EP), and can be manufactured.
  • the resin composition according to this embodiment includes (A) magnetic powder and (B) thermosetting resin. Moreover, this resin composition may contain arbitrary components in combination with (A) magnetic powder and (B) thermosetting resin.
  • the resin composition according to this embodiment includes (A) magnetic powder as the (A) component.
  • the magnetic powder may be particles of a material having a relative magnetic permeability greater than 1.
  • the material of the magnetic powder is usually an inorganic material, and may be a soft magnetic material or a hard magnetic material. Moreover, the materials for the magnetic powder (A) may be used alone or in combination of two or more. Therefore, the magnetic powder (A) may be a soft magnetic powder, a hard magnetic powder, or a combination of a soft magnetic powder and a hard magnetic powder. Among these, the magnetic powder (A) preferably contains soft magnetic powder, and more preferably contains only soft magnetic powder. Moreover, (A) magnetic powder may be used alone or in combination of two or more types.
  • Magnetic powder includes (A-1) alloy powder.
  • the alloy powder (A-1) as the component is alloy particles.
  • alloy powder examples include Fe-Si alloy powder, Fe-Si-Al alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy powder, -Ni-Cr alloy powder, Fe-Cr-Al alloy powder, Fe-Ni alloy powder, Fe-Ni-Si alloy powder, Fe-Ni-B alloy powder, Fe-Ni Examples include -Mo alloy powder, Fe-Ni-Mo-Cu alloy powder, Fe-Co alloy powder, Fe-Ni-Co alloy powder, Co-based amorphous alloy powder, and the like.
  • the alloy contained in the alloy powder may be crystalline, amorphous, or a combination thereof.
  • the alloy powder (A-1) iron alloy powder in the form of particles of an alloy containing iron is more preferable.
  • iron alloy powders iron alloy powders containing Fe element and at least one element selected from the group consisting of Ni, Cr and Si are more preferable, and Fe-Ni alloy powders, Fe-Cr -One or more types selected from the group consisting of Si-based alloy powder and Fe-Ni-Cr-based alloy powder are particularly preferred.
  • the Fe--Ni alloy powder refers to an alloy powder containing Fe and Ni.
  • the Fe-Cr-Si alloy powder refers to an alloy powder containing Fe, Cr, and Si.
  • the Fe--Ni--Cr alloy powder refers to an alloy powder containing Fe, Ni, and Cr.
  • A-1) As the alloy powder, commercially available products may be used. Commercially available (A-1) alloy powders include, for example, “AKT-PB (5)" (Fe-Ni alloy powder) and “AKT-PB-3Si (5)" (Fe -Ni-Si alloy powder); “CVD iron powder” (Fe-Cr-Si alloy powder) manufactured by JFE Minerals; “AW2-08 PF3F” (Fe-Si-Cr alloy powder) manufactured by Epson Atomics Examples include “MA-RCO-5" (Fe-Ni-B alloy) and “MA-RCO-24” (Fe-Ni alloy) manufactured by DOWA Electronics.
  • A-1 alloy powders include, for example, “AKT-PB (5)" (Fe-Ni alloy powder) and “AKT-PB-3Si (5)” (Fe -Ni-Si alloy powder); “CVD iron powder” (Fe-Cr-Si alloy powder) manufactured by JFE Minerals; “AW2-08 PF3
  • A-1) One type of alloy powder may be used alone, or two or more types may be used in combination.
  • the alloy powder preferably has an average particle size within a specific range.
  • the average particle diameter range of the alloy powder is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, even more preferably 0.1 ⁇ m or more, and preferably 800 ⁇ m or less, more preferably 300 ⁇ m.
  • the thickness is more preferably 100 ⁇ m or less.
  • the average particle size represents the volume-based median diameter.
  • This average particle size can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, a particle size distribution can be created on a volume basis using a laser diffraction scattering type particle size distribution measuring device, and the median diameter can be measured as the average particle size.
  • the measurement sample it is preferable to use a powder obtained by dispersing powder in water using ultrasonic waves.
  • the laser diffraction scattering particle size distribution measuring device "LA-500" manufactured by Horiba, "SALD-2200” manufactured by Shimadzu Corporation, etc. can be used.
  • the specific surface area of the alloy powder is preferably 0.05 m 2 /g or more, more preferably 0.1 m 2 /g or more, and even more preferably 0.3 m 2 from the viewpoint of improving relative magnetic permeability. /g or more, preferably 10 m 2 /g or less, more preferably 8 m 2 /g or less, even more preferably 5 m 2 /g or less.
  • the specific surface area of the alloy powder can be measured by the BET method. Specifically, the specific surface area can be measured using the BET multipoint method by adsorbing nitrogen gas onto the surface of the sample using a specific surface area measuring device ("Macsorb HM Model 1210" manufactured by Mountec).
  • the particles of the alloy powder are preferably spherical or ellipsoidal particles.
  • the range of the ratio (aspect ratio) obtained by dividing the length of the major axis of the particle of the alloy powder by the length of the minor axis is preferably 2 or less, more preferably 1.5 or less, and even more preferably It is 1.2 or less, and usually 1.0 or more.
  • the shape of the particles of magnetic powder is flat rather than spherical, the relative magnetic permeability can be easily improved.
  • the shape of the magnetic powder particles is close to spherical, magnetic loss can be easily reduced.
  • the range of true specific gravity of the alloy powder may be, for example, 4 g/cm 3 to 10 g/cm 3 .
  • (A) magnetic powder contains (A-1) alloy powder in a specific range of amount.
  • the range of the specific amount (mass%) of the alloy powder is usually 30% by mass or more, preferably 40% by mass or more, and more preferably It is 50% by mass or more, and may be 60% by mass or more.
  • the upper limit is usually 100% by mass or less.
  • the range of the amount (volume %) of the alloy powder is preferably 20 volume % or more, more preferably 30 volume % or more, still more preferably 40 volume %, based on 100 volume % of the (A) magnetic powder.
  • the amount is at least 50% by volume, and may be at least 50% by volume.
  • the upper limit is usually 100% by volume or less.
  • the volume-based amount (volume %) of each component contained in the resin composition is calculated from the mass of the component contained in the resin composition. Specifically, the volume of each component is determined by dividing the mass by the specific gravity, and the volume-based amount (volume %) can be calculated from the volume of each component thus determined.
  • the range of the amount (mass%) of the alloy powder is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass, based on 100% by mass of the nonvolatile components of the resin composition. It is at least 99% by mass, more preferably at most 98% by mass, even more preferably at most 97% by mass.
  • a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating. .
  • the surface smoothness of the electroplated layer to be formed can be improved.
  • the range of the amount (volume%) of the alloy powder is preferably 10% by volume or more, more preferably 13% by volume or more, even more preferably 16% by volume, based on 100% by volume of the nonvolatile components of the resin composition. It is at least 90% by volume, more preferably at most 85% by volume, even more preferably at most 80% by volume.
  • a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating. .
  • the surface smoothness of the electroplated layer to be formed can be improved.
  • Magnetic powder may contain any magnetic powder (A-2) other than (A-1) alloy powder.
  • A-2) Examples of the arbitrary magnetic powder include magnetic metal oxide powder, magnetic metal powder other than the above-mentioned (A-1) alloy powder, and the like.
  • the magnetic metal oxide powder examples include Fe-Mn ferrite powder, Fe-Mn-Mg ferrite powder, Fe-Mn-Mg-Sr ferrite powder, and Fe-Mg-Zn ferrite powder.
  • Examples of magnetic metal powder other than alloy powder include pure iron powder.
  • A-2) Among any magnetic powders, magnetic metal oxide powders are preferred, and ferrite powders are more preferred. Ferrite powder is usually made of a complex oxide mainly composed of iron oxide and is chemically stable. Therefore, ferrite powder has advantages such as high corrosion resistance, low risk of ignition, and resistance to demagnetization. Among them, ferrite powder containing at least one element selected from the group consisting of Mn and Zn is preferred, ferrite powder containing Mn is more preferred, Fe-Mn ferrite powder and Fe-Mn-Zn ferrite powder. Particularly preferred is the body.
  • the Fe--Mn-based ferrite powder represents a ferrite powder containing Fe and Mn
  • the Fe--Mn--Zn-based ferrite powder represents a ferrite powder containing Fe, Mn, and Zn.
  • A-2) As the optional magnetic powder, commercially available products may be used.
  • Commercially available magnetic powders (A-2) include, for example, “M001”, “M03S”, “M05S”, “MZ03S”, and “MZ05S” manufactured by Powder Tech; “AW2-08” manufactured by Epson Atomics; “; JFE Chemical "LD-M”, “LD-MH”, “KNI-106”, “KNI-106GSM”, “KNI-106GS”, “KNI-109”, “KNI-109GSM”; Toda Industries Examples include “KNS-415,” “BSF-547,” “BSF-029,” “BSN-125,” “BSN-714,” and “BSN-828” manufactured by the company.
  • A-2 One type of arbitrary magnetic powder may be used alone, or two or more types may be used in combination.
  • the average particle size of any magnetic powder is not particularly limited.
  • the average particle size of the arbitrary magnetic powder is preferably smaller than the average particle size of (A-1) the alloy powder. Any magnetic powder (A-2) smaller than the (A-1) alloy powder can enter the gaps between the particles of the (A-1) alloy powder. Therefore, since the packing density of the magnetic powder (A) in the entire magnetic layer can be increased, the magnetic properties can be particularly improved.
  • the distance between the particles of the (A-1) alloy powder is the excluded volume of the particles of the (A-2) arbitrary magnetic powder. Since the spread is suppressed, the current flow during electroplating can be made smooth and the electroplating layer can be formed efficiently.
  • the specific range of the average particle size of any magnetic powder is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, even more preferably 0.1 ⁇ m or more, and preferably 500 ⁇ m or less. , more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less.
  • the specific surface area of any magnetic powder is not particularly limited. From the viewpoint of improving the relative magnetic permeability, it is preferable that the range of the specific surface area of (A-2) any magnetic powder is the same as the range of the specific surface area of the alloy powder (A-1).
  • the shape of the arbitrary magnetic powder is not particularly limited.
  • any magnetic powder may have the same shape as the particles of (A-1) alloy powder. Therefore, (A-2) the range of aspect ratios of particles of arbitrary magnetic powder may be the same as the range of aspect ratios of particles of (A-1) alloy powder.
  • the true specific gravity of any magnetic powder is not particularly limited.
  • (A-2) the true specific gravity range of any magnetic powder may be the same as the true specific gravity range of (A-1) the alloy powder.
  • the range of the amount (mass%) of the magnetic powder (A) is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass, based on 100% by mass of the nonvolatile components of the resin composition. or more, preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 97% by mass or less.
  • the total amount of (A) magnetic powder including (A-1) alloy powder and (A-2) any magnetic powder is within the above range, it is possible to obtain a magnetic layer having excellent magnetic properties.
  • an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating.
  • the amount (% by mass) of the magnetic powder (A) is preferably 85% by mass or more.
  • the amount of magnetic powder is large like this, it is possible to densely distribute the (A-1) alloy powder, which serves as the starting point for the precipitation of metal ions to form the electroplated layer, so that the precipitation It is possible to efficiently obtain an electroplated layer with a smooth surface by suppressing variations in the degree of .
  • the range of the amount (volume %) of the magnetic powder is preferably 30 volume % or more, more preferably 40 volume % or more, still more preferably 50 volume %, based on 100 volume % of the nonvolatile components of the resin composition.
  • the content is preferably 90% by volume or less, more preferably 85% by volume or less, even more preferably 80% by volume or less.
  • the amount (volume %) of the magnetic powder (A) is preferably 55 volume % or more.
  • the amount of magnetic powder is large like this, it is possible to densely distribute the (A-1) alloy powder, which serves as the starting point for the precipitation of metal ions to form the electroplated layer, so that the precipitation It is possible to efficiently obtain an electroplated layer with a smooth surface by suppressing variations in the degree of .
  • the resin composition according to the present embodiment includes (B) a thermosetting resin as the (B) component.
  • Thermosetting resin can usually bind (A) magnetic powder.
  • the thermosetting resin (B) can react with heat to form a bond, thereby curing the resin composition. Therefore, a resin composition containing a combination of (A) magnetic powder and (B) thermosetting resin can be cured to form a cured product. A magnetic layer can then be formed using this cured product.
  • thermosetting resin examples include epoxy resin, phenol resin, active ester resin, amine resin, acid anhydride resin, benzoxazine resin, cyanate ester resin, carbodiimide resin, etc. It will be done.
  • the thermosetting resin may be used alone or in combination of two or more.
  • the thermosetting resin preferably contains (B-1) an epoxy resin.
  • (B-1) Epoxy resin represents a resin having one or more epoxy groups in the molecule.
  • Epoxy resins include, for example, bixylenol type epoxy resin; bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; Phenol type epoxy resin; Phenol novolak type epoxy resin; Glycidylamine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolak type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Epoxy resin having a butadiene structure; Alicyclic resin Formula epoxy resin; alicyclic epoxy resin having an ester skeleton; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexane type epoxy resin; cyclohexanedimethanol type epoxy resin; trimethylol type epoxy resin;
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule.
  • the proportion of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass or more, more preferably 60% by mass or more, and Preferably it is 70% by mass or more.
  • the epoxy resin preferably has an aromatic structure.
  • the aromatic structure is a chemical structure that is generally defined as aromatic, and also includes polycyclic aromatics and aromatic heterocycles.
  • Epoxy resins include epoxy resins that are liquid at a temperature of 20°C (hereinafter sometimes referred to as “liquid epoxy resins”) and epoxy resins that are solid at a temperature of 20°C (hereinafter referred to as “solid epoxy resins”). ).
  • the epoxy resin may be only a liquid epoxy resin, only a solid epoxy resin, or a combination of a liquid epoxy resin and a solid epoxy resin.
  • the epoxy resin (B-1) preferably contains a liquid epoxy resin, and particularly preferably contains only a liquid epoxy resin.
  • liquid epoxy resin a liquid epoxy resin having two or more epoxy groups in one molecule is preferable.
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolak type epoxy resin, and ester skeleton.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidylamine type epoxy resin and cyclohexane type epoxy resin are particularly preferred.
  • liquid epoxy resins include “YX7400” manufactured by Mitsubishi Chemical; “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US” and “828EL” manufactured by Mitsubishi Chemical.
  • Solid epoxy resin a solid epoxy resin having three or more epoxy groups in one molecule is preferable, and an aromatic solid epoxy resin having three or more epoxy groups in one molecule is more preferable.
  • Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, and biphenyl.
  • Type epoxy resins naphthylene ether type epoxy resins, anthracene type epoxy resins, bisphenol A type epoxy resins, bisphenol AF type epoxy resins, and tetraphenylethane type epoxy resins are preferred, and dicyclopentadiene type epoxy resins are particularly preferred.
  • solid epoxy resins include “HP4032H” (naphthalene type epoxy resin) manufactured by DIC; “HP-4700” and “HP-4710” (naphthalene type tetrafunctional epoxy resin) manufactured by DIC; “N-690” (cresol novolak type epoxy resin) manufactured by DIC; “N-695” (cresol novolac type epoxy resin) manufactured by DIC; “HP-7200”, “HP-7200HH”, “HP” manufactured by DIC -7200H” (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", “EXA-7311-G3", “EXA-7311-G4", "EXA-7311-G4S”, "HP6000” ( naphthylene ether type epoxy resin); "EPPN-502H” (trisphenol type epoxy resin) manufactured by Nippon Kayaku; "NC7000L” (naphthol novolac type epoxy resin) manufactured by Nippon Kayaku; "NC3000H",
  • the mass ratio of the liquid epoxy resin to the solid epoxy resin is preferably 0.5 or more, More preferably, it is 1 or more, still more preferably 5 or more, and still more preferably 10 or more.
  • the epoxy equivalent of the epoxy resin is preferably 50 g/eq. ⁇ 5000g/eq. , more preferably 60g/eq. ⁇ 3000g/eq. , more preferably 80g/eq. ⁇ 2000g/eq. , even more preferably 110 g/eq. ⁇ 1000g/eq. It is.
  • Epoxy equivalent is the mass of resin containing one equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, and still more preferably 400 to 1,500.
  • the weight average molecular weight of the resin can be measured as a value in terms of polystyrene by gel permeation chromatography (GPC).
  • the amount (% by mass) of the epoxy resin (B-1) contained in the resin composition is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the nonvolatile components of the resin composition.
  • the content is 5% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less.
  • the range of the amount (mass%) of the (B-1) epoxy resin contained in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of the resin component of the resin composition. , more preferably 30% by mass or more, preferably 96% by mass or less, more preferably 93% by mass or less, still more preferably 90% by mass or less.
  • B-1 When the amount of epoxy resin is within the above range, a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating.
  • the amount (% by mass) of the epoxy resin (B-1) contained in the resin composition is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the (A) magnetic powder.
  • the content is 5% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 16% by mass or less, even more preferably 12% by mass or less.
  • the (B) thermosetting resin when the (B) thermosetting resin contains the (B-1) epoxy resin, the (B) thermosetting resin preferably contains a resin that can react with and bond to the (B-1) epoxy resin.
  • B-1) A resin capable of reacting and bonding with an epoxy resin is sometimes referred to as "(B-2) curing agent” hereinafter.
  • the curing agent include phenolic resins, active ester resins, amine resins, carbodiimide resins, acid anhydride resins, benzoxazine resins, cyanate ester resins, and thiol resins. Can be mentioned.
  • One type of curing agent may be used alone, or two or more types may be used in combination. Among these, phenolic resins are preferred.
  • phenolic resin a resin having one or more, preferably two or more, hydroxyl groups bonded to an aromatic ring such as a benzene ring or a naphthalene ring in one molecule can be used.
  • aromatic ring such as a benzene ring or a naphthalene ring in one molecule
  • phenolic resins having a novolak structure are preferred.
  • adhesion nitrogen-containing phenolic resins are preferred, and triazine skeleton-containing phenolic resins are more preferred.
  • triazine skeleton-containing phenol novolac resins are preferred from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • phenolic resins include “MEH-7700”, “MEH-7810", “MEH-7851”, and “MEH-8000H” manufactured by Meiwa Kasei Co., Ltd.; “NHN” manufactured by Nippon Kayaku Co., Ltd.; “CBN”, “GPH”; “SN-170”, “SN-180”, “SN-190”, “SN-475”, “SN-485”, “SN-495" manufactured by Nippon Steel Chemical & Materials “, “SN-495V”, “SN-375”, “SN-395"; DIC's "TD-2090", “TD-2090-60M”, “LA-7052", “LA-7054”, “LA-1356", “LA-3018", “LA-3018-50P”, “EXB-9500”, "HPC-9500”, "KA-1160”, “KA-1163”, “KA-1165”; Examples include “GDP-6115L”, “GDP-6115H”, and “ELPC75” manufactured by Gunei Chemical Co., Ltd.
  • active ester resin a compound having one or more, preferably two or more active ester groups in one molecule can be used.
  • active ester resins include those having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Compounds are preferred.
  • the active ester resin is preferably one obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • active ester resins obtained from a carboxylic acid compound and a hydroxy compound are preferred, and active ester resins obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound are more preferred.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenolic compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Examples include benzenetriol, dicyclopentadiene type diphenol compounds, and phenol novolacs.
  • dicyclopentadiene type diphenol compound refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene.
  • active ester resins include active ester resins containing a dicyclopentadiene type diphenol structure, active ester resins containing a naphthalene structure, active ester resins containing an acetylated product of phenol novolak, and benzoyl phenol novolac.
  • active ester resins containing compounds include active ester resins containing compounds. Among these, active ester resins containing a naphthalene structure and active ester resins containing a dicyclopentadiene type diphenol structure are more preferable.
  • Dicyclopentadiene type diphenol structure refers to a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • active ester resins include "EXB9451,” “EXB9460,” “EXB9460S,” “HPC-8000-65T,” and “HPC-8000H-” as active ester resins containing a dicyclopentadiene diphenol structure.
  • DC808 manufactured by Mitsubishi Chemical as an active ester resin that is an acetylated product of phenol novolac
  • YLH1026 manufactured by Mitsubishi Chemical
  • Examples include “YLH1030” (manufactured by Mitsubishi Chemical Corporation) and “YLH1048” (manufactured by Mitsubishi Chemical Corporation).
  • amine resin a resin having one or more, preferably two or more amino groups in one molecule can be used.
  • the amine resin include aliphatic amines, polyether amines, alicyclic amines, and aromatic amines. Among these, aromatic amines are preferred.
  • the amine resin is preferably a primary amine or a secondary amine, and more preferably a primary amine.
  • amine resins include 4,4'-methylenebis(2,6-dimethylaniline), diphenyldiaminosulfone, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 3,3'- Diaminodiphenylsulfone, m-phenylenediamine, m-xylylenediamine, diethyltoluenediamine, 4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4 , 4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanediamine , 2,2-bis(4-aminophenyl)propane, 2,2-
  • amine resins such as "KAYABOND C-200S”, “KAYABOND C-100”, “KAYA HARD AA”, “KAYA HARD AB”, and “KAYA HARD” manufactured by Nippon Kayaku Co., Ltd.
  • Examples include “A-S” and “Epicure W” manufactured by Mitsubishi Chemical Corporation.
  • carbodiimide resin a resin having one or more, preferably two or more carbodiimide structures in one molecule can be used.
  • carbodiimide resins include aliphatic biscarbodiimides such as tetramethylene-bis(t-butylcarbodiimide) and cyclohexanebis(methylene-t-butylcarbodiimide); aromatic biscarbodiimides such as phenylene-bis(xylylcarbodiimide); Biscarbodiimides such as carbodiimide; aliphatic polycarbodiimides such as polyhexamethylenecarbodiimide, polytrimethylhexamethylenecarbodiimide, polycyclohexylenecarbodiimide, poly(methylenebiscyclohexylenecarbodiimide), poly(isophoronecarbodiimide); poly(phenylenecarbodiimide), poly (naphthylenecarbodiimide), poly(tolylenecarbodi
  • carbodiimide resins include, for example, “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, and “Carbodilite V-09” manufactured by Nisshinbo Chemical Co., Ltd. ;
  • Examples include “Stavaxol P”, “Stavaxol P400”, and “Hikasil 510” manufactured by Rhein Chemie.
  • acid anhydride resin a resin having one or more acid anhydride groups in one molecule can be used, and a resin having two or more acid anhydride groups in one molecule is preferable.
  • acid anhydride resins include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and hydrogenated methylnadic anhydride.
  • trialkyltetrahydrophthalic anhydride dodecenyl succinic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, bensophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3'-4,4'-diphenyl Sulfone tetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5-(tetrahydro-2,5-dioxo-3-furanyl)-naphtho[1,2-C]furan-1,
  • Examples include polymeric acid anhydrides such as 3-dione, ethylene glycol bis(
  • acid anhydride resins include, for example, "HNA-100”, “MH-700”, “MTA-15”, “DDSA”, and “OSA” manufactured by Shin Nippon Chemical Co., Ltd.; and “OSA” manufactured by Mitsubishi Chemical Corporation. "YH-306”, “YH-307”; “HN-2200”, “HN-5500” manufactured by Hitachi Chemical; “EF-30”, “EF-40”, “EF-60”, manufactured by Clay Valley EF-80'', etc.
  • benzoxazine resins include "JBZ-OD100”, “JBZ-OP100D”, and “ODA-BOZ” manufactured by JFE Chemical; “P-d” and “F-a” manufactured by Shikoku Kasei Kogyo Co., Ltd. ; Examples include “HFB2006M” manufactured by Showa Kobunshi Co., Ltd.
  • cyanate ester resins include bisphenol A dicyanate, polyphenol cyanate, oligo(3-methylene-1,5-phenylene cyanate), 4,4'-methylenebis(2,6-dimethylphenyl cyanate), and 4,4' -ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanato)phenylpropane, 1,1-bis(4-cyanatophenylmethane), bis(4-cyanato-3,5-dimethylphenyl) ) Difunctional cyanate resins such as methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene))benzene, bis(4-cyanatophenyl)thioether, and bis(4-cyanatophenyl)ether; phenol Polyfunctional cyanate resins derived from novolacs, cresol novolacs, etc.; prepolymers in which
  • cyanate ester resins include “PT30” and “PT60” (phenol novolak type polyfunctional cyanate ester resin), “ULL-950S” (polyfunctional cyanate ester resin), and “BA230” manufactured by Lonza Japan.
  • Examples include “BA230S75” (a prepolymer in which part or all of bisphenol A dicyanate is triazinized to form a trimer).
  • thiol resin examples include trimethylolpropane tris(3-mercaptopropionate), pentaerythritol tetrakis(3-mercaptobutyrate), tris(3-mercaptopropyl)isocyanurate, and the like.
  • the active group equivalent of the curing agent is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100g/eq. ⁇ 1000g/eq. , more preferably 100g/eq. ⁇ 500g/eq. , more preferably 100g/eq. ⁇ 300g/eq. It is.
  • the active group equivalent represents the mass of the (B-2) curing agent per equivalent of the active group.
  • the number of active groups in the curing agent (B-2) is preferably 0.01 or more, more preferably 0.1 or more, and even more preferably 0.5 or more. and is preferably 10 or less, more preferably 5 or less, still more preferably 2 or less.
  • the active group of the curing agent is an active hydroxyl group, etc., and differs depending on the type of curing agent.
  • the number of epoxy groups in the epoxy resin is the sum of the values obtained by dividing the mass of each epoxy resin by the epoxy equivalent for all epoxy resins.
  • the number of active groups of a curing agent is the sum of the values obtained by dividing the mass of each curing agent by the active group equivalent for all curing agents.
  • the amount (% by mass) of the curing agent (B-2) contained in the resin composition is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the nonvolatile components of the resin composition.
  • the content is 5% by mass or more, more preferably 1% by mass or more, preferably 15% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less.
  • the amount (% by mass) of the curing agent (B-2) contained in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of the resin component of the resin composition. , more preferably 30% by mass or more, preferably 70% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the thermosetting resin (B) may contain a reactive diluent.
  • the reactive diluent refers to a component of the thermosetting resin (B) that has a low viscosity.
  • the specific viscosity of the reactive diluent is usually less than 0.5 Pa ⁇ s.
  • the lower limit of the viscosity of the reactive diluent is not particularly limited, and may be, for example, 0.001 Pa ⁇ s or more, 0.005 Pa ⁇ s or more, 0.01 Pa ⁇ s or more.
  • the viscosity of the reactive diluent can be measured using an E-type viscometer at 25 ⁇ 2°C.
  • the reactive diluent may contain reactive groups such as the epoxy groups and active groups described above.
  • Preferred examples of the reactive group contained in the reactive diluent include an epoxy group, an acrylic group, a methacryl group, an oxetane group, and the like, with an epoxy group being preferred. Therefore, it is preferable to use an epoxy resin (B-1) having a low viscosity as the reactive diluent.
  • reactive diluents include, for example, "EX-201” (cycloaliphatic glycidyl ether), “EX-830”, and “EX-821” (ethylene glycol type epoxy resin) manufactured by Nippon Steel Chemical & Materials.
  • the amount (mass%) of the reactive diluent contained in the resin composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on 100% by mass of the nonvolatile components of the resin composition. More preferably, it is 1% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 7% by mass or less.
  • the amount (mass%) of the reactive diluent contained in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass, based on 100% by mass of the resin component of the resin composition. It is at least 80% by mass, more preferably at most 70% by mass, even more preferably at most 60% by mass.
  • the amount (mass%) of the reactive diluent contained in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably
  • the content is 20% by mass or more, preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less.
  • the range of the weight average molecular weight (Mw) of the thermosetting resin (B) can generally be the same as the range of the weight average molecular weight of the epoxy resin (B-1) described above.
  • the range of the amount (mass %) of the thermosetting resin (B) contained in the resin composition is preferably 0.1 mass % or more, more preferably 1 mass %, based on 100 mass % of the nonvolatile components of the resin composition. % or more, more preferably 2% by mass or more, preferably 15% by mass or less, more preferably 13% by mass or less, still more preferably 10% by mass or less. (B) When the amount of the thermosetting resin is within the above range, a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating.
  • the range of the amount (mass%) of the thermosetting resin (B) contained in the resin composition is preferably 40% by mass or more, more preferably 50% by mass or more, based on 100% by mass of the resin component of the resin composition. , more preferably 60% by mass or more, preferably 98% by mass or less, more preferably 94% by mass or less, still more preferably 90% by mass or less.
  • the amount of the thermosetting resin is within the above range, a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating.
  • the amount (% by mass) of the thermosetting resin (B) contained in the resin composition is preferably 0.1% by mass or more, more preferably 1% by mass, based on 100% by mass of the (A) magnetic powder. % or more, more preferably 2% by mass or more, preferably 20% by mass or less, more preferably 16% by mass or less, still more preferably 12% by mass or less. (B) When the amount of the thermosetting resin is within the above range, a magnetic layer having excellent magnetic properties can be obtained, and an electroplated layer can be smoothly formed on the surface of the magnetic layer by electroplating.
  • the resin composition according to the present embodiment may further contain (C) a curing accelerator as an optional component in combination with the above-mentioned components (A) to (B).
  • the curing accelerator (C) as the component (C) does not include those corresponding to the components (A) to (B) described above.
  • the curing accelerator (C) has a function as a catalyst that promotes the curing reaction of the thermosetting resin (B), and therefore can promote curing of the resin composition.
  • curing accelerator (C) examples include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like. Among these, imidazole curing accelerators are preferred.
  • the curing accelerator may be used alone or in combination of two or more types.
  • imidazole-based curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-Phenylimidazolium trimellitate, 2,
  • imidazole curing accelerator commercially available products may be used, such as "P200-H50” manufactured by Mitsubishi Chemical; “Curezol 2MZ”, “2E4MZ”, “Cl1Z”, and “Cl1Z” manufactured by Shikoku Kasei Kogyo Co., Ltd. -CN”, “Cl1Z-CNS”, “Cl1Z-A”, “2MZ-OK”, “2MA-OK”, “2MA-OK-PW”, “2MZA-PW”, “2PHZ”, “2PHZ-PW ” etc.
  • amine curing accelerator examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, and 1,8-diazabicyclo. (5,4,0)-undecene, 1,8-diazabicyclo[5,4,0]undecene-7,4-dimethylaminopyridine, 2,4,6-tris(dimethylaminomethyl)phenol, etc. 4-dimethylaminopyridine is preferred.
  • Examples of the phosphorus curing accelerator include triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, with triphenylphosphine and tetrabutylphosphonium decanoate being preferred.
  • Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide
  • the metal hardening accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complexes include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Examples include organic zinc complexes such as , organic iron complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • the amount (mass %) of the curing accelerator (C) contained in the resin composition may be 0 mass % or greater than 0 mass %, based on 100 mass % of the nonvolatile components of the resin composition. 0.001% by mass or more, more preferably 0.01% by mass or more, even more preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass. It is as follows.
  • the amount (mass %) of the curing accelerator (C) contained in the resin composition may be 0 mass % or greater than 0 mass %, based on 100 mass % of the resin component of the resin composition. 0.01% by mass or more, more preferably 0.1% by mass or more, even more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less. be.
  • the amount (mass%) of the curing accelerator (C) contained in the resin composition may be 0% by mass, or may be greater than 0% by mass, and is preferably is 0.01% by mass or more, more preferably 0.1% by mass or more, even more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less. It is.
  • the resin composition according to the present embodiment may further contain (D) a thermoplastic resin as an optional component in combination with the above-mentioned components (A) to (C).
  • the (D) thermoplastic resin as the (D) component does not include those corresponding to the above-mentioned components (A) to (C).
  • the thermoplastic resin can effectively improve the mechanical properties of the magnetic layer.
  • Thermoplastic resins include, for example, phenoxy resins, polyimide resins, polyvinyl acetal resins, polyolefin resins, polybutadiene resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, and polycarbonate resins. , polyetheretherketone resin, polyester resin, and the like.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • phenoxy resins include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, and terpene.
  • Examples include phenoxy resins having one or more types of skeletons selected from the group consisting of a skeleton and a trimethylcyclohexane skeleton.
  • phenoxy resins include “1256” and “4250” manufactured by Mitsubishi Chemical Corporation (both phenoxy resins containing bisphenol A skeleton); “YX8100” manufactured by Mitsubishi Chemical Corporation (phenoxy resin containing bisphenol S skeleton); “YX6954” (phenoxy resin containing bisphenolacetophenone skeleton) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.; “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical; "YL7500BH30", “YX6954BH30", “YX7553”, “YX7553BH30” manufactured by Mitsubishi Chemical Corporation, Examples include “YL7769BH30,” “YL6794,” “YL7213,” “YL7290,” “YL7482,” and “YL7891BH30.”
  • polyimide resins include “SLK-6100” manufactured by Shin-Etsu Chemical Co., Ltd., “Ricacoat SN20” and “Ricacoat PN20” manufactured by Shinnihon Rika Co., Ltd., and the like.
  • polyimide resins include linear polyimides obtained by reacting difunctional hydroxyl group-terminated polybutadiene, diisocyanate compounds, and tetrabasic acid anhydrides (for example, the polyimides described in JP-A No. 2006-37083), polyimide resins, etc.
  • Modified polyimides such as siloxane skeleton-containing polyimides (for example, polyimides described in JP-A-2002-12667 and JP-A-2000-319386) can be mentioned.
  • polyvinyl acetal resin examples include polyvinyl formal resin and polyvinyl butyral resin, with polyvinyl butyral resin being preferred.
  • polyvinyl acetal resin examples include Denka Butyral 4000-2, Denka Butyral 5000-A, Denka Butyral 6000-C, and Denka Butyral 6000-EP manufactured by Denki Kagaku Kogyo; Sekisui Chemical Co., Ltd.
  • polyolefin resins examples include ethylene copolymers such as low density polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methyl acrylate copolymer.
  • Polymer resin examples include polyolefin polymers such as polypropylene and ethylene-propylene block copolymers.
  • polybutadiene resins include hydrogenated polybutadiene skeleton-containing resins, hydroxy group-containing polybutadiene resins, phenolic hydroxyl group-containing polybutadiene resins, carboxy group-containing polybutadiene resins, acid anhydride group-containing polybutadiene resins, epoxy group-containing polybutadiene resins, and isocyanate group-containing polybutadiene resins.
  • examples include polybutadiene resin, urethane group-containing polybutadiene resin, polyphenylene ether-polybutadiene resin, and the like.
  • polyamide-imide resins include "Viromax HR11NN” and “Viromax HR16NN” manufactured by Toyobo.
  • polyamide-imide resins include modified polyamide-imides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamide-imide) manufactured by Hitachi Chemical.
  • polyetherimide resin includes "Ultem” manufactured by GE.
  • polysulfone resins include polysulfones "P1700” and “P3500” manufactured by Solvay Advanced Polymers.
  • polyether sulfone resin includes "PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polyphenylene ether resin includes "NORYL SA90" manufactured by SABIC.
  • polycarbonate resin examples include hydroxy group-containing carbonate resins, phenolic hydroxyl group-containing carbonate resins, carboxyl group-containing carbonate resins, acid anhydride group-containing carbonate resins, isocyanate group-containing carbonate resins, urethane group-containing carbonate resins, and the like.
  • Specific examples of polycarbonate resins include "FPC0220” manufactured by Mitsubishi Gas Chemical Co., Ltd., "T6002" and “T6001” (polycarbonate diol) manufactured by Asahi Kasei Chemicals, and “C-1090” and “C-2090” manufactured by Kuraray Corporation. , "C-3090” (polycarbonate diol), and the like.
  • polyetheretherketone resin includes "Sumiploy K” manufactured by Sumitomo Chemical Co., Ltd.
  • polyester resin examples include polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polybutylene naphthalate resin, polytrimethylene terephthalate resin, polytrimethylene naphthalate resin, polycyclohexane dimethyl terephthalate resin, and the like.
  • the weight average molecular weight (Mw) of the thermoplastic resin (D) is preferably greater than 5,000, more preferably 8,000 or more, still more preferably 10,000 or more, and still more preferably 20,000 or more.
  • the upper limit is not particularly limited, and may be, for example, 1 million or less, 500,000 or less, 100,000 or less, etc.
  • the amount (mass %) of the thermoplastic resin (D) contained in the resin composition may be 0 mass % or greater than 0 mass %, based on 100 mass % of the nonvolatile components of the resin composition. 0.01% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass. It is as follows.
  • the amount (mass %) of the thermoplastic resin (D) contained in the resin composition may be 0 mass % or greater than 0 mass %, based on 100 mass % of the resin component of the resin composition.
  • the content is 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the amount (mass%) of the thermoplastic resin (D) contained in the resin composition may be 0% by mass or greater than 0% by mass, preferably greater than 0% by mass, based on 100% by mass of the (A) magnetic powder. 0.01% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass. It is as follows.
  • the resin composition according to the present embodiment may further contain (E) a dispersant as an optional component in combination with the above-mentioned components (A) to (D).
  • the dispersant (E) as the component (E) does not include any of the components (A) to (D) described above. According to the dispersant (E), the dispersibility of the magnetic powder (A) can be effectively improved.
  • dispersant a compound that can reduce the viscosity of the resin composition can be used.
  • examples of the dispersant include phosphate dispersants, polyoxyalkylene dispersants, acetylene dispersants, silicone dispersants, anionic dispersants, and cationic dispersants.
  • Dispersants may be used alone or in combination of two or more. Among these, phosphate ester dispersants are preferred.
  • polyether type phosphate ester dispersants are preferred.
  • a polyether type phosphate ester dispersant is a phosphate ester dispersant containing a poly(alkyleneoxy) structure in its molecule.
  • examples of the polyether type phosphate dispersant include polyoxyalkylene alkyl ether phosphate, polyoxyalkylene alkyl phenyl ether phosphate, and the like. Among these, polyoxyalkylene alkyl ether phosphate is preferred.
  • the polyoxyalkylene alkyl ether phosphate may have a structure in which 1 to 3 alkyl-oxy-poly(alkyleneoxy) groups are bonded to the phosphorus atom of the phosphate.
  • the number of alkyleneoxy units (number of repeating units) of the poly(alkyleneoxy) moiety in the alkyl-oxy-poly(alkyleneoxy) group is preferably 2 to 30, more preferably 3 to 20.
  • the alkylene group in the poly(alkyleneoxy) moiety is preferably an alkylene group having 2 to 4 carbon atoms. Examples of such alkylene groups include ethylene group, propylene group, isopropylene group, butylene group, and isobutyl group.
  • the alkyl group in the alkyl-oxy-poly(alkyleneoxy) group is preferably an alkyl group having 6 to 30 carbon atoms, more preferably an alkyl group having 8 to 20 carbon atoms.
  • alkyl groups include decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, and the like.
  • the polyoxyalkylene alkyl ether phosphate ester has a plurality of alkyl-oxy-poly(alkyleneoxy) groups
  • the plurality of alkyl groups may be the same or different.
  • the plural alkylene groups may be the same or different.
  • phosphate ester dispersants examples include polyether-type phosphate ester dispersants manufactured by Kusumoto Kasei Co., Ltd. (for example, HIPLAAD series “ED152,” “ED153,” “ED154,” “ED118,” and “ED174.” “, “ED251”, etc.); "RS-410", “RS-610”, “RS-710” of the phosphanol series manufactured by Toho Chemical Industries, Ltd.
  • polyoxyalkylene dispersants examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene alkyl amide, etc. Can be mentioned.
  • polyoxyalkylene dispersants include "AKM-0531,” “AFB-1521,” “SC-0505K,” “SC-1015F,” and “SC-” from the NOF Corporation's "Marialim” series. 0708A,” and “HKM-50A.”
  • acetylene-based dispersants include acetylene glycol.
  • examples of commercially available acetylene dispersants include Air Products and Chemicals Inc. Examples include "82,” “104,” “440,” “465,” and “485" from the "Surfynol” series manufactured by Manufacturer Co., Ltd., and "Olefin Y.”
  • silicone dispersant examples include polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyester-modified polydimethylsiloxane, and the like.
  • silicone dispersants examples include “BYK347” and “BYK348” manufactured by BYK Chemie.
  • anionic dispersant examples include sodium polyacrylate, sodium dodecylbenzel sulfonate, sodium laurate, ammonium polyoxyethylene alkyl ether sulfate, and carboxymethyl cellulose sodium salt.
  • examples of commercially available anionic dispersants include “PN-411” and “PA-111” manufactured by Ajinomoto Fine Techno Co., Ltd.; “A-550” and “PS-1900” manufactured by Lion Corporation.
  • Examples of the cationic dispersant include amino group-containing polyacrylate resins, amino group-containing polystyrene resins, and the like.
  • Examples of commercially available cationic dispersants include “161", “162", “164", “182", “2000”, and “2001” manufactured by BIC Chemie; "PB-821” manufactured by Ajinomoto Fine Techno; “PB-822”, “PB-824"; "V-216", “V-220” manufactured by ISP Japan; "Solspers 13940", “Solspers 24000”, “Solspers 32000” manufactured by Lubrizol, etc. .
  • the dispersant may be used alone or in combination of two or more.
  • the amount (mass%) of the dispersant (E) contained in the resin composition may be 0% by mass or greater than 0% by mass, preferably 0% by mass, based on 100% by mass of the nonvolatile components of the resin composition. .01% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less. It is.
  • the amount (mass%) of the dispersant (E) contained in the resin composition may be 0% by mass or greater than 0% by mass, preferably 0% by mass, based on 100% by mass of the resin component of the resin composition. .1% by mass or more, more preferably 1% by mass or more, still more preferably 5% by mass or more, preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less.
  • the amount (mass%) of the dispersant (E) contained in the resin composition may be 0% by mass or greater than 0% by mass, preferably 0% by mass, based on 100% by mass of the (A) magnetic powder. .01% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less. It is.
  • the resin composition according to the present embodiment may further contain (F) an arbitrary additive in combination with the above-mentioned components (A) to (E) as an arbitrary component.
  • the (F) optional additives as the (F) component do not include those corresponding to the above-mentioned components (A) to (E).
  • Optional additives include, for example, inorganic fillers such as silica particles; organic fillers such as rubber particles; organometallic compounds such as organocopper compounds and organozinc compounds; peroxide-based radical polymerization initiators; Radical polymerization initiators such as azo radical polymerization initiators; polymerization inhibitors such as hydroquinone, catechol, pyrogallol, and phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Antifoaming agents such as silicone antifoaming agents, acrylic antifoaming agents, fluorine antifoaming agents, and vinyl resin antifoaming agents; UV absorbers such as benzotriazole ultraviolet absorbers; adhesiveness improvers such as urea silane ; Adhesion-imparting agents such as triazole-based adhesion-imparting agents, tetrazole-based adhesion-imparting agents,
  • phosphoric acid esters include flame retardants such as compounds, phosphazene compounds, phosphinic acid compounds, red phosphorus), nitrogen-based flame retardants (e.g. melamine sulfate), halogen-based flame retardants, inorganic flame retardants (e.g. antimony trioxide); borate-based stabilizers, titanate-based Examples of stabilizers include stabilizers, aluminate stabilizers, zirconate stabilizers, isocyanate stabilizers, carboxylic acid stabilizers, and carboxylic acid anhydride stabilizers. (F) Arbitrary additives may be used alone or in combination of two or more.
  • the resin composition may further contain (G) a solvent as a volatile component in combination with non-volatile components such as the above-mentioned components (A) to (F).
  • a solvent as a volatile component in combination with non-volatile components such as the above-mentioned components (A) to (F).
  • an organic solvent is usually used.
  • organic solvents examples include ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and cyclohexanone; methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, isoamyl acetate, methyl propionate, ethyl propionate, ⁇ - Ester solvents such as butyrolactone; ether solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether; alcohol solvents such as methanol, ethanol, propanol, butanol, and ethylene glycol ; Ether ester solvents such as 2-ethoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethy
  • the resin composition according to this embodiment can be manufactured, for example, by mixing the components described above.
  • the above-mentioned components may be mixed in part or in whole at the same time, or in order.
  • the temperature may be set as appropriate, and thus may be heated and/or cooled temporarily or throughout.
  • stirring or shaking may be performed.
  • the resin composition according to this embodiment can be cured by heat. Therefore, by thermosetting the resin composition, a cured product of the resin composition can be obtained.
  • volatile components such as (G) solvent can be volatilized by the heat during thermosetting, but non-volatile components such as components (A) to (F) can be volatile during thermosetting. It does not evaporate due to heat. Therefore, the cured product of the resin composition may contain the nonvolatile components of the resin composition or a reaction product thereof.
  • the cured product of the resin composition can have excellent magnetic properties such as relative magnetic permeability and magnetic loss. Therefore, this cured product can be used as a material for a magnetic layer of a magnetic substrate.
  • the cured product of the resin composition according to the present embodiment can usually have a high relative magnetic permeability ⁇ '.
  • the specific range of the relative magnetic permeability ⁇ ' of the cured product is preferably 10 or more, more preferably 12 or more, and still more preferably 15 or more.
  • the upper limit of the relative magnetic permeability ⁇ ' is not particularly limited, and may be, for example, 35 or less, 30 or less, 25 or less.
  • the method for manufacturing a magnetic substrate according to the present embodiment is characterized in that when a resin composition containing (A) magnetic powder in an amount sufficient to achieve relative magnetic permeability in such a range is used, the resin composition is cured.
  • An electroplated layer can be smoothly formed on the surface of a magnetic layer containing an object by electroplating.
  • the relative magnetic permeability ⁇ ' of the cured product can be measured at a measurement frequency of 20 MHz and a room temperature of 23°C. Furthermore, when curing the resin composition for measuring the relative magnetic permeability ⁇ ', the resin composition can be thermally cured at 190° C. for 90 minutes to obtain a cured product as a measurement sample. As a specific method for measuring the relative magnetic permeability ⁇ ', the method described in the Examples described later can be adopted.
  • the cured product of the resin composition according to this embodiment can usually have small magnetic loss.
  • Magnetic loss can be expressed by a loss coefficient tan ⁇ , and usually, the smaller the loss coefficient tan ⁇ is, the smaller the magnetic loss is.
  • the specific range of the loss coefficient tan ⁇ of the cured product is preferably 0.05 or less, more preferably 0.04 or less, still more preferably 0.03 or less.
  • the lower limit of the loss coefficient tan ⁇ is not particularly limited and may be, for example, 0.001 or more.
  • the method for manufacturing a magnetic substrate according to the present embodiment is characterized in that when a resin composition containing (A) magnetic powder in an amount sufficient to achieve magnetic loss in such a range is used, a cured product of the resin composition is used.
  • An electroplated layer can be smoothly formed on the surface of the magnetic layer containing the magnetic layer by electroplating.
  • the loss coefficient tan ⁇ of the cured product can be measured at a measurement frequency of 20 MHz and a room temperature of 23°C. Further, when curing the resin composition for measuring the loss coefficient tan ⁇ , the resin composition can be thermally cured at 190° C. for 90 minutes to obtain a cured product as a measurement sample.
  • the method described in the Examples described later can be adopted.
  • the cured product of the resin composition according to this embodiment can usually have a large volume resistance. Therefore, according to the cured product, a magnetic layer having insulation properties can be formed.
  • the specific range of volume resistivity of the cured product is preferably 1.0 ⁇ 10 8 ⁇ m or more, more preferably 5.0 ⁇ 10 8 ⁇ m or more, and even more preferably 1.0 ⁇ 10 9 ⁇ m. m or more, preferably 1.0 ⁇ 10 13 ⁇ m or less, more preferably 5.0 ⁇ 10 12 ⁇ m or less, still more preferably 1.0 ⁇ 10 12 ⁇ m or less. It is surprising from the technical common sense of those skilled in the art that an electroplated layer can be formed by electroplating on the surface of a magnetic layer formed of a cured product having such a large volume resistivity. As a method for measuring the volume resistance of the cured product, the method described in the Examples described later can be adopted.
  • the resin composition may be in a fluid state.
  • the resin composition may be (G) a liquid resin composition that does not contain a solvent, or may be a liquid resin composition that contains (G) a solvent.
  • (G) a liquid resin composition that does not contain a solvent may be referred to as a "magnetic paste”
  • a liquid resin composition that contains (G) a solvent may be referred to as a "magnetic ink”.
  • liquid resin compositions such as magnetic paste and magnetic ink have fluidity, they can be preferably used to form a magnetic layer using a printing method.
  • the liquid resin composition is preferably liquid at 23°C.
  • the viscosity of this liquid resin composition at 23° C. is preferably 20 Pa ⁇ s or more, more preferably 25 Pa ⁇ s or more, even more preferably 30 Pa ⁇ s or more, particularly preferably 50 Pa ⁇ s or more, and preferably 200 Pa ⁇ s. ⁇ s or less, more preferably 180 Pa ⁇ s or less, still more preferably 160 Pa ⁇ s or less.
  • Viscosity can be measured, for example, using an E-type viscometer (“RE-80U” manufactured by Toki Sangyo Co., Ltd., 3° ⁇ R9.7 rotor) under the measurement conditions of a measurement sample amount of 0.22 ml and a rotation speed of 5 rpm. .
  • E-type viscometer (“RE-80U” manufactured by Toki Sangyo Co., Ltd., 3° ⁇ R9.7 rotor
  • the resin composition may be in solid form.
  • the form of the solid resin composition is not particularly limited, and may be, for example, particulate, pellet, film, or the like.
  • a film-like material is preferable because the magnetic layer can be formed by a lamination method.
  • a film-like resin composition is usually prepared as a resin sheet including a resin composition layer as a film of the resin composition.
  • the resin composition layer contains a resin composition, preferably only the resin composition.
  • the thickness of the resin composition layer can be set depending on the dimensions of the magnetic substrate to be manufactured. Usually, it is preferable that the resin composition layer is thin.
  • the specific thickness range of the resin composition layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 50 ⁇ m or more, preferably 600 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, and Preferably it is 150 ⁇ m or less.
  • the resin sheet may further include any member in combination with the resin composition layer.
  • the resin sheet may include a support that supports the resin composition layer.
  • the resin composition layer is usually formed on the support.
  • the support examples include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferred.
  • plastic material examples include polyethylene terephthalate (hereinafter sometimes abbreviated as "PET”) and polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyesters such as polycarbonate (hereinafter sometimes abbreviated as “PC”), acrylic polymers such as polymethyl methacrylate (PMMA), cyclic polyolefins, triacetyl cellulose (TAC), polyether sulfide (PES), polyether Examples include ketones and polyimides.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyesters such as polycarbonate (hereinafter sometimes abbreviated as “PC”), acrylic polymers such as polymethyl methacrylate (PMMA), cyclic polyolefins, triacetyl cellulose (TAC), polyether sulfide (PES), polyether Examples include ketones and polyimides.
  • the metal foil When using metal foil as a support, examples of the metal foil include copper foil, aluminum foil, etc., with copper foil being preferred.
  • a foil made of a single metal such as copper may be used, or a foil made of an alloy of copper and other metals (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. May be used.
  • the support may be subjected to a treatment such as matte treatment, corona treatment, antistatic treatment, etc. on the surface to be bonded to the resin composition layer.
  • a treatment such as matte treatment, corona treatment, antistatic treatment, etc.
  • a support with a release layer that has a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used in the release layer of the support with a release layer is selected from the group consisting of, for example, an alkyd release agent, a polyolefin release agent, a urethane release agent, and a silicone release agent.
  • One or more mold release agents may be used.
  • the support with a release layer may be a commercially available product, for example, a PET film having a release layer containing a silicone release agent or an alkyd resin release agent as a main component, manufactured by Lintec Corporation. Examples include “PET501010", “SK-1", “AL-5", “AL-7”; "Lumirror T60” manufactured by Toray; “Purex” manufactured by Teijin; and "Unipeel” manufactured by Unitika. .
  • the thickness of the support is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, and preferably 75 ⁇ m or less, more preferably 60 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the thickness of the entire support with a release layer is preferably within the above range.
  • the resin sheet may be provided with a protective film that protects the resin composition layer, if necessary.
  • the protective film is usually provided on the surface of the resin composition layer that is not bonded to the support (ie, the surface opposite to the support).
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • the protective film is usually peeled off before the step (LF).
  • the resin sheet can be manufactured, for example, by a method that includes forming a resin composition layer on a support.
  • the resin composition layer can be formed, for example, by a method including preparing a resin composition and applying the resin composition onto a support. If necessary, the resin composition may be mixed with an organic solvent and then applied onto the support. When using an organic solvent, drying may be performed after coating, if necessary.
  • the resin composition can be applied using a coating device such as a die coater. Moreover, drying can be carried out, for example, by a drying method such as heating or blowing hot air. Drying conditions are not particularly limited, but drying is performed such that the amount of solvent in the resin composition layer is preferably 10% by mass or less, more preferably 5% by mass or less. Drying can be carried out, for example, at 50° C. to 150° C. for 3 minutes to 10 minutes, although this may vary depending on the boiling point of the solvent.
  • the method for manufacturing a magnetic substrate according to the present embodiment may include a step (LF) of forming a resin composition layer before the step (EP).
  • a resin composition layer is usually formed on a suitable base material. This base material may be hereinafter referred to as an "inner layer base material.”
  • the inner layer base material for example, a member including a support substrate can be used.
  • the supporting substrate include insulating substrates such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the inner layer base material may be provided with conductor layers such as a wiring layer and an electrode layer, if necessary.
  • the conductor layer included in the inner layer base material may be referred to as a "base conductor layer.”
  • the base material conductor layer may be provided on one side of the support substrate, may be provided on both sides, or may be provided inside the support substrate. Examples of the base conductor layer include a layer formed of metal such as copper.
  • holes such as through holes may be formed in the inner layer base material as necessary.
  • the hole formed in the inner layer base material may be hereinafter referred to as a "first hole.”
  • the first hole can be formed, for example, by a processing method such as drilling, laser irradiation, plasma irradiation, or the like. If necessary, a base material conductor layer may be formed on the surface of the inner layer base material within the first hole.
  • the resin composition layer may be formed by applying the resin composition to the inner layer base material.
  • the resin composition layer may be formed by applying the resin composition to the inner layer base material using a coating device such as a dispenser or a die coater.
  • the resin composition layer may be formed by applying the resin composition layer onto the inner layer base material by printing such as entire surface printing or pattern printing. Examples of the printing method include a method of printing the resin composition using a squeegee, a method of printing the resin composition using a cartridge, a method of printing the resin composition using mask printing, a roll coating method, an inkjet method, etc. can be mentioned.
  • the resin composition may be dried after being applied.
  • the resin sheet and the inner layer base material are laminated so that the resin composition layer is bonded to the inner layer base material, and the resin composition layer is placed on the inner layer base material. may be formed.
  • the resin composition layer and the inner layer base material can be bonded, for example, by heat-pressing the resin sheet to the inner layer base material from the support side.
  • a heated metal plate stainless steel (SUS) end plate, etc.
  • a metal roll SUS roll, etc.
  • heat-pressing member can be mentioned.
  • thermocompression bonding member instead of pressing the thermocompression bonding member in direct contact with the resin sheet, it is pressed using a sheet made of an elastic material such as heat-resistant rubber so that the resin sheet sufficiently follows the unevenness of the surface of the inner layer base material. It is preferable to press.
  • the temperature during thermocompression bonding is preferably in the range of 80°C to 160°C, more preferably 90°C to 140°C, even more preferably 100°C to 120°C.
  • the pressure during heat-pressing is preferably in the range of 0.098 MPa to 1.77 MPa, more preferably in the range of 0.29 MPa to 1.47 MPa.
  • the time for heat-pressing is preferably in the range of 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • the resin sheet and the inner layer base material are preferably bonded under reduced pressure conditions of 26.7 hPa or less.
  • the resin composition layer of the resin sheet and the inner layer base material can be bonded using a commercially available vacuum laminator.
  • commercially available vacuum laminators include a vacuum pressurized laminator manufactured by Meiki Seisakusho, and a vacuum applicator manufactured by Nikko Materials.
  • the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression bonding member from the support side.
  • the pressing conditions for the smoothing treatment can be the same as the conditions for the heat-pressing of the lamination described above.
  • the smoothing process can be performed using a commercially available laminator. Note that the lamination and smoothing treatment may be performed continuously using the above-mentioned commercially available vacuum laminator.
  • the support When using a resin sheet provided with a support, the support is usually peeled off after the step (LF). Peeling of the support may be performed before or after the step (CU), but it is preferably performed before the step (EP).
  • the step (LF) may include forming a resin composition layer in the first hole.
  • the first hole is filled with a resin composition to form a resin composition layer.
  • the resin composition is filled into the first hole, and a resin composition layer is formed in the first hole. may be done.
  • the resin composition is filled in the first hole and a resin composition layer is formed in the first hole. It's okay.
  • the method for manufacturing a magnetic substrate according to the present embodiment may include, after the step (LF), a step (CU) of curing the resin composition layer to form a magnetic layer.
  • the magnetic layer is obtained by thermosetting the resin composition layer under specific thermosetting conditions.
  • the magnetic layer contains a cured product of the resin composition, preferably only a cured product of the resin composition.
  • the thermal curing conditions for the resin composition layer can be appropriately set within a range where curing of the resin composition proceeds.
  • the curing temperature is preferably 120°C or higher, more preferably 130°C or higher, even more preferably 150°C or higher, and preferably 245°C or lower, more preferably 220°C or lower, and still more preferably 200°C or lower.
  • the curing time is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 15 minutes or more, and preferably 120 minutes or less, more preferably 110 minutes or less, and still more preferably 100 minutes or less.
  • the method for manufacturing a magnetic substrate according to the present embodiment includes a step (preparation) of heating the resin composition layer at a temperature lower than the curing temperature after forming the resin composition layer and before curing the resin composition layer. heating step).
  • the resin composition layer is usually cured at a temperature of 50°C or higher and lower than 150°C (preferably 60°C or higher and 140°C or lower, more preferably 70°C or higher and 130°C or lower). , usually for 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
  • the method for manufacturing a magnetic substrate according to the present embodiment may include a step (PO) of polishing the resin composition layer or the magnetic layer before the step (EP). Polishing can smooth the surface of the magnetic layer. For example, when a magnetic layer is polished, the surface of the polished magnetic layer can be flattened. Furthermore, when the resin composition layer is polished, the surface of the resin composition layer can be flattened, so that the surface of the magnetic layer obtained by curing the resin composition layer can be flattened. In particular, when the first hole of the inner layer base material is filled with a resin composition to form a resin composition layer, excess resin composition may protrude from the first hole or adhere to parts of the inner layer base material other than the first hole.
  • step (PO) when using an inner layer base material in which the first hole is formed.
  • polishing method examples include buff polishing, belt polishing, ceramic polishing, and the like.
  • Commercially available buffing devices include, for example, "NT-700IM” manufactured by Ishii Hyoki Co., Ltd.
  • the arithmetic mean roughness (Ra) of the polished surface of the magnetic layer (after thermosetting the cured material layer) is preferably 300 nm or more, more preferably 350 nm or more, from the viewpoint of improving the adhesion with the electroplated layer. , more preferably 400 nm or more.
  • the upper limit is preferably 1000 nm or less, more preferably 900 nm or less, even more preferably 800 nm or less.
  • Surface roughness (Ra) can be measured using, for example, a non-contact surface roughness meter.
  • the magnetic layer may be subjected to heat treatment before polishing in order to further increase the degree of hardening of the cured material contained in the magnetic layer.
  • the temperature in the heat treatment can be similar to the curing temperature described above.
  • the specific heat treatment temperature is preferably 120°C or higher, more preferably 130°C or higher, even more preferably 150°C or higher, and preferably 245°C or lower, more preferably 220°C or lower, and still more preferably 200°C or lower.
  • the heat treatment time is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 15 minutes or more, and preferably 90 minutes or less, more preferably 70 minutes or less, and even more preferably 60 minutes or less.
  • a preliminary heat treatment is performed to heat the resin composition layer at a temperature lower than the curing temperature of the resin composition before polishing.
  • the temperature in the preheating treatment is preferably 100°C or higher, more preferably 110°C or higher, even more preferably 120°C or higher, preferably 245°C or lower, more preferably 220°C or lower, even more preferably 200°C or lower.
  • the heat treatment time is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 15 minutes or more, and preferably 90 minutes or less, more preferably 70 minutes or less, and even more preferably 60 minutes or less.
  • the method for manufacturing a magnetic substrate according to the present embodiment may include a step (HF) of forming holes in the magnetic layer before the step (EP).
  • the holes formed in the magnetic layer are sometimes referred to as "second holes” hereinafter.
  • the formation of the second hole is performed after the process (CU).
  • the formation of the second hole may be performed before the polishing in the step (PO), but is usually performed after the polishing in the step (PO).
  • the second hole examples include a via hole, a through hole, and the like.
  • the second hole when forming a second hole in the magnetic layer formed in the first hole of the inner layer base material, the second hole may be a through hole that penetrates the magnetic layer.
  • the second hole when forming a second hole in the magnetic layer formed on the main surface of the inner layer base material, the second hole may be a via hole that penetrates the magnetic layer but does not penetrate the inner layer base material. It may be a through hole that penetrates both the magnetic layer and the inner layer base material.
  • the second hole can be formed, for example, by a processing method such as drilling, laser processing, plasma irradiation, or etching.
  • the method for manufacturing a magnetic substrate according to the present embodiment may include a step (RO) of roughening the magnetic layer before the step (EP).
  • the roughening treatment is performed after the step (PO).
  • the roughening treatment is usually performed after the step (HF).
  • the surface roughness of the magnetic layer can be increased and the adhesion strength between the magnetic layer and the electroplated layer can be increased.
  • resin residue (smear) that may be generated due to the formation of the second holes can be removed.
  • the roughening treatment may be performed wet, it is preferably performed dry. Examples of the dry roughening treatment include plasma treatment.
  • the method for manufacturing a magnetic substrate according to the present embodiment includes a step (EP) of forming an electroplated layer as a conductor layer on the surface of the magnetic layer by electroplating.
  • an electroplated layer is usually formed on the surface of a magnetic layer in a plating solution containing metal ions.
  • a magnetic layer and an electrode are placed in a plating solution, and a direct current is applied between the magnetic layer and the electrode from a power source. Since the metal ions are reduced on the surface of the magnetic layer and the metal is precipitated, an electroplated layer containing the metal can be formed. Copper is preferred as the metal used for electroplating.
  • an aqueous solution of metal salt is used as the plating solution.
  • the metal salts include copper sulfate such as copper sulfate pentahydrate, copper halides such as copper chloride, copper acetate, copper nitrate, copper tetrafluoroborate, and alkyl sulfonic acids. Examples include copper, copper arylsulfonate, copper sulfamate, copper perchlorate, copper gluconate, and the like. Among them, copper sulfate is preferred.
  • the concentration of the metal salt in the plating solution may be, for example, 50 g/L or more and 400 g/L or less.
  • the concentration of the metal salt in the plating solution is more preferably a saturation concentration.
  • the plating solution contains an acid.
  • acids include sulfuric acid; hydrochloric acid; acetic acid; nitric acid; phosphoric acid; fluoroboric acid; alkanesulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and trifluoromethanesulfonic acid; benzenesulfonic acid, p-toluene
  • acids include sulfuric acid; hydrochloric acid; acetic acid; nitric acid; phosphoric acid; fluoroboric acid; alkanesulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and trifluoromethanesulfonic acid; benzenesulfonic acid, p-toluene
  • arylsulfonic acids such as sulfonic acid and sulfamic acid; hydrobromic acid; perchloric acid; and
  • the concentration of acid in the plating solution may be, for example, 1 mL/L or more and 400 mL/L or less.
  • the concentration of sulfuric acid is preferably 40 mL/L or more, and preferably 200 mL/L or less.
  • the plating solution may contain additives.
  • additives that may be included in the plating solution include a halide ion supply agent, a brightening agent, and a surfactant.
  • the halide ion supplying agent include chlorine compounds such as sodium chloride and potassium chloride.
  • the concentration of the halide ion supply agent in the plating solution may be, for example, 0.5 mg/L or more and 300 mg/L or less.
  • brighteners include organic sulfur compounds such as bis(3-sulfopropyl) disulfide salts.
  • the concentration of the brightener in the plating solution may be, for example, 0.1 ppm or more and 1000 ppm or less.
  • the surfactant examples include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • concentration of the surfactant in the plating solution may be, for example, 1 mL/L or more and 60 mL/L or less.
  • the temperature of the plating solution is not limited as long as it can form an electroplated layer, and is preferably 2°C or higher, more preferably 10°C or higher, even more preferably 15°C or higher, and preferably 80°C or lower, more preferably 50°C or higher.
  • the temperature is preferably 30°C or lower, more preferably 30°C or lower.
  • the current density of the current applied during electroplating is not limited as long as it can form an electroplated layer, and is preferably 0.5 A/dm 2 or more, more preferably 1.0 A/dm 2 or more, and preferably is 8.0 A/dm 2 or less, more preferably 7.0 A/dm 2 or less.
  • Electroplating may be performed with the plating solution flowing.
  • the flow rate of the plating solution may be, for example, 3 cm/sec or more and 200 cm/sec or less.
  • an electroplated layer can be formed directly on the surface of the magnetic layer.
  • “directly” means that there is no other layer between the magnetic layer and the electroplating layer, and the magnetic layer and the electroplating layer are in contact with each other. .
  • An interface is formed between the magnetic layer and the electroplated layer that are in contact with each other in this way, but there is usually no plating catalyst at the interface. If a conductor layer is formed on the magnetic layer by electroless plating, the plating catalyst such as palladium, gold, silver, platinum, etc. will remain between the magnetic layer and the conductor layer. Therefore, it can be distinguished from a conductor layer formed by electroless plating.
  • the method for manufacturing a magnetic substrate according to the present embodiment includes a step (CU) of curing a resin composition layer to form a magnetic layer, and an electroplating layer on the surface of the magnetic layer. It is preferable not to include a step of forming a conductive layer on the surface of the magnetic layer by a method other than electroplating between the step of forming (EP).
  • the step (EP) of forming an electroplating layer includes forming an electroplating layer on the surface within the second hole of the magnetic layer by electroplating. Good too. From the viewpoint of promoting the formation of the electroplating layer within the second hole, it is preferable to perform electroplating with the plating solution flowing so that the plating solution can easily enter the second hole. Further, from the viewpoint of forming the electroplated layer in the second hole more efficiently, a process of applying ultrasonic waves to the plating solution may be performed.
  • the method for manufacturing a magnetic substrate according to the present embodiment may include a step of annealing the magnetic layer and the electroplated layer (annealing step) after electroplating.
  • the treatment temperature range for the annealing treatment is preferably 150°C or higher, more preferably 160°C or higher, even more preferably 170°C or higher, and preferably 260°C or lower, more preferably 250°C or lower, and still more preferably 240°C or lower. It is.
  • the range of treatment time for the annealing treatment is preferably 10 minutes or more, more preferably 20 minutes or more, even more preferably 30 minutes or more, and preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 2 less than an hour.
  • the annealing treatment may be performed in an inert atmosphere such as a nitrogen gas atmosphere. The annealing treatment can increase the adhesion strength between the magnetic layer and the electroplated layer.
  • a magnetic substrate including a magnetic layer and an electroplating layer formed on the surface of the magnetic layer can be obtained.
  • the electroplating layer alone is formed in a helical shape, or if the combination of the electroplating layer and any conductor layer provided on the magnetic substrate is formed in a helical shape, the electroplating layer and any conductor layer Since an inductor can be formed by a conductive layer such as a layer, an inductor-embedded substrate including an inductor can be obtained as a magnetic substrate.
  • the thickness of the electroplated layer is not particularly limited and can be selected within an appropriate range depending on the application.
  • the range of the thickness of the electroplated layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the formed electroplated layer can preferably have a small surface roughness.
  • the arithmetic mean roughness Ra of the surface of the electroplated layer is preferably 2000 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less.
  • the lower limit is not particularly limited, but may be 1 nm or more, 10 nm or more, 50 nm or more, etc.
  • the surface roughness of the electroplated layer can be measured using a non-contact surface roughness meter.
  • the method for manufacturing a magnetic substrate according to the present embodiment may further include any steps in combination with the steps described above.
  • the method for manufacturing a magnetic substrate may include, for example, a step of forming an arbitrary conductor layer.
  • the method for manufacturing a magnetic substrate may include a step of forming an arbitrary conductor layer.
  • Examples of the method for forming an arbitrary conductor layer include a plating method, a sputtering method, and a vapor deposition method.
  • any conductor layer may be processed into a desired wiring pattern by an appropriate method such as a semi-additive method or a full-additive method.
  • a thin conductor layer (seed layer) is formed by electroless plating.
  • a conductor layer is further formed by electroplating on the formed seed layer.
  • unnecessary seed layers can be removed by a process such as etching to form an arbitrary conductor layer having a desired wiring pattern.
  • an annealing treatment may be performed if necessary in order to improve adhesion strength.
  • the method for manufacturing a magnetic substrate may include, for example, a step of forming an arbitrary insulating layer.
  • an optional insulating layer may be formed when it is desired to insulate the electroplated layer from other conductive layers.
  • the second hole is A filling insulating layer may also be formed.
  • the insulating layer can be formed from a cured product of a thermosetting resin composition or a photocurable resin composition.
  • an insulating layer can be formed by forming a layer of a thermosetting resin composition or a photocurable resin composition on a magnetic substrate and curing the layer.
  • the formation of the above-described magnetic layer and electroplated layer, as well as the formation of any conductive layer and any insulating layer may be repeated.
  • the formation of the magnetic layer and the formation of the electroplated layer may be repeated, and the magnetic layer and the electroplated layer may be stacked alternately.
  • the magnetic substrate manufactured by the manufacturing method described above includes a magnetic layer and an electroplated layer formed on the surface of the magnetic layer.
  • the structure of the magnetic substrate is not particularly limited as long as it includes a magnetic layer and an electroplated layer. Therefore, the use of the magnetic substrate to be manufactured by the above-described manufacturing method is not limited.
  • the magnetic substrate includes a magnetic layer in which a second hole is formed and an electroplating layer formed in the second hole. It is preferable.
  • a magnetic layer is formed on the main surface of the inner layer base material, and a conductor layer is formed on the main surface of the magnetic layer.
  • an electroplated layer as a conductor layer on the main surface of the magnetic layer by the method described above, but it is also possible to form a conductor layer using metal foil such as copper foil, for example. be. Therefore, the conductor layer could be formed by a method other than the method according to the above-described embodiment without electroless plating.
  • the second hole is generally small, so it is difficult to form the conductor layer using metal foil. Therefore, forming a conductor layer within the second hole without using electroless plating cannot be achieved by any method other than the method according to the embodiment described above.
  • the second hole is formed by the manufacturing method described above.
  • a magnetic substrate is produced comprising a magnetic layer formed and an electroplated layer formed within the second hole.
  • an example of this magnetic substrate will be explained with reference to the drawings, along with a manufacturing method thereof.
  • the magnetic substrate and its manufacturing method are not limited to the examples shown below.
  • FIGS. 1 to 12 are schematic cross-sectional views for explaining each step of a method for manufacturing a magnetic substrate according to an example.
  • the method for manufacturing a magnetic substrate according to this example includes a step of preparing an inner layer base material 10, as shown in FIG.
  • a plate-shaped inner layer base material 10 including a support substrate 11 and base conductor layers 12 formed on both surfaces of the support substrate 11 will be described.
  • the method for manufacturing a magnetic substrate includes a step of forming a first hole 10H as a through hole in the inner layer base material 10, as shown in FIG.
  • the first hole 10H is formed to penetrate the inner layer base material 10 in the thickness direction.
  • the diameter of the first hole 10H is not particularly limited, and may be, for example, 200 ⁇ m to 800 ⁇ m.
  • the method for manufacturing a magnetic substrate includes a step of forming a resin composition layer 20 in the first hole 10H of the inner layer base material 10, as shown in FIG. (Step (LF)).
  • Step (LF) a step of forming a resin composition layer 20 in the first hole 10H of the inner layer base material 10.
  • the method for manufacturing a magnetic substrate includes a step of polishing the resin composition layer 20, as shown in FIG. 4 (step (PO)).
  • step (PO) By polishing, excess resin composition protruding from or adhering to the outside of the first hole 10H is removed, so the main surfaces 20U and 20D of the resin composition layer 20 can be made flat.
  • the main surface 20U of the resin composition layer 20 after polishing is flush with one main surface 10U of the inner layer base material 10
  • the main surface 20D of the resin composition layer 20 after polishing is flush with the other main surface 10U of the inner layer base material 10. It becomes flush with the main surface 10D of.
  • two or more surfaces are "flushed", it means that the surfaces are on the same plane.
  • the method for manufacturing a magnetic substrate includes a step of curing the resin composition layer 20 to obtain the magnetic layer 30 (step (CU)), as shown in FIG. )).
  • step (CU) curing the resin composition layer 20 to obtain the magnetic layer 30
  • step (CU) curing the resin composition layer 20 to obtain the magnetic layer 30
  • the magnetic layer 30 may be polished after the resin composition layer 20 is hardened to obtain the magnetic layer 30.
  • the method for manufacturing a magnetic substrate according to this example includes a step of forming a second hole 30H as a through hole in the magnetic layer 30, as shown in FIG. ).
  • the second hole 30H is formed to penetrate the magnetic layer 30 in the thickness direction.
  • the diameter of the second hole 30H can be formed smaller than the diameter of the first hole 10H, and there is no restriction on its specific dimensions.
  • the method for manufacturing a magnetic substrate includes a step of forming an electroplating layer 40 on the surface 30S of the magnetic layer 30 (step (EP)), as shown in FIG. ).
  • the magnetic layer 30 has main surfaces 30U and 30D formed in the opening of the first hole 10H, and a hole inner peripheral surface 30I formed in the second hole 30H as a surface 30S not bonded to the inner layer base material 10. including.
  • the electroplating layer 40 is normally formed on both the main surfaces 30U and 30D of the magnetic layer 30 and the inner circumferential surface 30I of the hole.
  • the method for manufacturing a magnetic substrate according to this example is such that the second hole 30H is filled with the electroplating layer 40 in the electroplating layer 40, as shown in FIG.
  • the method may include a step of forming an insulating layer 50 on the part where the insulation layer 50 is not covered.
  • the insulating layer 50 can be formed by, for example, filling the above portion with a curable resin such as a thermosetting resin composition or a photocurable resin composition, and curing the resin.
  • the insulating layer 50 may be polished.
  • the electroplated layer 40 may be polished at the same time.
  • FIG. 9 an example will be described in which the insulating layer 50 and the electroplated layer 40 are polished.
  • the main surface 10U of the inner layer base material 10, the main surface 30U of the magnetic layer 30, the main surface 40U of the electroplating layer 40, and the main surface 50U of the insulating layer 50 are flush with each other.
  • the main surface 10D of the inner layer base material 10, the main surface 30D of the magnetic layer 30, the main surface 40D of the electroplating layer 40, and the main surface 50D of the insulating layer 50 are flush with each other.
  • the method for manufacturing a magnetic substrate includes forming an arbitrary conductor on the inner layer base material 10, the magnetic layer 30, the electroplating layer 40, and the insulating layer 50, as shown in FIG.
  • the step of forming layer 60 may also be included.
  • Optional conductor layer 60 can be formed, for example, by electroless plating and electroplating.
  • an etching resist 70 having a desired pattern is formed on any conductor layer 60.
  • the portions of the base conductor layer 12, the electroplated layer 40, and any conductor layer 60 that are not covered with the etching resist 70 are removed, and the etching resist 70 is further removed.
  • FIG. 12 is a schematic cross-sectional view of a magnetic substrate according to an example.
  • the magnetic substrate 100 shown in FIG. 12 can be obtained.
  • the conductor layers such as the base conductor layer 12, the electroplating layer 40, and the arbitrary conductor layer 60 in a helical shape as a whole
  • an inductor can be formed by the conductor layers.
  • a conductor layer other than the base conductor layer 12, the electroplating layer 40, and the arbitrary conductor layer 60 may be further provided.
  • the magnetic substrate 100 includes a magnetic layer 30 in which a second hole 30H is formed, and an electroplated layer 40 formed on the surface 30S of this magnetic layer 30.
  • the electroplated layer 40 is formed within the second hole 30H. Since the electroplating layer 40 is formed without electroless plating, the electroplating layer 40 formed in the second hole 30H and the magnetic layer 30 are in direct contact. Furthermore, there is no plating catalyst for electroless plating at the interface between the electroplating layer 40 and the magnetic layer 30 that are in contact with each other (corresponding to the inner peripheral surface 30I of the hole). Conventional technology has not been able to form a conductive layer on the surface of the magnetic layer within the second holes formed in the magnetic layer without using a plating catalyst. Therefore, the magnetic substrate 100 described above is previously unknown not only in its manufacturing method but also in its structure.
  • the magnetic substrate described above can be used, for example, to manufacture inductor parts.
  • This inductor component includes the magnetic substrate described above.
  • the inductor component typically has an inductor pattern formed by conductor layers, such as a base conductor layer, an electroplated layer and an optional conductor layer, at least in part around the magnetic layer.
  • an inductor component for example, the one described in Japanese Patent Application Laid-Open No. 2016-197624 can be applied.
  • the inductor component includes the above-mentioned inductor built-in board.
  • the inductor component can be used, for example, as a wiring board for mounting electronic components such as semiconductor chips, and can also be used as a (multilayer) printed wiring board using such a wiring board as an inner layer base material. Further, for example, such a wiring board can be used as a chip inductor component made into individual pieces, or it can also be used as a printed wiring board in which the chip inductor component is surface-mounted.
  • semiconductor devices can be manufactured using such a wiring board.
  • Semiconductor devices including such wiring boards can be suitably used in electrical products (e.g., computers, mobile phones, digital cameras, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.). .
  • Example 1 Production of magnetic varnish 1> Epoxy resin ("ZX-1059” manufactured by Nippon Steel Chemical & Materials, a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, epoxy equivalent 169 g/eq.) 1.92 parts by mass, triazine skeleton-containing phenol resin ( "LA-7054” manufactured by DIC Corporation, 2.18 parts by mass of MEK solution with a solid content of 60% with a hydroxyl equivalent of approximately 125 g/eq., phenoxy resin ("YL7553BH30” manufactured by Mitsubishi Chemical Corporation, MEK with a solid content of 30% and cyclohexanone) (1:1 solution) 1.67 parts by mass, dispersant (PB-821 manufactured by Ajinomoto Fine Techno, cationic dispersant) 0.43 parts by mass, solvent (cyclohexanone) 3 parts by mass, ferrite powder (powder) "M03S” manufactured by Tech Co., Ltd., Fe-Mn ferrite, average particle size 0.5
  • Example 2 Production of magnetic varnish 2>
  • the amount of ferrite powder (“M03S” manufactured by Powder Tech, Fe-Mn ferrite, average particle size 0.5 ⁇ m, specific gravity 5.1 m 2 /g) was changed from 22.09 parts by mass to 30.00 parts by mass.
  • the amount of alloy powder (“AKT-PB (5)" manufactured by Mitsubishi Steel Corporation, Fe-Ni alloy, average particle size 5.0 ⁇ m, specific gravity 8.0 m 2 /g) was changed from 73.74 parts by mass to 30 parts by mass. The amount was changed to .00 parts by mass.
  • Magnetic varnish 2 was manufactured in the same manner as in Example 1 except for the above matters.
  • Example 3 Production of magnetic varnish 3>
  • the amount of ferrite powder (“M03S” manufactured by Powder Tech, Fe-Mn ferrite, average particle size 0.5 ⁇ m, specific gravity 5.1 m 2 /g) was changed from 22.09 parts by mass to 50.00 parts by mass.
  • the amount of alloy powder (“AKT-PB (5)" manufactured by Mitsubishi Steel Corporation, Fe-Ni alloy, average particle size 5.0 ⁇ m, specific gravity 8.0 m 2 /g) was changed from 73.74 parts by mass to 22 parts by mass. The amount was changed to .00 parts by mass.
  • Magnetic varnish 3 was produced in the same manner as in Example 1 except for the above matters.
  • Example 4 Production of magnetic varnish 4> 22.09 parts by mass of ferrite powder (“M03S” manufactured by Powder Tech Co., Ltd., Fe-Mn ferrite, average particle size 0.5 ⁇ m, specific gravity 5.1 m 2 /g) was mixed with alloy powder (fine alloy powder manufactured by JFE Mineral Co., Ltd.) A magnetic varnish was prepared in the same manner as in Example 1 except that 30.92 parts by mass of "CVD iron powder", Fe-Cr-Si alloy, average particle size 0.7 ⁇ m, specific gravity 6.9 m 2 /g) was used. 4 was manufactured.
  • Example 5 Production of magnetic varnish 5> 22.09 parts by mass of ferrite powder (“M03S” manufactured by Powder Tech, Fe-Mn ferrite, average particle size 0.5 ⁇ m, specific gravity 5.1 m 2 /g) was added to ferrite powder (“MZ03S” manufactured by Powder Tech) Magnetic varnish 5 was produced in the same manner as in Example 1, except that the amount was changed to 22.09 parts by mass (Fe-Mn-Zn ferrite, average particle diameter 0.5 ⁇ m, specific gravity 5.1 m 2 /g).
  • Example 6 Production of magnetic varnish 6> 73.74 parts by mass of alloy powder ("AKT-PB (5)” manufactured by Mitsubishi Steel, Fe-Ni alloy, average particle size 5.0 ⁇ m, specific gravity 8.0 m 2 /g) was added to alloy powder (Mitsubishi Steel) Example 1 except that the material was changed to 73.74 parts by mass of "AKT-PB-3Si(5)” manufactured by Kogyo Co., Ltd., Fe-Ni-Si alloy, average particle size 5.0 ⁇ m, specific gravity 8.0 m 2 /g). Magnetic varnish 6 was produced in the same manner as above.
  • Example 7 Production of magnetic varnish 7> 73.74 parts by mass of alloy powder (Mitsubishi Steel Corporation "AKT-PB (5)", Fe-Ni alloy, average particle size 5.0 ⁇ m, specific gravity 8.0 m 2 /g) was added to alloy powder (Epson Atomic The procedure was the same as in Example 1, except that the material was changed to 50.00 parts by mass of "AW2-08 PF3F” manufactured by Sus, Fe-Si-Cr alloy, average particle size 3.0 ⁇ m, specific gravity 6.9 m 2 /g). Thus, magnetic varnish 7 was manufactured.
  • Example 8 Production of magnetic paste 8> Epoxy resin (Nippon Steel Chemical & Materials "ZX-1059", mixture of bisphenol A epoxy resin and bisphenol F epoxy resin, epoxy equivalent 169 g/eq.) 1.70 parts by mass, epoxy resin (Mitsubishi Chemical Co., Ltd.) "630", glycidylamine type epoxy resin, epoxy equivalent: 95 g/eq.) 1.42 parts by mass, epoxy resin ("ZX-1658GS", manufactured by Nippon Steel Chemical & Materials Co., Ltd., cycloaliphatic diglycidyl ether, epoxy equivalent: 135 g) /eq.) 4.90 parts by mass, dispersant ("PB-821” manufactured by Ajinomoto Fine Techno Co., Ltd., cationic dispersant) 0.57 parts by mass, curing accelerator ("2MZA-PW” manufactured by Shikoku Kasei Co., Ltd., imidazole) epoxy resin curing accelerator) 0.47 parts by mass, ferrite powder (manufactured by
  • a 200 mm square sheet piece was cut from each resin sheet produced in Examples 1 to 7 and Comparative Example 1.
  • the cut out sheet pieces (200 mm square) were heated using a batch-type vacuum pressure laminator (two-stage build-up laminator "CVP700" manufactured by Nikko Materials) so that the resin composition layer was in contact with the center of the inner layer base material. Then, it was laminated on both sides of the inner layer base material. Lamination was carried out by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then press-bonding at 100° C. and a pressure of 0.74 MPa for 30 seconds. Thereafter, the resin composition layer was thermally cured by heating at 130° C. for 30 minutes and further at 180° C. for 30 minutes, thereby forming a magnetic layer. The surface of the formed magnetic layer was buffed.
  • Copper sulfate electrolytic plating was performed on the surface of the polished magnetic layer. This electroplating was carried out by using a magnetic layer as a cathode, a copper plate as an anode, and flowing a current at a current density of 2.0 A/dm 2 for 60 minutes in a copper sulfate solution as a plating solution.
  • the composition of the plating solution was as follows. "Copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd. 79 g/L “Sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd. 154 mL/L "Sodium chloride” manufactured by Wako Pure Chemical Industries, Ltd. 65mg/L "Additive Cupracid HL” manufactured by Atotech Japan, surfactant 30 mL/L "Correction Cupracid GS” manufactured by Atotech Japan, organic sulfur compound, 0.1 mL/L
  • an annealing treatment was performed at 180° C. for 60 minutes to obtain an evaluation board. This evaluation board was observed to determine whether a conductor layer (electroplated layer) could be formed on the surface of the magnetic layer. Those in which the electroplated layer could be formed on the entire surface of the magnetic layer were evaluated as "good,” and those in which the electroplated layer could not be formed were evaluated as "poor.”
  • ⁇ Electroplating test 2 Formation of conductor layer by electroplating using magnetic paste or magnetic ink>
  • an inner layer base material both sides of a glass cloth-based epoxy resin double-sided copper-clad laminate (copper foil thickness 18 ⁇ m, substrate thickness 0.3 mm, Panasonic Corporation "R5715ES”) were coated with a micro-etching agent (MEC Corporation "CZ8100”). ) was prepared by etching the copper surface by 1 ⁇ m to roughen the copper surface.
  • the magnetic paste produced in Example 8 and the magnetic ink produced in Example 9 were uniformly applied onto the inner layer base material using a doctor blade so that the thickness of the magnetic layer after curing was 100 ⁇ m, and the resin composition was A layer was formed.
  • the resin composition layer was thermally cured by heating at 130° C. for 30 minutes and then at 150° C. for 30 minutes to form a magnetic layer. After buffing the surface of the formed magnetic layer, heat treatment was performed at 180° C. for 30 minutes to further progress hardening.
  • Copper sulfate electrolytic plating was performed on the surface of the polished magnetic layer. This electroplating was performed in the same manner as the electroplating in Electroplating Test 1 described above. After electroplating, annealing treatment was performed at 180° C. for 60 minutes to obtain an evaluation board. This evaluation board was observed to determine whether a conductor layer (electroplated layer) could be formed on the surface of the magnetic layer. Those in which the electroplated layer could be formed on the entire surface of the magnetic layer were evaluated as "good,” and those in which the electroplated layer could not be formed were evaluated as "poor.”
  • ⁇ Magnetic property test 1 Measurement of relative magnetic permeability and loss coefficient of magnetic layer obtained from resin sheet>
  • a 200 mm square sheet piece was cut from each resin sheet produced in Examples 1 to 7 and Comparative Example 1.
  • the cut sheet pieces (200 mm square) were coated with a polyimide film ("Upilex 25S", manufactured by Ube Industries, Ltd., 25 ⁇ m) using a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700” manufactured by Nikko Materials). It was laminated on one side of a 240 mm square). The lamination described above was performed so that the resin composition layer of the sheet piece was in contact with the center of the smooth surface of the polyimide film.
  • the lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then press-bonding at 100° C. and a pressure of 0.74 MPa for 30 seconds.
  • a multilayer film having a layer structure of support/resin composition layer/polyimide film was obtained by lamination.
  • the resin composition layer was thermally cured by heating at 190° C. for 90 minutes. Thereafter, the polyimide film was peeled off to obtain a sheet-like cured product.
  • This cured product corresponds to a magnetic layer obtained from a resin sheet.
  • the obtained sheet-like cured product was cut to obtain a donut-shaped evaluation sample with an outer diameter of 19.2 mm and an inner diameter of 8.2 mm.
  • ⁇ Magnetic property test 2 Measurement of relative magnetic permeability and loss coefficient of magnetic layer obtained from magnetic paste or magnetic ink>
  • a polyethylene terephthalate (PET) film (“PET501010” manufactured by Lintec Corporation, thickness 50 ⁇ m) treated with a silicone mold release agent was prepared.
  • the magnetic paste produced in Example 8 and the magnetic ink produced in Example 9 were uniformly applied onto the release surface of the PET film using a doctor blade so that the thickness of the magnetic layer after curing was 100 ⁇ m.
  • a resin sheet including a support and a resin composition layer was obtained.
  • the obtained resin sheet was heated at 190° C. for 90 minutes to thermoset the resin composition layer. Thereafter, the support was peeled off to obtain a sheet-like cured product.
  • This cured product corresponds to a magnetic layer obtained from magnetic paste or magnetic ink.
  • the obtained sheet-like cured product was cut to obtain a donut-shaped evaluation sample with an outer diameter of 19.2 mm and an inner diameter of 8.2 mm.
  • ⁇ Surface roughness measurement test Measurement of surface roughness of electroplated layer>
  • the arithmetic mean roughness Ra of the electroplating layer formed in the above-mentioned electroplating test 1 and electroplating test 2 was measured using a non-contact surface roughness meter (WYKO NT3300 manufactured by Beaco Instruments) in VSI mode, 50 times.
  • the Ra value was determined from the numerical value obtained by setting the measurement range to 121 ⁇ m ⁇ 92 ⁇ m using the lens. Each was measured by calculating the average value of 10 randomly selected points.
  • Amount of alloy powder (vol%): Amount of (A-1) alloy powder relative to 100 volume% of nonvolatile components of the resin composition. Alloy powder/magnetic powder (wt%): Amount of (A-1) alloy powder relative to 100 mass% of (A) magnetic powder. Alloy powder/magnetic powder (vol%): Amount of (A-1) alloy powder relative to 100 volume% of (A) magnetic powder.
  • Plating formation Whether or not an electroplating layer can be formed by electroplating.
  • Relative magnetic permeability Relative magnetic permeability of the cured product of the resin composition corresponding to the magnetic layer.
  • Loss factor Loss factor of the cured product of the resin composition corresponding to the magnetic layer.
  • Volume resistance Volume resistance of the magnetic layer.
  • Surface roughness The surface roughness of the electroplated layer.
  • Inner layer base material 10H First hole 10U, 10D Main surface of inner layer base material 11 Support substrate 12 Base conductor layer 20 Resin composition layer 20U, 20D Main surface of resin composition layer 30 Magnetic layer 30H Second hole 30S Magnetic layer Surface of 30U, 30D Main surface of magnetic layer 30I Hole inner peripheral surface of magnetic layer 40 Electroplated layer 50 Insulating layer 60 Arbitrary conductor layer 70 Etching resist 100 Magnetic substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

磁性層と、前記磁性層の表面に形成された導体層と、を備える磁性基板の製造方法であって、磁性層の表面に、電気めっきによって導体層を形成する工程(EP)を含み、磁性層が、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含み、(A)磁性粉体が、(A)磁性粉体100質量%に対して、(A-1)合金粉体を30質量%以上含む、磁性基板の製造方法。

Description

磁性基板の製造方法、及び、磁性基板
 本発明は、磁性基板の製造方法、及び、磁性基板に関する。
 インダクタを有する基板は、携帯電話機、スマートフォンなどの情報端末に数多く搭載されている。従来は独立したインダクタ部品が回路基板等の基板に実装されていたが、近年は基板の導体層によりコイルを形成し、インダクタを基板に直接設ける手法が提案されている(特許文献1)。
特開2021-086856号公報
 インダクタを基板に直接設ける手法としては、例えば、磁性材料を含有する樹脂組成物の硬化物によって基板のホール内に磁性層を形成し、その磁性層の表面に導体層を形成する方法が知られている。導体層は、通常、めっき法によって形成される。めっき法のうち、無電解めっきは、非導電材料の表面に導体層を形成できる一方、導体層を厚くすることが一般に難しい。他方、電気めっきは、電流を用いる原理上、一般的には非導電材料の表面に導体層を形成することができないから、非導電性の層である磁性層の表面に導体層を形成できなかった。そのため、従来は、磁性層の表面に無電解めっきによって薄い導体層(シード層)を形成し、その薄い導体層上に電気めっきによって厚い導体層を形成することが通常であった。
 しかし、無電解めっき及び電気めっきを組み合わせて実施する場合には、導体層を形成するために求められる工程数が多い。工程数が多いと、めっきのための制御項目が多く、また導体層を形成するために要する時間が長い傾向がある。さらに、一般に、無電解めっきに用いられる薬液としてのめっき液には、厳格な成分管理が求められる。よって、めっき液の成分管理のために要する手間が多く、めっき液の成分管理が煩雑である。
 そこで、無電解めっきの省略を可能にして、磁性層の表面に電気めっきによって導体層を形成する技術の開発が求められる。
 本発明は、前記の課題に鑑みて創案されたもので、磁性層の表面に電気めっきによって導体層を形成することを含む磁性基板の製造方法;磁性層と、その磁性層の表面に電気めっきによって形成された導体層と、を含む磁性基板;を提供することを目的とする。
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、特定範囲の量の(A-1)合金粉体を含む(A)磁性粉体と(B)熱硬化性樹脂とを組み合わせて含む樹脂組成物の硬化物の表面に、電気めっきによって導体層を形成できることを見い出した。そして、本発明者は、前記の硬化物を磁性層に適用することにより、前記の課題を解決できるとの知見を得て、本発明を完成させた。
 すなわち、本発明は、下記の物を含む。
 [1] 磁性層と、前記磁性層の表面に形成された導体層と、を備える磁性基板の製造方法であって、
 磁性層の表面に、電気めっきによって導体層を形成する工程(EP)を含み、
 磁性層が、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含み、
 (A)磁性粉体が、(A)磁性粉体100質量%に対して、(A-1)合金粉体を30質量%以上含む、磁性基板の製造方法。
 [2] 工程(EP)よりも前に、
 樹脂組成物を含む樹脂組成物層を形成する工程(LF)と、
 樹脂組成物層を硬化させて磁性層を形成する工程(CU)と、を含む、[1]に記載の磁性基板の製造方法。
 [3] 工程(CU)と工程(EP)との間に、電気めっき以外の方法によって磁性層の表面に導体層を形成する工程を含まない、[2]に記載の磁性基板の製造方法。
 [4] 工程(LF)が、第一ホールを形成された基材の前記第一ホールに、樹脂組成物層を形成することを含む、[2]又は[3]に記載の磁性基板の製造方法。
 [5] 工程(EP)より前に、磁性層に第二ホールを形成する工程(HF)を含み、
 工程(EP)が、磁性層の第二ホール内の表面に、電気めっきによって導体層を形成することを含む、[1]~[4]のいずれか一項に記載の磁性基板の製造方法。
 [6] 樹脂組成物中の不揮発成分100質量%に対する(A)磁性粉体の量が、60質量%以上である、[1]~[5]のいずれか一項に記載の磁性基板の製造方法。
 [7] 測定周波数20MHzにおける硬化物の比透磁率が、10以上である、[1]~[6]のいずれか一項に記載の磁性基板の製造方法。
 [8] (A-1)合金粉体が、Fe-Ni系合金粉体、Fe-Cr-Si系合金粉体及びFe-Ni-Cr系合金粉体からなる群より選ばれる1種類以上を含む、[1]~[7]のいずれか一項に記載の磁性基板の製造方法。
 [9] ホールを形成された磁性層と、前記ホール内に形成された導体層と、を備える磁性基板であって、
 磁性層と導体層とが直に接しており、かつ、磁性層と導体層との界面にめっき触媒が無く、
 磁性層が、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含み、
 (A)磁性粉体が、(A)磁性粉体100質量%に対して、(A-1)合金粉体を30質量%以上含む、磁性基板。
 [10] 導体層が、銅によって形成されている、[9]に記載の磁性基板。
 本発明によれば、磁性層の表面に電気めっきによって導体層を形成することを含む磁性基板の製造方法;磁性層と、その磁性層の表面に電気めっきによって形成された導体層と、を含む磁性基板;を提供できる。
図1は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図2は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図3は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図4は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図5は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図6は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図7は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図8は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図9は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図10は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図11は、一例に係る磁性基板の製造方法の工程を説明するための模式的な断面図である。 図12は、一例に係る磁性基板の模式的な断面図である。
 以下、本発明の実施形態及び例示物を示して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、樹脂組成物の樹脂成分とは、別に断らない限り、樹脂組成物の不揮発成分のうち、(A)磁性粉体等の無機粒子を除いた成分を表す。
[磁性基板の製造方法の概要]
 本発明の一実施形態に係る製造方法は、磁性層と、この磁性層の表面に形成された導体層と、を備える磁性基板の製造方法である。磁性層は、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含む。また、(A)磁性粉体は、特定範囲の量の(A-1)合金粉体を含む。このような磁性層の表面には、電気めっきによって導体層を形成できるので、無電解めっきによる導体層(シード層)の形成を省略できる。したがって、本実施形態に係る製造方法は、磁性層の表面に、電気めっきによって導体層を形成する工程(EP)を含むことができる。磁性層の表面に電気めっきによって形成される前記の導体層を、以下「電気めっき層」ということがある。
 無電解めっきによる導体層(シード層)の形成を省略できるので、本実施形態に係る製造方法によれば、工程数を減らして簡便かつ短時間に電気めっき層の形成が可能である。また、無電解めっきが不要であるので、無電解めっき用の薬液が不要である。したがって、薬液の成分管理が不要であるので、磁性基板の製造プロセスをシンプルにできる。この点、仮に無電解めっき用の薬液を使用すると、(A-1)合金粉体の種類によっては薬液に(A-1)合金粉体が溶解することがあり、薬液の成分管理の煩雑さが増すこととは、対照的である。さらに、薬液によって溶解又は変質されうる材料の粒子であっても(A-1)合金粉体として使用することが可能であるから、(A-1)合金粉体の選択の幅を広げることができる。そして、そのように(A-1)合金粉体を含む磁性層は、通常、優れた磁気特性を有することができる。
 一般に、電気めっきでは、めっき対象としてのカソードの表面においてめっき液中の金属イオンが還元されて析出するので、導体層が形成される。金属イオンの還元のためには電流の印加が求められるので、従来は、金属イオンの還元は、導体で形成されたカソードの表面でのみ生じるというのが当業者の技術常識であった。例えば、体積抵抗が大きい従来の磁性層は、仮に電気めっきを行った場合でも、当該磁性層の表面に導体層を形成することはできなかった。
 これに対し、本実施形態では、特定範囲の量の(A-1)合金粉体を含む(A)磁性粉体を含む磁性層が、導体よりも大きい抵抗を有していながら、当該磁性層の表面に電気めっきによって導体層としての電気めっき層を形成することが可能である。本実施形態に係る磁性層が従来の磁性層と同程度の体積抵抗を有する場合であっても、特定範囲の量の(A-1)合金粉体を含む(A)磁性粉体を含む本実施形態に係る磁性層の表面には、電気めっき層による電気めっき層の形成が可能である。このような現象は、当業者にとって意外である。
 本発明は、特定の理論によって拘束されるものでは無いが、前記のように磁性層の表面に電気めっきによって電気めっき層を形成される仕組みを、本発明者は、下記のように推察する。
 磁性層に電気めっきのために配線が接続された場合を想定する。一般に、(A-1)合金粉体は導電性を有するが、その(A-1)合金粉体の全部又は大部分の粒子同士は、通常、樹脂成分によって絶縁されている。よって、磁性層は、通常、絶縁性を有する。しかし、磁性基板に求められる高い比透磁率を有することができる程度に多くの(A)磁性粉体を含む磁性層においては、当該(A)磁性粉体中の(A-1)合金粉体の粒子同士の距離は、近い。そうすると、十分な電圧が印加された場合、樹脂成分の絶縁破壊が生じ、(A-1)合金粉体の粒子同士の間に電流が流れることができる。また、磁性層内に(A-1)合金粉体の粒子同士が接触している部分があれば、それら(A-1)合金粉体の粒子によって導電パスが形成でき、その導電パスには電流が流れることができる。電流が流れると、そのように電流が流れた(A-1)合金粉体の粒子の表面において金属イオンが還元されて当該金属が析出できる。したがって、磁性層をカソードとして機能させた電気めっきが可能となり、無電解めっきを省略した電気めっき層の形成が可能である。
 本実施形態に係る製造方法は、工程(EP)の前に、樹脂組成物を含む樹脂組成物層を形成する工程(LF)と、樹脂組成物層を硬化させて磁性層を形成する工程(CU)と、を含んでいてもよい。よって、本実施形態に係る製造方法は、樹脂組成物層を形成する工程(LF)、樹脂組成物層を硬化させて磁性層を形成する工程(CU)、及び、磁性層の表面に電気めっきによって電気めっき層を形成する工程(EP)、をこの順に含んでいてもよい。この場合、本実施形態に係る製造方法は、工程(CU)と工程(EP)との間に、電気めっき以外の方法によって磁性層の表面に導体層を形成する工程を含まないで、磁性基板を製造できる。
[樹脂組成物]
 本発明の一実施形態に係る磁性基板の製造方法で用いる樹脂組成物について説明する。本実施形態に係る樹脂組成物は、(A)磁性粉体及び(B)熱硬化性樹脂を含む。また、この樹脂組成物は、(A)磁性粉体及び(B)熱硬化性樹脂に組み合わせて、任意の成分を含んでいてもよい。
 <(A)磁性粉体>
 本実施形態に係る樹脂組成物は、(A)成分として(A)磁性粉体を含む。(A)磁性粉体は、1より大きい比透磁率を有する材料の粒子でありうる。(A)磁性粉体の材料は、通常は無機材料であり、軟磁性材料であってもよく、硬磁性材料であってもよい。また、(A)磁性粉体の材料は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。よって、(A)磁性粉体は、軟磁性粉体であってもよく、硬磁性粉体であってもよく、軟磁性粉体及び硬磁性粉体の組み合わせであってもよい。中でも、(A)磁性粉体は、軟磁性粉体を含むことが好ましく、軟磁性粉体のみを含むことがより好ましい。また、(A)磁性粉体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (A)磁性粉体は、(A-1)合金粉体を含む。(A-1)成分としての(A-1)合金粉体は、合金の粒子である。(A-1)合金粉体の例としては、Fe-Si系合金粉体、Fe-Si-Al系合金粉体、Fe-Cr系合金粉体、Fe-Cr-Si系合金粉体、Fe-Ni-Cr系合金粉体、Fe-Cr-Al系合金粉体、Fe-Ni系合金粉体、Fe-Ni-Si系合金粉体、Fe-Ni-B系合金粉体、Fe-Ni-Mo系合金粉体、Fe-Ni-Mo-Cu系合金粉体、Fe-Co系合金粉体、Fe-Ni-Co系合金粉体、Co基アモルファス合金粉体等が挙げられる。(A-1)合金粉体に含まれる合金は、結晶質であってもよく、非晶質であってもよく、それらの組み合わせであってもよい。
 中でも、(A-1)合金粉体としては、鉄を含有する合金の粒子としての鉄合金粉体がより好ましい。鉄合金粉体の中でも、Fe元素と、Ni、Cr及びSiからなる群より選ばれる少なくとも1種類の元素とを含有する鉄合金粉体が更に好ましく、Fe-Ni系合金粉体、Fe-Cr-Si系合金粉体及びFe-Ni-Cr系合金粉体からなる群より選ばれる1種類以上が特に好ましい。Fe-Ni系合金粉体とは、Fe及びNiを含有する合金粉体を表す。また、Fe-Cr-Si系合金粉体とは、Fe、Cr及びSiを含有する合金粉体を表す。さらに、Fe-Ni-Cr系合金粉体とは、Fe、Ni及びCrを含有する合金粉体を表す。これら好ましい(A-1)合金粉体を用いる場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 (A-1)合金粉体としては、市販品を用いてもよい。市販の(A-1)合金粉体としては、例えば、三菱製鋼社製の「AKT-PB(5)」(Fe-Ni系合金粉体)、「AKT-PB-3Si(5)」(Fe-Ni-Si系合金粉体);JFEミネラル社製の「CVD鉄粉」(Fe-Cr-Si系合金粉体);エプソンアトミックス社製「AW2-08 PF3F」(Fe-Si-Cr系合金粉体);DOWAエレクトロニクス社製「MA-RCO-5」(Fe-Ni-B系合金)、「MA-RCO-24」(Fe-Ni系合金);が挙げられる。
 (A-1)合金粉体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (A-1)合金粉体は、特定の範囲の平均粒径を有することが好ましい。(A-1)合金粉体の平均粒径の範囲は、好ましくは0.001μm以上、より好ましくは0.01μm以上、更に好ましくは0.1μm以上であり、好ましくは800μm以下、より好ましくは300μm以下、更に好ましくは100μm以下である。この範囲の平均粒径を有する(A-1)合金粉体を用いる場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 平均粒径は、別に断らない限り、体積基準のメジアン径を表す。この平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、粒径分布を体積基準で作成し、そのメジアン径を平均粒径として測定できる。測定サンプルは、粉体を超音波により水に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。
 (A-1)合金粉体の比表面積は、比透磁率を向上させる観点から、好ましくは0.05m/g以上、より好ましくは0.1m/g以上、さらに好ましくは0.3m/g以上であり、好ましくは10m/g以下、より好ましくは8m/g以下、さらに好ましくは5m/g以下である。(A-1)合金粉体の比表面積は、BET法によって測定できる。具体的には、比表面積は、BET法に従って、比表面積測定装置(マウンテック社製「Macsorb HM Model 1210」)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて測定できる。
 (A-1)合金粉体の粒子は、球状又は楕円体状の粒子であることが好ましい。(A-1)合金粉体の粒子の長軸の長さを短軸の長さで割り算した比(アスペクト比)の範囲は、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下であり、通常1.0以上である。一般に、磁性粉体の粒子の形状が、球状ではない扁平な形状であると、比透磁率を向上させやすい。他方、磁性粉体の粒子の形状が、球状に近いと、磁性損失を低くしやすい。
 (A-1)合金粉体の真比重の範囲は、例えば、4g/cm~10g/cmでありうる。
 (A)磁性粉体は、特定範囲の量の(A-1)合金粉体を含む。(A-1)合金粉体の具体的な量(質量%)の範囲は、(A)磁性粉体100質量%に対して、通常30質量%以上、好ましくは40質量%以上、更に好ましくは50質量%以上であり、60質量%以上であってもよい。上限は、通常100質量%以下である。この範囲の量の(A-1)合金粉体を用いる場合、磁性層の表面に電気めっきによって電気めっき層を形成できる。また、通常は、優れた磁気特性を有する磁性層を得ることができる。さらに、好ましくは、形成される電気めっき層の表面の平滑性を高めることができる。
 (A-1)合金粉体の量(体積%)の範囲は、(A)磁性粉体100体積%に対して、好ましくは20体積%以上、より好ましくは30体積%以上、更に好ましくは40体積%以上であり、50体積%以上であってもよい。上限は、通常100体積%以下である。この範囲の量の(A-1)合金粉体を用いる場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。さらに、好ましくは、形成される電気めっき層の表面の平滑性を高めることができる。
 樹脂組成物に含まれる各成分の体積基準の量(体積%)は、樹脂組成物に含まれる成分の質量から計算によって求められる。具体的には、質量を比重で割り算して各成分の体積を求め、そうして求めた各成分の体積から計算により体積基準の量(体積%)を求めることができる。
 (A-1)合金粉体の量(質量%)の範囲は、樹脂組成物の不揮発成分100質量%に対して、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは97質量%以下である。この範囲の量の(A-1)合金粉体を用いる場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。さらに、好ましくは、形成される電気めっき層の表面の平滑性を高めることができる。
 (A-1)合金粉体の量(体積%)の範囲は、樹脂組成物の不揮発成分100体積%に対して、好ましくは10体積%以上、より好ましくは13体積%以上、更に好ましくは16体積%以上であり、好ましくは90体積%以下、より好ましくは85体積%以下、更に好ましくは80体積%以下である。この範囲の量の(A-1)合金粉体を用いる場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。さらに、好ましくは、形成される電気めっき層の表面の平滑性を高めることができる。
 (A)磁性粉体は、(A-1)合金粉体以外の(A-2)任意の磁性粉体を含んでいてもよい。(A-2)任意の磁性粉体としては、磁性金属酸化物粉体、前記の(A-1)合金粉体以外の磁性金属粉体、などが挙げられる。
 磁性金属酸化物粉体としては、例えば、Fe-Mn系フェライト粉体、Fe-Mn-Mg系フェライト粉体、Fe-Mn-Mg-Sr系フェライト粉体、Fe-Mg-Zn系フェライト粉体、Fe-Mg-Sr系フェライト粉体、Fe-Zn-Mn系フェライト粉体、Fe-Cu-Zn系フェライト粉体、Fe-Ni-Zn系フェライト粉体、Fe-Ni-Zn-Cu系フェライト粉体、Fe-Ba-Zn系フェライト粉体、Fe-Ba-Mg系フェライト粉体、Fe-Ba-Ni系フェライト粉体、Fe-Ba-Co系フェライト粉体、Fe-Ba-Ni-Co系フェライト粉体、Fe-Y系フェライト粉体等のフェライト粉体;酸化鉄粉(III)、四酸化三鉄粉などの酸化鉄粉体;などが挙げられる。
 (A-1)合金粉体以外の磁性金属粉体としては、例えば、純鉄粉体などが挙げられる。
 (A-2)任意の磁性粉体の中でも、磁性金属酸化物粉体が好ましく、フェライト粉体が更に好ましい。フェライト粉体は、通常、酸化鉄を主成分とする複合酸化物からなり、化学的に安定している。よって、フェライト粉体によれば、耐食性が高く、発火の危険性が低く、減磁し難い等の利点が得られる。中でも、Mn及びZnからなる群より選ばれる少なくとも1種類の元素を含むフェライト粉体が好ましく、Mnを含むフェライト粉体がより好ましく、Fe-Mn系フェライト粉体及びFe-Mn-Zn系フェライト粉体が特に好ましい。Fe-Mn系フェライト粉体はFe及びMnを含むフェライト粉体を表し、Fe-Mn-Zn系フェライト粉体はFe、Mn及びZnを含むフェライト粉体を表す。
 (A-2)任意の磁性粉体としては、市販品を用いてもよい。市販の(A-2)任意の磁性粉体としては、例えば、パウダーテック社製「M001」、「M03S」、「M05S」、「MZ03S」、「MZ05S」;エプソンアトミックス社製「AW2-08」;JFEケミカル社製「LD-M」、「LD-MH」、「KNI-106」、「KNI-106GSM」、「KNI-106GS」、「KNI-109」、「KNI-109GSM」;戸田工業社製「KNS-415」、「BSF-547」、「BSF-029」、「BSN-125」、「BSN-714」、「BSN-828」;などが挙げられる。
 (A-2)任意の磁性粉体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (A-2)任意の磁性粉体の平均粒径は、特に制限されない。(A-2)任意の磁性粉体の平均粒径は、(A-1)合金粉体の平均粒径よりも小さいことが好ましい。(A-1)合金粉体よりも小さい(A-2)任意の磁性粉体は、(A-1)合金粉体の粒子同士の間隙に入り込むことができる。よって、磁性層全体としての(A)磁性粉体の充填密度を高められるから、磁気特性を特に良好にできる。また、そのように小さい(A-2)任意の磁性粉体によれば、(A-1)合金粉体の粒子同士の距離が当該(A-2)任意の磁性粉体の粒子の排除体積によって広がることが抑制されるから、電気めっき時の電流の流通を円滑にして電気めっき層の形成を効率的に行うことができる。(A-2)任意の磁性粉体の平均粒径の具体的な範囲は、好ましくは0.001μm以上、より好ましくは0.01μm以上、更に好ましくは0.1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下である。
 (A-2)任意の磁性粉体の比表面積は、特に制限されない。比透磁率を向上させる観点から、(A-2)任意の磁性粉体の比表面積の範囲は、(A-1)合金粉体の比表面積の範囲と同じであることが好ましい。
 (A-2)任意の磁性粉体の形状は、特に制限されない。例えば、(A-2)任意の磁性粉体は、(A-1)合金粉体の粒子と同じ形状を有していてもよい。よって、(A-2)任意の磁性粉体の粒子のアスペクト比の範囲は、(A-1)合金粉体の粒子のアスペクト比の範囲と同じであってもよい。
 (A-2)任意の磁性粉体の真比重は、特に制限されない。例えば、(A-2)任意の磁性粉体の真比重の範囲は、(A-1)合金粉体の真比重の範囲と同じであってもよい。
 (A)磁性粉体の量(質量%)の範囲は、樹脂組成物の不揮発成分100質量%に対して、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは97質量%以下である。(A-1)合金粉体及び(A-2)任意の磁性粉体を含めた(A)磁性粉体全体の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。特に、電気めっき層の平滑性を高める観点では、(A)磁性粉体の量(質量%)は85質量%以上が好ましい。(A)磁性粉体の量がこのように多い場合、電気めっき層を形成するための金属イオンの析出の起点となる(A-1)合金粉体を密に分布させることができるので、析出の程度のばらつきを抑制して表面の平滑な電気めっき層を効率的に得ることができる。
 (A)磁性粉体の量(体積%)の範囲は、樹脂組成物の不揮発成分100体積%に対して、好ましくは30体積%以上、より好ましくは40体積%以上、更に好ましくは50体積%以上であり、好ましくは90体積%以下、より好ましくは85体積%以下、更に好ましくは80体積%以下である。(A-1)合金粉体及び(A-2)任意の磁性粉体を含めた(A)磁性粉体全体の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。特に、電気めっき層の平滑性を高める観点では、(A)磁性粉体の量(体積%)は55体積%以上が好ましい。(A)磁性粉体の量がこのように多い場合、電気めっき層を形成するための金属イオンの析出の起点となる(A-1)合金粉体を密に分布させることができるので、析出の程度のばらつきを抑制して表面の平滑な電気めっき層を効率的に得ることができる。
 <(B)熱硬化性樹脂>
 本実施形態に係る樹脂組成物は、(B)成分としての(B)熱硬化性樹脂を含む。(B)熱硬化性樹脂は、通常、(A)磁性粉体を結着できる。また、(B)熱硬化性樹脂は、熱によって反応して結合を生じ、樹脂組成物を硬化させることができる。よって、(A)磁性粉体及び(B)熱硬化性樹脂を組み合わせて含む樹脂組成物は、硬化して、硬化物を形成することができる。そして、この硬化物によって、磁性層を形成できる。
 (B)熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール系樹脂、活性エステル系樹脂、アミン系樹脂、酸無水物系樹脂、ベンゾオキサジン系樹脂、シアネートエステル系樹脂、カルボジイミド系樹脂などが挙げられる。(B)熱硬化性樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (B)熱硬化性樹脂は、(B-1)エポキシ樹脂を含むことが好ましい。(B-1)エポキシ樹脂は、分子中に1個以上のエポキシ基を有する樹脂を表す。(B-1)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;トリスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;エステル骨格を有する脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサン型エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、等の縮合環骨格を含有するエポキシ樹脂;イソシアヌラート型エポキシ樹脂;アルキレンオキシ骨格及びブタジエン骨格含有エポキシ樹脂;フルオレン構造含有エポキシ樹脂;等が挙げられる。(B-1)エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (B-1)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。(B-1)エポキシ樹脂の総量100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上である。
 (B-1)エポキシ樹脂は、芳香族構造を有することが好ましい。2種以上のエポキシ樹脂を用いる場合、1種類以上のエポキシ樹脂が芳香族構造を有することが好ましい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。
 (B-1)エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。(B-1)エポキシ樹脂は、液状エポキシ樹脂のみでもよく、固体状エポキシ樹脂のみでもよく、液状エポキシ樹脂と固体状エポキシ樹脂との組み合わせであってもよい。中でも、(B-1)エポキシ樹脂は、液状エポキシ樹脂を含むことが好ましく、液状エポキシ樹脂のみを含むことが特に好ましい。
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、アルキレンオキシ骨格及びブタジエン骨格含有エポキシ樹脂、フルオレン構造含有エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましい。中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン型エポキシ樹脂及びシクロヘキサン型エポキシ樹脂が特に好ましい。
 液状エポキシ樹脂の具体例としては、三菱ケミカル社製「YX7400」;DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ZX-1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ナガセケムテックス社製の「EX-991L」(アルキレンオキシ骨格含有エポキシ樹脂);ダイセル社製の「セロキサイド2021P」、「セロキサイド2081」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);日鉄ケミカル&マテリアル社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂);大阪ガスケミカル社製の「EG-280」(フルオレン構造含有エポキシ樹脂);等が挙げられる。液状エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ジシクロペンタジエン型エポキシ樹脂が特に好ましい。
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YX4000HK」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(キシレン構造含有ノボラック型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。固体状エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、液状エポキシ樹脂と固体状エポキシ樹脂との質量比(液状エポキシ樹脂/個体状エポキシ樹脂)は、好ましくは0.5以上、より好ましくは1以上、さらに好ましくは5以上、更に好ましくは10以上である。
 (B-1)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5000g/eq.、より好ましくは60g/eq.~3000g/eq.、さらに好ましくは80g/eq.~2000g/eq.、さらにより好ましくは110g/eq.~1000g/eq.である。エポキシ当量は、1当量のエポキシ基を含む樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。
 (B-1)エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
 樹脂組成物に含まれる(B-1)エポキシ樹脂の量(質量%)の範囲は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。(B-1)エポキシ樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 樹脂組成物に含まれる(B-1)エポキシ樹脂の量(質量%)の範囲は、樹脂組成物の樹脂成分100質量%に対して、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であり、好ましくは96質量%以下、より好ましくは93質量%以下、更に好ましくは90質量%以下である。(B-1)エポキシ樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 樹脂組成物に含まれる(B-1)エポキシ樹脂の量(質量%)の範囲は、(A)磁性粉体100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは16質量%以下、更に好ましくは12質量%以下である。(B-1)エポキシ樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 (B)熱硬化性樹脂が(B-1)エポキシ樹脂を含む場合、(B)熱硬化性樹脂は、(B-1)エポキシ樹脂と反応して結合しうる樹脂を含むことが好ましい。(B-1)エポキシ樹脂と反応して結合しうる樹脂を、以下「(B-2)硬化剤」ということがある。(B-2)硬化剤としては、例えば、フェノール系樹脂、活性エステル系樹脂、アミン系樹脂、カルボジイミド系樹脂、酸無水物系樹脂、ベンゾオキサジン系樹脂、シアネートエステル系樹脂、チオール系樹脂などが挙げられる。(B-2)硬化剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、フェノール系樹脂が好ましい。
 フェノール系樹脂としては、ベンゼン環、ナフタレン環等の芳香環に結合した水酸基を1分子中に1個以上、好ましくは2個以上有する樹脂を用いうる。耐熱性及び耐水性の観点からは、ノボラック構造を有するフェノール系樹脂が好ましい。また、密着性の観点からは、含窒素フェノール系樹脂が好ましく、トリアジン骨格含有フェノール系樹脂がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。
 フェノール系樹脂の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000H」;日本化薬社製の「NHN」、「CBN」、「GPH」;日鉄ケミカル&マテリアル社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-495V」、「SN-375」、「SN-395」;DIC社製の「TD-2090」、「TD-2090-60M」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」;群栄化学社製の「GDP-6115L」、「GDP-6115H」、「ELPC75」等が挙げられる。
 活性エステル系樹脂としては、1分子中に1個以上、好ましくは2個以上の活性エステル基を有する化合物を用いうる。中でも、活性エステル系樹脂としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。当該活性エステル系樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系樹脂が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系樹脂がより好ましい。カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
 活性エステル系樹脂の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル系樹脂、フェノールノボラックのアセチル化物を含む活性エステル系樹脂、フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂が挙げられる。中でも、ナフタレン構造を含む活性エステル系樹脂、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。
 活性エステル系樹脂の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル系樹脂として「EXB-9416-70BK」、「EXB-8150-65T」、「EXB-8100L-65T」、「EXB-8150L-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系樹脂として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。
 アミン系樹脂としては、1分子中に1個以上、好ましくは2個以上のアミノ基を有する樹脂を用いうる。アミン系樹脂としては、例えば、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられる。中でも、芳香族アミン類が好ましい。アミン系樹脂は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系樹脂の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、ジフェニルジアミノスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系樹脂は市販品を用いてもよく、例えば、日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」、三菱ケミカル社製の「エピキュアW」等が挙げられる。
 カルボジイミド系樹脂としては、1分子中に1個以上、好ましくは2個以上のカルボジイミド構造を有する樹脂を用いうる。カルボジイミド系樹脂の具体例としては、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサンビス(メチレン-t-ブチルカルボジイミド)等の脂肪族ビスカルボジイミド;フェニレン-ビス(キシリルカルボジイミド)等の芳香族ビスカルボジイミド等のビスカルボジイミド;ポリヘキサメチレンカルボジイミド、ポリトリメチルヘキサメチレンカルボジイミド、ポリシクロヘキシレンカルボジイミド、ポリ(メチレンビスシクロヘキシレンカルボジイミド)、ポリ(イソホロンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(フェニレンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(トリレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(ジエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(キシリレンカルボジイミド)、ポリ(テトラメチルキシリレンカルボジイミド)、ポリ(メチレンジフェニレンカルボジイミド)、ポリ[メチレンビス(メチルフェニレン)カルボジイミド]等の芳香族ポリカルボジイミド等のポリカルボジイミドが挙げられる。カルボジイミド系樹脂の市販品としては、例えば、日清紡ケミカル社製の「カルボジライトV-02B」、「カルボジライトV-03」、「カルボジライトV-04K」、「カルボジライトV-07」及び「カルボジライトV-09」;ラインケミー社製の「スタバクゾールP」、「スタバクゾールP400」、「ハイカジル510」等が挙げられる。
 酸無水物系樹脂としては、1分子中に1個以上の酸無水物基を有する樹脂を用いることができ、1分子中に2個以上の酸無水物基を有する樹脂が好ましい。酸無水物系樹脂の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系樹脂の市販品としては、例えば、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「OSA」;三菱ケミカル社製の「YH-306」、「YH-307」;日立化成社製の「HN-2200」、「HN-5500」;クレイバレイ社製「EF-30」、「EF-40」「EF-60」、「EF-80」等が挙げられる。
 ベンゾオキサジン系樹脂の具体例としては、JFEケミカル社製の「JBZ-OD100」、「JBZ-OP100D」、「ODA-BOZ」;四国化成工業社製の「P-d」、「F-a」;昭和高分子社製の「HFB2006M」等が挙げられる。
 シアネートエステル系樹脂としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル、等の2官能シアネート樹脂;フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂;これらシアネート樹脂が一部トリアジン化したプレポリマー;などが挙げられる。シアネートエステル系樹脂の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(フェノールノボラック型多官能シアネートエステル樹脂)、「ULL-950S」(多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
 チオール系樹脂としては、例えば、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリス(3-メルカプトプロピル)イソシアヌレート等が挙げられる。
 (B-2)硬化剤の活性基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、更に好ましくは100g/eq.~300g/eq.である。活性基当量は、活性基1当量あたりの(B-2)硬化剤の質量を表す。
 (B-1)エポキシ樹脂のエポキシ基数を1とした場合、(B-2)硬化剤の活性基数は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.5以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。(B-2)硬化剤の活性基とは、活性水酸基等であり、硬化剤の種類によって異なる。また、(B-1)エポキシ樹脂のエポキシ基数とは、各エポキシ樹脂の質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値である。さらに、(B-2)硬化剤の活性基数とは、各硬化剤の質量を活性基当量で除した値をすべての硬化剤について合計した値である。
 樹脂組成物に含まれる(B-2)硬化剤の量(質量%)の範囲は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
 樹脂組成物に含まれる(B-2)硬化剤の量(質量%)の範囲は、樹脂組成物の樹脂成分100質量%に対して、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であり、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下である。
 (B)熱硬化性樹脂を粘度で分類した場合、(B)熱硬化性樹脂は、反応性希釈剤を含んでいてもよい。反応性希釈剤とは、(B)熱硬化性樹脂のうち、粘度が低い成分を表す。反応性希釈剤の具体的な粘度は、通常0.5Pa・s未満である。反応性希釈剤の粘度の下限は、特段の制限はなく、例えば、0.001Pa・s以上、0.005Pa・s以上、0.01Pa・s以上などでありうる。反応性希釈剤の粘度は、25±2℃においてE型粘度計を用いて測定しうる。(B)熱硬化性樹脂が反応性希釈剤を含む場合、樹脂組成物の粘度を低くできるから、磁性ペースト及び磁性インク等の液状の樹脂組成物の塗布性を良好にできる。
 反応性希釈剤は、上述したエポキシ基及び活性基等の反応性基を含有しうる。反応性希釈剤が含有する反応性基の好ましい例としては、エポキシ基、アクリル基、メタクリル基、オキセタン基等が挙げられ、中でもエポキシ基が好ましい。よって、反応性希釈剤としては、低い粘度を有する(B-1)エポキシ樹脂を用いることが好ましい。
 市販の反応性希釈剤としては、例えば、日鉄ケミカル&マテリアル社製の「EX-201」(環状脂肪族グリシジルエーテル)、「EX-830」、「EX-821」(エチレングリコール型エポキシ樹脂)、「EX-212」(ヘキサンジオール型エポキシ樹脂);「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン);ADEKA社製の「EP-3980S」(グリシジルアミン型エポキシ樹脂)、「EP-4088S」、「EP-4088L」(ジシクロペンタジエン型エポキシ樹脂)、「ED-509S」(tert-ブチルフェニルグリシジルエーテル);信越化学工業社製の「X-22-163」(シロキサン型エポキシ樹脂)等が挙げられる。反応性希釈剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 樹脂組成物に含まれる反応性希釈剤の量(質量%)は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは7質量%以下である。
 樹脂組成物に含まれる反応性希釈剤の量(質量%)は、樹脂組成物の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。
 樹脂組成物に含まれる反応性希釈剤の量(質量%)は、(B)熱硬化性樹脂100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。
 (B)熱硬化性樹脂の重量平均分子量(Mw)の範囲は、通常、上述した(B-1)エポキシ樹脂の重量平均分子量の範囲と同じでありうる。
 樹脂組成物に含まれる(B)熱硬化性樹脂の量(質量%)の範囲は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上であり、好ましくは15質量%以下、より好ましくは13質量%以下、更に好ましくは10質量%以下である。(B)熱硬化性樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 樹脂組成物に含まれる(B)熱硬化性樹脂の量(質量%)の範囲は、樹脂組成物の樹脂成分100質量%に対して、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上であり、好ましくは98質量%以下、より好ましくは94質量%以下、更に好ましくは90質量%以下である。(B)熱硬化性樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 樹脂組成物に含まれる(B)熱硬化性樹脂の量(質量%)の範囲は、(A)磁性粉体100質量%に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上であり、好ましくは20質量%以下、より好ましくは16質量%以下、更に好ましくは12質量%以下である。(B)熱硬化性樹脂の量が前記範囲にある場合、優れた磁気特性を有する磁性層を得ることができ、かつ、その磁性層の表面に電気めっきによって電気めっき層を円滑に形成できる。
 <(C)硬化促進剤>
 本実施形態に係る樹脂組成物は、上述した(A)~(B)成分に組み合わせて、任意の成分として、更に(C)硬化促進剤を含んでいてもよい。この(C)成分としての(C)硬化促進剤には、上述した(A)~(B)成分に該当するものは含めない。(C)硬化促進剤は、(B)熱硬化性樹脂の硬化反応を促進する触媒としての機能を有するので、樹脂組成物の硬化を促進することができる。
 (C)硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。中でも、イミダゾール系硬化促進剤が好ましい。(C)硬化促進剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200-H50」;四国化成工業社製の「キュアゾール2MZ」、「2E4MZ」、「Cl1Z」、「Cl1Z-CN」、「Cl1Z-CNS」、「Cl1Z-A」、「2MZ-OK」、「2MA-OK」、「2MA-OK-PW」、「2MZA-PW」、「2PHZ」、「2PHZ-PW」等が挙げられる。
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7,4-ジメチルアミノピリジン、2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられ、4-ジメチルアミノピリジンが好ましい。
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
 樹脂組成物に含まれる(C)硬化促進剤の量(質量%)は、樹脂組成物の不揮発成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
 樹脂組成物に含まれる(C)硬化促進剤の量(質量%)は、樹脂組成物の樹脂成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
 樹脂組成物に含まれる(C)硬化促進剤の量(質量%)は、(B)熱硬化性樹脂100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
 <(D)熱可塑性樹脂>
 本実施形態に係る樹脂組成物は、上述した(A)~(C)成分に組み合わせて、任意の成分として、更に(D)熱可塑性樹脂を含んでいてもよい。この(D)成分としての(D)熱可塑性樹脂には、上述した(A)~(C)成分に該当するものは含めない。(D)熱可塑性樹脂によれば、磁性層の機械特性を効果的に改善できる。
 (D)熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等が挙げられる。(D)熱可塑性樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種類以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の具体例としては、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂);三菱ケミカル社製の「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂);三菱ケミカル社製の「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂);新日鉄住金化学社製の「FX280」及び「FX293」;三菱ケミカル社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」、「YL7482」及び「YL7891BH30」;等が挙げられる。
 ポリイミド樹脂の具体例としては、信越化学工業社製「SLK-6100」、新日本理化社製の「リカコートSN20」及び「リカコートPN20」等が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(例えば、特開2006-37083号公報記載のポリイミド)、ポリシロキサン骨格含有ポリイミド(例えば、特開2002-12667号公報及び特開2000-319386号公報等に記載のポリイミド)等の変性ポリイミドが挙げられる。
 ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、電気化学工業社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」;積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX-5Z)、KSシリーズ(例えばKS-1)、BLシリーズ、BMシリーズ;等が挙げられる。
 ポリオレフィン樹脂としては、例えば、低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体等のエチレン系共重合樹脂;ポリプロピレン、エチレン-プロピレンブロック共重合体等のポリオレフィン系重合体等が挙げられる。
 ポリブタジエン樹脂としては、例えば、水素化ポリブタジエン骨格含有樹脂、ヒドロキシ基含有ポリブタジエン樹脂、フェノール性水酸基含有ポリブタジエン樹脂、カルボキシ基含有ポリブタジエン樹脂、酸無水物基含有ポリブタジエン樹脂、エポキシ基含有ポリブタジエン樹脂、イソシアネート基含有ポリブタジエン樹脂、ウレタン基含有ポリブタジエン樹脂、ポリフェニレンエーテル-ポリブタジエン樹脂等が挙げられる。
 ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。
 ポリエーテルイミド樹脂の具体例としては、GE社製の「ウルテム」等が挙げられる。
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。
 ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。
 ポリフェニレンエーテル樹脂の具体例としては、SABIC製「NORYL SA90」等が挙げられる。
 ポリカーボネート樹脂としては、例えば、ヒドロキシ基含有カーボネート樹脂、フェノール性水酸基含有カーボネート樹脂、カルボキシ基含有カーボネート樹脂、酸無水物基含有カーボネート樹脂、イソシアネート基含有カーボネート樹脂、ウレタン基含有カーボネート樹脂等が挙げられる。ポリカーボネート樹脂の具体例としては、三菱瓦斯化学社製の「FPC0220」、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等が挙げられる。
 ポリエーテルエーテルケトン樹脂の具体例としては、住友化学社製の「スミプロイK」等が挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリトリメチレンナフタレート樹脂、ポリシクロヘキサンジメチルテレフタレート樹脂等が挙げられる。
 (D)熱可塑性樹脂の重量平均分子量(Mw)は、好ましくは5,000より大きく、より好ましくは8,000以上、さらに好ましくは10,000以上、更に好ましくは20,000以上である。上限は、特段の制限はなく、例えば、100万以下、50万以下、10万以下などでありうる。
 樹脂組成物に含まれる(D)熱可塑性樹脂の量(質量%)は、樹脂組成物の不揮発成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
 樹脂組成物に含まれる(D)熱可塑性樹脂の量(質量%)は、樹脂組成物の樹脂成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 樹脂組成物に含まれる(D)熱可塑性樹脂の量(質量%)は、(A)磁性粉体100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
 <(E)分散剤>
 本実施形態に係る樹脂組成物は、上述した(A)~(D)成分に組み合わせて、任意の成分として、更に(E)分散剤を含んでいてもよい。この(E)成分としての(E)分散剤には、上述した(A)~(D)成分に該当するものは含めない。(E)分散剤によれば、(A)磁性粉体の分散性を効果的に高めることができる。
 (E)分散剤としては、樹脂組成物の粘度を低下させることができる化合物を用いうる。(E)分散剤としては、例えば、リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等が挙げられる。(E)分散剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、リン酸エステル系分散剤が好ましい。
 リン酸エステル系分散剤の中でも、ポリエーテル型リン酸エステル系分散剤が好ましい。ポリエーテル型リン酸エステル系分散剤は、分子中にポリ(アルキレンオキシ)構造を含むリン酸エステル系分散剤である。ポリエーテル型リン酸エステル系分散剤としては、例えば、ポリオキシアルキレンアルキルエーテルリン酸エステル、ポリオキシアルキレンアルキルフェニルエーテルリン酸エステル等が挙げられる。中でも、ポリオキシアルキレンアルキルエーテルリン酸エステルが好ましい。
 ポリオキシアルキレンアルキルエーテルリン酸エステルは、アルキル-オキシ-ポリ(アルキレンオキシ)基が、リン酸塩のリン原子に、1~3個結合している構造を有しうる。アルキル-オキシ-ポリ(アルキレンオキシ)基におけるポリ(アルキレンオキシ)部位のアルキレンオキシ単位の数(繰り返し単位数)は、2~30が好ましく、3~20がより好ましい。また、ポリ(アルキレンオキシ)部位におけるアルキレン基は、炭素原子数が2~4のアルキレン基であることが好ましい。このようなアルキレン基としては、例えば、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチル基等が挙げられる。さらに、アルキル-オキシ-ポリ(アルキレンオキシ)基におけるアルキル基は、炭素原子数が6~30のアルキル基が好ましく、炭素原子数が8~20のアルキル基がより好ましい。このようなアルキル基としては、例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられる。なお、ポリオキシアルキレンアルキルエーテルリン酸エステルが複数のアルキル-オキシ-ポリ(アルキレンオキシ)基を有している場合、複数のアルキル基は、同じでもよく、異なっていてもよい。さらに、複数のアルキレン基は、同じでもよく、異なっていてもよい。
 リン酸エステル系分散剤の市販品の例としては、楠本化成社のポリエーテル型リン酸エステル系分散剤(例えばHIPLAADシリーズの「ED152」、「ED153」、「ED154」、「ED118」、「ED174」、「ED251」等);東邦化学工業社製のフォスファノールシリーズの「RS-410」、「RS-610」、「RS-710」;などが挙げられる。
 ポリオキシアルキレン系分散剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド等が挙げられる。ポリオキシアルキレン系分散剤の市販品の例としては、日油社製「マリアリム」シリーズの「AKM-0531」、「AFB-1521」、「SC-0505K」、「SC-1015F」及び「SC-0708A」、並びに「HKM-50A」等が挙げられる。
 アセチレン系分散剤としては、例えば、アセチレングリコールが挙げられる。アセチレン系分散剤の市販品の例としては、Air Products and Chemicals Inc.製「サーフィノール」シリーズの「82」、「104」、「440」、「465」及び「485」、並びに「オレフィンY」等が挙げられる。
 シリコーン系分散剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性ポリジメチルシロキサン等が挙げられる。シリコーン系分散剤の市販品の例としては、ビックケミー社製「BYK347」、「BYK348」等が挙げられる。
 アニオン性分散剤としては、例えば、ポリアクリル酸ナトリウム、ドデシルベンゼルスルホン酸ナトリウム、ラウリル酸ナトリウム、ポリオキシエチレンアルキルエーテルサルフェートアンモニウム、カルボキシメチルセルロースナトリウム塩等が挙げられる。アニオン性分散剤の市販品の例としては、味の素ファインテクノ社製「PN-411」、「PA-111」;ライオン社製「A-550」、「PS-1900」等が挙げられる。
 カチオン性分散剤としては、例えば、アミノ基含有ポリアクリレート系樹脂、アミノ基含有ポリスチレン系樹脂等が挙げられる。カチオン性分散剤の市販品の例としては、ビックケミー社製「161」、「162」、「164」、「182」、「2000」、「2001」;味の素ファインテクノ社製「PB-821」、「PB-822」、「PB-824」;アイエスピー・ジャパン社製「V-216」、「V-220」;ルーブリゾール社製「ソルスパース13940」「ソルスパース24000」「ソルスパース32000」等が挙げられる。
 (E)分散剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 樹脂組成物に含まれる(E)分散剤の量(質量%)は、樹脂組成物の不揮発成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
 樹脂組成物に含まれる(E)分散剤の量(質量%)は、樹脂組成物の樹脂成分100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは5質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 樹脂組成物に含まれる(E)分散剤の量(質量%)は、(A)磁性粉体100質量%に対して、0質量%でもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
 <(F)任意の添加剤>
 本実施形態に係る樹脂組成物は、上述した(A)~(E)成分に組み合わせて、任意の成分として、更に(F)任意の添加剤を含んでいてもよい。この(F)成分としての(F)任意の添加剤には、上述した(A)~(E)成分に該当するものは含めない。
 (F)任意の添加剤としては、例えば、シリカ粒子等の無機充填材;ゴム粒子等の有機充填材;有機銅化合物、有機亜鉛化合物等の有機金属化合物;過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤等のラジカル重合開始剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤等が挙げられる。(F)任意の添加剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 <(G)溶剤>
 樹脂組成物は、上述した(A)~(F)成分といった不揮発成分に組み合わせて、更に、揮発性成分として(G)溶剤を含んでいてもよい。(G)溶剤としては、通常、有機溶剤を用いる。有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、等のエステル系溶剤;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等のエーテル系溶剤;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶剤;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセタート、ブチルカルビトールアセテート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶剤;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶剤;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤等を挙げることができる。(G)溶剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 <樹脂組成物の製造方法>
 本実施形態に係る樹脂組成物は、例えば、上述した成分を混合することによって、製造することができる。上述した成分は、一部又は全部を同時に混合してもよく、順に混合してもよい。各成分を混合する過程で、温度を適宜設定してもよく、よって、一時的に又は終始にわたって、加熱及び/又は冷却してもよい。また、各成分を混合する過程において、撹拌又は振盪を行ってもよい。
 <樹脂組成物の特性>
 本実施形態に係る樹脂組成物は、熱によって硬化できる。よって、樹脂組成物を熱硬化させることにより、樹脂組成物の硬化物を得ることができる。通常、樹脂組成物に含まれる成分のうち、(G)溶剤等の揮発成分は、熱硬化時の熱によって揮発しうるが、(A)~(F)成分といった不揮発成分は、熱硬化時の熱によっては揮発しない。よって、樹脂組成物の硬化物は、樹脂組成物の不揮発成分又はその反応生成物を含みうる。樹脂組成物の硬化物は、比透磁率及び磁性損失等の磁気特性に優れることができる。よって、この硬化物は、磁性基板の磁性層の材料として用いることができる。
 本実施形態に係る樹脂組成物の硬化物は、通常、高い比透磁率μ’を有することができる。硬化物の具体的な比透磁率μ’の範囲は、好ましくは10以上、より好ましくは12以上、更に好ましくは15以上である。比透磁率μ’の上限は、特に制限はなく、例えば、35以下、30以下、25以下などでありうる。本実施形態に係る磁性基板の製造方法は、このような範囲の比透磁率を達成できる程度の量の(A)磁性粉体を含む樹脂組成物を用いた場合に、その樹脂組成物の硬化物を含む磁性層の表面に電気めっきによって円滑に電気めっき層を形成できる。硬化物の比透磁率μ’は、測定周波数20MHz、室温23℃の条件で測定できる。また、比透磁率μ’の測定のために樹脂組成物を硬化させる場合、190℃90分間の条件で樹脂組成物を熱硬化させて、測定試料としての硬化物を得ることができる。比透磁率μ’の具体的な測定方法は、後述する実施例に記載の方法を採用しうる。
 本実施形態に係る樹脂組成物の硬化物は、通常、小さい磁性損失を有することができる。磁性損失は、損失係数tanδによって表すことができ、通常、損失係数tanδが小さいほど、磁性損失が小さいことを表す。硬化物の具体的な損失係数tanδの範囲は、好ましくは0.05以下、より好ましくは0.04以下、更に好ましくは0.03以下である。損失係数tanδの下限は、特に制限はなく、例えば0.001以上でありうる。本実施形態に係る磁性基板の製造方法は、このような範囲の磁性損失を達成できる程度の量の(A)磁性粉体を含む樹脂組成物を用いた場合に、その樹脂組成物の硬化物を含む磁性層の表面に電気めっきによって円滑に電気めっき層を形成できる。硬化物の損失係数tanδは、測定周波数20MHz、室温23℃の条件で測定できる。また、損失係数tanδの測定のために樹脂組成物を硬化させる場合、190℃90分間の条件で樹脂組成物を熱硬化させて、測定試料としての硬化物を得ることができる。損失係数tanδの具体的な測定方法は、後述する実施例に記載の方法を採用しうる。
 本実施形態に係る樹脂組成物の硬化物は、通常、大きい体積抵抗を有することができる。よって、硬化物によれば、絶縁性を有する磁性層を形成できる。硬化物の具体的な体積抵抗の範囲は、好ましくは1.0×10Ω・m以上、より好ましくは5.0×10Ω・m以上、更に好ましくは1.0×10Ω・m以上であり、好ましくは1.0×1013Ω・m以下、より好ましくは5.0×1012Ω・m以下、更に好ましくは1.0×1012Ω・m以下である。このように大きい体積抵抗を有する硬化物で形成された磁性層の表面に電気めっきによって電気めっき層を形成できることは、当業者の技術常識からすれば意外である。硬化物の体積抵抗の測定方法は、後述する実施例に記載の方法を採用しうる。
 樹脂組成物の性状に特段の制限は無い。よって、樹脂組成物は、流動性を有する液状であってもよい。例えば、樹脂組成物は、(G)溶剤を含まない液状の樹脂組成物であってもよく、(G)溶剤を含む液状の樹脂組成物であってもよい。以下、(G)溶剤を含まない液状の樹脂組成物を「磁性ペースト」と呼ぶことがあり、(G)溶剤を含む液状の樹脂組成物を「磁性インク」と呼ぶことがある。
 磁性ペースト及び磁性インク等の液状の樹脂組成物は、流動性を有するので、印刷法を用いた磁性層の形成に好ましく用いうる。液状の樹脂組成物は、23℃において液状であることが好ましい。この液状の樹脂組成物の粘度は、23℃において、好ましくは20Pa・s以上、より好ましくは25Pa・s以上、更に好ましくは30Pa・s以上、特に好ましくは50Pa・s以上であり、好ましくは200Pa・s以下、より好ましくは180Pa・s以下、更に好ましくは160Pa・s以下である。粘度は、例えば、E型粘度計(東機産業社製「RE-80U」、3°×R9.7ロータ)を用いて、測定サンプル量0.22ml、回転数5rpmの測定条件にて測定できる。
 樹脂組成物は、固体状であってもよい。固体状の樹脂組成物の形態は、特に制限はなく、例えば、粒子状、ペレット状、フィルム状などでありうる。中でも、ラミネート法による磁性層の形成が可能であることから、フィルム状であることが好ましい。フィルム状の樹脂組成物は、通常、樹脂組成物のフィルムとしての樹脂組成物層を備える樹脂シートとして用意される。
 樹脂組成物層は、樹脂組成物を含み、好ましくは樹脂組成物のみを含む。樹脂組成物層の厚みは、製造すべき磁性基板の寸法に応じて設定しうる。通常は、樹脂組成物層は、薄いことが好ましい。樹脂組成物層の具体的な厚みの範囲は、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは50μm以上であり、好ましくは600μm以下、より好ましくは300μm以下、更に好ましくは200μm以下、更に好ましくは150μm以下である。
 樹脂シートは、樹脂組成物層に組み合わせて、更に任意の部材を備えていてもよい。例えば、樹脂シートは、樹脂組成物層を支持する支持体を備えていてもよい。支持体を備える樹脂シートにおいて、樹脂組成物層は、通常、支持体上に形成される。
 支持体としては、例えば、プラスチック材料のフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
 支持体としてプラスチック材料のフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリルポリマー、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
 支持体は、樹脂組成物層と接合する面に、マット処理、コロナ処理、帯電防止処理等の処理が施されていてもよい。
 支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド系離型剤、ポリオレフィン系離型剤、ウレタン系離型剤、及びシリコーン系離型剤からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、シリコーン系離型剤又はアルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「PET501010」、「SK-1」、「AL-5」、「AL-7」;東レ社製の「ルミラーT60」;帝人社製の「ピューレックス」;ユニチカ社製の「ユニピール」等が挙げられる。
 支持体の厚みとしては、特に限定されないが、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であり、好ましくは75μm以下、より好ましくは60μm以下、更に好ましくは50μm以下である。離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
 樹脂シートは、必要に応じて、樹脂組成物層を保護する保護フィルムを備えていてもよい。保護フィルムは、通常、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを備える場合、樹脂組成物層の表面へのゴミの付着及びキズを抑制できる。保護フィルムを備える樹脂シートを用いる場合、通常、保護フィルムは、工程(LF)より前に剥離される。
 樹脂シートは、例えば、支持体上に樹脂組成物層を形成することを含む方法によって、製造できる。樹脂組成物層は、例えば、樹脂組成物を用意し、その樹脂組成物を支持体上に塗布することを含む方法によって、形成できる。必要に応じて樹脂組成物に有機溶剤を混合してから支持体上に塗布してもよい。有機溶剤を用いる場合、必要に応じて塗布後に乾燥を行ってもよい。
 樹脂組成物の塗布は、ダイコーター等の塗布装置を用いて行いうる。また、乾燥は、例えば、加熱、熱風吹きつけ等の乾燥方法により実施しうる。乾燥条件は、特に限定されないが、樹脂組成物層中の溶剤の量が好ましくは10質量%以下、より好ましくは5質量%以下となるように乾燥させる。溶剤の沸点によっても異なりうるが、乾燥は、例えば、50℃~150℃で3分間~10分間の条件で行いうる。
[工程(LF):樹脂組成物層の形成]
 本実施形態に係る磁性基板の製造方法は、工程(EP)よりも前に、樹脂組成物層を形成する工程(LF)を含みうる。工程(LF)では、通常、適切な基材上に樹脂組成物層を形成する。この基材を、以下「内層基材」ということがある。
 内層基材としては、例えば、支持基板を含む部材を用いうる。支持基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。また、内層基材には、必要に応じて、配線層及び電極層等の導体層が設けられていてもよい。以下の説明では、内層基材が備える導体層を「基材導体層」ということがある。基材導体層は、支持基板の片面に設けられていてもよく、両面に設けられていてもよく、内部に設けられていてもよい。基材導体層としては、銅等の金属によって形成された層が挙げられる。また、内層基材には、必要に応じて、スルーホール等のホールが形成されていてもよい。内層基材に形成されたホールを、以下「第一ホール」ということがある。第一ホールは、例えば、ドリル加工、レーザー照射、プラズマ照射等の加工方法で形成できる。必要に応じて、第一ホール内の内層基材の表面に、基材導体層が形成されていてもよい。
 内層基材上に樹脂組成物層を形成する方法に制限はない。例えば、液状の樹脂組成物を用いる場合、内層基材に樹脂組成物を塗布することにより、樹脂組成物層を形成してもよい。具体例を挙げると、ディスペンサ、ダイコーター等の塗布装置を用いて樹脂組成物を内層基材に塗布して、樹脂組成物層を形成してもよい。また、樹脂組成物層を、全面印刷又はパターン印刷等の印刷によって内層基材上に塗布して、樹脂組成物層を形成してもよい。印刷法としては、例えば、スキージを介して樹脂組成物を印刷する方法、カートリッジを介して樹脂組成物を印刷する方法、マスク印刷して樹脂組成物を印刷する方法、ロールコート法、インクジェット法等が挙げられる。さらに、必要に応じて、樹脂組成物の塗布後に乾燥を行ってもよい。
 例えば、樹脂組成物層を備える樹脂シートを用いる場合、樹脂組成物層が内層基材と接合するように、樹脂シートと内層基材とを積層して、内層基材上に樹脂組成物層を形成してもよい。樹脂組成物層と内層基材との接合は、例えば、支持体側から、樹脂シートを内層基材に加熱圧着することにより行うことができる。樹脂シートを内層基材に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(ステンレス(SUS)鏡板等)又は金属ロール(SUSロール等)が挙げられる。なお、加熱圧着部材を樹脂シートに直接的に接触させてプレスするのではなく、内層基材の表面の凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材からなるシート等を介してプレスすることが好ましい。
 加熱圧着する際の温度は、好ましくは80℃~160℃、より好ましくは90℃~140℃、さらに好ましくは100℃~120℃の範囲である。加熱圧着する際の圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲である。加熱圧着する際の時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。樹脂シートと内層基材との接合は、圧力26.7hPa以下の減圧条件下で実施することが好ましい。
 樹脂シートの樹脂組成物層と内層基材との接合は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアプリケーター等が挙げられる。
 樹脂シートと内層基材との接合の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理とは、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
 支持体を備える樹脂シートを用いた場合、通常は、工程(LF)の後で支持体は剥離される。支持体の剥離は、工程(CU)の前で行ってもよく、工程(CU)の後で行ってもよいが、工程(EP)よりも前に行うことが好ましい。
 内層基材に第一ホールが形成されている場合、工程(LF)は、第一ホールに樹脂組成物層を形成することを含んでいてもよい。通常は、第一ホール中に樹脂組成物を充填して、樹脂組成物層を形成する。例えば、第一ホールが形成された内層基材上に液状の樹脂組成物を塗布することにより、第一ホール中に樹脂組成物が充填されて、その第一ホール中に樹脂組成物層が形成されてもよい。また、例えば、第一ホールが形成された内層基材と樹脂シートとを積層することにより、第一ホール中に樹脂組成物が充填されて、その第一ホール中に樹脂組成物層が形成されてもよい。
[工程(CU):樹脂組成物層の硬化]
 本実施形態に係る磁性基板の製造方法は、工程(LF)の後に、樹脂組成物層を硬化させて磁性層を形成する工程(CU)を含みうる。通常は、樹脂組成物層を特定の熱硬化条件で熱硬化させて、磁性層を得る。磁性層は、樹脂組成物の硬化物を含み、好ましくは樹脂組成物の硬化物のみを含む。
 樹脂組成物層の熱硬化条件は、樹脂組成物の硬化が進行する範囲で、適切に設定しうる。硬化温度は、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは245℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。硬化時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは120分以下、より好ましくは110分以下、さらに好ましくは100分以下である。
 本実施形態に係る磁性基板の製造方法は、樹脂組成物層を形成した後、樹脂組成物層を硬化させる前に、樹脂組成物層を前記の硬化温度よりも低い温度で加熱する工程(予備加熱工程)を含んでいてもよい。例えば、樹脂組成物層を硬化させるのに先立ち、通常50℃以上150℃未満(好ましくは60℃以上140℃以下、より好ましくは70℃以上130℃以下)の温度にて、樹脂組成物層を、通常5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)、予備加熱してもよい。
[工程(PO):研磨]
 本実施形態に係る磁性基板の製造方法は、工程(EP)よりも前に、樹脂組成物層又は磁性層を研磨する工程(PO)を含んでいてもよい。研磨により、磁性層の表面を平滑化できる。例えば、磁性層の研磨を行った場合、その研磨された磁性層の表面を平坦化できる。また、樹脂組成物層の研磨を行った場合、その樹脂組成物層の表面を平坦化できるから、当該樹脂組成物層を硬化して得られる磁性層の表面を平坦化できる。特に、内層基材の第一ホールに樹脂組成物を充填して樹脂組成物層を形成した場合、余剰の樹脂組成物が第一ホールから突出したり第一ホール以外の内層基材の部分に付着したりして、樹脂組成物層の表面に凹凸が形成されうる。そこで、研磨によって前記の凹凸を除去して磁性層の表面の平坦性を高める観点から、工程(PO)は、第一ホールが形成された内層基材を用いる場合に実施することが好ましい。
 研磨方法としては、例えば、バフ研磨、ベルト研磨、セラミック研磨等が挙げられる。市販されているバフ研磨装置としては、例えば、石井表記社製「NT-700IM」等が挙げられる。
 磁性層の研磨面(硬化物層の熱硬化後)の算術平均粗さ(Ra)としては、電気めっき層との間の密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
 樹脂組成物層を硬化して磁性層を得た後に研磨を行う場合、研磨の前に、磁性層に含まれる硬化物の硬化度をさらに高める目的で、磁性層に熱処理を施してもよい。前記熱処理における温度は、上記した硬化温度に準じうる。具体的な熱処理温度は、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは245℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。熱処理時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは90分以下、より好ましくは70分以下、さらに好ましくは60分以下である。
 他方、樹脂組成物層を硬化して磁性層を得る前に研磨を行う場合、研磨の前に、樹脂組成物の硬化温度よりも低い温度で樹脂組成物層を加熱する予備加熱処理を施してもよい。前記予備加熱処理における温度は、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上であり、好ましくは245℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。熱処理時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは90分以下、より好ましくは70分以下、さらに好ましくは60分以下である。
[工程(HF):第二ホールの形成]
 本実施形態に係る磁性基板の製造方法は、工程(EP)より前に、磁性層にホールを形成する工程(HF)を含みうる。磁性層に形成されるホールを、以下「第二ホール」ということがある。通常、第二ホールの形成は、工程(CU)より後に行われる。また、第二ホールの形成は、工程(PO)における研磨より前に行ってもよいが、通常は工程(PO)における研磨より後に行われる。
 第二ホールとしては、ビアホール、スルーホール等が挙げられる。例えば、内層基材の第一ホールに形成された磁性層に第二ホールを形成する場合、当該第二ホールは、磁性層を貫通するスルーホールであってもよい。また、例えば、内層基材の主面に形成された磁性層に第二ホールを形成する場合、当該第二ホールは、磁性層を貫通するが内層基材を貫通しないビアホールであってもよく、磁性層及び内層基材の両方を貫通するスルーホールであってもよい。第二ホールは、例えば、ドリル加工、レーザー加工、プラズマ照射、エッチング等の加工方法によって形成できる。
[工程(RO):粗化処理]
 本実施形態に係る磁性基板の製造方法は、工程(EP)よりも前に、磁性層に粗化処理を施す工程(RO)を含みうる。通常、粗化処理は、工程(PO)より後に行われる。また、通常、粗化処理は工程(HF)より後に行われる。粗化処理によれば、磁性層の表面粗さを大きくして、磁性層と電気めっき層との密着強度を高めることができる。また、粗化処理によれば、第二ホールの形成により生じうる樹脂残渣(スミア)を除去することができる。粗化処理は、湿式で行ってもよいが、乾式で行うことが好ましい。乾式の粗化処理としては、プラズマ処理などが挙げられる。
[工程(EP):電気めっき]
 本実施形態に係る磁性基板の製造方法は、磁性層の表面に、電気めっきによって導体層としての電気めっき層を形成する工程(EP)を含む。電気めっきでは、通常、金属イオンを含む溶液としてのめっき液中で磁性層の表面に電気めっき層を形成する。例えば、めっき液中に磁性層及び電極を入れ、電源から直流電流を磁性層及び電極の間に印加する。磁性層の表面で金属イオンが還元され、金属が析出するので、その金属を含む電気めっき層を形成できる。電気めっきに用いる金属としては、銅が好ましい。
 通常、めっき液としては、金属塩の水溶液を用いる。金属塩としては、電気めっき層の形成が可能な限り、制限はない。例えば、金属として銅を用いる場合、銅塩としては、例えば、硫酸銅五水和物等の硫酸銅、塩化銅等のハロゲン化銅、酢酸銅、硝酸銅、テトラフルオロホウ酸銅、アルキルスルホン酸銅、アリールスルホン酸銅、スルファミン酸銅、過塩素酸銅、グルコン酸銅等が挙げられる。中でも、硫酸銅が好ましい。めっき液中の金属塩の濃度は、例えば、50g/L以上400g/L以下でありうる。めっき液の金属塩の濃度は、飽和濃度であることがより好ましい。
 めっき液は、酸を含むことが好ましい。酸としては、例えば、硫酸;塩酸;酢酸;硝酸;リン酸;フルオロホウ酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、およびトリフルオロメタンスルホン酸等のアルカンスルホン酸;ベンゼンスルホン酸、p-トルエンスルホン酸、スルファミン酸等のアリールスルホン酸;臭化水素酸;過塩素酸;クロム酸などが挙げられる。中でも、硫酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、塩酸、及びこれらの組み合わせが好ましく、硫酸がより好ましい。めっき液中の酸の濃度は、例えば、1mL/L以上400mL/L以下でありうる。中でも、硫酸を用いる場合、硫酸の濃度は、好ましくは40mL/L以上であり、また、好ましくは200mL/L以下である。
 めっき液は、添加剤を含んでいてもよい。めっき液が含みうる添加剤としては、例えば、ハロゲン化物イオンの供給剤、光沢剤、界面活性剤などが挙げられる。ハロゲン化物イオンの供給剤としては、例えば、塩化ナトリウム、塩化カリウム等の塩素化合物が挙げられる。めっき液中のハロゲン化物イオンの供給剤の濃度は、例えば、0.5mg/L以上300mg/L以下でありうる。光沢剤としては、例えば、ビス(3-スルホプロピル)ジスルフィド塩等の有機硫黄化合物が挙げられる。めっき液中の光沢剤の濃度は、例えば、0.1ppm以上1000ppm以下でありうる。また、界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤等が挙げられる。めっき液中の界面活性剤の濃度は、例えば、1mL/L以上60mL/L以下でありうる。
 めっき液の温度は、電気めっき層を形成できる範囲で制限はなく、好ましくは2℃以上、より好ましくは10℃以上、更に好ましくは15℃以上であり、好ましくは80℃以下、より好ましくは50℃以下、更に好ましくは30℃以下である。
 電気めっきの際に印加される電流の電流密度は、電気めっき層を形成できる範囲で制限はなく、好ましくは0.5A/dm以上、より好ましくは1.0A/dm以上であり、好ましくは8.0A/dm以下、より好ましくは7.0A/dm以下である。
 電気めっきは、めっき液を流通させた状態で行ってもよい。めっき液の流通速度は、例えば、3cm/秒以上200cm/秒以下でありうる。
 前記の電気めっきによれば、磁性層の表面に、直に、電気めっき層を形成できる。磁性層の表面に電気めっき層を形成する態様が「直に」とは、磁性層と電気めっき層との間に他の層が無く、磁性層と電気めっき層とが接していることをいう。このように接した磁性層と電気めっき層との間には界面が形成されるが、その界面には、通常、めっき触媒が無い。仮に無電解めっきによって磁性層上に導体層を形成した場合には、パラジウム、金、銀、白金等のめっき触媒が磁性層と導体層との間に残留するから、電気めっき層は、めっき触媒により、無電解めっきで形成された導体層と区別できる。
 上述した電気めっきによれば、無電解めっきによる薄い導体層(シード層)の形成を行うことなく、電気めっき層の形成が可能である。よって、無電解めっきを省略して、磁性基板の製造方法における工程数を少なくできる。この利点を有効に活用する観点から、本実施形態に係る磁性基板の製造方法は、樹脂組成物層を硬化して磁性層を形成する工程(CU)と、その磁性層の表面に電気めっき層を形成する工程(EP)との間に、電気めっき以外の方法によって磁性層の表面に導体層を形成する工程を含まないことが好ましい。
 前記のように無電解めっきを行わないことにより、無電解めっき用の薬液が不要であるので、当該薬液の成分管理が不要である。よって、磁性基板の製造の時間の短縮及び手間の簡便化が可能となる。また、薬液には合金を溶解又は変質させうるものがあるが、薬液を使用しない製造方法では、(A-1)合金粉体として薬液に溶解又は変質されるものを使用できる。よって、(A-1)合金粉体の選択の幅を広げられるから、磁性基板の多様化及び高度化が期待できる。
 磁性層に第二ホールが形成されている場合、電気めっき層を形成する工程(EP)は、磁性層の第二ホール内の表面に、電気めっきによって電気めっき層を形成することを含んでいてもよい。第二ホール内での電気めっき層の形成を促進する観点では、めっき液が第二ホール内に進入しやすいように、めっき液を流通させた状態で電気めっきを行うことが好ましい。また、第二ホール内での電気めっき層の形成を更に効率的に行う観点では、めっき液に超音波を加える処理を行ってもよい。
 本実施形態に係る磁性基板の製造方法は、電気めっきの後で、磁性層及び電気めっき層にアニール処理を施す工程(アニール工程)を含んでいてもよい。アニール処理の処理温度の範囲は、好ましくは150℃以上、より好ましくは160℃以上、更に好ましくは170℃以上であり、好ましくは260℃以下、より好ましくは250℃以下、更に好ましくは240℃以下である。また、アニール処理の処理時間の範囲は、好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上であり、好ましくは10時間以下、より好ましくは5時間以下、更に好ましくは2時間以下である。アニール処理は、窒素ガス雰囲気等の不活性雰囲気において行ってもよい。アニール処理によれば、磁性層と電気めっき層との密着強度を高めることができる。
 前記のように磁性層の表面に電気めっき層を形成することにより、磁性層と、この磁性層の表面に形成された電気めっき層とを備える磁性基板が得られる。例えば、電気めっき層が単独でヘリカル状に形成されている場合、及び、電気めっき層及び磁性基板が備える任意の導体層の組み合わせがヘリカル状に形成されている場合、電気めっき層及び任意の導体層といった導体層によってインダクタを形成できるから、インダクタを備えるインダクタ内蔵基板を磁性基板として得ることができる。
 電気めっき層の厚みは、特に制限はなく、用途に応じて適切な範囲を選択できる。一例において、電気めっき層の厚みの範囲は、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上であり、好ましくは70μm以下、より好ましくは60μm以下、更に好ましくは50μm以下である。
 形成された電気めっき層は、好ましくは、小さい表面粗さを有することができる。電気めっき層の表面の算術平均粗さRaは、好ましくは2000nm以下、より好ましくは1000nm以下、更に好ましくは800nm以下である。下限は、特に制限はないが、1nm以上、10nm以上、50nm以上などであってもよい。電気めっき層の表面粗さは、非接触型表面粗さ計を用いて測定することができる。
[任意の工程]
 本実施形態に係る磁性基板の製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
 磁性基板の製造方法は、例えば、任意の導体層を形成する工程を含んでいてもよい。具体例を挙げると、基材導体層及び電気めっき層以外の任意の導体層を磁性基板に設けたい場合に、磁性基板の製造方法は、任意の導体層を形成する工程を含んでいてもよい。任意の導体層の形成方法は、例えば、めっき法、スパッタ法、蒸着法などが挙げられる。また、セミアディティブ法、フルアディティブ法等の適切な方法によって、任意の導体層を所望の配線パターンに加工してもよい。
 ここで、任意の導体層の形成方法の一例を、詳細に説明する。無電解めっきにより、薄い導体層(シード層)を形成する。次いで、形成されたシード層上に、電気めっきにより更に導体層を形成する。その後、必要に応じて、不要なシード層をエッチング等の処理により除去して、所望の配線パターンを有する任意の導体層を形成できる。任意の導体層の形成後、密着強度を向上させるために、必要によりアニール処理を行ってもよい。
 磁性基板の製造方法は、例えば、任意の絶縁層を形成する工程を含んでいてもよい。具体例を挙げると、電気めっき層を他の導体層から絶縁したい場合に、任意の絶縁層を形成してもよい。また、別の具体例を挙げると、磁性層の第二ホール内の表面に電気めっき層を形成し、その電気めっき層のみでは第二ホールの全体を充填できなかった場合に、第二ホールを充填する絶縁層を形成してもよい。絶縁層は、熱硬化性樹脂組成物又は光硬化性樹脂組成物の硬化物によって形成できる。具体例を挙げると、磁性基板上に熱硬化性樹脂組成物又は光硬化性樹脂組成物の層を形成し、その層を硬化させて、絶縁層を形成できる。
 磁性基板の製造方法は、上述した磁性層の形成及び電気めっき層の形成、並びに、任意の導体層の形成及び任意の絶縁層の形成を繰り返して行ってもよい。具体例を挙げると、磁性層の形成及び電気めっき層の形成を繰り返し行い、磁性層と電気めっき層を交互に積み上げてもよい。
[磁性基板]
 上述した製造方法によって製造される磁性基板は、磁性層と、この磁性層の表面に形成された電気めっき層とを備える。磁性基板の構造は、磁性層及び電気めっき層を備える範囲で特に制限はない。よって、上述した製造方法によって製造されるべき磁性基板の用途は限定されない。電気めっきによって磁性層の表面に電気めっき層を形成できる点を活用する観点では、磁性基板は、第二ホールが形成された磁性層と、第二ホール内に形成された電気めっき層とを備えることが好ましい。
 例えば、内層基材の主面に磁性層を形成し、その磁性層の主面に導体層を形成する場合を想定する。この場合、磁性層の主面上に上述した方法によって導体層として電気めっき層を形成することも可能であるが、例えば、銅箔等の金属箔を用いて導体層を形成することも可能である。よって、その導体層は、上述した実施形態に係る方法以外の方法によっても、無電解めっきを省略して形成することが可能であった。
 しかし、磁性層に形成された第二ホール内に導体層を形成しようとする場合、第二ホールは一般に小さいので、金属箔を用いた導体層の形成は困難である。したがって、無電解めっきを用いないで第二ホール内に導体層を形成することは、上述した実施形態に係る方法以外の方法では、実現できない。
 そこで、このように上述した実施形態に係る製造方法以外の方法では実現できない新たな磁性基板を提供して、上述した製造方法を有効に活用する観点から、上述した製造方法により、第二ホールが形成された磁性層と、第二ホール内に形成された電気めっき層とを備える磁性基板を製造することが好ましい。以下、この磁性基板の例を、図面を示して、その製造方法と共に説明する。ただし、磁性基板及びその製造方法は、以下に示す例に限定されない。
 図1~図12は、一例に係る磁性基板の製造方法の各工程を説明するための模式的な断面図である。本例に係る磁性基板の製造方法では、図1に示すように、内層基材10を用意する工程を含む。本例では、支持基板11と、この支持基板11の両面それぞれに形成された基材導体層12とを備える板状の内層基材10を示して説明する。
 内層基材10を用意した後で、本例に係る磁性基板の製造方法は、図2に示すように、その内層基材10にスルーホールとしての第一ホール10Hを形成する工程を含む。第一ホール10Hは、内層基材10を厚み方向に貫通するように形成されている。第一ホール10Hの径は、特段の制限はなく、例えば、200μm~800μmでありうる。
 第一ホール10Hを形成した後で、本例に係る磁性基板の製造方法は、図3に示すように、内層基材10の第一ホール10H内に樹脂組成物層20を形成する工程を含む(工程(LF))。通常、第一ホール10H内に樹脂組成物層20を形成すると、余剰の樹脂組成物が第一ホール10Hの外に突出又は付着する。よって、第一ホール10Hの開口に形成される樹脂組成物層20の主面20U及び20Dは盛り上がり、平坦でないことが多い。
 樹脂組成物層20を形成した後で、本例に係る磁性基板の製造方法は、図4に示すように、樹脂組成物層20を研磨する工程を含む(工程(PO))。研磨により、第一ホール10Hの外に突出又は付着していた余剰の樹脂組成物は除去されるので、樹脂組成物層20の主面20U及び20Dを平坦にできる。通常、研磨後の樹脂組成物層20の主面20Uは内層基材10の一方の主面10Uと面一になり、研磨後の樹脂組成物層20の主面20Dは内層基材10の他方の主面10Dと面一になる。別に断らない限り、複数の面が「面一」とは、それらの面が同一平面にあることをいう。
 樹脂組成物層20を形成した後で、本例に係る磁性基板の製造方法は、図5に示すように、樹脂組成物層20を硬化させて磁性層30を得る工程を含む(工程(CU))。ここでは、樹脂組成物層20の研磨の後で硬化を行う例を示すが、樹脂組成物層20を硬化して磁性層30を得た後で、その磁性層30の研磨を行ってもよい。
 磁性層30を形成した後で、本例に係る磁性基板の製造方法は、図6に示すように、磁性層30にスルーホールとしての第二ホール30Hを形成する工程を含む(工程(HF))。第二ホール30Hは、磁性層30を厚み方向に貫通するように形成されている。第二ホール30Hの径は、第一ホール10Hの径より小さく形成でき、その具体的な寸法に制限はない。
 第二ホール30Hを形成した後で、本例に係る磁性基板の製造方法は、図7に示すように、磁性層30の表面30Sに電気めっき層40を形成する工程を含む(工程(EP))。磁性層30は、内層基材10に接合していない表面30Sとして、第一ホール10Hの開口に形成された主面30U及び30D、並びに、第二ホール30H内に形成されたホール内周面30Iを含む。電気めっき層40は、通常、磁性層30の主面30U及び30D並びにホール内周面30Iのいずれにも形成される。
 電気めっき層40によって第二ホール30Hの全体が充填されてもよいが、第二ホール30Hの一部が充填されないことがありうる。電気めっき層40によって第二ホール30Hの一部が充填されていない場合、本例に係る磁性基板の製造方法は、図8に示すように、電気めっき層40内の電気めっき層40によって充填されていない前記一部に絶縁層50を形成する工程を含んでいてもよい。絶縁層50は、例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物等の硬化性樹脂を前記一部に充填し、硬化させて形成できる。
 絶縁層50の形成後、絶縁層50の研磨を行ってもよい。絶縁層50の研磨の際、電気めっき層40が同時に研磨されてもよい。ここでは、図9に示すように、絶縁層50及び電気めっき層40が研磨された例を示して説明する。この例では、前記の研磨により、内層基材10の主面10U、磁性層30の主面30U、電気めっき層40の主面40U及び絶縁層50の主面50Uが面一になっている。また、内層基材10の主面10D、磁性層30の主面30D、電気めっき層40の主面40D及び絶縁層50の主面50Dが面一になっている。
 電気めっき層40を形成した後で、本例に係る磁性基板の製造方法は、図10に示すように、内層基材10、磁性層30、電気めっき層40及び絶縁層50上に任意の導体層60を形成する工程を含んでいてもよい。任意の導体層60は、例えば、無電解めっき及び電気めっきによって形成できる。その後、図11に示すように、任意の導体層60上に所望のパターンを有するエッチングレジスト70を形成する。そして、エッチングレジスト70に覆われていない部分の基材導体層12、電気めっき層40及び任意の導体層60を除去し、更にエッチングレジスト70を除去する。
 図12は、一例に係る磁性基板の模式的な断面図である。前記の工程により、図12に示す磁性基板100を得ることができる。このとき、基材導体層12、電気めっき層40及び任意の導体層60といった導体層を全体としてヘリカル状に形成することで、当該導体層によってインダクタを形成できるから、磁性基板100としてインダクタ内蔵基板を得ることができる。また、本例に係る製造方法は、基材導体層12、電気めっき層40及び任意の導体層60以外の導体層を更に設けてもよい。
 図12に示すように、磁性基板100は、第二ホール30Hを形成された磁性層30と、この磁性層30の表面30Sに形成された電気めっき層40とを備える。本例において、電気めっき層40の少なくとも一部は、第二ホール30H内に形成されている。電気めっき層40は、無電解めっきを行わずに形成されているから、第二ホール30H内に形成された電気めっき層40と磁性層30とは、直に接している。また、そのように接した電気めっき層40と磁性層30との界面(ホール内周面30Iに相当)には、無電解めっき用のめっき触媒が無い。磁性層に形成された第二ホール内でめっき触媒を介することなく磁性層の表面に導体層を形成することは、従来の技術では実現されていなかった。よって、前記の磁性基板100は、その製造方法だけでなく、その構造においても従来知られていなかったものである。
 上述した磁性基板は、例えば、インダクタ部品の製造に用いうる。このインダクタ部品は、上述した磁性基板を含む。インダクタ部品は、通常、前記の磁性層の周囲の少なくとも一部に、基材導体層、電気めっき層及び任意の導体層といった導体層によって形成されたインダクタパターンを有する。このようなインダクタ部品は、例えば特開2016-197624号公報に記載のものを適用できる。インダクタ部品には、上述したインダクタ内蔵基板が包含される。
 インダクタ部品は、例えば、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基材として使用した(多層)プリント配線板として用いることもできる。また、例えば、かかる配線板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装したプリント配線板として用いることもできる。
 また、かかる配線板を用いて、種々の態様の半導体装置を製造することができる。かかる配線板を含む半導体装置は、電気製品(例えば、コンピューター、携帯電話、デジタルカメラおよびテレビ等)および乗物(例えば、自動二輪車、自動車、電車、船舶および航空機等)等に好適に用いることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。また、別に断らない限り、以下に示す操作は常温常圧(23℃1気圧)において行った。さらに、体積含有率(体積%)は、質量及び比重を用いて計算によって求めた。
<実施例1:磁性ワニス1の製造>
 エポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、エポキシ当量169g/eq.)1.92質量部、トリアジン骨格含有フェノール樹脂(DIC社製「LA-7054」、水酸基当量約125g/eq.の固形分60%のMEK溶液)2.18質量部、フェノキシ樹脂(三菱ケミカル社製「YL7553BH30」、固形分30%のMEKとシクロヘキサノンの1:1溶液)1.67質量部、分散剤(味の素ファインテクノ社製「PB-821」、カチオン性分散剤)0.43質量部、溶剤(シクロヘキサノン)3質量部、フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)22.09質量部、及び、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)73.74質量部を混合して、磁性ワニス1を製造した。
<実施例2:磁性ワニス2の製造>
 フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)の量を22.09質量部から30.00質量部に変更した。また、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)の量を73.74質量部から30.00質量部に変更した。以上の事項以外は実施例1と同様にして、磁性ワニス2を製造した。
<実施例3:磁性ワニス3の製造>
 フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)の量を22.09質量部から50.00質量部に変更した。また、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)の量を73.74質量部から22.00質量部に変更した。以上の事項以外は実施例1と同様にして、磁性ワニス3を製造した。
<実施例4:磁性ワニス4の製造>
 フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)22.09質量部を合金粉体(JFEミネラル社製の微粉合金「CVD鉄粉」、Fe-Cr-Si系合金、平均粒子径0.7μm、比重6.9m/g)30.92質量部に変更したこと以外は実施例1と同様にして、磁性ワニス4を製造した。
<実施例5:磁性ワニス5の製造>
 フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)22.09質量部をフェライト粉体(パウダーテック社製「MZ03S」、Fe-Mn-Zn系フェライト、平均粒子径0.5μm、比重5.1m/g)22.09質量部に変更したこと以外は実施例1と同様にして、磁性ワニス5を製造した。
<実施例6:磁性ワニス6の製造>
 合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)73.74質量部を合金粉体(三菱製鋼社製「AKT-PB-3Si(5)」、Fe-Ni-Si系合金、平均粒子径5.0μm、比重8.0m/g)73.74質量部に変更したこと以外は実施例1と同様にして、磁性ワニス6を製造した。
<実施例7:磁性ワニス7の製造>
 合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)73.74質量部を合金粉体(エプソンアトミックス社製「AW2-08 PF3F」、Fe-Si-Cr系合金、平均粒子径3.0μm、比重6.9m/g)50.00質量部に変更したこと以外は実施例1と同様にして、磁性ワニス7を製造した。
<実施例8:磁性ペースト8の製造>
 エポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、エポキシ当量169g/eq.)1.70質量部、エポキシ樹脂(三菱ケミカル社製「630」、グリシジルアミン型エポキシ樹脂、エポキシ当量95g/eq.)1.42質量部、エポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1658GS」、環状脂肪族ジグリシジルエーテル、エポキシ当量135g/eq.)4.90質量部、分散剤(味の素ファインテクノ社製「PB-821」、カチオン性分散剤)0.57質量部、硬化促進剤(四国化成社製「2MZA-PW」、イミダゾール系エポキシ樹脂硬化促進剤)0.47質量部、フェライト粉体(パウダーテック社製、「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)17.75質量部、及び、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)59.09質量部を混合して、磁性ペースト8を製造した。
<実施例9:磁性インク9の製造>
 エポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、エポキシ当量169g/eq.)4.6質量部、エポキシ樹脂(三菱ケミカル社製「630」、グリシジルアミン型エポキシ樹脂、エポキシ当量95g/eq.)1.42質量部、エポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1658GS」、環状脂肪族ジグリシジルエーテル、エポキシ当量135g/eq.)2.0質量部、分散剤(味の素ファインテクノ社製「PB-821」、カチオン性分散剤)0.57質量部、硬化促進剤(四国化成社製「2MZA-PW」、イミダゾール系エポキシ樹脂硬化促進剤)0.47質量部、溶剤(ブチルカルビトールアセテート)1.0質量部、フェライト粉体(「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g、パウダーテック社製)17.75質量部、及び、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)59.09質量部を混合し、磁性インク9を製造した。
<比較例1:磁性ワニス10の製造>
 フェライト粉体(パウダーテック社製「M03S」、Fe-Mn系フェライト、平均粒子径0.5μm、比重5.1m/g)の量を22.09質量部から50.00質量部に変更した。また、合金粉体(三菱製鋼社製「AKT-PB(5)」、Fe-Ni系合金、平均粒子径5.0μm、比重8.0m/g)の含有量を73.74質量部から8.00質量部に変更した。さらに、溶剤(シクロヘキサノン)3質量部を使用しなかった。以上の事項以外は実施例1と同様にして、磁性ワニス10を製造した。
<樹脂シートの製造>
 支持体として、アルキド樹脂系離型剤(リンテック社製「AL-5」)で離型処理したPETフィルム(東レ社製「ルミラーR80」、厚み38μm、軟化点130℃、以下「離型PET」ということがある)を用意した。この支持体上に、実施例1~7及び比較例1で製造した樹脂ワニス1~7及び10を、乾燥後の樹脂組成物層の厚さが100μmとなるようにダイコーターにて塗布し、65℃~115℃(平均100℃)にて7分間乾燥して、樹脂シートを得た。
<電気めっき試験1:樹脂シートを用いた電気めっきによる導体層の形成>
 内層基材として、ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、パナソニック社製「R5715ES」)の両面をマイクロエッチング剤(メック社製「CZ8100」)にて1μmエッチングして銅表面の粗化処理を行ったものを用意した。
 実施例1~7及び比較例1で製造した各樹脂シートから、200mm角の正方形のシート片を切り取った。切り取ったシート片(200mm角)を、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製の2ステージビルドアップラミネーター「CVP700」)を用いて、樹脂組成物層が内層基材の中央と接するように、内層基材の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaにて30秒間圧着させることにより実施した。その後、130℃で30分間加熱し、さらに180℃で30分加熱することにより、樹脂組成物層を熱硬化して、磁性層を形成した。形成された磁性層の表面のバフ研磨を実施した。
 研磨処理を行った磁性層の表面に、電気めっきとして硫酸銅電解めっきを行った。この電気めっきは、カソードとして磁性層を用い、アノードとして銅板を用いて、めっき液としての硫酸銅溶液中で電流密度2.0A/dmの電流を60分流して行った。めっき液の組成は、下記の通りであった。
  和光純薬工業社製「硫酸銅五水和物」    79 g/L
  和光純薬工業社製「硫酸」   154  mL/L
  和光純薬工業社製「塩化ナトリウム」 65mg/L
  アトテックジャパン社製「Additive Cupracid HL」、界面活性剤    30 mL/L
  アトテックジャパン社製「Correction Cupracid GS」、有機硫黄化合物、   0.1 mL/L
 前記の電気めっき後、アニール処理を180℃にて60分間行って、評価基板を得た。この評価基板を観察して、磁性層の表面に導体層(電気めっき層)を形成できたか否かを判定した。磁性層の全面に電気めっき層を形成できたものを「良」、電気めっき層を形成できなかったものを「不良」と評価した。
<電気めっき試験2:磁性ペースト又は磁性インクを用いた電気めっきによる導体層の形成>
 内層基材として、ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、パナソニック社製「R5715ES」)の両面をマイクロエッチング剤(メック社製「CZ8100」)にて1μmエッチングして銅表面の粗化処理を行ったものを用意した。
 実施例8で製造した磁性ペースト及び実施例9で製造した磁性インクを、上記内層基材上に、硬化後の磁性層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、樹脂組成物層を形成した。130℃で30分間加熱し、さらに150℃で30分加熱することにより樹脂組成物層を熱硬化し、磁性層を形成した。形成された磁性層の表面のバフ研磨を実施した後、180℃で30分加熱する熱処理を行って更に硬化を進行させた。
 研磨処理を行った磁性層の表面に、電気めっきとして硫酸銅電解めっきを行った。この電気めっきは、上述した電気めっき試験1における電気めっきと同じ方法で行った。電気めっきの後、アニール処理を180℃にて60分間行って、評価基板を得た。この評価基板を観察して、磁性層の表面に導体層(電気めっき層)を形成できたか否かを判定した。磁性層の全面に電気めっき層を形成できたものを「良」、電気めっき層を形成できなかったものを「不良」と評価した。
<磁気特性試験1:樹脂シートから得られる磁性層の比透磁率及び損失係数の測定>
 実施例1~7及び比較例1で製造した各樹脂シートから、200mm角の正方形のシート片を切り取った。切り取ったシート片(200mm角)を、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製の2ステージビルドアップラミネーター「CVP700」)を用いて、ポリイミドフィルム(宇部興産社製「ユーピレックス25S」、25μm厚、240mm角)の片面にラミネートした。前記のラミネートは、シート片の樹脂組成物層がポリイミドフィルムの平滑面の中央と接するように行った。また、前記のラミネートは、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaにて30秒間圧着させることにより実施した。ラミネートにより、支持体/樹脂組成物層/ポリイミドフィルムの層構成を有する複層フィルムを得た。
 支持体を剥離した後、190℃で90分間加熱して樹脂組成物層を熱硬化した。その後、ポリイミドフィルムを剥離して、シート状の硬化物を得た。この硬化物は、樹脂シートから得られる磁性層に相当する。得られたシート状の硬化物を切断して、外径19.2mm、内径8.2mmのドーナツ状の評価サンプルを得た。この評価サンプルの比透磁率(μ’)及び損失係数(tanδ)を、Keysight社製磁性材料テストフィクスチャ「16454A」及びKeysight社製インピーダンスアナライザー「E4991B」を用いて、測定周波数20MHz、室温23℃にて測定した。損失係数tanδは、以下の式「tanδ=μ’’/μ’」により算出した。
<磁気特性試験2:磁性ペースト又は磁性インクから得られる磁性層の比透磁率及び損失係数の測定>
 支持体として、シリコーン系離型剤処理を施したポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET501010」、厚さ50μm)を用意した。実施例8で製造した磁性ペースト及び実施例9で製造した磁性インクを、上記PETフィルムの離型面上に、硬化後の磁性層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、支持体及び樹脂組成物層を備える樹脂シートを得た。
 得られた樹脂シートを190℃で90分間加熱して樹脂組成物層を熱硬化した。その後、支持体を剥離して、シート状の硬化物を得た。この硬化物は、磁性ペースト又は磁性インクから得られる磁性層に相当する。得られたシート状の硬化物を切断して、外径19.2mm、内径8.2mmのドーナツ状の評価サンプルを得た。この評価サンプルの比透磁率(μ’)及び損失係数(tanδ)を、Keysight社製磁性材料テストフィクスチャ「16454A」及びKeysight社製インピーダンスアナライザー「E4991B」を用いて、測定周波数20MHz、室温23℃にて測定した。損失係数tanδは、以下の式「tanδ=μ’’/μ’」により算出した。
<抵抗測定試験:磁性層の体積抵抗の測定>
 磁気特性試験1及び2と同じ方法によってシート状の硬化物を得た。得られたシート状の硬化物を切断して、10cm角の評価サンプルを得た。このサンプルの体積抵抗率をアドバンテスト社製の絶縁抵抗計「R8340」を用いて測定した。
<表面粗さ測定試験:電気めっき層の表面粗さの測定>
 上述した電気めっき試験1及び電気めっき試験2で形成された電気めっき層の算術平均粗さRaを、非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値を求めた。それぞれ、無作為に選んだ10点の平均値を求めることにより測定した。
<結果>
 上述した実施例及び比較例の結果を、下記の表に示す。下記の表において、略称の意味は、以下の通りである。
 CH:シクロヘキサノン。
 BCA:ブチルカルビトールアセテート。
 磁性粉体量(wt%):樹脂組成物の不揮発成分100質量%に対する(A)磁性粉体の量。
 磁性粉体量(vol%):樹脂組成物の不揮発成分100体積%に対する(A)磁性粉体の量。
 合金粉体量(wt%):樹脂組成物の不揮発成分100質量%に対する(A-1)合金粉体の量。
 合金粉体量(vol%):樹脂組成物の不揮発成分100体積%に対する(A-1)合金粉体の量。
 合金粉体/磁性粉体(wt%):(A)磁性粉体100質量%に対する(A-1)合金粉体の量。
 合金粉体/磁性粉体(vol%):(A)磁性粉体100体積%に対する(A-1)合金粉体の量。
 めっき形成:電気めっきによる電気めっき層の形成の可否。
 比透磁率:磁性層に相当する樹脂組成物の硬化物の比透磁率。
 損失係数:磁性層に相当する樹脂組成物の硬化物の損失係数。
 体積抵抗:磁性層の体積抵抗。
 表面粗さ:電気めっき層の表面粗さ。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 10 内層基材
 10H 第一ホール
 10U、10D 内層基材の主面
 11 支持基板
 12 基材導体層
 20 樹脂組成物層
 20U、20D 樹脂組成物層の主面
 30 磁性層
 30H 第二ホール
 30S 磁性層の表面
 30U、30D 磁性層の主面
 30I 磁性層のホール内周面
 40 電気めっき層
 50 絶縁層
 60 任意の導体層
 70 エッチングレジスト
 100 磁性基板 

Claims (10)

  1.  磁性層と、前記磁性層の表面に形成された導体層と、を備える磁性基板の製造方法であって、
     磁性層の表面に、電気めっきによって導体層を形成する工程(EP)を含み、
     磁性層が、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含み、
     (A)磁性粉体が、(A)磁性粉体100質量%に対して、(A-1)合金粉体を30質量%以上含む、磁性基板の製造方法。
  2.  工程(EP)よりも前に、
     樹脂組成物を含む樹脂組成物層を形成する工程(LF)と、
     樹脂組成物層を硬化させて磁性層を形成する工程(CU)と、を含む、請求項1に記載の磁性基板の製造方法。
  3.  工程(CU)と工程(EP)との間に、電気めっき以外の方法によって磁性層の表面に導体層を形成する工程を含まない、請求項2に記載の磁性基板の製造方法。
  4.  工程(LF)が、第一ホールを形成された基材の前記第一ホールに、樹脂組成物層を形成することを含む、請求項2に記載の磁性基板の製造方法。
  5.  工程(EP)より前に、磁性層に第二ホールを形成する工程(HF)を含み、
     工程(EP)が、磁性層の第二ホール内の表面に、電気めっきによって導体層を形成することを含む、請求項1に記載の磁性基板の製造方法。
  6.  樹脂組成物中の不揮発成分100質量%に対する(A)磁性粉体の量が、60質量%以上である、請求項1に記載の磁性基板の製造方法。
  7.  測定周波数20MHzにおける硬化物の比透磁率が、10以上である、請求項1に記載の磁性基板の製造方法。
  8.  (A-1)合金粉体が、Fe-Ni系合金粉体、Fe-Cr-Si系合金粉体及びFe-Ni-Cr系合金粉体からなる群より選ばれる1種類以上を含む、請求項1に記載の磁性基板の製造方法。
  9.  ホールを形成された磁性層と、前記ホール内に形成された導体層と、を備える磁性基板であって、
     磁性層と導体層とが直に接しており、かつ、磁性層と導体層との界面にめっき触媒が無く、
     磁性層が、(A)磁性粉体及び(B)熱硬化性樹脂を含む樹脂組成物の硬化物を含み、
     (A)磁性粉体が、(A)磁性粉体100質量%に対して、(A-1)合金粉体を30質量%以上含む、磁性基板。
  10.  導体層が、銅によって形成されている、請求項9に記載の磁性基板。
PCT/JP2023/029610 2022-09-02 2023-08-16 磁性基板の製造方法、及び、磁性基板 WO2024048283A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139964 2022-09-02
JP2022-139964 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048283A1 true WO2024048283A1 (ja) 2024-03-07

Family

ID=90099379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029610 WO2024048283A1 (ja) 2022-09-02 2023-08-16 磁性基板の製造方法、及び、磁性基板

Country Status (2)

Country Link
TW (1) TW202423683A (ja)
WO (1) WO2024048283A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220504A (ja) * 2018-06-15 2019-12-26 イビデン株式会社 インダクタ内蔵基板およびその製造方法
JP2021158316A (ja) * 2020-03-30 2021-10-07 味の素株式会社 磁性組成物
JP2022025342A (ja) * 2020-07-29 2022-02-10 新光電気工業株式会社 配線基板及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220504A (ja) * 2018-06-15 2019-12-26 イビデン株式会社 インダクタ内蔵基板およびその製造方法
JP2021158316A (ja) * 2020-03-30 2021-10-07 味の素株式会社 磁性組成物
JP2022025342A (ja) * 2020-07-29 2022-02-10 新光電気工業株式会社 配線基板及びその製造方法

Also Published As

Publication number Publication date
TW202423683A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
TWI781166B (zh) 樹脂組成物、硬化物、接著薄膜、內載電感元件之配線板、晶片電感零件以及印刷配線板
JP6492801B2 (ja) 接着フィルム
WO2019181463A1 (ja) スルーホール充填用ペースト
WO2018194100A1 (ja) 樹脂組成物
JP6545924B2 (ja) 粗化硬化体、積層体、プリント配線板及び半導体装置
JP7338560B2 (ja) 樹脂組成物
JP2023164858A (ja) 磁性組成物
JP2017177469A (ja) 樹脂シート
JP7447563B2 (ja) 樹脂組成物
JP7338413B2 (ja) 樹脂組成物
JP7287418B2 (ja) 樹脂組成物
JP2020088285A (ja) 基板の製造方法
WO2020189692A1 (ja) 回路基板の製造方法
JP2022120452A (ja) 樹脂組成物
WO2023162511A1 (ja) 樹脂組成物
WO2023176284A1 (ja) 樹脂組成物及びその製造方法
JP7379829B2 (ja) プリント配線板の製造方法
WO2024048283A1 (ja) 磁性基板の製造方法、及び、磁性基板
WO2023068032A1 (ja) 樹脂組成物
WO2023181742A1 (ja) 磁性基板の製造方法
JP7423896B2 (ja) 基板の製造方法
JP7543826B2 (ja) 樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板及び半導体装置
JP2024042695A (ja) 樹脂組成物
JP2018048252A (ja) 樹脂組成物
JP2024125720A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860048

Country of ref document: EP

Kind code of ref document: A1