JP7342629B2 - 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム - Google Patents

試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム Download PDF

Info

Publication number
JP7342629B2
JP7342629B2 JP2019201388A JP2019201388A JP7342629B2 JP 7342629 B2 JP7342629 B2 JP 7342629B2 JP 2019201388 A JP2019201388 A JP 2019201388A JP 2019201388 A JP2019201388 A JP 2019201388A JP 7342629 B2 JP7342629 B2 JP 7342629B2
Authority
JP
Japan
Prior art keywords
spectrum
sample
learning
shaped
order line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201388A
Other languages
English (en)
Other versions
JP2021076411A (ja
JP2021076411A5 (ja
Inventor
暁 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2019201388A priority Critical patent/JP7342629B2/ja
Priority to US17/006,333 priority patent/US20210131983A1/en
Priority to CN202011061191.4A priority patent/CN112782204A/zh
Publication of JP2021076411A publication Critical patent/JP2021076411A/ja
Publication of JP2021076411A5 publication Critical patent/JP2021076411A5/ja
Application granted granted Critical
Publication of JP7342629B2 publication Critical patent/JP7342629B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2209Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using wavelength dispersive spectroscopy [WDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/305Accessories, mechanical or electrical features computer simulations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラムに関する。
電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)などのX線分析装置においては、試料を構成する元素の化学結合状態を推定するために、試料から放出される特性X線スペクトルを用いる方法が知られている。
特性X線スペクトルを用いて分析対象元素の化学結合状態を推定する場合、化学結合状態の違いによって、スペクトルのピーク波長、ピーク半値幅などのスペクトル波形の形状および、複数の特性X線種(ピーク)間の強度比などが変化することを利用する。つまり、既知の組成のスペクトル波形と分析対象の試料のスペクトル波形とで上記パラメータを比較することにより、分析対象元素の化学結合状態を推定する。この手法は一般的に「状態分析」と呼ばれている。
例えば、特開2005-75376号公報(特許文献1)には、タングステンのMα線とMβ線とに基づいてタングステンの化学結合状態を分析する技術が開示されている。特開2014-228307号公報(特許文献2)には、酸素のKα線およびsKα線の強度ならびにアルミニウムのKβ線の半値幅に基づいてアルミニウムの化学結合状態を分析する技術が開示されている。
特開2005-75376号公報 特開2014-228307号公報
スペクトル波形を解析して状態分析を行なう場合、通常、次のような処理が行なわれる。最初に、分析対象のスペクトル波形からベースラインを求めて差し引き、ピーク波長、ピーク強度および半値幅を求める。このとき、組成が既知の試料についても、スペクトル波形を測定し、同様の処理を行なう。次に、両者のスペクトル波形をグラフ上に重ね合わせて表示し、波形の形状を比較するとともに、上記パラメータ(ピーク波長、ピーク強度および半値幅)を比較する。ピークが複数有る場合には、それらの強度比も比較する。
しかしながら、上記のような処理を行なうことはユーザにとって煩雑である。また、どのようなパラメータに着目するかは分析対象元素およびその化合物によって異なるため、分析上の知識および経験が必要とされ、必ずしも全てのユーザにとって容易とは言えない。さらに、既知の組成の試料を全てユーザが保持しているわけではない。
この発明は、上記の問題を解決するためになされたものであり、この発明の目的には、X線分析装置により測定されたスペクトルを用いて試料の状態分析を行なう場合に、試料中の分析対象元素の化学結合状態を簡易かつ容易に推定することができる技術を提供することである。
本発明の一態様に係る試料成分推定方法は、波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定するステップと、試料のスペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の分析対象元素の化学結合状態を推定するステップとを備える。
本発明の一態様に係る試料成分推定装置は、一態様に係る試料成分推定装置は、波長分散型のX線分析装置により測定された試料のスペクトルを取得するスペクトル取得部と、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定する入力部と、試料のスペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の前記分析対象元素の化学結合状態を推定する化合物種識別部と、推定した化学結合状態を表示する表示部とを備える。
一態様に係る試料成分推定プログラムは、波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定するステップと、試料のX線スペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の分析対象元素の化学結合状態を推定するステップとをコンピュータに実行させる。
本発明の一態様に係る学習方法は、上記第1の学習済みモデルおよび第2の学習済みモデルを生成するための学習方法であって、既知の組成の化合物種のスペクトルと化合物種の組成との組を教師データとして用いた学習処理により、第1の学習済みモデルを作成するステップと、高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により、第2の学習済みモデルを作成するステップとを備える。
本発明の一態様に係る学習プログラムは、上記第1の学習済みモデルおよび第2の学習済みモデルを生成するための学習プログラムであって、学習プログラムは、コンピュータに、既知の組成の化合物種のスペクトルと当該化合物種の組成との組を教師データとして用いた学習処理により、第1の学習済みモデルを作成するステップと、高次線ピーク成分を含む第1のスペクトルと第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により、第2の学習済みモデルを作成するステップとを実行させる。
本発明によれば、X線分析装置により測定されたスペクトルを用いて試料の状態分析を行なう場合に、試料中の分析対象元素の化学結合状態を簡易かつ容易に推定することができる技術を提供することができる。
本実施の形態に従う試料成分推定装置を備えた分析システムの全体構成を示す図である。 試料成分推定装置の機能構成の一例を示すブロック図である。 元素と入力波長範囲との関係の一例を示すテーブルである。 スペクトル生成器モデルの一例を模式的に示す図である。 識別器モデルの一例を模式的に示す図である。 学習部の機能構成の一例を示すブロック図である。 学習処理部により実行されるスペクトル生成器モデルの学習処理の手順を説明するための図である。 学習処理部により実行される識別器モデルの学習処理の手順を説明するための図である。 EPMAにより測定される試料の特性X線スペクトルの一例を示す図である。 鉄の化合物種から放出される特性X線スペクトルの一例を示す図である。 本実施例によるモデルの学習処理の手順を説明するためのフローチャートである。 本実施例による試料中の分析対象元素の化学結合状態の識別処理の手順を説明するためのフローチャートである。 表示部に表示される識別結果の一例を示す図である。 本実施の形態に従う分析システムの第1の変更例の全体構成を示す図である。 本実施の形態に従う分析システムの第2の変更例の全体構成を示す図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。
<分析システムの構成>
図1は、本実施の形態に従う試料成分推定装置を備えた分析システムの全体構成を示す図である。本実施の形態に従う試料成分推定装置は、試料の状態分析を行なう装置であって、X線分析装置により取得された試料の特性X線スペクトルを用いて試料に含まれる分析対象元素の化学結合状態を推定するように構成される。
<X線分析装置の構成>
X線分析装置は、波長分散型の分光器(WDS:Wavelength Dispersive Spectrometer)を有しており、例えば、試料に電子線を照射する電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)である。なお、X線分析装置は、EPMAに限定されるものではなく、試料にX線を照射してWDSにより特性X線を分光する蛍光X線分析装置であってもよい。
図1を参照して、EPMA100は、電子銃1と、偏向コイル2と、対物レンズ3と、試料ステージ4と、試料ステージ駆動部5と、複数の分光器6a,6bとを備える。また、EPMA100は、制御部10と、データ処理部11と、偏向コイル制御部8とをさらに備える。電子銃1、偏向コイル2、対物レンズ3、試料ステージ4および分光器6a,6bは、図示しない計測室内に設けられ、X線の計測中は、計測室内は排気されて真空状態とされる。
電子銃1は、試料ステージ4上の試料Sに照射される電子線Eを発生する励起源である。収束レンズ(図示せず)を制御することによって電子線Eのビーム電流を調整することができる。偏向コイル2は、偏向コイル制御部8から供給される駆動電流により磁場を形成する。偏向コイル2により形成される磁場によって、電子線Eを偏向させることができる。
対物レンズ3は、偏向コイル2と試料ステージ4上に載置される試料Sとの間に設けられ、偏向コイル2を通過した電子線Eを微小径に絞る。電子銃1、偏向コイル2および対物レンズ3は、試料へ向けて電子線を照射する照射装置を構成する。試料ステージ4は、試料Sを載置するためのステージであり、試料ステージ駆動部5により垂直方向および水平面内で移動可能に構成される。
試料ステージ駆動部5による試料ステージ4の駆動および/または偏向コイル制御部8による偏向コイル2の駆動により、試料S上における電子線Eの照射位置を二次元的に走査することができる。走査範囲が比較的狭いときは、偏向コイル2による走査が行なわれ、走査範囲が比較的広いときは、試料ステージ4の移動による走査が行なわれる。
分光器6a,6bは、電子線Eが照射された試料Sから放出される特性X線を検出するための機器である。図1の例では、2つの分光器6a,6bが示されているが、分光器の数はこれに限定されるものではなく、1つでもよいし、3以上であってもよい。各分光器の構成は、分光結晶を除いて同じであり、以下では、各分光器を単に「分光器6」と称する場合がある。
分光器6aは、分光結晶61aと、検出器63aと、スリット64aとを含む。試料S上の電子線Eの照射位置と分光結晶61aと検出器63aとは、図示しないローランド円上に位置している。図示しない駆動機構によって、分光結晶61aは、直線62a上を移動しつつ傾斜され、検出器63aは、分光結晶61aに対する特性X線の入射角と回折X線の出射角とがブラッグの回折条件を満たすように、分光結晶61aの移動に応じて図示のように回動する。これにより、試料Sから放出される特性X線の波長スキャンを行なうことができる。
分光器6bは、分光結晶61bと、検出器63と、スリット64bとを含む。分光器6bの構成は、分光結晶を除いて分光器6aと同様であるので、説明を繰返さない。なお、各分光器の構成は、上記のような構成に限られるものではなく、公知の各種の構成を採用することができる。
制御部10は、CPU(Central Processing Unit)12と、メモリ13と、通信インターフェイス(I/F)4とを備える。メモリ13は、図示しないROM(Read Only Memory)およびRAM(Random Access Memory)を含む。CPU12は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御部10の処理手順が記されたプログラムである。ROMには、各種演算に用いられる各種テーブル(マップ)も格納されている。制御部10は、これらのプログラムおよびテーブルに従って、EPMA100における各種処理を実行する。処理については、ソフトウェアによるものに限られず、専用のハードウェア(電子回路)で実行することも可能である。通信I/F14は、インターネットなどの通信網に接続される、EPMA100は、通信I/F14を介して外部機器との間でデータを遣り取りする。外部機器は、試料成分推定装置200を含む。
データ処理部11も、図示は省略するが、CPUと、メモリと、入出力バッファとを含む。データ処理部11は、分析対象の特性X線スペクトル(以下、スペクトルデータとも称する)を作成する。なお、データ処理部11は、制御部10と一体的に構成してもよい。
偏向コイル制御部8は、制御部10からの指示に従って、偏向コイル2へ供給される駆動電流を制御する。予め定められた駆動電流パターン(大きさおよび変更速度)に従って駆動電流を制御することにより、試料S上において電子線Eの照射位置を所望の走査速度で走査することができる。
<試料成分推定装置の構成>
(試料成分推定装置のハードウェア構成)
試料成分推定装置200は、CPU20と、メモリ22と、通信I/F24と、操作部26と、表示部28とを備える。メモリ22は、図示しないROMおよびRAMを含む。
CPU20は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、試料成分推定装置200の処理手順が記されたプログラム(試料成分推定プログラム)を含む。ROMには、各種演算に用いられる各種テーブル(マップ)も格納されている。試料成分推定装置200は、これらのプログラムおよびテーブルに従って、EPMA100により取得された特性X線スペクトル(スペクトルデータ)を用いて、試料Sに含まれる元素の化学結合状態を推定する処理を実行する。推定処理については、ソフトウェアによるものに限られず、専用のハードウェア(電子回路)で実行することも可能である。
通信I/F24は、インターネットなどの通信網に接続される。試料成分推定装置200は、通信I/F24を介してEPMA100を含む外部機器との間でデータを遣り取りする。
操作部26は、試料成分推定装置200に対してユーザが各種指示を与えるための入力機器であり、例えばマウスまたはキーボード等によって構成される。表示部28は、ユーザに対して各種情報を提供するための出力機器であり、例えば、ユーザが操作可能なタッチパネルを備えるディスプレイによって構成される。なお、このタッチパネルを操作部26としてもよい。
(試料成分推定装置の機能構成)
図2は、試料成分推定装置200の機能構成の一例を示すブロック図である。
図2を参照して、試料成分推定装置200は、主たる機能構成として、入力部31と、スペクトル取得部30と、スペクトル整形部32と、化合物種識別部34と、表示制御部36と、表示部28とを備える。試料成分推定装置200は、学習部38,42と、スペクトル生成器モデル40と、識別器モデル44ととをさらに備える。これらの各機能は、例えば、試料成分推定装置200のCPU20がメモリ22に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部はハードウェアで実現されるように構成されていてもよい。
入力部31は、分析対象の元素に関する情報を受け付ける。具体的には、入力部31は、操作部26(図1参照)から、ユーザが指定した分析対象元素を示す情報を取得すると、指定された分析対象元素に応じて、スペクトルデータの入力波長範囲を特定する。「入力波長範囲」とは、試料Sに含まれる分析対象元素の化学結合状態を推定するために必要となる特性X線スペクトルの波長範囲に相当する。入力波長範囲は、分析対象元素ごとに異なる。図3は、元素と入力波長範囲との関係の一例を示すテーブルである。図3には、鉄(Fe)、シリコン(Si)およびアルミニウム(Al)の各々の入力波長範囲が例示されている。
図3に示すように、元素ごとに、化学結合状態を推定するために着目すべき1次線のピークがある。鉄では、Lα線およびLβ線である。入力波長範囲は、着目すべき1次線の波長を含むように設定される。鉄の場合、入力波長範囲は1.69~1.81nmに設定されている。シリコンの場合、着目すべき1次線はsKα3線およびsKα4線であり、入力波長範囲は0.705~0.710nmに設定されている。アルミニウムでは、着目すべき1次線はsKα3線およびsKα4線であり、入力波長範囲は0.825~0.832nmに設定されている。
試料成分推定装置200は、図3に示すテーブルは予め設定してメモリ22に格納しておくことができる。これによると、入力部31は、分析対象元素情報を取得したときに、図3のテーブルを参照することにより、分析対象元素に応じて入力波長範囲を特定することができる。入力部31は、特定した入力波長範囲を示す情報をスペクトル取得部30に与える。
スペクトル取得部30は、通信I/F24(図1参照)を介してEPMA100から試料Sの特性X線スペクトル(スペクトルデータ)を受け付けるとともに、入力部31から入力波長範囲を示す情報を受け付ける。なお、スペクトルデータの取得先は、任意である。したがって、スペクトル取得部30は、EPMA100からスペクトルデータを取得する構成以外に、外部記憶装置またはインターネット上に設置されているサーバ(ともに図示せず)に格納されているスペクトルデータを取得する構成としてもよい。
スペクトル取得部30は、試料Sのスペクトルデータの中から入力波長範囲のスペクトルデータを抽出して取得する。例えば、分析対象元素が鉄である場合、スペクトル取得部30は、1.69~1.81nmの波長範囲のスペクトルデータを取得する。スペクトル取得部30は、取得したスペクトルデータをスペクトル整形部32へ出力する。
スペクトル整形部32は、取得したスペクトルデータを整形する。具体的には、スペクトル整形部32は、スペクトル生成器モデル40を用いてスペクトルデータから高次線ピーク成分を除去することにより、整形スペクトルデータを生成する。高次線ピーク成分とは、入力波長範囲の特性X線スペクトルに含まれる高次の回折線(いわゆる高次線)のピーク成分である。スペクトル整形部32は、生成した整形スペクトルデータを化合物種識別部34へ出力する。
スペクトル生成器モデル40は、学習部38による学習処理が行なわれたモデル(学習済みモデル)である。図4は、スペクトル生成器モデル40の一例を模式的に示す図である。スペクトル生成器モデル40としては、例えば、図4に示すU字型のニューラルネットワーク(いわゆるU-NET)を用いることができる。
図4に示すU字型のニューラルネットワークは、下向きパスの畳み込み層(Convolution Layer)において、入力されたスペクトルデータから波形の特徴量を抽出する。次に、上向きパスの逆畳み込み層(Deconvolution Layer)において波形の特徴量を保持したまま、スペクトルデータを元のサイズに復元する。また、上向きパスにおいて、データサイズが同じとなる下向き階層のデータを深い層から段階的にマージすることにより、波形の局所的な特徴を保持したまま全体的位置情報を復元することができる。
図2に戻って、化合物種識別部34は、整形スペクトルデータを解析することにより、試料Sが、分析対象元素を含む複数の化合物種のうちのいずれの化合物種に該当するのかを識別する。具体的には、化合物種識別部34は、識別器モデル44を用いて、試料Sの化合物種を識別する。
識別器モデル44は、学習部42による学習処理が行なわれた学習済みモデルである。図5は、識別器モデル44の一例を模式的に示す図である。識別器モデル44としては、典型的に、畳み込みニューラルネットワーク(CNN)が用いられる。CNNは、主に、畳み込み層(Convolution Layer)、プーリング層(Pooling Layer)および全結合層(Full Connected Layer)から構成される。一般的なCNNは、畳み込み層とプーリング層とを交互に積み重ねた後、全結合層をいくつか重ねた構造を有している。
識別器モデル44には、整形スペクトルデータが入力される。畳み込み層およびプーリング層は、入力された整形スペクトルデータから波形の特徴量を抽出する。全結合層は、抽出された波形の特徴量に基づいて、分析対象元素の化学結合状態(すなわち、化合物種)を識別し、識別結果を出力する。
一般的に、CNN等のモデルでは、予め教師データを用いて学習処理が行なわれる。本実施の形態では、例えば、分析対象元素ごとに予め設定された入力波長範囲のスペクトルデータと当該スペクトルデータに対応する化合物種との組を教師データとして、識別器モデル44を学習させることができる。モデルの学習処理については後述する。
図2に戻って、化合物種識別部34は、整形スペクトルデータを識別器モデル44に入力し、識別器モデル44から出力される複数の化合物種の各々に該当する確率の演算結果を取得する。化合物種識別部34は、取得した確率の演算結果を識別結果として表示制御部36へ出力する。表示制御部36は、取得した識別結果を表示部28に表示させる。
(学習部の機能構成)
図2に示す機能構成において、スペクトル生成器モデル40は、学習部38における学習処理が施された学習済みモデルである。スペクトル生成器モデル40は「第2の学習済みモデル」の一実施例に対応し、学習部38は「第2の学習部」の一実施例に対応する。識別器モデル44は、学習部42における学習処理が施された学習済みモデルである。識別器モデル44は「第1の学習済みモデル」の一実施例に対応し、学習部42は「第1の学習部」の一実施例に対応する。以下、図6から図8を参照して、学習部38および学習部42の機能構成について概略的に説明する。
図6は、学習部38および学習部42の機能構成の一例を示すブロック図である。
図6を参照して、学習部38は、学習用データ取得部50と、前処理部52と、学習処理部54と、出力部56とを含む。これらの各機能は、例えば、試料成分推定装置200のCPU20がメモリ22に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部はハードウェアで実現されるように構成されていてもよい。
学習用データ取得部50は、分析対象元素を含む複数の化合物種のスペクトルデータを取得する。複数のスペクトルデータは、高次線ピーク成分を有するスペクトルデータを含んでいる。学習用データ取得部50は、複数のスペクトルデータの各々について、分析対象元素に対応した入力波長範囲のスペクトルデータを、学習用スペクトルデータとして取得する。
前処理部52は、高次線ピーク成分を有する学習用スペクトルデータから高次線ピーク成分を除去する。具体的には、前処理部52は、GaussまたはLorentzなどの標準関数波形あるいはその合成関数を用いて高次線ピーク部分をフィッティングする。前処理部52は、フィッティングさせた波形データを元のスペクトルデータから差し引くことにより、高次線ピーク成分を除去した整形スペクトルデータを得ることができる。
なお、波高分析器(PHA)を用いて入力波長範囲を測定することにより、学習用データ取得部50は、高次線ピーク成分を有しないスペクトルデータを得ることができる。
学習処理部54は、前処理部52により高次線ピーク成分が除去されたスペクトルデータ、および高次線ピーク成分を有しないスペクトルデータを正解データとして用いてスペクトル生成器モデル40の学習処理を実行する。図7は、学習処理部54により実行されるスペクトル生成器モデル40の学習処理の手順を説明するための図である。
図7に示すように、スペクトル生成器モデル40に入力される学習用スペクトルデータが高次線ピーク成分を含んでいる場合には、学習処理部54は、当該学習用スペクトルデータを入力データとし、かつ、当該学習用スペクトルデータから高次線ピーク成分を除去したスペクトルデータを正解データとして、スペクトル生成器モデル40を学習させる。これに対して、スペクトル生成器モデル40に入力される学習用スペクトルデータが高次線ピーク成分を含んでいない場合には、学習処理部54は、当該学習用スペクトルデータを入力データとし、かつ、当該学習用スペクトルデータ自体を正解データとして、スペクトル生成器モデル40を学習させる。学習処理部54は、学習用スペクトルデータを入力した際のスペクトル生成器モデル40の出力データと正解データとの誤差(損失)を求め、この誤差が小さくなるようにスペクトル生成器モデル40を最適化する。
このように、学習部38では、スペクトル生成器モデル40が入力されたスペクトルデータから高次線ピーク成分が除去された整形スペクトルデータを生成し得るように、教師データを用いてスペクトル生成器モデル40の学習処理が行なわれる。教師データは、図7に示したように、高次線ピーク成分を含むスペクトルデータおよびその整形スペクトルデータの組と、高次線ピーク成分を含まないスペクトルデータおよび当該スペクトルデータから高次線ピーク成分を除去しない整形スペクトルデータの組とにより構成される。
図6に戻って、学習部42は、学習用データ取得部60と、学習処理部62とを含む。学習用データ取得部60は、既知の組成の化合物種のスペクトルデータを複数取得する。複数のスペクトルデータの各々は、高次線ピーク成分が除去された整形スペクトルデータである。学習用データ取得部60は、複数のスペクトルデータの各々について、分析対象元素に対応した入力波長範囲のスペクトルデータを、学習用スペクトルデータとして取得する。
学習処理部62は、学習用スペクトルデータを用いて識別器モデル44の学習処理を実行する。図8は、学習処理部62により実行される識別器モデル44の学習処理の手順を説明するための図である。図8に示すように、学習処理部62は、取得した複数のスペクトルデータを入力データとし、かつ、当該複数のスペクトルデータにそれぞれ対応する化合物種のラベル値を正解データとして、識別器モデル44を学習させる。このとき、学習処理部62は、学習用スペクトルデータを入力した際の識別器モデル44の出力データと正解データとの誤差(損失)を求め、この誤差が小さくなるように識別器モデル44を最適化する。
このように、学習部42では、識別器モデル44が入力されたスペクトルデータから複数の化合物種のいずれに該当するかの確率を算出し得るように、教師データを用いて識別器モデル44の学習処理が行なわれる。教師データは、図8に示したように、既知の組成の化合物種のスペクトルデータと当該化合物種の組成との組により構成される。
<実施例>
以下、本実施の形態に従う試料成分推定装置200を用いた試料成分推定処理の実施例について説明する。本実施例では、分析対象元素を鉄とし、試料に含まれる鉄の化学結合状態を推定する。鉄の化学結合状態として、鉄(Fe)、酸化鉄(ウスタイト(FeO)、ヘマタイト(Fe)、マグネタイト(Fe))および、硫化鉄(FeS)の計5種類の化合物種を識別する場合を想定する。
図9は、EPMA100により測定される試料の特性X線スペクトルの一例を示す図である。図9において、横軸は特性X線スペクトルの波長を示し、縦軸は特性X線スペクトルの信号強度を示す。図9には、1.69~1.81nmの波長範囲の特性X線スペクトルが示される。特性X線スペクトルは、Lα線およびLβ線の1次線を含んでいる。
図9に示すように、Lα線とLβ線との間には、Kα線の高次の回折線(高次線)が現れる。Kα線の高次線はLα線およびLβ線と近接するため、1次線の波形を評価する上で不都合となる。そのため、特性X線スペクトルからKα線の高次線を除去する必要がある。
図10は、鉄の化合物種から放出される特性X線スペクトルの一例を示す図である。図10には、図9と同様に、1.69~1.81nmの波長範囲の特性X線スペクトルが示される。
図10には、鉄(Fe)、マグネタイト(Fe)およびヘマタイト(Fe)のスペクトルが示されている。これらのスペクトルを比較すると、鉄の化学結合状態の違いによって、スペクトルのピーク波長、ピーク半値幅などの波形の形状およびピーク強度が変化することが分かる。
図10には、既知の組成をもつ化合物種の特性X線スペクトルに対して、2種類の試料(試料A、試料B)の特性X線スペクトルが重ねて示されている。特性X線スペクトルを用いて各試料の化学結合状態を推定する場合、上述した化学結合状態の違いによる波形の形状およびピーク強度の変化を利用する。つまり、既知の組成の特性X線スペクトルと試料の特性X線スペクトルとの間でこれらのパラメータを比較することにより、各試料に含まれる鉄の化学結合状態を推定することができる。この手法は一般的に「状態分析」と称される手法である。
本実施例による試料成分推定処理は、既知の組成の特性X線スペクトルを用いてモデル(スペクトル生成器モデル40および識別器モデル44)を学習させる処理と、学習済みモデルを用いて試料S中の鉄の化学結合状態を識別する処理とにより構成される。以下、図11および図12を参照して、各処理の手順について説明する。
(モデルの学習処理)
図11は、本実施例によるモデルの学習処理の手順を説明するためのフローチャートである。図11のフローチャートは、主に学習部38および学習部42(図2参照)により実行される。
図11を参照して、学習部38は、ステップS100により、学習用スペクトルデータとして、分析対象元素(鉄)を含む複数の化合物種のスペクトルデータを取得する。学習部38は、各スペクトルデータについて、分析対象元素(鉄)に対応付けられた入力波長範囲(1.69~1.81nm)のスペクトルデータを取得する。取得されたスペクトルデータは、Lα線およびLβ線のピークを含んでいる(図9参照)。さらに、スペクトルデータは、Kα線の高次線のピークを含んでいる。
学習部38は、ステップS110により、取得した学習用スペクトルデータから高次線ピーク成分を除去する。ステップS110では、学習部38は、スペクトルデータのうちのKα線の高次線ピークに該当する波長範囲をGauss関数またはLorentz関数あるいはその合成関数による標準波形でフィッティングする。学習部38は、フィッティングさせた波形データを元のスペクトルデータから差し引くことにより、Kα線の高次線ピーク成分を除去する。
学習部38はさらに、ステップS120により、学習用スペクトルデータとして、高次線ピーク成分を含まない複数のスペクトルデータを取得する。ステップS120では、学習部38は、波高分析器(PHA)によりX線信号の取り込みエネルギーを選別することにより、上記複数の化合物種について、高次線ピーク成分を含まない複数のスペクトルデータを取得する。
ステップS100~S120により高次線ピーク成分が除去された学習用スペクトルデータおよび、高次線ピーク成分を含まない学習用スペクトルデータが取得されると、学習部38は、ステップS130に進み、これらの学習用スペクトルデータを用いて、スペクトル生成器モデル40の学習処理を行なう。ステップS130では、学習部38は、ステップS100により取得された複数のスペクトルデータについては、ステップS10により高次線ピーク成分が除去された複数のスペクトルデータを正解データとする。ステップS120により取得された高次線ピーク成分を含まない複数のスペクトルデータについては、当該複数のスペクトルデータ自体を正解データとする。学習部38は、これらの正解データを用いて、スペクトル生成器モデル40の学習処理を行なう。
次に、学習部38は、学習済みのスペクトル生成器モデル40に対してステップS100により取得された複数のスペクトルデータ(すなわち、高次線ピーク成分を含むスペクトルデータ)を入力する。これにより、スペクトル生成器モデル40から、高次線ピーク成分が除去された複数の整形スペクトルデータを得ることができる。学習部38は、スペクトル生成器モデル40から出力された複数の整形スペクトルデータを、学習部42へ出力する。
学習部42は、複数の整形スペクトルデータを学習用データとして取得する。学習部42は、ステップS150により、取得した複数の整形スペクトルデータにそれぞれ対応する化合物種のラベル値を正解データとして用いることにより、識別器モデル44の学習処理を行なう。これにより、学習済みの識別器モデル44を得ることができる。
(化学結合状態の識別処理)
図12は、本実施例による試料S中の分析対象元素の化学結合状態の識別処理の手順を説明するためのフローチャートである。図12のフローチャートは、スペクトル取得部30、スペクトル整形部32、化合物種識別部34および表示制御部36に(図2参照)より実行される。
図12を参照して、ステップS10により、スペクトル取得部30は、EPMA100(または外部記憶装置)から試料Sのスペクトルデータを取得する。
入力部31は、ステップS20により、ユーザが指定した分析対象元素に応じて、図3のテーブルを参照することにより、スペクトルデータの入力波長範囲を特定する。入力部31は、特定した入力波長範囲を示す情報をスペクトル取得部30に与える。
スペクトル取得部30は、ステップS30により、試料Sのスペクトルデータの中から、分析対象元素(鉄)に対応する入力波長範囲(1.69~1.81nm)のスペクトルデータを抽出して取得する。スペクトル取得部30は、取得したスペクトルデータをスペクトル整形部32へ出力する。
スペクトル整形部32は、ステップS40により、取得した試料Sのスペクトルデータをスペクトル生成器モデル40に入力する。スペクトル整形部32は、スペクトル生成器モデル40から出力される整形スペクトルデータを取得する。スペクトル整形部32は、取得した整形スペクトルデータを化合物種識別部34へ出力する。
化合物種識別部34は、ステップS50により、取得した整形スペクトルデータを識別器モデル44に入力する。化合物種識別部34は、識別器モデル44から出力される、複数の化合物種の各々に該当する確率の演算結果を取得する。化合物種識別部34は、取得した確率の演算結果を識別結果として表示制御部36へ出力する。
表示制御部36は、ステップS60により、取得した識別結果を表示部28に表示させる。図13は、表示部28に表示される識別結果の一例を示す図である。図13に示すように、表示部28には、試料Sが複数の化合物種のいずれに該当するかの確率が表の形式で示される。当該表には、化合物種ごとに確率が示されている。図13の例では、五種類の鉄の化合物種のうち、マグネタイト(Fe)の確率が最も高い。したがって、ユーザは、試料Sがマグネタイト(Fe)に該当する可能性が高いと判断することができる。
以上説明したように、本実施の形態に従う試料成分推定装置によれば、ユーザが煩雑な分析条件の設定およびスペクトル波形の解析を行なう必要がないため、試料中の元素の化学結合状態を簡易かつ容易に推定することができる。
[その他の構成例]
以下、本実施の形態に従う試料成分推定装置および分析システムのその他の構成例について説明する。
(1)上述した実施の形態では、試料成分推定装置200がスペクトル生成器モデル40および識別器モデル44の学習処理を行なう学習部38,42を備える構成について説明したが、図14に示すように、試料成分推定装置200の外部に設置された学習装置300において学習処理を実行する構成としてもよい。
図14は、本実施の形態に従う分析システムの第1の変更例の全体構成を示す図である。図14を参照して、第1の変更例に従う分析システムは、図1に示す分析システムと比較して、学習装置300を備える点が異なる。学習装置300は、図示しない通信I/Fを有しており、通信I/Fを介して試料成分推定装置200との間でデータの遣り取りを行なうことができる。
学習装置300は、学習部38および学習部42を有する。学習部38および学習部42は図6に示す機能構成を備えている。学習装置300は、スペクトル生成器モデル40および識別器モデル44の学習処理を実行し、学習済みのスペクトル生成器モデル40および識別器モデル44を試料成分推定装置200に提供することができる。
第1の変更例では、試料成分推定装置200は、学習部38および学習部42に代えて、転移学習部48を備える。転移学習部48は、学習装置300による学習済みの識別器モデル44の知見を転移させて新たなモデルを学習させる転移学習を実行するように構成される。例えば、ユーザにより指定された分析対象元素の化合物種が識別器モデル44において未だ学習されていない場合には、転移学習部48は、学習装置300から与えられた識別器モデル44を初期値として学習処理を実行する。これにより、ユーザごとの分析対象元素に特化した識別器モデル44を構築することができる。
(2)図15は、本実施の形態に従う分析システムの第2の変更例の全体構成を示す図である。図15を参照して、第2の変更例に従う分析システムは、図1に示す分析システムと比較して、試料成分推定装置200のスペクトルデータの取得先が異なる。試料成分推定装置200は、インターネット330などの通信網に接続されたサーバ310から試料Sのスペクトルデータを取得することができる。
第2の変更例では、インターネット330には複数のX線分析装置100が接続されている。各X線分析装置100で取得された試料のスペクトルデータは、インターネット330を経由してサーバ310に蓄積される。学習装置300は、サーバ310に接続されており、サーバ310に蓄積された複数のスペクトルデータを用いてスペクトル生成器モデル40および識別器モデル44の学習処理を実行するように構成される。学習装置300は、学習済みのスペクトル生成器モデル40および識別器モデル44をサーバ310に格納する。サーバ310は、複数のX線分析装置100で得られたスペクトルデータを管理するとともに、学習済みのスペクトル生成器モデル40および識別器モデル44を管理するように構成される。
試料成分推定装置200は、インターネット330を経由してサーバ310にアクセスすることにより、学習済みのスペクトル生成器モデル40および識別器モデル44を取得することができる。試料成分推定装置200は、サーバ310から試料のスペクトルデータを取得すると、スペクトル生成器モデル40および識別器モデル44を用いて、試料に含まれる分析対象元素の化学結合状態の推定処理(図12参照)を実行する。
第2の変更例では、学習装置300は、サーバ310に適宜格納されるスペクトルデータを利用して、分析対象元素および/または化合物種を追加することにより、学習済みモデルを強化することができる。これにより、サーバ310は、学習装置300により強化されたモデルを試料成分推定装置200に提供することが可能となる。
[態様]
上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)一態様に係る試料成分推定方法は、波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定するステップと、試料のスペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の分析対象元素の化学結合状態を推定するステップとを備える。
第1項に記載の試料成分推定方法によれば、X線分析装置により測定された試料のスペクトルを用いて試料の状態分析を行なう場合に、ユーザが煩雑な分析条件の設定およびスペクトルの解析を行なう必要がないため、簡単かつ容易に分析対象元素の化学結合状態を推定することができる。
(第2項)第1項に記載の試料成分推定方法は、入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するステップをさらに備える。化学結合状態を推定するステップは、整形スペクトルを第1の学習済みモデルに入力するステップを含む。
第2項に記載の試料成分推定方法によれば、高次線ピーク成分を除去した整形スペクトルを用いて試料の状態分析を行なうことにより、試料中の分析対象元素の化学結合状態を精度良く推定することができる。
(第3項)第2項に記載の試料成分推定方法において、整形スペクトルを取得するステップは、入力波長範囲のスペクトルを第2の学習済みモデルに入力し、第2の学習済みモデルから整形スペクトルを出力させるステップを含む。
第3項に記載の試料成分推定方法によれば、ユーザが高次線ピーク成分を除去するための条件を設定する必要がないため、簡単かつ容易に整形スペクトルを取得することができる。
(第4項)第1項から第3項に記載の試料成分推定方法において、第1の学習済みモデルは、既知の組成の化合物種のスペクトルと当該化合物種の組成との組を教師データとして用いた学習処理により作成される。
第4項に記載の試料成分推定方法によれば、教師データを用いて第1の学習済みモデルを最適化することにより、状態分析の精度を向上させることができる。
(第5項)第3項に記載の試料成分推定方法において、第2の学習済みモデルは、高次線ピーク成分を含む第1のスペクトルと第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により作成される。
第5項に記載の試料成分推定方法によれば、教師データを用いて第2の学習済みモデルを最適化することにより、整形スペクトルを正確に生成することができる。
(第6項)第2項に記載の試料成分推定方法において、整形スペクトルを取得するステップは、高次線ピーク成分にフィッティングさせた波形データを、入力波長範囲のスペクトルから差し引くことにより、整形スペクトルを取得するステップを含む。
第6項に記載の試料成分推定方法によれば、整形スペクトルを正確に生成することができる。
(第7項)一態様に係る試料成分推定装置は、波長分散型のX線分析装置により測定された試料のスペクトルを取得するスペクトル取得部と、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定する入力部と、試料のスペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の前記分析対象元素の化学結合状態を推定する化合物種識別部と、推定した化学結合状態を表示する表示部とを備える。
第7項に記載の試料成分推定装置によれば、X線分析装置により測定された試料のスペクトルを用いて試料の状態分析を行なう場合に、ユーザが煩雑な分析条件の設定およびスペクトルの解析を行なう必要がないため、簡単かつ容易に分析対象元素の化学結合状態を推定することができる。
(第8項)第7項に記載の試料成分推定装置は、既知の組成の化合物種のスペクトルと前記化合物種の組成との組を教師データとして用いた学習処理により、第1の学習済みモデルを作成する第1学習部をさらに備える。
第8項に記載の試料成分推定装置によれば、教師データを用いて第1の学習済みモデルを最適化することにより、状態分析の精度を向上させることができる。
(第9項)第7項または第8項に記載の試料成分推定装置は、入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するスペクトル整形部をさらに備える。化合物種識別部は、整形スペクトルを第1の学習済みモデルに入力する。
第9項に記載の試料成分推定装置によれば、高次線ピーク成分を除去した整形スペクトルを用いて試料の状態分析を行なうことにより、試料中の分析対象元素の化学結合状態を精度良く推定することができる。
(第10項)第9項に記載の試料成分推定装置は、高次線ピーク成分を含む第1のスペクトルと第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により、第2の学習済みモデルを作成する第2学習部をさらに備える。
第10項に記載の試料成分推定装置によれば、教師データを用いて第2の学習済みモデルを最適化することにより、整形スペクトルを正確に生成することができる。
(第11項)一態様に係る試料成分推定プログラムは、波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、試料の分析対象元素および分析対象元素に対応する入力波長範囲を特定するステップと、試料のX線スペクトルのうち入力波長範囲のスペクトルを第1の学習済みモデルに入力し、試料中の分析対象元素の化学結合状態を推定するステップとをコンピュータに実行させる。
第11項に記載の試料成分推定プログラムによれば、X線分析装置により測定された試料のスペクトルを用いて試料の状態分析を行なう場合に、ユーザが煩雑な分析条件の設定およびスペクトルの解析を行なう必要がないため、簡単かつ容易に分析対象元素の化学結合状態を推定することができる。
(第12項)第11項に記載の試料成分推定プログラムは、入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するステップをさらに備える。整形スペクトルを取得するステップは、入力波長範囲のスペクトルを第2の学習済みモデルに入力し、第2の学習済みモデルから整形スペクトルを出力させるステップを含む。化学結合状態を推定するステップは、整形スペクトルを第1の学習済みモデルに入力するステップを含む。
第12項に記載の試料成分推定プログラムによれば、高次線ピーク成分を除去した整形スペクトルを用いて試料の状態分析を行なうことにより、試料中の分析対象元素の化学結合状態を精度良く推定することができる。また、ユーザが高次線ピーク成分を除去するための条件を設定する必要がないため、簡単かつ容易に整形スペクトルを取得することができる。
(第13項)第3項に記載される試料成分推定方法に用いられる第1の学習済みモデルおよび第2の学習済みモデルを生成するための学習方法であって、既知の組成の化合物種のスペクトルと化合物種の組成との組を教師データとして用いた学習処理により、第1の学習済みモデルを作成するステップと、高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により、第2の学習済みモデルを作成するステップとを備える。
第13項に記載の学習方法によれば、教師データを用いて第1の学習済みモデルを最適化することにより、状態分析の精度を向上させることができる。また、教師データを用いて第2の学習済みモデルを最適化することにより、整形スペクトルを正確に生成することができる。
(第14項)第12項に記載される試料成分推定プログラムに用いられる第1の学習済みモデルおよび第2の学習済みモデルを生成するための学習プログラムであって、学習プログラムは、コンピュータに、既知の組成の化合物種のスペクトルと当該化合物種の組成との組を教師データとして用いた学習処理により、第1の学習済みモデルを作成するステップと、高次線ピーク成分を含む第1のスペクトルと第1のスペクトルから高次線ピーク成分を除去した整形スペクトルとの組および、高次線ピーク成分を含まない第2のスペクトルと第2のスペクトルから高次線ピーク成分を除去しない整形スペクトルとの組を教師データとして用いた学習処理により、第2の学習済みモデルを作成するステップとを実行させる。
第14項に記載の学習プログラムによれば、教師データを用いて第1の学習済みモデルを最適化することにより、状態分析の精度を向上させることができる。また、教師データを用いて第2の学習済みモデルを最適化することにより、整形スペクトルを正確に生成することができる。
なお、上述した実施の形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電子銃、2 偏向コイル、3 対物レンズ、4 試料ステージ、5 試料ステージ駆動部、6,6a,6b 分光器、8 偏向コイル制御部、10 制御部、11 データ処理部、13,22 メモリ、26 操作部、28 表示部、30 スペクトル取得部、31 入力部、32 スペクトル整形部、34 化合物種識別部、36 表示制御部、38,42 学習部、40 スペクトル生成器モデル、44 識別器モデル、48 転移学習部、50,60 学習用データ取得部、52 前処理部、54,62 学習処理部、56 出力部、61a,61b 分光結晶、63a 検出器、64a,64b スリット、100 X線分析装置、200 試料成分推定装置、300 学習装置、310 サーバ、330 インターネット、S 試料。

Claims (11)

  1. 波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、
    前記試料の分析対象元素および、前記分析対象元素に対応する入力波長範囲を特定するステップと、
    前記試料のスペクトルのうち前記入力波長範囲のスペクトルを第1の学習済みモデルに入力し、前記試料中の前記分析対象元素の化学結合状態を推定するステップとを備え、
    前記入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するステップをさらに備え、
    前記化学結合状態を推定するステップは、前記整形スペクトルを前記第1の学習済みモデルに入力するステップを含む、試料成分推定方法。
  2. 前記整形スペクトルを取得するステップは、前記入力波長範囲のスペクトルを第2の学習済みモデルに入力し、前記第2の学習済みモデルから前記整形スペクトルを出力させるステップを含む、請求項に記載の試料成分推定方法。
  3. 前記第1の学習済みモデルは、既知の化合物種のスペクトルと前記化合物種との組を教師データとして用いた学習処理により作成される、請求項1または2に記載の試料成分推定方法。
  4. 前記第2の学習済みモデルは、前記高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから前記高次線ピーク成分を除去した前記整形スペクトルとの組および、前記高次線ピーク成分を含まない第2のスペクトルと前記第2のスペクトルからなる前記整形スペクトルとの組を教師データとして用いた学習処理により作成される請求項に記載の試料成分推定方法。
  5. 前記整形スペクトルを取得するステップは、前記高次線ピーク成分にフィッティングさせた波形データを、前記入力波長範囲のスペクトルから差し引くことにより、前記整形スペクトルを取得するステップを含む、請求項に記載の試料成分推定方法。
  6. 波長分散型のX線分析装置により測定された試料のスペクトルを取得するスペクトル取得部と、
    前記試料の分析対象元素および、前記分析対象元素に対応する入力波長範囲を特定する入力部と、
    前記試料のスペクトルのうち前記入力波長範囲のスペクトルを第1の学習済みモデルに入力し、前記試料中の前記分析対象元素の化学結合状態を推定する化合物種識別部と、
    推定した前記化学結合状態を表示する表示部とを備え、
    前記入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するスペクトル整形部をさらに備え、
    前記化合物種識別部は、前記整形スペクトルを前記第1の学習済みモデルに入力する、試料成分推定装置。
  7. 既知の化合物種のスペクトルと前記化合物種との組を教師データとして用いた学習処理により、前記第1の学習済みモデルを作成する第1学習部をさらに備える、請求項に記載の試料成分推定装置。
  8. 前記スペクトル整形部は、前記入力波長範囲のスペクトルを第2の学習済みモデルに入力し、前記第2の学習済みモデルから前記整形スペクトルを出力させるように構成され、
    前記高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから前記高次線ピーク成分を除去した前記整形スペクトルとの組および、前記高次線ピーク成分を含まない第2のスペクトルと前記第2のスペクトルからなる前記整形スペクトルとの組を教師データとして用いた学習処理により、前記第2の学習済みモデルを作成する第2学習部をさらに備える、請求項に記載の試料成分推定装置。
  9. コンピュータにより実行される試料成分推定プログラムであって、
    波長分散型のX線分析装置により測定された試料のスペクトルを取得するステップと、
    前記試料の分析対象元素および、前記分析対象元素に対応する入力波長範囲を特定するステップと、
    前記試料のX線スペクトルのうち前記入力波長範囲のスペクトルを第1の学習済みモデルに入力し、前記試料中の前記分析対象元素の化学結合状態を推定するステップとをコンピュータに実行させ、
    前記入力波長範囲のスペクトルから高次線ピーク成分を除去することにより、整形スペクトルを取得するステップをさらに備え、
    前記整形スペクトルを取得するステップは、前記入力波長範囲のスペクトルを第2の学習済みモデルに入力し、前記第2の学習済みモデルから前記整形スペクトルを出力させるステップを含み、
    前記化学結合状態を推定するステップは、前記整形スペクトルを前記第1の学習済みモデルに入力するステップを含む、試料成分推定プログラム。
  10. 請求項に記載される試料成分推定方法に用いられる前記第1の学習済みモデルおよび前記第2の学習済みモデルを生成するための学習方法であって、
    既知の化合物種のスペクトルと前記化合物種との組を教師データとして用いた学習処理により、前記第1の学習済みモデルを作成するステップと、
    前記高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから前記高次線ピーク成分を除去した前記整形スペクトルとの組および、前記高次線ピーク成分を含まない第2のスペクトルと前記第2のスペクトルからなる前記整形スペクトルとの組を教師データとして用いた学習処理により、前記第2の学習済みモデルを作成するステップとを備
    える、学習方法。
  11. 請求項に記載される試料成分推定プログラムに用いられる前記第1の学習済みモデルおよび前記第2の学習済みモデルを生成するための学習プログラムであって、
    前記学習プログラムは、コンピュータに、
    既知の化合物種のスペクトルと前記化合物種との組を教師データとして用いた学習処理により、前記第1の学習済みモデルを作成するステップと、
    前記高次線ピーク成分を含む第1のスペクトルと前記第1のスペクトルから前記高次線ピーク成分を除去した前記整形スペクトルとの組および、前記高次線ピーク成分を含まない第2のスペクトルと前記第2のスペクトルからなる前記整形スペクトルとの組を教師データとして用いた学習処理により、前記第2の学習済みモデルを作成するステップとを実行させる、学習プログラム。
JP2019201388A 2019-11-06 2019-11-06 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム Active JP7342629B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019201388A JP7342629B2 (ja) 2019-11-06 2019-11-06 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム
US17/006,333 US20210131983A1 (en) 2019-11-06 2020-08-28 Sample Component Determination Method, Sample Component Determination Apparatus, Learning Method and Computer Readable Non-transitory Recording Medium
CN202011061191.4A CN112782204A (zh) 2019-11-06 2020-09-30 试样成分估计方法及其装置、学习方法以及记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201388A JP7342629B2 (ja) 2019-11-06 2019-11-06 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム

Publications (3)

Publication Number Publication Date
JP2021076411A JP2021076411A (ja) 2021-05-20
JP2021076411A5 JP2021076411A5 (ja) 2022-03-22
JP7342629B2 true JP7342629B2 (ja) 2023-09-12

Family

ID=75687400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201388A Active JP7342629B2 (ja) 2019-11-06 2019-11-06 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム

Country Status (3)

Country Link
US (1) US20210131983A1 (ja)
JP (1) JP7342629B2 (ja)
CN (1) CN112782204A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130267B2 (ja) * 2020-09-03 2022-09-05 株式会社リガク 全反射蛍光x線分析装置及び推定方法
EP4220143B1 (en) * 2022-02-01 2023-12-27 Bruker AXS GmbH System and method for improved measurement of peak intensities in pulse height spectra obtained by wave-length dispersive x-ray fluorescence spectrometers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027621A (ja) 1999-07-14 2001-01-30 Jeol Ltd 電子プローブマイクロアナライザ
JP2002357571A (ja) 2001-05-31 2002-12-13 Rigaku Industrial Co 波長分散型蛍光x線分析装置
JP2003504765A (ja) 1999-07-07 2003-02-04 レニショウ パブリック リミテッド カンパニー ニューラルネットワーク
JP2009047586A (ja) 2007-08-21 2009-03-05 Jeol Ltd 化学結合状態分析を行うx線分析装置
WO2018117146A1 (ja) 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム
US20180243800A1 (en) 2016-07-18 2018-08-30 UHV Technologies, Inc. Material sorting using a vision system
CN109884104A (zh) 2019-03-14 2019-06-14 钢研纳克检测技术股份有限公司 材料组织结构大尺寸高通量定量表征三维重构设备和方法
WO2019163023A1 (ja) 2018-02-21 2019-08-29 株式会社島津製作所 電池材料の化学状態分析装置及び方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135850A (ja) * 1983-12-26 1985-07-19 Shimadzu Corp 状態マツプ方法及びその装置
JPS60186739A (ja) * 1984-03-05 1985-09-24 Shimadzu Corp 化学結合状態画像分析装置
US4962516A (en) * 1985-06-11 1990-10-09 Shimadzu Corporation Method and apparatus for state analysis
JPH10111261A (ja) * 1996-10-04 1998-04-28 Sumitomo Electric Ind Ltd 化学状態の分析方法
JP2003075376A (ja) * 2001-09-04 2003-03-12 Allied Material Corp 化学結合状態分析方法
JP4005547B2 (ja) * 2003-09-04 2007-11-07 エスアイアイ・ナノテクノロジー株式会社 プラスティックを分析するx線分析装置
JP4486438B2 (ja) * 2004-08-17 2010-06-23 日本電子株式会社 波高分布表示機能を備えたx線分析装置
JP3950156B1 (ja) * 2006-04-11 2007-07-25 理学電機工業株式会社 蛍光x線分析装置
JP4874697B2 (ja) * 2006-04-14 2012-02-15 日本電子株式会社 電子プローブx線分析装置及びその動作方法
SE533454C2 (sv) * 2008-12-18 2010-10-05 Portendo Ab Detektion av små mängder av ämnen
EP3322544B1 (en) * 2015-07-16 2022-06-08 Sortera Alloys, Inc. Material sorting system
CN105067650B (zh) * 2015-08-03 2018-01-02 东南大学 一种利用小波计算导数检测谱特征峰的方法
CN107255647A (zh) * 2017-05-10 2017-10-17 中国科学院合肥物质科学研究院 基于x射线荧光光谱和深度对抗学习的土壤微量元素含量分析预测方法
WO2019064360A1 (ja) * 2017-09-27 2019-04-04 株式会社島津製作所 X線分光分析装置、及び該x線分光分析装置を用いた化学状態分析方法
EP3865872A4 (en) * 2018-11-19 2022-08-10 Canon Kabushiki Kaisha INFORMATION PROCESSING DEVICE, METHOD FOR CONTROLLING AN INFORMATION PROCESSING DEVICE, PROGRAM, CALCULATION DEVICE AND CALCULATION METHOD
CN109307687B (zh) * 2018-12-03 2020-12-22 苏州市环境科学研究所 一种基于神经网络的现场快速检测土壤重金属含量的方法
US10515715B1 (en) * 2019-06-25 2019-12-24 Colgate-Palmolive Company Systems and methods for evaluating compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504765A (ja) 1999-07-07 2003-02-04 レニショウ パブリック リミテッド カンパニー ニューラルネットワーク
JP2001027621A (ja) 1999-07-14 2001-01-30 Jeol Ltd 電子プローブマイクロアナライザ
JP2002357571A (ja) 2001-05-31 2002-12-13 Rigaku Industrial Co 波長分散型蛍光x線分析装置
JP2009047586A (ja) 2007-08-21 2009-03-05 Jeol Ltd 化学結合状態分析を行うx線分析装置
US20180243800A1 (en) 2016-07-18 2018-08-30 UHV Technologies, Inc. Material sorting using a vision system
WO2018117146A1 (ja) 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及びプログラム
WO2019163023A1 (ja) 2018-02-21 2019-08-29 株式会社島津製作所 電池材料の化学状態分析装置及び方法
CN109884104A (zh) 2019-03-14 2019-06-14 钢研纳克检测技术股份有限公司 材料组织结构大尺寸高通量定量表征三维重构设备和方法

Also Published As

Publication number Publication date
US20210131983A1 (en) 2021-05-06
JP2021076411A (ja) 2021-05-20
CN112782204A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
Bonnet et al. Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis
JP5375411B2 (ja) クロマトグラフ質量分析データ解析方法及び装置
JP7342629B2 (ja) 試料成分推定方法、試料成分推定装置、試料成分推定プログラム、学習方法および学習プログラム
JP6868468B2 (ja) 画像処理装置、表面分析装置、および画像処理方法
JP6242291B2 (ja) 相分析装置、相分析方法、および表面分析装置
JP2023505380A (ja) 発光スペクトルに基づく予測モデルを使用して未知のサンプル組成を分析するためのシステムと方法
Leani et al. Energy dispersive inelastic X-ray scattering spectroscopy–A review
JP6576751B2 (ja) 分析方法およびx線光電子分光装置
JP6009963B2 (ja) 試料分析方法および試料分析装置
JP6851283B2 (ja) 画像処理装置、分析装置、および画像処理方法
CN112083024B (zh) X射线分析系统和x射线分析方法
Gullayanon A calibration methodology for energy dispersive X-ray fluorescence measurements based upon synthetically generated reference spectra
JP6336881B2 (ja) 散布図表示装置、散布図表示方法、および表面分析装置
EP4148681A1 (en) Scatter diagram display device, scatter diagram display method, and analyzer
JP7442488B2 (ja) 相分析装置、試料分析装置、および分析方法
JP7442487B2 (ja) 相分析装置、試料分析装置、および分析方法
JP7191902B2 (ja) 試料分析装置及び方法
JP2013186062A (ja) 組成比測定方法
CN112394079A (zh) 电子束微区分析仪
WO2023223777A1 (ja) 補正方法、分析装置およびプログラム
JP7307761B2 (ja) スペクトル解析装置
JP4233510B2 (ja) スペクトル解析方法,スペクトル解析装置
JP7288553B1 (ja) プラズマ処理装置、データ解析装置及び半導体装置製造システム
WO1997023776A1 (en) X-ray fluorescence analysis utilizing a neural network for determining composition ratios
Zolotarev et al. The code for processing of the SRXRF spectra

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R151 Written notification of patent or utility model registration

Ref document number: 7342629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151